(19) United States ## (12) Patent Application Publication (10) Pub. No.: US 2005/0054046 A1 Presta et al. Mar. 10, 2005 (43) Pub. Date: #### (54) NON-HUMAN PRIMATE FC RECEPTORS AND METHODS OF USE (75) Inventors: Leonard G. Presta, San Francisco, CA (US); Angela K. Namenuk, Oakland, CA (US) > Correspondence Address: MERCHANT & GOULD PC P.O. BOX 2903 MINNEAPOLIS, MN 55402-0903 (US) (73) Assignee: Genentech, Inc., South San Francisco, (21) Appl. No.: 10/896,840 (22) Filed: Jul. 13, 2004 #### Related U.S. Application Data (62) Division of application No. 10/027,736, filed on Dec. 19, 2001. #### **Publication Classification** - (51) Int. Cl.⁷ C07H 21/04; C07K 14/705; C12N 5/06 - 530/350; 536/23.5 #### (57)ABSTRACT The invention provides isolated non-human primate Fc receptor polypeptides, the nucleic acid molecules encoding the Fc receptor polypeptides, and the processes for production of recombinant forms of the Fc receptor polypeptides, including fusions, variants, and derivatives thereof. The invention also provides methods for evaluating the safety, efficacy and biological properties of Fc region containing molecules using the non-human primate Fc receptor polypeptides. ### Monomeric IgG Subclass Binding to Human FcgRI (Detected with HRP-anti-kappa chain) FIG. 18 FIG.2 FIG.3B FIG. 4A FIG. 4B FIG.4C FIG.5 FG.6 FIG.7 FIG. 8 FIG. FIG. 1 # NON-HUMAN PRIMATE FC RECEPTORS AND METHODS OF USE #### FIELD OF THE INVENTION [0001] The invention generally relates to purified and isolated non-human primate Fc receptor polypeptides, the nucleic acid molecules encoding the FcR polypeptides, and the processes for production of non-human primate Fc receptor polypeptides as well as to methods for evaluating the safety, efficacy and biological properties of therapeutic agents. #### BACKGROUND OF THE INVENTION [0002] Fc receptors (FcRs) are membrane receptors expressed on a number of immune effector cells. Upon interaction with target immunoglobulins, FcRs mediate a number of cellular responses, including, activation of cell mediated killing, induction of mediator release from the cell, uptake and destruction of antibody coated particles, and transport of immunoglobulins. Deo et al., 1997, Immunology Today 18:127-135. Further, it has been shown that antigenpresenting cells, e.g., macrophages and dendritic cells, undergo FcR mediated internalization of antigen-antibody complexes, allowing for antigen presentation and the consequent amplification of the immune response. As such, FcRs play a central role in development of antibody specificity and effector cell function. Deo et al., 1997, Immunology Today 18:127-135. [0003] FcRs are defined by their specificity for immunoglobulin isotypes; Fc receptors for IgG antibodies are referred to as FcγR, for IgE as Fc∈R, for IgA as FcαR and so on. FcRn is a special class of Fc receptor found on neonatal cells and is responsible for, among other things, transporting maternal IgG from milk across the infants intestinal epithelial cells. Three subclasses of human gamma receptors have been identified: FcyRI (CD64), FcyRII (CD32) and FcyRIII (CD16). Because each human FcyR subclass is encoded by two or three genes, and alternative RNA spicing leads to multiple transcripts, a broad diversity in Fcy isoforms exists. The three genes encoding the human FcyRI subclass (FcyRIA, FcyRIB and FcyRIC) are clustered in region 1q21.1 of the long arm of chromosome 1; the genes encoding FcyRII isoforms (FcyRIIA, FcyRIIB and FcyRIIC) and the two genes encoding FcyRIII (FcyRIIIA and FcγRIIIB) are all clustered in region 1q22. FcRs are reviewed in Ravetch and Kinet, Annu. Rev. Immunol 9:457-92 (1991); Capel et al., Immunomethods 4:25-34 (1994); and de Haas et al., J Lab. Clin. Med. 126:330-41 (1995). [0004] Human FcγRI is a heteroligomeric complex composed of an α-chain and γ-chain. The α-chain is a 70-72 kDa glycoprotein having 3 extracellular C-2 Ig like domains, a 21 amino acid membrane domain and a charged cytoplasmic tail of 61 amino acids. van de Winkel et al., 1993, *Immunology Today* 14:215-221. The γ-chain is a homodimer that is involved in cell surface assembly and cell signaling into the interior of the cell. Each chain of γ homodimer includes a motif involved in cellular activation designated the ITAM motif. Human FcγRI binds monomeric IgG with high affinity (10^{-7} - 10^{-9} M) through the action of the third extracellular C-2 domain. [0005] FeyRII is a 40 kDa glycoprotein having two C2 set Ig-like extracellular domains, a 27-29 amino acid transmem- brane domain, and a cytoplasmic domain having variable length, from 44 to 76 amino acids. There are six known isoforms of the human FcγRII, differing for the most part in their heterogeneous cytoplasmic domains. Human FcγRIIA includes an ITAM motif in the cytoplasmic region of the molecule, and upon crosslinking of the receptor this motif is associated with cellular activation. In contrast, human FcγRIIB includes an inhibitory motif in its cytoplasmic region designated ITIM. When the FcγRIIB is crosslinked, cellular activation is inhibited. In general, FcγRII binds monomeric IgG poorly (>10⁷ M⁻⁷), but has high affinity for complexed IgG. [0006] Human Fc γ RIII has two major isoforms, Fc γ RIIIA and Fc γ RIIIB, both isoforms are between 50 to 80 kDa, having two C2 Ig-like extracellular domains. The Fc γ RIIIA α -chain is anchored to the membrane by a 25 amino acid transmembrane domain, while Fc γ RIIIB is linked to the membrane via a glycosyl phosphatidyl-inositol (GPI) anchor. Human Fc γ RIIIA is a heteroligomeric complex with the α -chain complexed with a heterodimeric γ - δ (gammadelta) chain or γ - γ chain. The γ -chain includes a cytoplasmic tail with an ITAM motif. The α -chain is homologous to the α -chain and is also involved in cell signaling and cell surface assembly. The γ - δ (gamma-delta) chain also includes an ITAM motif in its cytoplasmic region. In both cases, the Fc γ RIII binds monomeric IgG with low affinity, and binds complexed IgG with high affinity. [0007] Human FcRn is a heterodimer composed of a β -2 microglobulin chain and a α chain. The β -2 microglobulin chain is approximately 15 kDa and is similar to the β -2 microglobulin chain present in MHC class I heterodimers. The presence of a P-2 microglobulin chain in FcRn makes it the only known Fc receptor to fall within the MHC class I family of proteins. Ghetie et al., 1997 *Immunology Today* 18(12):592-598. The a chain is a 37-40 kDa integral membrane glycoprotein having a single glycosylation site. Evidence suggests that FcRn is involved in transferring maternal IgG across the neonatal gut and in regulating serum IgG levels. FcRn is also found in adults on many tissues. [0008] As discussed above, human FcγRs, with the exception of FcγRIIB, contain a cytoplasmic ~26 amino acid immunoreceptor tyrosine-based activation motif (ITAM). It is believed that this motif is involved in cell signaling and effector cell function. Crosslinking of FcγRs may lead to the phosphorylation of tyrosine residues within the ITAM motif by src-family tyrosine kinases (PTKs), followed by association and activation of the phosphorylated ITAM motif with syk-family PTKs. Deo et al., 1997, *Immunology Today* 18:127-135. Once activated, a poorly understood signaling cascade is translated into biological responses. [0009] Human FcyRIIB members contain a distinct 13 amino acid immuno-receptor tyrosine-based inhibitory motif (ITIM) in their cytoplasmic domain. Human FcyRIIB is expressed on B lymphocytes and binds to IgG complexes. However, rather than activating cells, crosslinking of the IIB receptor results in a signal inhibiting B cell activation and antibody secretion. (Camigorea et al., 1992, Cytoplasmic Domain Heterogeneity and Function of IgG Receptors in B Lymphocytes, Science 256:1808.) [0010] Because of the central role of Fc γ R as a trigger molecule in numerous immune responses, it has become a target for developing potential therapeutics. For example, several ongoing clinical trials are based on activating a cancer patient's effector cells by treating the patient with tumor-specific monoclonal antibodies (Mabs). These studies have shown that the tumor-specific antibodies mediate their effects in part through FcyR binding, and subsequent effector cell activity. Adams et al., 1984, Proc. Natl. Acad. Sci. 81:3506-3510; Takahashi et al., 1995, Gastroenterology 108:172-182; Riethmeuller et al., 1994, Lancet 343:1177-1183, Clynes, R. A., Towers, T. L., Presta, L. G., and Ravetch, J. V., 2000, Nature Med. 6:443-446. Further, a novel series of bispecific molecule antibodies (BSMs), molecules engineered to have one arm specific for a tumor cell and the other arm specific for a target FcyR, are in clinical trials to specifically target a tumor for FcyR mediated, effector cell destruction of the tumor cells. Valone et al., 1995, J. Clin. Oncol. 13:2281-2292; Repp et al., 1995, Hematother 4:415-421. In addition, FcyRs can be used as therapeutic targets in a number of infectious diseases, and for that matter, a number of autoimmune disorders. With regard to infectious diseases, BSMs are being developed to target any number of microorganisms to a patient's FcyR expressing effector cells (Deo et al., 1997, Immunology Today 18:127-135), while soluble FcγRs have been used to inhibit the Arthus reaction, and FcyR blocking agents have been used to reduce the severity of several autoimmune disorders. Ierino et al., 1993, J. Exp. Med. 178:1617-1628; Debre et al., 1993, Lancet 342:945-949. [0011] As antibodies have become increasingly used as therapeutic agents, there is a need to develop animal models for evaluating the toxicity, efficacy and pharmacokinetics of such therapeutic agents. In addition to rodent models for evaluating efficacy of antibody
therapeutics, primate models have been used for evaluation of therapeutic antibody pharmacokinetics, toxicity, and efficacy (Anderson, D. R., Grillo-Lopez, A., Varns, C., Chambers, K. S., and Hanna, N. (1997) Biochem. Soc. Trans. 25, 705-708). However, there is only sparse information available regarding the interaction of human antibodies with primate Fcγ receptors and the effects of this interaction on interpretation of pharmacokinetic, toxicity, and efficacy studies in primates. [0012] Although many advances have been made in elucidating FcγR activity and identifying and engineering FcγR ligands, there still remains a need in the art to identify other FcγRs and to identify and engineer other FcγR ligands, both activating and inhibiting. These new receptors and receptor ligands possess potential therapeutic value in a number of disease states, including, the destruction of tumor cells and infectious material, as well as in blocking portions of the immune response involved in several autoimmune disorders. As antibodies and other FcγR ligands are used as therapeutic agents, there is also a need to develop models to test the efficacy, toxicity, and pharmacokinetics of these therapeutic agents, especially in vivo. #### SUMMARY OF INVENTION [0013] The invention is based upon, among other things, the isolation and sequencing of polynucleotides encoding Fc receptor polypeptides from non-human primates, such as cynomolgus monkeys and chimps. The cynomolgus monkey or chimp FcR polynucleotides and polypeptides of the invention are useful, inter alia, for evaluation of binding of antibodies of any subclass (especially antibodies with prospective therapeutic utility) to cynomolgus or chimpanzee FcR polypeptides prior to in vivo evaluation in a primate. [0014] The invention provides polynucleotide molecules encoding non-human primate Fc receptor polypeptides. The polynucleotides of the invention encode non-human primate Fc receptor polypeptides with an amino acid sequence of SEQ ID NO: 9, SEQ ID NO: 1, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 25, SEQ ID NO. 29, SEQ ID NO. 64 or fragments thereof. Fc receptor polynucleotide molecules of the invention include those molecules having a nucleic acid sequence as shown in SEQ ID NOs: 1, 3, 5, 7, 13, 22, and 27, as well as polynucleotides having substantial nucleic acid identity with the nucleic acid sequences of SEQ ID NOs 1, 3, 5, 7, 13, 22, and 27. β-2 microglobulin polynucleotide molecules of the invention also include molecules having a nucleic acid sequence as shown in SEQ ID NO: 23, as well as polynucleotides having substantial nucleic acid identity with the nucleic acid sequences of SEQ ID NO: 23. [0015] The present invention also provides non-human primate Fcγ receptors and non-human primate β -2 microglobulin. Fcγ polypeptides of the invention include those having an amino acid sequence shown in SEQ ID NOs: 9, 11, 15, 17, 18, 20, 29, and 64 as well as polypeptides having substantial amino acid sequence identity to the amino acid sequences of SEQ ID NOs 9, 11, 15, 17, 18, 20, 29, and 64 and useful fragments thereof. β -2 microglobulin polypeptides of the invention include those having an amino acid sequence shown in SEQ ID NO: 25, as well as polypeptides having substantial amino acid sequence identity to the amino acid sequence of SEQ ID NO: 25 and useful fragments thereof. [0016] In another aspect the invention provides polynucleotide molecules encoding mature non-human primate Fc receptor polypeptides. The polynucleotides of the invention encode mature non-human primate Fc receptor polypeptides with an amino acid sequence of SEQ ID NO: 65, SEQ ID NO: 66, SEQ ID NO: 67, SEQ ID NO: 68, SEQ ID NO: 69, SEQ ID NO: 70, SEQ ID NO: 71, SEQ ID NO: 72 or fragments thereof. Fc receptor polynucleotide molecules of the invention include those molecules having a nucleic acid sequence as shown in SEQ ID NOs: 1, 3, 5, 7, 13, 22, 23 and 27, as well as polynucleotides having substantial nucleic acid identity with the nucleic acid sequences of SEQ ID NOs 1, 3, 5, 7, 13, 22, 23, and 27. [0017] In another aspect of the invention, a method of obtaining a nucleic acid encoding a nonhuman primate Fc receptor is provided. The method comprises amplifying a nucleic acid from a nonhuman primate cell with a primer set comprising a forward and a reverse primer, wherein the primer sets are selected from the group consisting of SEQ ID NO:31 and SEQ ID NO:32, SEQ ID NO:33 and SEQ ID NO:34, SEQ ID NO:35 and SEQ ID NO:36, SEQ ID NO:37 and SEQ ID NO:38, SEQ ID NO:39 and SEQ ID NO:40, SEQ ID NO:41 and SEQ ID NO:42, SEQ ID NO:43 and SEQ ID NO:44, SEQ ID NO:45 and SEQ ID NO:46, SEQ ID NO:47 and SEQ ID NO:48, SEQ ID NO:49 and SEQ ID NO:50, SEQ ID NO:51 and SEQ ID NO:52, and SEQ ID NO:53 and SEQ ID NO:54; and isolating the amplified nucleic acid. The nonhuman primate cell is a preferably a cynomologus spleen cell or a chimp spleen cell. [0018] The invention includes variants, derivatives, and fusion proteins of the non-human primate Fe γ receptor polypeptides and β -2 microglobulin. For example, the fusion proteins of the invention include the non-human primate Fc γ receptor polypeptides fused to heterologous proteinor peptide that confers a desired function, i.e., purification, stability, or secretion. The fusion proteins of the invention can be produced, for example, from an expression construct containing a polynucleotide molecule encoding one of the polypeptides of the invention in frame with a polynucleotide molecule encoding the heterologous protein. [0019] The invention also provides vectors, plasmids, expression systems, host cells, and the like, containing the polynucleotides of the invention. Several recombinant methods for the production of the polypeptides of the invention include expression of the polynucleotide molecules in cell free expression systems, in cellular hosts, in tissues, and in animal models, according to known methods. [0020] The non-human primate Fcy receptors are useful in animal models for the evaluation of the therapeutic safety, efficacy and pharmacokenetics of agents, especially agents having a Fc region. A method of the invention involves contacting an agent with Fc receptor binding domain with a non-human primate Fc receptor polypeptide, preferably a mature soluble polypeptide, and determining the effect of contact on at least biological property of the Fc region containing molecule. A method of the invention involves contacting a cell expressing at least one non-human primate Fcy receptor polypeptide with an agent having a Fc region and determining whether the agent alters biological activity of the cell or is toxic to the cell. The invention also includes a method for screening variants of agents including an Fc region for the ability of such variants to bind to and activate FcRs. An example of such variants include antibodies that have amino acid substitutions at specific residues that may alter binding affinity for one or more Fc receptor classes. [0021] Another example, of screening for agents with FcR binding domains includes identifying agents that have an altered affinity for a Fcγ receptor having an ITIM region compared to a Fcγ receptor having an ITIM region. In addition, the invention provides reagents, compositions, and methods that are useful identifying an agent that has an altered affinity for a Fcγ receptor having an ITIM region, or for a method for identifying an agent with increased binding affinity for a Fcγ receptor having an ITAM region. [0022] These and various other features as well as advantages which characterize the invention will be apparent from a reading of the following detailed description and a review of the appended claims. #### BRIEF DESCRIPTION OF THE FIGURES [0023] FIG. 1A: FIG. 1A illustrates monomeric IgG subclass binding to human FcyRI. [0024] FIG. 1B: FIG. 1B illustrates monomeric IgG subclass binding to cynomolgus FcqRI. [0025] FIG. 2: FIG. 2 illustrates hexameric immune complex binding to cynomolgus FcγRIIA. [0026] FIG. 3A: FIG. 3A illustrates hexameric immune complex binding to human FcyRIIB. [0027] FIG. 3B: FIG. 3B illustrates hexameric immune complex binding to cynomolgus FcγRIIB. [0028] FIG. 4A: FIG. 4A illustrates hexameric immune complex binding to human FcyRIIIA-F158. [0029] FIG. 4B: FIG. 4B illustrates hexameric immune complex binding to human FcyRIIIA-V158. [0030] FIG. 4C: FIG. 4C illustrates hexameric immune complex binding to cynomolgus FcyRIIIA. [0031] FIG. 5: FIG. 5 illustrates hexameric immune complex binding of human IgG 1 variants to cynomolgus FcyRIIA. [0032] FIG. 6: FIG. 6 illustrates hexameric immune complex binding of human IgG variants to cynomolgus FcyRIIB. [0033] FIG. 7: FIG. 7 illustrates hexameric immune complex binding of human IgG variants to cynomolgus FcyRIIIA. [0034] FIG. 8: FIG. 8 illustrates concentration dependent monomeric IgG subclass binding to human FcRn. [0035] FIG. 9: FIG. 9 illustrates concentration dependent monomeric IgG subclass binding to cynomolgus FcRn (S3). [0036] FIG. 10: FIG. 10 illustrates concentration dependent monomeric IgG subclass binding to cynomolgus FcRn (N3). # IDENTIFICATION OF SEQUENCES AND SEQUENCE IDENTIFIERS [0037] | SEQ II
NO. | DESCRIPTION | LOCATION | ACCESSION
NO. | |---------------|---|----------|------------------| | 1 | Cynomolgus DNA for a FcγRI α-chain | Table 3 | _ | | 2 | Human DNA for a FcγRI α-chain | Table 3 | GenBank L03418 | | 3 | Cynomolgus DNA for a FcyRIIA | Table 5 | _ | | 4 | Human DNA for a FcyRIIA | Table 5 | GenBank M28697 | | 5 | Cynomolgus DNA for a FcyRIIB | Table 6 | _ | | 6 | Human DNA for a FcγRIIB | Table 6 | GenBank X52473 | | 7 | Cynomolgus DNA for a FcγRIIIA α-chain | Table 7 | _ | | 8 | Human DNA for a FcγRIIIA α-chain | Table 7 | GenBank X52645 | | 9 | Amino acid sequence of a cynomolgus FcγRI α-chain | Table
10 | _ | | 10 | Amino acid sequence of a human FcγRI α-chain | Table 10 | GenBank P12314 | | 11 | Amino acid sequence of a cynomolgus FcyRI/III gamma chain | Table 12 | _ | | 12 | Amino acid sequence of a human FcyRI/III gamma chain | Table 12 | GenBank P30273 | #### -continued | | -continued | | | |---------------|---|----------------------|------------------| | SEQ ID
NO. | DESCRIPTION | LOCATION | ACCESSION
NO. | | 13 | DNA sequence for a cynomolgus gamma chain DNA | Table 4 | _ | | 14 | DNA sequence for a human gamma chain DNA | Table 4 | GenBank M33195 | | 15 | Amino acid sequence of a cynomolgus FcyRIIA | Table 11 | _ | | 16 | Amino acid sequence of a human FcyRIIA | Table 11 | GenBank P12318 | | 17 | Amino acid sequence of a chimp FcyRIIA | Table 11 | _ | | 18 | Amino acid sequence of a cynomolgus FcqRIIB | Table 11 | _ | | 19 | Amino acid sequence of a human FcyRIIB | Table 11 | GenBank X52473 | | 20 | Amino acid sequence of a cynomolgus FcγRIIIA α-chain | Table 11 | _ | | 21 | Amino acid sequence of a human FcγRIIIA α-chain | Table 11 | GenBank P08637 | | 22 | DNA sequence for a chimp FcγRIIA | Table 5 | _ | | 23 | Cynomolgus B-2 microglobulin DNA | Table 8 | A.D. 024200 | | 24 | Human B-2 microglobulin DNA | Table 8 | AB 021288 | | 25
26 | Amino acid sequence of <i>cynomolgus</i> B-2 microglobulin Amino acid sequence of human β-2 microglobulin | Table 13
Table 13 | P01884 | | 27 | Cynomolgus FcRn α -chain DNA | Table 9 | 101004 | | 28 | Human FcRn α -chain DNA | Table 9 | U12255 | | 29 | Amino acid sequence of cynomolgus FcRn α -chain (S3) | Table 14 | _ | | 30 | Amino acid sequence of human FcRn α -chain | Table 14 | U12255 | | 31 | Cynomolgus FcyRI full-length forward primer | Table 1 | | | 32 | Cynomolgus FcyRI full-length reverse primer | Table 1 | | | 33 | Cynomolgus FcyRI-H6-GST forward primer | Table 1 | | | 34 | Cynomolgus FcyRI-H6-GST reverse primer | Table 1 | | | 35 | Cynomolgus FcyRIIB full-length forward primer | Table 1 | | | 36 | Cynomolgus FcyRIIB full-length reverse primer | Table 1 | | | 37 | Cynomolgus FcγRIIB-H6-GST forward primer | Table 1 | | | 38 | Cynomolgus FcqRIIB-H6-GST reverse primer | Table 1 | | | 39 | Cynomolgus FcyRIIIA full-length forward primer | Table 1 | | | 40 | Cynomolgus FcγRIIIA full-length reverse primer | Table 1 | | | 41 | Cynomolgus FcqRIIIA-H6-GST forward primer | Table 1 | | | 42 | Cynomolgus FcqRIIIA-H6-GST reverse primer | Table 1 | | | 43
44 | Cynomolgus Fc gamma chain forward primer Cynomolgus Fc gamma chain reverse primer | Table 1
Table 1 | | | 45 | Cynomolgus β-2 Microglobulin forward primer | Table 1 | | | 46 | Cynomolgus β-2 Microglobulin reverse primer | Table 1 | | | 47 | Cynomolgus FcyRIIA full-length forward primer | Table 1 | | | 48 | Cynomolgus FcyRIIA full-length reverse primer | Table 1 | | | 49 | Cynomolgus FcyRIIA-H6-GST forward primer | Table 1 | | | 50 | Cynomolgus FcyRIIA-H6-GST reverse primer | Table 1 | | | 51 | Cynomolgus FcRn full-length forward primer | Table 1 | | | 52 | Cynomolgus FcRn full-length reverse primer | Table 1 | | | 53 | Cynomolgus FcRn-H6 forward primer | Table 1 | | | 54 | Cynomolgus FcRn-H6 reverse primer | Table 1 | | | 55 | PCR primer 0F1 | Table 2 | | | 56 | PCR primer 0R1 | Table 2 | | | 57 | PCR primer 0F2 | Table 2 | | | 58 | PCR primer 0F3 | Table 2 | | | 59 | PCR primer 0R2 | Table 2 | | | 60 | PCR primer 0F4 | Table 2 | | | 61 | PCR primer 0R3 | Table 2 | | | 62 | PCR primer 0F5 | Table 2 | | | 63 | PCR primer 0R4 | Table 2 | | | 64 | Amino acid sequence of cynomologus FcRn α-chain (N3) | Table 14 | | | 65 | Amino acid sequence of a mature cynomolgus FcγRI α-chain | Table 10 | | | 66 | Amino acid sequence of a mature cynomolgus FcγRIIA | Table 11 | | | | | Table 21 | | | 67 | Amino acid sequence of a mature chimp FcγRIIA | Table 11 | | | 68 | Amino acid sequence of a mature cynomolgus FcγRIIB | Table 11 | | | | | Table 22 | | | 69 | Amino acid sequence of a mature cynomolgus FcγRIIIA α-chain | Table 11 | | | | | Table 23 | | | 70 | Amino acid sequence of a mature <i>cynomolgus</i> β -2 microglobulin | Table 13 | | | 71 | Amino acid sequence of a mature cynomolgus FcγRn α-chain (S3) | Table 14 | | | 72 | Amino acid sequence of a mature cynomolgus FcRn α-chain (N3) | Table 14 | | | | | | | # DETAILED DESCRIPTION OF THE INVENTION [0038] The following definitions are provided to facilitate understanding of certain terms used frequently herein and are not meant to limit the scope of the present disclosure. [0039] Throughout the present specification and claims, the numbering of the residues in an IgG heavy chain is that of the EU index as in Kabat et al., Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, Md. (1991), expressly incorporated herein by reference. The "EU index as in Kabat" refers to the residue numbering of the human IgG1 EU antibody. [0040] The term "amino acids" refers to any of the twenty naturally occurring amino acids as well as any modified amino acid sequences. Modifications may include natural processes such as posttranslational processing, or may include chemical modifications which are known in the art. Modifications include but are not limited to: phosphorylation, ubiquitination, acetylation, amidation, glycosylation, covalent attachment of flavin, ADP-ribosylation, cross linking, iodination, methylation, and alike. [0041] The term "antibody" is used in the broadest sense and specifically covers monoclonal antibodies (including full length monoclonal antibodies), polyclonal antibodies, multispecific antibodies (e.g., bispecific antibodies), chimeric antibodies, humanized antibodies, fully synthetic antibodies, and antibody fragments so long as they exhibit the desired biological activity. [0042] The term "antisense" refers to polynucleotide sequences that are complementary to a target "sense" polynucleotide sequence. [0043] The term "complementary" or "complementarity" refers to the ability of a polynucleotide in a polynucleotide molecule to form a base pair with another polynucleotide in a second polynucleotide molecule. For example, the sequence A-G-T is complementary to the sequence T-C-A. Complementarity may be partial, in which only some of the polynucleotides match according to base pairing, or complete, where all the polynucleotides match according to base pairing. [0044] The term "expression" refers to transcription and translation occurring within a host cell. The level of expression of a DNA molecule in a host cell may be determined on the basis of either the amount of corresponding mRNA that is present within the cell or the amount of DNA molecule encoded protein produced by the host cell (Sambrook et al., 1989, *Molecular cloning: A Laboratory Manual*, 18.1-18.88). [0045] The term "Fc region" is used to define a C-terminal region of an immunoglobulin heavy chain. Although the boundaries of the Fc region of an IgG heavy chain might vary slightly, the human IgG heavy chain Fc region stretches from amino acid residue at position Cys226 to the carboxylterminus. The term "Fc region-containing molecule" refers to an molecule, such as an antibody or immunoadhesin, which comprises an Fc region. The Fc region of an IgG comprises two constant domains, CH2 and CH3. The "CH2" domain of a human IgG Fc region (also referred to as "Cγ2" domain) usually extends from amino acid 231 to amino acid 340. The CH2 domain is unique in that it is not closely paired with another domain. Rather, two N-linked branched carbohydrate chains are interposed between the two CH2 domains of an intact native IgG molecule. Burton, Molec. Immunol.22:161-206 (1985). [0046] The term "Fc receptor" refers to a receptor that binds to the Fc region of an antibody or Fc region containing molecule. The preferred Fc receptor is a receptor which binds an IgG antibody (FcyR) and includes receptors of the FcyRI, FcyRII, FcyRIII, and FcRn subclasses, including allelic variants and alternatively spliced forms of these receptors. The term "FcR polypeptide" is used to describe a polypeptide that forms a receptor that binds to the Fc region of an antibody or Fc region containing molecule. The term "Fc receptor polypeptide" also includes both the mature polypeptide and the polypeptide with the signal sequence. The term "FcyR polypeptide" is used to describe a polypeptide that forms a receptor that binds to the Fc region of an IgG antibody or IgG Fe region containing molecule. For example, FcyRI and FcyRIII receptors each include a Fc receptor polypeptide α-chain and a Fc receptor polypeptide homo or hetereodimer of a y-chain. FcRn receptors include an Fc receptor polypeptide alpha chain and a β-2 microglobulin. Typically, the α -chains have the extracellular regions that bind to the Fc-region containing agent. FcRs are reviewed in Ravetch and Kinet, Annu. Rev. Immunol 9:457-92 (1991); Capel et al., Immunomethods 4:25-34 (1994); and de Haas et al., J. Lab. Clin. Med. 126:330-41 (1995). Other FcRs, including those to be identified in the future, are encompassed by the term "FcR" herein. [0047] The term "fragment" is used to describe a portion of an Fc receptor polypeptide or a nucleic acid encoding a portion of an Fc receptor polypeptide. The fragment is preferably capable of binding to a Fc region containing molecule. The structure of human Fcy α -chain of FcyRI/III and FcyRIIA or B has been characterized and includes a signal sequence, 2 or 3 extracellular C-2 Ig like domains; a transmembrane domain; and an intracellular cytoplasmic tail. Fragments of an Fc receptor α -chain or FcyRIIA or B include, but are not limited to, soluble Fc receptor polypeptides with one or more of the extracellular C-2 Ig like domains, the transmembrane domain, or intracellular domain of the Fc receptor polypeptides. [0048] The term
"binding domain" refers to the region of a polypeptide that binds to another molecule. In the case of an Fc receptor polypeptide or FcR, the binding domain can comprise a portion of a polypeptide chain thereof (e.g. the α -chain thereof) which is responsible for binding an Fc region of an immunoglobulin or other Fc region containing molecule. One useful binding domain is the extracellular domain of an Fc receptor α -chain polypeptide. [0049] The term "fusion protein" is a polypeptide having two portions combined where each of the portions is a polypeptide having a different property. This property may be a biological property, such as activity in vitro or in vivo. The property may also be a simple chemical or physical property, such as binding to a target molecule, catalysis of a reaction etc. The two portions may be linked directly by a single peptide bond or through a peptide linker containing one or more amino acid residues. The fused polypeptide may be used, among other things, to determine the location of the fusion protein in a cell, enhance the stability of the fusion protein, facilitate the oligomerization of the protein, or facilitate the purification of the fusion protein. Examples of such fusion proteins include proteins expressed as fusion with a portion of an immunoglobulin molecule, proteins expressed as fusion proteins with a leucine zipper moiety, Fc receptors polypeptides fused to glutathione S-transferase, and Fc receptor polypeptides fused with one or more amino acids that serve to allow detection or purification of the receptor such as Gly6-His tag. [0050] The term "homology" refers to a degree of complementarity or sequence identity between polynucleotides. [0051] The term "host cell" or "host cells" refers to cells established in ex vivo culture. It is a characteristic of host cells discussed in the present disclosure that they be capable of expressing Fc receptors. Examples of suitable host cells useful for aspects of the present invention include, but are not limited to, insect and mammalian cells. Specific examples of such cells include SF9 insect cells (Summers and Smith, 1987, Texas Agriculture Experiment Station Bulletin, 1555), human embryonic kidney cells (293 cells), Chinese hamster ovary (CHO) cells (Puck et al., 1958, Proc. Natl. Acad. Sci. USA 60, 1275-1281), human cervical carcinoma cells (HELA) (ATCC CCL 2), human liver cells (Hep G2) (ATCC HB8065), human breast cancer cells (MCF-7) (ATCC HTB22), and human colon carcinoma cells (DLD-1) (ATCC CCL 221), Daudi cells (ATCC CRL-213), and the like. [0052] The term "hybridization" refers to the pairing of complementary polynucleotides during an annealing period. The strength of hybridization between two polynucleotide molecules is impacted by the homology between the two molecules, stringency of the conditions involved, the melting temperature of the formed hybrid and the G:C ratio within the polynucleotides. [0053] As used herein, the term "immunoadhesin" designates antibody-like molecules which combine the "binding domain" of a heterologous "adhesin" protein (e.g. a receptor, ligand or enzyme) with one or more immunoglobulin constant domains. Structurally, the immunoadhesins comprise a fusion of the adhesin amino acid sequence with the desired binding specificity which is other than the antigen recognition and binding site (antigen combining site) of an antibody (i.e. is "heterologous") and an immunoglobulin constant domain sequence. The immunoglobulin constant domain sequence is preferably the Fc portion of an immunoglobulin. [0054] "Immune complex" refers to the relatively stable structure which forms when at least one target molecule and at least one Fc region-containing polypeptide bind to one another forming a larger molecular weight complex. Examples of immune complexes are antigen-antibody aggregates and target molecule-immunoadhesin aggregates. Immune complex can be administered to a mammal, e.g. to evaluate clearance of the immune complex in the mammal or can be used to evaluate the binding properties of FcR or Fc receptor polypeptides. [0055] The term "isolated" refers to a polynucleotide or polypeptide that has been separated or recovered from at least one contaminant of its natural environment. Contaminants of one natural environment are materials, which would interfere with using the polynucleotide or polypeptide therapeutically or in assays. Ordinarily, isolated polypeptides or polynucleotides are prepared by at least one purification step. [0056] A "native sequence" polypeptide refers to a polypeptide having the same amino acid sequence as the corresponding polypeptide derived from nature. The term specifically encompasses naturally occurring truncated or secreted forms of the polypeptide, naturally occurring variant forms (e.g. alternatively spliced forms) and naturally occurring allelic variants. A "mature polypeptide" refers to a polypeptide that does not contain a signal peptide. [0057] The term "nucleic acid sequence" refers to the order or sequence of deoxyribonucleotides along a strand of deoxyribonucleic acid. The order of these deoxyribonucleotides determines the order of amino acids along a polypeptide chain. The deoxyribonucleotide sequence thus codes for the amino acid sequence. [0058] The term "polynucleotide" refers to a linear sequence of nucleotides. The nucleotides are either a linear sequence of polyribonucleotides or polydeoxyribonucleotides, or a mixture of both. Examples of polynucleotides in the context of the present invention include—single and double stranded DNA, single and double stranded RNA, and hybrid molecules that have both mixtures of single and double stranded DNA and RNA. Further, the polynucleotides of the present invention may have one or more modified nucleotides. [0059] The terms, "protein," "peptide," and "polypeptide" are used interchangeably to denote an amino acid polymer or a set of two or more interacting or bound amino acid polymers. [0060] The term "purify," or "purified" refers to a target protein that is free from at least 5-10% of the contaminating proteins. Purification of a protein from contaminating proteins can be accomplished through any number of well known techniques, including, ammonium sulfate or ethanol precipitation, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, affinity chromatography, hydroxylapatite chromatography and lectin chromatography. Various protein purification techniques are illustrated in Current Protocols in Molecular Biology, Ausubel et al., eds. (Wiley & Sons, New York, 1988, and quarterly updates). [0061] The term "Percent (%) nucleic acid or amino acid sequence identity" describes the percentage of nucleic acid sequence or amino acid residues that are identical with amino acids in a reference polypeptide, after aligning the sequence and introducing gaps, if necessary to achieve the maximum sequence identity, and not considering any conservative substitutions as part of the sequence identity. For purposes herein, the % amino acid sequence identity of a given amino acid sequence A to, with, or against a given amino acid sequence A that has or comprises a certain % amino acid sequence identity to, with, or against a given amino acid sequence B) is calculated as follows: 100 times the fraction X/Y [0062] where X is the number of amino acid residues scored as identical matches by the sequence alignment program ALIGN-2 in that program's alignment of A and B, and where Y is the total number of amino acid residues in B. It will be appreciated that where the length of amino acid sequence A is not equal to the length of amino acid sequence B, the % amino acid sequence identity of A to B will not equal the % amino acid sequence identity of B to A. Preferably, % sequence identity can be determined by aligning the sequences manually and again multiplying 100 times the fraction X/Y, where X is the number of amino acids scored as identical matches by manual comparison and Y is the total number of amino acids in B. Further, the above described methods can also be used for purposes of determining % nucleic acid sequence identity. Alternatively, computer programs commonly employed for these purposes, such as the Gap program (Wisconsin Sequence Analysis Package, Version 8 for Unix, Genetics Computer Group, University Research Park, Madison Wis.), that uses the algorithm of Smith and Waterman, 1981, *Adv. Appl. Math*, 2: 482-489 can be used. [0063] Unless specifically stated otherwise, all % amino acid sequence identity values used herein are obtained by manual alignment. However, the ALIGN-2 sequence comparison computer program can be used as described in WO 00/15796. [0064] The term "stringency" refers to the conditions (temperature, ionic strength, solvents, etc) under which hybridization between polynucleotides occurs. A hybridization reaction conducted under high stringency conditions is one that will only occur between polynucleotide molecules that have a high degree of complementary base pairing (about 85% to 100% of sequence identity). Conditions for high stringency hybridization, for example, may include an overnight incubation at about 42° C. for about 2.5 hours in 6× SSC/0.1% SDS, followed by washing of the filters in 1.0× SSC at 65° C., 0.1% SDS. A hybridization reaction conducted under moderate stringency conditions is one that will occur between polynucleotide molecules that have an intermediate degree of complementary base pairing (about 50% to 84% identity). [0065] As used herein the term "variant" means a polynucleotide or polypeptide with a sequence that differs from a native polynucleotide or polypeptide. Variants can include changes that result in amino acid substitutions, additions, and deletions in the resulting variant polypeptide when compared to a full length native sequence or a mature polypeptide sequence. [0066] The term "vector,"
extra-chromosomal vector" or "expression vector" refers to a first piece of DNA, usually double-stranded, which may have inserted into it a second piece of DNA, for example a piece of heterologous DNA like the cDNA of cynomolgus FcyRI. Heterologous DNA is DNA that may or may not be naturally found in the host cell and includes additional copies of nucleic acid sequences naturally present in the host genome. The vector transports the heterologous DNA into a suitable host cell. Once in the host cell the vector may be capable of integrating into the host cell chromosomes. The vector may also contain the necessary elements to select cells containing the integrated DNA as well as elements to promote transcription of mRNA from the transfected DNA. Examples of vectors within the scope of the present invention include, but are not limited to, plasmids, bacteriophages, cosmids, retroviruses, and artificial chromosomes. ### Modes of Carrying Out the Invention [0067] The invention is based upon, among other things, the isolation and sequencing of nucleic acids encoding Fc receptor polypeptides from non-human primates, such as cynomolgus monkeys and chimps. In particular, the invention provides isolated polynucleotides encoding FcR polypeptides with an amino acid sequence of SEQ ID NO: 9, 11, 15, 17, 18, 20, 29, 64 or fragments thereof. The invention also provides isolated polynucleotides encoding mature FcR polypeptides with an amino acid sequence of SEQ ID NO: 65, 66, 67, 68, 69, 71 or 72, or fragments thereof. The invention also provides an isolated polynucle- otide encoding β -2 microglobulin having an amino acid sequence of SEQ ID NO: 25 or SEQ ID NO: 70. [0068] The cynomolgus monkey or chimp Fc receptor polynucleotides and polypeptides of the invention are useful for evaluation of binding of antibodies of any subclass (especially antibodies with prospective therapeutic utility) to cynomolgus or chimpanzee FcR polypeptides prior to in vivo evaluation in a primate. Evaluation could include testing binding to primate FcRs or Fc receptor polypeptides in an ELISA-format assay or to transiently- or stablytransfected human or primate cells (e.g. CHO, COS). Evaluation of the ability of a human antibody to bind to cynomolgus or other primate FcRs or Fc receptor polypeptides (either in an ELISA- or transfected cell format) could be used as a preliminary test prior to evaluation of pharmacokinetics/pharmacodynamics in vivo. Binding of antibodies or antibody variants to cynomolgus FcRn or FcRn polypeptides would be useful to identify antibodies or antibody variants that could have a longer half life in vivo. Binding of antibodies to FcRn correlates with a longer half life in [0069] The primate FcRs or Fc receptor polypeptides could also be used to screen for variants (e.g. protein-sequence or carbohydrate) of primate or human IgG which exhibit either improved or reduced binding to these receptors or receptor polypeptides; such variants could then be evaluated in vivo in a primate model for altered efficacy of the antibody, e.g. augmentation or abrogation of IgG effector functions. In addition, soluble cynomolgus or chimpanzee Fc receptor polypeptides could be evaluated as therapeutics in primate models. [0070] For example, in one aspect of the invention, a method is provided for identifying agents that selectively activate ITAM motifs in target Fc receptors while failing to activate ITIM motifs in other Fc receptors. Preferably these agents are antibodies and more preferably these agents are monoclonal antibodies. These identified agents may have uses in designing therapeutic antibodies which preferentially bind to and activate only ITAM-containing Fc γ R (i.e. not simultaneously engaging the inhibitory ITIM-containing receptors) which could thereby improve the cytotoxicity or phagocytosis ability of the therapeutic antibody or the ability of the therapeutic antibody to be internalized by antigen-presenting cells for increased immune system response against the target antigen. [0071] Finally, the cynomolgus FcγR polynucleotides and polypeptides of the invention permit a more detailed analysis of FcγR-mediated molecular interactions. The amino acids in human IgG1 which interact with human FcγR have been mapped (Shields, R. L., Namenuk, A. K., Hong, K., Meng, Y. G., Rae, J., Briggs, J., Xie, D., Lai, J., Stadlen, A., Li, B., Fox, J. A., and Presta, L. G. (2001) J. Biol. Chem. 276, 6591-6604). Testing the binding of these same human IgG1 variants against cynomolgus FcγR can aid in mapping the interaction of specific amino acids in the human IgG1 with amino acids in the FcγR. [0072] Within the application, unless otherwise stated, the techniques utilized may be found in any of several well-known references, such as: *Molecular Cloning: A Laboratory Manual* (Sambrook et al. (1989) Molecular cloning: A Laboratory Manual), *Gene Expression Technology* (Methods in Enzymology, Vol. 185, edited by D. Goeddel, 1991 Academic Press, San Diego, Calif.), "Guide to Protein Purification" in *Methods in Enzymology* (M. P. Deutshcer, 3d., (1990) Academic Press, Inc.), *PCR Protocols: A Guide to Methods and Applications* (Innis et al. (1990) Academic Press, San Diego, Calif.), Culture of Animal Cells: A Manual of Basic Technique, 2nd ed. (R. I. Freshney (1987) Liss, Inc., New York, N.Y.), and *Gene Transfer and Expression Protocols*, pp 109-128, ed. E. J. Murray, The Humana Press Inc., Clifton, N.J.). #### Polynucleotide Sequences [0073] One aspect of the invention provides isolated nucleic acid molecules encoding Fc receptor polypeptides from cynomolgus monkeys and chimps. Due to the degeneracy of the genetic code, two DNA sequences may differ and yet encode identical amino acid sequences. The present invention thus provides isolated nucleic acid molecules comprising a polynucleotide sequence encoding cynomolgus FcR polypeptides, wherein the polynucleotide sequences encode a polypeptide with an amino acid sequence of SEQ ID NO: 9, or SEQ ID NO: 11, or SEQ ID NO: 15, or SEQ ID NO: 18, or SEQ ID NO: 20, or SEQ ID NO: 29, or SEQ ID NO: 64, or fragments thereof. The present invention also provides isolated nucleic acid molecules comprising a polynucleotide sequence encoding a chimp FcyR polypeptide of the invention, wherein the polynucleotide sequence encodes a polypeptide with an amino acid sequence of SEQ ID NO: 17 or fragments thereof. The invention also provides for isolated nucleic acid molecules comprising a polynucleotide sequence encoding cynomolgus β-2 microglobulin with an amino acid sequence of SEQ ID NO: 25. [0074] The present invention also provides isolated nucleic acid molecules comprising a polynucleotide sequence encoding mature nonprimate FcR polypeptides, wherein the polynucleotide sequences encode a polypeptide with an amino acid sequence of SEQ ID NO: 65, 66, 68, 67, 69, 70, 71, or 72. [0075] The nucleotide sequences shown in the tables, in most instances, begin at the coding sequence for the signal sequence of the Fc receptor polypeptide. [0076] Nucleotide sequences of the non-human primate receptors have been aligned with human sequences for FcR polypeptides or β-2 microglobulin to determine % sequence identity. Nucleotide sequences of primate and human proteins are aligned manually and differences in nucleotide or protein sequence noted. Percent identity is calculated as number of identical residues/number of total residues. When the sequences differ in the total number of residues, two values for percent identity are provided, using the two different numbers for total residues. Some nucleic acid sequences for human FcR are known to those of skill in the art and are identified by GenBank accession numbers. [0077] In one embodiment, the invention provides isolated nucleic acid molecules comprising a polynucleotide encoding a cynomolgus Fc γ RI α -chain. One example of a cynomolgus Fc γ RI α -chain has an amino acid sequence including the signal sequence as shown in Table 10 (SEQ. ID. NO: 9). The mature cynomolgus Fc γ RI α -chain has an amino acid sequence shown in Table 10 (SEQ ID NO: 65). An example of an isolated nucleic acid encoding a cynomolgus Fc γ RI α -chain is shown in Table 3 (SEQ ID NO: 1). A nucleic acid sequence encoding a cynomolgus Fc γ RI α -chain has about 91% or 96% sequence identity when aligned with a human nucleic acid sequence (SEQ ID NO: 2) encoding a Fc γ RI α -chain as shown in Table 3 (GenBank Accession No. L03418). [0078] In another embodiment, the invention provides an isolated nucleic acid comprising a polynucleotide sequence encoding a cynomolgus gamma chain of FcγRI/III. An example of such a nucleic acid sequence is shown in Table 4 (SEQ ID NO: 13). An example of a cynomolgus gamma chain polypeptide is shown in Table 12 (SEQ ID NO: 11). A nucleic acid encoding a cynomolgus gamma chain has about 99% sequence identity when aligned with a human nucleic acid sequence (SEQ ID NO: 14) encoding a FcR gamma chain as shown in Table 4 (GenBank Accession No. M33195). [0079] In another embodiment, the invention provides isolated nucleic acid molecules comprising a polynucleotide encoding a cynomolgus Fc γ RIIA. One example of cynomolgus Fc γ RIIA has an amino acid sequence including the signal sequence as shown in Table 11 (SEQ. ID. NO: 15). The mature cynomolgus Fc γ RIIA has an amino acid sequence as shown in Table 21 (SEQ ID NO: 66). An example of an isolated nucleic acid encoding a cynomolgus Fc γ RIIA is shown in Table 5 (SEQ ID NO: 3). A nucleic acid sequence encoding a cynomolgus Fc γ RIIA α -chain has about 94% sequence identity when aligned with a human nucleic acid sequence (SEQ ID NO: 4) encoding a Fc γ RIIA as shown in Table 5 (Genbank Accession No. M28697). [0080] The invention also provides for isolated nucleic acids comprising a polynucleotide
encoding FcyR from chimps such as an isolated nucleic acid comprising a polynucleotide encoding a FcyRIIA receptor. One example of a chimp FcyRIIA has an amino acid sequence including the signal sequence as shown in Table 11 (SEQ. ID. NO: 17). The mature chimp FcyRIIA has an amino acid sequence as shown in Table 11 (SEQ ID NO: 67). An example of an isolated nucleic acid encoding a chimp FcyRIIA is shown in Table 5 (SEQ ID NO: 22). A nucleic acid sequence having a sequence of SEQ ID NO: 22 has about 99% sequence identity when aligned with a human nucleic acid sequence (SEQ ID NO: 4) encoding a FcyRIIA as shown in Table 5 (GenBank Accession No. M28697). [0081] In another embodiment, the invention provides isolated nucleic acid molecules comprising a polynucleotide encoding a cynomolgus FcγRIIB. One example of a cynomolgus FcγRIIB has an amino acid sequence as shown in Table 11 (SEQ. ID. NO: 18). The mature cynomolgus FcγRIIB has an amino acid sequence as shown in Table 22 (SEQ ID NO: 68). An example of an isolated nucleic acid encoding a cynomolgus FcγRIIB is shown in Table 6 (SEQ ID NO: 5). A nucleic acid sequence encoding a cynomolgus FcγRIIB has about 94% sequence identity when aligned with a human nucleic acid sequence (SEQ ID NO: 6) encoding a FcγRIIB as shown in Table 6 (GenBank Accession No.X52473). [0082] In another embodiment, the invention provides isolated nucleic acid molecules comprising a polynucleotide encoding a cynomolgus Fc γ RIIIA α -chain. One example of a cynomolgus Fc γ RIIIA has an amino acid sequence as shown in Table 11 (SEQ. ID. NO: 20). The mature cynomolgus Fc γ RIIIA has an amino acid sequence as shown in Table 23 (SEQ ID NO: 69). An example of an isolated nucleic acid encoding a cynomolgus FcγRIIIA α -chain is shown in Table 7 (SEQ ID NO: 7). A nucleic acid sequence cynomolgus FcγRIIIA α -chain has about 96% sequence identity when aligned with a human nucleic acid sequence (SEQ ID NO: 8) encoding a FcγRIIIA α -chain as shown in Table 7 (GenBank Accession No.X52645). [0083] The invention also provides isolated nucleic acid molecules having a polynucleotide sequence encoding a cynomolgus Fc receptor (FcRn) α-chain. One example of a cynomolgus Fc receptor α-chain (S3) has an amino acid sequence of SEQ ID NO. 29 as shown in Table 14. An allele has been identified encoding a polypeptide with an amino acid sequence which differs from that of SEQ ID NO: 29 by a substitution of an asparagine for a serine at the third residue in the mature polypeptide. This polypeptide sequence has been designated SEQ ID NO: 64. The mature polypeptides of FcRn α-chain (S3) and FcRn α-chain (N3) have the amino acid sequences of SEQ ID NO: 71 and 72, respectively. An example of an isolated nucleic acid encoding a cynomolgus FcRn α-chain is SEQ ID NO: 27 shown in Table 9. A nucleic acid encoding a cynomolgus FcRn has about 97% sequence identity when aligned with a human sequence (SEQ ID NO: 28) encoding a human FcRn α-chain as shown in Table 9 (GenBank Accession No. U12255). [0084] In another embodiment, the invention provides isolated nucleic acid molecules comprising a polynucleotide sequence encoding cynomolgus β -2 microglobulin. One example of a cynomolgus β -2 microglobulin has an amino acid sequence as shown in Table 13 (SEQ ID NO: 25). The mature P-2 microglobulin has a sequence as shown in Table 13 (SEQ ID NO: 70). An example of an isolated nucleic acid encoding a cynomolgus β -2 microglobulin is shown in Table 8 (SEQ ID NO: 23). A nucleic acid cynomolgus β -2 microglobulin has about 95% sequence identity when aligned with a human sequence (SEQ ID NO: 24) encoding β -2 microglobulin as shown in Table 8 (GenBank Accession No. AB021288). [0085] The non-human primate nucleic acids of the invention include cDNA, chemically synthesized DNA, DNA isolated by PCR, and combinations thereof. RNA transcribed from cynomolgus or chimp cDNA is also encompassed by the invention. The cynomolgus DNA can be obtained using standard methods from tissues such as the spleen or liver and as described in the Examples below. The chimp FcγR DNA can be obtained using standard methods from tissues such as spleen or liver and as described in the Examples below. [0086] In another aspect of the invention, a method of obtaining a nucleic acid encoding a nonhuman primate Fc receptor is provided. The method comprises amplifying a nucleic acid from a nonhuman primate cell with a primer set comprising a forward and a reverse primer, wherein the primer sets are selected from the group consisting of SEQ ID NO:31 and SEQ ID NO:32, SEQ ID NO:33 and SEQ ID NO:35 and SEQ ID NO:36, SEQ ID NO:37 and SEQ ID NO:38, SEQ ID NO:39 and SEQ ID NO:40, SEQ ID NO:41 and SEQ ID NO:42, SEQ ID NO:43 and SEQ ID NO:44, SEQ ID NO:45 and SEQ ID NO:49 and SEQ ID NO:50, SEQ ID NO:51 and SEQ ID NO:52, and SEQ ID NO:53 and SEQ ID NO:54; and isolating the amplified nucleic acid. The nonhuman primate cell is a preferably a cynomologus spleen cell or a chimp spleen cell. Some of the primer sets provide for amplification of an extracellular fragment of the Fc receptor polypeptides fused to GlyHis-GST. [0087] Fragments of the cynomolgus and chimp FcyRencoding nucleic acid molecules described herein, as well as polynucleotides capable of hybridizing to such nucleic acid molecules, may be used in a number of ways including as a probe or as primers in a polymerase chain reaction (PCR). Such probes may be used, e.g., to detect the presence of FcyR polynucleotides in in vitro assays, as well as in Southern and Northern blots. Cell types expressing the FcyR may also be identified by the use of such probes. Such procedures are well known, and the skilled artisan will be able to choose a probe of a length suitable to the particular application. For PCR, 5' and 3' primers corresponding to the termini of the nucleic acid molecules are employed to isolate and amplify that sequence using conventional techniques. Fragments useful as probes are typically oligonucleotides about 18 to 20 nucleotides, including up to the full length of the polynucleotides encoding the FcyR. Fragments useful as PCR primers typically are oligonucleotides of 20 to 50 nucleotides. [0088] Other useful fragments of the different cynomolgus FcyR polynucleotides are antisense or sense oligonucleotides comprising a single-stranded nucleic acid sequence capable of binding to a target FcyR mRNA (using a sense strand), or DNA (using an antisense strand) sequence. [0089] Other useful fragments include polynucleotides that encode domains of a FCγ receptor polypeptide. The fragments are preferably capable of binding to a Fc region containing molecule. One embodiment of a polynucleotide fragment is a fragment that encodes extracellular domains of a Fcγ receptor polypeptide in which the transmembrane and cytoplasmic domains have been deleted. Other domains of Fcγ receptors are identified in, for example, Table 10 and Table 11. Nucleic acid fragments encoding one or more polypeptide domains are included within the scope of the invention. [0090] The invention also provides variant cynomolgus and chimp FcyR nucleic acid molecules as well as variant cynomolgus β-2 microglobulin nucleic acid molecules. Variant polynucleotides can include changes to the nucleic acid sequence that result in amino acid substitutions, additions, and deletions in the resultant variant polypeptide when compared to a native polypeptide, for instance SEQ ID NOs: 9, 11, 15, 17, 18, 20, 25, 29, or 64. The changes to the variant nucleic acid sequences can include changes to the nucleic acid sequence that result in replacement of an amino acid by a residue having similar physiochemical properties, such as substituting one aliphatic residue (Ile, Val, Leu, or Ala) for another, or substitutions between basic residues Lys and Arg, acidic residues Glu and Asp, amide residues Gln and Asn, hydroxyl residues Ser and Tyr, or aromatic residues Phe and Tyr. Variant polynucleotide sequences of the present invention are preferably at least about 95% identical, more preferably at least about 96% identical, more preferably at least about 97% or 98% identical, and most preferably at least about 99% identical, to a nucleic acid sequence encoding the full length native sequence, a polypeptide lacking a signal sequence, an extracellular domain of the polypeptide, or a nucleic acid encoding a fragment of the Fc γ receptor polypeptide or β -2 microglobulin of sequences of SEQ ID NOs: 1, 3, 5, 7, 23 or 27. [0091] The percentage of sequence identity between the sequences and a variant sequence as discussed above may also be determined, for example, by comparing the variant sequence with a reference sequence using any of the computer programs commonly employed for this purpose, such as ALIGN 2 or by using manual alignment. Percent identity is calculated as [number of identical residues]/[number of total residues]. When the sequences differed in the total number of residues, two values for percent identity are provided, using the two different numbers for total residues. [0092] Alterations of the cynomolgus monkey and chimp FcγR polypeptides, and cynomolgus monkey β-2 microglobulin, nucleic acid and amino acid sequences may be accomplished by any of a number of known techniques. For example, mutations may be introduced at particular locations by procedures well known to the skilled artisan, such as oligonucleotide-directed mutagenesis, which is described by Walder et al., 1986, *Gene*, 42:133; Bauer et al., 1985, *Gene* 37:73; Craik, 1985, *BioTechniques*, 12-19; Smith et al., 1981, *Genetic Engineering: Principles and Methods*, Plenum Press; and U.S. Pat. No. 4,518,584 and U.S. Pat. No. 4,737,462. [0093] The invention also provides cynomolgus and chimp FcyR polypeptides, cynomolgus FcRn polypeptide, β-2 microglobulin nucleic acid molecules, or fragments and variants thereof, ligated
to heterologous polynucleotides to encode fusion proteins. The heterologous polynucleotides can be ligated to the 3' or 5' end of the nucleic acid molecules of the invention, for example SEQ ID NOs: 1, 3, 5, 7, 13, 22, 25 or 27, to avoid interfering with the in-frame expression of the resultant cynomolgus and chimp Fc\u00e4R, cynomolgus FcRn, and β -2 microglobulin polypeptides. Alternatively, the heterologous polynucleotide can be ligated within the coding region of the nucleic acid molecule of the invention. Heterologous polynucleotides can encode a single amino acid, peptide, or polypeptides that provide for secretion, improved stability, or facilitate purification of the cynomolgus and chimp encoded polypeptides of the invention. [0094] A preferred embodiment is a nucleic acid sequence encoding an extracellular domain of the α -chain of Fc γ RI, Fc γ R or FcRn fused to Gly(His)₆-gst tag or Fc γ RIIA or IIB fused to Gly(His)₆-gst tag obtained as described in Example 1. The Gly(His)₆-gst tag provides for ease of purification of polypeptides encoded by the nucleic acid. [0095] The cynomolgus and chimp FcγR polypeptide and β-2 microglobulin nucleic acid molecules of the invention can be cloned into prokaryotic or eukaryotic host cells to express the resultant polypeptides of the invention. Any recombinant DNA or RNA method can be use to create the host cell that expresses the target polypeptides of the invention, including, but not limited to, transfection, transformation or transduction. Methods and vectors for genetically engineering host cells with the polynucleotides of the present invention, including fragments and variants thereof, are well known in the art, and can be found in Current Protocols in Molecular Biology, Ausubel et al., eds. (Wiley & Sons, New York, 1988, and updates). Vectors and host cells for use with the present invention are described in the Examples provided herein. [0096] The invention also provides isolated nucleic acids comprising a polynucleotide encoding the mature Fc receptor polypeptide. The isolated nucleic acids can further comprise a nucleic acid sequence encoding a heterologous signal sequence. A heterologous signal sequence is one obtained from a polynucleotide encoding a polypeptide different than the native sequence non-human primate Fc receptor polypeptides of the invention. Heterologous signal sequences include signal sequences from human Fc receptor polypeptides as well as from polypeptides like tissue plasminogen activator. ### Polypeptide Sequences [0097] Another aspect of the invention is directed to FcR polypeptides from non-human primates such as cynomolgus monkeys and chimps. The Fc γ R polypeptides include Fc γ RI α -chain, Fc γ RIIIA, Fc γ RIIIB, Fc γ RIIIA α -chain, FcRn α -chain, FcR γ I/III γ -chain, and β -2 microglobulin. The polypeptides bind IgG antibody or other molecules having a Fc region. Some of the receptors are low affinity receptors which preferably bind to IgG antibody complexes. FcR polypeptides also mediate effector cell functions such as antibody dependent cellular cytotoxicity, induction of mediator release from the cell, uptake and destruction of antibody coated particles, and transport of immunoglobulins [0098] Amino acid sequences of the FcyR polypeptides derived from cynomolgus monkeys and chimps are aligned with the amino acid sequences encoding human FcyR polypeptides to determine the % of sequence identity with the human sequences. Amino acid sequences of primate and human proteins are aligned manually and differences in nucleotide or protein sequence noted. Percent identity is calculated as number of identical residues/number of total residues. When the sequences differ in the total number of residues, two values for percent identity are provided, using the two different numbers for total residues. Some amino acid sequences encoding human FcyR polypeptides are known to those skill in the art and are identified by GenBank Accession numbers. [0099] The polypeptide sequences shown in the tables are numbered starting from the signal sequence or from the first amino acid of the mature protein. When the amino acid residues of the polypeptide are numbered starting from the signal sequence the numbers are identified by the number of the residue and a line. When the amino acid residues of the polypeptide are also numbered from the first amino acid of the mature human protein, the amino acid is designated by the number and A symbol. In Table 11, the first N terminal residue of the cynomologus sequences is designated with an asterisk, but the numbering is still that corresponding to the mature human protein. The numbering of the amino acid residues of the FcR polypeptides is sequential. [0100] The non-human primate receptors were also analyzed to compare the binding of the non-human primate Fc receptor polypeptides to various subclasses of human IgG and IgG variants to human Fc receptors. The binding to the subclasses also included binding to IgG4b. IgG4b is a form of IgG4, but has a change in the hinge region at amino acid residue 228 from serine to a proline. This change results in a molecule that is more stable than the native IgG4 due to increase formation of interchain disulfide bonds as described in Angal, S., King, D. J., Bodmer, M. W., Turner, A., Lawson, D. G., Robert, G., Pedley B. and Adair, J. R (1993) A single amino acid substitution abolishes heterogeneity of chimeric—mouse/human (IgG4) antibody. *Molec. Immunology* 30:105-108. [0101] One embodiment of the invention is a cynomolgus Fc γ RI polypeptide. A cynomolgus Fc γ RI binds to IgG and other molecules having an Fc region, preferably human monomeric IgG. One example of an α -chain of a cynomolgus Fc γ RI is a polypeptide having a sequence of SEQ ID NO: 9. Based on the alignment with the human sequence, the mature cynomolgus Fc γ RI has a sequence of SEQ ID NO: 65. An extracellular fragment obtained as described in example 1 has an amino acid sequence of Δ 1 to Δ 269 as shown in table 10. [0102] An alignment of the amino acid sequence α -chain of the FcyRI from human and cynomolgus monkeys is also shown in Table 10. The amino acid numbers shown below the amino acids with the symbol Δ are numbered from the start of the mature polypeptide not including the signal sequence. The numbers above the amino acid residues represent the numbering of the residues starting at the signal sequence. Each of the domains of the FcγRI α-chain are shown including signal sequence, extracellular domain 1, extracellular domain 2, extracellular domain 3, and the transmembrane and intracellular sequence. The alignment of a human sequence of SEQ ID NO: 10 (GenBank Accession No. P12314) with a cynomolgus FcγRI α-chain sequence starting from the signal sequence shows about a 90% or 94% sequence identity with the human sequence depending on whether the 3' extension present on the human sequence was used in the calculation. [0103] This alignment of the cynomolgus sequence with the human sequence shows that the cynomolgus $Fc\gamma RI$ α -chain has the same number of amino acids in the signal sequence, the three extracellular domains, and transmembrane domain as found in the human $Fc\gamma RI$ sequence (Table 10). In contrast, the cynomolgus $Fc\gamma RI$ α -chain intracellular domain is shorter than that of the human $Fc\gamma RI$ α -chain by seventeen amino acids (Table 10). A cynomolgus $Fc\gamma RI$ α -chain binds to human monomeric subclasses as follows: $IgG3 \ge IgG4b >>> IgG2$, which is similar to that of the human $Fc\gamma RI$. [0104] Fc receptors of the I and IIIA subclass are complex molecules including an α -chain complexed to either a homo or hetero dimer of a γ -chain. The invention also includes a cynomolgus FcR gamma chain. One example of a gamma chain polypeptide has an amino acid sequence of SEQ ID NO: 11 as shown in Table 12. When the cynomolgus gamma chain amino acid sequence is aligned with a human sequence for the gamma chain of SEQ ID NO: 12 (GenBank Accession No. P30273) it has about 99% sequence identity with the human sequence. The ITAM motif of the cynomolgus gamma chain is identical to that of the human gamma chain. [0105] Another embodiment of the invention is a cynomolgus FcγRIIA. A cynomolgus FcγRIIA binds to immunoglobulins and other molecules having an Fc region, preferably immunoglobulins complexed to an antigen or each other. More preferably, the receptor binds a dimeric or hexameric immune complex of human Ig. One example of a cynomolgus FcγRIIA has an amino acid sequence of SEQ ID NO: 15. The mature cynomolgus Fc γ RIIA has an amino acid sequence of SEQ ID NO: 66 (Table 21). an extracellular fragment obtained with the primers of example 1 has an amino acid sequence of $\Delta 1$ to $\Delta 182$ as shown in Table 21. [0106] The cynomolgus FcyRIIA sequence was aligned with a human amino acid sequence of FcyRIIA as shown in Table 11 (SEQ ID NO: 16) (Accession No. P12318). In table 11, the amino acid numbers shown below the amino acids with the symbol A are numbered from the start of the mature human polypeptide not including the signal sequence. The numbers above the amino acid residues represent the numbering of the residues starting at the signal sequence. When the cynomolgus sequence is aligned with the human sequence it has about 87% or 89% sequence identity with the human sequence depending on whether the alignment starts with the MAMETQ sequence. This alignment shows that the cynomolgus FcyRIIA has fewer amino acids in the signal peptide sequence than found in the human FcyRIIA (Table 11). Cynomolgus FcyRIIA has about the same number of amino acids in the two extracellular domains, transmembrane domain, and intracellular domain as found in the
human FcyRIIA sequence (Table 11). Notably, the cynomolgus FcyRIIA contains the identical two ITAM motifs as found in the human receptor (Table 11). [0107] The cynomolgus FcyRIIA binds to hexameric complexes of subclasses IgG with the following binding pattern: IgG3=IgG2>IgG1>IgG4b, IgG4. A human FcyRIIA isoform with an arginine at the amino acid corresponding to the amino acid 131 (R131) binds hexameric IgG subclasses as follows: IgG3>IgG1>>>IgG2>IgG4. A human FcyRIIA isoform with a histidine at the amino acid corresponding to the amino acid 131 (H1131) binds hexameric IgG subclasses as follows: IgG3 \geq IgG1=IgG2>>>IgG4. Cynomolgus FcyRIIA with an amino acid sequence of SEQ ID NO: 15 has H 131 and binds to human subclasses of IgG in a similar manner to those human Fc receptors with the H131 isoform variant. However, the cynomolgus Fc receptor binds IgG2 as efficiently as it binds IgG3. [0108] Another embodiment of the invention is a chimp FcγRIIA. A chimp FcγRIIA binds to immunoglobulins and other molecules having an Fc region, preferably immunoglobulins complexed to an antigen or each other. Preferably the receptor binds a dimeric or hexameric immune complex of human Ig. One example of a chimp FcγRIIIA has an amino acid sequence of SEQ ID NO: 17. Based on the alignment with the human sequence, the mature chimp FcγRIIA has an amino acid sequence of SEQ ID NO: 67. [0109] The chimp Fc γ RIIA amino acid sequence was aligned starting with the signal sequence with a human sequence for Fc γ RIIA of SEQ ID NO: 16 as shown in Table 11 (Accession No. P12318). The alignment shows that when compared to the human sequence, the chimp sequence has about 97% sequence identity. This alignment also shows that the chimpanzee Fc γ RIIA has one less amino acid in the signal peptide sequence than found in the human Fc γ RIIA α -chain (Table 11). Chimpanzee Fc γ RIIA has the same number of amino acids in the two extracellular domains, transmembrane domain, and intracellular domain as found in the human Fc γ RIIA sequence (Table 11). Notably, the chimpanzee Fc γ RIIA contains the identical two ITAM motifs as found in the human and cynomolgus receptors (Table 11). [0110] Another embodiment of the invention is a cynomolgus Fc γ RIIB. A cynomolgus Fc γ RIIB binds to immunoglobulins and other molecules having an Fc region, preferably immunoglobulins complexed to an antigen or each other. More preferably, the receptor binds a dimeric or hexameric immune complex of human Ig. One example of a cynomolgus Fc γ RIIB has an amino acid sequence of SEQ ID NO: 18. The mature cynomolgus Fc γ RIIB has an amino acid sequence of SEQ ID NO: 68 (Table 22). an extracellular fragment obtained with the primers of example 1 has an amino acid sequence of Δ 1 to Δ 184 as ahown in table 22. [0111] The cynomolgus FcγRIIB has about 92% sequence identity with a human amino acid sequence of FcγRIIB as shown in Table 11 (SEQ ID NO: 19) (Accession No. X52473). An alignment of the cynomolgus sequence with the human sequence shows that the cynomolgus FcγRIIB has about the same number of amino acids in the signal peptide, two extracellular domains, and transmembrane domain as found in the human FcγRIIB sequence (Table 11). The cynomolgus FcγRIIB has three amino acids inserted in the N-terminal portion of the intracellular domain (compared to human FcγRIIB) (Table 11). Notably, the cynomolgus FcγRIIB intracellular domain contains the identical ITIM motif as found in the human receptor (Table 11). [0112] The cynomolgus FcγRIIB binds to hexameric complexes of subclasses IgG with the following binding pattern: IgG2≥IgG3>IgG1>IgG4b, IgG4. A human FcγRIIB binds hexameric IgG subclasses as follows: IgG3≥IgG1>IgG2>IgG4. The cynomolgus FcγRIIB binds IgG2 much more efficiently than the human FcγRIIB. [0113] Another embodiment of the invention is a cynomolgus Fc γ RIIIA. A cynomolgus receptor Fc γ RIIIA binds to immunoglobulins and other molecules having an Fc region, preferably immunoglobulins complexed. Preferably, the receptor binds a dimeric or hexameric immune complex of human Ig. One example of an amino acid sequence of the α -chain of Fc γ RIIIA is SEQ ID NO: 20. The mature cynomolgus Fc γ RIIIA α -chain has a sequence of SEQ ID NO: 69 (Table 23). An extracellular fragment obtained using the primer as described in example 1 has an amino acid sequence of Δ 1 to Δ 187 as shown in Table 23. [0114] The cynomolgus FcγRIIIA α-chain sequence was aligned with a human amino acid sequence of FcyRIIIA as shown in Table 11 (SEQ ID NO: 21) (Accession No. P08637). In table 11, the amino acid numbers shown below the amino acids with the symbol A are numbered from the start of the mature human polypeptide not including the signal sequence. The numbers above the amino acid residues represent the numbering of the residues starting at the signal sequence. The alignment with the human and cynomolgus FcyRIIIA sequence shows the sequence has about 91% sequence identity to the human sequence. This alignment of the cynomolgus sequence with the human sequence shows that the cynomolgus FcγRIIIA α-chain has about the same number of amino acids in the signal peptide, the two extracellular domains, the transmembrane domain, and intracellular domain as found in the human FcyRIIIA sequence (Table 11). Neither the cynomolgus nor human intracellular domains contain an ITAM motif; the activating ITAM motif for human FcyRIIIA is supplied by the associated y-chain and the same situation most likely occurs in cynomolgus monkeys. [0115] The cynomolgus FcγRIIIA α-chain binds to hexameric complexes of subclasses IgG with the following binding pattern: IgG1>IgG3>>IgG2>IgG4b, IgG4. A human FcγRIIIA isoform with a phenylalanine at the amino acid corresponding to the amino acid 158 (F158) binds hexameric IgG subclasses as follows: IgG3=IgG1>>>IgG2, IgG4. A human FcγRIIA isoform with a valine at the amino acid corresponding to the amino acid 158 (V158) binds hexameric IgG subclasses as follows: IgG1>IgG3>>>IgG2A, IgG4. Cynomolgus FcγRIIIA with an amino acid sequence of SEQ ID NO: 20 has an isoleucine at amino acid position corresponding to amino acid 158 and binds human Ig subclasses similar to human FcγRIIIA VI 58. [0116] Human IgG1 binds to human FcyRIIIA-V158 better than it does to human FcyRIIIA-F158 (Koene, H. R., Kleijer, M., Algra, J., Roos, D., von dem Borne, E. G. K., and de Hass, M. (1997) Blood 90, 1109-1114; Wu, J., Edberg, J. C., Redecha, P. B., Bansal, V., Guyre, P. M., Coleman, K., Salmon, J. E., and Kimberly, R. P. (1997) J. Clin. Invest. 100, 1059-1070; Shields, R. L., Namenuk, A. K., Hong, K., Meng, Y. G., Rae, J., Briggs, J., Xie, D., Lai, J., Stadlen, A., Li, B., Fox, J. A., and Presta, L. G. (2001) J. Biol. Chem. 276, 6591-6604). In humans, the FcyRIIIA-F158 allele predominates with approximately 90% of humans having at least one FcyRIIIA-F158 allele (Lehrnbecher, T., Foster, C. B., Zhu, S., Leitman, S. F., Goldin, L. R., Huppi, K., and Chanock, S. J. (1999) Blood 94, 4220-4232). In addition, recent studies have begun to correlate specific disease states with the FcyRIIIA polymorphic status of individuals (Wu, J., Edberg, J. C., Redecha, P. B., Bansal, V., Guyre, P. M., Coleman, K., Salmon, J. E., and Kimberly, R. P. (1997) J. Clin. Invest. 100, 1059-1070; Lehrnbecher, T., Foster, C. B., Zhu, S., Venzon, D., Steinberg, S. M., Wyvill, K., Metcalf, J. A., Cohen, S. S., Kovacs, J., Yarchoan, R., Blauvelt, A., and Chanock, S. J. (2000) Blood 95, 2386-2390; Nieto, A., Caliz, R., Pascual, M., Mataran, L., Garcia, S., and Martin, J. (2000) Arthritis & Rheumatism 43, 735-739). Notably, the chimpanzee and cynomolgus FcγRIIIA have valine and isoleucine, respectively, at position 158. The similarity of binding of the four human subclasses of IgG to cynomolgus FcyRIIIA and human FcyRIIIA-V158 (as opposed to human FcyRIIIA-F158) suggests that evaluation of human antibodies in primate models should account for the primate model reflecting only a minority of humans with respect to binding to FcyRIIIA receptors, i.e. FcyRIIIA-V158/V158 homozygotes. For example, since human FcyRIIIA-V158 exhibits superior antibody-dependent cellular cytotoxicity (ADCC) compared to human FcyRIIIA-F158 (Shields, R. L., Namenuk, A. K., Hong, K., Meng, Y. G., Rae, J., Briggs, J., Xie, D., Lai, J., Stadlen, A., Li, B., Fox, J. A., and Presta, L. G. (2001) J. Biol. Chem. 276, 6591-6604), primate models may overestimate the efficacy of human antibody effector functions associated with FcyRIIIA. [0117] However, the binding patterns of human IgG subclasses to other cynomolgus FcRs, especially FcγRI, indicate that the non-human primates can be used as effective models to evaluate the safety, efficacy and pharmokenetics of Fc region binding molecules. [0118] The invention also provides for Fc receptor polypeptides identified as FcRn. Amino acid sequences of cynomolgus FcRn are shown in Table 14. In Table 14, the numbers shown below the amino acids and designated with the signal Δ are numbered from the start of the mature polypeptide. Two alleles were identified and are shown in Table 14. A cynomologus FcRn α -chain has an amino acid sequence of SEQ ID NO: 29 with a serine at residue 3 of the mature polypeptide. A cynomolgus FcRn α -chain has a sequence of SEQ ID NO: 64 and has an asparagine at residue 3 of the mature polypeptide. The mature polypeptides of FcRn α -chain S3 and FcRn α -chain N3 have a sequence of SEQ ID NO: 71 and 72, respectively. A extracellular fragment of a FcRn as obtained using the primers as described in example 1 has an amino acid sequence of Δ 1 to Δ 274 as shown in table 14. [0119] A sequence alignment of cynomolgus FcRn α-chain sequences to human FcRn α-chain (SEQ ID NO: 20) (GenBank Accession No. U12255)
shows that the cynomolgus sequence is about 97% identical to the human sequence. Cynomolgus FcRn (S3) and FcRn (N3) α-chains bind to subclasses of IgG with the following binding pattern: IgG3>>IgG4>IgG2>IgG1, which is similar to that of the human FcRn α-chain. [0120] The invention also includes cynomolgus β -2 microglobulin polypeptides. A cynomolgus β -2 microglobulin polypeptide has a sequence of SEQ ID NO: 25, Table 13. The mature β -2 microglobulin polypeptide has a sequence of SEQ ID NO: 70. When the cynomolgus β -2 microglobulin sequence is aligned with a human sequence for β -2 microglobulin (SEQ ID NO: 26; GenBank Accession No. P01884), it shows that the cynomolgus sequence has about 92% sequence identity to human β -2 microglobulin. [0121] Variants, derivatives, fusion proteins, and fragments of the different cynomolgus and chimp $Fc\gamma R$ polypeptides that retain any of the biological activities of the FcRs, are also within the scope of the present invention. Note that one of ordinary skill in the art will readily be able to determine whether a variant, derivative, or fragment of a $Fc\gamma R$ polypeptide displays activity by subjecting the variant, derivative, or fragment to a immunoglobulin binding assay as described below in Example 3. [0122] Derivatives of the different cynomolgus and chimp FcγRs can be polypeptides modified by forming covalent or aggregative conjugates with other chemical moieties, such as glycosyl groups, polyethylene glycol (PEG) groups, lipids, phosphate, acetyl groups and the like. [0123] In another embodiment, the polypeptides of the invention include fragments of the polypeptides that lack a portion or all of the transmembrane and intracellular domains: e.g. amino acid residues of the mature polypeptide as follows: FcγRI α-chain amino acid residues 270-336 of SEQ ID NO: 65; FcyRIIA amino acid residues 183 to 282 of SEQ ID NO: 66; chimp FcyRIIA amino acid residues 172 to 281 of SEQ ID NO: 67; FcyRIIB amino acid residues 185 to 252 of SEQ ID NO: 68, FcγRIIIA α-chain amino acid residues 188 to 234 of SEQ ID NO: 69; or FcRn amino acid residues 275 to 342 of SEQ ID NO: 71 or SEQ ID NO: 72. A soluble FcyR polypeptide may include a portion of the transmembrane domain and intracellular, as long as the polypeptide is secreted from the cell in which it is produced. Preferably, the fragments are capable of binding to an Fc region containing molecule. [0124] Fragments of polypeptides also include one or more domain of the polypeptide identified in Table 10 or Table 11, including signal peptide, domain 1, domain 2, domain 3, transmembrane/intracellular, or a cytoplasmic domain including the ITAM or ITIM motif. Exemplary fragments of the polypeptides also include soluble polypeptides having only domain 1, domain 2 and domain 3 amino acid sequences of the corresponding mature Fc γ R polypeptides: e.g., amino acid residues $\Delta 1$ to $\Delta 269$ of cynomolgus Fc γ RI (Table 10), amino acid residues $\Delta 1$ to $\Delta 182$ of cynomolgus Fc γ RIIA (Table 21), amino acid residues $\Delta 1$ to $\Delta 187$ of cynomolgus Fc γ RIIIA (Table 22), amino acid residues $\Delta 1$ to $\Delta 187$ of cynomolgus Fc γ RIIIA (Table 23), and amino acids $\Delta 1$ to $\Delta 274$ of cynomolgus FcRII (Table 14). [0125] Cynomolgus or chimp FcyR variants within the scope of the invention may comprise conservatively substituted sequences, meaning that one or more amino acid residues of each polypeptide may be replaced by different residues that do not alter the secondary and/or tertiary structure of the polypeptide. Such substitutions may include the replacement of an amino acid by a residue having similar physicochemical properties, such as substituting one aliphatic residue (Ile, Val, Leu or Ala) for another, or substitution between basic residues Lys and Arg, acidic residues Glu and Asp, amide residues Gln and Asn, hydroxyl residues Ser and Tvr, or aromatic residues Phe and Tvr. Further information regarding making phenotypically silent amino acid exchanges may be found in Bowie et al., Science 247:1306-1310 (1990). Other variants which might retain substantially the biological activities of the proteins are those where amino acid substitutions have been made in areas outside functional regions of the protein. [0126] The invention also provides variant cynomolgus and chimp FcR polypeptides. Variant polypeptide can include changes to the polypeptide sequence that result in the amino acid substitutions, additions, and deletions in the resultant variant polypeptide when compared to the native polypeptide, for instance SEQ ID NOs: 9, 15, 17, 18, 20, 25, 29, or 64. The changes to the variant polypeptide sequences can include changes to the nucleic acid sequence that result in replacement of an amino acid by a residue having similar physiochemical properties, such as substituting one aliphatic residue (Ile, Val, Leu, or Ala) for another, or substitutions between basic residues Lys and Arg, acidic residues Glu and Asp, amide residues Gln and Asn, hydroxyl residues Ser and Tyr, or aromatic residues Phe and Tyr. Variant polypeptide sequences of the present invention are preferably at least about 90% identical, more preferably at least about 91% identical, more preferably at least 92% or 93% identical, more preferably 94% identical, more preferably 95% or 96% identical, more preferably 97% or 98% identical, and most preferably at least about 99% identical, to a full length native sequence, a polypeptide lacking a signal sequence, an extracellular domain of the polypeptide, or a fragment of the Fcy receptor or β -2 microglobulin of sequences of SEQ ID NOs: 9, 15, 17, 18, 20, 25, 29, or 64. [0127] Another embodiment of the present invention are polypeptides of the invention fused to heterologous amino acids, peptides, or polypeptides. Such amino acids, peptides, or polypeptides, preferably facilitate purification of the polypeptide. Many of the available peptides used for such a function allow selective binding of the fusion protein to a binding partner. For example, the cynomolgus $Fc\gamma RI$ polypeptide, having a sequence as shown in SEQ ID NO:9, may be modified to comprise a peptide to form a fusion 14 protein which specifically binds to a binding partner, or peptide tag. Non-limiting examples of such peptide tags include the 6-His tag, Gly/His₆/GST tag, thioredoxin tag, hemaglutinin tag, Glylh156 tag, and OmpA signal sequence tag. Full length, variable and truncated polypeptides of the present invention may be fused to such heterologous amino acids, peptides, or polypeptides. For example, the transmembrane and intracellular domains of cynomolgus FcyRIA can be replaced by DNA encoding the Gly/His₆/GST tag fused as His271. As will be understood by one of skill in the art, the binding partner which recognizes and binds to the peptide may be any molecule or compound including metal ions (e.g., metal affinity columns), antibodies, or fragments thereof, and any protein or peptide which binds the peptide, such as the FLAG tag. The polypeptides of the present invention can also be fused to the immunoglobulin constant domain of an antibody to form immunoadhesin molecules. [0128] The polypeptides of the present invention are preferably provided in an isolated form, and preferably are purified. The polypeptides may be recovered and purified from recombinant cell cultures by well-known methods, including ammonium sulfate or ethanol precipitation, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, affinity chromatography, hydroxylapatite chromatography and lectin chromatography. In a preferred embodiment, high performance liquid chromatography (HPLC) is employed for purification. #### Vectors and Host Cells [0129] The present invention also relates to vectors comprising the polynucleotide molecules of the invention, as well as host cell transformed with such vectors. Any of the polynucleotide molecules of the invention may be joined to a vector, which generally includes a selectable marker and an origin of replication, for propagation in a host. Host cells are genetically engineered to express the polypeptides of the present invention. The vectors include DNA encoding any of the polypeptides described above or below, operably linked to suitable transcriptional or translational regulatory sequences, such as those derived from a mammalian, microbial, viral, or insect gene. Examples of regulatory sequences include transcriptional promoters, operators, or enhancers, mRNA ribosomal binding sites, and appropriate sequences which control transcription and translation. Nucleotide sequences are operably linked when the regulatory sequence functionally relates to the DNA encoding the target protein. Thus, a promoter nucleotide sequence is operably linked to a cynomolgus monkey or chimp FcyR DNA sequence, FcRn α -chain DNA sequence, or β -2 microglobulin DNA sequence if the promoter nucleotide sequence directs the transcription of the FcyR sequence. [0130] Expression of non-human primate receptors of the invention can also be accomplished by removing the native nucleic acid encoding the signal sequence or replacing the native nucleic acid signal sequence with a heterologous signal sequence. Heterologous signal sequences include those from human Fc receptor polypeptides or other polypeptides, such as tissue plasminogen activator. Nucleic acids encoding signal sequences from heterologous sources are known to those of skill in the art. [0131] Selection of suitable vectors to be used for the cloning of polynucleotide molecules encoding the target polypeptides of this invention will depend upon the host cell in which the vector will be transformed, and, where applicable, the host cell from which the target polypeptide is to be expressed. Suitable host cells for expression of
the polypeptides of the invention include prokaryotes, yeast, and higher eukaryotic cells, each of which is discussed below. [0132] Expression of functional cynomolgus monkey or chimp FcyR polypeptides of the invention may require the genetic engineering of a host cell to contemporaneously express two or more polypeptide molecules. As was discussed previously, most FcyRs are complex molecules requiring the expression of both a IgG binding and a signal transducing polypeptide chain. The complex of two or more polypeptide chains forms the functional receptor. As such, for example, a host cell may be co-transfected with a first vector expressing the FcγRI α-chain, having a first selection marker, and a second vector expressing the FcγRI γ-chain, having a second selection marker. Only host cells that have acquired both vectors and are expressing both polypeptides would survive and express functional FcyRI. Other methods are envisioned for the co-transfection of multiple polypeptide chains into target host cells, including the linked expression of target polypeptides from the same vector. [0133] The cynomolgus monkey or chimp FcyR, FcRn, or β -2 microglobulin polypeptides to be expressed in such host cells may also be fusion proteins which include regions from heterologous proteins. Such regions may be included to allow, e.g., secretion, improved stability, or facilitated purification of the polypeptide. For example, a sequence encoding an appropriate signal peptide can be incorporated into expression vectors. A DNA sequence for a signal peptide (secretory leader) may be fused in-frame to the target sequence so that target protein is translated as a fusion protein comprising the signal peptide. The DNA sequence for a signal peptide can replace the native nucleic acid encoding a signal peptide or in addition to the nucleic acid sequence encoding the native sequence signal peptide. A signal peptide that is functional in the intended host cell promotes extracellular secretion of the polypeptide. Preferably, the signal sequence will be cleaved from the target polypeptide upon secretion from the cell. Non-limiting examples of signal sequences that can be used in practicing the invention include the yeast I-factor and the honeybee melatin leader in Sf9 insect cells. [0134] Suitable host cells for expression of target polypeptides of the invention include prokaryotes, yeast, and higher eukaryotic cells. Suitable prokaryotic hosts to be used for the expression of these polypeptides include bacteria of the genera *Escherichia, Bacillus*, and *Salmonella*, as well as members of the genera *Pseudomonas, Streptomyces*, and *Staphylococcus*. For expression in, e.g., *E. coli*, a target polypeptide may include an N-terminal methionine residue to facilitate expression of the recombinant polypeptide in a prokaryotic host. The N-terminal Met may optionally then be cleaved from the expressed polypeptide. [0135] Expression vectors for use in prokaryotic hosts generally comprise one or more phenotypic selectable marker genes. Such genes generally encode, e.g., a protein that confers antibiotic resistance or that supplies an auxotrophic requirement. A wide variety of such vectors are readily available from commercial sources. Examples include pSPORT vectors, pGEM vectors (Promega), pPROEX vectors (LTI, Bethesda, Md.), Bluescript vectors (Stratagene), and pQE vectors (Qiagen). [0136] The cynomolgus monkey or chimp FcyR, FcRn, or P-2 microglobulin, may also be expressed in yeast host cells from genera including Saccharomyces, Pichia, and Kluveromyces. Preferred yeast hosts are S. cerevisiae and P. pastoris. Yeast vectors will often contain an origin of replication sequence from a 2T yeast plasmid, an autonomously replicating sequence (ARS), a promoter region, sequences for polyadenylation, sequences for transcription termination, and a selectable marker gene. Vectors replicable in both yeast and E. coli (termed shuttle vectors) may also be used. In addition to the above-mentioned features of yeast vectors, a shuttle vector will also include sequences for replication and selection in E. coli. Direct secretion of the target polypeptides expressed in yeast hosts may be accomplished by the inclusion of nucleotide sequence encoding the yeast I-factor leader sequence at the 5' end of the cynomolgus FcyR-encoding nucleotide sequence. [0137] Insect host cell culture systems may also be used for the expression of the polypeptides of the invention. In a preferred embodiment, the target polypeptides of the invention are expressed using a baculovirus expression system. Further information regarding the use of baculovirus systems for the expression of heterologous proteins in insect cells are reviewed by Luckow and Summers, *Bio/Technology* 6:47 (1988). [0138] In another preferred embodiment, the cynomolgus FcγR polypeptides are individually expressed in mammalian host cells. Non-limiting examples of suitable mammalian cell lines include the COS-7 line of monkey kidney cells (Gluzman et al., Cell 23:175 (1981)), Chinese hamster ovary (CHO) cells (Puck et al., Proc. Natl. Acad. Sci. USA, 60:1275-1281 (1958), CV-1 and human cervical carcinoma cells (HELA) (ATCC CCL 2). Preferably, HEK293 cells are used for expression of the target proteins of this invention. [0139] The choice of a suitable expression vector for expression of the target polypeptides of the invention will of course depend upon the specific mammalian host cell to be used, and is within the skill of the ordinary artisan. Examples of suitable expression vectors include pcDNA3.1/Hygro (Invitrogen), 409, and pSVL (Pharmacia Biotech). A preferred vector for expression of the cynomolgus FcγR polypeptides is pRK. Eaton, D. L., Wood, W. I., Eaton, D., Hass, P. E., Hollingshead, P., Wion, K., Mather, J., Lawn, R. M., Vehar, G. A., and Gorman, C. (1986) Biochemistry 25:8343-47. Expression vectors for use in mammalian host cells may include transcriptional and translational control sequences derived from viral genomes. Commonly used promoter sequences and enhancer sequences which may be used in the present invention include, but are not limited to, those derived from human cytomegalovirus (CMV), Adenovirus 2, Polyoma virus, and Simian virus 40 (SV40). Methods for the construction of mammalian expression vectors are disclosed, for example, in Okayama and Berg (Mol. Cell. Biol. 3:280 (1983)); Cosman et al. (Mol. Immunol. 23:935 (1986)) and Cosman et al. (Nature 312:768 (1984)). Method of Evaluating Biological Properties, Safety and Efficacy of Fc Region Containing Molecules [0140] One aspect of the invention includes a method for the evaluation of the pharmacokinetics/pharmacodynamics of FcR binding molecules such as humanized antibodies with cynomolgus monkey or chimp Fc receptors prior to an in vivo evaluation in a primate. This aspect of the invention is based on the finding that cynomolgus and chimp FcR polypeptides have a high degree of sequence identity with human Fc receptor polypeptides and bind to IgG subclasses in a similar manner. Evaluations can include testing, for example, humanized antibodies of any subclass (especially antibodies with prospective therapeutic utility) on target Fc receptors of the invention in an ELISA-format assay or to transiently expressing cells. [0141] A method of the invention involves evaluating the binding of a Fc region containing polypeptide or agent to cynomolgus or chimp Fc receptor polypeptide by contacting the Fc region containing molecule with a cynomolgus or chimp Fc receptor polypeptide. The cynomolgus or chimp Fc receptor polypeptide can be soluble or can be expressed as a membrane bound protein on transiently infected cells. Binding of the Fc region containing molecule to the cynomolgus or chimp Fc receptor polypeptide indicates that the Fc region containing molecule or polypeptide is suitable for in vivo evaluation in a primate. Binding to cynomolgus FcRn molecules provides an indication that Fc region containing molecule or polypeptide will have a longer half-life in vivo. [0142] The invention also provides for screening variants of Fc region containing molecules such as antibody variants for their biological properties, safety, efficacy and pharm-cokenetics. Antibody variants are typically altered at one or more residues and then the variants are analyzed for alteration in biological activities including altered binding affinity for Fc receptors. Screening for alterations in biological activities by variants may be tested both in vivo and in vitro. For example, receptor polypeptides of the present invention can be used in an ELISA-format assay or transiently infected cells. Antibody variants which bind to cynomolgus and/or chimp FcR polypeptides, such as the α -chain of Fc γ RII, Fc γ RIII or FcRn or Fc γ RIIA or Fc γ RIIB, are variants that are suitable for in vivo evaluation in primates as a therapeutic agent. [0143] Direct binding and binding affinity determination between the different Fc region containing molecules is preferably performed against soluble extracellular domains of cynomolgus FcyR polypeptides. For example, the transmembrane domain and intracellular domain of a target FcyR can be replaced by DNA encoding a Gly-His6 tag or glutathione S-transferase (GST) (see Example 3). The Gly-His₆ tag or GST provide a convenient method for immobilizing the Fc binding region of the receptor to a solid support for identification and/or determination of binding affinities between the receptor and target antibody variant. Potential assays include ELISA-format assays, co-precipitation format assays, and column chromatographic format assays. Identified Fc region containing molecules should directly interact with the soluble cynomolgus FcyR and have equivalent or greater binding affinities for the cynomolgus FcyR, as compared to corresponding human FcyR. [0144] Another aspect of the invention provides methods
of identifying agents that have altered binding to a cynomolgus FcyR comprising an ITAM and/or ITIM region. A method of the invention involves identifying an agent that has increased binding affinity for an FcR comprising an ITAM region and a decreased affinity for a FcR comprising an ITIM region. [0145] Target agents include molecules that have a Fc region, preferably an antibody and more preferably an IgG antibody. If the target agent is an antibody it may be a variant antibody with an altered amino acids sequence compared to the native sequence of the antibody. Preferably variant antibodies have had amino acid substitutions in regions of the antibody that are involved in binding to Fcy receptor, including amino acids corresponding to amino acids 226 to 436 in a human IgG. Variant antibodies can be prepared using standard methods such as site specific oligonucleotide or PCR mediated methods as described previously. Examples of variant antibodies includes alanine variants of human IgG1, anti IgE E27 prepared as described in Shields et al., J. Biol. Chem. 276:6591 (2001). [0146] Binding affinities of antibodies and/or variant antibodies are determined using standard methods as described in Shields et al., J. Biol. Chem. 276:6591 (2001) and in Examples 3-7 below. Binding affinities are preferably determined by binding to cells that express a Fcy receptor of the type being analyzed. However, binding affinities of antibodies or Fc region containing molecules can also be determined using soluble Fcy receptors or Fey receptors expressed on or secreted from a host cell. [0147] A variant antibody that has an increased affinity for a cynomolgus FcyRIIA compared with a human FcyRIIA is an antibody that has a change in amino acid sequence at the position corresponding to amino acid 298 of human IgG1. One such variant has a change at that position from serine to alanine and is designated as \$298A. Another variant antibody with a change at that position is designated as S298A/ E333A/K334 which is a variant antibody with alanine in positions corresponding to amino acid 298, 333 and 334 of native sequence IgG1. These variants have increased binding affinity to a cynomolgus FcyRIIA compared to a human FcyRIIA. [0148] In another method of the invention, target agents with altered binding affinity to a cynomolgus FcyRIIB as compared to human FcyRIIB are identified. The agents are preferably variants of native sequence antibodies. Binding affinities are determined as described above and as shown in the Examples below. Agents with enhanced binding to a FcyRIIB may preferentially stimulate ITIM inhibitory functions. Agents with decreased affinity for a cynomolgus FcyRIIB may have decreased stimulation of inhibitory func- [0149] Variant antibodies that have decreased affinity for a cynomolgus FcyRIIB compared to a human FcyRIIB are: R255A, E258A, S37A, D280A and R301M. [0150] Another embodiment of the invention involves the use of variant antibodies S298A or S298A/E333A/K334 to identify agents that can activate Fcy receptors comprising an ITAM while not engaging Fey receptors comprising an ITIM region. [0151] Variant antibodies with S298A, and S292A/ E333A/K334, have increased binding affinity to a cynomolgus FcyRIIA, and decreased binding affinity to a cynomolgus FcyRIIB. Such methods can be conducted in vivo or in vitro. [0152] These methods are also useful for identifying the location of amino acid in native sequence antibodies that can be modified to increase binding of the antibody to FcR polypeptides, preferably human and cynomolgus FcyR, comprising an ITAM region and/or to decrease binding affinity to FcγR comprising an ITIM region. Modifications to the amino acid sequence at the identified locations can be prepared by standard methods. [0153] Having generally described the invention, the same will be more readily understood by reference to the following examples, which are provided by way of illustration and are not intended as limiting. #### **EXAMPLES** #### Example 1 Molecular Cloning of Cynomolgus and Chimp Fc Receptor DNA and β-2 Microglobulins [0154] Materials and Methods: Cloning of Cynomolgus Monkey FcyR [0155] Since cynomolgus monkey DNA shares approximately 90% homology to human DNA, a series of PCR primers for each FcyR was designed based on the sequence of the corresponding human receptor. Each sense primer starts at a site immediately 5' of the coding region or at the start of the coding region. The antisense primers were designed in the same way, i.e. immediately 3' of the C terminal stop codon or at the C terminal stop codon. Primers incorporated endonuclease restriction sites used to subclone PCR product into a pRK vector (Eaton et al.). The sequences of the primers are shown in Table 1. TABLE 1 Restriction sites are underlined. | Receptor | Cyno FcγRI Full-Length | |----------------------|---| | Forward
Primer | CAGGTCAATC <u>TCTAGA</u> CTCCCACCAGCTTGGAG (SEQ ID NO: 31) | | Reverse
Primer | GGTCAACTAT <u>AAGCTT</u> GGACGGTCCAGATCGAT (SEQ ID NO: 32) | | Restriction
Sites | XbaI/HindIII | | Receptor | Cyno FcγRI-H6-GST | | Forward
Primer | CAGGTCAATCATCGATATGTGGTTCTTGACAGCT (SEQ ID NO: 33) | | Reverse
Primer | GGTCAACTAT <u>GCTAGC</u> ATGGTGATGGTGGTGCCAG
ACAGGAGTTGGTA (SEQ ID NO: 34) | | Restriction
Sites | ClaI/NheI | | Receptor | Cyno FcγRIIB Full-Length | | Forward
Primer | CAGGTCAATC <u>TCTAGA</u> ATGGGAATCCTGTCATTCTT (SEQ ID NO: 35) | | Reverse
Primer | GGTCAACTAT <u>AAGCTT</u> CTAAATACGGTTCTGGTC (SEQ ID NO: 36) | | Restriction
Sites | Xbal/HindIII | TABLE 1-continued | Re | estriction sites are underlined. | |----------------------|---| | Receptor | Cyno FcqRIIB-H6-GST | | Forward
Primer | CAGGTCAATC <u>ATCGAT</u> ATGCTTCTGTGGACAGC (SEQ ID NO: 37) | | Reverse
Primer | GGTCAACTAT <u>GGTGACC</u> TATCGGTGAAGAGCTGC (SEQ ID NO: 38) | | Restriction
Sites | ClaI/BstEII | | Receptor | Cyno FcYRIIIA Full-Length | | Forward
Primer | CAGGTCAATC <u>TCTAGA</u> ATGTGGCAGCTGCTCCT
(SEQ ID NO: 39) | | Reverse
Primer | TCAACTAT <u>AAGCTT</u> ATGTTCAGAGATGCTGCTG
(SEQ ID NO: 40) | | Restriction
Sites | XbaI/HindIII | | Receptor | Cyno FcYRIIIA-H6-GST | | Forward
Primer | CAGGTCAATC <u>TCTAGA</u> ATGTGGCAGCTGCTCCT (SEQ ID NO: 41) | | Reverse
Primer | GGTCAACTAT <u>GGTCACC</u> TTGGTACCCAGGTGGAAA
(SEQ ID NO: 42) | | Restriction
Sites | XbaI/BstEII | | Receptor | Cyno Fc γ Chain | | Forward
Primer | CAGGTCAATCATCGAT <u>GAATTC</u> CCACCATGATTCCAGC
AGTGGTC
(SEQ ID NO: 43) | | Reverse
Primer | GGTCAACTAT <u>AAGCTT</u> CTACTGTGGTGGTTTCTCA
(SEQ ID NO: 44) | | Restriction
Sites | EcoRI/HindIII | | Receptor | Cyno β -2 Microglobulin | | Forward
Primer | CAGGTCAATC <u>ATCGAT</u> TCGGGCCGAGATGTCT (SEQ ID NO: 45) | | Reverse
Primer | GGTCAACTAT <u>TCTAGA</u> TTACATGTCTCGATCCCA (SEQ ID NO: 46) | | Restriction
Sites | ClaI/XbaI | | Receptor | Cyno FcyRIIA Full-Length | | Forward
Primer | CAGGTCAATC <u>TCTAGA</u> ATGTCTCAGAATGTATGTC (SEQ ID NO: 47) | | Reverse
Primer | GGTCAACTAT <u>AAGCTT</u> TTAGTTATTACTGTTGTCATA (SEQ ID NO: 48) | | Restriction
Sites | XbaI/HindIII | | Receptor | Cyno FcYRIIA-H6-GST | ${\tt CAGGTCAATC} \underline{{\tt ATCGAT}} \underline{{\tt ATGTCTCAGAATGTATGTC}}$ (SEQ ID NO: 49) Forward Primer TABLE 1-continued | Re | estriction sites are underlined. | |----------------------|---| | Reverse
Primer | GGTCAACTAT <u>GGTGACC</u> CATCGGTGAAGAGCTGC (SEQ ID NO: 50) | | Restriction
Sites | ClaI/BstEII | | Receptor | Cyno FcRn Full-Length | | Forward
Primer | CAGGTCAATCATCGATAGGTCGTCCTCTCAGC (SEQ ID NO: 51) | | Reverse
Primer | GGTCAACTAT <u>GAATTC</u> TCGGAATGGCGGATGG
(SEQ ID NO: 52) | | Restriction
Sites | ClaI/EcoRI | | Receptor | Cyno FcRn-H6 | | Forward
Primer | CAGGTCAATCATCGATAGGTCGTCCTCTCAGC (SEQ ID NO: 53) | | Reverse
Primer | GGTCAACTAT <u>GAATTC</u> ATGGTGATGATGGTGGTGCGAG
GACTTGGCTGGAGTTTC
(SEQ ID NO: 54) | | Restriction
Sites | ClaI/EcoRI | [0156] The cDNA for FcRs was isolated by reverse transcriptase-PCR (GeneAmp, PerkinElmer Life Sciences) of oligo(dT)-primed RNA from cynomologus spleen cells using primers as shown in Table 1. The cDNA was subcloned into previously described pRK mammalian cell expression vectors, as described in Eaton et al., 1986, Biochemistry, 25:8343-8347. PCR reactions were set up using 200 ng of cDNA vector library from cynomolgus spleen and ExTaq Premix (Panvera, Madison, Wis.) according to the manufacturers instructions. After denaturation at 90° C. for 30 s, 25 cycles were run with annealing at 55° C. for 1 min, elongation at 72° C. for 3 min, and denaturation at 98° C. for 30 s. DNA bands migrating at the expected size (FcyRI, FcyRIIIA, FcRn, 1100 base pairs; FcyRIIA, FcγRIIB, 1000 base pairs; Fcγ chain, 300 base pairs; β-2 microglobulin, 400 base pairs) were isolated, cloned into pRK vectors, then transformed into Escherichia coli XL 1-Blue (Stratagene, San Diego, Calif.). Individual clones were selected and double-stranded DNA for each was purified using Qiagen mini-prep DNA kits (cat. # 27106; Qiagen). DNA sequencing was performed on an Applied Biosystems model 377 sequencer using Big-Dye Terminator Cycle Sequencing kits (Applied Biosystems, Foster City, Calif.). [0157] Initial PCR reactions for FcγRIIA did not reveal a PCR product. To determine whether or not FcγRIIA was present in cynomolgus monkeys, a sense primer was designed in a region conserved between human FcγRIIA, human FcγRIIB, and cynomolgus FcγRIIB (OF1, Table 2). An antisense primer was designed based on the consensus sequence in the region encoding the ITAM of human FcγRIIA (OR1, Table 2). Using these two PCR primers (OF1, OR1) and the PCR
protocol described above, a PCR product of approximately 700 base pairs was obtained. The PCR band was isolated and subcloned into a pRK vector, individual clones were isolated and sequenced as described above. Sequence analysis revealed that the fragment had 90% identity to human FcγRIIA. [0158] In order to determine the DNA sequence at the 5' end of the receptor, a nested PCR reaction was utilized. For the first step of the nested PCR reaction, a sense PCR primer (OF2, Table 2) was designed to lay down on the pRK vector 5' of the vector cloning site. This primer was used in conjunction with reverse primer OR1. The PCR reaction was performed on the cDNA library as described above, the product was diluted 1:500 and 1 μ L was used as a template for the second step of the nested PCR reaction. Due to the fact that primer OF2 would lay down on all members of the cDNA library (all members being cloned into separate pRK vectors), only a small quantity of PCR fragment was obtained and hence this was used as a template for amplification in the second step. The sense primer (OF3, Table 2) for the second step was designed to lay down on the pRK vector sequence 3' of OF2 and the reverse primer (OR2, Table 2) was based on partial sequence of FcyRIIA determined above. The second step of the nested PCR reaction revealed a band of approximately 600 base pairs. The band was isolated and individual clones were prepared and sequenced as described above. [0159] The DNA sequence at the 3' end of the receptor was determined in a similar manner. An initial PCR reaction on the cDNA library was performed using the forward primer OF4, designed from the sequence of the FcyRIIA fragment, and the reverse primer OR3, designed to lay down in the pRK vector 3' from the end of the FcyRIIA. The resultant fragment was used as template for the second step of the nested PCR reaction. The second step used the forward primer OF5, designed from the sequence of the FcyRIIA fragment, and the reverse primer OR4, designed to lay down in the pRK vector 5' from primer OR3. The second step of the nested PCR reaction revealed a band of approximately 800 base pairs. The band was isolated and individual clones were sequenced as described above. PCR primers for the full length FcyRIIA were designed based on the information acquired from the nested PCR reactions. Full length FcyRIIA was cloned using the method described for all other receptors. The sequences of the primers described above are shown in Table 2. #### TABLE 2 (SEQ ID NO: 55) OF1 CAGGTCAATCTCTAGACAGTGGTTCCACAATGG (SEQ ID NO: 56) OR1 GGTCAACTATAAGCTTAAGAGTCAGGTAGATGTTT #### TABLE 2-continued | OF2 | CAGGTCAATC | TCTAGA | (SEQ ID NO: 57) ATACATAACCTTATGTATCAT | |-----|------------|--------|--| | OF3 | CAGGTCAATC | TCTAGA | (SEQ ID NO: 58) | | OR2 | GGTCAACTAT | AAGCTT | (SEQ ID NO: 59) | | OF4 | CAGGTCAATC | TCTAGA | (SEQ ID NO: 60)
ATTCCACTGATCCTGTGAA | | OR3 | GGTCAACTAT | AAGCTT | (SEQ ID NO: 61)
GCTTTATTTGTGAAATTTGTG | | OF5 | CAGGTCAATC | TCTAGA | (SEQ ID NO: 62) ACTTGGACGTCAAACGATT | | OR4 | GGTCAACTAT | AAGCTT | (SEQ ID NO: 63)
CTGCAATAAACAAGTTGGG | #### Example 2 Alignment of Nucleotide and Amino Acid Sequences of Cynomolgus, Chimp and Human FcγR [0160] Nucleotide and amino acid sequences for FcR polypeptides from human, cynomolgus and chimps were aligned and % sequence identity calculated. [0161] Nucleotide and amino acid sequences of primate and human proteins were aligned manually and differences in nucleotide or protein sequence noted. Percent identity was calculated as [number of identical residues]/[number of total residues]. When the sequences differed in the total number of residues, two values for percent identity are provided, using the two different numbers for total residues. Nucleotide sequences begin at the coding sequence for the signal sequence. [0162] The alignment of nucleic acid sequences for human (SEQ ID NO: 2) and cynomolgus Fc γ RI α -chain (SEQ ID NO: 1) as shown in Table 3 below. The dots indicate locations of nucleotide sequence differences. An analysis of the % sequence identity shows that the human and cynomolgus nucleotide sequences encoding Fc γ RI α -chain have about 91% or 96% sequence identity depending on whether the nucleotides of 3' extensions are included in the calculation. TABLE 3 Alignment of Human and Cynomolgus High-Affinity FcyRI DNA 1030 matches in an overlap of 1074: 95.9% identity 1030 matches in an overlap of 1128: 91.3% identity 10 20 30 40 50 Human ATGTGGTTCTTGACAACTCTGCTCCTTTGGGTTCCAGTTGATGGGCAAGT • ### TABLE 3-continued | Ali | gnment of Huma
1030 matches i
1030 matches i | n an overla | p of 1074: | 95.9% iden | ntity | |-------|--|--------------|------------------|-------------|---------| | | 60 | 70 | 80 | 90 | 100 | | Human | GGACACCACAA | AGGCAGTGATC | ACTTTGCAGCC | TCCATGGGTC. | AGCGTGT | | Cyno | GGATACCACAA | AGGCAGTGATC | ACTTTGCAGCC | TCCATGGGTC. | AGCGTGT | | | 110 | 120 | 130 | 140 | 150 | | Human | TCCAAGAGGAA | ACCGTAACCTT | GCACTGTGAGG | TGCTCCATCT | GCCTGGG | | Cyno | TCCAAGAGGAA | ACTGTAACCTT | ACAGTGTGAGG | TGCCCCGTCT | GCCTGGG | | | 160 | 170 | 180 | 190 | 200 | | Human | AGCAGCTCTAC | ACAGTGGTTTC | rcaatggcaca | GCCACTCAGA | CCTCGAC | | Cyno | AGCAGCTCCAC | ACAGTGGTTTC' | TCAATGGCACA | GCCACTCAGA | CCTCGAC | | | 210 | 220 | 230 | 240 | 250 | | Human | CCCCAGCTACA | GAATCACCTCT | GCCAGTGTCAA | TGACAGTGGT | GAATACA | | | • | | • | • | | | Cyno | TCCCAGCTACA | GAATCACCTCT | GCCAGTGTCAA | GGACAGTGGT | GAATACA | | | 260 | 270 | 280 | 290 | 300 | | Human | GGTGCCAGAGA | GGTCTCTCAGG | GCGAAGTGACC | CCATACAGCT(| GGAAATC | | Cyno | GGTGCCAGAGAG | GGTCCCTCAGG | GCGAAGTGACC | CCATACAGCT | GGAAATC | | | 310 | 320 | 330 | 340 | 350 | | Human | CACAGAGGCTG | GCTACTACTGC | AGGTCTCCAGC | AGAGTCTTCA | CGGAAGG | | | • | | • | | • | | Cyno | CACAGAGACTG | GCTACTACTGC. | AGGTATCCAGC | AGAGTCTTCA | CAGAAGG | | | 360 | 370 | 380 | 390 | 400 | | Human | AGAACCTCTGG | CCTTGAGGTGT | CATGCGTGGAA
• | GGATAAGCTG | GTGTACA | | Cyno | AGAACCTCTGG | CCTTGAGGTGT | CATGCATGGAA | GGATAAGCTG | GTGTACA | | | 410 | 420 | 430 | 440 | 450 | | Human | ATGTGCTTTAC' | FATCGAAATGG | CAAAGCCTTTA | AGTTTTTCCA | CTGGAAT | | Cyno | ATGTGCTTTAC | FATCAAAATGG | CAAAGCCTTTA | AGTTTTTCTA | CCGGAAT | | | 460 | 470 | 480 | 490 | 500 | | Human | TCTAACCTCAC | CATTCTGAAAA | CCAACATAAGT | CACAATGGCA | CCTACCA | | | • • | | | | | | Cyno | TCTCAACTCAC | CATTCTGAAAA | CCAACATAAGT | CACAACGGCG | CCTACCA | TABLE 3-continued | Ali | gnment of Human
1030 matches in
1030 matches in | n an overlap | of 1074: | 95.9% iden | tity | |-------|---|-------------------|---------------------|-------------|---------| | | 510 | 520 | 530 | 540 | 550 | | Human | TTGCTCAGGCAT | GGGAAAGCATC | CTACACATC | AGCAGGAATA | FCTGTCA | | | • | | | • | | | Cyno | CTGCTCAGGCAT | GGGAAAGCATC | GCTACACATC <i>I</i> | AGCAGGAGTA! | TCTGTCA | | | 560 | 570 | 580 | 590 | 600 | | Human | CTGTGAAAGAGC | TATTTCCAGCTC | CAGTGCTGA | ATGCATCTGT | GACATCC | | | | | | • | | | Cyno | CTGTGAAAGAGC | TATTTCCAGCTC | CAGTGCTGA | ATGCATCCGT | GACATCC | | | 610 | 620 | 630 | 640 | 650 | | Human | CCACTCCTGGAG | GGGAATCTGGTC | CACCCTGAGCT | rgtgaaacaa | AGTTGCT | | | • | | | | | | Cyno | CCGCTCCTGGAG | GGGAATCTGGTC | CACCCTGAGCT | TGTGAAACAA | AGTTGCT | | | 660 | 670 | 680 | 690 | 700 | | Human | CTTGCAGAGGCC | TGGTTTGCAGCT | TTACTTCTCC | CTTCTACATG | GGCAGCA | | | •• | | | | | | Cyno | TCTGCAGAGGCC | TGGTTTGCAGCT | TTACTTCTCC | CTTCTACATG | GGCAGCA | | | 710 | 720 | 730 | 740 | 750 | | Human | AGACCCTGCGAG | GCAGGAACACAT | CCTCTGAAT | ACCAAATACT | AACTGCT | | | | • | | | | | Cyno | AGACCCTGCGAG | GCAGGAACACGT | CCTCTGAAT | ACCAAATACT | AACTGCT | | | 760 | 770 | 780 | 790 | 800 | | Human | AGAAGAGAAGAC | TCTGGGTTATAC | TGGTGCGAG | GCTGCCACAG | AGGATGG | | | | • | | | • | | Cyno | AGAAGAGAAGAC | TCTGGGTTTTAC | CTGGTGCGAG | GCCACCACAGA | AAGACGG | | | 810 | 820 | 830 | 840 | 850 | | Human | AAATGTCCTTAA | GCGCAGCCCTG | AGTTGGAGCTT | CAAGTGCTT | GCCTCC | | Cyno | AAATGTCCTTAA | GCGCAGCCCTGA | AGTTGGAGCTT | CAAGTGCTT | GCCTCC | | | 860 | 870 | 880 | 890 | 900 | | Human | AGTTACCAACTC | CTGTCTGGTTTC
• | CATGTCCTTTT | CTATCTGGC | AGTGGGA | | Cyno | AGTTACCAACTC | CTGTCTGGCTTC | CATGTCCTTT | CTATCTGGT | AGTGGGA | | | 910 | 920 | 930 | 940 | 950 | | Human | ATAATGTTTTTA | GTGAACACTGTT | CTCTGGGTG | ACAATACGTAA | AAGAACT | | Cyno | ATAATGTTTTA | GTGAACACTGTT | CTCTGGGTG | ACAATACGTA | AAGAACT | TABLE 3-continued | Alignment of Human and Cynomolgus High-Affinity FcyRI DNA
1030 matches in an overlap of 1074: 95.9% identity
1030 matches in an overlap of 1128: 91.3% identity | | | | | | |---|---------------|------------|------------|-------------|---------| | | 960 | 970 | 980 | 990 | 1000 | | Human | GAAAAGAAAGAAA | AAGTGGGATT | TAGAAATCTC | TTTGGATTCT | GTCATG | | | | • | • | • | | | Cyno | GAAAAGAAAGAAA | AAGTGGAATT | ragaaatatc | TTTGGATTCTG | GCTCATG | | | 1010 | 1020 | 1030 | 1040 | 1050 | | Human | AGAAGAAGGTAAT | TTCCAGCCTT | CAAGAAGACA | GACATTTAGA | AGAAGAG | | | • | | | | | | Cyno | AGAAGAAGGTAAC | TTCCAGCCTT | CAAGAAGACA | GACATTTAGA | AGAAGAG | | | 1060 | 1070 | 1080 | 1090 | 1100 | | Human | CTGAAATGTCAGG | AACAAAAAGA | AGAACAGCTG | CAGGAAGGGGT | GCACCG | | | •• | | | | | | Cyno | CTGAAGAGTCAGG | AACAAGAATA | A | | | | | 1110 | 1120 | | | | | Human | GAAGGAGCCCCAG | GGGGCCACGT | AGCAG 3' e | extension | | [0163] The Human DNA sequence shown in Table 3 has GenBank Accession No. L03418. Porges, A. J. Redecha, P. B., Doebele, R., Pan, L. C., Salmon, J. E. and Kimberly, R. P., Novel Fc gamma receptor I family gene products in human mononuclear cells, J. Clin Invest.
90, 2102-2109 (1992). [0164] An alignment of nucleic acid sequences encoding human (SEQ ID NO: 14) and cynomolgus (SEQ ID NO: 13) gamma chain is shown in Table 4. [0165] Analysis of the % sequence identity shows that the nucleic acid sequences encoding human and cynomolgus FcγRI/III gamma chain have about 99% identity. TABLE 4 | | Alignment of Hum
258 matches in a | | | | | |-------|--------------------------------------|-------------|------------|--------------|--------| | | 10 | 20 | 30 | 40 | 50 | | Human | ATGATTCCAGCAGT | GGTCTTGCTC | TACTCCTT | TGGTTGAACA | AGCAGC | | Cyno | ATGATTCCAGCAGT | GGTCTTGCTC | TACTCCTT | TGGTTGAACA | AGCAGC | | | 60 | 70 | 80 | 90 | 100 | | Human | GGCCCTGGGAGAGC | CTCAGCTCTG | CTATATCCT | GATGCCATCC | TGTTTC | | Cyno | GGCCCTGGGAGAGC | CTCAGCTCTG | CTATATCCT | GATGCCATCC | TGTTTC | | | 110 | 120 | 130 | 140 | 150 | | Human | TGTATGGAATTGTC | CTCACCCTCC | CTACTGTC | GACTGAAGATC | CAAGTG | | Cyno | TGTATGGAATTGTC | CTCACCCTCC | CTACTGTC | GACTGAAGATC | CAAGTG | | | 160 | 170 | 180 | 190 | 200 | | Human | CGAAAGGCAGCTAT. | AACCAGCTAT | GAGAAATCAG | GATGGTGTTTAG | CACGGG | | | | • | | | | | Cyno | CGAAAGGCAGCTAT | AGCCAGCTATO | GAGAAATCAG | ATGGTGTTTAG | CACGGG | TABLE 4-continued | | Alignment of Hum
258 matches in a | | | | | |-------|--------------------------------------|------------|-------------|-----------|---------| | | 210 | 220 | 230 | 240 | 250 | | Human | CCTGAGCACCAGGA | ACCAGGAGAC | CTTACGAGACT | CTGAAGCAT | GAGAAAC | | | | • | • | | | | Cyno | CCTGAGCACCAGGA | ACCAGGAAAC | CTTATGAGACT | CTGAAGCAT | GAGAAAC | | | 260 | | | | | | Human | CACCACAGTAG | | | | | | Cyno | CACCACAGTAG | | | | | [0166] The DNA sequence for the human gamma chain as GenBank Accession No. M33195 J05285. Kuester, H., Thompson, H. and Kinet, J.-P., Characterization and expression of the gene for the human receptor gamma subunit: Definition of a new gene family, J. Biol. Chem. 265, 6448-6452 (1990). [0167] An alignment of the human (SEQ ID NO: 4), chimp (SEQ ID NO: 22) and cynomolgus (SEQ ID NO: 3) nucleic acid sequence encoding Fc γ RIIA is shown in Table 5. An analysis of the % sequence identity shows that the human and cynomolgus sequences encoding Fc γ RIIA have about 94% sequence identity. A comparison of chimp and human sequences encoding Fc γ RIIA have about 99% sequence identity. #### TABLE 5 | Alignment of Human, Cynomolgus and Chimp Low-Affinity FCYRIIA DNA | | | | | | | | |---|------------------|-------------------------|-------------|---------------------|--------|--|--| | FCYKIIA DNA Human/Cyno 878 matches in an overlap of 933: 94.1% identity without one gap of three nucleotides 878 matches in an overlap of 936: 93.8% identity with one gap of three nucleotides | | | | | | | | | | 924 matches in a | e gap of t
n overlap | hree nucle | otides
.7% ident | - | | | | • | 10 | 20 | 30 | 40 | 50 | | | | Chimp | ATGTCTCAGAATGT | ATGTCCCAGA | AACCTGTGGC | rgcttcaacc | ATTGAC | | | | Human | ATGTCTCAGAATGTA | ATGTCCCAGA. | AACCTGTGGC | rgcttcaacc | ATTGAC | | | | | | • • | | | | | | | Cyno | ATGTCTCAGAATGTA | ATGTCCCGGC. | AACCTGTGGC: | rgcttcaacc | ATTGAC | | | | | 60 | 70 | 80 | 90 | 100 | | | | Chimp | AGTTTTGCTGCTGCT | GGCTTCTGC. | AGACAGTCAA | GCTGCTC | CCCCAA | | | | | | | | ••• | | | | | Human | AGTTTTGCTGCTGCT | TGGCTTCTGC. | AGACAGTCAA | GCTGCAGCTC | CCCCAA | | | | | | | | • ••• | • | | | | Cyno | AGTTTTGCTGCTGCT | GGCTTCTGC. | AGACAGTCAA | ACTGCTC | CCCCGA | | | | | 110 | 120 | 130 | 140 | 150 | | | | Chimp | AGGCTGTGCTGAAAC | TTGAGCCCC | CGTGGATCAA | CGTGCTCCAG | GAGGAC | | | | Human | AGGCTGTGCTGAAAC | CTTGAGCCCC | CGTGGATCAA | CGTGCTCCAG | GAGGAC | | | | | | • | | • | | | | | Cyno | AGGCTGTGCTGAAAC | TCGAGCCCC | CGTGGATCAA | CGTGCTCCGG | GAGGAC | | | # TABLE 5-continued Alignment of Human, Cynomolgus and Chimp Low-Affinity | | 924 matches in a
with one | an overlar
gap of t | hree nucle | 8.7% identotides | _ | |-------|------------------------------|------------------------|-------------|------------------|---------| | | 160 | 170 | 180 | 190 | 200 | | Chimp | TCTGTGACTCTGAC | ATGCCGGGG | GGCTCGCAGC | CCTGAGAGCG | ACTCCAT | | Human | TCTGTGACTCTGAC | ATGCCAGGG | GGCTCGCAGC | CCTGAGAGCG | ACTCCAT | | | | | • | • | • | | Cyno | TCTGTGACTCTGAC | GTGCGGGGG | CGCTCACAGC | CCTGACAGCG | ACTCCAC | | | 210 | 220 | 230 | 240 | 250 | | Chimp | TCAGTGGTTCCACA | ATGGGAATC | TCATCCCCAC | CCACACGCAG | CCCAGCT | | | | | • | | | | Human | TCAGTGGTTCCACA | ATGGGAATC | TCATTCCCAC | CCACACGCAG | CCCAGCT | | | | | | • | | | Cyno | TCAGTGGTTCCACA | ATGGGAATC | GCATCCCCAC | CCACACACAG | CCCAGCT | | | 260 | 270 | 280 | 290 | 300 | | Chimp | ACAGGTTCAAGGCC | AACAACAAT | GACAGCGGGG. | AGTACACGTG | CCAGACT | | Human | ACAGGTTCAAGGCC | AACAACAAT | GACAGCGGGG. | AGTACACGTG | CCAGACT | | | | | • | • | | | Cyno | ACAGGTTCAAGGCC | AACAACAAT | GATAGCGGGG. | AGTACAGGTG | CCAGACT | | | 310 | 320 | 330 | 340 | 350 | | Chimp | GGCCAGACCAGCCT | CAGCGACCC | TGTGCATCTG. | ACTGTGCTTT | CCGAATG | | Human | GGCCAGACCAGCCT | CAGCGACCC | TGTGCATCTG. | ACTGTGCTTT | CCGAATG | | | • | | • | | • • | | Cyno | GGCCGGACCAGCCT | CAGCGACCC | TGTTCATCTG. | ACTGTGCTTT | CTGAGTG | | | 360 | 370 | 380 | 390 | 400 | | Chimp | GCTGGTGCTCCAGA | CCCCTCACC | TGGAGTTCCA | GGAGGGAGAA | ACCATCG | | | | | | | • | | Human | GCTGGTGCTCCAGA | CCCCTCACC | TGGAGTTCCA | GGAGGGAGAA | ACCATCA | | | • • | | • | | | | Cyno | GCTGGCGCTTCAGA | CCCCTCACC | TGGAGTTCCG | GGAGGGAGAA | ACCATCA | | | 410 | 420 | 430 | 440 | 450 | | Chimp | TGCTGAGGTGCCAC | AGCTGGAAG | GACAAGCCTC | TGGTCAAGGT | CACATTC | | Human | TGCTGAGGTGCCAC | AGCTGGAAG | GACAAGCCTC | TGGTCAAGGT | CACATTC | | | | | | • | | | | | | | | | ${\tt TGCTGAGGTGCCACAGCTGGAAGGACAAGCCTCTGATCAAGGTCACATTC}$ Cyno # TABLE 5-continued Alignment of Human, Cynomolgus and Chimp Low-Affinity FcyRITA DNA Human/Cyno 878 matches in an overlap of 933: 94.1% identity without one gap of three nucleotides 878 matches in an overlap of 936: 93.8% identity with one gap of three nucleotides Human/Chimp 924 matches in an overlap of 933: 99.0% identity without one gap of three nucleotides 924 matches in an overlap of 936: 98.7% identity with one gap of three nucleotides | | 460 | 470 | 480 | 490 | 500 | |-------|--------------|---------------|-------------|-------------|---------| | Chimp | TTCCAGAATGG | AAAATCCCAGAAA | ATTCTCCCAT | TTGGATCCCA | ACCTCTC | | | | | • | • | • | | Human | TTCCAGAATGG | AAAATCCCAGAAA | ATTCTCCCGT | TTGGATCCCAC | CCTTCTC | | | | • • • | | •• | | | Cyno | TTCCAGAATGG | AATAGCCAAGAA | ATTTTCCCAT | ATGGATCCCA! | ATTTCTC | | | 510 | 520 | 530 | 540 | 550 | | Chimp | CATCCCACAAGO | CAAACCACAGTC | ACAGTGGTGA: | TTACCACTGC | ACAGGAA | | Human | CATCCCACAAGO | CAAACCACAGTC | ACAGTGGTGA: | TTACCACTGC | ACAGGAA | | Cyno | CATCCCACAAGC | CAAACCACAGTC | ACAGTGGTGA' | TTACCACTGC | ACAGGAA | | | 560 | 570 | 580 | 590 | 600 | | Chimp | ACATAGGCTACA | ACGCTGTTCTCA | CCAAGCCTG | rgaccatcac | FGTCCAA | | Human | ACATAGGCTACA | ACGCTGTTCTCA | CCAAGCCTG! | rgaccatcac | FGTCCAA | | | | | • | | | | Cyno | ACATAGGCTACA | ACACCATACTCA | CCAAACCTG! | rgaccatcac | TGTCCAA | | | 610 | 620 | 630 | 640 | 650 | | Chimp | GCGCCCAGCGT | GGCAGCTCTTC | ACCAGTGGGG | ATCATTGTGG | CTGTGGT | | | • | | • | | | | Human | GTGCCCAGCAT | GGCAGCTCTTC | ACCAATGGGG | ATCATTGTGG | CTGTGGT | | | • | | • | | | | Cyno | GTGCCCAGCGTG | GGCAGCTCTTC | ACCGATGGGG | ATCATTGTGG | CTGTGGT | | | 660 | 670 | 680 | 690 | 700 | | Chimp | CATTGCGACTGC | CTGTAGCAGCCA | TTGTTGCTGC | rgtagtggcc1 | TTGATCT | | Human | CATTGCGACTGC | CTGTAGCAGCCA | TTGTTGCTGC | rgtagtggcc1 | TTGATCT | | | | • | | | | | Cyno | CACTGGGATTGC | CTGTAGCGGCCA | TTGTTGCTGC | rgtagtggcc1 | TTGATCT | | | 710 | 720 | 730 | 740 | 750 | | Chimp | ACTGCAGGAAAA | AAGCGGATTTCAG | GCCAATTCCA | CTGATCCTGT | GAAGGCT | | Human | ACTGCAGGAAAA | AAGCGGATTTCAG | GCCAATTCCA | CTGATCCTGT | GAAGGCT | | Cyno | ACTGCAGGAAA | AAGCGGATTTCAG | GCCAATTCCA | CTGATCCTGTC | GAAGGCT | | | 760 | 770 | 780 | 790 | 800 | | Chimp | GCCCAATTTGAG | CCACCTGGACG | CAAATGATT | GCCATCAGAA! | AGAGACA | #### TABLE 5-continued Alignment of Human, Cynomolgus and Chimp Low-Affinity $Fc\gamma RIIA$ DNA Human/Cyno 878 matches in an overlap of 933: 94.1% identity without one gap of three nucleotides 878 matches in an overlap of 936: 93.8% identity with one gap of three nucleotides Human/Chimp 924 matches in an overlap of 933: 99.0% identity without one gap of three nucleotides 924 matches in an overlap of 936: 98.7% identity with one gap of three nucleotides | Human | GCCCAATTTGAGG | CCACCTGGACG | rcaaatgatt(| GCCATCAGAAA | AGAGACA | | |-------|---------------|-------------|-------------|-------------|---------|--| | | • | • | • | • | | | | Cyno | GCCCGATTTGAGC | CCACTTGGACG | TCAAACGATT(| GCCTCAGAAA | AGAGACA | | | | 810 | 820 | 830 | 840 | 850 | | | Chimp | ACTTGAAGAAAC | CAACAATGACT | ATGAAACAGC' | rgacggcggc1 | TACATGA | | | Human | ACTTGAAGAAAC | CAACAATGACT | ATGAAACAGC' | rgacggcggc1 | TACATGA | | | | | | • | | | | | Cyno | ACTTGAAGAAAC | CAACAATGACT | ATGAAACAGC | CGACGGCGGCT | FACATGA | | | | 860 | 870 | 880 | 890 | 900 | | | Chimp | CTCTGAACCCCAC | GGCACCTACT | GACGATGATA | AAAACATCTAG | CCTGACT | | | Human | CTCTGAACCCCAC | GGCACCTACT | GACGATGATA | AAAACATCTAG | CCTGACT | | | | | | | | | | | Cyno | CTCTGAACCCCAC | GGCACCTACT | GATGATGATA | GAAACATCTAG | CCTGACT | | | | 910 | 920 | 930 | | | | | Chimp | CTTCCTCCCAAC | GACCATGTCAA | CAGTAATAAC: | ГАА | | | | Human | CTTCCTCCCAAC | GACCATGTCAA | CAGTAATAAC: | ГАА | | | | | • | | | | | | | Cyno | CTTTCTCCCAAC | GACTATGACAA | CAGTAATAAC | ГАА | | | [0168] The sequence for the human FcyRIIA receptor has GenBank Accession No. M28697. Seki, T., *Identification of multiple isoforms of the low-affinity human IgG Fc receptor*, Immunogenetics 30, 5-12
(1989). [0169] Alignment of the nucleic acid sequences encoding human (SEQ ID NO: 6) and cynomolgus (SEQ ID NO: 5) FcyRIIB is shown in Table 6. [0170] Analysis of the % sequence identity shows that the human and cynomolgus sequences encoding Fc γ RIIB have about 94% identity. ## TABLE 6 Alignment of Human and Cynomolgus Low-Affinity FcYRIIB DNA 837 matches out of 885: 94.6% identity (without gap) 837 matches out of 894: 93.6% identity (with gap) 10 20 30 40 50 Human ATGGGAATCCTGTCATTCTTACCTGTCCTTGCCACTGAGAGTGACTGGGC TABLE 6-continued Alignment of Human and Cynomolgus Low-Affinity FcYRIIB DNA 837 matches out of 885: 94.6% identity (without gap) 837 matches out of 894: 93.6% identity (with gap) ATGGGAATCCTGTCATTCTTACCTGTCCTTGCTACTGAGAGTGACTGGGC Cyno 70 80 9.0 TGACTGCAAGTCCCCCAGCCTTGGGGTCATATGCTTCTGTGGACAGCTG Human TGACTGCAAGTCCTCCCAGCCTTGGGGCCACATGCTTCTGTGGACAGCTG Cyno 110 120 130 140 Human TGCTATTCCTGGCTCCTGTTGCTGGGACACCTGCAGCTCCCCCAAAGGCT TGCTATTCCTGGCTCCTGTTGCTGGGACACCTGCAGCTCCCCCGAAGGCT Cyno 160 170 180 190 $\tt GTGCTGAAACTCGAGCCCCAGTGGATCAACGTGCTCCAGGAGGACTCTGT$ GTGCTGAAACTCGAGCCCCCGTGGATCAACGTGCTCCGGGAGGACTCTGT Cyno 220 230 GACTCTGACATGCCGGGGGACTCACAGCCCTGAGAGCGACTCCATTCAGT Human ${\tt GACTCTGACGTGCGGGGGCGCTCACAGCCCTGACAGCGACTCCACTCAGT}$ Cyno 260 270 280 290 GGTTCCACAATGGGAATCTCATTCCCACCCACACGCAGCCCAGCTACAGG Human GGTTCCACAATGGGAATCTCATCCCCACCCACACGCAGCCCAGCTACAGG Cyno 320 310 330 340 TTCAAGGCCAACAACAATGACAGCGGGGGAGTACACGTGCCAGACTGGCCA Human Cyno TTCAAGGCCAACAACAATGATAGCGGGGGAGTACAGGTGCCAGACTGGCCG 360 370 380 390 GACCAGCCTCAGCGACCCTGTGCATCTGACTGTGCTTTCTGAGTGGCTGG Human Cyno ${\tt GACCAGCCTCAGCGACCCTGTTCATCTGACTGTGCTTTCTGAGTGGCTGG}$ 420 430 410 440 Human TGCTCCAGACCCCTCACCTGGAGTTCCAGGAGGGAGAAACCATCGTGCTG Cyno $\tt CGCTCCAGACCCCTCACCTGGAGTTCCGGGAGGGAGAAACCATCTTGCTG$ 480 470 AGGTGCCACAGCTGGAAGGACAAGCCTCTGGTCAAGGTCACATTCTTCCA #### TABLE 6-continued Alignment of Human and Cynomolgus Low-Affinity FcqRIIB DNA 837 matches out of 885: 94.6% identity (without gap) 837 matches out of 894: 93.6% identity (with gap) AGGTGCCACAGCTGGAAGGACAAGCCTCTGATCAAGGTCACATTCTTCCA Cyno 510 520 530 Human GAATGGAAAATCCAAGAAATTTTCCCGTTCGGATCCCAACTTCTCCATCC Cyno GAATGGAATATCCAAGAAATTTTCCCATATGAATCCCAACTTCTCCATCC 560 570 580 590 Human CACAAGCAAACCACAGTCACAGTGGTGATTACCACTGCACAGGAAACATA Cyno CACAAGCAAACCACAGTCACAGTGGTGATTACCACTGCACAGGAAACATA 610 620 630 640 650 Human ${\tt GGCTACACGCTGTACTCATCCAAGCCTGTGACCATCACTGTCCAAGCTCC}$ ${\tt GGCTACACCATACTCATCCAAACCTGTGACCATCACTGTCCAAGTGCC}$ Cyno 670 680 700 Human -----CAGCTCTTCACCGATGGGGATCATTGTGGCTGTGGTCACTG CAGCATGGGCAGCTCTTCACCGATAGGGATCATTGTGGCTGTGGTCACTG Cyno 710 720 730 740 ${\tt GGATTGCTGTAGCGGCCATTGTTGCTGCTGTAGTGGCCTTGATCTACTGC}$ Human GGATTGCTGTAGCGGCCATTGTTGCTGCTGTAGTGGCCTTGATCTACTGC Cyno 760 770 780 790 800 Human AGGAAAAAGCGGATTTCAGCCAATCCCACTAATCCTGATGAGGCTGACAA AGGAAAAAGCGGATTTCAGCCAATCCCACTAATCCTGACGAGGCTGACAA Cyno 810 820 830 840 850 Human AGTTGGGGCTGAGAACACAATCACCTATTCACTTCTCATGCACCCGGATG AGTTGGGGCTGAGAACACAATCACCTATTCACTTCTCATGCATCCGGACG Cyno 860 870 880 Human CTCTGGAAGAGCCTGATGACCAGAACCGTATTTAG CTCTGGAAGAGCCTGATGACCAAAACCGNGTTTAG Cyno [0171] The human sequence for FcγRIIB has GenBank Accession No. X52473. Engelhardt, W., Geerds, C. and Frey, J., Distribution, inducibility and biological function of the cloned and expressed human beta Fc receptor II, Eur. J. Immunol. 20 (6), 1367-1377 (1990) [0172] Alignment of the nucleic acid sequences encoding a human (SEQ ID NO: 8) and cynomolgus (SEQ ID NO: 7) FcγRIIIA is shown in Table 7. [0173] Analysis of the % sequence identity shows that the human and cynomolgus nucleic acid sequences encoding FcyRIIIA have about 96% identity. TABLE 7 | | | | • | | | |-------|---------------------------------------|---------------|----------|---------------------|-----------------| | Aligr | nment of Human an
733 matches in a | | | | | | | 10 | 20 | 30 | 40 | 50 | | Human | ATGTGGCAGCTGCT | CCTCCCAACTGC | TCTGCTAG | CTTCTAGTTTC | CAGCTGG | | Cyno | ATGTGGCAGCTGCT | CCTCCCAACTGC | TCTGCTAG | CTTCTAGTTTC | CAGCTGG | | | 60 | 70 | 80 | 90 | 100 | | Human | CATGCGGACTGAAG | ATCTCCCAAAGG | CTGTGGT | GTTCCTGGAG | CCTCAAT | | | • | | | | | | Cyno | CATGCGGGCTGAAG | ATCTCCCAAAGG | CTGTGGT | GTTCCTGGAG | CCTCAAT | | | 110 | 120 | 130 | 140 | 150 | | Human | GGTACAGGGTGCTC | GAGAAGGACAGT | GTGACTC: | rgaagtgcca(| GGAGCC | | | | • | | | | | Cyno | GGTACAGGGTGCTC | GAGAAGGACCGT | GTGACTC: | rgaagtgcca(| GGAGCC | | | 160 | 170 | 180 | 190 | 200 | | Human | TACTCCCCTGAGGAG | CAATTCCACACA | GTGGTTT | CACAATGAGAG | GCCTCAT | | | | • | | | | | Cyno | TACTCCCCTGAGGAG | CAATTCCACACG | GTGGTTT | CACAATGAGAG | GCCTCAT | | | 210 | 220 | 230 | 240 | 250 | | Human | CTCAAGCCAGGCCT | CGAGCTACTTCA | TTGACGC | rgccacagtco | GACGAC <i>I</i> | | | • | | •• | | • | | Cyno | CTCAAGCCAGACCT | CGAGCTACTTCA | TTGCTGC | rgccagagtc <i>i</i> | AACAACA | | | 260 | 270 | 280 | 290 | 300 | | Human | GTGGAGAGTACAGG | rgccagacaaac | CTCTCCA | CCTCAGTGAG | CCCGGTG | | | | • | | • | | | Cyno | GTGGAGAGTACAGG | rgccagacaagc | CTCTCCA | CACTCAGTGAG | CCCGGTG | | | 310 | 320 | 330 | 340 | 350 | | Human | CAGCTAGAAGTCCA | FATCGGCTGGCT | GTTGCTC | CAGGCCCCTCC | GTGGGT | | | • | • | | | | | Cyno | CAGCTGGAAGTCCA | PATCGGCTGGCT. | ATTGCTC | CAGGCCCCTCC | GTGGGT | | | 360 | 370 | 380 | 390 | 400 | | Human | GTTCAAGGAGGAAG | ACCCTATTCACC | TGAGGTG: | rcacagetgg <i>i</i> | AAGAACA | | | | | | | | | Cyno | GTTCAAGGAGGAAG | AATCTATTCACC | TGAGGTG: | CACAGCTGG! | AAGAACA | | - | 410 | 420 | 430 | 440 | 450 | | Human | CTGCTCTGCATAAG | | | | | | aman | | · | CHOIMIG | DANDOCAGO | MIGIAI | | _ | | · | a. a | | | | Cyno | CTCTTCTGCATAAG | | | | | | | 460 | 470 | 480 | 490 | 500 | ## TABLE 7-continued | | ment of Human and Cynomolgus Low-Affinity FcYRIIIA DNA
733 matches in an overlap of 765: 95.8% identity | |-------|--| | Human | TTTCATCATAATTCTGACTTCTACATTCCAAAAGCCACACTCAAAGACAG | | | • | | Cyno | TTTCATCAGAATTCTGACTTCTACATTCCAAAAGCCACACTCAAAGACAG | | | 510 520 530 540 550 | | Human | $\tt CGGCTCCTACTTCTGCAGGGGGCTTTTTGGGAGTAAAAATGTGTCTTCAG$ | | | | | Cyno | ${\tt CGGCTCCTACTTCTGCAGGGGACTTATTGGGAGTAAAAATGTATCTTCAG}$ | | | 560 570 580 590 600 | | Human | AGACTGTGAACATCACCATCACTCAAGGTTTTGGCAGTGTCAACCATCTCA | | | • | | Cyno | AGACTGTGAACATCACCATCACTCAAGATTTGGCAGTGTCATCCATC | | | 610 620 630 640 650 | | Human | ${\tt TCATTCTTTCCACCTGGGTACCAAGTCTCTTTCTGCTTGGTGATGGTACT}$ | | | • | | Cyno | ${\tt TCATTCTTTCCACCTGGGTACCAAGTCTCTTTCTGCCTGGTGATGGTACT}$ | | | 660 670 680 690 700 | | Human | ${\tt CCTTTTTGCAGTGGACACAGGACTATATTTCTCTGTGAAGACAAACATTC}$ | | | • • • | | Cyno | CCTTTTTGCAGTGGACACAGGACTATATTTCTCTATGAAGAAAAGCATTC | | | 710 720 730 740 750 | | Human | GAAGCTCAACAAGAGACTGGAAGGACCATAAATTTAAATGGAGAAAGGAC | | | • • • | | Cyno | CAAGCTCAACAAGGGACTGGGAGGACCATAAATTTAAATGGAGCAAGGAC | | | 760 | | Human | CCTCAAGACAAATGA | | Cyno | CCTCAAGACAAATGA | [0174] The human sequence for FcyIII has GenBank Accession No. X52645 M31937). Ravetch, J. V. and Perussia, B., Alternative membrane forms of Fc gamma RII-I(CD16) on human natural killer cells and neutrophils. Cell type-specific expression of two genes that differ in single nucleotide substitutions, J. Exp. Med. 170 (2), 481-497 (1989). [0175] Alignment of the nucleic acid sequences encoding a human (SEQ ID NO: 24) and cynomolgus (SEQ ID NO: 23) β -2 microglobulin is shown in Table 8. [0176] Analysis of the % sequence identity shows that the human and cynomolgus nucleic acid sequences encoding β -2 microglobulin have about 95% identity. TABLE 8 | Alignment | of | | Cynomolo
= 94.7% | | licroglobulin
Y | DNA | |-----------|----|----|---------------------|----|--------------------|-----| | | | 10 | 20 | 30 | 40 | 50 | # TABLE 8-continued | Alignment of Human and Cynomolgus $\beta 2\text{-Microglobulin DNA}$ 341/360 = 94.7% identity | | | | | | |---|----------------|--------------------|---------------------|-------------|---------| | Cyno | ATGTCTCCCTCAGT | GGCCTTAGCC | CGTGCTGGCGC | CTACTCTCTC | TTTCTGG | | | 60 | 70 | 80 | 90 | 100 | | Human | CCTGGAGGCTATCC | AGCGTACTCC | CAAAGATTCAG | GTTTACTCA | CGTCATC | | | | | | | • | | Cyno | CCTGGAGGCTATCC | AGCGTACTCC | CAAAGATTCAG | GTTTACTCA | CGCCATC | | | 110 | 120 | 130 | 140 | 150 | | Human | CAGCAGAGAATGGA | AAGTCAAATT | TCCTGAATT | CTATGTGTC | IGGGTTT | | | • | • | | | • | | Cyno | CACCAGAGAATGGA | AAGCCAAATT | TTCCTGAATT | CTATGTGTC | IGGATTT | | | 160 | 170 | 180 | 190 | 200 | | Human | CATCCATCCGACAT | TGAAGTTGAC | CTTACTGAAGA | AATGGAGAGA | GAATTGA | | | • • | | | • | • • | | Cyno | CATCCATCTGATAT | TGAAGTTGAC | CTTACTGAAG <i>I</i> | AATGGAGAGA | AAATGGG | | | 210 | 220 | 230 | 240 | 250 | | Human | AAAAGTGGAGCATT | CAGACTTGTC | CTTTCAGCAAG | GACTGGTCT | FTCTATC | | | | | • | | | | Cyno | AAAAGTGGAGCATT | CAGACTTGTC | CTTTCAGCAA | AGACTGGTCT | FTCTATC | | | 260 | 270 | 280 | 290 | 300 | | Human | TCTTGTACTACACT | GAATTCACCO | CCCACTGAAAA | AAGATGAGTA' | FGCCTGC | | | | | • | | | | Cyno | TCTTGTACTACACT | GAATTCACCO | CCCAATGAAAA | AAGATGAGTA' | FGCCTGC | | | 310 | 320 | 330 | 340 | 350 | | Human | CGTGTGAACCATGT | GACTTTGTC <i>I</i> | ACAGCCCAAGA | TAGTTAAGT | GGGATCG | | | | | | | | | Cyno | CGTGTGAACCATGT | GACTTTGTC | AGGGCCCAGG | ACAGTTAAGT | GGGATCG | | | 360 | | | | | | Human | AGACATGTAA | | | | | | Cyno | AGACATGTAA | | | | | [0177] The DNA sequence for the human β-2 microglobulin has GenBank Accession No. ABO21288. Matsumoto, K., Minamitani, T., *Human mRNA for beta 2-microglobulin*, DDBJ/EMBL/GenBank databases (1998). [0178] Alignment of the nucleic acid sequences encoding a human (SEQ ID NO: 28) and cynomolgus (SEQ ID NO: 27) FcRn α -chain is shown in Table 9. [0179] Analysis of the % sequence identity shows that the human and cynomolgus nucleic acid sequences encoding FcRn α
-chain have about 97% identity. TABLE 9 | | 1115000 9 | |----------|---| | | Alignment of Human and Cynomolgus FcRn α -Chain DNA 1062/1098 = 96.7% identity | | | 10 20 30 40 50 | | Human | ${\tt ATGGGGGTCCCGCGGCCTCAGCCCTGGGCGCTGGGGCTCCTGCTCTTTCT}$ | | Cyno | ATGAGGGTCCCGCGGCCTCAGCCCTGGGCGCTGGGGCTCCTGCTCTTTCT | | | 60 70 80 90 100 | | Human | CCTTCCTGGGAGCCTGGGCGCAGAAAGCCACCTCTCCCTGTACCACC • • | | Cyno | CCTGCCCGGGAGCCTGGGCGCAGAAAGCCACCTCTCCCTCTGTACCACC | | | 110 120 130 140 150 | | Human | TTACCGCGGTGTCCTCGCCTGCCCCGGGGACTCCTGCCTTCTGGGTGTCC | | | • • | | Cyno | TCACCGCGGTGTCCTCGCCCGCCCCGGGGACGCCTGCCTTCTGGGTGTCC | | | 160 170 180 190 200 | | Human | GGCTGGCTGGGCCAGCAGTACCTGAGCTACAATAGCCTGCGGGGCGA | | | •• • | | Cyno | GGCTGGCTGGGCCCGCAGCAGTACCTGAGCTACGACAGCCTGAGGGGCCA | | | 210 220 230 240 250 | | Human | GGCGGAGCCCTGTGGAGCTTGGGTCTGGGAAAACCAGGTGTCCTGGTATT | | G | | | Cyno | GGCGGAGCCCTGTGGACTTGGGTCTGGGAAAACCAAGTGTCCTGGTATT 260 270 280 290 300 | | Human | GGGAGAAAGAGACCACAGATCTGAGGATCAAGGAGAAGCTCTTTCTGGAA | | Cyno | GGGAGAAAGAGACCACAGATCTGAGGATCAAGGAGAAGCTCTTTCTGGAA | | Cyno | 310 320 330 340 350 | | Human | GCTTTCAAAGCTTTGGGGGGAAAAGGTCCCTACACTCTGCAGGGCCTGCT | | | • | | Cyno | GCTTTCAAAGCTTTGGGGGGAAAAGGCCCCTACACTCTGCAGGGCCTGCT | | | 360 370 380 390 400 | | Human | GGGCTGTGAACTGGGCCCTGACAACACCTCGGTGCCCACCGCCAAGTTCG | | | • | | Cyno | GGGCTGTGAACTGAGCCCTGACAACACCTCGGTGCCCACCGCCAAGTTCG | | | 410 420 430 440 450 | | Human | CCCTGAACGGCGAGGAGTTCATGAATTTCGACCTCAAGCAGGGCACCTGG | | Cyno | CCCTGAACGGCGAGGAGTTCATGAATTTCGACCTCAAGCAGGGCACCTGG | | | 460 470 480 490 500 | | Human | GGTGGGGACTGGCCCGAGGCCCTGGCTATCAGTCAGCGGTGGCAGCAGCA | TABLE 9-continued | I | Alignment o | | Cynomolgus
= 96.7% iden | FcRn α-Chain
ntit y | DNA | |-------|-------------|-------------------|----------------------------|-------------------------------|---------------------| | Cyno | GGTGGGGAC | TGGCCCGAGG | CCCTGGCTATCA | GTCAGCGGTGGC | AGCAGCA | | | 51 | .0 52 | 530 | 540 | 550 | | Human | GGACAAGGC | GGCCAACAAG | GAGCTCACCTTC | CTGCTATTCTCC | IGCCCGC | | | | | | | • | | Cyno | GGACAAGGC | GGCCAACAAG | GAGCTCACCTTC | CTGCTATTCTCC | FGCCCAC | | | 56 | 50 57 | 580 | 590 | 600 | | Human | ACCGCCTGC | GGGAGCACCT | GGAGAGGGGCCG | CGGAAACCTGGA | GTGGAAG | | | • | | , | • | | | Cyno | ACCGGCTGC | GGGAGCACCT | GAGAGGGCCG | TGGAAACCTGGA | GTGGAAG | | 1 | 61 | | | 640 | 650 | | Human | GAGCCCCCC | TCCATGCGCC | rga aggcccgac | CCAGCAGCCCTG | т СттттС | | | 011000000 | | | | | | Cyno | GAGCCCCC | ייירכי אייכככככיי | FGA AGGCCCGAC | CCGGCAACCCTG | <u>-</u> ረጥጥጥጥረ | | Cyllo | 66 | | | 690 | 700 | | *** | | | | | | | Human | CGTGCTTAC | CTGCAGCGCC | PTCTCCTTCTAC | CCTCCGGAGCTG | CAACTIC | | _ | | | | • | ·
 | | Cyno | | | | CCTCCGGAACTG | | | | 71 | | | 740 | 750 | | Human | GGTTCCTGC | GGAATGGGCT | GCCGCTGGCAC | CGGCCAGGGTGA | CTTCGGC | | | | • | | • • | | | Cyno | GGTTCCTGC | GGAATGGGAT | GCCGCTGGCAC | CGGACAGGGCGA | CTTCGGC | | | 76 | 50 77 | 780 | 790 | 800 | | Human | CCCAACAGT | GACGGATCCT | FCCACGCCTCGT | 'CGTCACTAACAG' | FCAAAA G | | | | • | | | | | Cyno | CCCAACAGT | GACGGCTCCT | FCCACGCCTCGT | 'CGTCACTAACAG' | ICAAAA G | | | 81 | .0 82 | 830 | 840 | 850 | | Human | TGGCGATGA | GCACCACTAC' | rgctgcattgtg | CAGCACGCGGGG | CTGGCGC | | | | | • | | | | Cyno | TGGCGATGA | AGCACCACTAC | FGCTGCATCGTG | CAGCACGCGGGG | CTGGCGC | | | 86 | 50 87 | 880 | 890 | 900 | | Human | AGCCCCTCA | GGGTGGAGCT | GGAATCTCCAGC | CAAGTCCTCCGT | GCTCGTG | | | | | • | • | | | Cyno | AGCCCCTCA | AGGGTGGAGCT | GAAACTCCAGC | CAAGTCCTCGGT | CTCGTG | | -10 | 91 | | | 940 | 950 | | | | | | | | | Human | | | | CGGCAGCGGCTG | | | Cyno | GTGGGAATC | GTCATCGGTG | PCTTGCTACTCA | CGGCAGCGGCTG | FAGGAGG | TABLE 9-continued | Alignment of Human and Cynomolgus FcRn $lpha$ -Chain DNA 1062/1098 = 96.7% identity | | | | | | | |---|----------------|------------|------------|-------------|---------|--| | | 960 | 970 | 980 | 990 | 1000 | | | Human | AGCTCTGTTGTGG | AGAAGGATGA | GGAGTGGGCT | GCCAGCCCCT' | TGGATCT | | | Cyno | AGCTCTGTTGTGG | AGAAGGATGA | GGAGTGGGCT | GCCAGCCCCT' | TGGATCT | | | | 1010 | 1020 | 1030 | 1040 | 1050 | | | Human | CCCTTCGTGGAGA | CGACACCGGG | GTCCTCCTGC | CCACCCCAGG | GGAGGCC | | | | | • | • | • | | | | Cyno | CCCTCCGTGGAGA' | rgacaccggg | TCCCTCCTGC | CCACCCGGG | GGAGGCC | | | | 1060 | 1070 | 1080 | 1090 | | | | Human | CAGGATGCTGATT | rgaaggatgt | AAATGTGATT | CCAGCCACCG | CCTGA | | | | • | • | • | • | | | | Cyno | CAGGATGCTGATT | CGAAGGATAT | AAATGTGATC | CCAGCCACTG | CCTGA | | [0180] The DNA sequence for the human FcRn α-chain has GenBank Accession No. U12255. Story, C. M., Mikulska, J., and Simister, N. E., A major histocompatibility complex class I-like Fc receptor cloned from human placenta: Possible role in transfer of immunoglobulin G from mother to fetus, J. Exp. Med. 180, 2377-2381 (1994). [0181] An alignment of the amino acid sequences for human (SEQ ID NO: 10) and cynomologus (SEQ ID NO: 9) Fc γ RI α -chain is shown in Table 10. As described previously, the α -chain of Fc γ RI has various domains, including a signal peptide, three extracellular C-2 Ig like domains, a transmembrane domain and an intracellular domain. The amino acid numbers shown below the amino acids with the symbol Δ are numbered from the start of the mature polypeptide not including the signal sequence. Based on the alignment with the human sequence, the mature cynomologus Fc γ RI has an amino acid sequences of residues $\Delta 1$ to $\Delta 336$ (SEQ ID NO: 65). The n-terminal sequence of cynomologus sequences Fc γ RI may vary from that shown below. It would be within the skill in the art to express the nucleic acid sequence encoding the cynomologus Fc γ RI sequence and identify the n-terminal sequence. An extracellular fragment of cynolomolgus Fc γ RI obtained using the primers of example 1 has an amino acid sequence of $\Delta 1$ to $\Delta 269$. Any numbers above the amino acid residues represent the numbering of the residues starting at the signal sequence. [0182] Analysis of the % sequence identity shows that the amino acid sequences for human and cynomolgus $Fc\gamma RI$ have about 90% identity when the 3' extension is taken into account and about 94% when the 3' extension is not included. TABLE 10 | Alig | nment o | of Human | and Cyno | molgus | High-Af | finity F | cγRI | |-------------------|---------|-----------|-----------|--------|----------|----------|------| | Human | MWFLTT | LLLLWVPVI | GQVDTTK | | | | | | | • | | | | | | | | Cyno | MWFLTA | ALLLWVPVI | GQVDTTK | | | | | | Domain 1
Human | AVISLÇ | (PPWVSVF | QEETVTLHC | EVLHLP | GSSSTQWF | LNGTAT | | | | • | | • | •• | | | | | Cyno | AVITLÇ | PPWVSVF(| QEETVTLQC | EVPRLP | GSSSTQWF | LNGTAT | | | | Δ | Δ | Δ | | Δ | Δ | | | | 1 | 10 | 20 | | 30 | 40 | | | | 7 | 70 | 80 | 90 | 1 | .00 | | | | | | 1 | 1 | | 1 | | | Human | QTSTPS | SYRITSASV | /NDSGEYRC | QRGLSG | RSDPIQLE | IHR | | | | | | | • | | | | TABLE 10-continued | Alig | nment of Hu | man and Cy | ynomolgu | s High-Af | finity FcγRI | |--------------------|---------------------------|------------|-----------|-----------|--------------| | Cyno | QTSTPSYRIT | SASVKDSGE? | RCQRGPS | GRSDPIQLE | IHR | | | Δ | Δ | , | Δ | Δ | | | 50 | 60 | 7 | 0 | 80 | | Domain 2
Human | GWLLLQVSSR | VFTEGEPLAI | LRCHAWKD: | KLVYNVLYY | RNGKAFKF | | | • | | | • | | | Cyno | DWLLLQVSSR | VFTEGEPLAI | LRCHAWKD: | KLVYNVLYY | QNGKAFKF | | | Δ | Δ | | Δ | Δ | | | 90 | 100 |) | 110 | 120 | | | 150 | 160 | 170 | 180 | 190 | | | 1 | | | | 1 | | Human | FHWNSNLTIL | KTNISHNGT | YHCSGMGK | HRYTSAGIS | VTVKELFP | | | | • | | • | | | Cyno | FYRNSQLTIL | KTNISHNGA | YHCSGMGK | HRYTSAGVS | VTVKELFP | | | Δ | Δ | Δ | Δ | | | | 130 | 140 | 150 | 160 | | | Domain 3
Human | APVLNASVTS | PLLEGNLVTI | LSCETKLL | LQRPGLQLY | FSFYMGSKTLRG | | Cyno | APVLNASVTS | PLLEGNLVTI | SCETKLL | LQRPGLQLY | FSFYMGSKTLRG | | | Δ | Δ | Δ | Δ | Δ | | | 170 | 180 | 190 | 200 | 210 | | Human | RNTSSEYQIL | TARREDSGL | YWCEAATE | DGNVLKRSP | ELELQVLGLQLP | | | | • | • | | | | Cyno | RNTSSEYQIL | TARREDSGF | YWCEATTE: | DGNVLKRSP | ELELQVLGLQLP | | | Δ | Δ | Δ | Δ | Δ | | | 220 | 230 | 240 | 250 | 260 | | transmemb
Human | rane/intrac
TPVWFHVLFY | | NTVLWVTI | RKELKRKKK | WDLEISLDSGHE | | | • | • | | | • • | | Cyno | TPVWLHVLFY | LVVGIMFLVI | NTVLWVTI | RKELKRKKK | WNLEISLDSAHE | | | Δ | Δ | Δ | Δ | Δ | | | 270 | 280 | 290 | 300 | 310 | | Human | KKVTSSLQED | RHLEEELKC | QEQKEEQL: | QEGVHRKEP | QGAT | | | | • | • | | | | Cyno | KKVTSSLQED | RHLEEELKS(| QEQE | | | | | Δ | Δ | | Δ | Δ | | | | | | | | Human vs Cyno 335/357 = 93.8% identity without human 3' extension 335/374 = 89.6% identity with human 3' extension [0183] The amino acid sequence for human FcγRI has Accession Nos.: P112314; P12315; EMBL; X14356; CAA32537.1. EMBL; X14355; CAA32536.1. PIR; S03018. PIR; S03019. PIR; A41357. PIR; B41357. HSSP; P12319; 1ALT. MIM; 146760; -. InterPro; IPR003006; -. Pfam; PF00047; Allen J. M., Seed B., Nucleic Acids Res. 16, 11824-11824, 1988, Nucleotide sequence of three cDNAs for the human high affinity Fc receptor (FcRI); Allen J. M., Seed B., Science 243, 378-381, 1989, Isolation and expression of functional high-affinity Fc receptor complementary DNAs. [0184] An alignment of amino acid sequences for human, cynomolgus, and chimp sequences for FcγRIIA (cynomolgus/SEQ ID NO: 15; human/SEQ ID NO: 16; chimp/SEQ ID NO. 17), FcγRIIB (cynomolgus/SEQ ID NO: 18; human/SEQ ID NO: 19), and FcγRIIIA (cynomolgus/SEQ ID NO: 20; human/SEQ ID NO: 21) is shown in Table 11. [0185] The sequence is divided into domains as described previously: signal peptide, 3 extracellular C-2 like domains, and a transmembrane intracellular domain. In Table 11, the amino
acid numbers shown below the amino acids with the symbol A are numbered from the start of the mature human polypeptide not including the signal sequence. The mature polypeptides for cynomolgus and chimp FcγRIIA, cynomolgous FcγRIIB, and cynomolgus FcγRIIIA start at the amino acid identified with the asterisk in Table 11 and are separately shown in Tables 21, 22, and 23, and are as follows: - [0186] 1) cynomolgus FcγRIIA amino acids Δ1 to Δ282 (SEQ ID NO: 66), N terminal sequence TAP-PKA (Table 21); - [0187] 2) chimp FcγRIIA amino Δ1 to Δ249 (SEQ ID NO: 67)(based on alignment with the human sequence); - [0188] 3) cynomolgus FcγRIIB amino acids Δ1 to Δ252 (SEQ ID NO: 68), N terminal sequence TPAAPP (table 22); and - [0189] 4) cynomolgus FcγRIIIA amino acids Δ1 to Δ234 (SEQ ID NO: 69), N terminal sequence EDLPKA (table 23). - [0190] In table 11, any numbers above the amino acid residues represent the numbering of the residues starting at the signal sequence. The asterisks in the table indicate the start of the n-terminal sequence for cynomologus FcyRIIA, FcyRIIB, and FcyRIIIA. - [0191] Extracellular fragments of the Fc receptor polypeptides were obtained using the primers described in example 1. An extracellular fragment of Fc γ RIIA obtained using the primers of example 1 has an amino acid sequence of $\Delta 1$ to $\Delta 182$, as shown in table 21. An extracellular fragment of Fc γ RIIB obtained using the primers of example 1 has an amino acid sequence of $\Delta 1$ to $\Delta 184$, as shown in Table 22. An extracellular fragment of Fc γ RIIIA obtained using the primers of example 1 has an amino acid sequence of $\Delta 1$ to $\Delta 187$, as shown in Table 23. - [0192] Analysis of the % sequence identity shows the following: - [0193] 1) Chimp and human amino acid sequences for FcγRIIA have about 97% identity; - [0194] 2) Cynomolgus and human amino acid sequences for FcγRIIA have about 87% identity with MAMETQ (possible portion of signal peptide) and 89% identity without MAMETQ in the alignment; - [0195] 3) Cynomolgus and chimp amino acid sequences for FcγRIIA have about 87% identity including MAMETQ in the alignment and 89% without MAMETQ in the alignment; - [0196] 4) Cynomolgus and human amino acid sequences for FcγRIIB have about 92% identity; and - [0197] 5) Cynomolgus and human amino acid sequences for FcγRIIIA have about 91% identity. #### TABLE 11 | Alignment of | Human, | | and Chimp
FcyRIIIA | Low-Affinity | FcγRIIA | |----------------|--------|-------------|-----------------------|---------------|---------| | signal peption | de | ***** | • | | •• | | IIA-human | | mametqms | QNVCPRNLWLI | LQPLTVLLLLAS. | ADSQAA | | IIA- chimp | | mametqms | QNVCPRNLWLI | LQPLTVLLLLAS. | ADSQA- | | IIA-cyno | | MS | QNVCPGNLWLI | LQPLTVLLLLAS | ADSQT- | | | | | | | * | | | | | • | | | | IIB-human | MGILSF | LPVLATESDWA | DCKSPQPWGHI | MLLWTAVLFLAP | VAGTPA | | IIB-cyno | MGILSF | LPVLATESDWA | DCKSSQPWGHI | MLLWTAVLFLAP | VAGTPA | | | | | | | * | | | | | | | • | | | | | | | | TABLE 11-continued | | | | w-Affinity FcγRIIA | |--------------|---|---|--| | | | MWQLLL | PTALLLLVSAGMRAE | | | | | Δ * | | | | | 1 | | | | | | | ADDKAWI.KI.F | DDWTNVI.OFD9 | ℧ℼℾℼ℮℮ⅇℷ | SDESDSTOWERN | | | | | | | | | | | | | | | Δ | | | | | 40 | | 1 10 | | • • | | | APPKAVLKLE | PQWINVLQEDS | VTLTCRGTH | SPESDSIQWFHN | | | | | | | | • | | • | | DLPKAVVFLE | POWYRVLEKDS | VTLKCOGAYS | SPEDNSTOWFHN | | | | | | | | | | Δ | | | | | | | 10 | 20 | 30 | 40 | | • | | • • | | | | | | | | GNLIPTHTQP | SYRFKANNNDS | GEYTCQTGQ' | TSLSDPVHLTVLSE | | GNRIPTHTQP | SYRFKANNNDS | GEYRCQTGR' | rslsdpvhltvlse | | Δ | Δ | Δ | Δ | | 50 | 60 | 70 | 80 | | | | • • | | | GNLIPTHTQP | SYRFKANNNDS | GEYTCQTGQ | TSLSDPVHLTVLSE | | GNLIPTHTQP | SYRFKANNNDS | GEYRCQTGR | TSLSDPVHLTVLSE | | • | | • | | | ESLISSQASS | YFIDAATVDDS | GEYRCQTNL | STLSDPVQLEVHIG | | FST.TSSOTSS | YFIAAARVNNS | GEYRCQTSL | STLSDPVQLEVHIG | | PODIDOĞIDD | | | | | Δ | Δ | Δ | Δ | | - | Δ
60 | Δ
70 | Δ
80 | | Δ | | | | | Δ
50 | 60 | 70 | | | | APPKAVLKLE APPKAVLKLE APPKAVLKLE APPKAVLKLE APPKAVLKLE APPKAVVFLE DLPKAVVFLE DLPKAVVFLE A 10 GNLIPTHTQP GNLIPTHTQP GNRIPTHTQP GNLIPTHTQP GNLIPTHTQP GNLIPTHTQP ESLISSQASS | APPKAVLKLEPPWINVLQEDS APPKAVLKLEPPWINVLQEDS APPKAVLKLEPPWINVLQEDS APPKAVLKLEPPWINVLQEDS APPKAVLKLEPQWINVLQEDS APPKAVLKLEPQWINVLQEDS APPKAVLKLEPQWINVLREDS APPKAVLKLEPPWINVLREDS DLPKAVVFLEPQWYRVLEKDS DLPKAVVFLEPQWYRVLEKDS A A 10 20 GNLIPTHTQPSYRFKANNNDS | APPKAVLKLEPPWINVLQEDSVTLTCQGARS APPKAVLKLEPPWINVLREDSVTLTCGGARS APPKAVLKLEPPWINVLREDSVTLTCGGARS APPKAVLKLEPPWINVLREDSVTLTCGGARS APPKAVLKLEPPWINVLQEDSVTLTCRGTHS APPKAVLKLEPPWINVLREDSVTLTCGGARS APPKAVLKLEPPWINVLREDSVTLTCGGARS APPKAVVFLEPQWYRVLEKDSVTLKCQGAYS DLPKAVVFLEPQWYRVLEKDRVTLKCQGAYS A A A 10 20 30 GNLIPTHTQPSYRFKANNNDSGEYTCQTGQT GNLIPTHTQPSYRFKANNNDSGEYTCQTGQT GNRIPTHTQPSYRFKANNNDSGEYRCQTGRT A A A A | TABLE 11-continued | Alignment of | Human, | | and Chimp
FcyRIIIA | Low-Affinity | , FcγRIIA, | |---------------|----------|-------------|-----------------------|--------------|------------| | IIA-cyno | WLALQTI | PHLEFREGETI | MLRCHSWKDK | PLIKVTFFQNGI | AKKFS | | | Δ | Δ | Δ | Δ | Δ | | | 90 | 100 | 110 | 120 | 130 | | | • | | | | | | IIB-human | WLVLQT | PHLEFQEGETI | VLRCHSWKDK | PLVKVTFFQNGF | SKKFS | | IIB-cyno | WLALQTI | PHLEFREGETI | LLRCHSWKDK | PLIKVTFFQNGI | SKKFS | | | | •• | • | | | | IIIA-human | WLLLQAI | PRWVFKEEDPI | HLRCHSWKNT | ALHKVTYLQNGF | GRKYF | | IIIA-cyno | WLLLQAI | PRWVFKEEESI | HLRCHSWKNT | LLHKVTYLQNGF | GRKYF | | | Δ | Δ | Δ | Δ | Δ | | | 90 | 100 | 110 | 120 | 130 | | | •• •• | | • | | | | IIA-human | RLDPTF | SIPQANHSHSG | DYHCTGNIGY | TLFSSKPVTITV | 'QV | | IIA-chimp | HLDPNL | SIPQANHSHSG | DYHCTGNIGY | TLFSSKPVTITV | 'QA | | IIA-cyno | HMDPNF | SIPQANHSHSG | DYHCTGNIGY | TPYSSKPVTITV | 'QV | | | Δ | Δ | Δ | Δ | Δ | | | 131 | 140 | 150 | 160 1 | .70 | | | ••• | | • | | | | IIB-human | RSDPNF | SIPQANHSHSG | DYHCTGNIGY | TLYSSKPVTITV | 'QA | | IIB-cyno | HMNPHF | SIPQANHSHSG | DYHCTGNIGY | TPYSSKPVTITV | 'QV | | | • | | • | | | | IIIA-human | HHNSDF | /IPKATLKDSG | SYFCRGLFGS | KNVSSETVNITI | TQ | | IIIA-cyno | HQNSDF | /IPKATLKDSG | SYFCRGLIGS | KNVSSETVNITI | TQ | | | Z | Δ | Δ | Δ | | | | 1 | 10 15 | 0 15 | 8 170 | | | transmembrane | e/intrac | ellular | | | | | IIA-human | PSMGSS | SPMGIIVAVVI | ATAVAAIVAA | VVALIYCRKKRI | SANSTD | | IIA-chimp | PSVGSS | SPVGIIVAVVI | ATAVAAIVAA | VVALIYCRKKRI | SANSTD | | IIA-cyno | PSVGSS | SPMGIIVAVVT | GIAVAAIVAA | VVALIYCRKKRI | SANSTD | | | | Δ | Δ | Δ | | | | | 180 | 190 | 200 21 | . 0 | | | ••• | • | | | | | IIB-human | PSS | SPMGIIVAVVT | GIAVAAIVAA | VVALIYCRKKRI | SANPTN | | IIB-cyno | PSMGSS | SPIGIIVAVVT | GIAVAAIVAA | VVALIYCRKKRI | SANPTN | | | | | | | • | | IIIA-human | GLAVST | [SSFFPPGYQV | SFCLVMVLLF | AVDTGLYFSVKT | NIRSST | TABLE 11-continued | Alignment of | Human, | | and Chimp
FcyRIIIA | Low-Affinity | FcγRIIA, | |--------------|-----------------|---------------------|-----------------------|-----------------------|----------| | IIIA-cyno | DLAVSS | ISSFFPPGYQV: | SFCLVMVLLFA | AVDTGLYFSMKK | SIPSST | | | Δ | Δ | Δ | Δ | | | | 180 | 190 | 200 | 210 | | | | • | | | ITAM me | otif | | IIA-human | PVKAAQI | FEPPGRQMIAII | RKRQLEETNNI | YETADGG <u>YMTL</u> I | NPRAPT | | IIA-chimp | PVKAAQI | FEPPGRQMIAII | RKRQLEETNNI | YETADGG <u>YMTL</u> I | NPRAPT | | IIA-cyno | PVKAARI | FEPLGRQTIALI | RKRQLEETNNI | YETADGG <u>YMTL</u> I | NPRAPT | | | Δ | Δ | Δ | Δ | Δ | | | 220 | 230 | 240 | 250 | 260 | | | | | | • | | | IIB-human | PDEADKY | /GAENT <u>ITYSL</u> | LMHPDALEEPI | DDQNRI | | | IIB-cyno | PDEADKY | /GAENT <u>ITYSL</u> | <u>L</u> MHPDALEEPI | DDQNRV | | | | | ITIM 1 | motif | | | | | • | • | | | | | IIIA-human | RDWKDHI | KFKWRKDPQDK | | | | | IIIA-cyno | RDWEDHI | KFKWSKDPQDK | | | | | | Δ | Δ | | | | | | 220 | 230 | | | | | | : | ITAM motif | | | | | | • | | | | | | IIA-human | DDDKNI <u>3</u> | YLTLPPNDHVN: | SNN | | | | IIA-chimp | DDDKNI <u></u> | YLTLPPNDHVN: | SNN | | | | IIA-cyno | DDDRNI | YLTLSPNDYDN | SNN | | | | | | Δ | Δ | | | | | | 270 | 280 | | | IIA chimp/human 308/317 = 97.2% identity cyno/human 277/317 = 87.4% identity (+MAMETQ) 277/311 = 89.1% identity (-MAMETQ) cyno/chimp 276/316 = 87.3% identity (+MAMETQ) 276/310 = 89.0% identity (-MAMETQ) IIB cyno/human 270/294 = 91.8% identity IIIA cyno/human 232/254 = 91.3% identity [0198] The human amino acid sequence for FcRIIA has the following Accession Nos.: P12318; EMBL; M31932; AAA35827.1. EMBL; Y00644; CAA68672.1. EMBL; J03619; AAA35932.1. EMBL; A21604; CAA01563.1. PIR; A31932. PIR; JL0118. PIR; S02297. PIR; S00477. PIR; S06946. HSSP; P12319; 1ALT. MIM; 146790; -. InterPro; IPR003006; -. Pfam; PF00047. Brooks D. G., Qiu W. Q., Luster A. D., Ravetch J. V., J. Exp. Med. 170, 1369-1385, 1989, Structure and expression of human
IgG FcRII(CD32). Functional heterogeneity is encoded by the alternatively spliced products of multiple genes; Stuart S. G., Trounstine M. L., Vaux D. J. T., Koch T., Martens C. L., Moore K. W., J. Exp. Med. 166, 1668-1684, 1987, Isolation and expression of cDNA clones encoding a human receptor for IgG (Fc gamma RII); Hibbs M. L., Bonadonna L., Scott B. M., Mckenzie I. F. C., Hogarth P. M., Proc. Natl. Acad. Sci. U.S.A. 85, 2240-2244, 1988, Molecular cloning of a human immunoglobulin G Fc receptor; Stengelin S., Stamenkovic I., Seed B., EMBO J. 7, 1053-1059, 1988, Isolation of cDNAs for two distinct human Fc receptors by ligand affinity cloning; Salmon J. E., Millard S., Schachter L. A., Arnett F. C., Ginzler E. M., Gourley M. F., Ramsey-Goldman R., Peterson M. G. E., Kimberly R. P., J. Clin. Invest. 97, 1348-1354, 1996, Fc gamma RIIA alleles are heritable risk factors for lupus nephritis in African Americans. [0199] The human sequence for FcγRIIB has Accession No. X52473. Engelhardt, W., Geerds, C. and Frey, J., Distribution, inducibility and biological function of the cloned and expressed human beta Fc receptor II, Eur. J. Immunol. 20 (6), 1367-1377 (1990). [0200] The human amino acid sequence for FcyRIIIA has Accession Nos.: P08637; EMBL; X52645; CAA36870.1. EMBL; Z46222; CAA86295.1. PIR; JL0107. MIM; 146740; -. InterPro; IPR003006; -. Pfam; PF00047; Ravetch J. V., Perussia B., J. Exp. Med. 170, 481497, 1989, Alternative membrane forms of Fc gamma RIII(CD16) on human natural killer cells and neutrophils. Cell type-specific expression of two genes that differ in single nucleotide substitutions; Gessner J. E., Grussenmeyer T., Kolanus W., Schmidt R. E., J. Biol. Chem. 270, 1350-1361, 1995, The human low affinity immunoglobulin G Fc receptor III-A and III-B genes: Molecular characterization of the promoter regions; de Haas M., Koene H. R., Kleijer M., de Vries E., Simsek S., van Tol M. J. D., Roos D., von dem Borne A. E. G. K., J. Immunol. 156, 3948-3955, 1996, A triallelic Fc gamma receptor type IIIA polymorphism influences the binding of human IgG by NK cell Fc gamma RIIIa; Koene H. R., Kleijer M., Algra J., Roos D., von dem Borne A. E. G. K., de Haas M., Blood 90, 1109-1114, 1997, Fc gammaRIIIa-158V/F polymorphism influences the binding of IgG by natural killer cell Fc gammaRIIIa, independently of the Fc gammaRIIIa-48L/R/H phenotype; Wu J., Edberg J. C., Redecha P. B., Bansal V., Guyre P. M., Coleman K., Salmon J. E., Kimberly R. P., J. Clin. Invest. 100, 1059-1070, 1997, A novel polymorphism of FcgammaRIIIa (CD16) alters receptor function and predisposes to autoimmune disease. TABLE 21 | Oomain 1
TAPPKAVI | | NVLREDSVI | TLTCGGAHS | PDSDSTQWFHN | 1 | |----------------------|-----------|-----------|----------------------|-------------------|-----| | Δ | Δ | Δ | Δ | Δ | | | 1 | 10 | 20 | 30 | 40 | | | GNRIPTHI | QPSYRFK | ANNNDSGEY | RCQTGRTS | LSDPVHLTVLS | SE | | Δ | | Δ | Δ | Δ | | | 50 |) | 60 | 70 | 80 | | | - | ILEFREGE' | | | TFFQNGIAKKE | | | Δ | Δ | Δ | | Δ | 7 | | 90 | 100 | 110 |) 1 | 20 13 | 30 | | HMDPNFSI | PQANHSH | SGDYHCTGI | NIGYTPYSS | KPVTITVQV | | | | Δ | Δ | Δ | Δ | | | | 140 | 150 | 160 | 170 | | | | | | | | | | | | | ane doma
VAAVVALI | in
YCRKKRISANS | STD | TABLE 21-continued | | Sequence of Mature FcRIIA | | | | | | | | | | |------------------|---------------------------|--------|--------|-------|--------------------|-------|--|--|--|--| | 1 | 180 190 200 210 | | | | | | | | | | | | ITAM | | | | | | | | | | | PVKAARFE | PLGRQTIA | LRKRQ: | LEETNI | NDYET | ADGG <u>YMTL</u> N | PRAPT | | | | | | Δ | Δ | | Δ | | Δ | Δ | | | | | | 220 | 230 | | 240 | | 250 | 260 | | | | | | IT | 'AM | | | | | | | | | | | DDDRNI <u>YL</u> | <u>TL</u> SPNDYD | NSNN | | | | | | | | | | Δ | | Δ | | | | | | | | | | 2 | 70 | 280 | [0201] | | T | ABLE | 22 | | | | | | |---|--------------------------|--------|--------|---------|------------|--|--|--| | | Sequence | of Mat | ure F | cγRIIB | ı | | | | | Domain 1
TPAAPPKAVLKLEPPWINVLREDSVTLTCGGAHSPDSDSTQWFHN | | | | | | | | | | Δ | Δ | Δ | Δ | Δ | Δ | | | | | 1 | 10 | 20 | 3 | 30 | 40 | | | | | GNLIPTHTQ | PSYRFKANNN | DSGEY | RCQTGF | RTSLSD | PVHLTVLSE | | | | | Δ | Δ | | Δ | Δ | | | | | | 50 | 60 | | 70 | 8 | 0 | | | | | Domain 2
WLALQTPHL | EFREGETILL | RCHSW. | KDKPL | [KVTFF | QNGISKKFS | | | | | Δ | Δ | Δ | | Δ | Δ | | | | | 90 | 100 | 110 | | 120 | 130 | | | | | HMNPNFSIP | QANHSHSGDY | HCTGN | IGYTPY | 'SSKPV' | TITVQV | | | | | Δ | Δ | | Δ | | Δ | | | | | 14 | 0 15 | 0 | 160 |) | 170 | | | | | | rane/intra
GIIVAVVTGI | | | ALIYCE: | KKRISANPTN | | | | | Δ | Δ | | Δ | | Δ | | | | | 180 | 190 | | 200 | : | 210 | | | | | | ITIM mot | if | | | | | | | | PDEADKVGAENT <u>ITYSLL</u> MHPDALEEPDDQNRV | | | | | | | | | | Δ | Δ | Δ | | Δ | | | | | | 220 | 230 | 240 | | 250 | | | | | [0202] TABLE 23 | | Sequenc | e for Ma | ture Fc | γRIIIA | | | | | |-------------------|---|----------|----------|-----------|--------|--|--|--| | | Domain 1
EDLPKAVVFLEPQWYRVLEKDRVTLKCQGAYSPEDNSTRWFHN | | | | | | | | | Δ | Δ | Δ | Δ | | Δ | | | | | 1 | 10 | 20 | 30 |) | 40 | | | | | ESLISS | QTSSYFIAAA | RVNNSGE | YRCQTSLS | STLSDPVQL | EVHIG | | | | | Δ | Δ | | Δ | Δ | | | | | | 5 | 0 6 | 0 | 70 | 80 | | | | | | Domain
WLLLQA | 2
PRWVFKEEES | IHLRCHS | WKNTLLHI | KVTYLQNGK | GRKYF | | | | | Δ | Δ | Δ | | Δ | Δ | | | | | 90 | 100 | 11 | 0 | 120 | 130 | | | | | HQNSDF | YIPKATLKDS | GSYFCRG | LIGSKNVS | SETVNITI | TQ | | | | | | Δ | Δ | Δ | Δ | | | | | | | 140 | 150 | 160 | 170 | | | | | | | embrane/in
ISSFFPPGYÇ | | | rglyfsmkk | SIPSST | | | | | | Δ | Δ | Δ | Δ | | | | | | 1 | 80 1 | 90 | 200 | 210 | | | | | | RDWEDHKFKWSKDPQDK | | | | | | | | | | Δ | Δ | | | | | | | | | 220 | 230 | | | | | | | | [0203] An alignment of the nucleic acid sequence encoding the human (SEQ ID NO: 12) and cynomolgus (SEQ ID NO: 11) gamma chain of FcyRI/III is shown in Table 12. [0204] Analysis of % sequence identity shows that the nucleic acid sequences encoding human and cynomolgus gamma chain FcγRI/III have about 99% identity. TABLE 12 Cyno vs Human = 85/86 = 98.8% identity [0205] An amino acid sequence for human gamma chain has Accession Nos.: P30273; EMBL; M33195; AAA35828.1. EMBL; M33196; -. PIR; A35241. MIM; 147139; -. Kuester H., Thompson H., Kinet J.-P., J. Biol. Chem. 265, 6448-6452, 1990, Characterization and expression of the gene for the human Fc receptor gamma subunit. Definition of a new gene family. [0206] An alignment of the amino acid sequences for human (SEQ ID NO: 26) and cynomolgus (SEQ ID NO: 25) β -2 microglobulin is shown in Table 13. The mature β -2 microglobulin has an amino acid sequence of amino acids Δ 1 to Δ 99 (SEQ ID NO: 70). [0207] Analysis of the % sequence identity shows that the amino acid sequences for human and cynomolgus β -2 microglobulin have about 92% identity with no deletions or insertions. TABLE 13 Alignment of Human and Cynomolgus $\beta2\textsc{-Microglobulin}$ Human MSRSVALAVLALLSLSGLEA Cyno MSPSVALAVLALLSLSGLEA ${\tt Human} \quad {\tt IQRTPKIQVYSRHPAENGKSNFLNCYVSGFHPSDIEVDLLKNGERIEKVEHSD}$ • TABLE 13-continued | | Alignment | of Human | and | Cynomolgus | β2-Microglo | bulin | |-------|-----------|------------|-------|--------------|-------------|-----------| | Cyno | IQRTPKIQV | /YSRHPPENG | SKPNI | FLNCYVSGFHPS | DIEVDLLKNGE | KMGKVEHSD | | | Δ | Δ | Δ | Δ | Δ | Δ | | | 1 : | 10 | 20 | 30 | 40 | 50 | | Human | LSFSKDWSI | YLLYYTEF: | PTE | KDEYACRVNHVI | LSQPKIVKWDF | RDM | | | | | • | | • •• | | | Cyno | LSFSKDWSI | YLLYYTEF | CPNEI | KDEYACRVNHVI | LSGPRTVKWDF | RDM | | | Δ | Δ | | Δ | Δ | | | | 60 | 70 | | 80 | 90 | | [0208] Cyno vs Human 109/119=91.6% identity [0209] The human amino acid sequence for β -2 microglobulin has Accession Nos.: P01884; EMBL; M17987; AAA51811.1. EMBL; M17986; AAA51811.1. EMBL; BAA35182.1. AB021288; EMBL; AF072097; AAD48083.1. EMBL; V00567; CAA23830.1. EMBL; M30683; AAA87972.1. EMBL; M30684; AAA88008.1. PIR; A02179. PIR; A28579. PDB; 1HLA. Guessow D., Rein R., Ginjaar I., Hochstenbach F., Seemann G., Kottman A., Ploegh H. L., The human beta 2-microglobulin gene. Primary structure and definition of the transcriptional unit, J. Immunol. 139, 3132-3138 (1987); Matsumoto K., Minamitani T., Human mRNA for beta 2-microglobulin, Medline: Embl/genbank/ddbj database (1998); Zhao Z., Huang X., Li N., Zhu X., Cao X., A novel gene from human dendritic cell, Embl/genbank/ddbj databases (1998); Rosa F., Berissi H., Weissenbach J., Maroteaux L., Fellous M., Revel M., The beta-2-microglobulin mRNA in human Daudi cells has a mutated initiation codon but is still inducible by interferon, EMBO J. 2, 239-243 (1983); Suggs S. V., Wallace R. B., Hirose T., Kawashima E. H., Itakura K., Use of synthetic oligonucleotides as hybridization probes: isolation of cloned cDNA sequences for human beta 2-microglobulin, Proc. Natl. Acad. Sci. USA 78, 6613-6617 (1981); Cunningham B. A., Wang J. L., Berggard I., Peterson P. A., The complete amino acid sequence of beta 2-microglobulin, Biochem. 12, 4811-4822 (1973); Lawlor D. A., Warren E., Ward F. E., Parham P., Comparison of class I MHC alleles in human and apes, Immunol. Rev. 113, 147-185 (1990); Bjorkman P. J., Saper M. A., Samraoui B., Bennett W. S., Strominger J. L., Wiley D. C., Structure of the human class I histocompatibility antigen, HLA-A2, Nature 329, 506-512 (1987); Saper M. A., Bjorkman P. J., Wiley D. C., Refined structure of the human histocompatibility antigen HLA-A2 at 2.6A resolution, J. Mol. Biol. 219, 277-319 (1991); Collins E. J., Garboczi D. N., Karpusas M. N., Wiley D. C., The three-dimentional structure of a class I major histocompatibility complex molecule missing the alpha 3 domain of the heavy chain, Proc. Natl. Acad. Sci USA 92, 1218-1221 (1995). [0210] An
alignment of the amino acid sequences for human (SEQ ID NO: 30) and cynomolgus FcRn α -chain (SEQ ID NO: 29) is shown in Table 14. Two alleles of cynomolgus FcRn were identified. One sequence is that of SEQ ID NO: 29 and has a serine at position 3 (S3) of the mature polypeptide. Another sequence is SEQ ID NO: 64 has an asparagine at position 3 (N3) in the mature polypeptide. The mature polypeptide of FcRnS3 α -chain has a sequence of amino acids $\Delta 1$ to $\Delta 342$ (SEQ ID NO: 71). The mature polypeptide of FcRnN3 α -chain has a sequence of $\Delta 1$ to $\Delta 342$ (SEQ ID NO: 72). An extracellular fragment of the FcRn prepared by the method of example 1, has an amino acid sequence of $\Delta 1$ to $\Delta 274$. [0211] Analysis of the % sequence identity shows that the amino acid sequences for human and cynomolgus FcRn have about 97% identity with no deletions or insertions. TABLE 14 Alignment of Human and Cynomolgus FcRn α-Chain 354/365 = 97% identity Signal Cyno MRVPRPQPWALGLLFLLPGSLG • Human MGVPRPQPWALGLLFLLPGSLG Extracellular Domain Cyno AESHLSLLYHLTAVSSPAPGTPAFWVSGWLGPQQYLSYDSLRGQAEPCGA CynoN3 1 TABLE 14-continued | | Alignment of | Human and
354/365 = | | | Chain | |-----------------|--------------------------------|------------------------|-------------|-------------|------------| | Human | AESHLSLLYHL | TAVSSPAPGTI | PAFWVSGWLG | PQQYLSYNSL | RGEAEPCGA | | | Δ | Δ | Δ | Δ | Δ | | | 10 | 20 | 30 | 40 | 50 | | Cyno | WVWENQVSWYWI | EKETTDLRIKI | EKLFLEAFKA | LGGKGPYTLQ | GLLGCELSP | | | | | | | • | | Human | WVWENQVSWYWI | EKETTDLRIK | EKLFLEAFKA | LGGKGPYTLQ | GLLGCELGP | | | Δ | Δ | Δ | Δ | Δ | | | 60 | 70 | 80 | 90 | 100 | | Cyno | DNTSVPTAKFAI | LNGEEFMNFDI | LKQGTWGGDW | PEALAISQRW | QQQDKAANK | | Human | DNTSVPTAKFAI | LNGEEFMNFDI | LKQGTWGGDW | PEALAISQRW | QQQDKAANK | | | Δ | Δ | Δ | Δ | Δ | | | 110 | 120 | 130 | 140 | 150 | | Cyno | ELTFLLFSCPHI | | GNLEWKEPPS | MRLKARPGNP | | | -1 | | | | •• | | | Human | ELTFLLFSCPHI | OT DEHT EDGD | INT FWKFDDS | MDT KADDGGD | CESVI TOSA | | mamam | Δ | Δ | A A | Δ | Δ | | | 160 | 170 | 180 | 190 | | | _ | | | | | 200 | | Cyno | FSFYPPELQLRI | LKNGMAAGT | -ÕGDL.GBN2D | GSFHASSSLT | VKSGDEHHY | | | | •
 | | | | | Human | FSFYPPELQLRI | | | | | | | Δ | Δ | Δ | Δ | Δ | | | 210 | 220 | 230 | 240 | 250 | | Cyno | CCIVQHAGLAQI | PLRVELETPA | KSS | | | | | | • | | | | | Human | CCIVQHAGLAQI | PLRVELESPA | KSS | | | | | Δ | Δ | | | | | | 260 | 270 | | | | | Transme
Cyno | embrane/Intrac
VLVVGIVIGVLI | | LLWRRMRSGL | PAPWISLRGD | DTGSLLPTP | | | | | | | 0 | | Human | VLVVGIVIGVLI | LLTAAAVGGAI | LLWRRMRSGL | PAPWISLRGD | DTGVLLPTP | | | Δ | Δ | Δ | Δ | Δ | | | 280 | 290 | 300 | 310 | 320 | | Cyno | GEAQDADSKDII | NVIPATA | | | | | | | | | | | TABLE 14-continued | | Alignment o | of Human and Cynomolgus FcRn α -Chain 354/365 = 97% identity | |-------|-------------|---| | Human | GEAQDADLKD | VNVIPATA | | | Δ | Δ | | | 330 | 340 | [0212] The human amino acid sequence for FcRn has Accession No.: U12255. Story C. M., Mikulska J., Simister N. E., A major histocompatibility complex class I-like Fc receptor cloned from human placenta: Possible role in transfer of immunoglobulin G from mother to fetus, J. Exp. Med. 180, 2377-2381 (1994). ## Example 3 Cynomolgus FeyRI And Human FcyRI Bind Human IgG Subclasses Equivalently [0213] Materials and Methods: [0214] Human IgG2, IgG3, and IgG4 isotypes of E27 (IgG 1) were constructed by subcloning the appropriate heavy chain Fc cDNA from a human spleen cDNA library into a pRK vector containing the E27 variable heavy domain. All IgG subclasses and variants were expressed using the same E27 κ light chain as described in Shields, R. L., Namenuk, A. K., Hong, K., Meng, Y. G., Rae, J., Briggs, J., Xie, D., Lai, J., Stadlen, A., Li, B., Fox, J. A., and Presta, L. G. (2001) *J. Biol. Chem.* 276:6591-6604 or U.S. Pat. No. 6,194,551. [0215] Following cotransfection of heavy and light chain plasmids into 293 cells, IgG1, IgG2, IgG4 and variants were purified by protein A chromatography. IgG3 was purified using protein G chromatography. All protein preparations were analyzed using a combination of SDS-polyacrylamide gel electrophoresis, ELISA, and spectroscopy. [0216] The cDNA for Human FcγRI was isolated by reverse transcriptase-PCR (GeneAmp, PerkinElmer Life Sciences) of oligo(dT)-primed RNA from U937 cells using primers that generated a fragment encoding the α-chain extra-cellular domain. Human FcγR extracellular domains bound to Gly/6-His/GST fusions were prepared as described in Shields, R. L., Namenuk, A. K., Hong, K., Meng, Y. G., Rae, J., Briggs, J., Xie, D., Lai, J., Stadlen, A., Li, B., Fox, J. A., and Presta, L. G. (2001) J. Biol. Chem. 276:6591-6604 or U.S. Pat. No. 6,194,551. The cDNA was subcloned into previously described pRK mammalian cell expression vectors, as described in Eaton et al., 1986, Biochemistry, 25:8343-8347. The cDNA for cynomolgus FcγRI was isolated as described in Example 1. [0217] To facilitate the purification of the expressed human and cynomologus FcγRI, the transmembrane domain and intracellular domain of each were replaced by DNA encoding a Gly-His₆ tag and human glutathione S-transferase (GST). The GST sequence was obtained by PCR from the pGEX4T2 plasmid (Amersham Pharmacia Biotech) with NheI and XbaI restriction sites at the 5' and 3' ends, respectively. The expressed FcγRI contained the extracellu- lar domains of the α -chain fused at His271 to Gly/His $_6$ /GST. Primers used to subclone the extracellular portion of the cynomolgus FcyRI α -chain are shown in Table 1. [0218] The cynomolgus and human FcγRI plasmids were transfected into human embryonic kidney 293 cells by calcium phosphate precipitation (Gorman, C. M., Gies, D. R., and McCray, G. (1990) DNA Prot. Engineer. Tech. 2, 3-10). Supernatants were collected 72 hours after conversion to serum-free PSO₄ medium supplemented with 10 mg/liter recombinant bovine insulin, 1 mg/liter human transferrin, and trace elements. Proteins were purified by nickel-nitrilotriacetic acid chromatography (Qiagen, Valencia, Calif.). Purified protein was analyzed through a combination of 4-20% SDS-polyacrylamide gel electrophoresis, ELISA, and amino acid analysis. [0219] Standard enzyme-linked immunoabsorbent assays (ELISA) were performed in order to detect and quantify interactions between cynomologus FcγRI or human FcγRI and human IgG1, IgG2, IgG3, or IgG4 (Table 15). ELISA plates (Nunc) were coated with 150 ng/well by adding 100 μL of 1.5 μg/ml stock solution cynomologus FcγRI or human FcγRI in PBS for 48 hours at 4° C. After washing plates five times with wash buffer, (PBS, pH 7.4 containing 0.5% Tween-20), plates were blocked with 250 μL of assay buffer (50 mM Tris-buffered saline, 0.05% Tween-20, 0.5% RIAgrade bovine serum albumin, 2 mM EDTA, pH 7.4) at 25° C. for 1 hours. Plates were washed five times with wash buffer. [0220] Serial 3-fold dilutions of monomeric antibody $(10.0-0.0045 \,\mu\text{g/ml})$ were added to plates and incubated for 2 hours. After washing plates five times with assay buffer, the detection reagent was added. Several different horseradish peroxidase (HRP)-conjugated reagents were used to detect the IgG-FcyRI interaction, including: HRP-Protein G (Bio-Rad), goat HRP-anti-human IgG (Boehringer-Mannheim, Indianapolis, Ind.), and murine HRP-anti-human Kappa light chain. After incubation with detecting reagent at 25° C. for 90 minutes, plates were washed five times with wash buffer and 100 μ l of 0.4 mg/ml o-phenylenediamine dihydrochloride (Sigma, St. Louis, Mo.) was added. Absorbance at 490 nm was read using a Vmax plate reader (Molecular Devices, Mountain View, Calif.). Note that values reported in Table 15 are the mean+deviation relative to binding of human IgG1 at an IgG1 concentration of 0.370 ug/ml. Titration plots for human IgG using murine HRPanti-human Kappa light chain as detecting reagent are shown for cynomolgus FcyRI (FIG. 1B) and human FcyRI (FIG. 1A). [0221] Results and Discussion: [0222] As illustrated in Table 15, the pattern of binding of cynomolgus FcyRI and human FcyRI to the four human IgG subclasses was similar, regardless of the detection reagent. In each case, human or cynomolgus showed the highest level of binding to IgG3 and the lowest level of binding to IgG2. In particular, the pattern for both human and cynomolgus receptor-IgG interaction was IgG3≥IgG1>IgG4>>>IgG2. Note that the data from the human FcγRI-IgG binding interactions corresponds to data previously reported. Gessner et al, 1998, Ann. Hematol. 76:231-248; Deo et al., 1997, Immunology Today 18:127-135; Van de Winkel, 1993, Immunology Today 14:215-221. TABLE 15 | | Binding of monomeric human IgG subclasses
to <i>cynomolgus</i> and human FcyRI ^a | | | | | | | | | | |----------|--|------------|------------|------------|--|--|--|--|--|--| | | Cynomolgus FeyRI Human FeyRI | | | | | | | | | | | Subclass | ProtG ^b | anti-huIgG | anti-kappa | ProtG | | | | | | | | E27IgG1 | 1.00 | 1.00 | 1.00 | 1.00 | | | | | | | | E27IgG2 | 0.13 ± 0.04 | 0.04, 0.04 | 0.11, 0.14 | 0.08, 0.08 | | | | | | | | E27IgG3 | 1.01 ± 0.06 | 1.22, 1.15 | 1.32, 1.37 | 1.14, 1.03 | | | | | | | | E27IgG4 | 0.52 ± 0.04 | 0.44, 0.45 | 0.60, 0.63 | 0.27, 0.27 | | | | | | | ^aDetection reagents were HRP-conjugated Protein G (ProtG), HRP-conjugated murine anti-human IgG, heavy chain specific (anti-huIgG), or HRP-conjugated murine anti-human kappa light chain (anti-kappa). Values are the ratio of $OD_{490~nm}$ (E27IgG subclass) to $OD_{490~nm}$ (E27IgG1) at 0.37 μ g/ml. ^bMean \pm S.D., n = 4. [0223] As illustrated in FIGS. 1A and 1B, binding affinity of the human and cynomolgus FcyRI is similar for each of the tested IgG subclasses. In both cases, human
and cynomolgus receptors showed a markedly higher affinity for IgG3 and IgG1 as compared to the IgG4 and IgG2. FIGS. 1A and 1B also shows that the IgG subclass binding to FcyRI is concentration-dependent and saturable. [0224] This data illustrates that cynomolgus FcγRI can replace human FcγRI in the detection of IgG subclasses as human and cynomolgus reveal similar binding patterns of interaction with similar affinities for each IgG subclass. #### Example 4 Cynomolgus FcyRIIA Binds Human IgG2 [0225] Materials and Methods [0226] ELISA assays analyzing human IgG subclass binding to cynomolgus FcyRIIA were performed using essentially the methods as described in Example 3. However, because FcyRIIA is a low-affinity FcyR, hexameric complexes of each human IgG subclass was formed prior to addition to the Fc receptor. Hexameric complexes were formed by mixing the human IgG subclass with a human IgG at a 1:1 molar ratio. Liu, J., Lester, P., Builder, S., and Shire, S. J. (1995) Biochemistry 34:10474-10482. Preparation of the hexameric complexes and their use in FcyRII and FcyRIII assays were as described in Shields, R. L., Namenuk, A. K., Hong, K., Meng, Y. G., Rae, J., Briggs, J., Xie, D., Lai, J., Stadlen, A., Li, B., Fox, J. A., and Presta, L. G. (2001) J. Biol. Chem. 276:6591-6604. A plasmid encoding human FcyRIIA(R131) can be readily prepared using the sequence information as described in GenBank or other published sources and see Warmerdam et al., 1991 J. of Immunology 147:1338-1343 and Clark et al., 1991 J of Immunology 21:1911-1916. [0227] Results and Discussion: [0228] As illustrated by Table 16, the pattern of cynomolgus FcyRIIA binding to hexameric complexes of the human IgG subclasses was IgG3=IgG2>IgG1>IgG4. Previous analysis of human IgG subclass binding to the two polymorphic human FcyRIIA forms showed the pattern: human FcyRIIA(R131)-IgG3≧IgG1>>>IgG2≧IgG4 FcγRIIA(H 131)-IgG3≧IgG1=IgG2>>>IgG4. Gessner et al, 1998, Ann. Hematol. 76:231-248; Deo et al., 1997, Immunology Today 18:127-135; Van de Winkel, 1993, Immunology Today 14:215-221. These binding patterns show that cynomolgus FcyRIIA, which has a histidine at amino acid 131, is comparable to the human FcyRIIA(H131), both of which bind human IgG2. In contrast, human FcyRIIA(R131) has been reported to bind human IgG2 poorly. Note also that cynomolgus FcyRIIA binds human IgG2 as efficiently as it binds human IgG3, a difference from the human FcyRIIA(H 131) receptor. TABLE 16 Binding of hexameric complexes of human IgG subclasses | | to cynomolgu | s and human FcγR | KIIA ^a | | |----------|--------------|------------------|---------------------|--| | Subclass | ProtG | ProtG anti-huIgG | | | | | Cynon | nolgus FcγRIIA | | | | E27IgG1 | 1.00 | 1.00 | 1.00 | | | E27IgG2 | 2.11 | 1.27 | 2.20 ± 0.93^{b} | | | E27IgG3 | 1.10 | 1.56 | 2.44 ± 0.47 | | | E27IgG4 | 0.12 | 0.12 | 0.42 ± 0.18 | | | - | Human | FcyRIIA(H131) | | | | | | , , , , , | • | | | E27IgG1 | 1.00 | 1.00 | 1.00 | | | E27IgG2 | 0.95 | 0.83 | 0.84 | | | E27IgG3 | 0.78 | 1.03 | 0.98 | | | E27IgG4 | 0.25 | 0.47 | 0.19 | | | | Human | FcγRIIA(R131) | | | | | | | - | | | E27IgG1 | 1.00 | 1.00 | 1.00 | | | E27IgG2 | 0.63 | 0.40 | 0.47 | | | E27IgG3 | 1.17 | 1.14 | 0.85 | | | E27IgG4 | 0.59 | 0.44 | 0.27 | | ^aDetection reagents were HRP-conjugated Protein G (ProtG), HRP-conjugated murine anti-human IgG, heavy chain specific (anti-huIgG), or HRP-conjugated murine anti-human kappa light chain (anti-kappa). Values are the ratio of OD_{490 nm} (E27IgG subclass) to OD_{490 nm} (E27IgG1) at 0.123 µg/ml. ^bMean ± SD, n = 3. [0229] The binding of cynomolgus FcγRIIA to each IgG subclass generally increased as the concentration of each antibody subclass increased (FIG. 2). [0230] The data from table 16 and FIG. 2 illustrates that cynomolgus FcqRIIA binds human IgG2 and IgG3 with high efficiency and may be a preferable agent for use in detecting these human subclasses to either of the two human polymorphic forms of FcqRIIA. ## Example 5 Cynomolgus FcyRIIB Binds Human IgG2 [0231] Materials and Methods [0232] The methods used to detect FcqRIIB binding to human IgG subclasses was essentially as shown in Examples 3 and 4. Plasmid encoding human FcqRIIB is known and readily obtainable by those of skill in the art and see Kurucz et al., 2000, Immunol Lett 75(1):33-40. Data reported in Table 17-represent the mean±deviation relative to binding of human IgG1 at an IgG1 concentration of 0.370 μg/ml. #### [0233] Results and Discussion: [0234] Table 17 illustrates the binding of hexameric complexes of the human IgG subclasses to human and cynomolgus FcyRIIB. The binding pattern between the IgG subclasses and human FcγRIIB is IgG3≥IgG1>IgG2>IgG4 and between the IgG subclasses and cynomolgus FcyRIIB is IgG2≧IgG3>IgG1>IgG4. This binding pattern was the same for both human (FIG. 3A) and cynomolgus (FIG. 3B) over a range of IgG concentrations. [0235] This data illustrates that cynomolgus FcyRIIB has a stronger binding affinity for IgG2 than does human FcyRIIB. TABLE 17 | Binding of Hexameric Complexes of Human IgG Subclasses | |--| | to Cynomolgus and Human FcγRIIB | | | <i>C</i> | _Human FcγRIIB | | | |--|---|---|---|---| | Subclass | ProtG ^b | anti-huIgG ^c | anti-kappa ^d | ProtG ^d | | E27IgG1
E27IgG2
E27IgG3
E27IgG4 | 1.00
1.89 ± 0.37
1.25 ± 0.17
0.48 ± 0.11 | 1.00
1.26 ± 0.15
1.69 ± 0.20
0.58 ± 0.16 | 1.00
2.73 ± 1.00
2.99 ± 1.26
0.64 ± 0.21 | 1.00
0.43 ± 0.10
1.03 ± 0.13
0.23 ± 0.08 | ^aDetection reagents were HRP-conjugated Protein G (ProtG), HRP-conjugated murine anti-human IgG, heavy chain specific (anti-huIgG), or HRPconjugated murine anti-human kappa light chain (anti-kappa). Values are the ratio of $OD_{490~nm}$ (E27IgG subclass) to $OD_{490~nm}$ (E27IgG1) at 0.37 ## Example 6 Cynomolgus FcyRIIIA And Human FcyRIIIA-V158 Exhibit Equivalent Binding To Human IgG Subclasses ### [0236] Materials and Methods: [0237] The methods used to detect FcyRIIIA binding to human IgG subclasses was essentially as shown in Examples 3 and 4. As described previously, a human DNA sequence for Fc γ RIIA α -chain is known and readily obtainable by those of skill in the art. Data reported in Table 18 represents the mean±deviation relative to binding of human IgG1 at an IgG1 concentration of 0.370 μ g/ml. ## [0238] Results and Discussion: [0239] As illustrated in Table 18, cynomolgus FcyRIIIA and human FcyRIIIA-V 158 both bind human IgG subessentially classes with the same pattern, IgG1>IgG3>>IgG2≧IgG4, as compared to human FcyRIIIA-F158, which binds with the pattern, IgG3= IgG1>>>IgG2=IgG4. The human FcyRIIIA-F158-human IgG subclass binding data is in agreement with previous reports. Gessner et al, 1998, Ann. Hematol. 76:231-248; Deo et al., 1997, Immunology Today 18:127-135; Van de Winkel, 1993, Immunology Today 14:215-221. FIGS. 4A, 4B, and 4C illustrate the binding pattern for human FcyRIIIA-F158, human FcyRIIIA-V158, and cynomolgus FcyRIIIA, respectively, for increasing concentrations of each IgG subclass and indicate that the binding interactions are specific and concentration dependent and saturable. [0240] The data illustrates that cynomolgus FcyRIIIA and human FcyRIIIA-V158 have equivalent binding interactions with the human IgG subclasses, and in particular that cynomolgus FcyRIIIA has preferred binding to the IgG2 subclass as compared to the human FcyRIIIA. TABLE 18 | Binding o | Binding of Hexameric Complexes of Human IgG Subclasses to Cynomolgus and Human FcγRIIIA | | | | | | | | | | |-----------|---|--------------------------|--------------------------|--|--|--|--|--|--|--| | Subclass | Cynomolgus ^b | Human(F158) ^c | Human(V158) ^c | | | | | | | | | E27IgG1 | 1.00 | 1.00 | 1.00 | | | | | | | | | E27IgG2 | 0.11 ± 0.02 | 0.06, 0.13 | 0.06, 0.03 | | | | | | | | | E27IgG3 | 0.82 ± 0.08 | 0.75, 0.82 | 0.79, 0.82 | | | | | | | | | E27IgG4 | 0.15 ± 0.04 | 0.06, 0.11 | 0.06, 0.04 | | | | | | | | ^aDetection reagent was HRP-conjugated Protein G. Values are the ratio of OD $_{\rm 490~nm}$ (E27IgG subclass) to OD $_{\rm 490~nm}$ (E27IgG1) at 0.37 μ g/ml for cynomolgus FcγRIIIA and human FcγRIIIA(V158) and 1.11 μ g/ml for human FcyRIIIA(F158). $^{\circ}$ Mean \pm SD, n = 4. #### Example 7 #### Cynomolgus FcyRIIA Binds Human IgG1 Variants S298A and S298A/E333A/K334A ## [0241] Materials and Methods: [0242] Site-directed mutagenesis on E27 IgG1 was essentially as described in Shields et al., 2001, J. Biol. Chem., 276:6591-6604. Briefly, site-directed mutagenesis was used to generate IgG1 variants in which a number of solventexposed residues in the CH2 and CH3 domains were individually altered to alanine. The alanine variants were D265A, S298A, S37A, R292A, D280A and S298A/E333A. [0243] ELISA reactions were essentially as described in Examples 3-6, where IgG variants were incubated with the Fc receptors, rather than native IgG protein. Note that for the values provided in Table 19, human receptors are (Absorbance Variant/Absorbance Native IgG1) at 1 µg/ml and for cynomolgus receptors, values are (Absorbance Variant/Absorbance Native IgG1) at 0.370 µg/ml. # [0244] Results and Discussion: [0245] As illustrated by Table 19 and FIGS. 5-7, the binding pattern of all IgG variants to cynomolgus FcyRI was similar to that for human FcyRI. With regard to IgG variant binding to cynomolgus FcyRIIA, the pattern generally followed the same pattern for human polymorph FcyRIIA(H131). (FIG. 5). As above, this likely reflects the fact that the cynomolgus FcyRIIA has a histidine as residue 131.
Note, however, that there were two notable exceptions, variant S298A and variant S298A/E333A/K334A had improved binding to the cynomolgus FcyRIIA as compared to native human IgG1, and these same variants bound poorly to human FcyRIIA. [0246] Referring to Table 19 and FIG. 6, the pattern of variant IgG binding to cynomolgus FcyRIIB exhibited several differences from the binding pattern for human $[\]mu$ g/ml. ⁶Mean ± SD, n = 8. $^{^{}c}$ Mean \pm SD, n = 5. $^{^{}d}$ Mean \pm SD, n = 3. [°]Human(F158) and Human(V158) are polymorphic forms of human FcyRIIIA with phenylalanine or valine at receptor position 158. FcγRIIB. In particular, variants R255A, E255A, E258A, S37A, D280A, and R301A bound the cynomolgus FcγRIIB equivalently as they had native human IgG, whereas these same variants all exhibited improved binding to the human FcγRIIB when compared to native human IgG. [0247] Referring to Table 19 and FIG. 7, the binding pattern of the variant IgG to cynomolgus FcyRIIIA followed the binding pattern established for human polymorph FcyIIIA-V 158, as compared to the binding pattern for human polymorph FcyIIIA-F 158. This likely reflects the fact that the cynomolgus FcyRIIIA has a similar amino acid residue, isoleucine, at position 158 as does human FcyRIIIA-V158 (compared to the phenylalanine located in FcyRIIIA-F158). [0248] Blocking the inhibitory signals (e.g., ITIM-containing FcγRIB) mediated by Fc receptors, which counterbalance the activating signals (e.g., ITAM-containing FcγRI, FcγRIIA, and FcγRIIIA) mediated by Fc receptors, may provide for improved therapeutic efficacy of antibodies. An unexpected result shown in Table 19 is that variants having S298A showed improved binding to cynomolgus FcγRIIA, maintained native-like binding to cynomolgus FcγRIIA, maintained native-like binding to cynomolgus FcγRII and FcγRIIIA, and showed significantly decreased binding to cynomolgus FcγRIIB. Two variants in particular, S298A and S298A/E333A/K334A may be used to selectively engage the activating ITAM-containing Fc receptors, while simultaneously not engaging the inhibitory ITIM-containing FcγRIIB. TABLE 19 | Binding of Human E27 IgG1 Variants to Human and Cynomolgus FcyR | | | | | | | | | | |---|------------------------------------|--|------------------------------------|------------------------------------|--|--|--|--|--| | Variant | FcγRI | FcγRIIA | FcγRIIB | FcγRIIIA | | | | | | | S239A | | | | | | | | | | | Human | 0.81 ± 0.09 | 0.73 ± 0.25 | 0.76 ± 0.36 | 0.26 ± 0.08 | | | | | | | Cynomolgus | N/A | 0.68 ± 0.04 | N/A | N/A | | | | | | | R255A | 0.99 ± 0.12 | 1 20 . 0 20 | 1.59 ± 0.42 | 0.00 . 0.10 | | | | | | | Human
Cynomolgus | 0.99 ± 0.12
0.85 ± 0.15 | 1.30 ± 0.20
1.09 ± 0.07 | 0.80 ± 0.42
0.80 ± 0.06 | 0.98 + 0.18
0.91 ± 0.08 | | | | | | | E258A | 0.03 ± 0.13 | 1.00 ± 0.07 | 0.00 ± 0.00 | 0.51 ± 0.00 | | | | | | | Human | 1.18 ± 0.13 | 1.33 ± 0.22 | 1.65 ± 0.38 | 1.12 ± 0.12 | | | | | | | Cynomolgus | 0.91 ± 0.08 | 0.88 ± 0.05 | 0.99 ± 0.07 | 0.93 ± 0.11 | | | | | | | D265A | | | | | | | | | | | Human | 0.16 ± 0.05 | 0.07 ± 0.01 | 0.13 ± 0.05 | 0.09 ± 0.06 | | | | | | | Cynomolgus | N/A | 0.05 ± 0.02 | 0.05 | 0.04 ± 0.01 | | | | | | | S37A | 1.09 ± 0.08 | 1.50 . 00(D) | 1.04 - 0.43 | 1.05 - 0.24 | | | | | | | Human | 1.09 ± 0.08 | $1.52 \pm .22(R)$
$1.10 \pm .12(H)$ | 1.84 ± 0.43 | 1.05 ± 0.24 | | | | | | | Cynomolgus | 1.02 ± 0.09 | 1.10 ± 0.12 (H)
1.23 ± 0.34 | 1.04 ± 0.30 | 0.88 ± 0.11 | | | | | | | H268A | 1.02 ± 0.09 | 1.25 ± 0.54 | 1.04 ± 0.50 | 0.00 ± 0.11 | | | | | | | Human | 1.10 ± 0.11 | $1.21 \pm .14(R)$ | 1.44 ± 0.22 | 0.54 ± 0.12 | | | | | | | | | 0.97 ± .15(H) | | | | | | | | | Cynomolgus | 1.02 ± 0.09 | 0.99 ± 0.07 | 1.20 | 0.86 ± 0.07 | | | | | | | D280A | | | | | | | | | | | Human | 1.04 ± 0.08 | 1.34 ± 0.14 | 1.60 ± 0.31 | 1.09 ± 0.20 | | | | | | | Cynomolgus | 0.97 ± 0.08 | 1.45 ± 0.18 | 1.20 ± 0.11 | 0.99 ± 0.04 | | | | | | | R292A | 0.05 . 0.05 | 0.27 - 0.12 | 0.17 - 0.07 | 0.00 - 0.17 | | | | | | | Human
Cynomolgus | 0.95 ± 0.05
0.87 ± 0.08 | 0.27 ± 0.13
0.80 ± 0.23 | 0.17 ± 0.07
0.63 ± 0.06 | 0.89 ± 0.17
0.90 ± 0.09 | | | | | | | E293A | 0.67 ± 0.06 | 0.60 ± 0.23 | 0.03 ± 0.00 | 0.90 ± 0.09 | | | | | | | Human | 1.11 ± 0.07 | 1.08 ± 0.19 | 1.07 ± 0.20 | 0.31 ± 0.13 | | | | | | | Cynomolgus | N/A | 0.92 ± 0.07 | N/A | N/A | | | | | | | S298A | | | | · | | | | | | | Human | 1.11 ± 0.03 | $0.40 \pm .15(R)$ | 0.23 ± 0.13 | $1.34 \pm 0.20(F)$ | | | | | | | | | $0.24 \pm .08(H)$ | | $1.07 \pm .07(V)$ | | | | | | | Cynomolgus | 1.06 ± 0.09 | 2.07 ± 0.30 | 0.20 ± 0.09 | 0.98 ± 0.13 | | | | | | | R301M | 406 040 | 4.00 0.47 | 156 010 | 0.40 0.04 | | | | | | | Human | 1.06 ± 0.12
1.00 ± 0.09 | 1.29 ± 0.17
1.62 ± 0.30 | 1.56 ± 0.12
1.27 ± 0.20 | 0.48 ± 0.21
0.85 ± 0.08 | | | | | | | Cynomolgus
P329A | 1.00 ± 0.09 | 1.02 ± 0.30 | 1.27 ± 0.20 | 0.85 ± 0.08 | | | | | | | Human | 0.48 ± 0.10 | 0.08 ± 0.02 | 0.12 ± 0.08 | 0.21 ± 0.03 | | | | | | | Cynomolgus | N/A | 0.08 ± 0.02
0.21 ± 0.06 | N/A | N/A | | | | | | | E333A | 14/24 | 0.21 ± 0.00 | 14/24 | IV/A | | | | | | | Human | 0.98 ± 0.15 | 0.92 ± 0.12 | 0.76 ± 0.11 | 1.27 ± 0.17 | | | | | | | Cynomolgus | N/A | 0.67 ± 0.09 | N/A | N/A | | | | | | | K334A | | | - , | - , | | | | | | | Human | 1.06 ± 0.07 | 1.01 ± 0.15 | 0.90 ± 0.12 | $1.39 \pm 0.19(F)$ | | | | | | | | | | | 1.10 ± .07(V) | | | | | | | Cynomolgus | 1.08 ± 0.09 | 0.92 ± 0.15 | 0.66 ± 0.14 | 1.00 ± 0.15 | | | | | | | A339T | | | | | | | | | | | Human | 1.06 ± 0.04 | 1.09 ± 0.03 | 1.20 ± 0.03 | 1.34 ± 0.09 | | | | | | | Cynomolgus | N/A | 1.05 ± 0.02 | N/A | N/A | | | | | | | S298A/E333A/K334A | | | | | | | | | | | Human | N/A | 0.35 ± 0.13 | 0.18 ± 0.08 | $1.51 \pm 0.31(F)$ | | | | | | | | | | | $1.11 \pm .08(V)$ | | | | | | | Cynomolgus | 1.19 ± 0.08 | 1.99 ± 0.24 | 0.12 ± 0.04 | 1.08 ± 0.15 | | | | | | | | | | | | | | | | | ## Example 8 Cynomolgus FcRn And Human FcRn Bind Human IgG Subclasses Equivalently [0249] Materials and Methods: [0250] Human IgG2, IgG3, and IgG4 isotypes of E27 (IgG1) were constructed by subcloning the appropriate heavy chain Fc cDNA from a human spleen cDNA library into a pRK vector containing the E27 variable heavy domain. All IgG subclasses and variants were expressed using the same E27 κ light chain. [0251] Following cotransfection of heavy and light chain plasmids into 293 cells, IGGI, IgG2, IgG4 and variants were purified by protein A chromatography. IgG3 was purified using protein G chromatography. All protein preparations were analyzed using a combination of SDS-polyacrylamide gel electrophoresis, ELISA, and spectroscopy. [0252] Herceptin[™] IgG1 was essentially constructed as described in Coussens et al., 1985, *Science*, 230:1132-39. Herceptin[™] IgG1 is a recombinant DNA-derived monoclonal antibody having an IgG1 κ chain that contains a consensus amino acid framework with complementary-determining regions of a murine antibody (4D5) that binds HER2. [0253] The cDNA for cynomologus FcRn was isolated by reverse transcriptase-PCR (GeneAmp, PerkinElmer Life Sciences) of oligo(dT)-primed RNA from cynomologus spleen cells using primers that generated a fragment encoding the α-chain extra-cellular domain as described in Example 1. The cDNA was subcloned into previously described pRK mammalian cell expression vectors, as described in Eaton et al., 1986, *Biochemistry*, 25:8343-8347. Two DNA sequences were identified and confirmed that differed at base 77, one sequence had base G, giving Ser 3 in the mature polypeptide, and the other had base A giving Aspargine 3 in the mature polypeptide. The cDNA for cynomolgus FcRn (S3) and FcRn (N3) were isolated essentially as described in Example 1. [0254] The cynomolgus and human FcRn plasmids were transfected into human embryonic kidney cells by calcium phosphate precipitation (Gorman, C. M., Gies, D. R., and McCray, G, 1990, DNA Prot. Engineer. Tech., 2:3-10). Supernatants were collected 72 hours after conversion to serum-free PSO₄ medium supplemented with 10 mg/liter recombinant bovine insulin, 1 mg/liter human transferrin, and trace elements. Proteins were purified using nickel nitrothiacetic acid chromatography (Qiagen, Valencia, Calif.). Purified protein was analyzed through a combination of 4-20% SDS-polyacrylamide gel electrophoresis, ELISA, and amino acid analysis. [0255] Standard enzyme-linked immunoabsorbent assays (ELISA) were performed in order to detect and quantify interactions between cynomolgus FcRn (S3), FcRn (N3) or human FcRn and human IgG1 (including herceptin IgG1), IgG2, IgG3, or IgG4 (table 20). ELISA plates (Nunc) were coated with 2 μ g/ml streptavidin (Zymed Laboratories Inc., South San Francisco, Calif.) in 50 mM carbonate buffer, pH 9.6, at 4° C. overnight. Plates were blocked with PBS, 0.5% BSA, 10 ppm Proclin 300 (Supelco, Bellefonte, Pa.), pH 7.2 at 25° C. for 1 h. FcRn-Gly-His₆ was biotynylated using a standard protocol with biotin-X—NHS (Research Organics, Cleveland, Ohio) and bound to streptavidin coated plates at 2 μ g/ml in PBS, 0.5 BSA, 0.05% polysorbate-20 (sample buffer), pH 7.2 at 25° C. for 1 h. Plates were then rinsed with sample buffer, pH 6.0. Eight serial 2-fold dilutions of E27 standard or variants in sample buffer at pH 6.0 were incubated for 2 h. Plates were rinsed with sample buffer pH 6.0 and bound IgG was detected with peroxidase-conjugated goat $F(ab')_2$ anti-human IgG $F(ab')_2$ (Jackson ImmunoResearch) in pH 6.0 sample buffer using 3,3',5,5'-tetramethlbenzidine
(Kirkegaard & Perry Laboratories, Gaithersburg, Md.) as substrate. Absorbance at 450 nm was read on a V_{max} plate reader (Molecular Devices). [0256] The data shown in Table 20 was plotted as saturation binding curves. [0257] Results and Discussion: [0258] As illustrated in Table 20 and corresponding FIGS. 8-10, the pattern of binding of cynomolgus FcRn (S3), FcRn (N3) and human FcRn to the four human IgG subclasses was similar. In each case, human and cynomolgus FcRns showed the highest level of binding to IgG3 and the lowest level of binding to IgG1. In particular, the pattern for both human and cynomolgus receptor-IgG interaction was IgG3>>IgG4>IgG2>IgG1. Note that the data from the human FcRn-IgG binding interactions corresponds to data previously reported. AP West Jr. arid P. J. Bjorkman Biochemistry 39:9698 (2000). [0259] In addition, the data illustrates that the binding affinity of the human and cynomolgus FcRns is similar for IgG1, IgG2, and IgG3, and is slightly stronger for IgG4, as compared to the human FcRn for IgG4. As illustrated graphically in FIGS. 8-10, binding of the human and cynomolgus FcRns to the human IgG subclasses is concentration-dependent and saturable. TABLE 20 | Binding of Human IgG Subclasses to Human FcRn | | | | | | | | | | | | |---|--|--|--|---|--|--|--|--|--|--|--| | Subclass | Cyno S3 ^a | Cyno N3 ^a | Human ^b | Human ^c | | | | | | | | | E27IgG1
E27IgG2
E27IgG3
E27IgG4 | 1.00, 1.00
1.30, 1.15
3.82, 3.59
1.52, 1.44 | 1.00, 1.00
1.49, 1.39
4.34, 3.97
1.59, 1.62 | 1.00 1.06 ± 0.10 5.60 ± 1.31 1.06 ± 0.23 | 1.00
0.93 ± 0.16
1.55 ± 0.45
0.95 ± 0.14 | | | | | | | | ^aAssay with NeutrAvidin coated on plate followed by FcRn-biotin, then sample and detection with HRP-conjugated goat anti-human F(ab')₂. Values are the ratio of OD_{490 nm} (E27IgG subclass) to OD_{490 nm} (E27IgG1) at [mAb] = 50 ng/ml for two assays. *Cyno* S3 and N3 differ only in the amino acid at position 3. ^bAssay with NeutrAvidin coated on plate followed by FcRn-biotin, then "Assay with NeutrAvidin coated on plate followed by FcRn-biotin, then sample and detection with HRP-conjugated goat anti-human $F(ab')_2$. Values are the ratio of $OD_{490 \text{ nm}}$ (E27IgG subclass) to $OD_{490 \text{ nm}}$ (E27IgG1) at [mAb] = 50 ng/ml for five assays. A second, separate lot of E27IgG1 showed a ratio of 0.81 ± 0.03 (mean \pm S.D., n = 3) compared to the E27IgG1 used as standard. Assay with human IgE coated on the plate followed by sample, then FcRn-biotin and detection with HRP-conjugated streptavidin. Values are the ratio of OD_{490 nm} (E27IgG subclass) to OD_{490 nm} (E27IgG1) at [mAb] = 50 ng/ml for four assays. A second, separate lot of E27IgG1 showed ratios of 0.92 and 0.88 compared to the E27IgG1 used as standard. [0260] This data illustrates that cynomolgus FcRn can replace human FcRn in the detection of human IgG subclasses as human and cynomolgus FcRn reveal similar binding patterns of interaction with similar affinities for each IgG subclass. [0261] It will be clear that the invention is well adapted to attain the ends and advantages mentioned as well as those inherent therein. While a presently preferred embodiment has been described for purposes of this disclosure, various changes and modifications may be made which are well within the scope of the invention. Numerous other changes may be made which will readily suggest themselves to those skilled in the art and which are encompassed in the spirit of the invention disclosed herein and as defined in the appended claims. [0262] All publications cited herein are hereby incorporated by reference. #### SEQUENCE LISTING ``` <160> NUMBER OF SEQ ID NOS: 72 <210> SEQ ID NO 1 <211> LENGTH: 1074 <212> TYPE: DNA <213> ORGANISM: Cynomolgus <220> FEATURE: <221> NAME/KEY: misc feature <222> LOCATION: (1)..(1074) <223> OTHER INFORMATION: FcgammaRI alpha-chain <400> SEQUENCE: 1 atgtggttct tgacagctct gctcctttgg gttccagttg atgggcaagt ggataccaca 60 {\tt aaggcagtga\ tcactttgca\ gcctccatgg\ gtcagcgtgt\ tccaagagga\ aactgtaacc} 120 ttacagtgtg aggtgccccg tctgcctggg agcagctcca cacagtggtt tctcaatggc 180 acagccactc agacctcgac tcccagctac agaatcacct ctgccagtgt caaggacagt 240 ggtgaataca ggtgccagag aggtccctca gggcgaagtg accccataca gctggaaatc 300 cacagagact ggctactact gcaggtatcc agcagagtct tcacagaagg agaacctctg 360 gccttgaggt gtcatgcatg gaaggataag ctggtgtaca atgtgcttta ctatcaaaat 420 ggcaaagcct ttaagttttt ctaccggaat tctcaactca ccattctgaa aaccaacata 480 agtcacaacg gcgcctacca ctgctcaggc atgggaaagc atcgctacac atcagcagga 540 gtatctgtca ctgtgaaaga gctatttcca gctccagtgc tgaatgcatc cgtgacatcc ccgctcctgg aggggaatct ggtcaccctg agctgtgaaa caaagttgct tctgcagagg cctggtttgc agctttactt ctccttctac atgggcagca agaccctgcg aggcaggaac 720 780 qaqqccacca caqaaqacqq aaatqtcctt aaqcqcaqcc ctqaqttqqa qcttcaaqtq 840 cttqqcctcc aqttaccaac tcctqtctqq cttcatqtcc ttttctatct qqtaqtqqqa 960 ataatgtttt tagtgaacac tgttctctgg gtgacaatac gtaaagaact gaaaagaaag aaaaagtgga atttagaaat atctttggat tctgctcatg agaagaaggt aacttccagc 1020 1074 cttcaagaag acagacattt agaagaagag ctgaagagtc aggaacaaga ataa <210> SEO ID NO 2 <211> LENGTH: 1128 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(1128) <223> OTHER INFORMATION: FcgammaRI alpha-chain <400> SEQUENCE: 2 60 atgtggttct tgacaactct gctcctttgg gttccagttg atgggcaagt ggacaccaca 120 aaggcagtga tcactttgca gcctccatgg gtcagcgtgt tccaagagga aaccgtaacc ``` | -continued | | |---|------| | ttgcactgtg aggtgctcca tctgcctggg agcagctcta cacagtggtt tctcaatggc | 180 | | acagccactc agacctcgac ccccagctac agaatcacct ctgccagtgt caatgacagt | 240 | | ggtgaataca ggtgccagag aggtctctca gggcgaagtg accccataca gctggaaatc | 300 | | cacagagget ggetactact geaggtetee ageagagtet teaeggaagg agaacetetg | 360 | | gccttgaggt gtcatgcgtg gaaggataag ctggtgtaca atgtgcttta ctatcgaaat | 420 | | ggcaaagcct ttaagttttt ccactggaat tctaacctca ccattctgaa aaccaacata | 480 | | agtcacaatg gcacctacca ttgctcaggc atgggaaagc atcgctacac atcagcagga | 540 | | atatctgtca ctgtgaaaga gctatttcca gctccagtgc tgaatgcatc tgtgacatcc | 600 | | ccactcctgg aggggaatct ggtcaccctg agctgtgaaa caaagttgct cttgcagagg | 660 | | cctggtttgc agctttactt ctccttctac atgggcagca agaccctgcg aggcaggaac | 720 | | acatcctctg aataccaaat actaactgct agaagagaag | 780 | | gaggetgeca cagaggatgg aaatgteett aagegeagee etgagttgga getteaagtg | 840 | | cttggcctcc agttaccaac tcctgtctgg tttcatgtcc ttttctatct ggcagtggga | 900 | | ataatgtttt tagtgaacac tgttctctgg gtgacaatac gtaaagaact gaaaagaaag | 960 | | aaaaagtggg atttagaaat ctctttggat tctggtcatg agaagaaggt aatttccagc | 1020 | | cttcaagaag acagacattt agaagaagag ctgaaatgtc aggaacaaaa agaagaacag | 1080 | | ctgcaggaag gggtgcaccg gaaggagccc cagggggcca cgtagcag | 1128 | | <pre><210> SEQ ID NO 3 <211> LENGTH: 933 <212> TYPE: DNA <213> ORGANISM: Cynomolgus <220> FEATURE: 221> NAME/KEY: misc_feature <222> LOCATION: (1)(933) <223> OTHER INFORMATION: FcgammaRIIA</pre> | | | <400> SEQUENCE: 3 | | | atgtctcaga atgtatgtcc cggcaacctg tggctgcttc aaccattgac agttttgctg | 60 | | ctgctggctt ctgcagacag tcaaactgct cccccgaagg ctgtgctgaa actcgagccc | 120 | | ccgtggatca acgtgctccg ggaggactct gtgactctga cgtgcggggg cgctcacagc | 180 | | cctgacagcg actccactca gtggttccac aatgggaatc gcatccccac ccacacacag | 240 | | cccagctaca ggttcaaggc caacaacaat gatagcgggg agtacaggtg ccagactggc | 300 | | cggaccagcc tcagcgaccc tgttcatctg actgtgcttt ctgagtggct ggcgcttcag | 360 | | accecteace tggagtteeg ggagggagaa accateatge tgaggtgeea eagetggaag | 420 | | gacaagcctc tgatcaaggt cacattcttc cagaatggaa tagccaagaa attttcccat | 480 | | atggatccca atttctccat cccacaagca aaccacagtc acagtggtga ttaccactgc | 540 | | acaggaaaca taggctacac accatactca tccaaacctg tgaccatcac tgtccaagtg | 600 | | cccagcgtgg gcagctcttc accgatgggg atcattgtgg ctgtggtcac tgggattgct | 660 | | gtagcggcca ttgttgctgc tgtagtggcc ttgatctact gcaggaaaaa gcggatttca | 720 | | gccaattcca ctgatcctgt gaaggctgcc cgatttgagc cacttggacg tcaaacgatt | 780 | gccctcagaa agagacaact tgaagaaacc aacaatgact atgaaacagc cgacggcgc tacatgactc tgaaccccag ggcacctact gatgatgata gaaacatcta cctgactctt | -concinaed | | |---|-----| | tctcccaacg actatgacaa cagtaataac taa | 933 | | <210> SEQ ID NO 4 <211> LENGTH: 936 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)(936) <223> OTHER INFORMATION: FcgammaRIIA | | | <400> SEQUENCE: 4 | | | atgtctcaga atgtatgtcc cagaaacctg tggctgcttc aaccattgac agttttgctg | 60 | | ctgctggctt ctgcagacag tcaagctgca gctcccccaa aggctgtgct gaaacttgag | 120 | | cccccgtgga tcaacgtgct ccaggaggac tctgtgactc tgacatgcca gggggctcgc | 180 | | agccctgaga gcgactccat tcagtggttc cacaatggga atctcattcc cacccacacg | 240 | | cagcccagct acaggttcaa ggccaacaac aatgacagcg gggagtacac gtgccagact | 300 | | ggccagacca gcctcagcga ccctgtgcat ctgactgtgc tttccgaatg gctggtgctc | 360 | | cagacccctc acctggagtt ccaggaggga gaaaccatca tgctgaggtg ccacagctgg | 420 | | aaggacaagc ctctggtcaa ggtcacattc ttccagaatg gaaaatccca gaaattctcc | 480 | | cgtttggatc ccaccttctc catcccacaa
gcaaaccaca gtcacagtgg tgattaccac | 540 | | tgcacaggaa acataggcta cacgctgttc tcatccaagc ctgtgaccat cactgtccaa | 600 | | gtgcccagca tgggcagctc ttcaccaatg gggatcattg tggctgtggt cattgcgact | 660 | | gctgtagcag ccattgttgc tgctgtagtg gccttgatct actgcaggaa aaagcggatt | 720 | | tcagccaatt ccactgatcc tgtgaaggct gcccaatttg agccacctgg acgtcaaatg | 780 | | attgccatca gaaagagaca acttgaagaa accaacaatg actatgaaac agctgacggc | 840 | | ggctacatga ctctgaaccc cagggcacct actgacgatg ataaaaacat ctacctgact | 900 | | cttcctccca acgaccatgt caacagtaat aactaa | 936 | | <pre><210> SEQ ID NO 5 <211> LENGTH: 885 <212> TYPE: DNA <213> ORGANISM: Cynomolgus <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)(885) <223> OTHER INFORMATION: FcgammaRIIB <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (879)(879) <223> OTHER INFORMATION: n = a or g or c or t/u unknown or other</pre> | | | <400> SEQUENCE: 5 | | | atgggaatcc tgtcattctt acctgtcctt gctactgaga gtgactgggc tgactgcaag | 60 | | tecteccage ettggggeea catgettetg tggacagetg tgetatteet ggeteetgtt | 120 | | gctgggacac ctgcagctcc cccgaaggct gtgctgaaac tcgagccccc gtggatcaac | 180 | | gtgctccggg aggactctgt gactctgacg tgcgggggcg ctcacagccc tgacagcgac | 240 | | tccactcagt ggttccacaa tgggaatctc atccccaccc acacgcagcc cagctacagg | 300 | | ttcaaggcca acaacaatga tagcggggag tacaggtgcc agactggccg gaccagcctc | 360 | | agegacectg tteatetgae tgtgetttet gagtggetgg egeteeagae eceteacetg | 420 | | -continued | | |---|-----| | gagttccggg agggagaaac catcttgctg aggtgccaca gctggaagga caagcctctg | 480 | | atcaaggtca cattcttcca gaatggaata tccaagaaat tttcccatat gaatcccaac | 540 | | ttctccatcc cacaagcaaa ccacagtcac agtggtgatt accactgcac aggaaacata | 600 | | ggctacacac catactcatc caaacctgtg accatcactg tccaagtgcc cagcatgggc | 660 | | agctcttcac cgatagggat cattgtggct gtggtcactg ggattgctgt agcggccatt | 720 | | gttgctgctg tagtggcctt gatctactgc aggaaaaagc ggatttcagc caatcccact | 780 | | aatcctgacg aggctgacaa agttggggct gagaacacaa tcacctattc acttctcatg | 840 | | catccggacg ctctggaaga gcctgatgac caaaaccgng tttag | 885 | | <210> SEQ ID NO 6 <211> LENGTH: 876 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)(876) <223> OTHER INFORMATION: FcgammaRIIB | | | <400> SEQUENCE: 6 | | | atgggaatcc tgtcattctt acctgtcctt gccactgaga gtgactgggc tgactgcaag | 60 | | tecceccage ettggggtea tatgettetg tggacagetg tgetatteet ggeteetgtt | 120 | | gctgggacac ctgcagctcc cccaaaggct gtgctgaaac tcgagcccca gtggatcaac | 180 | | gtgctccagg aggactctgt gactctgaca tgccggggga ctcacagccc tgagagcgac | 240 | | tocattoagt ggttocacaa tgggaatoto attoccacco acacgcagco cagotacagg | 300 | | ttcaaggcca acaacaatga cagcggggag tacacgtgcc agactggcca gaccagcctc | 360 | | agcgaccetg tgcatetgae tgtgetttet gagtggetgg tgctecagae eceteacetg | 420 | | gagttccagg agggagaaac catcgtgctg aggtgccaca gctggaagga caagcctctg | 480 | | gtcaaggtca cattcttcca gaatggaaaa tccaagaaat tttcccgttc ggatcccaac | 540 | | ttctccatcc cacaagcaaa ccacagtcac agtggtgatt accactgcac aggaaacata | 600 | | ggctacacgc tgtactcatc caagcctgtg accatcactg tccaagctcc cagctcttca | 660 | | ccgatgggga tcattgtggc tgtggtcact gggattgctg tagcggccat tgttgctgct | 720 | | gtagtggcct tgatctactg caggaaaaag cggatttcag ccaatcccac taatcctgat | 780 | | gaggotgaca aagttggggo tgagaacaca atcacctatt cacttotcat gcaccoggat | 840 | | gctctggaag agcctgatga ccagaaccgt atttag | 876 | | <210> SEQ ID NO 7 <211> LENGTH: 765 <212> TYPE: DNA <213> ORGANISM: Cynomolgus <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)(765) <223> OTHER INFORMATION: FcgammaRIIIA alpha-chain <400> SEQUENCE: 7 | | | atgtggcagc tgctcctccc aactgctctg ctacttctag tttcagctgg catgcgggct | 60 | | gaagatotoc caaaggotgt ggtgttoctg gagootcaat ggtacagggt gotogagaag | 120 | | | | gaccgtgtga ctctgaagtg ccagggagcc tactcccctg aggacaattc cacacggtgg ``` tttcacaatq aqaqcctcat ctcaaqccaq acctcqaqct acttcattqc tqctqccaqa 240 300 gtcaacaaca gtggagagta caggtgccag acaagcctct ccacactcag tgacccggtg cagctggaag tccatatcgg ctggctattg ctccaggccc ctcggtgggt gttcaaggag 360 gaagaatcta ttcacctgag gtgtcacagc tggaagaaca ctcttctgca taaggtcacg 420 tatttacaga atggcaaagg caggaagtat tttcatcaga attctgactt ctacattcca 480 aaagccacac tcaaagacag cggctcctac ttctgcaggg gacttattgg gagtaaaaat 540 gtatcttcag agactgtgaa catcaccatc actcaagatt tggcagtgtc atccatctca 600 tcattctttc cacctgggta ccaagtctct ttctgcctgg tgatggtact cctttttgca 660 gtggacacag gactatattt ctctatgaag aaaagcattc caagctcaac aagggactgg 720 gaggaccata aatttaaatg gagcaaggac cctcaagaca aatga 765 <210> SEQ ID NO 8 <211> LENGTH: 765 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(765) <223> OTHER INFORMATION: FcgammaRIIIA alpha-chain <400> SEOUENCE: 8 atgtggcagc tgctcctccc aactgctctg ctacttctag tttcagctgg catgcggact 60 gaagatctcc caaaggctgt ggtgttcctg gagcctcaat ggtacagggt gctcgagaag gacagtgtga ctctgaagtg ccagggagcc tactcccctg aggacaattc cacacagtgg 180 tttcacaatg agagcctcat ctcaagccag gcctcgagct acttcattga cgctgccaca 240 300 qtcqacqaca qtqqaqaqta caqqtqccaq acaaacctct ccaccctcaq tqacccqqtq cagctagaag tccatatcgg ctggctgttg ctccaggccc ctcggtgggt gttcaaggag 360 gaagacccta ttcacctgag gtgtcacagc tggaagaaca ctgctctgca taaggtcaca 420 tatttacaga atggcaaagg caggaagtat tttcatcata attctgactt ctacattcca 480 540 aaagccacac tcaaagacag cggctcctac ttctgcaggg ggctttttgg gagtaaaaat gtgtcttcag agactgtgaa catcaccatc actcaaggtt tggcagtgtc aaccatctca 600 tcattctttc cacctgggta ccaagtctct ttctgcttgg tgatggtact cctttttgca 660 gtggacacag gactatattt ctctgtgaag acaaacattc gaagctcaac aagagactgg 720 aaggaccata aatttaaatg gagaaaggac cctcaagaca aatga 765 <210> SEQ ID NO 9 <211> LENGTH: 357 <212> TYPE: PRT <213> ORGANISM: Cynomolgus <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <222> LOCATION: (1)..(357) <223> OTHER INFORMATION: FcgammaRI <chain <400> SEQUENCE: 9 Met Trp Phe Leu Thr Ala Leu Leu Leu Trp Val Pro Val Asp Gly Gln Val Asp Thr Thr Lys Ala Val Ile Thr Leu Gln Pro Pro Trp Val Ser ``` Pro Gly Ser Ser Ser Thr Gln Trp Phe Leu Asn Gly Thr Ala Thr Gln Thr Ser Thr Pro Ser Tyr Arg Ile Thr Ser Ala Ser Val Lys Asp Ser Gly Glu Tyr Arg Cys Gln Arg Gly Pro Ser Gly Arg Ser Asp Pro Ile Gln Leu Glu Ile His Arg Asp Trp Leu Leu Leu Gln Val Ser Ser Arg Val Phe Thr Glu Gly Glu Pro Leu Ala Leu Arg Cys His Ala Trp Lys Asp Lys Leu Val Tyr Asn Val Leu Tyr Tyr Gln Asn Gly Lys Ala Phe Lys Phe Phe Tyr Arg Asn Ser Gln Leu Thr Ile Leu Lys Thr Asn Ile Ser His Asn Gly Ala Tyr His Cys Ser Gly Met Gly Lys His Arg Tyr 165 170 175Thr Ser Ala Gly Val Ser Val Thr Val Lys Glu Leu Phe Pro Ala Pro Val Leu Asn Ala Ser Val Thr Ser Pro Leu Leu Glu Gly Asn Leu Val Thr Leu Ser Cys Glu Thr Lys Leu Leu Leu Gln Arg Pro Gly Leu Gln 210 $\,$ 215 $\,$ 220 $\,$ Leu Tyr Phe Ser Phe Tyr Met Gly Ser Lys Thr Leu Arg Gly Arg Asn 225 230235235 Thr Ser Ser Glu Tyr Gln Ile Leu Thr Ala Arg Arg Glu Asp Ser Gly Phe Tyr Trp Cys Glu Ala Thr Thr Glu Asp Gly Asn Val Leu Lys Arg 265 Ser Pro Glu Leu Glu Leu Gln Val Leu Gly Leu Gln Leu Pro Thr Pro 280 Val Trp Leu His Val Leu Phe Tyr Leu Val Val Gly Ile Met Phe Leu 295 Val Asn Thr Val Leu Trp Val Thr Ile Arg Lys Glu Leu Lys Arg Lys 310 Lys Lys Trp Asn Leu Glu Ile Ser Leu Asp Ser Ala His Glu Lys Lys Val Thr Ser Ser Leu Gln Glu Asp Arg His Leu Glu Glu Glu Leu Lys 345 Ser Gln Glu Gln Glu 355 <210> SEQ ID NO 10 <211> LENGTH: 374 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <222> LOCATION: (1)..(374) <223> OTHER INFORMATION: FcgammaRI alpha-chain <400> SEQUENCE: 10 Met Trp Phe Leu Thr Thr Leu Leu Leu Trp Val Pro Val Asp Gly Gln Val Phe Gln Glu Glu Thr Val Thr Leu Gln Cys Glu Val Pro Arg Leu 35 40 45 | 1 | | | | 5 | | | | | 10 | | | | | 15 | | |------------|------------|------------|-------------------|--------------------|-------------------|------------|------------|------------|------------|---------------------|------------|------------|------------|------------|---------------------| | Val | Asp | Thr | Thr
20 | Lys | Ala | Val | Ile | Ser
25 | Leu | Gln | Pro | Pro | Trp
30 | Val | Ser | | Val | Phe | Gln
35 | Glu | Glu | Thr | Val | Thr
40 | Leu | His | Cys | Glu | Val
45 | Leu | His | Leu | | Pro | Gly
50 | Ser | Ser | Ser | Thr | Gln
55 | Trp | Phe | Leu | Asn | Gly
60 | Thr | Ala | Thr | Gln | | Thr
65 | Ser | Thr | Pro | Ser | Ty r
70 | Arg | Ile | Thr | Ser | Ala
75 | Ser | Val | Asn | Asp | Ser
80 | | Gly | Glu | Tyr | Arg | Cys
85 | Gln | Arg | Gly | Leu | Ser
90 | Gly | Arg | Ser | Asp | Pro
95 | Ile | | Gln | Leu | Glu | Ile
100 | His | Arg | Gly | Trp | Leu
105 | Leu | Leu | Gln | Val | Ser
110 | Ser | Arg | | Val | Phe | Thr
115 | Glu | Gly | Glu | Pro | Leu
120 | Ala | Leu | Arg | Сув | His
125 | Ala | Trp | Lys | | Asp | Lys
130 | Leu | Val | Tyr | Asn | Val
135 | Leu | Tyr | Tyr | Arg | Asn
140 | Gly | Lys | Ala | Phe | | Lys
145 | Phe | Phe | His | Trp | Asn
150 | Ser | Asn | Leu | Thr | Ile
155 | Leu | Lys | Thr | Asn | Ile
160 | | Ser | His | Asn | Gly | Thr
165 | Tyr | His | Сув | Ser | Gly
170 | Met | Gly | Lys | His | Arg
175 | Tyr | | Thr | Ser | Ala | Gly
180 | Ile | Ser | Val | Thr | Val
185 | Lys | Glu | Leu | Phe | Pro
190 | Ala | Pro | | Val | Leu | Asn
195 | Ala | Ser | Val | Thr | Ser
200 | Pro | Leu | Leu | Glu | Gly
205 | Asn | Leu | Val | | Thr | Leu
210 | Ser | Cys | Glu | Thr | Lys
215 | Leu | Leu | Leu | Gln | Arg
220 | Pro | Gly | Leu | Gln | | Leu
225 | Tyr | Phe | Ser | Phe | Tyr 230 | Met | Gly | Ser | Lys | Thr
235 | Leu | Arg | Gly | Arg | Asn
240 | | Thr | Ser | Ser | Glu |
Ty r
245 | Gln | Ile | Leu | Thr | Ala
250 | Arg | Arg | Glu | Asp | Ser
255 | Gly | | Leu | Tyr | Trp | Cys
260 | Glu | Ala | Ala | Thr | Glu
265 | Asp | Gly | Asn | Val | Leu
270 | Lys | Arg | | Ser | Pro | Glu
275 | Leu | Glu | Leu | Gln | Val
280 | Leu | Gly | Leu | Gln | Leu
285 | Pro | Thr | Pro | | Val | Trp
290 | Phe | His | Val | Leu | Phe
295 | Tyr | Leu | Ala | Val | Gly
300 | Ile | Met | Phe | Leu | | Val
305 | Asn | Thr | Val | Leu | Trp
310 | Val | Thr | Ile | Arg | L y s
315 | Glu | Leu | Lys | Arg | L y s
320 | | Lys | Lys | Trp | Asp | Leu
325 | Glu | Ile | Ser | Leu | Asp
330 | Ser | Gly | His | Glu | Lys
335 | Lys | | Val | Thr | Ser | Ser
340 | Leu | Gln | Glu | Asp | Arg
345 | His | Leu | Glu | Glu | Glu
350 | Leu | Lys | | Cys | Gln | Glu
355 | Gln | Lys | Glu | Glu | Gln
360 | Leu | Gln | Glu | Gly | Val
365 | His | Arg | Lys | | Glu | Pro
370 | Gln | Gly | Ala | Thr | | | | | | | | | | | <210> SEQ ID NO 11 <211> LENGTH: 86 <212> TYPE: PRT <213> ORGANISM: Cynomolgus 261 ``` <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <222> LOCATION: (1)..(86) <223> OTHER INFORMATION: FcgammaRI/III gamma-chain <400> SEQUENCE: 11 Met Ile Pro Ala Val Val Leu Leu Leu Leu Leu Val Glu Gln Ala Ala Ala Leu Gly Glu Pro Gln Leu Cys Tyr Ile Leu Asp Ala Ile Leu Phe Leu Tyr Gly Ile Val Leu Thr Leu Leu Tyr Cys Arg Leu Lys Ile 35 40 Gln Val Arg Lys Ala Ala Ile Ala Ser Tyr Glu Lys Ser Asp Gly Val50 \\ 0 \\ 60 Tyr Thr Gly Leu Ser Thr Arg Asn Gln Glu Thr Tyr Glu Thr Leu Lys His Glu Lys Pro Pro Gln <210> SEQ ID NO 12 <211> LENGTH: 86 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <222> LOCATION: (1)..(86) <223> OTHER INFORMATION: FcgammaRI/III gamma-chain <400> SEQUENCE: 12 Met Ile Pro Ala Val Val Leu Leu Leu Leu Leu Val Glu Gln Ala Ala Ala Leu Gly Glu Pro Gln Leu Cys Tyr Ile Leu Asp Ala Ile Leu 20 25 30 Phe Leu Tyr Gly Ile Val Leu Thr Leu Leu Tyr Cys Arg Leu Lys Ile 40 Gln Val Arg Lys Ala Ala Ile Thr Ser Tyr Glu Lys Ser Asp Gly Val Tyr Thr Gly Leu Ser Thr Arg Asn Gln Glu Thr Tyr Glu Thr Leu Lys His Glu Lys Pro Pro Gln <210> SEQ ID NO 13 <211> LENGTH: 261 <212> TYPE: DNA <213> ORGANISM: Cynomolgus <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(261) <223> OTHER INFORMATION: gamma chain <400> SEQUENCE: 13 atgattccag cagtggtctt gctcttactc cttttggttg aacaagcagc ggccctggga gagcctcagc tctgctatat cctggatgcc atcctgtttc tgtatggaat tgtcctcacc ctcctctact gtcgactgaa gatccaagtg cgaaaggcag ctatagccag ctatgagaaa tcagatggtg tttacacggg cctgagcacc aggaaccagg aaacttatga gactctgaag catgagaaac caccacagta g ``` 56 ``` <210> SEQ ID NO 14 <211> LENGTH: 261 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(261) <223> OTHER INFORMATION: gamma chain <400> SEQUENCE: 14 atgattccag cagtggtctt gctcttactc cttttggttg aacaagcagc ggccctggga 60 gagcctcagc tctgctatat cctggatgcc atcctgtttc tgtatggaat tgtcctcacc 120 ctcctctact gtcgactgaa gatccaagtg cgaaaggcag ctataaccag ctatgagaaa tcagatggtg tttacacggg cctgagcacc aggaaccagg agacttacga gactctgaag catgagaaac caccacagta g 261 <210> SEQ ID NO 15 <211> LENGTH: 310 <212> TYPE: PRT <213> ORGANISM: Cynomolgus <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <222> LOCATION: (1)..(310) <223> OTHER INFORMATION: FcgammaRIIA <400> SEQUENCE: 15 Met Ser Gln Asn Val Cys Pro Gly Asn Leu Trp Leu Leu Gln Pro Leu 1 5 10 15 Lys Ala Val Leu Lys Leu Glu Pro Pro Trp Ile Asn Val Leu Arg Glu Asp Ser Val Thr Leu Thr Cys Gly Gly Ala His Ser Pro Asp Ser Asp 50 60 Ser Thr Gln Trp Phe His Asn Gly Asn Arg Ile Pro Thr His Thr Gln \, Pro Ser Tyr Arg Phe Lys Ala Asn Asn Asn Asp Ser Gly Glu Tyr Arg Cys Gln Thr Gly Arg Thr Ser Leu Ser Asp Pro Val His Leu Thr Val 105 Leu Ser Glu Trp Leu Ala Leu Gln Thr Pro His Leu Glu Phe Arg Glu Gly Glu Thr Ile Met Leu Arg Cys His Ser Trp Lys Asp Lys Pro Leu 135 Ile Lys Val Thr Phe Phe Gln Asn Gly Ile Ala Lys Lys Phe Ser His Met Asp Pro Asn Phe Ser Ile Pro Gln Ala Asn His Ser His Ser Gly Asp Tyr His Cys Thr Gly Asn Ile Gly Tyr Thr Pro Tyr Ser Ser Lys Pro Val Thr Ile Thr Val Gln Val Pro Ser Val Gly Ser Ser Pro Met Gly Ile Ile Val Ala Val Val Thr Gly Ile Ala Val Ala Ile ``` Val Ala Ala Val Val Ala Leu Ile Tyr Cys Arg Lys Lys Arg Ile Ser 230 235 Ala Asn Ser Thr Asp Pro Val Lys Ala Ala Arg Phe Glu Pro Leu Gly 250 Arg Gln Thr Ile Ala Leu Arg Lys Arg Gln Leu Glu Glu Thr Asn Asn Asp Tyr Glu Thr Ala Asp Gly Gly Tyr Met Thr Leu Asn Pro Arg Ala 280 Pro Thr Asp Asp Asp Arg Asn Ile Tyr Leu Thr Leu Ser Pro Asn Asp 295 Tyr Asp Asn Ser Asn Asn <210> SEQ ID NO 16 <211> LENGTH: 317 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <222> LOCATION: (1)..(317) <223> OTHER INFORMATION: FcgammaRIIA <400> SEQUENCE: 16 Met Ala Met Glu Thr Gln Met Ser Gln Asn Val Cys Pro Arg Asn Leu Trp Leu Leu Gln Pro Leu Thr Val Leu Leu Leu Leu Ala Ser Ala Asp 20 25 3025 Ser Gln Ala Ala Ala Pro Pro Lys Ala Val Leu Lys Leu Glu Pro Pro $35 \ \ \, 40 \ \ \, 45$ Ala Arg Ser Pro Glu Ser Asp Ser Ile Gln Trp Phe His Asn Gly Asn Leu Ile Pro Thr His Thr Gln Pro Ser Tyr Arg Phe Lys Ala Asn Asn Asn Asp Ser Gly Glu Tyr Thr Cys Gln Thr Gly Gln Thr Ser Leu Ser 105 Asp Pro Val His Leu Thr Val Leu Ser Glu Trp Leu Val Leu Gln Thr Pro His Leu Glu Phe Gln Glu Gly Glu Thr Ile Met Leu Arg Cys His 135 Ser Trp Lys Asp Lys Pro Leu Val Lys Val Thr Phe Phe Gln Asn Gly 150 Lys Ser Gln Lys Phe Ser Arg Leu Asp Pro Thr Phe Ser Ile Pro Gln Ala Asn His Ser His Ser Gly Asp Tyr His Cys Thr Gly Asn Ile Gly Tyr Thr Leu Phe Ser Ser Lys Pro Val Thr Ile Thr Val Gln Val Pro 200 Ser Met Gly Ser Ser Ser Pro Met Gly Ile Ile Val Ala Val Val Ile 215 Ala Thr Ala Val Ala Ala Ile Val Ala Ala Val Val Ala Leu Ile Tyr | Cys | Arg | Lys | Lys | Arg
245 | Ile | Ser | Ala | Asn | Ser
250 | Thr | Asp | Pro | Val | L y s
255 | Ala | |------------------------------------|--|------------------------------|------------------------|----------------------|------------|--------------------|------------|---------------|------------|------------|------------|------------|------------|---------------------|------------| | Ala | Gln | Phe | Glu
260 | Pro | Pro | Gly | Arg | Gln
265 | Met | Ile | Ala | Ile | Arg
270 | Lys | Arg | | Gln | Leu | Glu
275 | Glu | Thr | Asn | Asn | Asp
280 | Tyr | Glu | Thr | Ala | Asp
285 | Gly | Gly | Tyr | | Met | Thr
290 | Leu | Asn | Pro | Arg | Ala
295 | Pro | Thr | Asp | Asp | Asp
300 | Lys | Asn | Ile | Tyr | | Leu
305 | Thr | Leu | Pro | Pro | Asn
310 | Asp | His | Val | Asn | Ser
315 | Asn | Asn | | | | | <211 <212 <213 <220 <221 <222 <223 | > LE
> T\
> OF
> FE
> NE
> LO | ATUF
ME/F
CATI
THER | PRT SM: EXE: CON: INFO | Chin
MISC
(1). | -
C_FEA | 16) | | aRII <i>P</i> | <u>.</u> | | | | | | | | | | EQUEN | | | | | | _ | | _ | | | | | | | Met
1 | Ala | Met | Glu | Thr
5 | Gln | Met | Ser | Gln | Asn
10 | Val | Суѕ | Pro | Arg | Asn
15 | Leu | | Trp | Leu | Leu | Gln
20 | Pro | Leu | Thr | Val | Leu
25 | Leu | Leu | Leu | Ala | Ser
30 | Ala | Asp | | Ser | Gln | Ala
35 | Ala | Pro | Pro | Lys | Ala
40 | Val | Leu | Lys | Leu | Glu
45 | Pro | Pro | Trp | | Ile | Asn
50 | Val | Leu | Gln | Glu | Asp
55 | Ser | Val | Thr | Leu | Thr
60 | Cys | Arg | Gly | Ala | | Arg
65 | Ser | Pro | Glu | Ser | Asp
70 | Ser | Ile | Gln | Trp | Phe
75 | His | Asn | Gly | Asn | Leu
80 | | Ile | Pro | Thr | His | Thr
85 | Gln | Pro | Ser | Tyr | Arg
90 | Phe | Lys | Ala | Asn | Asn
95 | Asn | | Asp | Ser | Gly | Glu
100 | Tyr | Thr | Суѕ | Gln | Thr
105 | Gly | Gln | Thr | Ser | Leu
110 | Ser | Asp | | Pro | Val | His
115 | Leu | Thr | Val | Leu | Ser
120 | Glu | Trp | Leu | Val | Leu
125 | Gln | Thr | Pro | | His | Leu
130 | Glu | Phe | Gln | Glu | Gl y
135 | Glu | Thr | Ile | Val | Leu
140 | Arg | Cys | His | Ser | | Trp
145 | Lys | Asp | Lys | Pro | Leu
150 | Val | Lys | Val | Thr | Phe
155 | Phe | Gln | Asn | Gly | Lys
160 | | Ser | Gln | Lys | Phe | Ser
165 | His | Leu | Asp | Pro | Asn
170 | Leu | Ser | Ile | Pro | Gln
175 | Ala | | Asn | His | Ser | His
180 | Ser | Gly | Asp | Tyr | His
185 | Cys | Thr | Gly | Asn | Ile
190 | Gly | Tyr | | Thr | Leu | Phe
195 | Ser | Ser | Lys | Pro | Val
200 | Thr | Ile | Thr | Val | Gln
205 | Ala | Pro | Ser | | Val | Gly
210 | Ser | Ser | Ser | Pro | Val
215 | Gly | Ile | Ile | Val | Ala
220 | Val | Val | Ile | Ala | | Thr
225 | Ala | Val | Ala | Ala | Ile
230 | Val | Ala | Ala | Val | Val
235 | Ala | Leu | Ile | Tyr | Cys
240 | | Arg | Lys | Lys | Arg | Ile
245 | Ser | Ala | Asn | Ser | Thr
250 | Asp | Pro | Val | Lys | Ala
255 | Ala | | Gln | Phe | Glu | Pro | Pro | Gly | Arg | Gln | Met | Ile | Ala | Ile | Arg | Lys | Arg | Gln | | | | | 260 | | | | | 265 | | | | | 270 | | | |--------------------------------------|--|---|--------------------|----------------------|------------|------------|--------------------|-------------------|---------------------|------------|---------------------|--------------------|------------|------------|------------| | Leu | Glu | Glu
275 | Thr | Asn | Asn | Asp | Ty r
280 | Glu | Thr | Ala | Asp | Gl y
285 | Gly | Tyr | Met | | Thr | Leu
290 | Asn | Pro | Arg | Ala | Pro
295 | Thr | Asp | Asp | Asp | L y s
300 | Asn | Ile | Tyr | Leu | | Thr
305 | Leu | Pro | Pro | Asn | Asp
310 | His | Val | Asn | Ser | Asn
315 | Asn | | | | | | <212
<213
<220
<221
<222 | > LE
> TY
> OF
> FE
> NA
> LO | ENGTH
PE:
RGANI
EATUR
AME/R | PRT SM: RE: KEY: | Cync
MISC
(1). | _FEA | TURE | | nRIII | 3 | |
| | | | | | <400 | > SE | QUEN | ICE: | 18 | | | | | | | | | | | | | Met
1 | Gly | Ile | Leu | Ser
5 | Phe | Leu | Pro | Val | Leu
10 | Ala | Thr | Glu | Ser | Asp
15 | Trp | | Ala | Asp | Суѕ | L y s
20 | Ser | Ser | Gln | Pro | T rp
25 | Gly | His | Met | Leu | Leu
30 | Trp | Thr | | Ala | Val | Leu
35 | Phe | Leu | Ala | Pro | Val
40 | Ala | Gly | Thr | Pro | Ala
45 | Ala | Pro | Pro | | Lys | Ala
50 | Val | Leu | Lys | Leu | Glu
55 | Pro | Pro | Trp | Ile | Asn
60 | Val | Leu | Arg | Glu | | Asp
65 | Ser | Val | Thr | Leu | Thr
70 | Сув | Gly | Gly | Ala | His
75 | Ser | Pro | Asp | Ser | Asp
80 | | Ser | Thr | Gln | Trp | Phe
85 | His | Asn | Gly | Asn | Leu
90 | Ile | Pro | Thr | His | Thr
95 | Gln | | Pro | Ser | Tyr | Arg
100 | Phe | Lys | Ala | Asn | Asn
105 | Asn | Asp | Ser | Gly | Glu
110 | Tyr | Arg | | Cys | Gln | Thr
115 | Gly | Arg | Thr | Ser | Leu
120 | Ser | Asp | Pro | Val | His
125 | Leu | Thr | Val | | Leu | Ser
130 | Glu | Trp | Leu | Ala | Leu
135 | Gln | Thr | Pro | His | Leu
140 | Glu | Phe | Arg | Glu | | Gly
145 | Glu | Thr | Ile | Leu | Leu
150 | Arg | Сув | His | Ser | Trp
155 | Lys | Asp | Lys | Pro | Leu
160 | | Ile | Lys | Val | Thr | Phe
165 | Phe | Gln | Asn | Gly | Ile
170 | Ser | Lys | Lys | Phe | Ser
175 | His | | Met | Asn | Pro | Asn
180 | Phe | Ser | Ile | Pro | Gln
185 | Ala | Asn | His | Ser | His
190 | Ser | Gly | | Asp | Tyr | His
195 | Cys | Thr | Gly | Asn | Ile
200 | Gly | Tyr | Thr | Pro | Ty r
205 | Ser | Ser | Lys | | Pro | Val
210 | Thr | Ile | Thr | Val | Gln
215 | Val | Pro | Ser | Met | Gly
220 | Ser | Ser | Ser | Pro | | Ile
225 | Gly | Ile | Ile | Val | Ala
230 | Val | Val | Thr | Gly | Ile
235 | Ala | Val | Ala | Ala | Ile
240 | | Val | Ala | Ala | Val | Val
245 | Ala | Leu | Ile | Tyr | C y s
250 | Arg | Lys | Lys | Arg | Ile
255 | Ser | | Ala | Asn | Pro | Thr
260 | Asn | Pro | Asp | Glu | Ala
265 | Asp | Lys | Val | Gly | Ala
270 | Glu | Asn | | Thr | Ile | Thr
275 | Tyr | Ser | Leu | Leu | Met
280 | His | Pro | Asp | Ala | Leu
285 | Glu | Glu | Pro | ``` Asp Asp Gln Asn Arg Val 290 <210> SEQ ID NO 19 <211> LENGTH: 291 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <222> LOCATION: (1)..(291) <223> OTHER INFORMATION: FcgammaRIIB <400> SEQUENCE: 19 Met Gly Ile Leu Ser Phe Leu Pro Val Leu Ala Thr Glu Ser Asp Trp 1 5 10 15 Ala Asp Cys Lys Ser Pro Gln Pro Trp Gly His Met Leu Leu Trp Thr 20 \hspace{1cm} 25 \hspace{1cm} 30 \hspace{1cm} Ala Val Leu Phe Leu Ala Pro Val Ala Gly Thr Pro Ala Ala Pro Pro Lys Ala Val Leu Lys Leu Glu Pro Gln Trp Ile Asn Val Leu Gln Glu Asp Ser Val Thr Leu Thr Cys Arg Gly Thr His Ser Pro Glu Ser Asp 65 70 75 80 Ser Ile Gln Trp Phe His Asn Gly Asn Leu Ile Pro Thr His Thr Gln Pro Ser Tyr Arg Phe Lys Ala Asn Asn Asn Asp Ser Gly Glu Tyr Thr 100 105 110 Cys Gln Thr Gly Gln Thr Ser Leu Ser Asp Pro Val His Leu Thr Val 120 Leu Ser Glu Trp Leu Val Leu Gln Thr Pro His Leu Glu Phe Gln Glu 130 $135\ Gly Glu Thr Ile Val Leu Arg Cys His Ser Trp Lys Asp Lys Pro Leu Val Lys Val Thr Phe Phe Gln Asn Gly Lys Ser Lys Lys Phe Ser Arg 165 170 170 Ser Asp Pro Asn Phe Ser Ile Pro Gln Ala Asn His Ser His Ser Gly 185 Asp Tyr His Cys Thr Gly Asn Ile Gly Tyr Thr Leu Tyr Ser Ser Lys 195 \hspace{1.5cm} 200 \hspace{1.5cm} 205 \hspace{1.5cm} Pro Val Thr Ile Thr Val Gln Ala Pro Ser Ser Pro Met Gly Ile Ile Val Ala Val Val Thr Gly Ile Ala Val Ala Ala Ile Val Ala Ala Val Val Ala Leu Ile Tyr Cys Arg Lys Lys Arg Ile Ser Ala As
n Pro245 \hspace{1.5cm} 250 \hspace{1.5cm} 255 Thr Asn Pro Asp Glu Ala Asp Lys Val Gly Ala Glu Asn Thr Ile Thr Tyr Ser Leu Leu Met His Pro Asp Ala Leu Glu Glu Pro Asp Asp Gln 280 Asn Arg Ile ``` <210> SEQ ID NO 20 <211> LENGTH: 254 <213> ORGANISM: Cynomolgus <212> TYPE: PRT <220> FEATURE: ``` <221> NAME/KEY: MISC_FEATURE <222> LOCATION: (1)..(254) <223> OTHER INFORMATION: FcgammaRIIIA <400> SEQUENCE: 20 Met Trp Gln Leu Leu Pro Thr Ala Leu Leu Leu Val Ser Ala Gly Met Arg Ala Glu Asp Leu Pro Lys Ala Val Val Phe Leu Glu Pro 20 \\ 25 \\ 30 Gln Trp Tyr Arg Val Leu Glu Lys Asp Arg Val Thr Leu Lys Cys Gln _{\rm 35} _{\rm 40} _{\rm 45} Gly Ala Tyr Ser Pro Glu Asp Asn Ser Thr Arg Trp Phe His Asn Glu Ser Leu Ile Ser Ser Gln Thr Ser Ser Tyr Phe Ile Ala Ala Ala Arg Val Asn Asn Ser Gly Glu Tyr Arg Cys Gln Thr Ser Leu Ser Thr Leu 85 90 95 Ser Asp Pro Val Gln Leu Glu Val His Ile Gly Trp Leu Leu Gln Ala Pro Arg Trp Val Phe Lys Glu Glu Glu Ser Ile His Leu Arg Cys His Ser Trp Lys Asn Thr Leu Leu His Lys Val Thr Tyr Leu Gln Asn Gly Lys Gly Arg Lys Tyr Phe His Gln Asn Ser Asp Phe Tyr Ile Pro 145 150 155 160 Gly Ser Lys Asn Val Ser Ser Glu Thr Val Asn Ile Thr Ile Thr Gln \, 185 Asp Leu Ala Val Ser Ser Ile Ser Ser Phe Phe Pro Pro Gly Tyr Gln 200 Val Ser Phe Cys Leu Val Met Val Leu Leu Phe Ala Val Asp Thr Gly Leu Tyr Phe Ser Met Lys Lys Ser Ile Pro Ser Ser Thr Arg Asp Trp 230 Glu Asp His Lys Phe Lys Trp Ser Lys Asp Pro Gln Asp Lys <210> SEQ ID NO 21 <211> LENGTH: 254 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <222> LOCATION: (1)..(254) <223> OTHER INFORMATION: FcgammaRIIIA <400> SEQUENCE: 21 Met Trp Gln Leu Leu Pro Thr Ala Leu Leu Leu Val Ser Ala Gly Met Arg Thr Glu Asp Leu Pro Lys Ala Val Val Phe Leu Glu Pro 20 \hspace{1cm} 25 \hspace{1cm} 30 \hspace{1cm} Gln Trp Tyr Arg Val Leu Glu Lys Asp Ser Val Thr Leu Lys Cys Gln ``` | | | | | | | | | | | | - | con | tin | ued | | | | | | | |---------------------------------|--|--|-----------------------------------|----------------------|--------------------|------------|------------|---------------|--------------------|------------|------------|------------|------------|------------|------------|----|----------|--|--|--| | | | 35 | | | | | 40 | | | | | 45 | | | | | | | | | | Gly | Ala
50 | Tyr | Ser | Pro | Glu | Asp
55 | Asn | Ser | Thr | Gln | Trp | Phe | His | Asn | Glu | | | | | | | Ser
65 | Leu | Ile | Ser | Ser | Gln
70 | Ala | Ser | Ser | Tyr | Phe
75 | Ile | Asp | Ala | Ala | Thr
80 | | | | | | | Val | . Asp | Asp | Ser | Gly
85 | Glu | Tyr | Arg | Cys | Gln
90 | Thr | Asn | Leu | Ser | Thr
95 | Leu | | | | | | | Ser | Asp | Pro | Val
100 | Gln | Leu | Glu | Val | His
105 | Ile | Gly | Trp | Leu | Leu
110 | Leu | Gln | | | | | | | Ala | Pro | Arg
115 | Trp | Val | Phe | Lys | Glu
120 | Glu | Asp | Pro | Ile | His
125 | Leu | Arg | Сув | | | | | | | His | Ser
130 | Trp | Lys | Asn | Thr | Ala
135 | Leu | His | Lys | Val | Thr
140 | Tyr | Leu | Gln | Asn | | | | | | | Gly
145 | Lys | Gly | Arg | Lys | Ty r
150 | Phe | His | His | Asn | Ser
155 | Asp | Phe | Tyr | Ile | Pro
160 | | | | | | | Lys | Ala | Thr | Leu | Lys
165 | Asp | Ser | Gly | Ser | Ty r
170 | Phe | Cys | Arg | Gly | Leu
175 | Phe | | | | | | | Gly | Ser | Lys | Asn
180 | Val | Ser | Ser | Glu | Thr
185 | Val | Asn | Ile | Thr | Ile
190 | Thr | Gln | | | | | | | Gly | Leu | Ala
195 | Val | Ser | Thr | Ile | Ser
200 | Ser | Phe | Phe | Pro | Pro
205 | Gly | Tyr | Gln | | | | | | | Val | Ser
210 | Phe | Cys | Leu | Val | Met
215 | Val | Leu | Leu | Phe | Ala
220 | Val | Asp | Thr | Gly | | | | | | | Leu
225 | Tyr | Phe | Ser | Val | Lys
230 | Thr | Asn | Ile | Arg | Ser
235 | Ser | Thr | Arg | Asp | Trp
240 | | | | | | | Lys | Asp | His | Lys | Phe
245 | Lys | Trp | Arg | Lys | Asp
250 | Pro | Gln | Asp | Lys | | | | | | | | | <21 <21 <21 <22 <22 <22 <22 <22 | 0> SE
1> LE
2> TY
3> OF
0> FE
1> NF
2> LO
3> OT | ENGTH
PE:
RGANI
EATUF
AME/F
OCATI | H: 93 DNA ISM: RE: REY: ION: INFO | Chir
misc
(1). | c_fea | 33) | | ìRII <i>I</i> | A | | | | | | | | | | | | | atg | tctca | aga a | atgta | atgt | cc c | agaa | acct | g tg | gctgo | ette | aac | catt | gac a | agtti | ttgctg | | 60 | | | | | ctg | ctgg | ctt d | ctgc | agac | ag t | caag | ctgc | t aad | cccaa | aagg | ctg. | tgct | gaa a | actt | gagece | 1: | 20 | egeage | | 80 | acgcag | | 40 | actggc | | 00 | ctccag | | 60 | tggaag | | 20
80 | cactgo | | 40 | | | | | _ | _ | | | | | | - | | | _ | | | _ | | caagcg | | 00 | | | | | | | | | | , | ٠. | | | , | , | | | | - | , , | | | | | | cccagcgtgg gcagctcttc accagtgggg atcattgtgg ctgtggtcat tgcgactgct 660 gtagcagcca ttgttgctgc tgtagtggcc ttgatctact gcaggaaaaa gcggatttca | gccaattcca ctgatcctgt gaaggctgcc caatttgagc cacctggacg tcaaatgatt | 780 | |--|-----| | gccatcagaa agagacaact tgaagaaacc aacaatgact atgaaacagc tgacggcggc | 840 | | tacatgacto tgaaccccag ggcacctact gacgatgata aaaacatota cotgactott | 900 | | cctcccaacg accatgtcaa cagtaataac taa | 933 | | <210> SEQ ID NO 23 <211> LENGTH: 360 <212> TYPE: DNA <213> ORGANISM: Cynomolgus <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)(360) <223> OTHER INFORMATION: B-2 microglobulin | | | <400> SEQUENCE: 23 | | | atgtctccct cagtggcctt agccgtgctg gcgctactct ctctttctgg cctggaggct | 60 | | atccagcgta ctccaaagat tcaggtttac tcacgccatc caccagagaa tggaaagcca | 120 | | aatttcctga attgctatgt gtctggattt catccatctg atattgaagt tgacttactg | 180 | | aagaatggag agaaaatggg aaaagtggag cattcagact tgtctttcag caaagactgg | 240 | | totttotato
tottgtacta cactgaatto accoccaatg aaaaagatga gtatgcctgc | 300 | | cgtgtgaacc atgtgacttt gtcagggccc aggacagtta agtgggatcg agacatgtaa | 360 | | <210> SEQ ID NO 24 <211> LENGTH: 360 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)(360) <223> OTHER INFORMATION: B-2 microglobulin | | | <400> SEQUENCE: 24 | | | atgtctcgct ccgtggcctt agctgtgctc gcgctactct ctctttctgg cctggaggct | 60 | | atccagcgta ctccaaagat tcaggtttac tcacgtcatc cagcagagaa tggaaagtca | 120 | | aatttootga attgotatgt gtotgggttt catcoatcog acattgaagt tgacttactg | 180 | | aagaatggag agagaattga aaaagtggag cattcagact tgtctttcag caaggactgg | 240 | | totttotato tottgtacta cactgaatto accoccactg aaaaagatga gtatgcctgc | 300 | | cgtgtgaacc atgtgacttt gtcacagccc aagatagtta agtgggatcg agacatgtaa | 360 | | <210> SEQ ID NO 25 <211> LENGTH: 119 <212> TYPE: PRT <213> ORGANISM: Cynomolgus <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <222> LOCATION: (1)(119) <223> OTHER INFORMATION: Beta-2 microglobulin | | | <400> SEQUENCE: 25 | | | Met Ser Pro Ser Val Ala Leu Ala Val Leu Ala Leu Leu Ser Leu Ser 1 5 10 15 | | | Gly Leu Glu Ala Ile Gln Arg Thr Pro Lys Ile Gln Val Tyr Ser Arg 20 25 30 | | | | | His Pro Pro Glu Asn Gly Lys Pro Asn Phe Leu Asn Cys Tyr Val Ser | 35 | 40 | | 45 | | |---|-----------------------------------|------------------------|------------------------|----| | Gly Phe His Pro | Ser Asp Ile Glu 555 | Val Asp Leu Leu
60 | Lys Asn Gly Glu | | | Lys Met Gly Lys | Val Glu His Ser . | Asp Leu Ser Phe 75 | Ser Lys Asp Trp | | | Ser Phe Tyr Leu | Leu Tyr Tyr Thr | Glu Phe Thr Pro | Asn Glu Lys Asp
95 | | | Glu Tyr Ala Cys | Arg Val Asn His | Val Thr Leu Ser
105 | Gly Pro Arg Thr | | | Val Lys Trp Asp
115 | Arg Asp Met | | | | | <pre><210> SEQ ID NO <211> LENGTH: 1 <212> TYPE: PRT <213> ORGANISM: <220> FEATURE: <221> NAME/KEY: <222> LOCATION: <223> OTHER INFO</pre> | 19 Homo sapiens MISC_FEATURE | microglobulin | | | | <400> SEQUENCE: | 26 | | | | | Met Ser Arg Ser
1 | Val Ala Leu Ala ' | Val Leu Ala Leu
10 | Leu Ser Leu Ser
15 | | | Gly Leu Glu Ala
20 | Ile Gln Arg Thr | Pro Lys Ile Gln
25 | Val Tyr Ser Arg
30 | | | His Pro Ala Glu
35 | Asn Gly Lys Ser . 40 | Asn Phe Leu Asn | Cys Tyr Val Ser
45 | | | Gly Phe His Pro
50 | Ser Asp Ile Glu '
55 | Val Asp Leu Leu
60 | Lys Asn Gly Glu | | | Arg Ile Glu Lys
65 | Val Glu His Ser .
70 | Asp Leu Ser Phe
75 | Ser Lys Asp Trp
80 | | | Ser Phe Tyr Leu | Leu Tyr Tyr Thr | Glu Phe Thr Pro
90 | Thr Glu Lys Asp
95 | | | Glu Tyr Ala Cys
100 | Arg Val Asn His | Val Thr Leu Ser
105 | Gln Pro Lys Ile
110 | | | Val Lys Trp Asp
115 | Arg Asp Met | | | | | <pre><210> SEQ ID NO <211> LENGTH: 1' <211> TYPE: DNA <212> TYPE: DNA <212> ORGANISM: <220> FEATURE: <221> NAME/KEY: <222> LOCATION: <223> OTHER INFO</pre> | 098
Cynomolgus
misc_feature | pha-chain | | | | <400> SEQUENCE: | 27 | | | | | atgagggtcc cgcg | geetea geeetgggeg | ctggggctcc tgc | cetttet cetgeeeggg | 60 | | agcctgggcg caga | aagcca cctctccctc | ctgtaccacc tcac | ccgcggt gtcctcgccc 1 | 20 | | gccccgggga cgcc | tgcctt ctgggtgtcc | ggetggetgg gee | egcagca gtacetgage 1 | 80 | | tacgacagcc tgag | gggcca ggcggagccc | tgtggagctt gggt | cctggga aaaccaagtg 2 | 40 | | tcctggtatt ggga | gaaaga gaccacagat | ctgaggatca agga | agaagct ctttctggaa 3 | 00 | | gctttcaaag cttt | gggggg aaaaggcccc | tacactctgc agg | geetget gggetgtgaa 3 | 60 | | ctgagccctg acaacacctc ggtgcccacc gccaagttcg ccctgaacgg | cgaggagttc | 420 | |--|--|--------------------------| | atgaatttcg acctcaagca gggcacctgg ggtggggact ggcccgaggc | cctggctatc | 480 | | agtcagcggt ggcagcagca ggacaaggcg gccaacaagg agctcacctt | cctgctattc | 540 | | tectgeecac accggetgeg ggageacetg gagaggggee gtggaaacet | ggagtggaag | 600 | | gagcccccct ccatgcgcct gaaggcccga cccggcaacc ctggcttttc | cgtgcttacc | 660 | | tgcagcgcct tctccttcta ccctccggaa ctgcaactgc ggttcctgcg | gaatgggatg | 720 | | gccgctggca ccggacaggg cgacttcggc cccaacagtg acggctcctt | ccacgcctcg | 780 | | togtcactaa cagtcaaaag tggcgatgag caccactact gctgcatcgt | gcagcacgcg | 840 | | gggctggcgc agcccctcag ggtggagctg gaaactccag ccaagtcctc | ggtgctcgtg | 900 | | gtgggaatcg tcatcggtgt cttgctactc acggcagcgg ctgtaggagg | agctctgttg | 960 | | tggagaagga tgaggagtgg gctgccagcc ccttggatct ccctccgtgg | agatgacacc | 1020 | | gggtccctcc tgcccacccc gggggaggcc caggatgctg attcgaagga | tataaatgtg | 1080 | | atcccagcca ctgcctga | | 1098 | | <210> SEQ ID NO 28 <211> LENGTH: 1098 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)(1098) <223> OTHER INFORMATION: FCRn alpha-chain <400> SEQUENCE: 28 | | | | atggggtcc cgcggcctca gccctgggcg ctggggctcc tgctctttct | ccttcctaaa | 60 | | agcctgggcg cagaaagcca cctctccctc ctgtaccacc ttaccgcggt | | 120 | | gccccgggga ctcctgcctt ctgggtgtcc ggctggctgg gcccgcagca | | 180 | | tacaatagcc tgcggggcga ggcggagccc tgtggagctt gggtctggga | | 240 | | tcctggtatt gggagaaaga gaccacagat ctgaggatca aggagaagct | | 300 | | gctttcaaag ctttgggggg aaaaggtccc tacactctgc agggcctgct | | 360 | | ctgggccctg acaacacctc ggtgcccacc gccaagttcg ccctgaacgg | cgaggagttc | 420 | | atgaattteg accteaagea gggeacetgg ggtggggaet ggeeegagge | cctggctatc | 480 | | agtcagcggt ggcagcagca ggacaaggcg gccaacaagg agctcacctt | cctgctattc | 540 | | tectgeeege accepectgeg ggageacetg gagaggggee geggaaacet | ggagtggaag | 600 | | gagcccccct ccatgcgcct gaaggcccga cccagcagcc ctggcttttc | cgtgcttacc | 660 | | | | 720 | | tgcagcgcct tctccttcta ccctccggag ctgcaacttc ggttcctgcg | gaatgggctg | 720 | | tgcagcgcct tctccttcta ccctccggag ctgcaacttc ggttcctgcg gccgctggca ccggccaggg tgacttcggc cccaacagtg acggatcctt | | 780 | | | ccacgcctcg | | | gccgctggca ccggccaggg tgacttcggc cccaacagtg acggatcctt | ccacgcctcg
gcagcacgcg | 780 | | gccgctggca ccggccaggg tgacttcggc cccaacagtg acggatcctt tcgtcactaa cagtcaaaaag tggcgatgag caccactact gctgcattgt | ccacgcctcg
gcagcacgcg
cgtgctcgtg | 780
840 | | gccgctggca ccggccaggg tgacttcggc cccaacagtg acggatcctt tcgtcactaa cagtcaaaag tggcgatgag caccactact gctgcattgt gggctggcgc agccctcag ggtggagctg gaatctccag ccaagtcctc | ccacgcctcg
gcagcacgcg
cgtgctcgtg
agctctgttg | 780
840
900 | | gccgctggca ccggccaggg tgacttcggc cccaacagtg acggatcett tcgtcactaa cagtcaaaaag tggcgatgag caccactact gctgcattgt gggctggcgc agcccctcag ggtggagctg gaatctccag ccaagtcctc gtgggaatcg tcatcggtgt cttgctactc acggcagcgg ctgtaggagg | ccacgcctcg gcagcacgcg cgtgctcgtg agctctgttg agacgacacc | 780
840
900
960 | | <211
<212
<213 | l> LE
?> TY
3> OF | Q II
INGTH
IPE:
RGANI
LATUF | : 36
PRT
SM: | | molo | jus | | | | | | | | | | |----------------------|-------------------------|---|--------------------|--------------|------------|---------------------|---------------------|------------|------------|------------|------------|------------|------------|--------------------|------------| | <221
<222 | l> NA
2> LC | ME/K
CATI | EY: | MISC
(1). | . (36 | 55) | | 33) | | | | | | | | | <400 |)> SE | QUEN | ICE: | 29 | | | | | | | | | | | | | Met
1 | Arg | Val | Pro | Arg
5 | Pro | Gln | Pro | Trp | Ala
10 | Leu | Gly | Leu | Leu | Leu
15 | Phe | | Leu | Leu | Pro | Gly
20 | Ser | Leu | Gly | Ala | Glu
25 | Ser | His | Leu | Ser | Leu
30 | Leu | Tyr | | His | Leu | Thr
35 | Ala | Val | Ser | Ser | Pro
40 | Ala | Pro | Gly | Thr | Pro
45 | Ala | Phe | Trp | | Val | Ser
50 | Gly | Trp | Leu | Gly | Pro
55 | Gln | Gln | Tyr | Leu | Ser
60 | Tyr | Asp | Ser | Leu | | Arg
65 | Gly | Gln | Ala | Glu | Pro
70 | Суѕ | Gly | Ala | Trp | Val
75 | Trp | Glu | Asn | Gln | Val
80 | | Ser | Trp | Tyr | Trp | Glu
85 | Lys | Glu | Thr | Thr | Asp
90 | Leu | Arg | Ile | Lys | Glu
95 | Lys | | Leu | Phe | Leu | Glu
100 | Ala | Phe | Lys | Ala | Leu
105 | Gly | Gly | Lys | Gly | Pro
110 | Tyr | Thr | | Leu | Gln | Gl y
115 | Leu | Leu | Gly | Cys | Glu
120 | Leu | Ser | Pro | Asp | Asn
125 | Thr | Ser | Val | | Pro | Thr
130 | Ala | Lys | Phe | Ala | Leu
135 | Asn | Gly | Glu | Glu | Phe
140 | Met | Asn | Phe | Asp | | Leu
145 | Lys | Gln | Gly | Thr | Trp
150 | Gly | Gly | Asp | Trp | Pro
155 | Glu | Ala | Leu | Ala | Ile
160 | | Ser | Gln | Arg | Trp | Gln
165 | Gln | Gln | Asp | Lys | Ala
170 | Ala | Asn | Lys | Glu | Leu
175 | Thr | | Phe | Leu | Leu | Phe
180 | Ser | Сув | Pro | His | Arg
185 | Leu | Arg | Glu | His | Leu
190 | Glu | Arg | | Gly | Arg | Gl y
195 | Asn | Leu | Glu | Trp | L y s
200 | Glu | Pro | Pro | Ser | Met
205 | Arg | Leu | Lys | | Ala | Arg
210 | Pro | Gly | Asn | Pro | Gl y
215 | Phe | Ser | Val | Leu | Thr
220 | Cys | Ser | Ala | Phe | | Ser
225 | Phe | Tyr | Pro | Pro | Glu
230 | Leu | Gln | Leu | Arg | Phe
235 | Leu | Arg | Asn | Gly | Met
240 | | Ala | Ala | Gly | Thr | Gly
245 | Gln | Gly | Asp | Phe | Gly
250 | Pro | Asn | Ser | Asp | Gl y
255 | Ser | | Phe | His | Ala | Ser
260 | Ser | Ser | Leu | Thr | Val
265 | Lys | Ser | Gly | Asp | Glu
270 | His | His | | Tyr | Cys | Cys
275 | Ile | Val | Gln | His | Ala
280 | Gly | Leu | Ala | Gln | Pro
285 | Leu | Arg | Val | | Glu | Leu
290 | Glu | Thr | Pro | Ala | L y s
295 | Ser |
Ser | Val | Leu | Val
300 | Val | Gly | Ile | Val | | Ile
305 | Gly | Val | Leu | Leu | Leu
310 | Thr | Ala | Ala | Ala | Val
315 | Gly | Gly | Ala | Leu | Leu
320 | | Trp | Arg | Arg | Met | Arg
325 | Ser | Gly | Leu | Pro | Ala
330 | Pro | Trp | Ile | Ser | Leu
335 | Arg | | Gly | Asp | Asp | Thr
340 | Gly | Ser | Leu | Leu | Pro
345 | Thr | Pro | Gly | Glu | Ala
350 | Gln | Asp | |--|-------------------------|--------------------|-------------------------|--------------------|------------|---------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------| | Ala | Asp | Ser
355 | Lys | Asp | Ile | Asn | Val
360 | Ile | Pro | Ala | Thr | Ala
365 | | | | | <211
<212
<213
<220
<221
<222 |)> FE
.> NA
?> LC | CATI | PRT
SM:
E:
EY: | | _FEA | TURE | 1 | .pha- | chai | _n | | | | | | | <400 |)> SE | QUEN | ICE: | 30 | | | | | | | | | | | | | Met
1 | Gly | Val | Pro | Arg
5 | Pro | Gln | Pro | Trp | Ala
10 | Leu | Gly | Leu | Leu | Leu
15 | Phe | | Leu | Leu | Pro | Gly
20 | Ser | Leu | Gly | Ala | Glu
25 | Ser | His | Leu | Ser | Leu
30 | Leu | Tyr | | His | Leu | Thr
35 | Ala | Val | Ser | Ser | Pro
40 | Ala | Pro | Gly | Thr | Pro
45 | Ala | Phe | Trp | | Val | Ser
50 | Gly | Trp | Leu | Gly | Pro
55 | Gln | Gln | Tyr | Leu | Ser
60 | Tyr | Asn | Ser | Leu | | Arg
65 | Gly | Glu | Ala | Glu | Pro
70 | Cys | Gly | Ala | Trp | Val
75 | Trp | Glu | Asn | Gln | Val
80 | | Ser | Trp | Tyr | Trp | Glu
85 | Lys | Glu | Thr | Thr | Asp
90 | Leu | Arg | Ile | Lys | Glu
95 | Lys | | Leu | Phe | Leu | Glu
100 | Ala | Phe | Lys | Ala | Leu
105 | Gly | Gly | Lys | Gly | Pro
110 | Tyr | Thr | | Leu | Gln | Gly
115 | Leu | Leu | Gly | Cys | Glu
120 | Leu | Gly | Pro | Asp | Asn
125 | Thr | Ser | Val | | Pro | Thr
130 | Ala | Lys | Phe | Ala | Leu
135 | Asn | Gly | Glu | Glu | Phe
140 | Met | Asn | Phe | Asp | | Leu
145 | Lys | Gln | Gly | Thr | Trp
150 | Gly | Gly | Asp | Trp | Pro
155 | Glu | Ala | Leu | Ala | Ile
160 | | Ser | Gln | Arg | Trp | Gln
165 | Gln | Gln | Asp | Lys | Ala
170 | Ala | Asn | Lys | Glu | Leu
175 | Thr | | Phe | Leu | Leu | Phe
180 | Ser | Суѕ | Pro | His | Arg
185 | Leu | Arg | Glu | His | Leu
190 | Glu | Arg | | Gly | | Gl y
195 | | Leu | | Trp | | | Pro | | | Met
205 | | Leu | Lys | | Ala | Arg
210 | Pro | Ser | Ser | Pro | Gly
215 | Phe | Ser | Val | Leu | Thr
220 | Суѕ | Ser | Ala | Phe | | Ser
225 | Phe | Tyr | Pro | Pro | Glu
230 | Leu | Gln | Leu | Arg | Phe
235 | Leu | Arg | Asn | Gly | Leu
240 | | Ala | Ala | Gly | Thr | Gl y
245 | Gln | Gly | Asp | Phe | Gly
250 | Pro | Asn | Ser | Asp | Gly
255 | Ser | | Phe | His | Ala | Ser
260 | Ser | Ser | Leu | Thr | Val
265 | Lys | Ser | Gly | Asp | Glu
270 | His | His | | Tyr | Cys | Cys
275 | Ile | Val | Gln | His | Ala
280 | Gly | Leu | Ala | Gln | Pro
285 | Leu | Arg | Val | | Glu | Leu
290 | Glu | Ser | Pro | Ala | L y s
295 | Ser | Ser | Val | Leu | Val
300 | Val | Gly | Ile | Val | | Ile | Gly | Val | Leu | Leu | Leu | Thr | Ala | Ala | Ala | Val | Gly | Gly | Ala | Leu | Leu | ``` 305 310 315 Trp Arg Arg Met Arg Ser Gly Leu Pro Ala Pro Trp Ile Ser Leu Arg 325 330 Gly Asp Asp Thr Gly Val Leu Leu Pro Thr Pro Gly Glu Ala Gln Asp 340 345 Ala Asp Leu Lys Asp Val Asn Val Ile Pro Ala Thr Ala 355 360 <210> SEQ ID NO 31 <211> LENGTH: 33 <212> TYPE: DNA <213> ORGANISM: Cynomolgus <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(33) <223> OTHER INFORMATION: FcgammaRI - forward primer <400> SEQUENCE: 31 caggtcaatc tctagactcc caccagcttg gag 33 <210> SEQ ID NO 32 <211> LENGTH: 33 <212> TYPE: DNA <213> ORGANISM: Cynomolgus <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(33) <223> OTHER INFORMATION: FcgammaRI - reverse primer <400> SEQUENCE: 32 ggtcaactat aagcttggac ggtccagatc gat 33 <210> SEQ ID NO 33 <211> LENGTH: 34 <212> TYPE: DNA <213> ORGANISM: Cynomolgus <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(34) <223> OTHER INFORMATION: FcgammaRI-H6-GST - forward primer <400> SEQUENCE: 33 34 caggicaatc atcgatatgt ggitcitgac agct <210> SEQ ID NO 34 <211> LENGTH: 51 <212> TYPE: DNA <213> ORGANISM: Cynomolgus <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(51) <223> OTHER INFORMATION: FcgammaRI-H6-GST - reverse primer <400> SEQUENCE: 34 ggtcaactat gctagcatgg tgatgatggt ggtgccagac aggagttggt a <210> SEQ ID NO 35 <211> LENGTH: 36 <212> TYPE: DNA <213> ORGANISM: Cynomolgus <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(36) <223> OTHER INFORMATION: FcgammaRIIB - forward primer ``` ``` <400> SEOUENCE: 35 caggicaatc tctagaatgg gaatcctgtc attctt 36 <210> SEQ ID NO 36 <211> LENGTH: 34 <212> TYPE: DNA <213> ORGANISM: Cynomolgus <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(34) <223> OTHER INFORMATION: FcgammaRIIB - reverse primer <400> SEQUENCE: 36 ggtcaactat aagcttctaa atacggttct ggtc 34 <210> SEQ ID NO 37 <211> LENGTH: 33 <212> TYPE: DNA <213> ORGANISM: Cynomolgus <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(33) <223> OTHER INFORMATION: FcgammaRIIB-H6-GST - forward primer <400> SEQUENCE: 37 caggicaatc atcgatatgc tictgtggac agc 33 <210> SEQ ID NO 38 <211> LENGTH: 34 <212> TYPE: DNA <213> ORGANISM: Cynomolgus <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(34) <223> OTHER INFORMATION: FcgammaRIIB-H6-GST - reverse primer <400> SEQUENCE: 38 ggtcaactat ggtgacctat cggtgaagag ctgc 34 <210> SEQ ID NO 39 <211> LENGTH: 33 <212> TYPE: DNA <213> ORGANISM: Cynomolgus <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(33) <223> OTHER INFORMATION: FcgammaRIIIA - forward primer <400> SEQUENCE: 39 caggtcaatc tctagaatgt ggcagctgct cct 33 <210> SEQ ID NO 40 <211> LENGTH: 33 <212> TYPE: DNA <213> ORGANISM: Cynomolgus <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(33) <223> OTHER INFORMATION: FcgammaRIIIA - reverse primer <400> SEQUENCE: 40 33 tcaactataa gcttatgttc agagatgctg ctg ``` ``` <210> SEQ ID NO 41 <211> LENGTH: 33 <212> TYPE: DNA <213> ORGANISM: Cynomolgus <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(33) <223> OTHER INFORMATION: FcgammaRIIIA-H6-GST - forward primer <400> SEQUENCE: 41 33 caggicaatc tctagaatgt ggcagctgct cct <210> SEQ ID NO 42 <211> LENGTH: 35 <212> TYPE: DNA <213> ORGANISM: Cynomolgus <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(35) <223> OTHER INFORMATION: FcgammaRIIIA-H6-GST - reverse primer <400> SEQUENCE: 42 ggtcaactat ggtcaccttg gtacccaggt ggaaa 35 <210> SEQ ID NO 43 <211> LENGTH: 45 <212> TYPE: DNA <213> ORGANISM: Cynomolgus <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(45) <223> OTHER INFORMATION: Fc gamma - forward primer <400> SEQUENCE: 43 caggicaatc atcgatgaat tcccaccatg attccagcag tggtc 45 <210> SEQ ID NO 44 <211> LENGTH: 35 <212> TYPE: DNA <213> ORGANISM: Cynomolgus <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(35) <223> OTHER INFORMATION: Fc gamma - reverse primer <400> SEQUENCE: 44 ggtcaactat aagcttctac tgtggtggtt tctca 35 <210> SEQ ID NO 45 <211> LENGTH: 32 <212> TYPE: DNA <213> ORGANISM: Cynomolgus <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(32) <223> OTHER INFORMATION: B-2 microglobulin - forward primer <400> SEQUENCE: 45 caggtcaatc atcgattcgg gccgagatgt ct 32 <210> SEQ ID NO 46 <211> LENGTH: 34 <212> TYPE: DNA <213> ORGANISM: Cynomolgus <220> FEATURE: <221> NAME/KEY: misc_feature ``` ``` <222> LOCATION: (1)..(34) <223> OTHER INFORMATION: B-2 microglobulin - reverse primer <400> SEQUENCE: 46 34 ggtcaactat tctagattac atgtctcgat ccca <210> SEQ ID NO 47 <211> LENGTH: 35 <212> TYPE: DNA <213> ORGANISM: Cynomolgus <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(35) <223> OTHER INFORMATION: FcgammaRIIA - forward primer <400> SEQUENCE: 47 caggicaatc tctagaatgt ctcagaatgt atgtc 35 <210> SEQ ID NO 48 <211> LENGTH: 37 <212> TYPE: DNA <213> ORGANISM: Cynomolgus <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(37) <223> OTHER INFORMATION: FcgammaRIIA - reverse primer <400> SEQUENCE: 48 37 ggtcaactat aagcttttag ttattactgt tgtcata <210> SEQ ID NO 49 <211> LENGTH: 35 <212> TYPE: DNA <213> ORGANISM: Cynomolgus <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(35) <223> OTHER INFORMATION: FcgammaRIIA-H6-GST - forward primer <400> SEQUENCE: 49 caggtcaatc atcgatatgt ctcagaatgt atgtc 35 <210> SEQ ID NO 50 <211> LENGTH: 34 <212> TYPE: DNA <213> ORGANISM: Cynomolgus <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(34) <223> OTHER INFORMATION: FcgammaRIIA-H6-GST - reverse primer <400> SEQUENCE: 50 ggtcaactat ggtgacccat cggtgaagag ctgc 34 <210> SEQ ID NO 51 <211> LENGTH: 32 <212> TYPE: DNA <213> ORGANISM: Cynomolgus <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(32) <223> OTHER INFORMATION: FcRn - forward primer <400> SEQUENCE: 51 32 caggtcaatc atcgataggt cgtcctctca gc ``` ``` <210> SEQ ID NO 52 <211> LENGTH: 32 <212> TYPE: DNA <213> ORGANISM: Cynomolgus <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(32) <223> OTHER INFORMATION: FcRn - reverse primer <400> SEQUENCE: 52 ggtcaactat gaattctcgg aatggcggat gg 32 <210> SEQ ID NO 53 <211> LENGTH: 32 <212> TYPE: DNA <213> ORGANISM: Cynomolgus <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(32) <223> OTHER INFORMATION: FcRn-H6 - forward primer <400> SEQUENCE: 53 caggicaatc atcgataggi cgiccictca gc 32 <210> SEQ ID NO 54 <211> LENGTH: 55 <212> TYPE: DNA <213> ORGANISM: Cynomolgus <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(55) <223> OTHER INFORMATION: FcRn-H6 - reverse primer <400> SEQUENCE: 54 ggtcaactat gaattcatgg
tgatgatggt ggtgcgagga cttggctgga gtttc 55 <210> SEQ ID NO 55 <211> LENGTH: 33 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: PCR primer OF1 <400> SEQUENCE: 55 caggtcaatc tctagacagt ggttccacaa tgg 33 <210> SEQ ID NO 56 <211> LENGTH: 35 <212> TYPE: DNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: PCR primer OR1 <400> SEQUENCE: 56 ggtcaactat aagcttaaga gtcaggtaga tgttt 35 <210> SEQ ID NO 57 <211> LENGTH: 37 <212> TYPE: DNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: PCR primer OF2 <400> SEQUENCE: 57 ``` | | -continued | |---|------------| | caggicaatc ictagaatac ataaccitat giatcat | 37 | | <210> SEQ ID NO 58
<211> LENGTH: 37
<212> TYPE: DNA | | | <pre><213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: PCR primer OF3</pre> | | | <400> SEQUENCE: 58 | | | caggtcaatc tctagatata gaataacatc cactttg | 37 | | <pre><210> SEQ ID NO 59 <211> LENGTH: 32 <212> TYPE: DNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: PCR primer OR2</pre> | | | <400> SEQUENCE: 59 | | | ggtcaactat aagcttcaga gtcatgtagc cg | 32 | | <210> SEQ ID NO 60 <211> LENGTH: 35 <212> TYPE: DNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: PCR primer OF4 | | | <400> SEQUENCE: 60 | | | caggtcaatc tctagaattc cactgatcct gtgaa | 35 | | <pre><210> SEQ ID NO 61 <211> LENGTH: 37 <212> TYPE: DNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: PCT primer OR3</pre> | | | <400> SEQUENCE: 61 | | | ggtcaactat aagcttgctt tatttgtgaa atttgtg | 37 | | <pre><210> SEQ ID NO 62 <211> LENGTH: 35 <212> TYPE: DNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: PCR primer OF5</pre> | | | <400> SEQUENCE: 62 | | | caggtcaatc tctagaactt ggacgtcaaa cgatt | 35 | | <pre><210> SEQ ID NO 63 <211> LENGTH: 35 <212> TYPE: DNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: PCR primer OR4</pre> | | | <400> SEQUENCE: 63 | | | ggtcaactat aagcttctgc aataaacaag ttggg | 35 | ``` <210> SEQ ID NO 64 <211> LENGTH: 365 <212> TYPE: PRT <213> ORGANISM: Cynomolgus <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <222> LOCATION: (1)..(365) <223> OTHER INFORMATION: FcRn (N3) <400> SEQUENCE: 64 Met Arg Val Pro Arg Pro Gln Pro Trp Ala Leu Gly Leu Leu Phe Leu Leu Pro Gly Ser Leu Gly Ala Glu Asn His Leu Ser Leu Leu Tyr His Leu Thr Ala Val Ser Ser Pro Ala Pro Gly Thr Pro Ala Phe Trp Val Ser Gly Trp Leu Gly Pro Gln Gln Tyr Leu Ser Tyr Asp Ser Leu Arg Gly Gln Ala Glu Pro Cys Gly Ala Trp Val Trp Glu Asn Gln Val Ser Trp Tyr Trp Glu Lys Glu Thr Thr Asp Leu Arg Ile Lys Glu Lys Leu Phe Leu Glu Ala Phe Lys Ala Leu Gly Gly Lys Gly Pro Tyr Thr Leu Gln Gly Leu Leu Gly Cys Glu Leu Ser Pro Asp Asn Thr Ser Val 115 \ 120 \ 125 Pro Thr Ala Lys Phe Ala Leu Asn Gly Glu Glu Phe Met Asn Phe Asp Leu Lys Gln Gly Thr Trp Gly Gly Asp Trp Pro Glu Ala Leu Ala Ile Ser Gln Arg Trp Gln Gln Gln Asp Lys Ala Ala Asn Lys Glu Leu Thr Phe Leu Leu Phe Ser Cys Pro His Arg Leu Arg Glu His Leu Glu Arg Gly Arg Gly Asn Leu Glu Trp Lys Glu Pro Pro Ser Met Arg Leu Lys Ala Arg Pro Gly Asn Pro Gly Phe Ser Val Leu Thr Cys Ser Ala Phe Ser Phe Tyr Pro Pro Glu Leu Gln Leu Arg Phe Leu Arg Asn Gly Met 230 Ala Ala Gly Thr Gly Gln Gly Asp Phe Gly Pro Asn Ser Asp Gly Ser Phe His Ala Ser Ser Ser Leu Thr Val Lys Ser Gly Asp Glu His His 265 Tyr Cys Cys Ile Val Gln His Ala Gly Leu Ala Gln Pro Leu Arg Val Glu Leu Glu Thr Pro Ala Lys Ser Ser Val Leu Val Val Gly Ile Val Ile Gly Val Leu Leu Thr Ala Ala Ala Val Gly Gly Ala Leu Leu Trp Arg Arg Met Arg Ser Gly Leu Pro Ala Pro Trp Ile Ser Leu Arg Gly Asp Asp Thr Gly Ser Leu Leu Pro Thr Pro Gly Glu Ala Gln Asp ``` | Ala Asp | Ser Ly
355 | s Asp | Ile Asn | Val
360 | Ile | Pro | Ala | Thr | Ala
365 | | | | |--|---|---|-------------------------|--------------------|------------|-------------------|---------------------|------------|--------------------|------------|------------|------------| | <210> SI
<211> LH
<212> TY
<213> OP
<220> FI
<221> NA
<222> LO
<223> OY | ENGTH:
YPE: PR
RGANISM
EATURE:
AME/KEY
OCATION | 336
r
: Cynor
: MISC
: (1). | _FEATURI | | aRI a | alpha | a-chá | ain | | | | | | <400> SI | EQUENCE | : 65 | | | | | | | | | | | | Ala Val
1 | Ile Th | r Leu
5 | Gln Pro | Pro | Trp | Val
10 | Ser | Val | Phe | Gln | Glu
15 | Glu | | Thr Val | Thr Le | u Gln | Cys Glu | Val | Pro
25 | Arg | Leu | Pro | Gly | Ser
30 | Ser | Ser | | Thr Gln | Trp Ph | e Leu | Asn Gly | Thr
40 | Ala | Thr | Gln | Thr | Ser
45 | Thr | Pro | Ser | | Tyr Arg
50 | Ile Th | r Ser | Ala Ser
55 | Val | Lys | Asp | Ser | Gly
60 | Glu | Tyr | Arg | Cys | | Gln Arg
65 | Gly Pr | | Gly Arg
70 | Ser | Asp | Pro | Ile
75 | Gln | Leu | Glu | Ile | His
80 | | Arg Asp | Trp Le | u Leu
85 | Leu Gln | Val | Ser | Ser
90 | Arg | Val | Phe | Thr | Glu
95 | Gly | | Glu Pro | Leu Al
10 | | Arg Cys | His | Ala
105 | Trp | Lys | Asp | Lys | Leu
110 | Val | Tyr | | Asn Val | Leu Ty
115 | r Ty r | Gln Asn | Gl y
120 | Lys | Ala | Phe | Lys | Phe
125 | Phe | Tyr | Arg | | Asn Ser
130 | Gln Le | u Thr | Ile Leu
135 | | Thr | Asn | Ile | Ser
140 | His | Asn | Gly | Ala | | Tyr His
145 | Cys Se | | Met Gly
150 | Lys | His | Arg | Ty r
155 | Thr | Ser | Ala | Gly | Val
160 | | Ser Val | Thr Va | l Lys
165 | Glu Leu | Phe | Pro | Ala
170 | Pro | Val | Leu | Asn | Ala
175 | Ser | | Val Thr | Ser Pr | | Leu Glu | Gly | Asn
185 | Leu | Val | Thr | Leu | Ser
190 | Cys | Glu | | Thr Lys | Leu Le
195 | u Leu | Gln Arg | Pro
200 | Gly | Leu | Gln | Leu | Ty r
205 | Phe | Ser | Phe | | Tyr Met
210 | | | Thr Leu
215 | | | _ | Asn | | | Ser | Glu | Tyr | | Gln Ile
225 | Leu Th | | Arg Arg
230 | Glu | Asp | Ser | Gly
235 | Phe | Tyr | Trp | Cys | Glu
240 | | Ala Thr | Thr Gl | u Asp
245 | Gly Asn | Val | Leu | Lys
250 | Arg | Ser | Pro | Glu | Leu
255 | Glu | | Leu Gln | Val Le
26 | | Leu Gln | Leu | Pro
265 | Thr | Pro | Val | Trp | Leu
270 | His | Val | | Leu Phe | Ty r Le
275 | u Val | Val Gly | Ile
280 | Met | Phe | Leu | Val | Asn
285 | Thr | Val | Leu | | Trp Val
290 | Thr Il | e Arg | L y s Glu
295 | Leu | Lys | Arg | Lys | Lys
300 | Lys | Trp | Asn | Leu | | Glu Ile
305 | Ser Le | | Ser Ala
310 | His | Glu | Lys | L y s
315 | Val | Thr | Ser | Ser | Leu
320 | ``` Gln Glu Asp Arg His Leu Glu Glu Glu Leu Lys Ser Gln Glu Glu Glu 325 330 <210> SEO ID NO 66 <211> LENGTH: 282 <212> TYPE: PRT <213> ORGANISM: Cynomolgus <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <222> LOCATION: (1)..(282) <223> OTHER INFORMATION: FcgammaRIIA <400> SEQUENCE: 66 Thr Ala Pro Pro Lys Ala Val Leu Lys Leu Glu Pro Pro Trp Ile Asn Val Leu Arg Glu Asp Ser Val Thr Leu Thr Cys Gly Gly Ala His Ser Pro Asp Ser Asp Ser Thr Gln Trp Phe His Asn Gly Asn Arg Ile Pro 35 \ \ \, 40 \ \ \, 45 Thr His Thr Gln Pro Ser Tyr Arg Phe Lys Ala Asn Asn Asn Asp Ser 50 60 Gly Glu Tyr Arg Cys Gln Thr Gly Arg Thr Ser Leu Ser Asp Pro Val His Leu Thr Val Leu Ser Glu Trp Leu Ala Leu Gln Thr Pro His Leu Glu Phe Arg Glu Gly Glu Thr Ile Met Leu Arg Cys His Ser Trp Lys Lys Phe Ser His Met Asp Pro Asn Phe Ser Ile Pro Gln Ala Asn His 135 Ser His Ser Gly Asp Tyr His Cys Thr Gly Asn Ile Gly Tyr Thr Pro 155 150 Tyr Ser Ser Lys Pro Val Thr Ile Thr Val Gln Val Pro Ser Val Gly 165 170 Ser Ser Ser Pro Met Gly Ile Ile Val Ala Val Val Thr Gly Ile Ala Val Ala Ala Ile Val Ala Ala Val Val Ala Leu Ile Tyr Cys Arg Lys 200 Lys Arg Ile Ser Ala Asn Ser Thr Asp Pro Val Lys Ala Ala Arg Phe 215 Glu Pro Leu Gly Arg Gln Thr Ile Ala Leu Arg Lys Arg Gln Leu Glu Glu Thr Asn Asn Asp Tyr Glu Thr Ala Asp Gly Gly Tyr Met Thr Leu 245 250 255 Asn Pro Arg Ala Pro Thr Asp Asp Asp Arg Asn Ile Tyr Leu Thr Leu 265 Ser Pro Asn Asp Tyr Asp Asn Ser Asn Asn <210> SEQ ID NO 67 <211> LENGTH: 281 <212> TYPE: PRT <213> ORGANISM: Chimp <220> FEATURE: <221> NAME/KEY: MISC_FEATURE ``` <222> LOCATION: (1)..(281) <223> OTHER INFORMATION: FcgammaRIIA ``` <400> SEOUENCE: 67 Ala Pro Pro Lys Ala Val Leu Lys Leu Glu Pro Pro Trp Ile Asn Val 1 51010151510 10 Leu Gln Glu Asp Ser Val Thr Leu Thr Cys Arg Gly Ala Arg Ser Pro 20 \hspace{1cm} 25 \hspace{1cm} 30 \hspace{1cm} Glu Ser Asp Ser Ile Gln Trp Phe His Asn Gly Asn Leu Ile Pro Thr 35 40 45 His Thr Gln Pro Ser Tyr Arg Phe Lys Ala Asn Asn Asn Asp Ser Gly 55 Glu Tyr Thr Cys Gln Thr Gly Gln Thr Ser Leu Ser Asp Pro Val His Leu Thr Val Leu Ser Glu Trp Leu Val Leu Gln Thr Pro His Leu Glu Phe Gln Glu Gly Glu Thr Ile Val Leu Arg Cys His Ser Trp Lys Asp Lys Pro Leu Val Lys Val Thr Phe Phe Gln Asn Gly Lys Ser Gln Lys Phe Ser His Leu Asp Pro Asn Leu Ser Ile Pro Gln Ala Asn His Ser His Ser Gly Asp Tyr His Cys Thr Gly Asn Ile Gly Tyr Thr Leu Phe 145 150 155 160 Ser Ser Lys Pro Val Thr Ile Thr Val Gln Ala Pro Ser Val Gly Ser 165 170 175 Ser Ser Pro Val Gly Ile Ile Val Ala Val Val Ile Ala Thr Ala Val 180 180 Ala Ala Ile Val Ala Ala Val Val Ala Leu Ile Tyr Cys Arg Lys Lys 195 \hspace{1.5cm} 200 \hspace{1.5cm} 205 \hspace{1.5cm} Arg Ile Ser Ala Asn Ser Thr Asp Pro Val Lys Ala Ala Gln Phe Glu 210 215 220 Pro Pro Gly Arg Gln Met Ile Ala Ile Arg Lys Arg Gln Leu Glu
Glu 225 230 235 235 240 Thr Asn Asn Asp Tyr Glu Thr Ala Asp Gly Gly Tyr Met Thr Leu Asn 245 250 255 Pro Arg Ala Pro Thr Asp Asp Asp Lys Asn Ile Tyr Leu Thr Leu Pro 260 \\ 265 \\ 270 \\ Pro Asn Asp His Val Asn Ser Asn Asn <210> SEQ ID NO 68 <211> LENGTH: 252 <212> TYPE: PRT <213> ORGANISM: Cynomolgus <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <222> LOCATION: (1)..(252) <223> OTHER INFORMATION: FcgammaaRIIB <400> SEQUENCE: 68 Thr Pro Ala Ala Pro Pro Lys Ala Val Leu Lys Leu Glu Pro Pro Trp 1 5 ``` Ile Pro Thr His Thr Gln Pro Ser Tyr Arg Phe Lys Ala Asn Asn Asn Asp Ser Gly Glu Tyr Arg Cys Gln Thr Gly Arg Thr Ser Leu Ser Asp 65 70 75 80 Pro Val His Leu Thr Val Leu Ser Glu Trp Leu Ala Leu Gln Thr Pro His Leu Glu Phe Arg Glu Gly Glu Thr Ile Leu Leu Arg Cys His Ser 105 Trp Lys Asp Lys Pro Leu Ile Lys Val Thr Phe Phe Gln Asn Gly Ile $115 \\ 120 \\ 125$ Ser Lys Lys Phe Ser His Met Asn Pro Asn Phe Ser Ile Pro Gln Ala Asn His Ser His Ser Gly Asp Tyr His Cys Thr Gly Asn Ile Gly Tyr 150 Thr Pro Tyr Ser Ser Lys Pro Val Thr Ile Thr Val Gln Val Pro Ser Met Gly Ser Ser Ser Pro Ile Gly Ile Ile Val Ala Val Val Thr Gly 180 185 190 Ile Ala Val Ala Ala Ile Val Ala Ala Val Val Ala Leu Ile Tyr Cys Arg Lys Lys Arg Ile Ser Ala Asn Pro Thr Asn Pro Asp Glu Ala Asp 215 Lys Val Gly Ala Glu Asn Thr Ile Thr Tyr Ser Leu Leu Met His Pro 230 235 Asp Ala Leu Glu Glu Pro Asp Asp Gln Asn Arg Val 245 <210> SEQ ID NO 69 <211> LENGTH: 234 <212> TYPE: PRT <213> ORGANISM: Cynomolgus <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <222> LOCATION: (1)..(234) <223> OTHER INFORMATION: FcgammaRIIIA - Alpha chain <400> SEQUENCE: 69 Glu Asp Leu Pro Lys Ala Val Val Phe Leu Glu Pro Gln Trp Tyr Arg Val Leu Glu Lys Asp Arg Val Thr Leu Lys Cys Gln Gly Ala Tyr Ser Pro Glu Asp Asn Ser Thr Arg Trp Phe His Asn Glu Ser Leu Ile Ser Ser Gln Thr Ser Ser Tyr Phe Ile Ala Ala Ala Arg Val Asn Asn Ser Gly Glu Tyr Arg Cys Gln Thr Ser Leu Ser Thr Leu Ser Asp Pro Val Gln Leu Glu Val His Ile Gly Trp Leu Leu Gln Ala Pro Arg Trp Val Phe Lys Glu Glu Glu Ser Ile His Leu Arg Cys His Ser Trp Lys 105 His Ser Pro Asp Ser Asp Ser Thr Gln Trp Phe His Asn Gly Asn Leu ``` Asn Thr Leu Leu His Lys Val Thr Tyr Leu Gln Asn Gly Lys Gly Arg 120 Lys Tyr Phe His Gln Asn Ser Asp Phe Tyr Ile Pro Lys Ala Thr Leu 135 Lys Asp Ser Gly Ser Tyr Phe Cys Arg Gly Leu Ile Gly Ser Lys Asn Val Ser Ser Glu Thr Val Asn Ile Thr Ile Thr Gln Asp Leu Ala Val 165 170 Ser Ser Ile Ser Ser Phe Phe Pro Pro Gly Tyr Gln Val Ser Phe Cys 185 Leu Val Met Val Leu Leu Phe Ala Val Asp Thr Gly Leu Tyr Phe Ser Met Lys Lys Ser Ile Pro Ser Ser Thr Arg Asp Trp Glu Asp His Lys 215 220 Phe Lys Trp Ser Lys Asp Pro Gln Asp Lys <210> SEQ ID NO 70 <211> LENGTH: 99 <212> TYPE: PRT <213> ORGANISM: Cynomolgus <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <222> LOCATION: (1)..(99) <223> OTHER INFORMATION: Beta-2 microglobulin <400> SEQUENCE: 70 Ile Gln Arg Thr Pro Lys Ile Gln Val Tyr Ser Arg His Pro Pro Glu 1 10 15 Ser Asp Ile Glu Val Asp Leu Leu Lys Asn Gly Glu Lys Met Gly Lys 35 \ \ \, 40 \ \ \, 45 Val Glu His Ser Asp Leu Ser Phe Ser Lys Asp Trp Ser Phe Tyr Leu 55 Leu Tyr Tyr Thr Glu Phe Thr Pro Asn Glu Lys Asp Glu Tyr Ala Cys 65 70 75 80 Arg Val Asn His Val Thr Leu Ser Gly Pro Arg Thr Val Lys Trp Asp Arg Asp Met <210> SEQ ID NO 71 <211> LENGTH: 342 <212> TYPE: PRT <213> ORGANISM: Cynomolgus <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <222> LOCATION: (1)..(342) <223> OTHER INFORMATION: FcgammaRn alpha-chain (S3) <400> SEQUENCE: 71 Ala Glu Ser His Leu Ser Leu Leu Tyr His Leu Thr Ala Val Ser Ser Pro Ala Pro Gly Thr Pro Ala Phe Trp Val Ser Gly Trp Leu Gly Pro Gln Gln Tyr Leu Ser Tyr Asp Ser Leu Arg Gly Gln Ala Glu Pro Cys 35 40 45 ``` Gly Ala Trp Val Trp Glu Asn Gln Val Ser Trp Tyr Trp Glu Lys Glu Thr Thr Asp Leu Arg Ile Lys Glu Lys Leu Phe Leu Glu Ala Phe Lys 65 70 75 80 Ala Leu Gly Gly Lys Gly Pro Tyr Thr Leu Gln Gly Leu Leu Gly Cys Glu Leu Ser Pro Asp Asn Thr Ser Val Pro Thr Ala Lys Phe Ala Leu 105 Asn Gly Glu Glu Phe Met Asn Phe Asp Leu Lys Gln Gly Thr Trp Gly 120 Gly Asp Trp Pro Glu Ala Leu Ala Ile Ser Gln Arg Trp Gln Gln Gln 130 \$135\$Asp Lys Ala Ala Asn Lys Glu Leu Thr Phe Leu Leu Phe Ser Cys Pro His Arg Leu Arg Glu His Leu Glu Arg Gly Arg Gly Asn Leu Glu Trp 170 Lys Glu Pro Pro Ser Met Arg Leu Lys Ala Arg Pro Gly Asn Pro Gly Phe Ser Val Leu Thr Cys Ser Ala Phe Ser Phe Tyr Pro Pro Glu Leu 195 200 205 Gln Leu Arg Phe Leu Arg Asn Gly Met Ala Ala Gly Thr Gly Gln Gly Asp Phe Gly Pro Asn Ser Asp Gly Ser Phe His Ala Ser Ser Ser Leu 230 Ala Gly Leu Ala Gln Pro Leu Arg Val Glu Leu Glu Thr Pro Ala Lys 260 265 270Ser Ser Val Leu Val Val Gly Ile Val Ile Gly Val Leu Leu Leu Thr Ala Ala Ala Val Gly Gly Ala Leu Leu Trp Arg Arg Met Arg Ser Gly 295 Leu Pro Ala Pro Trp Ile Ser Leu Arg Gly Asp Asp Thr Gly Ser Leu 310 Leu Pro Thr Pro Gly Glu Ala Gln Asp Ala Asp Ser Lys Asp Ile Asn 325 330 335 Val Ile Pro Ala Thr Ala 340 <210> SEQ ID NO 72 <211> LENGTH: 342 <212> TYPE: PRT <213> ORGANISM: Cynomolgus <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <222> LOCATION: (1)..(342) <223> OTHER INFORMATION: FcgammaRn alpha-chain (N3) <400> SEQUENCE: 72 Ala Glu Asn His Leu Ser Leu Leu Tyr His Leu Thr Ala Val Ser Ser Pro Ala Pro Gly Thr Pro Ala Phe Trp Val Ser Gly Trp Leu Gly Pro $20 \hspace{1cm} 25 \hspace{1cm} 30 \hspace{1cm}$ | _ | | | | | | | | | | | | | | | | | |----|----------|------------|-------------------|------------|--------------------|---------------------|------------|------------|--------------------|--------------------|------------|-------------------|------------|------------|------------|------------------| | G | ln | Gln | Ty r
35 | Leu | Ser | Tyr | Asp | Ser
40 | Leu | Arg | Gly | Gln | Ala
45 | Glu | Pro | Cys | | G | ly | Ala
50 | Trp | Val | Trp | Glu | Asn
55 | Gln | Val | Ser | Trp | Ty r
60 | Trp | Glu | Lys | Glu | | T) | | Thr | Asp | Leu | Arg | Ile
70 | Lys | Glu | Lys | Leu | Phe
75 | Leu | Glu | Ala | Phe | Lys
80 | | A | la | Leu | Gly | Gly | L y s
85 | Gly | Pro | Tyr | Thr | Leu
90 | Gln | Gly | Leu | Leu | Gly
95 | Cys | | G | lu | Leu | Ser | Pro
100 | | Asn | Thr | Ser | Val
105 | Pro | Thr | Ala | Lys | Phe
110 | Ala | Leu | | A | sn | Gly | Glu
115 | Glu | Phe | Met | Asn | Phe
120 | Asp | Leu | Lys | Gln | Gly
125 | Thr | Trp | Gly | | G | ly | Asp
130 | Trp | Pro | Glu | Ala | Leu
135 | Ala | Ile | Ser | Gln | Arg
140 | Trp | Gln | Gln | Gln | | | sp
45 | Lys | Ala | Ala | Asn | L y s
150 | Glu | Leu | Thr | Phe | Leu
155 | Leu | Phe | Ser | Cys | Pro
160 | | H | is | Arg | Leu | Arg | Glu
165 | His | Leu | Glu | Arg | Gly
170 | Arg | Gly | Asn | Leu | Glu
175 | Trp | | L | ys | Glu | Pro | Pro
180 | Ser | Met | Arg | Leu | L ys
185 | Ala | Arg | Pro | Gly | Asn
190 | Pro | Gly | | P | he | Ser | Val
195 | Leu | Thr | Cys | Ser | Ala
200 | Phe | Ser | Phe | Tyr | Pro
205 | Pro | Glu | Leu | | G | ln | Leu
210 | Arg | Phe | Leu | Arg | Asn
215 | Gly | Met | Ala | Ala | Gly
220 | Thr | Gly | Gln | Gly | | | sp
25 | Phe | Gly | Pro | Asn | Ser
230 | Asp | Gly | Ser | Phe | His
235 | Ala | Ser | Ser | Ser | Leu
240 | | T | hr | Val | Lys | Ser | Gly
245 | Asp | Glu | His | His | Ty r
250 | Cys | Cys | Ile | Val | Gln
255 | His | | A | la | Gly | Leu | Ala
260 | Gln | Pro | Leu | Arg | Val
265 | Glu | Leu | Glu | Thr | Pro
270 | Ala | Lys | | S | er | Ser | Val
275 | Leu | Val | Val | Gly | Ile
280 | Val | Ile | Gly | Val | Leu
285 | Leu | Leu | Thr | | A | la | Ala
290 | Ala | Val | Gly | Gly | Ala
295 | Leu | Leu | Trp | Arg | Arg
300 | Met | Arg | Ser | Gly | | | eu
05 | Pro | Ala | Pro | Trp | Ile
310 | Ser | Leu | Arg | Gly | Asp
315 | Asp | Thr | Gly | Ser | Leu
320 | | L | eu | Pro | Thr | Pro | Gly
325 | Glu | Ala | Gln | Asp | Ala
330 | Asp | Ser | Lys | Asp | Ile
335 | Asn | | V | al | Ile | Pro | Ala
340 | Thr | Ala | | | | | | | | | | | ### 1-43. (cancelled) - **44.** A method for evaluating at least one biological property of an Fc region containing molecule comprising: - a) contacting an isolated non-human primate Fc receptor polypeptide with an Fc region containing molecule; and - b) determining the effect of the contact on at least one biological property of the Fc region containing molecule. - **45**. A method according to claim 44, wherein the Fc region containing molecule is an antibody. - **46**. A method according to claim 45, wherein the antibody is a humanized antibody. - **47**. A method according to claim 46, wherein the antibody is an antibody variant. - **48**. A method according to claim 47, wherein the non-human primate Fc receptor polypeptide is a soluble receptor. - **49**. A method according to claim 48, wherein the nonhuman primate receptor polypeptide is selected from the group consisting of FcyRI α -chain, FcyRIIA, FcyRIIB, FcyRIIA α -chain, FcRn α -chain and mixtures thereof. - **50**. A method according to claim 44, wherein the non-human primate receptor polypeptide is expressed on a cell. - **51**. A method according to claim 44, wherein the biological property is the binding affinity of the Fc region containing molecule for the non-human primate receptor polypeptide. - **52.** A method according to claim 44, wherein the biological property is the toxicity of the Fc region containing molecule. - 53. A method according to claim 44, wherein the isolated non-human primate Fc receptor polypeptide is a FcRn α -chain and the biological property is the half-life of the Fc region containing molecule. - **54**. A method according to claim 44, wherein the non-human primate Fc receptor polypeptide comprises an amino sequence of 1 to 265 of SEQ ID NO: 65. - 55. A method according to claim 44, wherein the non-human primate Fc receptor
polypeptide comprises an amino acid sequence of 1 to 172 of SEQ ID NO: 66. - **56.** A method according to claim 44, wherein the non-human primate Fc receptor polypeptide comprises an amino acid sequence of 1 to 174 of SEQ ID NO: 68. - **57**. A method according to claim 47, wherein the non-human primate receptor polypeptide comprises an amino acid sequence of amino acids 1 to 172 of SEQ ID NO: 69. - **58**. A method according to claim 44, wherein the non-human primate Fc receptor polypeptide comprises an amino acid sequence of amino acids 1 to 171 of SEQ ID NO: 67. - **59.** A method for evaluating at least one biological property of an Fc region containing molecule comprising: - a) contacting a Fc region containing molecule with a cell transformed with an isolated nucleic acid encoding a nonhuman primate Fc receptor polypeptide; and - b) determining the effect of the contact on at least one biological property of the Fc region containing molecule. - **60**. A method according to claim 59, wherein the Fc region containing molecule is an antibody or antibody variant. - **61**. A method according to claim 59, wherein the biological property is the binding affinity of the Fc region containing molecule for the non-human primate Fc receptor polypeptide. - **62.** A method according to claim 59, wherein the cell is transformed with at least two nucleic acids according to claim 1. - **63.** A method according to claim 62, wherein the nucleic acids comprise a nucleic acid that encodes a cynomolgus Fc γ RI α -chain of SEQ ID NO: 9 and a nucleic acid that encodes a cynomolgus Fc γ R gamma chain of SEQ ID NO: 11. - **64.** A method according to claim 62, wherein the nucleic acids comprise a nucleic acid that encodes a cynomolgus Fc γ RIII α -chain of SEQ ID NO: 20 and a nucleic acid that encodes a cynomolgus Fc γ R gamma chain of SEQ ID NO: 11. - **65.** A method according to claim 62, wherein the nucleic acids comprise a nucleic acid that encodes a cynomolgus Fc γ R α -chain of SEQ ID NO: 29 and a nucleic acid sequence that encodes a cynomolgus β -2 microglobulin of SEQ ID NO:25. - **66**. A method for identifying an agent that has an increased affinity for at least one cynomolgus Fc receptor polypeptide with an ITAM region compared to human Fc receptor polypeptide comprising: - a) determining the binding affinity of the agent to at least one cynomolgus Fc receptor polypeptide associated a polypeptide with an ITAM region; - b) determining the binding affinity of the agent to the corresponding human Fc receptor polypeptide; and - c) selecting agents that have an increased affinity for the cynomolgus Fcγ receptor polypeptide associated with a polypeptide with an ITAM region compared to the corresponding human Fc receptor. - 67. A method according to claim 66, wherein the agent is an antibody. - **68**. A method according to claim 67, wherein the agent is an IgG antibody. - **69**. A method according to claim 67, wherein the Fc receptor polypeptide is selected from the group consisting of Fc γ R1 α -chain, Fc γ RIIA, Fc γ RIIIA α -chain and mixtures thereof. - **70.** A method for identifying an agent that has an altered affinity for a cynomolgus Fc receptor polypeptide with an ITIM region compared to corresponding human Fc receptor polypeptide comprising: - a) determining a binding affinity for the agent to be at least one cynomolgus FcγRIIB receptor polypeptide; - b) determining a binding affinity of the agent to corresponding human FcγRIIB receptor polypeptide; and - c) selecting agents with altered affinity for a cynomolgus FcγRIIB receptor polypeptide with an ITIM region compared to corresponding human FcγRIIB polypeptide - 71. A method according to claim 70, wherein the agent is an antibody. - 72. A method for identifying an agent with increased binding affinity for a cynomolgus Fc receptor polypeptide with an ITAM region and decreased affinity for a cynomolgus Fc receptor polypeptide with an ITIM region comprising: - a) determining a binding affinity of the agent for at least one cynomolgus Fc receptor polypeptide associated with an ITAM region and a binding affinity of the agent to the corresponding human Fc receptor polypeptide; - b) determining the binding affinity of the agent for at least one cynomolgus Fc receptor polypeptide with an ITIM region and a binding affinity of the agent for the corresponding human Fc receptor polypeptide; and - c) selecting an agent with enhanced binding for a cynomolgus Fc receptor polypeptide with an ITAM region and a decreased affinity for a cynomolgus Fc receptor polypeptide with an ITIM region compared to the corresponding human Fc receptor polypeptides. - **73**. A method according to claim 72, wherein the Fcγ receptor with an ITAM region is an Fcγ receptor IIA and the Fcγ receptor with an ITIM region is a Fcγ receptor IIB. - **74.** A method according to claim 73, wherein the agent is an antibody. 75-90. (cancelled) * * * * *