wo 2013/184281 A1 | I 0N OO O A A A

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

—~
é

\\

(10) International Publication Number

WO 2013/184281 Al

12 December 2013 (12.12.2013) WIPO | PCT

(51) International Patent Classification: 27762 Antonio Pkway, L1-260, Ladera Ranch, CA 92694

GO6F 21/50 (2013.01) GO6F 9/22 (2006.01) (US).
GO6F 15/16 (2006.01) (74) Agents: PECK, Robert, C. et al; Lee & Hayes, PLLC,
(21) International Application Number: 601 W. Riverside Ave, Suite 1400, Spokane, WA 99201

PCT/US2013/040420 (US).
(22) International Filing Date: (81) Designated States (unless otherwise indicated, for every
9 May 2013 (09.05.2013) kind of national protection available): AE, AG, AL, AM,
- . AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
(25) Filing Language: English BZ, CA. CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
(26) Publication Language: English DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
(30) Priority Data: KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
13/492,672 8 June 2012 (08.06.2012) us ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
(71) Applicant: CROWDSTRIKE, INC. [US/US]; 30251 NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU,
Golden Lantern, Laguna Niguel, CA 92677-5993 (US). RW, SC, 8D, SE, 8G, 8K, SL, SM, ST, SV, 8Y, TH, TJ,
TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,

(72) Inventors: DIEHL, David, F.; 5324 Elliot Ave S, Min- M, ZW.

neapolis, MN 55417 (US). ALPERVOTICH, Dmitri;
7903 Plum Creek Drive, Gaithersburg, MD 20879 (US).
IONESCU, Ion-Alexandru; 512 Van Ness, #302, San
Francisco, CA 94102 (US). KURTZ, George, Robert;

(84)

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,

[Continued on next page]

(54) Title: KERNEL-LEVEL SECURITY AGENT

(57) Abstract: A kernel-level security agent is described herein. The ker-

PROCESSOR(S) 108] { NETWORK INTERFACE(S) 110]

MEMORY 112
KERNEL-LEVEL SECURITY AGENT 114

{ COMPONENTS 116] [SITuUATIONAL MoDEL 118

{ MANAGERS 120] [Comms MoDULE 122

[OPERATING SYSTEM 124] Processes 126

e’

LoG FILES 128

z
f
S
3
]
S
2

6

SECURITY SERVICE CLOUD
104

PROCESSOR(S) 130] [NETWORK INTERFACE(S) 132]

MEemoRY 134

[Comms MODULE 136] { AnaLYSIS MODULE 138]

[CONF\GURAT\ON MODULE] [HEALING MOBULE 142

—

[SOCIAL MODULE 144] [AbMIN Ul 146]

Fig. 1

nel-level security agent is configured to observe events, filter the observed
events using configurable filters, route the filtered events to one or more event
consumers, and utilize the one or more event consumers to take action based at
least on one of the filtered events. In some implementations, the kernel-level se-
curity agent detects a first action associated with malicious code, gathers data
about the malicious code, and in response to detecting subsequent action(s) of
the malicious code, performs a preventative action. The kernel-level security
agent may also deceive an adversary associated with malicious code. Further, the
kernel-level security agent may utilize a model representing chains of execution
activities and may take action based on those chains of execution activities.

WO 20137184281 A1 WK 00T O VA R A0

UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, Published:

TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, __ P .

EE, IS, FL FR, GB. GR, HR, HU, IE, IS, IT, LT, LU. with international search report (Art. 21(3))
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,

SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,

GW, ML, MR, NE, SN, TD, TG).

10

15

20

WO 2013/184281 PCT/US2013/040420

KERNEL-LEVEL SECURITY AGENT

RELATED APPLICATIONS

[0001] This patent application claims priority to U.S. Utility patent
application entitled “Kernel-Level Security Agent” with Serial No. 13/492,672

filed June 8, 2012, which is fully incorporated herein by reference.

BACKGROUND

[0002] With Internet use forming an ever greater part of day to day life,
malicious software — often called “malware” — that steals or destroys system
resources, data, and private information is an increasing problem.
Governments and businesses devote significant resources to preventing
intrusions by malware. Malware comes in many forms, such as computer
viruses, worms, trojan horses, spyware, keystroke loggers, adware, and
rootkits. Some of the threats posed by malware are of such significance that
they are described as cyber terrorism or industrial espionage.

[0003] Current approaches to these threats include traditional antivirus
software, such as Symantec Endpoint Protection, that utilizes signature-based
and heuristic techniques to detect malware. These techniques involve receiving
malware definitions from a remote security service and scanning a host device
on which the antivirus software is implemented for files matching the received
definitions.

[0004] There are a number of problems with traditional antivirus software,

however. Purveyors of malware are often able to react more quickly than

10

15

20

WO 2013/184281 PCT/US2013/040420

vendors of security software, updating the malware to avoid detection. Also,
there are periods of vulnerability when new definitions are implemented or
when the security software itself is updated. During these periods of
vulnerability, there is currently nothing to prevent the intrusion and spread of
the malware. Further, antivirus software tends to be a user mode application
that loads after the operating system, giving malware a window to avoid

detection.

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] The detailed description is set forth with reference to the
accompanying figures. In the figures, the left-most digit(s) of a reference
number identifies the figure in which the reference number first appears. The
use of the same reference numbers in different figures indicates similar or
identical items or features.

[0006] FIG. 1 illustrates an example network connecting a computing
device configured with a kernel-level security agent to a security service cloud.
[0007] FIG. 2 illustrates an example architecture of the kernel-level security
agent used in the network of FIG. 1, including a model, components, and
managers.

[0008] FIG. 3 illustrates an example process implemented by the kernel-
level security agent used in the network of FIG. 1 for detecting a first action

associated with malicious code, refraining from preventative action while

10

15

20

WO 2013/184281 PCT/US2013/040420

gathering data, and, upon detecting subsequent action(s) associated with the
malicious code, performing a preventative action..

[0009] FIG. 4 illustrates an example process implemented by the kernel-
level security agent used in the network of FIG. 1 for observing events,
determining that the events are associated with malicious code, and deceiving
an adversary associated with the malicious code.

[0010] FIG. 5 illustrates an example process implemented by the kernel-
level security agent used in the network of FIG. 1 for observing execution
activities, storing data associated with the execution activities in a model that
represents chains of execution activities, and taking action based on the chains

of execution activities.

DETAILED DESCRIPTION

Overview

[0011] This disclosure describes, in part, a kemel-level security agent that
operates on a host computing device, including mobile and embedded systems,
as a virtual machine/shadow operating system. The kernel-level security agent
loads before the operating system of the host computing device. In fact, the
kernel-level security agent is loaded very early in the boot-time of the host
computing device, by some of the first few dozen instructions. By loading
early in boot-time, the kernel-level security agent significantly reduces the
window in which malware can become active and interfere with operation of

the host computing device or run unobserved on the host computing device. In

10

15

20

WO 2013/184281 PCT/US2013/040420

some embodiments, by leveraging hardware-based security features, the agent
can also validate the integrity of its computing operations and data and
additionally enhance the level of security provided.

[0012] In various embodiments, the kernel-level security agent may be
installed on the host computing device in the form of a driver and may be
received from a security service. Such a security service may be implemented
as a cloud of security service devices (referred to herein as a “security service
cloud” or a “remote security system”). In addition to installing the kernel-level
security agent, the security service cloud may receive notifications of observed
events from the kernel-level security agent, may perform analysis of data
associated with those events, may perform healing of the host computing
device, and may generate configuration updates and provide those updates to
the kernel-level security agent. These interactions between the kernel-level
security agent and the security service cloud enable a detection loop that
defeats the malware update loop of malware developers (also referred to herein
as “adversaries”) and further enable the kernel-level security agent to perform
updating while continuously monitoring, eliminating dangerous gaps in
security coverage. Also, as used herein, the term “adversaries” includes not
only malware developers but also exploit developers, builders and operaters of
an attack infrastructure, those conducting target reconnaissance, those
executing the operation, those performing data exfiltration, and/or those
maintaining persistence in the network, etc. Thus the “adversaries” can include

numerous people that are all part of an “adversary” group. Also, the detection

10

15

20

WO 2013/184281 PCT/US2013/040420

loop is focused on defeating not just the malware update loop but all aspects of
this attack — the changing of the malware, the changing of the exploits, attack
infrastructure, persistence tools, attack tactics, etc.

[0013] The detection loop of the kernel-level security agent and security
service cloud is enabled by an agent architecture designed in accordance with
the principles of the well-known OODA-loop (i.e., observe-orient-detect-act-
loop). Rather than using fixed signatures to make quick determinations and
responses, the kernel-level security agent observes and analyzes all
semantically-interesting events that occur on the host computing device.
Kernel-level security agent components known as collectors receive
notifications of these semantically-interesting events (e.g., file writes and
launching executables) from host operating system hooks or filter drivers, from
user-mode event monitors, or from threads monitoring log files or memory
locations. These events may then be filtered using configurable filters of the
kernel-level security agent and routed/dispatched to event consumers of the
kernel-level security agent, such as correlators or actor components. A
correlator component notes the fact of the occurrence of the filtered events. An
actor component may, for example, gather forensic data associated with an
event and update a situation model of the kernel-level security agent with the
forensic data. The situation model represents chains of execution activities and
genealogies of processes, tracking attributes, behaviors, or patterns of processes
executing on the host computing device and enabling an event consumer of the

kernel-level security agent to determine when an event is interesting. Upon

10

15

20

WO 2013/184281 PCT/US2013/040420

determining an occurrence of such an interesting event, the event consumer can
perform any or all of updating the situational model and performing further
observation, generating an event to represent the determination that an
interesting event has occurred, notifying the security service cloud of the
interesting event, or healing the host computing device by halting execution of
a process associated with malicious code or deceiving an adversary associated
with the malicious code. In various embodiments, any or all of the observing,
filtering, routing/dispatching, and/or utilizing of event consumers may occur in
parallel with respect to multiple events.

[0014] By looping based on significant events and chains of execution
activities of the host computing device rather than on fixed signatures, the
kernel-level security agent is able to better detect processes associated with
malicious code. While adversaries can easily change malware to avoid
signature-based detection, it is significantly more difficult to avoid detection by
an agent that monitors and analyzes significant events. Further, by observing
events for some time, and not immediately performing preventative action in
response to detecting an action associated with malicious code, the kernel-level
security agent may fool adversaries into thinking that the malware is working
and, when the malware is later halted or deceived, the adversaries may first
think to debug their own malware.

[0015] In various embodiments, as mentioned, the kernel-level security
agent performs updating while continuously monitoring, eliminating dangerous

gaps in security coverage. Responsive to receiving a configuration update from

10

15

20

WO 2013/184281 PCT/US2013/040420

the security service cloud, a configuration manager of the kernel-level security
agent may invoke a component manager of the kernel-level security agent to
load a new component that updates or replaces an existing component. The
existing component continues to participate in threat detection while the new
component loads, thus ensuring uninterrupted threat detection.

[0016] In some embodiments, the kernel-level security agent includes an
integrity manager that performs threat detection while core components of the
kernel-level security agent or the managers themselves are updated or replaced.
Thus, once the kernel-level security agent is installed, some components or
manager(s) of the kemel-level security agent are continually involved in

detecting threats to the host computing device.

Example Network and Devices

[0017] FIG. 1 illustrates an example network connecting a computing
device configured with a kernel-level security agent to a security service cloud
that provides configuration, analysis, and healing to the computing device
through the kernel-level security agent. As illustrated in FIG. 1, a computing
device 102 may interact with a security service cloud 104 over a network 106.
In addition to components such as processors 108, network interfaces 110, and
memory 112, the computing device 102 may implement a kernel-level security
agent 114, which is shown stored in the memory 112 and executable by the
processor(s) 108. The kernel-level security agent 114 may include components

116 to observe events and determine actions to take based on those events, a

10

15

20

WO 2013/184281 PCT/US2013/040420

situational model 118 to track attributes and behaviors of processes of the
computing device 102, managers 120 to update the components 116 and
provide continual detection during updates, and a communications module 122
to communicate with the security service cloud 104. In addition to the kernel-
level security agent 114, the computing device 102 may include an operating
system 124, processes 126, and log files 128.

[0018] In various embodiments, devices of the security service cloud 104
may also include processors 130, network interfaces 132, and memory 134.
The memory 134 may store a communications module 136 to communicate
with the kernel-level security agent 114 of the computing device 102, an
analysis module 138 to evaluate interesting events identified by the kernel-level
security agent 114, a configuration module 140 to generate and provide
configuration updates to the kernel-level security agent 114, a healing module
142 to halt or deceive malware executing on the computing device 102, a social
module 144 to notify other computing devices or users of the malware detected
on the computing device 102, and an administrative user interface (UI) to
enable an administrator associated with the security service cloud 104 to view
notifications of observed events and make decisions regarding appropriate
responses to those events.

[0019] In various embodiments, the computing device 102 and devices of
the security service cloud 104 may each be or include a server or server farm,
multiple, distributed server farms, a mainframe, a work station, a personal

computer (PC), a laptop computer, a tablet computer, a personal digital

10

15

20

WO 2013/184281 PCT/US2013/040420

assistant (PDA), a cellular phone, a media center, an embedded system, or any
other sort of device or devices. In one implementation, the computing
device(s) of the security service cloud 104 represent a plurality of computing
devices working in communication, such as a cloud computing network of
nodes. When implemented on multiple computing devices, the security service
cloud 104 may distribute the modules and data 136-146 of the security service
cloud 104 among the multiple computing devices. In some implementations,
one or more of the computing device(s) of the computing device 102 or the
security service cloud 104 represents one or more virtual machines
implemented on one or more computing devices.

[0020] In some embodiments, the network 106 may be include any one or
more networks, such as wired networks, wireless networks, and combinations
of wired and wireless networks. Further, the network 106 may include any one
or combination of multiple different types of public or private networks (e.g.,
cable networks, the Internet, wireless networks, etc.). In some instances, the
computing device 102 and the security service cloud 104 communicate over the
network using a secure protocol (e.g., https) and/or any other protocol or set of
protocols, such as the transmission control protocol/Internet protocol (TCP/IP).
[0021] As mentioned, the computing device 102 includes processor(s) 108
and network interface(s) 110. The processor(s) 108 may be or include any sort
of processing unit, such as a central processing unit (CPU) or a graphic
processing unit (GPU). The network interface(s) 110 allow the computing

device 102 to communicate with one or both of the security service cloud 104

10

15

20

WO 2013/184281 PCT/US2013/040420

and other devices. The network interface(s) 110 may send and receive
communications through one or both of the network 106 or other networks.
The network interface(s) 110 may also support both wired and wireless
connection to various networks.

[0022] The memory 112 (and other memories described herein) may store
an array of modules and data, and may include volatile and/or nonvolatile
memory, removable and/or non-removable media, and the like, which may be
implemented in any method or technology for storage of information, such as
computer-readable instructions, data structures, program modules, or other
data. Such memory includes, but is not limited to, RAM, ROM, EEPROM,
flash memory or other memory technology, CD-ROM, digital versatile disks
(DVD) or other optical storage, magnetic cassettes, magnetic tape, magnetic
disk storage or other magnetic storage devices, RAID storage systems, or any
other medium which can be used to store the desired information and which
can be accessed by a computing device.

[0023] As mentioned, the memory 112 includes a kernel-level security agent
114. The kernel-level security agent 114 operates as a virtual machine/shadow
operating system. The kernel-level security agent 114 loads before the
operating system 124 of the computing device 102. In fact, the kernel-level
security agent 114 is loaded very early in the boot-time of the computing
device 102, by some of the first few dozen instructions.

[0024] As illustrated in FIG. 1, the kernel-level security agent 114 includes

components 116 to observe events and determine appropriate action(s) to take

10

10

15

20

WO 2013/184281 PCT/US2013/040420

based on those events and on a situational model 118, as well as the situational
model 118, managers 120 to receive configuration updates from the security
service cloud 104 and to perform the updates while continuing to observe
events, and a communications module 122 to communicate with the security
service cloud. Also the kemnel-level security agent 114 may include a
hypervisor or one or more pre-boot components. The pre-boot components
may or may not leverage hardware provided security features. These modules
and data 116-122 of the kernel-level security agent 114 are described in further
detail below with reference to the kernel-level security agent architecture 200
of FIG. 2.

[0025] Asis further shown in FIG. 1, the memory 112 includes an operating
system 124 of computing device 102. The operating system 124 may include
hooks or filter drivers that allow other processes, such as the kernel-level
security agent 114 to receive notifications of the occurrence or non-occurrence
of events such as file creates, reads and writes, launching of executables, etc.
The memory 112 also includes processes 126 and log files 128 that are
monitored by the kernel-level security agent 114.

[0026] As mentioned, the devices of the security service cloud 104 include
processor(s) 130 and network interface(s) 132. The processor(s) 130 may be or
include any sort of processing units, such as central processing units (CPU) or
graphic processing units (GPU). The network interface(s) 132 allow the
devices of the security service cloud 104 to communicate with one or both of

the computing device 102 and other devices. The network interface(s) 132

11

10

15

20

WO 2013/184281 PCT/US2013/040420

may send and receive communications through one or both of the network 106
or other networks. The network interface(s) 132 may also support both wired
and wireless connection to various networks.

[0027] The memory 134 (and other memories described herein) may store
an array of modules and data, and may include volatile and/or nonvolatile
memory, removable and/or non-removable media, and the like, which may be
implemented in any method or technology for storage of information, such as
computer-readable instructions, data structures, program modules, or other
data. Such memory includes, but is not limited to, RAM, ROM, EEPROM,
flash memory or other memory technology, CD-ROM, digital versatile disks
(DVD) or other optical storage, magnetic cassettes, magnetic tape, magnetic
disk storage or other magnetic storage devices, RAID storage systems, or any
other medium which can be used to store the desired information and which
can be accessed by a computing device.

[0028] As mentioned, the memory 134 includes a communications module
136. The communications module may comprise any one or more protocol
stacks, such as a TCP/IP stack, device drivers to network interfaces 132, and
any other modules or data that enable the devices of the security service cloud
104 to send and receive data over network 106.

[0029] In various embodiments, analysis module 138 may receive
notifications of interesting events from kernel-level security agents 114 of
computing devices, as well as forensic data associated with those interesting

events. Upon receiving notification of an interesting event, the analysis

12

10

15

20

WO 2013/184281 PCT/US2013/040420

module 138 may determine if related notifications have been received from
other kernel-level security agents 114 of other computing devices 102. Also or
instead, the analysis module 138 may evaluate the interesting event based on
one or more rules or heuristics. The analysis module 138 may determine that
an interesting event may be associated with malicious code based on these
determinations and evaluations and may, in response, perform any or all of
generating an event and providing the event to computing device 102 (e.g., for
diagnostic or healing purposes), invoking the configuration module 140 to
trigger a configuration update, invoking the healing module 142 to perform
healing of computing devices 102 associated with the interesting event or
deceiving of an adversary associated with the malicious code, or invoke the
social module 144 to notify entities or persons associated with other computing
device 102 of the potential malicious code. The analysis module 138 may also
maintain and utilize one or more models, such as models specific to individual
computing devices 102, to types of computing devices, to entities, or to a
generic device. The analysis module 138 may update these models based on
the received notifications and utilize the models in analyzing the interesting
events. Additionally, the analysis module 138 may alert an administrator
associated with the security service cloud 104 through the administrator Ul
146.

[0030] In various embodiments, the configuration module 140 stored in
memory 134 may generate configuration updates and provide those updates

through the communications module 136. The configuration module 140 may

13

10

15

20

WO 2013/184281 PCT/US2013/040420

generate device-specific configuration updates or configuration updates
applicable to multiple devices. Such a configuration manager 140 may also be
referred to as an ontology compiler and may be configured to provide security
policies specific to hardware, OS, and language constraints of different
computing devices 102. The configuration updates may include both updates
responsive to interesting events and updates to the modules and data 116-122
comprising the kernel-level security agents 114. The configuration module 140
may generate and provide configuration updates responsive to a notification
from the computing device 102 or independently of any prior notification from
the computing device 102.

[0031] The healing module 142 may determine appropriate remedies to
events determined to be associated with malicious code. For example, the
healing module 142 may determine that an appropriate remedy is to halt a
process associated with malicious code, to remove one or more executables,
files, or registry keys, or to deceive malicious code by having it write to a
dummy file rather than an operating system file, having it read falsified data, or
falsifying a transmission associated with the malicious code. The healing
module 142 may then instruct the kernel-level security agent 114 to perform
the determined remedy. In some embodiments, the healing module 142 may
provide the instructions via an event generated by the healing module 142 and
provided to the kernel-level security agent 114.

[0032] In various embodiments, the social module 144 may share

notifications of events determined to be associated with malicious code with

14

10

15

20

WO 2013/184281 PCT/US2013/040420

individuals at other entities. The malicious code may not have affected the
other entities yet, but they may be interested in learning about the malicious
code. For example, if the malicious code affects devices of one defense
department contractor, other defense department contractors may desire to
know about the malicious code, as they may be more likely to be affected by it.
The social module 144 may share notifications of malicious code and other
information about the malicious code if both entities — the affected entity and
the interested entity — agree to the sharing of the notifications.

[0033] In further embodiments, the administrative Ul 146 may enable an
administrator of the security service cloud 104 to be alerted to events
determined to be associated with malicious code, to examine the data
associated with those events, and to instruct the security service cloud 104
regarding an appropriate response. The administrative Ul 146 may also enable
an examination of the events and associated data by the administrator without
first providing an alert.

[0034] In some instances, any or all of the computing device 102 or the
devices 104 of the security service cloud 104 may have features or
functionality in addition to those that FIG 1 illustrates. For example, any or all
of the computing device 102 or the devices 104 of the security service cloud
104 may also include additional data storage devices (removable and/or non-
removable) such as, for example, magnetic disks, optical disks, or tape. The
additional data storage media may include volatile and nonvolatile, removable

and non-removable media implemented in any method or technology for

15

10

15

20

WO 2013/184281 PCT/US2013/040420

storage of information, such as computer readable instructions, data structures,
program modules, or other data. In addition, some or all of the functionality
described as residing within any or all of the computing device 102 or the
devices 104 of the security service cloud 104 may reside remotely from

that/those device(s), in some implementations.

Example Agent Architecture

[0035] FIG. 2 illustrates an example architecture of the kernel-level security
agent, including a model, components, and managers. As illustrated, the
security agent architecture 200 of the kernel-level security agent 114 includes
modules and data 116-122 in a kernel mode 202 of the computing device 102
and components 116 in a user mode 204 of the computing device 102. In other
embodiments, the security agent architecture 200 may only include the
modules and data 116-122 in the kernel mode 202. The kernel mode 202 and
user mode 204 correspond to protection domains — also known as rings — that
protect data and functionality of the computing device 102 from faults and
malware. Typically, a user mode, such as user mode 204, is associated with the
outermost ring and the least level of privileges to access memory and
functionality. This ring is often referred to as “ring 3” and includes many
application processes. A kernel mode, such as kernel mode 202, is associated
with an inner ring (sometimes the innermost ring, although in modern
computing devices there is sometimes an additional level of privilege, a “ring -

1”) and a higher level of privileges to access memory and functionality. This

16

10

15

20

WO 2013/184281 PCT/US2013/040420

ring is often referred to as “ring 0” and typically includes operating system
processes.

[0036] In various embodiments, the security agent architecture 200 includes
collectors 206. These collectors 206 are components 116 of the kernel-level
security agent 114 that observe events associated with one or more processes,
such as kernel mode processes. Events may include both actions performed by
processes and non-occurrence of expected actions. For example, a collector
206 may register with a hook or filter driver offered by the operating system
124 to receive notifications of the occurrence or non-occurrence of certain
events, such as file creates, reads and writes, and loading executables. A
collector 206 may also monitor locations in memory 112 or log files 128, or
spawn a thread to do so, observing events associated with the log files or
memory locations. A collector 206 may observe multiple kinds of events, or
each type of event may be associated with a different collector 206. The events
observed by the collectors 206 may be specified by a configuration of the
kernel-level security agent 114. In some embodiments, the collectors 206
observe all events on the computing device 102 and the configuration specifies
configurable filters 214 for filtering and dispatching those events. In other
embodiments, the configuration specifies which collectors 206 should be
loaded to observe specific types of events. In yet other embodiments, the
configuration both specifies which collectors 206 should be loaded and
configurable filters 214 for filtering and dispatching events observed by those

collectors 206.

17

10

15

20

WO 2013/184281 PCT/US2013/040420

[0037] As is further shown in FIG. 2, the security agent architecture 200
may include user mode collectors 208 to observe events that may not be visible
to kernel mode processes. Such events could include, for example, rendering
of display graphics for display on a display screen of the computing device
102. To observe these events, the kernel-level security agent 114 is further
configured to load user mode collectors 208 as user mode modules of the
computing device 102. Like collectors 206, user mode collectors 208 may
observe multiple kinds of events, or each type of event may be associated with
a different user mode collector 208. The events observed by the user mode
collectors 208 may be specified by a configuration of the kernel-level security
agent 114. In some embodiments, the user mode collectors 208 observe all
user mode events on the computing device 102 and the configuration specifies
configurable filters 210 for filtering and dispatching the events. In other
embodiments, the configuration specifies which user mode collectors 208
should be loaded to observe specific types of events. In yet other
embodiments, the configuration both specifies which user mode collectors 208
should be loaded and configurable filters 210 for filtering and dispatching those
events.

[0038] As mentioned, the security agent architecture may further include
configurable filters 210. The configurable filters 210 may be user mode
components 116 of the kernel-level security agent 114 that filter user mode
events observed by the user mode collectors 208 based on the configuration of

the kernel-level security agent 114. The configurable filters 210 may perform

18

10

15

20

WO 2013/184281 PCT/US2013/040420

any filtering of the user mode events that does not require querying of the
situational mode 118 so as to maximize the filtering of user mode events
performed in the user mode 204. Maximizing the filtering performed in the
user mode 204 minimizes the number of observed user mode events that are
transferred from user mode 204 to kernel mode 202 and thus conserves
resources of the computing device 102.

[0039] In some embodiments, the filtered user mode events are transmitted
between the user mode 204 and the kernel mode 202 by an input/output (I/O)
mechanism 212 of the kernel-level security agent 114. The I/O mechanism 212
may be, for example, a ring buffer or other known mechanism for transmitting
data between protection domains. In some embodiments, the I[/O mechanism
212 is not a component of the kernel-level security agent 114 but, rather, is part
of the other modules and data of the computing device 102.

[0040] In various embodiments, a filtering and dispatch component 214,
representative of configurable filters 214 each associated with one or more of
the collectors 206, routing component 216, correlators 218, situational model
118, actors 220, and/or communications module 122, receives observed events
from the collectors 206 and user mode events from the via the I/O mechanism
212. While FIG. 2 illustrates the filtering and dispatch component 214 as being
logically associated with the routing component 216, the filtering and dispatch
component 214 may instead comprise one or more components (e.g.,
configurable filters 214) that are separate from the routing component 216.

Upon receiving events, the filtering and dispatch component 214 may perform

19

10

15

20

WO 2013/184281 PCT/US2013/040420

any filtering specified by the configuration of the kernel-level security agent
114. For example, the configuration may specify filtering of all received
events or only of specific types of received events. Such filtering may, in some
embodiments, involve querying the situational model 118 to determine
attributes, behaviors, patterns, or other descriptions of the process that is
associated with the event being filtered. The filtering may also involve
application of one or more rules or heuristics of the configuration.

[0041] Upon filtering the events, the filtering and dispatch component 214
may dispatch the events using the routing component 216, which may be a
throw-forward bus or other type of bus. The routing component 216 may in
turn transmit events to any or all of correlators 218, the situational model 118,
actors 220, or the communications module 122. In some embodiments, events
that are significant in aggregate, but not alone, or events that do not necessitate
the kernel-level security agent 114 to copy associated data associated with the
events, are dispatched via the routing component 216 to the correlators 218. In
some embodiment, these may be synchronous events that do not utilize a
scheduler of the kernel-level security agent 114. In further embodiments,
events that are significant in isolation or that necessitate the kernel-level
security agent 114 to copy associated data associated with the events are
dispatched via the routing component 216 to a scheduler of the kernel-level
security agent 114 for scheduled delivery to the actors 220. As these events are

dispatched to a scheduler, they may be asynchronous events.

20

10

15

20

WO 2013/184281 PCT/US2013/040420

[0042] In various embodiments, the correlators 218 are components 116 of
the kernel-level security agent 114 that note the fact of the occurrence of
specific types of events. Each correlator 218 may be specific to a single type of
event or may be associated with multiple types of events. A correlator 218
may note the fact of the occurrence of a filtered event and, based at least in part
on an association between the occurrence of the filtered event and at least one
of a threshold, a set, a sequence, a Markov chain, or a finite state machine, take
an action. For example, a correlator 218 may maintain a counter of the
numbers of occurrences of an event (e.g., ten writes to file X) and, at some
threshold, may generate an event to indicate that the number of occurrences of
a type of event is potentially interesting. Such a threshold may be a set number
specified in the configuration of the kernel-level security agent 114 or may be a
number determined by querying the situational model 118 to determine the
typical pattern of occurrences of the type of event within a time period. The
generated event may indicate the type of observed event and the number of
occurrences of the observed event. A correlator 218 that has generated an
event may transmit the event via the routing component 216 to any or all of the
situational model 118, an actor 220, or the communications module 122. In
some embodiments, a configurable filter 214 of the filter and dispatch
component 214 may be used to filter the event generated by the correlator 218.

[0043] In further embodiments, the situation model 118 of the kernel-level
security agent 114 may comprise any one or more databases, files, tables, or

other structures that track attributes, behaviors, and/or patterns of objects or

21

10

15

20

WO 2013/184281 PCT/US2013/040420

processes of the computing device 102. These attributes, behaviors, and/or
patterns may represent execution activities of processes and the situational
model 118 may represent chains of execution activities providing genealogies
of processes. The situational model 118 (also referred to herein as “the
model”) stores attributes, behaviors, and/or patterns of events, specific events,
and forensic data associated with events. This data and other data stored by the
situational model 118 may be indexed by specific events or by specific types of
events. The situational model may receive events from the routing component
216 and be updated to include the received events by logic associated with the
situational model 118. The situational model 118 may also be updated by
actors 220 with forensic data that is associated with events and retrieved by the
actors 220. Further, the situational model 118 may be configured to respond to
queries from configurable filters 214, correlators 218, or actors 220 with
descriptions of attributes, behaviors, and/or patterns of events or with
descriptions of specific events.

[0044] In various embodiments, actors 220 of the kernel-level security agent
114 receive events from the scheduler of the kernel-level security agent 114.
Each actor 220 may be specific to a type of event or may handle multiple types
of events. Upon receiving an event, an actor 220 may determine if the event
was observed by collectors 206 or user mode collectors 208 or was instead
generated by a correlator 218 or security service cloud 104. The actor 220 may
gather additional forensic data about the event. Such forensic data may include

additional descriptions of the event and may be gathered by interfacing with the

22

10

15

20

WO 2013/184281 PCT/US2013/040420

operating system 124. Upon gathering the forensic data, the actor 220 may
update the situational model 118 with the forensic data. The actor 220 may
also query the situational model 118 to determine attributes, behaviors, and/or
patterns or other descriptions associated with the event. Based on those
attributes, behaviors, and/or patterns, descriptions, or other rules or heuristics
specified by the configuration of the kernel-level security agent 114, the actor
220 may determine that the event is interesting in some fashion and/or may be
associated with malicious code.

[0045] Upon determining that an event is interesting, potentially associated
with malicious code, or upon receiving an event generated by a correlator 218
or security service cloud, an actor 220 may update the situation model 118,
may notify the security service cloud 104 of the event, or may heal the
computing device 102. As mentioned above, the healing may involve halting a
process associated with the event, deleting a process associated with the event
(or malicious code associated with that process), or deceiving an adversary
associated with malicious code that is in turn associated with the event. Such
deceiving may be achieved by falsifying data acquired by the malicious code or
by falsifying the data transmitted to the adversary. The action taken may be
determined by the configuration of the kernel-level security agent 114. In
some embodiments, an actor 220 may perform the healing responsive to
receiving instructions from the security service cloud 104 to perform the
healing. As mentioned above, such instructions may be provided via an event

generated by the security service cloud 104.

23

10

15

20

WO 2013/184281 PCT/US2013/040420

[0046] In various embodiments, the security agent architecture 200 includes
the communications module 122. The communications module 122 may
represent network protocol stack(s), network interface driver(s), and any other
network interface components utilized by the kernel-level security agent 114 to
communicate with the security service cloud 104 over the network 106. The
communications module 122 may, as illustrated in FIG. 2, be a kernel mode
component of the computing device 102. Further, the communications module
122 may transmit events, other notifications, and data associated events from
the kernel-level security agent 114 to the security service cloud 104. The
communications module 122 may also transmit configuration updates received
from the security service cloud 104 to a configuration manager 222 of the
kernel-level security agent 114 and healing instructions and/or events from the
security service cloud 104 to an actor 220.

[0047] As shown in FIG. 2, the security agent architecture includes a
plurality of managers 120: a configuration manager 222, a component manager
224, a state manager 226, a storage manager 228, and an integrity manager
230. And as mentioned above, the configuration manager 222 may receive
configuration updates from the security service cloud 104. The configuration
manager 222 may receive the updates periodically or as needed. The
configuration manager 22 then determines what changes to the kernel-level
security agent 114 are needed to implement the configuration contained in the
configuration update. For example, the configuration may specify a rule that

creation of executables by Abobe Reader® is indicative of activity of malicious

24

10

15

20

WO 2013/184281 PCT/US2013/040420

code and that any executions of such executables should be halted. To handle
such a configuration, the configuration manager 222 may invoke the
component manager 224 to load a new collector 206 to observe events
associated with Adobe and files created by Adobe Reader®, a configurable
filter 214 that notes and dispatches such events, and/or an actor 220 to gather
forensic data responsive to creation of an executable by Adobe Reader® and to
halt execution of the created executable responsive to the loading of that
executable.

[0048] In another example, the configuration update may specify a new
configuration manager 222. Responsive to such an update, the existing
configuration manager 222 may invoke the component manager 224 to load the
new configuration manager 222 and the integrity manager 230 to ensure
continued observation while the configuration manager 222 is updated.

[0049] In various embodiments, the component manager 224 loads new
components 116 and managers 120 designed to update or replace existing
components 116 or managers 120. As mentioned, the component manager 224
is invoked by the configuration manager 222, which may inform the
component manager 224 of which new component 116 or manager 120 is to be
loaded, which component 116 or manager 120 is designated to be replaced or
updated, and may specify a configuration of the new component 116 or
manager 120 that implements the configuration update. The component
manager 224 may then load the new component 116 or manager 120 while the

existing/old component 116 or manager 120 continues to operate. After the

25

10

15

20

WO 2013/184281 PCT/US2013/040420

new component 116 or manager 120 has been loaded, the component manager
224 or some other component 116 or manager 120 of the kernel-level security
agent 114 may deactivate the existing/old component 116 or manager 120 that
1s now replaced by the new component 116 or manager 120.

[0050] In various embodiments, the state manager 226 may be invoked by
the component manager 224 to share state of an existing/old component 116
with a new component 116. For example, if the component 116 is an actor 220
having an interface with the operating system 124, the state manager 226 may
keep the state of that interface and pass the interface between the old/existing
component 116 and the new component 116.

[0051] In some embodiments, the storage manager 228 may be an interface
to the memory 112 capable of being invoked by other components 116 or
managers 120 of the kernel-level security agent 114 to read from and write to
the memory 112.

[0052] As mentioned above, the integrity manager 230 maintains continued
observation while core components 116 and managers 120 are updated. The
core components 116 and managers 120 are components 116 and managers 120
that always form part of an operating kernel-level security agent 114. Because
updates of such core components 116 and managers 120 can open a window of
vulnerability in which malicious code can go undetected, some measure of
continued observation is needed during the updates. The integrity manager 230
provided this measure of continued observation by observing events and

processes of the computing device 102 during the core component/manager

26

10

15

20

WO 2013/184281 PCT/US2013/040420

updates. In some embodiments, the integrity module 230 may also be
configured to detect attempts to delete it or other components 116 or managers
120 of the kernel-level security agent 114 and may prevent those attempts from

succeeding.

Example Processes

[0053] FI1Gs. 3-5 illustrate example processes 300, 400, and 500. These
processes are illustrated as logical flow graphs, each operation of which
represents a sequence of operations that can be implemented in hardware,
software, or a combination thereof. In the context of software, the operations
represent computer-executable instructions stored on one or more computer-
readable storage media that, when executed by one or more processors,
perform the recited operations. Generally, computer-executable instructions
include routines, programs, objects, components, data structures, and the like
that perform particular functions or implement particular abstract data types.
The order in which the operations are described is not intended to be construed
as a limitation, and any number of the described operations can be combined in
any order and/or in parallel to implement the processes.

[0054] The process 300 includes, at 302, a kernel-level security agent of a
computing device detecting a first action associated with malicious code. At
304, responsive to detecting the first action, the kernel-level security agent
gathers data associated with the first action. At 3006, the kernel-level security

agent may then store the gathered data in a model that tracks actions taken by

27

10

15

20

WO 2013/184281 PCT/US2013/040420

processes of a system which executed the first action. Alternatively or
additionally, at 308, the kernel-level security agent may inform a remote
security service of the occurrence of the first action. At 310, in response, the
kernel-level security agent receives from the remote security system
instructions associated with the preventative action or a configuration update
for configuring the kernel-level security agent. Also in response to detecting
the first action, the kernel-level security agent refrains, at 312, from performing
a preventative action.

[0055] At 314, the kernel-level security agent detects one or more
subsequent actions associated with the malicious code and, in response at 316,
performs a preventative action. The one or more subsequent actions occur after
the first action. At 316a, the preventative action is preventing the one or more
subsequent actions and further actions by the malicious process or deceiving
the an adversary associated with the malicious code.

[0056] The process 400 includes, at 402, observing by a kernel-level
security agent an event associated with a process executing on the computing
device.

[0057] At 404, the kernel-level security agent determines, based at least in
part on the observed event, that the process is associated with malicious code.
At 404a, the determining comprises determining that the process is associated
with malicious code based at least on part on a model that tracks processes of

the computing device.

28

10

15

20

WO 2013/184281 PCT/US2013/040420

[0058] At 406, responsive to the determining at 404, the kernel-level
security agent deceives an adversary associated with the malicious code. At
406a, the deceiving comprises falsifying data acquired by the malicious code.
At 4006b, the deceiving comprises falsifying the data transmitted to the
adversary.

[0059] The process 500 includes, at 502, observing by a kernel-level
security agent execution activities of one or more processes of the computing
device.

[0060] At 504, the kernel-level security agent stores data associated with the
one or more execution activities in a model of the kernel-level security agent,
the model representing one or more chains of execution activities. In some
embodiments, at least one of the chains of execution activities represents a
genealogy of one of the processes.

[0061] At 506, the kernel-level security agent takes action based at least in
part on the one or more chains of execution activities. At 506a, the taking
action comprises halting or deceiving a process associated with malicious

activity.

CONCLUSION
[0062] Although the subject matter has been described in language specific
to structural features and/or methodological acts, it is to be understood that the

subject matter defined in the appended claims is not necessarily limited to the

29

WO 2013/184281 PCT/US2013/040420

specific features or acts described. Rather, the specific features and acts are

disclosed as exemplary forms of implementing the claims.

30

10

15

20

WO 2013/184281 PCT/US2013/040420

CLAIMS

WHAT IS CLAIMED IS:

1. A system comprising:

one or more processors; and

a kernel-level security agent configured to be executed by the one or
more processors to observe events, filter the observed events using
configurable filters, route the filtered events to one or more event consumers,
and utilize the one or more event consumers to take action based at least on one

of the filtered events.

2. The system of claim 1, wherein the kernel-level security agent include
a collector component configured to observe kernel-level or user-level events
and to provide at least a subset of the observed events to the configurable

filters.

3. The system of claim 1, wherein the kernel-level security agent
comprises a model to track attributes or behaviors of one or more objects or
processes of the system, and the kernel-level security agent is further

configured to update the model based at least in part on the filtered events.

4. The system of claim 3, wherein one or both of the configurable

filters or event consumers is configured to query the model.

31

10

15

20

WO 2013/184281 PCT/US2013/040420

5. The system of claim 1, wherein the kernel-level security agent
comprises a communications module implemented at the kernel-level and

configured to communicate with one or more remote systems.

6. The system of claim 1, wherein the action is informing a remote

security system of the filtered events.

7. The system of claim 6, wherein the kernel-level security agent
receives, in response, at least one of instructions for performing a further action

or a configuration update.

8. The system of claim 1, wherein the kernel-level security agent
receives one or more events, configuration updates, or instructions for
performing actions from a remote security system independently of
communications from the kernel-level security agent to the remote security

system.

0. The system of claim 1, wherein the one or more event consumers
include at least one correlator that notes the fact of the occurrence of the
filtered events and, based at least in part on an association between the
occurrence of the filtered events and at least one of a threshold, a set, a

sequence, a Markov chain, or a finite state machine, takes the action.

32

WO 2013/184281 PCT/US2013/040420

10. The system of claim 1, wherein the one or more event consumers
are to produce a new filterable event in response to receiving one or more of

the filtered events.

5
11. The system of claim 1, wherein the one or more event consumers
include at least one actor configured to perform at least one of:
gathering forensic data associated with an event,
storing the forensic data in a model,
10 informing a remote security system of the filtered events, or

taking an action to halt or deceive a process associated with one or more

of the filtered events.

12. The system of claim 1, wherein the kernel-level security agent
15 updates, replaces or removes one or more components of the kernel-level

security agent while the kernel-level security agent continues to operate.

13. The system of claim 12, wherein an existing component of the

kernel-level security agent designated to be replaced or removed continues to

20 operate during an update of the kernel-level security agent.

14. The system of claim 1, wherein the kernel-level security agent

includes a configurable routing component to route the filtered events.

33

WO 2013/184281 PCT/US2013/040420

15. The system of claim 1, wherein the kernel-level security agent
comprises a scheduler to schedule asynchronous events for processing by the

one or more event consumers.

5
16. The system of claim 1, wherein the kernel-level security agent
performs at least one of:
observing events associated with multiple processes or threads in
parallel,
10 filtering the multiple observed events in parallel,

routing the multiple filtered events in parallel, or

utilizing multiple event consumers in parallel.

17. The system of claim 1, wherein the kernel-level security agent
15 utilizes the one or more event consumers to take action in response to a second
event associated with a malicious code of the system, the second event

occurring after observation of a first event by the kernel-level security agent.

18. The system of claim 1, wherein the kernel-level security agent
20 includes at least one of:
a configuration manager to receive the configuration updates from a

remote security system;

34

10

15

20

WO 2013/184281 PCT/US2013/040420

a component manager to load or unload a new component based on the
configuration update;

a state manager to persist state information between old and new
components;

a storage manager to interface with storage of the system on behalf of
the kernel-level security agent, or

an integrity manager to observe, filter, and route events during an update

of core components and managers of the kernel-level security agent.

19. The system of claim 1, wherein the kernel-level security agent
comprises a hypervisor, one or more pre-boot components that leverages
hardware-provided security features, or one or more pre-boot components that

does not leverage hardware-provided security features.

20. The system of claim 1, wherein the kernel-level security agent
comprises at least one collector to observe events in a user mode of the system
and at least one configurable filter to filter events in the user mode of the

system.

21. The system of claim 1, wherein the kernel-level security agent is

a secure operating system that launches prior to a system operating system.

35

WO 2013/184281 PCT/US2013/040420

22. A method comprising:
detecting a first action associated with malicious code;
responsive to detecting the first action, gathering data associated with
the first action while refraining from taking a preventative action;
5 upon detecting one or more subsequent actions associated with
malicious code, the one or more subsequent actions occurring after the first

action, performing the preventative action.

23. The method of claim 22, wherein the preventative action is
10 preventing the one or more subsequent actions and further actions by the
malicious process or deceiving the an adversary associated with the malicious

code.

24. The method of claim 22, further comprising storing the gathered
15 data in a model that tracks actions taken by processes of a system which

executed the first action.

25. The method of claim 22, further comprising providing the
gathered data to a remote security system.
20
26. The method of claim 25, further comprising receiving, in

response, instructions associated with the preventative action or a configuration

36

10

15

20

WO 2013/184281 PCT/US2013/040420

update for configuring a security agent that performs the detecting, gathering,

and performing.

27. One or more tangible computer-readable media storing computer-
executable instructions configured to implement a kernel-level security agent
on a computer device, the kernel-level security agent performing operations
comprising:

observing an event associated with a process executing on the
computing device;

determining, based at least in part on the observed event, that the
process is associated with malicious code; and

responsive to the determining, deceiving an adversary associated with

the malicious code.

28. The one or more tangible computer-readable media of claim 27,
wherein the deceiving comprises falsifying data acquired by the malicious

code.

29. The one or more tangible computer-readable media of claim 27,

wherein the deceiving comprises falsifying the data transmitted to the

adversary.

37

WO 2013/184281 PCT/US2013/040420

30. The one or more tangible computer-readable media of claim 27,
wherein the determining comprises determining that the process is associated
with malicious code based at least on part on a model that tracks processes of

the computing device.

31. A method implemented by a kernel-level security agent of a
computing device, the method comprising:

observing execution activities of one or more processes of the
computing device;

10 storing data associated with the one or more execution activities in a
model of the kernel-level security agent, the model representing one or more
chains of execution activities; and

taking action based at least in part on the one or more chains of
execution activities.

15

32. The method of claim 31, wherein at least one of the chains of

execution activities represents a genealogy of one of the processes.

33. The method of claim 31, wherein the taking action comprises

20 halting or deceiving a process associated with malicious activity.

38

WO 2013/184281 PCT/US2013/040420

1/5
s ~
s “
PROCESSOR(S) 108] [NETWORK INTERFACE(S) 110
(MEMORY 112)
KERNEL-LEVEL SECURITY AGENT 114]
N N
[COMPONENTS 116 [SITUATIONAL MODEL 118
[MANAGERS 120 [CoMMs MODULE 122
OPERATING SYSTEM 124] [PROCESSES 126
[Loc FILES 128]

-
-
-
-
—
-
-
—
-
-
—
-
-
-
-
-—
-
—
-
-
-
-
-
—
-
-
-
-

NETWORK 106

104
—————— |
—————— |
—————— |
————— |
———————— I
= N\
r \
PROCESSOR(S) 130] [NETWORK INTERFACE(S) 132
\,
- ~
MEMORY 134
r 2 e “
Comms MoDULE 136 ANALYSIS MoODULE 138
\, \,
r \

CONFIGURATION MODULE
HEALING MODULE 142

\ 140 |
' ™ e a
SoclAL MODULE 144 ADMIN Ul 146

Fig. 1

WO 2013/184281 PCT/US2013/040420
2/5
SECURITY AGENT ARCHITECTURE

20 ... _._.

| COMPONENTS 116 |

I . |

g USER MODE |

i COLLECTORS 208 FILTER 210 |

.. _._. J

y
USER MODE 204
_____________________ /O MECHANISM |
212
KERNEL MODE 202
(e . -
. COMPONENTS 116 :
| |
| COLLECTORS 206 |
1L |
| . v v .
. FILTER AND DISPATCH 214 |
|
i ROUTING COMPONENT 216 |
i \ |
i T S v
' CORRELATORS SITUATIONAL |
! 218 MODEL 118 ACTORS 220 |
|

| MANAGERS 120

~

I [CONFIGURATION MGR 222

[COMPONENT MGR 224

STATE MGR 226

[STORAGE MGR 228

INTEGRITY MGR 230

—

ComMMms
MODULE 122

WO 2013/184281 PCT/US2013/040420

3/5

300 DETECT FIRST ACTION ASSOC W
™ MaLIcious CODE 302

'

GATHER DATA Assoc W FIRST

ACTION 304
Y Y
s ™
STORE GATHERED DATA IN PROVIDE GATHERED DATA TO
MoDEL 306 REMOTE SECURITY SYSTEM 308
\,
y
'Y N
RECEIVE INSTRUCTIONS FROM
REMOTE SECURITY SYSTEM 310
\,

v

REFRAIN FROM TAKING
PREVENTATIVE ACTION IN
RESPONSE TO FIRST ACTION 312

DETECT SUBSEQUENT ACTION(S)
Assoc w MaLicious CODE 314

y
PERFORM PREVENTATIVE ACTION 316

DECEIVE ADVERSARY ASSOC W
MaLicious CODE 316A

WO 2013/184281

400
\

4/5

OBSERVE EVENT Assoc w
PRoOCESS 402

y

PCT/US2013/040420

7

DETERMINE THAT THE PROCESS IS ASSOC W

MaLicious CODE 404

PERFORM DETM BASED ON
MoODEL 404A

~

y

7

FALsSIFY DATA TRANSMITTED TO
ADVERSARY 406A

~

FALSIFY TRANSMISSION OF DATA
4068

e ™
DECEIVE ADVERSARY AssoCc W PROCESS 406

WO 2013/184281 PCT/US2013/040420

5/5

500
\

OBSERVE EXECUTION ACTIVITIES
502

y
STORE DATA ASSOC W
EXECUTION ACTIVITIES IN MODEL
REPRESENTING CHAINS OF
EXECUTION ACTIVITIES 504

A 4

TAKE ACTION BASED ON CHAINS OF
EXECUTION ACTIVITIES 506

HALT oR DECEIVE A PROCESS
Assoc w MALICIous ACTIVITY
506A

INTERNATIONAL SEARCH REPORT International application No.
PCT/US2013/040420

A. CLASSIFICATION OF SUBJECT MATTER
GO6F 21/50(2013.01)i, GO6F 15/16(2006.01)i, GO6F 9/22(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classitication symbols)
GO6F 21/50; GO6F 11/30; GO6F 9/44; GO6F 21/20; GO6F 12/14; GO6F 11/00; GO6F 21/00; GO6F 15/16; GO6F 9/22

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

eKOMPASS(KIPO internal) & Keywords:kernel, level, security, management, malicious, malware,
detect, filter, route, event, action, prevent, and similar terms.

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 2008-0034429 A1 (JEROME L. SCHNEIDER) 07 February 2008 1-3,5-9,12-14
See paragraphs 7, 23-26, 34-38; and figures 1-2. ,20-21,31-32
A 4,10-11,15-19
,22-30,33
A US 2011-0099632 Al (DOUGLAS REED BECK et al.) 28 April 2011 1-33

See paragraphs 21-25; and figure 1.

A US 2011-0239306 Al (YOSSI AVNI et al.) 29 September 2011 1-33
See paragraphs 110-116; and figures 3, 4A-4B.

A US 2007-0250817 Al (MATTHEW L. BONEY) 25 October 2007 1-33
See paragraphs 48-60; and figures 3-5.

A KR 10-1038048 Bl (KOREA INTERNET & SECURITY AGENCY) 01 June 2011 1-33
See paragraphs 21-84; and figures 2a-2b.

|:| Further documents are listed in the continuation of Box C. g See patent family annex.

* Special categories of cited documents: "T" later document published after the international filing date or priority

"A" document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand
to be of particular relevance the principle or theory underlying the invention

"E" earlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be
filing date considered novel or cannot be considered to involve an inventive

"L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone
cited to establish the publication date of citation or other "Y" document of particular relevance; the claimed invention cannot be
special reason (as specified) considered to involve an inventive step when the document is

"O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents,such combination
means being obvious to a person skilled in the art

"P" document published prior to the international filing date but later "&" document member of the same patent family

than the priority date claimed

Date of the actual completion of the international search Date of mailing of the international search report
16 September 2013 (16.09.2013) 17 September 2013 (17.09.2013)
Name and mailing address of the ISA/KR Authorized officer
Korean Intellectual Property Office
: 189 Cheongsa-ro, Seo-gu, Dagjeon Metropolitan City, BYUN Sung Cheal
3 302-701, Republic of Korea
Facsimile No. +82-42-472-7140 Telephone No. +82-42-481-8262

Form PCT/ISA/210 (second sheet) (July 2009)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.

PCT/US2013/040420

Patent document

Publication

Patent family

Publication

cited in search report date member(s) date

US 2008-0034429 Al 07/02/2008 US 2012-216027 Al 23/08/2012
US 8190868 B2 29/05/2012

US 2011-0099632 Al 28/04/2011 US 2007-0022287 Al 25/01/2007
US 7874001 B2 18/01/2011

US 2011-0239306 Al 29/09/2011 EP 2350905 Al 03/08/2011
GB 0815587 DO 01/10/2008
WO 2010-023477 Al 04/03/2010

US 2007-0250817 Al 25/10/2007 US 2012-246722 Al 27/09/2012
US 8201243 B2 12/06/2012
WO 2007-124416 A2 01/11/2007
WO 2007-124416 A3 21/12/2007

KR 10-1038048 Bl 01/06/2011 US 2011-0154489 Al 23/06/2011

Form PCT/ISA/210 (patent family annex) (July 2009)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - claims
	Page 34 - claims
	Page 35 - claims
	Page 36 - claims
	Page 37 - claims
	Page 38 - claims
	Page 39 - claims
	Page 40 - claims
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - wo-search-report
	Page 47 - wo-search-report

