
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
(1) Organization11111111111111111111111I1111111111111i1111liiiii

International Bureau (10) International Publication Number

(43) International Publication Date W O 2021/022269 A3
04 February 2021 (04.02.2021) W IP0I PCT

(51) International Patent Classification: HR, HU, ID, IL, IN, IR, IS, IT, JO, JP, KE, KG, KH, KN,
H04N19/52 (2014.01) H04N 7/12 (2006.01) KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD,

(21) International Application Number: ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO,

PCT/US2020/054450 NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW,
SA, SC, SD, SE, SG, SK, SL, ST, SV SY, TH, TJ, TM, TN,

(22) International Filing Date: TR, TT, TZ, UA, UG, US, UZ, VC, VN, WS, ZA, ZM, ZW.

06 October 2020 (06.10.2020) (84) Designated States (unless otherwise indicated, for every

(25) Filing Language: English kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ,

(26)PublicationLanguage: English UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
(30) Priority Data: TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,

62/911,808 07 October 2019 (07.10.2019) US EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,

(71) Applicant: FUTUREWEI TECHNOLOGIES, INC. TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
[US/US]; 5700 Tennyson Parkway, Suite 600, Plano, TX KM, ML, MR, NE, SN, TD, TG).
75024 (US).

(72) Inventor: WANG, Ye-Kui; 6264 Sunrose Crest Way, San Declarations under Rule 4.17:

Diego, CA 92130 (US). - as to applicant's entitlement to applyfor and be granted a

(74)Agent:DIETRICH,William,H.;ConleyRose,P.C.,5601 patent (Rule 4.17(ii))
(4)anit: DIEarIC, illiam0, H.;aonleyRoseP.C)., 5601 -as to the applicant's entitlement to claim the priority of the
GraniteParkway,Suite500,Piano,TX75024(US). earlier application (Rule 4.17(iii))

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO,
DZ, EC, EE, EG, ES, Fl, GB, GD, GE, GH, GM, GT, HN,

(54) Title: AVOIDANCE OF REDUNDANT SIGNALING IN MULTI-LAYER VIDEO BITSTREAMS

(57) Abstract: A method of decoding is provided. The method includes re
700 ceiving a sub-bitstream having a sequence parameter set (SPS) with a decoded

mnum.smtinusi BstreamB picture buffer (DPB) syntax structure for an output layer set (OLS) with only
704 706 708 712 720 one layer; setting a number of layers in the OLS equal to one based on the OLS

7 Having the only one layer; obtaining the DPB syntax structure for the OLS
Vt 7 PS SPS PS h. ImaeData

VPSSSPPSHder Imagewith the one layer from the SPS when the number of layers in the OLS has
sosdpbparamsidx[i] 72 been set equal to one; and decoding a picture from the only one layer using the

dp ers() OS DPB syntax structure to obtain a decoded picture. A corresponding method of
dpbaraieters(for 784 723 encoding is also provided.

2 dpparameters()fir

dpbpar trs()for 5 Layer
3 ' OLS3 / 725 725

703

E ilice 727

706 708 712 720
- 701

SPS PPS ImageData

721

dpb_ e-terL
fori-&IOLS 0.

784
723

' 725 L 725

FIG. 7 Pic e Picture

Sie 727

WO 2021/022269 A3|||

Published:
- with international search report (Art. 21(3))
- before the expiration of the time limit for amending the

claims and to be republished in the event of receipt of
amendments (Rule 48.2(h))

- upon request of the applicant, before the expiration of the
time limit referred to in Article 21(2)(a)

(88) Date of publication of the international search report:
04 March 2021 (04.03.2021)

WO 2021/022269 PCT/US2020/054450

Avoidance of Redundant Signaling in Multi-Layer Video Bitstreams

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This patent application claims the benefit of U.S. Provisional Patent Application No.

62/911,808 filed October 7, 2019, by Ye-Kui Wang and titled "Scalability in Video Coding,"

which is hereby incorporated by reference.

TECHNICAL FIELD

[0002] In general, this disclosure describes techniques for multi-layer video bitstreams in video

coding. More specifically, this disclosure describes techniques for eliminating redundancy when

signaling parameters corresponding to layers in a multi-layer bitstream in video coding.

BACKGROUND

[0003] The amount of video data needed to depict even a relatively short video can be

substantial, which may result in difficulties when the data is to be streamed or otherwise

communicated across a communications network with limited bandwidth capacity. Thus, video

data is generally compressed before being communicated across modern day telecommunications

networks. The size of a video could also be an issue when the video is stored on a storage device

because memory resources may be limited. Video compression devices often use software and/or

hardware at the source to code the video data prior to transmission or storage, thereby decreasing

the quantity of data needed to represent digital video images. The compressed data is then

received at the destination by a video decompression device that decodes the video data. With

limited network resources and ever increasing demands of higher video quality, improved

compression and decompression techniques that improve compression ratio with little to no

sacrifice in image quality are desirable.

SUMMARY

[0004] A first aspect relates to a method of decoding implemented by a video decoder,

comprising: receiving, by the video decoder, a sub-bitstream having a sequence parameter set

(SPS) with a decoded picture buffer (DPB) syntax structure for an output layer set (OLS) with

only one layer; obtaining, by the video decoder, the DPB syntax structure for the OLS with the

1

WO 2021/022269 PCT/US2020/054450

one layer from the SPS; and decoding, by the video decoder, a picture from the only one layer

using the DPB syntax structure to obtain a decoded picture.

[0005] The method provides techniques that ensure the decoded picture buffer (DPB)

parameters are included in a sequence parameter set (SPS) when an output layer set (OLS) contains

only a single layer. Because the SPS includes the DPB parameters for the OLS with the single

layer, a video parameter set (VPS) may be removed from the bitstream, which reduces redundancy

and increases coding efficiency. Thus, the coder / decoder (a.k.a., "codec") in video coding is

improved relative to current codecs. As a practical matter, the improved video coding process

offers the user a better user experience when videos are sent, received, and/or viewed.

[0006] Optionally, in any of the preceding aspects, another implementation of the aspect

provides that the DPB syntax structure is designated dpbparameters().

[0007] Optionally, in any of the preceding aspects, another implementation of the aspect

provides that the only one layer is the i-th layer, and wherein the OLS is the i-th OLS.

[0008] Optionally, in any of the preceding aspects, another implementation of the aspect

provides that the DPB syntax structure is present in an i-th dpb_parameters() syntax structure in

the SPS.

[0009] Optionally, in any of the preceding aspects, another implementation of the aspect

provides that the sub-bitstream does not include a video parameter set (VPS).

[0010] Optionally, in any of the preceding aspects, another implementation of the aspect

provides storing the decoded picture in a DPB prior to being displayed.

[0011] Optionally, in any of the preceding aspects, another implementation of the aspect

provides that the SPS is referred to by the only one layer in the OLS.

[0012] Optionally, in any of the preceding aspects, another implementation of the aspect

provides displaying the decoded picture on a display of an electronic device.

[0013] A second aspect relates to a method of encoding implemented by a video encoder, the

method comprising: generating, by the video encoder, a video parameter set (VPS) and a

sequence parameter set (SPS), wherein the VPS includes a list of decoded picture buffer (DPB)

syntax structures for all output layer sets (OLSs), and wherein the SPS includes the DPB syntax

structure for each OLS having only one layer; encoding, by the video encoder, the VPS and the

SPS into a video bitstream; and storing, by the video encoder, the video bitstream for

communication toward a video decoder.

2

WO 2021/022269 PCT/US2020/054450

[0014] The method provides techniques that ensure the decoded picture buffer (DPB)

parameters are included in a sequence parameter set (SPS) when an output layer set (OLS) contains

only a single layer. Because the SPS includes the DPB parameters for the OLS with the single

layer, a video parameter set (VPS) may be removed from the bitstream, which reduces redundancy

and increases coding efficiency. Thus, the coder / decoder (a.k.a., "codec") in video coding is

improved relative to current codecs. As a practical matter, the improved video coding process

offers the user a better user experience when videos are sent, received, and/or viewed.

[0015] Optionally, in any of the preceding aspects, another implementation of the aspect

provides that the VPS includes an index to the list of DPB syntax structures, and wherein the index

is designated vps olsdpbparamsidx[i].

[0016] Optionally, in any of the preceding aspects, another implementation of the aspect

provides that a value of vpsolsdpbparamsidx[i] is in a range of zero to a total number of the

DPB syntax structures in the VPS.

[0017] Optionally, in any of the preceding aspects, another implementation of the aspect

provides that the VPS includes vps num dpb_params_minus1, and wherein

vps num dpb_paramsminus1 plus 1 specifies a total number of the DPB syntax structures in the

VPS.

[0018] Optionally, in any of the preceding aspects, another implementation of the aspect

provides extracting a sub-bitstream from the bitstream, wherein the sub-bitstream includes the

SPS from the bitstream but does not include the VPS from the bitstream.

[0019] Optionally, in any of the preceding aspects, another implementation of the aspect

provides transmitting the sub-bitstream toward a video decoder.

[0020] A third aspect relates to a decoding device, comprising: a receiver configured to receive

a sub-bitstream having a sequence parameter set (SPS) with a decoded picture buffer (DPB) syntax

structure for an output layer set (OLS) with only one layer; and a processor coupled to the memory,

the processor configured to execute the instructions to cause the decoding device to: set a number

of layers in the OLS equal to one based on the OLS having the only one layer; obtain the DPB

syntax structure for the OLS with the one layer from the SPS when the number of layers in the

OLS has been set equal to one; and decode a picture from the only one layer using the DPB

syntax structure to obtain a decoded picture.

3

WO 2021/022269 PCT/US2020/054450

[0021] The decoding device provides techniques ensure the decoded picture buffer (DPB)

parameters are included in a sequence parameter set (SPS) when an output layer set (OLS) contains

only a single layer. Because the SPS includes the DPB parameters for the OLS with the single

layer, a video parameter set (VPS) may be removed from the bitstream, which reduces redundancy

and increases coding efficiency. Thus, the coder / decoder (a.k.a., "codec") in video coding is

improved relative to current codecs. As a practical matter, the improved video coding process

offers the user a better user experience when videos are sent, received, and/or viewed.

[0022] Optionally, in any of the preceding aspects, another implementation of the aspect

provides that the DPB syntax structure is designated dpbparameters(), wherein the only one

layer is the i-th layer, and wherein the OLS is the i-th OLS.

[0023] Optionally, in any of the preceding aspects, another implementation of the aspect

provides that the DPB syntax structure is present in an i-th dpb_parameters() syntax structure in

the SPS.

[0024] Optionally, in any of the preceding aspects, another implementation of the aspect

provides that the sub-bitstream does not include a video parameter set (VPS).

[0025] Optionally, in any of the preceding aspects, another implementation of the aspect

provides that the SPS is referred to by the only one layer in the OLS.

[0026] Optionally, in any of the preceding aspects, another implementation of the aspect

provides a display configured to display the decoded picture.

[0027] A fourth aspect relates to an encoding device, comprising: a memory containing

instructions; a processor coupled to the memory, the processor configured to implement the

instructions to cause the encoding device to: generate a video parameter set (VPS) and a sequence

parameter set (SPS), wherein the VPS includes a list of decoded picture buffer (DPB) syntax

structures for all output layer sets (OLSs), and wherein the SPS includes the DPB syntax

structure for each OLS having only one layer; and encode the VPS and the SPS into a video

bitstream; and a transmitter coupled to the processor, the transmitter configured to transmit the

video bitstream toward a video decoder.

[0028] The encoding device provides techniques that ensure the decoded picture buffer (DPB)

parameters are included in a sequence parameter set (SPS) when an output layer set (OLS) contains

only a single layer. Because the SPS includes the DPB parameters for the OLS with the single

layer, a video parameter set (VPS) may be removed from the bitstream, which reduces redundancy

4

WO 2021/022269 PCT/US2020/054450

and increases coding efficiency. Thus, the coder / decoder (a.k.a., "codec") in video coding is

improved relative to current codecs. As a practical matter, the improved video coding process

offers the user a better user experience when videos are sent, received, and/or viewed.

[0029] Optionally, in any of the preceding aspects, another implementation of the aspect

provides that the VPS includes an index to the list of DPB syntax structures, and wherein the index

is designated vps olsdpbparamsidx[i].

[0030] Optionally, in any of the preceding aspects, another implementation of the aspect

provides that a value of vpsolsdpbparamsidx [i] is in a range of zero to a total number of the

DPB syntax structures in the VPS.

[0031] Optionally, in any of the preceding aspects, another implementation of the aspect

provides that the VPS includes vps num dpb_params_minus1, and wherein

vps num dpbparamsminus1 plus 1 specifies the total number of the DPB syntax structures in

the VPS.

[0032] A fifth aspect relates to a coding apparatus. The coding apparatus includes a receiver

configured to receive a picture to encode or to receive a bitstream to decode; a transmitter coupled

to the receiver, the transmitter configured to transmit the bitstream to a decoder or to transmit a

decoded image to a display; a memory coupled to at least one of the receiver or the transmitter, the

memory configured to store instructions; and a processor coupled to the memory, the processor

configured to execute the instructions stored in the memory to perform any of the methods

disclosed herein.

[0033] The coding apparatus provides techniques that ensure the decoded picture buffer (DPB)

parameters are included in a sequence parameter set (SPS) when an output layer set (OLS) contains

only a single layer. Because the SPS includes the DPB parameters for the OLS with the single

layer, a video parameter set (VPS) may be removed from the bitstream, which reduces redundancy

and increases coding efficiency. Thus, the coder / decoder (a.k.a., "codec") in video coding is

improved relative to current codecs. As a practical matter, the improved video coding process

offers the user a better user experience when videos are sent, received, and/or viewed.

[0034] Optionally, in any of the preceding aspects, another implementation of the aspect

provides a display configured to display a decoded picture.

5

WO 2021/022269 PCT/US2020/054450

[0035] A sixth aspect relates to a system. The system includes an encoder; and a decoder in

communication with the encoder, wherein the encoder or the decoder includes the decoding device,

the encoding device, or the coding apparatus disclosed herein.

[0036] The system provides techniques that ensure the decoded picture buffer (DPB)

parameters are included in a sequence parameter set (SPS) when an output layer set (OLS) contains

only a single layer. Because the SPS includes the DPB parameters for the OLS with the single

layer, a video parameter set (VPS) may be removed from the bitstream, which reduces redundancy

and increases coding efficiency. Thus, the coder / decoder (a.k.a., "codec") in video coding is

improved relative to current codecs. As a practical matter, the improved video coding process

offers the user a better user experience when videos are sent, received, and/or viewed.

[0037] A seventh aspect relates to a means for coding. The means for coding includes

receiving means configured to receive a picture to encode or to receive a bitstream to decode;

transmission means coupled to the receiving means, the transmission means configured to transmit

the bitstream to a decoding means or to transmit a decoded image to a display means; storage

means coupled to at least one of the receiving means or the transmission means, the storage means

configured to store instructions; and processing means coupled to the storage means, the

processing means configured to execute the instructions stored in the storage means to perform any

of the methods disclosed herein.

[0038] The means for coding provides techniques that ensure the decoded picture buffer

(DPB) parameters are included in a sequence parameter set (SPS) when an output layer set (OLS)

contains only a single layer. Because the SPS includes the DPB parameters for the OLS with the

single layer, a video parameter set (VPS) may be removed from the bitstream, which reduces

redundancy and increases coding efficiency. Thus, the coder / decoder (a.k.a., "codec") in video

coding is improved relative to current codecs. As a practical matter, the improved video coding

process offers the user a better user experience when videos are sent, received, and/or viewed.

[0039] For the purpose of clarity, any one of the foregoing embodiments may be combined

with any one or more of the other foregoing embodiments to create a new embodiment within the

scope of the present disclosure.

[0040] These and other features will be more clearly understood from the following detailed

description taken in conjunction with the accompanying drawings and claims.

6

WO 2021/022269 PCT/US2020/054450

BRIEF DESCRIPTION OF THE DRAWINGS

[0041] For a more complete understanding of this disclosure, reference is now made to the

following brief description, taken in connection with the accompanying drawings and detailed

description, wherein like reference numerals represent like parts.

[0042] FIG. 1 is a flowchart of an example method of coding a video signal.

[0043] FIG. 2 is a schematic diagram of an example coding and decoding (codec) system for

video coding.

[0044] FIG. 3 is a schematic diagram illustrating an example video encoder.

[0045] FIG. 4 is a schematic diagram illustrating an example video decoder.

[0046] FIG. 5 illustrates an example of multi-layer coding for spatial scalability.

[0047] FIG. 6 illustrates an example of multi-layer coding using output layer sets (OLSs).

[0048] FIG. 7 illustrates an embodiment of a video bitstream.

[0049] FIG. 8 is an embodiment of a method of decoding a coded video bitstream.

[0050] FIG. 9 is an embodiment of a method of encoding a coded video bitstream.

[0051] FIG. 10 is a schematic diagram of a video coding device.

[0052] FIG. 11 is a schematic diagram of an embodiment of a means for coding.

DETAILED DESCRIPTION

[0053] It should be understood at the outset that although an illustrative implementation of one

or more embodiments are provided below, the disclosed systems and/or methods may be

implemented using any number of techniques, whether currently known or in existence. The

disclosure should in no way be limited to the illustrative implementations, drawings, and

techniques illustrated below, including the exemplary designs and implementations illustrated and

described herein, but may be modified within the scope of the appended claims along with their

full scope of equivalents.

[0054] The following terms are defined as follows unless used in a contrary context herein.

Specifically, the following definitions are intended to provide additional clarity to the present

disclosure. However, terms may be described differently in different contexts. Accordingly, the

following definitions should be considered as a supplement and should not be considered to limit

any other definitions of descriptions provided for such terms herein.

7

WO 2021/022269 PCT/US2020/054450

[0055] A bitstream is a sequence of bits including video data that is compressed for

transmission between an encoder and a decoder. An encoder is a device that is configured to

employ encoding processes to compress video data into a bitstream. A decoder is a device that is

configured to employ decoding processes to reconstruct video data from a bitstream for display. A

picture is an array of luma samples and/or an array of chroma samples that create a frame or a field

thereof A picture that is being encoded or decoded can be referred to as a current picture for

clarity of discussion. A reference picture is a picture that contains reference samples that can be

used when coding other pictures by reference according to inter-prediction and/or inter-layer

prediction. A reference picture list is a list of reference pictures used for inter-prediction and/or

inter-layer prediction. Some video coding systems utilize two reference picture lists, which can be

denoted as reference picture list one and reference picture list zero. A reference picture list

structure is an addressable syntax structure that contains multiple reference picture lists.

[0056] Inter-prediction is a mechanism of coding samples of a current picture by reference to

indicated samples in a reference picture that is different from the current picture where the

reference picture and the current picture are in the same layer. A reference picture list structure

entry is an addressable location in a reference picture list structure that indicates a reference picture

associated with a reference picture list.

[0057] A slice header is a part of a coded slice containing data elements pertaining to all video

data within a tile represented in the slice. A picture parameter set (PPS) is a parameter set that

contains data related to an entire picture. More specifically, the PPS is a syntax structure

containing syntax elements that apply to zero or more entire coded pictures as determined by a

syntax element found in each picture header. A sequence parameter set (SPS) is a parameter set

that contains data related to a sequence of pictures. An access unit (AU) is a set of one or more

coded pictures associated with the same display time (e.g., the same picture order count) for output

from a decoded picture buffer (DPB) (e.g., for display to a user). An access unit delimiter (AUD)

is an indicator or data structure used to indicate the start of an AU or the boundary between AUs.

A decoded video sequence is a sequence of pictures that have been reconstructed by a decoder in

preparation for display to a user.

[0058] A network abstraction layer (NAL) unit is a syntax structure containing data in the form

of a Raw Byte Sequence Payload (RBSP), an indication of the type of data, and interspersed as

desired with emulation prevention bytes. A video coding layer (VCL) NAL unit is a NAL unit

8

WO 2021/022269 PCT/US2020/054450

coded to contain video data, such as a coded slice of a picture. A non-VCL NAL unit is a NAL

unit that contains non-video data such as syntax and/or parameters that support decoding the video

data, performance of conformance checking, or other operations. A layer is a set of VCL NAL

units that share a specified characteristic (e.g., a common resolution, frame rate, image size, etc.)

and associated non-VCL NAL units. The VCL NAL units of a layer may share a particular value

of a NAL unit header layer identifier (nuh layer id). A coded picture is a coded representation of

a picture comprising VCL NAL units with a particular value of a NAL unit header layer identifier

(nuh layer id) within an access unit (AU) and containing all coding tree units (CTUs) of the

picture. A decoded picture is a picture produced by applying a decoding process to a coded

picture.

[0059] An output layer set (OLS) is a set of layers for which one or more layers are specified

as output layer(s). An output layer is a layer that is designated for output (e.g., to a display). A

zeroth (0-th) OLS is an OLS that contains only a lowest layer (layer with a lowest layer identifier)

and hence contains only an output layer. The number of layers in an OLS may be designated by a

syntax element designated NumLayersInOLS. A video parameter set (VPS) is a data unit that

contains parameters related to an entire video. Inter-layer prediction is a mechanism of coding a

current picture in a current layer by reference to a reference picture in a reference layer, where the

current picture and the reference picture are included in the same AU and the reference layer

includes a lower nuh layerid than the current layer.

[0060] A profile is a defined set of coding tools used to create a compliant or conforming

bitstream. Each profile specifies a subset of algorithmic features and limits that shall be supported

by all decoders conforming to that profile. Tiers and levels are constraints that define a bitstream

in terms of maximum bit rate, maximum luma sample rate, maximum luma picture size, minimum

compression ratio, maximum number of slices allowed, and maximum number of tiles allowed.

Lower tiers are more constrained than higher tiers and lower levels are more constrained than

higher levels. Profile, tier, and level (PTL) parameters are a syntax structure that provides profile,

tier, and/or level information.

[0061] A temporal scalable bitstream is a bitstream coded in multiple layers providing varying

temporal resolution/frame rate (e.g., each layer is coded to support a different frame rate). A

sublayer is a temporal scalable layer of a temporal scalable bitstream including VCL NAL units

with a particular temporal identifier value and associated non-VCL NAL units. For example, a

9

WO 2021/022269 PCT/US2020/054450

temporal sublayer is a layer that contains video data associated with a specified frame rate. A

sublayer representation is a subset of the bitstream containing NAL units of a particular sublayer

and the lower sublayers. Hence, one or more temporal sublayers may be combined to achieve a

sublayer representation that can be decoded to result in a video sequence with a specified frame

rate. An OLS index is an index that uniquely identifies a corresponding OLS. A temporal

identifier (ID) is a data element that indicates data corresponds to temporal location in a video

sequence. A sub-bitstream extraction process is a process that removes NAL units from a

bitstream that do not belong to a target set as determined by a target OLS index and a target highest

temporal ID. The sub-bitstream extraction process results in an output sub-bitstream containing

NAL units from the bitstream that are part of the target set.

[0062] A hypothetical reference decoder (HRD) is a decoder model operating on an encoder

that checks the variability of bitstreams produced by an encoding process to verify conformance

with specified constraints. A bitstream conformance test is a test to determine whether an encoded

bitstream complies with a standard, such as Versatile Video Coding (VVC). HRD parameters are

syntax elements that initialize and/or define operational conditions of an HRD. Sequence-level

HRD parameters are HRD parameters that apply to an entire coded video sequence. A maximum

HRD temporal identifier (ID) (hrd max tid[i]) specifies the temporal ID of the highest sublayer

representation for which the HRD parameters are contained in an i-th set of OLS HRD parameters.

A general HRD parameters (general hrdparameters) syntax structure is a syntax structure that

contains sequence level HRD parameters. An operation point (OP) is a temporal subset of an OLS

that is identified by an OLS index and a highest temporal ID. An OP under test (targetOp) is an

OP that is selected for conformance testing at a HRD. A target OLS is an OLS that is selected for

extraction from a bitstream. A decoding unit HRD parameters present flag

(decoding unit hrdparamspresent flag) is a flag that indicates whether corresponding HRD

parameters operate at a decoding unit (DU) level or an AU level. A coded picture buffer (CPB) is

a first-in first-out buffer in a HRD that contains coded pictures in decoding order for use during

bitstream conformance verification. A decoded picture buffer (DPB) is a buffer for holding

decoded pictures for reference, output reordering, and/or output delay.

[0063] Decoded picture buffer (DPB) parameters are a syntax structure that provides a DPB

size and, optionally, a maximum picture reorder number and maximum latency information. The

10

WO 2021/022269 PCT/US2020/054450

maximum picture reorder number and maximum latency information may be collectively referred

to by the acronym MRML.

[0064] The following acronyms are used herein, Coding Tree Block (CTB), Coding Tree Unit

(CTU), Coding Unit (CU), Coded Video Sequence (CVS), Joint Video Experts Team (JVET),

Motion-Constrained Tile Set (MCTS), Maximum Transfer Unit (MTU), Network Abstraction

Layer (NAL), Picture Order Count (POC), Picture Parameter Set (PPS), Raw Byte Sequence

Payload (RBSP), Sequence Parameter Set (SPS), Versatile Video Coding (VVC), and Working

Draft (WD).

[0065] FIG. 1 is a flowchart of an example operating method 100 of coding a video signal.

Specifically, a video signal is encoded at an encoder. The encoding process compresses the video

signal by employing various mechanisms to reduce the video file size. A smaller file size allows

the compressed video file to be transmitted toward a user, while reducing associated bandwidth

overhead. The decoder then decodes the compressed video file to reconstruct the original video

signal for display to an end user. The decoding process generally mirrors the encoding process to

allow the decoder to consistently reconstruct the video signal.

[0066] At step 101, the video signal is input into the encoder. For example, the video signal

may be an uncompressed video file stored in memory. As another example, the video file may be

captured by a video capture device, such as a video camera, and encoded to support live streaming

of the video. The video file may include both an audio component and a video component. The

video component contains a series of image frames that, when viewed in a sequence, gives the

visual impression of motion. The frames contain pixels that are expressed in terms of light,

referred to herein as luma components (or luma samples), and color, which is referred to as chroma

components (or color samples). In some examples, the frames may also contain depth values to

support three dimensional viewing.

[0067] At step 103, the video is partitioned into blocks. Partitioning includes subdividing the

pixels in each frame into square and/or rectangular blocks for compression. For example, in High

Efficiency Video Coding (HEVC) (also known as H.265 and MPEG-H Part 2) the frame can first

be divided into coding tree units (CTUs), which are blocks of a predefined size (e.g., sixty-four

pixels by sixty-four pixels). The CTUs contain both luma and chroma samples. Coding trees may

be employed to divide the CTUs into blocks and then recursively subdivide the blocks until

configurations are achieved that support further encoding. For example, luma components of a

11

WO 2021/022269 PCT/US2020/054450

frame may be subdivided until the individual blocks contain relatively homogenous lighting

values. Further, chroma components of a frame may be subdivided until the individual blocks

contain relatively homogenous color values. Accordingly, partitioning mechanisms vary

depending on the content of the video frames.

[0068] At step 105, various compression mechanisms are employed to compress the image

blocks partitioned at step 103. For example, inter-prediction and/or intra-prediction may be

employed. Inter-prediction is designed to take advantage of the fact that objects in a common

scene tend to appear in successive frames. Accordingly, a block depicting an object in a reference

frame need not be repeatedly described in adjacent frames. Specifically, an object, such as a table,

may remain in a constant position over multiple frames. Hence the table is described once and

adjacent frames can refer back to the reference frame. Pattern matching mechanisms may be

employed to match objects over multiple frames. Further, moving objects may be represented

across multiple frames, for example due to object movement or camera movement. As a particular

example, a video may show an automobile that moves across the screen over multiple frames.

Motion vectors can be employed to describe such movement. A motion vector is a two

dimensional vector that provides an offset from the coordinates of an object in a frame to the

coordinates of the object in a reference frame. As such, inter-prediction can encode an image

block in a current frame as a set of motion vectors indicating an offset from a corresponding block

in a reference frame.

[0069] Intra-prediction encodes blocks in a common frame. Intra-prediction takes advantage of

the fact that luma and chroma components tend to cluster in a frame. For example, a patch of

green in a portion of a tree tends to be positioned adjacent to similar patches of green. Intra

prediction employs multiple directional prediction modes (e.g., thirty-three in HEVC), a planar

mode, and a direct current (DC) mode. The directional modes indicate that a current block is

similar/the same as samples of a neighbor block in a corresponding direction. Planar mode

indicates that a series of blocks along a row/column (e.g., a plane) can be interpolated based on

neighbor blocks at the edges of the row. Planar mode, in effect, indicates a smooth transition of

light/color across a row/column by employing a relatively constant slope in changing values. DC

mode is employed for boundary smoothing and indicates that a block is similar/the same as an

average value associated with samples of all the neighbor blocks associated with the angular

directions of the directional prediction modes. Accordingly, intra-prediction blocks can represent

12

WO 2021/022269 PCT/US2020/054450

image blocks as various relational prediction mode values instead of the actual values. Further,

inter-prediction blocks can represent image blocks as motion vector values instead of the actual

values. In either case, the prediction blocks may not exactly represent the image blocks in some

cases. Any differences are stored in residual blocks. Transforms may be applied to the residual

blocks to further compress the file.

[0070] At step 107, various filtering techniques may be applied. In HEVC, the filters are

applied according to an in-loop filtering scheme. The block based prediction discussed above may

result in the creation of blocky images at the decoder. Further, the block based prediction scheme

may encode a block and then reconstruct the encoded block for later use as a reference block. The

in-loop filtering scheme iteratively applies noise suppression filters, de-blocking filters, adaptive

loop filters, and sample adaptive offset (SAO) filters to the blocks/frames. These filters mitigate

such blocking artifacts so that the encoded file can be accurately reconstructed. Further, these

filters mitigate artifacts in the reconstructed reference blocks so that artifacts are less likely to

create additional artifacts in subsequent blocks that are encoded based on the reconstructed

reference blocks.

[0071] Once the video signal has been partitioned, compressed, and filtered, the resulting data

is encoded in a bitstream at step 109. The bitstream includes the data discussed above as well as

any signaling data desired to support proper video signal reconstruction at the decoder. For

example, such data may include partition data, prediction data, residual blocks, and various flags

providing coding instructions to the decoder. The bitstream may be stored in memory for

transmission toward a decoder upon request. The bitstream may also be broadcast and/or multicast

toward a plurality of decoders. The creation of the bitstream is an iterative process. Accordingly,

steps 101, 103, 105, 107, and 109 may occur continuously and/or simultaneously over many

frames and blocks. The order shown in FIG. 1 is presented for clarity and ease of discussion, and

is not intended to limit the video coding process to a particular order.

[0072] The decoder receives the bitstream and begins the decoding process at step 111.

Specifically, the decoder employs an entropy decoding scheme to convert the bitstream into

corresponding syntax and video data. The decoder employs the syntax data from the bitstream to

determine the partitions for the frames at step 111. The partitioning should match the results of

block partitioning at step 103. Entropy encoding/decoding as employed in step 111 is now

described. The encoder makes many choices during the compression process, such as selecting

13

WO 2021/022269 PCT/US2020/054450

block partitioning schemes from several possible choices based on the spatial positioning of values

in the input image(s). Signaling the exact choices may employ a large number of bins. As used

herein, a bin is a binary value that is treated as a variable (e.g., a bit value that may vary depending

on context). Entropy coding allows the encoder to discard any options that are clearly not viable

for a particular case, leaving a set of allowable options. Each allowable option is then assigned a

code word. The length of the code words is based on the number of allowable options (e.g., one

bin for two options, two bins for three to four options, etc.) The encoder then encodes the code

word for the selected option. This scheme reduces the size of the code words as the code words are

as big as desired to uniquely indicate a selection from a small sub-set of allowable options as

opposed to uniquely indicating the selection from a potentially large set of all possible options.

The decoder then decodes the selection by determining the set of allowable options in a similar

manner to the encoder. By determining the set of allowable options, the decoder can read the code

word and determine the selection made by the encoder.

[0073] At step 113, the decoder performs block decoding. Specifically, the decoder employs

reverse transforms to generate residual blocks. Then the decoder employs the residual blocks and

corresponding prediction blocks to reconstruct the image blocks according to the partitioning. The

prediction blocks may include both intra-prediction blocks and inter-prediction blocks as generated

at the encoder at step 105. The reconstructed image blocks are then positioned into frames of a

reconstructed video signal according to the partitioning data determined at step 111. Syntax for

step 113 may also be signaled in the bitstream via entropy coding as discussed above.

[0074] At step 115, filtering is performed on the frames of the reconstructed video signal in a

manner similar to step 107 at the encoder. For example, noise suppression filters, de-blocking

filters, adaptive loop filters, and SAO filters may be applied to the frames to remove blocking

artifacts. Once the frames are filtered, the video signal can be output to a display at step 117 for

viewing by an end user.

[0075] FIG. 2 is a schematic diagram of an example coding and decoding (codec) system 200

for video coding. Specifically, codec system 200 provides functionality to support the

implementation of operating method 100. Codec system 200 is generalized to depict components

employed in both an encoder and a decoder. Codec system 200 receives and partitions a video

signal as discussed with respect to steps 101 and 103 in operating method 100, which results in a

partitioned video signal 201. Codec system 200 then compresses the partitioned video signal 201

14

WO 2021/022269 PCT/US2020/054450

into a coded bitstream when acting as an encoder as discussed with respect to steps 105, 107, and

109 in method 100. When acting as a decoder, codec system 200 generates an output video signal

from the bitstream as discussed with respect to steps 111, 113, 115, and 117 in operating method

100. The codec system 200 includes a general coder control component 211, a transform scaling

and quantization component 213, an intra-picture estimation component 215, an intra-picture

prediction component 217, a motion compensation component 219, a motion estimation

component 221, a scaling and inverse transform component 229, a filter control analysis

component 227, an in-loop filters component 225, a decoded picture buffer component 223, and a

header formatting and context adaptive binary arithmetic coding (CABAC) component 231. Such

components are coupled as shown. In FIG. 2, black lines indicate movement of data to be

encoded/decoded while dashed lines indicate movement of control data that controls the operation

of other components. The components of codec system 200 may all be present in the encoder.

The decoder may include a subset of the components of codec system 200. For example, the

decoder may include the intra-picture prediction component 217, the motion compensation

component 219, the scaling and inverse transform component 229, the in-loop filters component

225, and the decoded picture buffer component 223. These components are now described.

[0076] The partitioned video signal 201 is a captured video sequence that has been partitioned

into blocks of pixels by a coding tree. A coding tree employs various split modes to subdivide a

block of pixels into smaller blocks of pixels. These blocks can then be further subdivided into

smaller blocks. The blocks may be referred to as nodes on the coding tree. Larger parent nodes are

split into smaller child nodes. The number of times a node is subdivided is referred to as the depth

of the node/coding tree. The divided blocks can be included in coding units (CUs) in some cases.

For example, a CU can be a sub-portion of a CTU that contains a luma block, red difference

chroma (Cr) block(s), and a blue difference chroma (Cb) block(s) along with corresponding syntax

instructions for the CU. The split modes may include a binary tree (BT), triple tree (TT), and a

quad tree (QT) employed to partition a node into two, three, or four child nodes, respectively, of

varying shapes depending on the split modes employed. The partitioned video signal 201 is

forwarded to the general coder control component 211, the transform scaling and quantization

component 213, the intra-picture estimation component 215, the filter control analysis component

227, and the motion estimation component 221 for compression.

15

WO 2021/022269 PCT/US2020/054450

[0077] The general coder control component 211 is configured to make decisions related to

coding of the images of the video sequence into the bitstream according to application constraints.

For example, the general coder control component 211 manages optimization of bitrate/bitstream

size versus reconstruction quality. Such decisions may be made based on storage space/bandwidth

availability and image resolution requests. The general coder control component 211 also manages

buffer utilization in light of transmission speed to mitigate buffer underrun and overrun issues. To

manage these issues, the general coder control component 211 manages partitioning, prediction,

and filtering by the other components. For example, the general coder control component 211 may

dynamically increase compression complexity to increase resolution and increase bandwidth usage

or decrease compression complexity to decrease resolution and bandwidth usage. Hence, the

general coder control component 211 controls the other components of codec system 200 to

balance video signal reconstruction quality with bit rate concerns. The general coder control

component 211 creates control data, which controls the operation of the other components. The

control data is also forwarded to the header formatting and CABAC component 231 to be encoded

in the bitstream to signal parameters for decoding at the decoder.

[0078] The partitioned video signal 201 is also sent to the motion estimation component 221

and the motion compensation component 219 for inter-prediction. A frame or slice of the

partitioned video signal 201 may be divided into multiple video blocks. Motion estimation

component 221 and the motion compensation component 219 perform inter-predictive coding of

the received video block relative to one or more blocks in one or more reference frames to provide

temporal prediction. Codec system 200 may perform multiple coding passes, e.g., to select an

appropriate coding mode for each block of video data.

[0079] Motion estimation component 221 and motion compensation component 219 may be

highly integrated, but are illustrated separately for conceptual purposes. Motion estimation,

performed by motion estimation component 221, is the process of generating motion vectors,

which estimate motion for video blocks. A motion vector, for example, may indicate the

displacement of a coded object relative to a predictive block. A predictive block is a block that is

found to closely match the block to be coded, in terms of pixel difference. A predictive block may

also be referred to as a reference block. Such pixel difference may be determined by sum of

absolute difference (SAD), sum of square difference (SSD), or other difference metrics. HEVC

employs several coded objects including a CTU, coding tree blocks (CTBs), and CUs. For

16

WO 2021/022269 PCT/US2020/054450

example, a CTU can be divided into CTBs, which can then be divided into CBs for inclusion in

CUs. A CU can be encoded as a prediction unit (PU) containing prediction data and/or a transform

unit (TU) containing transformed residual data for the CU. The motion estimation component 221

generates motion vectors, PUs, and TUs by using a rate-distortion analysis as part of a rate

distortion optimization process. For example, the motion estimation component 221 may

determine multiple reference blocks, multiple motion vectors, etc. for a current block/frame, and

may select the reference blocks, motion vectors, etc. having the best rate-distortion characteristics.

The best rate-distortion characteristics balance both quality of video reconstruction (e.g., amount of

data loss by compression) with coding efficiency (e.g., size of the final encoding).

[0080] In some examples, codec system 200 may calculate values for sub-integer pixel

positions of reference pictures stored in decoded picture buffer component 223. For example,

video codec system 200 may interpolate values of one-quarter pixel positions, one-eighth pixel

positions, or other fractional pixel positions of the reference picture. Therefore, motion estimation

component 221 may perform a motion search relative to the full pixel positions and fractional pixel

positions and output a motion vector with fractional pixel precision. The motion estimation

component 221 calculates a motion vector for a PU of a video block in an inter-coded slice by

comparing the position of the PU to the position of a predictive block of a reference picture.

Motion estimation component 221 outputs the calculated motion vector as motion data to header

formatting and CABAC component 231 for encoding and motion to the motion compensation

component 219.

[0081] Motion compensation, performed by motion compensation component 219, may

involve fetching or generating the predictive block based on the motion vector determined by

motion estimation component 221. Again, motion estimation component 221 and motion

compensation component 219 may be functionally integrated, in some examples. Upon receiving

the motion vector for the PU of the current video block, motion compensation component 219 may

locate the predictive block to which the motion vector points. A residual video block is then

formed by subtracting pixel values of the predictive block from the pixel values of the current

video block being coded, forming pixel difference values. In general, motion estimation

component 221 performs motion estimation relative to luma components, and motion

compensation component 219 uses motion vectors calculated based on the luma components for

17

WO 2021/022269 PCT/US2020/054450

both chroma components and luma components. The predictive block and residual block are

forwarded to transform scaling and quantization component 213.

[0082] The partitioned video signal 201 is also sent to intra-picture estimation component 215

and intra-picture prediction component 217. As with motion estimation component 221 and

motion compensation component 219, intra-picture estimation component 215 and intra-picture

prediction component 217 may be highly integrated, but are illustrated separately for conceptual

purposes. The intra-picture estimation component 215 and intra-picture prediction component 217

intra-predict a current block relative to blocks in a current frame, as an alternative to the inter

prediction performed by motion estimation component 221 and motion compensation component

219 between frames, as described above. In particular, the intra-picture estimation component 215

determines an intra-prediction mode to use to encode a current block. In some examples, intra

picture estimation component 215 selects an appropriate intra-prediction mode to encode a current

block from multiple tested intra-prediction modes. The selected intra-prediction modes are then

forwarded to the header formatting and CABAC component 231 for encoding.

[0083] For example, the intra-picture estimation component 215 calculates rate-distortion

values using a rate-distortion analysis for the various tested intra-prediction modes, and selects the

intra-prediction mode having the best rate-distortion characteristics among the tested modes. Rate

distortion analysis generally determines an amount of distortion (or error) between an encoded

block and an original unencoded block that was encoded to produce the encoded block, as well as a

bitrate (e.g., a number of bits) used to produce the encoded block. The intra-picture estimation

component 215 calculates ratios from the distortions and rates for the various encoded blocks to

determine which intra-prediction mode exhibits the best rate-distortion value for the block. In

addition, intra-picture estimation component 215 may be configured to code depth blocks of a

depth map using a depth modeling mode (DMM) based on rate-distortion optimization (RDO).

[0084] The intra-picture prediction component 217 may generate a residual block from the

predictive block based on the selected intra-prediction modes determined by intra-picture

estimation component 215 when implemented on an encoder or read the residual block from the

bitstream when implemented on a decoder. The residual block includes the difference in values

between the predictive block and the original block, represented as a matrix. The residual block is

then forwarded to the transform scaling and quantization component 213. The intra-picture

18

WO 2021/022269 PCT/US2020/054450

estimation component 215 and the intra-picture prediction component 217 may operate on both

luma and chroma components.

[0085] The transform scaling and quantization component 213 is configured to further

compress the residual block. The transform scaling and quantization component 213 applies a

transform, such as a discrete cosine transform (DCT), a discrete sine transform (DST), or a

conceptually similar transform, to the residual block, producing a video block comprising residual

transform coefficient values. Wavelet transforms, integer transforms, sub-band transforms or other

types of transforms could also be used. The transform may convert the residual information from a

pixel value domain to a transform domain, such as a frequency domain. The transform scaling and

quantization component 213 is also configured to scale the transformed residual information, for

example based on frequency. Such scaling involves applying a scale factor to the residual

information so that different frequency information is quantized at different granularities, which

may affect final visual quality of the reconstructed video. The transform scaling and quantization

component 213 is also configured to quantize the transform coefficients to further reduce bit rate.

The quantization process may reduce the bit depth associated with some or all of the coefficients.

The degree of quantization may be modified by adjusting a quantization parameter. In some

examples, the transform scaling and quantization component 213 may then perform a scan of the

matrix including the quantized transform coefficients. The quantized transform coefficients are

forwarded to the header formatting and CABAC component 231 to be encoded in the bitstream.

[0086] The scaling and inverse transform component 229 applies a reverse operation of the

transform scaling and quantization component 213 to support motion estimation. The scaling and

inverse transform component 229 applies inverse scaling, transformation, and/or quantization to

reconstruct the residual block in the pixel domain, e.g., for later use as a reference block which

may become a predictive block for another current block. The motion estimation component 221

and/or motion compensation component 219 may calculate a reference block by adding the

residual block back to a corresponding predictive block for use in motion estimation of a later

block/frame. Filters are applied to the reconstructed reference blocks to mitigate artifacts created

during scaling, quantization, and transform. Such artifacts could otherwise cause inaccurate

prediction (and create additional artifacts) when subsequent blocks are predicted.

[0087] The filter control analysis component 227 and the in-loop filters component 225 apply

the filters to the residual blocks and/or to reconstructed image blocks. For example, the

19

WO 2021/022269 PCT/US2020/054450

transformed residual block from the scaling and inverse transform component 229 may be

combined with a corresponding prediction block from intra-picture prediction component 217

and/or motion compensation component 219 to reconstruct the original image block. The filters

may then be applied to the reconstructed image block. In some examples, the filters may instead

be applied to the residual blocks. As with other components in FIG. 2, the filter control analysis

component 227 and the in-loop filters component 225 are highly integrated and may be

implemented together, but are depicted separately for conceptual purposes. Filters applied to the

reconstructed reference blocks are applied to particular spatial regions and include multiple

parameters to adjust how such filters are applied. The filter control analysis component 227

analyzes the reconstructed reference blocks to determine where such filters should be applied and

sets corresponding parameters. Such data is forwarded to the header formatting and CABAC

component 231 as filter control data for encoding. The in-loop filters component 225 applies such

filters based on the filter control data. The filters may include a deblocking filter, a noise

suppression filter, a SAO filter, and an adaptive loop filter. Such filters may be applied in the

spatial/pixel domain (e.g., on a reconstructed pixel block) or in the frequency domain, depending

on the example.

[0088] When operating as an encoder, the filtered reconstructed image block, residual block,

and/or prediction block are stored in the decoded picture buffer component 223 for later use in

motion estimation as discussed above. When operating as a decoder, the decoded picture buffer

component 223 stores and forwards the reconstructed and filtered blocks toward a display as part

of an output video signal. The decoded picture buffer component 223 may be any memory device

capable of storing prediction blocks, residual blocks, and/or reconstructed image blocks.

[0089] The header formatting and CABAC component 231 receives the data from the various

components of codec system 200 and encodes such data into a coded bitstream for transmission

toward a decoder. Specifically, the header formatting and CABAC component 231 generates

various headers to encode control data, such as general control data and filter control data. Further,

prediction data, including intra-prediction and motion data, as well as residual data in the form of

quantized transform coefficient data are all encoded in the bitstream. The final bitstream includes

all information desired by the decoder to reconstruct the original partitioned video signal 201.

Such information may also include intra-prediction mode index tables (also referred to as

codeword mapping tables), definitions of encoding contexts for various blocks, indications of most

20

WO 2021/022269 PCT/US2020/054450

probable intra-prediction modes, an indication of partition information, etc. Such data may be

encoded by employing entropy coding. For example, the information may be encoded by

employing context adaptive variable length coding (CAVLC), CABAC, syntax-based context

adaptive binary arithmetic coding (SBAC), probability interval partitioning entropy (PIPE) coding,

or another entropy coding technique. Following the entropy coding, the coded bitstream may be

transmitted to another device (e.g., a video decoder) or archived for later transmission or retrieval.

[0090] FIG. 3 is a block diagram illustrating an example video encoder 300. Video encoder

300 may be employed to implement the encoding functions of codec system 200 and/or implement

steps 101, 103, 105, 107, and/or 109 of operating method 100. Encoder 300 partitions an input

video signal, resulting in a partitioned video signal 301, which is substantially similar to the

partitioned video signal 201. The partitioned video signal 301 is then compressed and encoded

into a bitstream by components of encoder 300.

[0091] Specifically, the partitioned video signal 301 is forwarded to an intra-picture prediction

component 317 for intra-prediction. The intra-picture prediction component 317 may be

substantially similar to intra-picture estimation component 215 and intra-picture prediction

component 217. The partitioned video signal 301 is also forwarded to a motion compensation

component 321 for inter-prediction based on reference blocks in a decoded picture buffer

component 323. The motion compensation component 321 may be substantially similar to motion

estimation component 221 and motion compensation component 219. The prediction blocks and

residual blocks from the intra-picture prediction component 317 and the motion compensation

component 321 are forwarded to a transform and quantization component 313 for transform and

quantization of the residual blocks. The transform and quantization component 313 may be

substantially similar to the transform scaling and quantization component 213. The transformed

and quantized residual blocks and the corresponding prediction blocks (along with associated

control data) are forwarded to an entropy coding component 331 for coding into a bitstream. The

entropy coding component 331 may be substantially similar to the header formatting and CABAC

component 231.

[0092] The transformed and quantized residual blocks and/or the corresponding prediction

blocks are also forwarded from the transform and quantization component 313 to an inverse

transform and quantization component 329 for reconstruction into reference blocks for use by the

motion compensation component 321. The inverse transform and quantization component 329

21

WO 2021/022269 PCT/US2020/054450

may be substantially similar to the scaling and inverse transform component 229. In-loop filters in

an in-loop filters component 325 are also applied to the residual blocks and/or reconstructed

reference blocks, depending on the example. The in-loop filters component 325 may be

substantially similar to the filter control analysis component 227 and the in-loop filters component

225. The in-loop filters component 325 may include multiple filters as discussed with respect to

in-loop filters component 225. The filtered blocks are then stored in a decoded picture buffer

component 323 for use as reference blocks by the motion compensation component 321. The

decoded picture buffer component 323 may be substantially similar to the decoded picture buffer

component 223.

[0093] FIG. 4 is a block diagram illustrating an example video decoder 400. Video decoder

400 may be employed to implement the decoding functions of codec system 200 and/or implement

steps 111, 113, 115, and/or 117 of operating method 100. Decoder 400 receives a bitstream, for

example from an encoder 300, and generates a reconstructed output video signal based on the

bitstream for display to an end user.

[0094] The bitstream is received by an entropy decoding component 433. The entropy

decoding component 433 is configured to implement an entropy decoding scheme, such as

CAVLC, CABAC, SBAC, PIPE coding, or other entropy coding techniques. For example, the

entropy decoding component 433 may employ header information to provide a context to interpret

additional data encoded as codewords in the bitstream. The decoded information includes any

desired information to decode the video signal, such as general control data, filter control data,

partition information, motion data, prediction data, and quantized transform coefficients from

residual blocks. The quantized transform coefficients are forwarded to an inverse transform and

quantization component 429 for reconstruction into residual blocks. The inverse transform and

quantization component 429 may be similar to inverse transform and quantization component 329.

[0095] The reconstructed residual blocks and/or prediction blocks are forwarded to intra

picture prediction component 417 for reconstruction into image blocks based on intra-prediction

operations. The intra-picture prediction component 417 may be similar to intra-picture estimation

component 215 and to intra-picture prediction component 217. Specifically, the intra-picture

prediction component 417 employs prediction modes to locate a reference block in the frame and

applies a residual block to the result to reconstruct intra-predicted image blocks. The reconstructed

intra-predicted image blocks and/or the residual blocks and corresponding inter-prediction data are

22

WO 2021/022269 PCT/US2020/054450

forwarded to a decoded picture buffer component 423 via an in-loop filters component 425, which

may be substantially similar to decoded picture buffer component 223 and in-loop filters

component 225, respectively. The in-loop filters component 425 filters the reconstructed image

blocks, residual blocks and/or prediction blocks, and such information is stored in the decoded

picture buffer component 423. Reconstructed image blocks from decoded picture buffer

component 423 are forwarded to a motion compensation component 421 for inter-prediction. The

motion compensation component 421 may be substantially similar to motion estimation

component 221 and/or motion compensation component 219. Specifically, the motion

compensation component 421 employs motion vectors from a reference block to generate a

prediction block and applies a residual block to the result to reconstruct an image block. The

resulting reconstructed blocks may also be forwarded via the in-loop filters component 425 to the

decoded picture buffer component 423. The decoded picture buffer component 423 continues to

store additional reconstructed image blocks, which can be reconstructed into frames via the

partition information. Such frames may also be placed in a sequence. The sequence is output

toward a display as a reconstructed output video signal.

[0096] Keeping the above in mind, video compression techniques perform spatial (intra

picture) prediction and/or temporal (inter-picture) prediction to reduce or remove redundancy

inherent in video sequences. For block-based video coding, a video slice (i.e., a video picture or a

portion of a video picture) may be partitioned into video blocks, which may also be referred to as

treeblocks, coding tree blocks (CTBs), coding tree units (CTUs), coding units (CUs), and/or coding

nodes. Video blocks in an intra-coded (I) slice of a picture are encoded using spatial prediction

with respect to reference samples in neighboring blocks in the same picture. Video blocks in an

inter-coded (P or B) slice of a picture may use spatial prediction with respect to reference samples

in neighboring blocks in the same picture or temporal prediction with respect to reference samples

in other reference pictures. Pictures may be referred to as frames, and reference pictures may be

referred to as reference frames. The POC is a variable associated with each picture that uniquely

identifies the associated picture among all pictures in the coded layer video sequence (CLVS),

indicates when the associated picture is to be output from the DPB, and indicates the position of

the associated picture in output order relative to the output order positions of the other pictures in

the same CLVS that are to be output from the DPB. A flag is a variable or single-bit syntax

element that can take one of the two possible values: 0 and 1.

23

WO 2021/022269 PCT/US2020/054450

[0097] Spatial or temporal prediction results in a predictive block for a block to be coded.

Residual data represents pixel differences between the original block to be coded and the predictive

block. An inter-coded block is encoded according to a motion vector that points to a block of

reference samples forming the predictive block, and the residual data indicating the difference

between the coded block and the predictive block. An intra-coded block is encoded according to

an intra-coding mode and the residual data. For further compression, the residual data may be

transformed from the pixel domain to a transform domain, resulting in residual transform

coefficients, which then may be quantized. The quantized transform coefficients, initially arranged

in a two-dimensional array, may be scanned in order to produce a one-dimensional vector of

transform coefficients, and entropy coding may be applied to achieve even more compression.

[0098] Image and video compression has experienced rapid growth, leading to various coding

standards. Such video coding standards include ITU-T H.261, International Organization for

Standardization/International Electrotechnical Commission (ISO/IEC) MPEG-i Part 2, ITU-T

H.262 or ISO/IEC MPEG-2 Part 2, ITU-T H.263, ISO/IEC MPEG-4 Part 2, Advanced Video

Coding (AVC), also known as ITU-T H.264 or ISO/JEC MPEG-4 Part 10, and High Efficiency

Video Coding (HEVC), also known as ITU-T H.265 or MPEG-H Part 2. AVC includes extensions

such as Scalable Video Coding (SVC), Multiview Video Coding (MVC) and Multiview Video

Coding plus Depth (MVC+D), and 3D AVC (3D-AVC). HEVC includes extensions such as

Scalable HEVC (SHVC), Multiview HEVC (MV-HEVC), and 3D HEVC (3D-HEVC).

[0099] There is also a new video coding standard, named Versatile Video Coding (VVC),

being developed by the joint video experts team (JVET) of ITU-T and ISO/IEC. While the VVC

standard has several working drafts, one Working Draft (WD) of VVC in particular, namely B.

Bross, J. Chen, and S. Liu, "Versatile Video Coding (Draft 5)," JVET-N1001-v3, 13th JVET

Meeting, March 27, 2019 (VVC Draft 5) is referenced herein.

[00100] Scalability in video coding usually is supported by using multi-layer coding techniques.

A multi-layer bitstream comprises a base layer (BL) and one or more enhancement layers (ELs).

An example of scalabilities includes spatial scalability, quality / signal-to-noise (SNR) scalability,

multi-view scalability, etc. When a multi-layer coding technique is used, a picture or a part thereof

may be coded (1) without using a reference picture, i.e., using intra prediction; (2) by referencing

to reference pictures that are in the same layer, i.e., using inter prediction; or (3) by referencing to

reference pictures that are in other layer(s), i.e., using inter-layer prediction. A reference picture

24

WO 2021/022269 PCT/US2020/054450

used for inter-layer prediction of the current picture is referred to as an inter-layer reference picture

(ILRP).

[00101] FIG. 5 is a schematic diagram illustrating an example of layer based prediction 500, for

example as performed to determine motion vectors (Ms) at block compression step 105, block

decoding step 113, motion estimation component 221, motion compensation component 219,

motion compensation component 321, and/or motion compensation component 421. Layer based

prediction 500 is compatible with unidirectional inter-prediction and/or bidirectional inter

prediction, but is also performed between pictures in different layers.

[00102] Layer based prediction 500 is applied between pictures 511, 512, 513, and 514 and

pictures 515, 516, 517, and 518 in different layers. In the example shown, pictures 511, 512, 513,

and 514 are part of layer N+1 532 and pictures 515, 516, 517, and 518 are part of layer N 531. A

layer, such as layer N 531 and/or layer N+1 532, is a group of pictures that are all associated with a

similar value of a characteristic, such as a similar size, quality, resolution, signal to noise ratio,

capability, etc. In the example shown, layer N+1 532 is associated with a larger image size than

layer N 531. Accordingly, pictures 511, 512, 513, and 514 in layer N+1 532 have a larger picture

size (e.g., larger height and width and hence more samples) than pictures 515, 516, 517, and 518 in

layer N 531 in this example. However, such pictures can be separated between layer N+1 532 and

layer N 531 by other characteristics. While only two layers, layer N+1 532 and layer N 531, are

shown, a set of pictures can be separated into any number of layers based on associated

characteristics. Layer N+1 532 and layer N 531 may also be denoted by a layer ID. A layer ID is

an item of data that is associated with a picture and denotes the picture is part of an indicated layer.

Accordingly, each picture 511-518 may be associated with a corresponding layer ID to indicate

which layer N+1 532 or layer N 531 includes the corresponding picture.

[00103] Pictures 511-518 in different layers 531-532 are configured to be displayed in the

alternative. As such, pictures 511-518 in different layers 531-532 can share the same temporal

identifier (ID) and can be included in the same AU. As used herein, an AU is a set of one or more

coded pictures associated with the same display time for output from a DPB. For example, a

decoder may decode and display picture 515 at a current display time if a smaller picture is desired

or the decoder may decode and display picture 511 at the current display time if a larger picture is

desired. As such, pictures 511-514 at higher layer N+1 532 contain substantially the same image

data as corresponding pictures 515-518 at lower layer N 531 (notwithstanding the difference in

25

WO 2021/022269 PCT/US2020/054450

picture size). Specifically, picture 511 contains substantially the same image data as picture 515,

picture 512 contains substantially the same image data as picture 516, etc.

[00104] Pictures 511-518 can be coded by reference to other pictures 511-518 in the same layer

N 531 or N+1 532. Coding a picture in reference to another picture in the same layer results in

inter-prediction 523, which is compatible with unidirectional inter-prediction and/or bidirectional

inter-prediction. Inter-prediction 523 is depicted by solid line arrows. For example, picture 513

may be coded by employing inter-prediction 523 using one or two of pictures 511, 512, and/or 514

in layer N+1 532 as a reference, where one picture is referenced for unidirectional inter-prediction

and/or two pictures are referenced for bidirectional inter-prediction. Further, picture 517 may be

coded by employing inter-prediction 523 using one or two of pictures 515, 516, and/or 518 in layer

N 531 as a reference, where one picture is referenced for unidirectional inter-prediction and/or two

pictures are referenced for bidirectional inter-prediction. When a picture is used as a reference for

another picture in the same layer when performing inter-prediction 523, the picture may be referred

to as a reference picture. For example, picture 512 may be a reference picture used to code picture

513 according to inter-prediction 523. Inter-prediction 523 can also be referred to as intra-layer

prediction in a multi-layer context. As such, inter-prediction 523 is a mechanism of coding

samples of a current picture by reference to indicated samples in a reference picture that are

different from the current picture where the reference picture and the current picture are in the

same layer.

[00105] Pictures 511-518 can also be coded by reference to other pictures 511-518 in different

layers. This process is known as inter-layer prediction 521, and is depicted by dashed arrows.

Inter-layer prediction 521 is a mechanism of coding samples of a current picture by reference to

indicated samples in a reference picture where the current picture and the reference picture are in

different layers and hence have different layer IDs. For example, a picture in a lower layer N 531

can be used as a reference picture to code a corresponding picture at a higher layer N+1 532. As a

specific example, picture 511 can be coded by reference to picture 515 according to inter-layer

prediction 521. In such a case, the picture 515 is used as an inter-layer reference picture. An inter

layer reference picture is a reference picture used for inter-layer prediction 521. In most cases,

inter-layer prediction 521 is constrained such that a current picture, such as picture 511, can only

use inter-layer reference picture(s) that are included in the same AU and that are at a lower layer,

such as picture 515. When multiple layers (e.g., more than two) are available, inter-layer

26

WO 2021/022269 PCT/US2020/054450

prediction 521 can encode/decode a current picture based on multiple inter-layer reference

picture(s) at lower levels than the current picture.

[00106] A video encoder can employ layer based prediction 500 to encode pictures 511-518 via

many different combinations and/or permutations of inter-prediction 523 and inter-layer prediction

521. For example, picture 515 may be coded according to intra-prediction. Pictures 516-518 can

then be coded according to inter-prediction 523 by using picture 515 as a reference picture.

Further, picture 511 may be coded according to inter-layer prediction 521 by using picture 515 as

an inter-layer reference picture. Pictures 512-514 can then be coded according to inter-prediction

523 by using picture 511 as a reference picture. As such, a reference picture can serve as both a

single layer reference picture and an inter-layer reference picture for different coding mechanisms.

By coding higher layer N+1 532 pictures based on lower layer N 531 pictures, the higher layer

N+1 532 can avoid employing intra-prediction, which has much lower coding efficiency than inter

prediction 523 and inter-layer prediction 521. As such, the poor coding efficiency of intra

prediction can be limited to the smallest/lowest quality pictures, and hence limited to coding the

smallest amount of video data. The pictures used as reference pictures and/or inter-layer reference

pictures can be indicated in entries of reference picture list(s) contained in a reference picture list

structure.

[00107] Each AU 506 in FIG. 5 may contain several pictures. For example, one AU 506 may

contain pictures 511 and 515. Another AU 506 may contain pictures 512 and 516. Indeed, each

AU 506 is a set of one or more coded pictures associated with the same display time (e.g., the same

temporal ID) for output from a decoded picture buffer (DPB) (e.g., for display to a user). Each

AUD 508 is an indicator or data structure used to indicate the start of an AU (e.g., AU 508) or the

boundary between AUs.

[00108] Previous H.26x video coding families have provided support for scalability in separate

profile(s) from the profile(s) for single-layer coding. Scalable video coding (SVC) is the scalable

extension of the AVC/H.264 that provides support for spatial, temporal, and quality scalabilities.

For SVC, a flag is signaled in each macroblock (MB) in EL pictures to indicate whether the EL

MB is predicted using the collocated block from a lower layer. The prediction from the collocated

block may include texture, motion vectors, and/or coding modes. Implementations of SVC cannot

directly reuse unmodified H.264/AVC implementations in their design. The SVC EL macroblock

syntax and decoding process differs from H.264/AVC syntax and decoding process.

27

WO 2021/022269 PCT/US2020/054450

[00109] Scalable HEVC (SHVC) is the extension of the HEVC/H.265 standard that provides

support for spatial and quality scalabilities, multiview HEVC (MV-HEVC) is the extension of the

HEVC/H.265 that provides support for multi-view scalability, and 3D HEVC (3D-HEVC) is the

extension of the HEVC/H.264 that provides supports for three dimensional (3D) video coding that

is more advanced and more efficient than MV-HEVC. Note that the temporal scalability is

included as an integral part of the single-layer HEVC codec. The design of the multi-layer

extension of HEVC employs the idea where the decoded pictures used for inter-layer prediction

come only from the same access unit (AU) and are treated as long-term reference pictures

(LTRPs), and are assigned reference indices in the reference picture list(s) along with other

temporal reference pictures in the current layer. Inter-layer prediction (ILP) is achieved at the

prediction unit (PU) level by setting the value of the reference index to refer to the inter-layer

reference picture(s) in the reference picture list(s).

[00110] Notably, both reference picture resampling and spatial scalability features call for

resampling of a reference picture or part thereof Reference picture resampling (RPR) can be

realized at either the picture level or coding block level. However, when RPR is referred to as a

coding feature, it is a feature for single-layer coding. Even so, it is possible or even preferable

from a codec design point of view to use the same resampling filter for both the RPR feature of

single-layer coding and the spatial scalability feature for multi-layer coding.

[00111] FIG. 6 illustrates an example of layer based prediction 600 utilizing output layer sets

(OLSs), for example as performed to determine MVs at block compression step 105, block

decoding step 113, motion estimation component 221, motion compensation component 219,

motion compensation component 321, and/or motion compensation component 421. Layer based

prediction 600 is compatible with unidirectional inter-prediction and/or bidirectional inter

prediction, but is also performed between pictures in different layers. The layer based prediction of

FIG. 6 is similar to that of FIG. 5. Therefore, for the sake of brevity, a full description of layer

based prediction is not repeated.

[00112] Some of the layers in the coded video sequence (CVS) 690 of FIG. 6 are included in an

OLS. An OLS is a set of layers for which one or more layers are specified as the output layers. An

output layer is a layer of an OLS that is output. FIG. 6 depicts three different OLSs, namely OLS

1, OLS 2, and OLS 3. As shown, OLS 1 includes Layer N 631 and Layer N+1 632. OLS 2

includes Layer N 631, Layer N+1 632, Layer N+2 633, and Layer N+3 634. OLS 3 includes Layer

28

WO 2021/022269 PCT/US2020/054450

N 631. That is, OLS 3 includes only a single layer. In practical applications, other OLSs may also

contain only a single layer. Despite three OLSs being shown, a different number of OLSs may be

used in practical applications. Other layers, such as Layer N+4 635, are not included in the

illustrated OLSs (e.g., OLS 1, 2, and 3) but are available for inclusion in other OLSs.

[00113] Each of the different OLSs may contain any number of layers. The different OLSs are

generated in an effort to accommodate the coding capabilities of a variety of different devices

having varying coding capabilities. For example, OLS 3, which contains only one layer, may be

generated to accomodate a mobile phone with relatively limited coding capabilities. On the other

hand, OLS 2, which contains four layers, may be generated to accommodate a big screen

television, which is able to decode higher layers than the mobile phone. OLS 1, which contains

two layers, may be generated to accommodate a personal computer, laptop computer, or a tablet

computer, which may be able to decode higher layers than the mobile phone but cannot decode the

highest layers like the big screen television.

[00114] The layers in FIG. 6 can be all independent from each other. That is, each layer can be

coded without using inter-layer prediction (ILP). In this case, the layers are referred to as

simulcast layers. One or more of the layers in FIG. 6 may also be coded using ILP. Whether the

layers are simulcast layers or whether some of the layers are coded using ILP is signaled by a flag

in a video parameter set (VPS), which will be more fully discussed below. When some layers use

ILP, the layer dependency relationship among layers is also signaled in the VPS.

[00115] In an embodiment, when the layers are simulcast layers, only one layer is selected for

decoding and output. In an embodiment, when some layers use ILP, all of the layers (e.g., the

entire bitstream) are specified to be decoded, and certain layers among the layers are specified to

be output layers. The output layer or layers may be, for example, 1) only the highest layer, 2) all

the layers, or 3) the highest layer plus a set of indicated lower layers. For example, when the

highest layer plus a set of indicated lower layers are designated for output by a flag in the VPS,

layer N+3 634 (which is the highest layer) and layers N 631 and N+1 632 (which are lower layers)

from OLS 2 are output.

[00116] As shown in FIG. 6, each layer is comprised of any number of pictures. For example,

Layer N 631 includes pictures 615-618, Layer N+1 632 includes pictures 611-614, Layer N+2 633

includes pictures 641-644, Layer N+3 634 includes pictures 651-654, and Layer N+4 635 includes

pictures 661-664.

29

WO 2021/022269 PCT/US2020/054450

[00117] Video coding standards like HEVC, SHVC, MV-HEVC, and VVC specify and signal a

profile, a tier, and a level. Profiles, tiers, and levels specify restrictions on bitstreams and hence

limits on the capabilities needed to decode the bitstreams. Profiles, tiers, and levels may also be

used to indicate interoperability points between individual decoder implementations. A profile is a

defined set of coding tools used to create a compliant or conforming bitstream. Each profile

specifies a subset of algorithmic features and limits that shall be supported by all decoders

conforming to that profile.

[00118] A level is a set of constraints for a bitstream (e.g., max luma sample rate, max bit rate

for a resolution, etc.). That is, a level is a set of constraints that indicate the required decoder

performance to playback a bitstream of the specified profile.

[00119] The levels are split into two tiers: Main and High. The Main tier is a lower tier than the

High tier. The tiers were made to deal with applications that differ in terms of their maximum bit

rate. The Main tier was designed for most applications while the High tier was designed for very

demanding applications. The set of constraints and/or tiers corresponding to the levels may be

referred to herein as level information.

[00120] Each level of a tier specifies a set of limits on the values that may be taken by the

syntax elements of a particular standard (e.g., HEVC, VVC). The same set of tier and level

definitions is used with all profiles, but individual implementations may support a different tier and

within a tier a different level for each supported profile. For any given profile, a level of a tier

generally corresponds to a particular decoder processing load and memory capability.

[00121] Using the HEVC standard, a representative example of levels and tiers for different

profiles is provided in Table 1 below.

Table 1

Level Max bit rate for Main Max bit rate for High Throughput Example picture resolution

4:4:4 12 profile 4:4:4 16 Intra profile at highest frame rate

(1000 bits/sec) (1000 bits/sec) (MaxDPBsize)

Main tier High tier Main tier High tier

5.2 180,000 720,000 5,760,000 23,040,000 4,096x2,160@120.0

6 180,000 720,000 5,760,000 23,040,000 8,192x4,320@30.0

6.1 180,000 720,000 11,520,000 46,080,000 8,192x4,320@60.0

6.2 720,000 2,400,000 23,040,000 76,800,000 8,192x4,320@120.0

30

WO 2021/022269 PCT/US2020/054450

[00122] Profile, tier, and level (PTL) parameters are a syntax structure (e.g., the i-th

profiletierlevel() syntax structure) that provides profile, tier, and/or level as noted in the table

above. Decoded picture buffer (DPB) parameters are a syntax structure (e.g., the i-th

dpbparameters() syntax structure) that provides a DPB size and, optionally, a maximum picture

reorder number and maximum latency information. The maximum picture reorder number and

maximum latency information may be collectively referred to by the acronym RVL. HRD

parameters are a syntax structure (e.g., i-th ols timinghrdparameters() syntax structure) that

initialize and/or define operational conditions of the HRD. Further details and specifics regarding

one or more of the PTL parameters, the DPB parameters, and the HRD parameters are provided

below.

[00123] In an embodiment, the maximum picture reorder number is designated

dpb maxnumreorderpics[i], which specifies the maximum allowed number of pictures of the

OLS that can precede any picture in the OLS in decoding order and follow that picture in output

order when Htid is equal to i. The value of dpbmaxnumreorderpics[i] shall be in the range of

0 to dpb max decpic bufferingminus1[i], inclusive. When i is greater than 0,

dpb maxnumreorderpics[i] shall be greater than or equal to

dpb max-num-reorderpics[i - 1]. When dpbmaxnumreorder_pics[i] is not present for i in

the range of 0 to MaxSubLayersMinus1 - 1, inclusive, due to subLayerInfoFlag being equal to 0, it

is inferred to be equal to dpbmaxnumreorderpics[MaxSubLayersMinusl]. Htid is a variable

which identifies the highest temporal sublayer to be decoded.

[00124] dpb max decpicbufferingminus1[i] plus 1 specifies the maximum required size of

the DPB in units of picture storage buffers when Htid is equal to i. The value of

dpb max decpicbufferingminus1[i] shall be in the range of 0 to MaxDpbSize - 1, inclusive,

where MaxDpbSize is as specified in subclause A.4.2 of the VVC standard. When i is greater than

0, dpbmaxdecpic buffering minus[i] shall be greater than or equal to

dpb max decpicbufferingminus1[i - 1]. When dpbmaxdec-pic bufferingminus1[i] is

not present for i in the range of 0 to MaxSubLayersMinus1 - 1, inclusive, due to subLayerInfoFlag

being equal to 0, it is inferred to be equal to dpb max dec-picbuffering minus[

MaxSubLayersMinus1].

31

WO 2021/022269 PCT/US2020/054450

[00125] In an embodiment, maximum latency information is designated

dpb maxlatencyincreaseplus1[i]. dpbmax latencyincreaseplus1[i] not equal to 0 is used

to compute the value of MaxLatencyPictures[i], which specifies the maximum number of pictures

in the OLS that can precede any picture in the OLS in output order and follow that picture in

decoding order when Htid is equal to i.

[00126] MaxLatencyPictures[i] = dpbmaxnumreorderpics[i]+ dpb max latency_

increaseplus1[i] - 1.

[00127] The DPB syntax structures (a.k.a., the DPB parameters) for the OLSs described above

are included in the VPS of the bitstream. Unfortunately, signaling all of these DPB syntax

structures in the VPS is inefficient when an OLS contains only a single layer (e.g., OLS 3 in

FIG. 6).

[00128] Disclosed herein are techniques that ensure the decoded picture buffer (DPB)

parameters are included in a sequence parameter set (SPS) when an output layer set (OLS) contains

only a single layer. Because the SPS includes the DPB parameters for the OLS with the single

layer, a video parameter set (VPS) may be removed from the bitstream, which reduces redundancy

and increases coding efficiency. Thus, the coder / decoder (a.k.a., "codec") in video coding is

improved relative to current codecs. As a practical matter, the improved video coding process

offers the user a better user experience when videos are sent, received, and/or viewed.

[00129] FIG. 7 illustrates an embodiment of a video bitstream 700. As used herein the video

bitstream 700 may also be referred to as a coded video bitstream, a bitstream, or variations thereof

As shown in FIG. 7, the bitstream 700 includes a video parameter set (VPS) 704, a sequence

parameter set (SPS) 706, a picture parameter set (PPS) 708, a slice header 712, and image data

720. Each of the VPS 704, the SPS 706, and the PPS 708 may be generically referred to as a

parameter set. In an embodiment, other parameter sets and/or headers not shown in FIG. 7 may

also be included in the bitstream 700.

[00130] The VPS 704 includes decoding dependency or information for reference picture set

construction of enhancement layers. The VPS 704 provides an overall perspective or view of a

scalable sequence, including what types of operation points are provided, the profile, tier, and level

of the operation points, and some other high-level properties of the bitstream 700 that can be used

as the basis for session negotiation and content selection, etc.

32

WO 2021/022269 PCT/US2020/054450

[00131] In an embodiment, the VPS 704 includes a list of the DPB syntax structures 780 for all

OLSs. In an embodiment, each of the DPB syntax structures in the list of DPB syntax structures

780 is designated dpbparameters(). The VPS 704 also includes the syntax structure

vps olsdpbparamsidx[i] 782. The syntax structure vps olsdpbparams idx[i] 782 specifies

the index of the DPB syntax structure that applies to the i-th OLS. That is, each index value

corresponds to one of the DPB syntax structures in the list. By way of example, index value 1 in

the list corresponds to the dpb_parameters() for OLS 1, index value 2 corresponds to

dpbparameters() for OLS 2, and index value 3 corresponds to dpbparameters() for OLS 3.

[00132] When present, the value of vps olsdpbparams_idx[i] is in the range of 0 to

VpsNumDpbParams - 1, inclusive.

[00133] The syntax element vps num dpbparams_minus1 781 specifies the number of

dpbparameters() syntax strutcures in the VPS 704. The value of vps num dpbparams_minus1

781 is in a range of zero to less than the total number of multi-layer OLSs, which may be

designated as NumMultiLayerOlss.

[00134] The variable VpsNumDpbParams - 1 is derived by the video decoder (i.e., the variable

is not signaled in the bitstream) based on the syntax element vps num dpbparamsminus1 781,

which is signaled in the bitstream.

[00135] In an embodiment, the variable VpsNumDpbParams - 1 is derived as follows.

if(vpseach layer-isanolsflag)

VpsNumDpbParams = 0 (34)

else

VpsNumDpbParams = vps num dpbparams-minus1 + 1

[00136] The variable VpsNumDpbParams - 1, plus 1, specifies the number of DPB syntax

structures in the VPS 704. For example, when the value of VpsNumDpbParams - 1 is two, the

number of DPB syntax structures in the VPS 704 is three (2+1=3).

[00137] In an embodiment, the VPS 704 includes a DPB present flag 783, which may be

designated vpssublayer dpbparamspresent flag is used to control the presence of

dpb max decpicbufferingminus1[j], dpbmaxnumreorder-pics[j], and

dpb maxlatencyincreaseplus1[j] syntax elements in the dpbparameters() syntax structures in

the VPS for j in range from 0 to vps dpb max tid[i]- 1, inclusive, when vps dpb max tid[i] is

33

WO 2021/022269 PCT/US2020/054450

greater than 0. When not present, the value of vpssubdpbparamsinfo-present flag is inferred

to be equal to 0.

[00138] The SPS 706 contains data that is common to all the pictures in a sequence of pictures

(SOP). The SPS 706 is a syntax structure containing syntax elements that apply to zero or more

entire CLVSs as determined by the content of a syntax element found in the PPS referred to by a

syntax element found in each picture header.

[00139] In an embodiment, the dpbparameters() that apply to the i-th OLS 784 are present in

the SPS 706 referred to by the layer in the i-th OLS when the i-th OLS is a single layer OLS. That

is, for a single-layer OLS (e.g., OLS 2 in FIG. 6), the applicable dpbparameters() syntax structure

is present in the SPS referred to by the layer in the OLS.

[00140] Based on the foregoing, it should be appreciated that when an OLS is a single-layer

OLS (e.g., the OLS contains only a single layer), the dpbparameters() that apply to the i-th OLS

784 are present in both the SPS 706 and the VPS 704 (i.e., the DPB syntax structure that applies to

the i-th OLS is one of the DPB syntax structures included in the DPB structures 780). Moreover,

the dpbparameters() that apply to the i-th OLS 784 in the SPS 706 are identical to the

dpbparameters() that apply to the i-th OLS 784 in the VPS 704.

[00141] In contrast to the SPS 706, the PPS 708 contains data that is common to the entire

picture. The PPS 708 is a syntax structure containing syntax elements that apply to zero or more

entire coded pictures. The slice header 712 is a part of a coded slice containing data elements

pertaining to all video data within a tile represented in the slice. The slice header 712 contains

parameters that are specific to each slice in a picture. Hence, there may be one slice header 712 per

slice in the video sequence. The slice header 712 may contain slice type information, picture order

counts (POCs), reference picture lists (RPLs), prediction weights, tile entry points, or deblocking

parameters. A slice header 712 may also be referred to as a tile group header and/or a picture

header (PH).

[00142] In an embodiment, the VPS 704 and/or the SPS 706 contain the following SPS syntax

and semantics to implement one or more of the embodiments disclosed herein.

[00143] The VPS syntax includes the following.

videoparametersetrbsp() { Descriptor

vps videoparametersetid u(4)

vps_maxlayersminus1 u(6)

34

WO 2021/022269 PCT/US2020/054450

vps_maxsublayers-minusI u(3)

if(vpsmax layers-minus1 > 0 && vps_max sublayers-minus > 0)

vpsalllayerssamenumsublayersflag u(1)

if(vpsmax layers-minus1 > 0)

vpsallindependentlayersflag u(1)

vpsnumptls u(8)

for(i = 0; i < vpsnumptls; i++){

if(i > 0)

ptpresent flag[i] u(1)

if(vpsmaxsub_layersminus1 > 0 &&

!vpsalllayerssamenumsublayersflag)

ptlmax temporalid[i] u(3)

}

while(!bytealigned()

vpsptl bytealignmentzero bit /* equal to 0/ u(1)

for(i = 0; i < vpsnumptls; i++)

profile-tier-level(ptpresent flag[i], ptlmax temporalid[i])

for(i = 0; i < TotalNumOlss; i++)

if(NumLayersInOls[i]> 1 && vpsnumptls > 1)

olsptlidx[i] u(8)

if(!vps_allindependentlayersflag)

vpsnumdpbparams ue(v)

if(vpsnumdpbparams > 0){

same-dpbsize_output or nonoutput flag u(1)

if(vpsmax sub_layersminus1 > 0)

vpssublayer dpbparamspresent flag u(1)

}

for(i = 0; i < vpsnumdpbparams; i++){

dpbsizeonlyflag[i] u(1)

35

WO 2021/022269 PCT/US2020/054450

if(vpsmaxsub_layersminus1 > 0 &&

!vpsalllayerssamenumsublayersflag)

dpbmax temporalid[i] u(3)

dpbparameters(dpbsizeonlyflag[i],dpbmax temporalid[i],

vpssublayer dpbparamspresent flag)

}

for(i = 0; i < vpsmax layersminusl && vpsnum dpbparams > 1; i++

if(!vpsindependentlayer flag[i])

layer outputdpbparamsidx[i] ue(v)

if(LayerUsedAsRefLayerFlag[i] &&

samedpbsizeoutputornonoutput flag)

layer nonoutputdpbparamsidx[i] ue(v)

}

general hrdparamspresentflag u(1)

if(general hrdparamspresent flag){

num-units-in-tick u(32)

timescale u(32)

general hrdparameters()

}

vps_extension flag u(1)

if(vps-extension-flag)

while(more rbspdata()

vps-extensiondata flag u(1)

rbsp trailing bits()

}

[00144] The SPS raw byte sequence payload (RBSP) syntax includes the following.

seq_parameter-set-rbsp() { Descriptor

sps_decoding_parameter-set-id u(4)

36

WO 2021/022269 PCT/US2020/054450

sps video_parametersetid u(4)

spsmax sublayers-minus1 u(3)

sps reserved-zero_4bits u(4)

sps_ptl-dpb_presentflag u(1)

if(sps_ptldpb_present flag)

profile-tier-level(1, spsmax sublayersminus1)

gdrenabledflag u(1)

spsseq_parametersetid ue(v)

chroma-formatide ue(v)

log2_max_picordercnt_lsbminus4 ue(v)

pocmsbin rap_picsflag u(1)

if(poc_msbin rap_picsflag > 0)

poc-msb-lenminus1 ue(v)

if(sps-max-sub-layersminus > 0)

spssublayer dpb_paramsflag u(1)

if(sps_ptldpb_present flag)

dpb_parameters(0, spsmax sublayers_minus1,

spssublayer dpb_paramsflag)

long term ref picsflag u(1)

spsscalinglist_enabledflag u(1)

vui_parameters_present flag u(1)

if(vui_parameters_presentflag)

vui_parameters()

sps_extension flag u(1)

if(sps-extension-flag)

while(more rbspdata())

sps-extension_data flag u(1)

37

WO 2021/022269 PCT/US2020/054450

rbsp trailing bits()

}

[00145] The DPB syntax includes the following.

dpb_parameters(dpbSizeOnlyFlag, maxSubLayersMinus1, Descriptor

subLayerlnfoFlag) {

for(i = (subLayerInfoFlag ? 0 . maxSubLayersMinus1);

i <= maxSubLayersMinusl; i++){

maxdec_pic bufferingminus1[i] ue(v)

if(!dpbSizeOnlyFlag) {

max-num-reorder_pics[i] ue(v)

max latencyincrease_plus1[i] ue(v)

}
}

[00146] The HRD parameters syntax includes general HRD parameters syntax, OLS HRD

parameters syntax, and sub-layer HRD parameters syntax.

[00147] The general HRD parameters syntax includes the following.

general hrd_parameters() { Descriptor

general nal hrd_params_present flag u(1)

general_vcl hrd_params_present flag u(1)

if(general-nal-hrd-params_present flag

general_vcl hrd_params_present flag) {

decoding unithrd_params_present flag u(1)

if(decoding unit hrd_params_present flag){

tick-divisorminus2 u(8)

decoding unitcpb_paramsin_pic timingseiflag u(1)

i

bitrate-scale u(4)

38

WO 2021/022269 PCT/US2020/054450

cpbsize-scale u(4)

if(decoding unit hrd_params_present flag)

cpb-size-duscale u(4)

i

if(vps-max-sub-layersminus1 > 0)

sub-layer cpb_params_present flag u(1)

if(TotalNumOlss > 1)

numols hrd_paramsminus1 ue(v)

hrdcpb-cnt-minus1 ue(v)

for(i = 0; i <= num ols hrd_params_minus1; i++){

if(vpsmaxsub_layersminus1 > 0 &&

!vpsalllayerssamenumsublayersflag)

hrdmax temporalid[i] u(3)

ols-hrd_parameters(hrdmax temporalid[i])

i

if(numolshrd_paramsminus1 > 0)

for(i = 1; i < TotalNumOlss; i++)

olshrdidx[i] ue(v)

}

[00148] The OLS HRD parameters syntax includes the following.

39

WO 2021/022269 PCT/US2020/054450

olshrd_parameters(hrdMaxTid){ Descriptor

firstSubLayer = sublayer cpb_params_present flag ? 0: hrdMaxTid

for(i = firstSubLayer; i <= hrdMaxTid; i++){

fixed_pic rategeneral flag[i] u(1)

if(!fixedpic rate_general_flag[i])

fixed_pic ratewithin_cvs_flag[i] u(1)

if(fixed_pic ratewithin_cvs_flag[i])

elementaldurationintcminusI[i] ue(v)

else if(hrd cpbcntminus1 == 0)

low delayhrd-flag[i] u(1)

if(general-nalhrd_params_presentflag)

sub layer hrd_parameters(i)

if(general-vel_hrd_params_presentflag)

sub layer hrd_parameters(i)

}
}

[00149] The sub-layer HRD parameters syntax includes the following.

sublayer hrd_parameters(subLayerld) { Descriptor

for(j = 0; j <= hrdcpb cnt minus; j++){

bitrate-valueminusI[subLayerld][j] ue(v)

cpbsize-valueminus1[subLayerld][j] ue(v)

if(decoding unit hrd_params_present flag){

cpb-size-duvalueminus1[subLayerld][j] ue(v)

bit-rate-duvalue minus[subLayerld][j] ue(v)

i
cbr-flag[subLayerld][j] u(1)

40

WO 2021/022269 PCT/US2020/054450

[00150] The VPS semantics are as follows.

[00151] vps max layersminus1 plus 1 specifies the maximum allowed number of layers in

each CVS referring to the VPS.

[00152] vps maxsublayers minus plus 1 specifies the maximum number of temporal sub

layers that may be present in each CVS referring to the VPS. The value of

vps maxsublayers minus shall be in the range of 0 to 6, inclusive.

[00153] vpsalllayers-samenum sublayers flag equal to 1 specifies that the number of

temporal sub-layers is the same for all the layers in each CVS referring to the VPS.

vpsalllayers-same-num sublayers flag equal to 0 specifies that the layers in each CVS

referring to the VPS may or may not have the same number of temporal sub-layers. When not

present, the value of vps alllayers-samenum-sub layers flag is inferred to be equal to 1.

[00154] vpsallindependent layers flag equal to 1 specifies that all layers in the CVS are

independently coded without using inter-layer prediction. vpsallindependent layers flag equal

to 0 specifies that one or more of the layers in the CVS may use inter-layer prediction. When not

present, the value of vps_all_independent layers flag is inferred to be equal to 1. When

vpsallindependent layers flag is equal to 1, the value of vps independent layer flag[i] is

inferred to be equal to 1. When vpsallindependent layers flag is equal to 0, the value of

vps independent layer flag[0] is inferred to be equal to 1.

[00155] vpsdirect dependencyflag[i][j] equal to 0 specifies that the layer with index j is not

a direct reference layer for the layer with index i. vps_direct dependency_flag [i [j] equal to 1

specifies that the layer with index j is a direct reference layer for the layer with index i. When

vpsdirect dependencyflag[i][j] is not present for i and j in the range of 0 to

vps max layers minus, inclusive, it is inferred to be equal to 0.

[00156] The variable DirectDependentLayerldx[i][j], specifying the j-th direct dependent

layer of the i-th layer, and the variable LayerUsedAsRefLayerFlag[j], specifying whether the

layer with layer index j is used as a reference layer by any other layer, are derived as follows:

for(i = 0; i <= vps max layersminus1; i++)

LayerUsedAsRefLayerFlag[j] = 0

for(i = 1; i < vps max layersminus1; i++)

if(!vpsindependent layer flag[i])

for(j=i-1,k=0;j >= 0;j--)

41

WO 2021/022269 PCT/US2020/054450

if(vps_direct dependencyflag[i][j]){

DirectDependentLayerdx[i]k++]= j

LayerUsedAsRefLayerFlag[j]= 1

}
[00157] The variable GeneralLayerldx[i], specifying the layer index of the layer with

nuhlayer id equal to vps layer id[i], is derived as follows:

for(i = 0; i <= vps max layersminus1; i++)

GeneralLayerdx[vps layer id[i]] = i

[00158] each layer isan olsflag equal to 1 specifies that each output layer set contains only

one layer and each layer itself in the bitstream is an output layer set with the single included layer

being the only output layer. eachlayeris_anols flag equal to 0 specifies that an output layer set

may contain more than one layer. If vpsmax layers_minus1 is equal to 0, the value of

eachlayer-is-an-ols-flag is inferred to be equal to 1. Otherwise, when

vpsallindependent layers flag is equal to 0, the value of each layeris_anols flag is inferred to

be equal to 0.

[00159] ols-modeidc equal to 0 specifies that the total number of OLSs specified by the VPS

is equal to vps max layers-minus1 + 1, the i-th OLS includes the layers with layer indices from 0

to i, inclusive, and for each OLS only the highest layer in the OLS is output. olsmodeidc equal to

1 specifies that the total number of OLSs specified by the VPS is equal to

vps max layers minus + 1, the i-th OLS includes the layers with layer indices from 0 to i,

inclusive, and for each OLS all layers in the OLS are output. olsmode-idc equal to 2 specifies that

the total number of OLSs specified by the VPS is explicitly signaled and for each OLS the highest

layer and an explicitly signaled set of lower layers in the OLS are output. The value of

olsmodeidc shall be in the range of 0 to 2, inclusive. The value 3 of olsmodeidc is reserved for

future use by ITU-T |ISO/IEC. When vpsall independentlayers flag is equal to 1 and

eachlayer-is-an-ols-flag is equal to 0, the value of olsmodeidc is inferred to be equal to 2.

[00160] num output layersetsminus1 plus 1 specifies the total number of OLSs specified by

the VPS when olsmodeidc is equal to 2.

[00161] The variable TotalNumOlss, specifying the total number of OLSs specified by the VPS,

is derived as follows:

42

WO 2021/022269 PCT/US2020/054450

if(vps max layers minus = 0)

TotalNumOlss = 1

else if(each layerisanols-flag olsmodeide == 0 olsmodeide == 1)

TotalNumOlss = vps max layers minus + 1

else if(ols mode ide = = 2)

TotalNumOlss = num output layer setsminus1 + 1

[00162] layerincludedflag[i][j]specifies whether the j-th layer (i.e., the layer with

nuhlayer id equal to vps layer id[j]) is included in the i-th OLS when olsmodeidc is equal to

2. layerincluded flag[i][j] equal to 1 specifies that the j-th layer is included in the i-th OLS.

layer includedflag[i][j] equal to 0 specifies the j-th layer is not included in the i-th OLS.

[00163] The variable NumLayersInOls[i], specifying the number of layers in the i-th OLS, and

the variable LayerldInOls[i][j], specifying the nuhlayer id value of the j-th layer in the i-th

OLS, are derived as follows:

NumLayersInOls[0]= 1

LayerIdInOls[0][0]= vps layer id[0]

for(i = 1, i < TotalNumOlss; i++){

if(each layer isan olsflag){

NumLayersInOls[i]= 1

LayerldInOls[i][0]= vps layer id[i]

}else if(ols_mode-idc== 0 || olsmode-idc== 1){

NumLayersInOls[i]= i + 1

for(j = 0; j < NumLayersInOls[i]; j++)
LayerldInOls[i][j]= vps layer id[j]

}else if(ols_mode-idc = 2) {

for(k = 0, j = 0; k <= vps max layersminusI; k++)

if(layer-includedflag[i][k])

LayerldInOls[i][j++]= vps layer id[k]

NumLayersInOls[i]=j

}

}

43

WO 2021/022269 PCT/US2020/054450

[00164] The variable OlsLayeIdx[i][j], specifying the OLS layer index of the layer with

nuhlayer id equal to LayerldInOls[i][j], is derived as follows:

for(i = 0, i < TotalNumOlss; i++)

for j = 0; j < NumLayersInOls[i]; j++)
OlsLayeIdx[i][LayerldInOls[i][j]]=j

[00165] The lowest layer in each OLS shall be an independent layer. In other words, for each i

in the range of 0 to TotalNumOlss - 1, inclusive, the value of

vps independent layer flag[GeneralLayerldx[LayerIdInOls[i][0]]] shall be equal to 1.

[00166] Each layer shall be included in at least one OLS specified by the VPS. In other words,

for each layer with a particular value of nuh layerid nuhLayerd, equal to one of vps layer id[k]

for k in the range of 0 to vps max layers minus, inclusive, there shall be at least one pair of

values of i and j, where i is in the range of 0 to TotalNumOlss - 1, inclusive, and j is in the range of

NumLayersInOls[i]- 1, inclusive, such that the value of LayerldInOls[i][j] is equal to

nuhLayerld.

[00167] Any layer in an OLS shall be an output layer of the OLS or a (direct or indirect)

reference layer of an output layer of the OLS.

[00168] vps output layer flag[i][j] specifies whether the j-th layer in the i-th OLS is output

when olsmodeidc is equal to 2. vps output layer flag[i] equal to 1 specifies that the j-th layer

in the i-th OLS is output. vps output layer flag[i] equal to 0 specifies that the j-th layer in the i-th

OLS is not output. When vpsallindependent layers flag is equal to 1 and

eachlayer-is-an-ols-flag is equal to 0, the value of vps output layer flag[i] is inferred to be

equal to 1.

[00169] The variable OutputLayerFlag[i][j], for which the value 1 specifies that the j-th layer

in the i-th OLS is output and the value 0 specifies that the j-th layer in the i-th OLS is not output, is

derived as follows:

for(i = 0, i < TotalNumOlss; i++){

OutputLayerFlag[i][NumLayersInOls[i]- 1]= 1

for(j = 0; j < NumLayersInOls[i]- 1; j++)
if(ols mode idc[i] = = 0)

OutputLayerFlag[i][j]= 0

else if(ols mode idc[i] = 1)

44

WO 2021/022269 PCT/US2020/054450

OutputLayerFlag[i][j]= 1

else if(ols mode idc[i] = 2)

OutputLayerFlag[i][j= vps output layer flag[i][j]

[00170] NOTE - The 0-th OLS contains only the lowest layer (i.e., the layer with nuh layer id

equal to vps layer id[0]) and for the 0-th OLS the only included layer is output.

[00171] vps num_ptls specifies the number of profile tier level() syntax structures in the VPS.

[00172] ptpresent flag[i] equal to 1 specifies that profile, tier, and general constraints

information are present in the i-th profiletierlevel() syntax structure in the VPS.

ptjpresent flag[i] equal to 0 specifies that profile, tier, and general constraints information are not

present in the i-th profiletierlevel() syntax structure in the VPS. The value of

ptjpresent flag[0] is inferred to be equal to 0. When ptpresent flag[i] is equal to 0, the profile,

tier, and general constraints information for the i-th profiletierlevel() syntax structure in the VPS

are inferred to be the same as that for the (i - 1)-th profiletierlevel() syntax structure in the

VPS.

[00173] ptlmax temporalid[i] specifies the Temporalld of the highest sub-layer

representation for which the level information is present in the i-th profiletierlevel() syntax

structure in the VPS. The value of ptl max temporal id[i] shall be in the range of 0 to

vps maxsublayers minus, inclusive. When vps max sublayers_minus is equal to 0, the

value of ptl max temporalid[i] is inferred to be equal to 0. When vps-max-sub-layers_minus1

is greater than 0 and vps all_layers-same-num_sublayers flag is equal to 1, the value of

ptlmax temporalid[i] is inferred to be equal to vpsmaxsublayers minus.

[00174] vps_ptl byte_alignment-zerobit shall be equal to 0.

[00175] ols_ptl idx[i] specifies the index, to the list of profile-tier-level() syntax structures in

the VPS, of the profiletier level() syntax structure that applies to the i-th OLS. When present, the

value of ols-ptl idx[i] shall be in the range of 0 to vps num_ptls - 1, inclusive.

[00176] When NumLayersInOls[i] is equal to 1, the profile tier level() syntax structure that

applies to the i-th OLS is present in the SPS referred to by the layer in the i-th OLS.

[00177] vps num dpb_params specifies the number of dpb_parameters() syntax strutcures in

the VPS. The value of vps num dpb_params shall be in the range of 0 to 16, inclusive. When not

present, the value of vps num dpb_params is inferred to be equal to 0.

45

WO 2021/022269 PCT/US2020/054450

[00178] samedpbsizeoutput or nonoutput flag equal to 1 specifies that there is no

layer nonoutput dpbparams idx[i] syntax element present in the VPS.

same_dpbsizeoutput or nonoutput flag equal to 0 specifies that there may or may not be

layer nonoutput dpbparams idx[i] syntax elements present in the VPS.

[00179] vpssub layer dpbparamspresent flag is used to control the presence of

maxdecpic bufferingminus1[], maxnumreorderpics[], and maxlatencyincrease-plus1[]

syntax elements in the dpbparameters() syntax structures in the VPS. When not present,

vpssubdpbparams_infopresent flag is inferred to be equal to 0.

[00180] dpbsizeonlyflag[i] equal to 1 specifies that the maxnum-reorder-pics[] and

maxlatency_increaseplus1[] syntax elements are not present in the i-th dpbparameters()

syntax structures in the VPS. dpbsize onlyflag[i] equal to 1 specifies that the

maxnumreorderpics[]and maxlatencyincreaseplus1[] syntax elements may be present in

the i-th dpbparameters() syntax structures in the VPS.

[00181] dpb max temporal id[i] specifies the Temporalld of the highest sub-layer

representation for which the DPB parameters may be present in the i-th dpbparameters() syntax

strutcure in the VPS. The value of dpb max temporal id[i] shall be in the range of 0 to

vps maxsublayers minus, inclusive. When vps max sublayersminus1 is equal to 0, the

value of dpb max temporalid[i] is inferred to be equal to 0. When vps-max-sub-layersminus1

is greater than 0 and vps alllayerssamenum_sublayers flag is equal to 1, the value of

dpb max temporal id[i] is inferred to be equal to vps maxsublayers minus.

[00182] layer output dpbparams idx[i] specifies the index, to the list of dpbparameters()

syntax structures in the VPS, of the dpbparameters() syntax structure that applies to the i-th layer

when it is an output layer in an OLS. When present, the value of layer output dpbparamsidx[i]

shall be in the range of 0 to vps num dpbparams - 1, inclusive.

[00183] If vps independent layer flag[i] is equal to 1, the dpbparameters() syntax structure

that applies to the i-th layer when it is an output layer is the dpbparameters() syntax structure

present in the SPS referred to by the layer.

[00184] Otherwise (vps independent layer flag[i] is equal to 0), the following applies:

[00185] When vps num dpbparams is equal to 1, the value of

layer output dpbparams idx[i] is inferred to be equal to 0.

46

WO 2021/022269 PCT/US2020/054450

[00186] It is a requirement of bitstream conformance that the value of

layer output dpbparams idx[i] shall be such that

dpbsizeonlyflag[layer output dpbparamsidx[i]]is equal to 0.

[00187] layer nonoutput dpbparams idx[i] specifies the index, to the list of

dpbparameters() syntax structures in the VPS, of the dpbparameters() syntax structure that

applies to the i-th layer when it is a non-output layer in an OLS. When present, the value of

layer nonoutput dpbparams idx[i] shall be in the range of 0 to vps num dpbparams - 1,

inclusive.

[00188] If samedpbsizeoutput-or-nonoutput flag is equal to 1, the following applies:

[00189] If vps independent layer flag[i] is equal to 1, the dpbparameters() syntax structure

that applies to the i-th layer when it is a non-output layer is the dpbparameters() syntax structure

present in the SPS referred to by the layer.

[00190] Otherwise (vps independent layer flag[i] is equal to 0), the value of

layer nonoutput dpbparams idx[i] is inferred to be equal to layer output dpbparams idx[i].

[00191] Otherwise (samedpbsize outputornonoutput flag is equal to 0), when

vps num dpbparams is equal to 1, the value of layer output dpbparamsidx[i] is inferred to

be equal to 0.

[00192] vpsextensionflag equal to 0 specifies that no vps extensiondataflag syntax

elements are present in the VPS RBSP syntax structure. vps-extension-flag equal to 1 specifies

that there are vps_extensiondataflag syntax elements present in the VPS RBSP syntax structure.

[00193] vpsextensiondata flag may have any value. Its presence and value do not affect

decoder conformance to profiles specified in this version of this Specification. Decoders

conforming to this version of this Specification shall ignore all vpsextension-data-flag syntax

elements.

[00194] The SPS RBSP semantics are as follows.

[00195] An SPS RBSP shall be available to the decoding process prior to it being referenced,

included in at least one access unit with Temporalld equal to 0 or provided through external means,

and the SPS NAL unit containing the SPS RBSP shall have nuh layer id equal to the lowest

nuhlayer id value of PPS NAL units that refer to it.

[00196] All SPS NAL units with a particular value of spsseqparameterset-id in a CVS shall

have the same content.

47

WO 2021/022269 PCT/US2020/054450

[00197] spsdecodingparametersetid, when greater than 0, specifies the value of

dps decodingparametersetid for the DPS referred to by the SPS. When

spsdecodingparametersetid is equal to 0, the SPS does not refer to a DPS and no DPS is

referred to when decoding each CLVS referring to the SPS. The value of

spsdecodingparametersetid shall be the same in all SPSs that are referred to by coded pictures

in a bitstream.

[00198] sps videoparametersetid, when greater than 0, specifies the value of

vps videoparametersetid for the VPS referred to by the SPS. When

sps videoparametersetid is equal to 0, the SPS does not refer to a VPS and no VPS is referred

to when decoding each CLVS referring to the SPS, and the value of

GeneralLayerdx[nuh layer id] is inferred to be equal to 0, and the value of

vps independent layer flag[GeneralLayerdx[nuh layer id]] is inferred to be equal to 1.

[00199] When vps independent layer flag[GeneralLayerdx[nuh layer id]] is equal to 1,

the SPS referred to by a CLVS with a particluar nuh layer-id value nuhLayerd shall have

nuhlayer id equal to nuhLayerld.

[00200] sps maxsublayers minus plus 1 specifies the maximum number of temporal sub

layers that may be present in each CLVS referring to the SPS. The value of

sps maxsublayers minus shall be in the range of 0 to vps-max-sub-layersminus1, inclusive.

[00201] sps reservedzero_4bits shall be equal to 0 in bitstreams conforming to this version of

this Specification. Other values for sps-reservedzero_4bits are reserved for future use by ITU-T

ISO/IEC.

[00202] spsptldpbpresent flag equal to 1 specifies that a profiletierlevel() syntax

structure and a dpbparameters() syntax structure are present in the SPS.

spsptldpb_present flag equal to 0 specifies that no profiletierlevel() syntax structure and no

dpbparameters() syntax structure are present in the SPS. The value of spsptldpbpresentflag

shall be equal to vps independentlayer flag[nuh layer id].

[00203] If vps independent layer flag[GeneralLayerldx[nuh layerid]]is equal equal to 1,

the variable MaxDecPicBuffMinusl is set equal to

maxdecpic bufferingminus1[spsmaxsub-layers minus] in the dpb-parameters() syntax

structure in the SPS. Otherwise, MaxDecPicBuffMinusl is set equal to

maxdecpic bufferingminus1[spsmaxsub-layers minus] in the

48

WO 2021/022269 PCT/US2020/054450

layer nonoutput dpbparams idx[GeneralLayerldx[nuh layer id]]-th dpbparameters() syntax

structure in the VPS.

[00204] gdr enabledflag equal to 1 specifies that gradual decoding refresh (GDR) pictures

may be present in CLVSs referring to the SPS. gdr enabled flag equal to 0 specifies that GDR

pictures are not present in CLVSs referring to the SPS.

[00205] spssub layer dpbparams flag is used to control the presence of

maxdecpic bufferingminus1[i], maxnumreorderpics[i], and

maxlatencyincreaseplus1[i] syntax elements in the dpbparameters() syntax strucure in the

SPS. When not present, spssubdpbparamsinfopresent flag is inferred to be equal to 0.

[00206] long term ref picsflag equal to 0 specifies that no LTRP is used for inter prediction

of any coded picture in the CLVS. long term ref picsflag equal to 1 specifies that LTRPs may

be used for inter prediction of one or more coded pictures in the CLVS.

[00207] The general profile, tier, and level semantics are as follows.

[00208] A profiletierlevel() syntax structure provides level information and, optionally,

profile, tier, sub-profile, and general constraints information (denoted as PT information).

[00209] When the profiletierlevel() syntax structure is included in a DPS, the OlsInScope is

the OLS that includes all layers in the entire bitstream that refers to the DPS. When the

profiletierlevel() syntax structure is included in a VPS, the OlsInScope is one or more OLSs

specified by the VPS. When the profiletierlevel() syntax structure is included in an SPS, the

OlsInScope is the OLS that includes only the layer that is the lowest layer among the layers that

refer to the SPS, which shall be an independent layer.

[00210] generalprofileidc indicates a profile to which OlsInScope conforms as specified in

Annex A of the VVC standard. Bitstreams shall not contain values of general-profileidc other

than those specified in Annex A. Other values of generalprofileidc are reserved for future use

by ITU-T | ISO/JEC.

[00211] generaltierflag specifies the tier context for the interpretation of general-levelidc as

specified in Annex A.

[00212] num subprofiles specifies the number of the generalsub-profileidc[i] syntax

elements.

49

WO 2021/022269 PCT/US2020/054450

[00213] generalsub_profileidc[i] indicates the i-th interoperability metadata registered as

specified by Recommendation ITU-T T.35, the contents of which are not specified in the VVC

standard.

[00214] generallevel_idc indicates a level to which OlsInScope conforms as specified in

Annex A. Bitstreams shall not contain values of generallevelidc other than those specified in

Annex A. Other values of generallevelidc are reserved for future use by ITU-T | ISO/IEC.

[00215] NOTE 1 - A greater value of generallevelidc indicates a higher level. The maximum

level signaled in the DPS for OlsInScope may be higher than the level signaled in the SPS for a

CVS contained within OlsInScope.

[00216] NOTE 2 - When OlsInScope conforms to multiple profiles, general-profile-idc should

indicate the profile that provides the preferred decoded result or the preferred bitstream

identification, as determined by the encoder (in a manner not specified in this Specification).

[00217] NOTE 3 - When the profiletierlevel() syntax structure included in a DPS and CVSs

of OlsInScope conform to different profiles, generalprofile_idc and levelidc should indicate the

profile and level for a decoder that is capable of decoding OlsInScope.

[00218] sub layer levelpresent flag[i] equal to 1 specifies that level information is present in

the profiletierlevel() syntax structure for the sub-layer representation with Temporalld equal to

i. sublayer levelpresent flag[i] equal to 0 specifies that level information is not present in the

profiletierlevel() syntax structure for the sub-layer representation with Temporalld equal to i.

[00219] ptlalignment-zerobits shall be equal to 0.

[00220] The semantics of the syntax element sub layer levelidc[i] is, apart from the

specification of the inference of not present values, the same as the syntax element

generallevel_idc, but applies to the sub-layer representation with Temporalld equal to i.

[00221] The DPB semantics are as follows.

[00222] The dpbparameters(maxSubLayersMinus1, subLayerInfoFlag) syntax structure

provides information of DPB size, maximum picture reorder number, and maximum latency for

each CLVS of the CVS.

[00223] When a dpbparameters() syntax structure is included in a VPS, the OLSs to which the

dpbparameters() syntax structure applies are specified by the VPS. When a dpb_parameters()

syntax structure is included in an SPS, it applies to the OLS that includes only the layer that is the

lowest layer among the layers that refer to the SPS, which shall be an independent layer.

50

WO 2021/022269 PCT/US2020/054450

[00224] max decpic bufferingminus1[i] plus 1 specifies, for each CLVS of the CVS, the

maximum required size of the decoded picture buffer in units of picture storage buffers when Htid

is equal to i. The value of maxdecpic buffering minus[i] shall be in the range of 0 to

MaxDpbSize - 1, inclusive, where MaxDpbSize is as specified somewhere else. When i is greater

than 0, max decpic bufferingminus1[i] shall be greater than or equal to

maxdecpic bufferingminus1[i - 1]. When maxdecpic bufferingminus1[i] is not present

for i in the range of 0 to maxSubLayersMinusl - 1, inclusive, due to subLayernfoFlag being

equal to 0, it is inferred to be equal to maxdecpic bufferingminus1[maxSubLayersMinus1].

[00225] max-num-reorderpics[i] specifies, for each CLVS of the CVS, the maximum

allowed number of pictures of the CLVS that can precede any picture in the CLVS in decoding

order and follow that picture in output order when Htid is equal to i. The value of

maxnumreorderpics[i] shall be in the range of 0 to maxdec-pic buffering_minus1[i],

inclusive. When i is greater than 0, max num reorder_pics[i] shall be greater than or equal to

maxnumreorderpics[i - 1]. When maxnumreorderpics[i] is not present for i in the range

of 0 to maxSubLayersMinusl - 1, inclusive, due to subLayernfoFlag being equal to 0, it is

inferred to be equal to maxnumreorderpics[maxSubLayersMinus1].

[00226] max latencyincreaseplus[i] not equal to 0 is used to compute the value of

MaxLatencyPictures[i], which specifies, for each CLVS of the CVS, the maximum number of

pictures in the CLVS that can precede any picture in the CLVS in output order and follow that

picture in decoding order when Htid is equal to i.

[00227] When maxlatencyincreaseplus1[i] is not equal to 0, the value of

MaxLatencyPictures[i] is specified as follows:

MaxLatencyPictures[i] = maxnumreorderpics[i]+ max-latency_increase_

plus[i]-1

[00228] When maxlatencyincreaseplusl[i] is equal to 0, no corresponding limit is

expressed.

[00229] The value of maxlatencyincreaseplus1[i] shall be in the range of 0 to 232 - 2,

inclusive. When maxlatency_increase_plus[ii] is not present for i in the range of 0 to

maxSubLayersMinus1 - 1, inclusive, due to subLayerInfoFlag being equal to 0, it is inferred to be

equal to maxlatencyincreaseplus1[maxSubLayersMinus1].

[00230] The HRD parameters semantics include general HRD parameters semantics.

51

WO 2021/022269 PCT/US2020/054450

[00231] The general HRD parameters semantics are as follows.

[00232] The generalhrdparameters() syntax structure provides HRD parameters used in the

HRD operations.

[00233] num-ols-hrdparams_minus1 plus 1 specifies the number of olshrd-parameters()

syntax structures present in the general hrdparameters() syntax structure. The value of

numols-hrdparams_minus1 shall be in the range of 0 to 63, inclusive. When TotalNumOlss is

greater than 1, the value of numolshrdparamsminus1 is inferred to be equal to 0.

[00234] hrdcpbcnt minus plus 1 specifies the number of alternative CPB specifications in

the bitstream of the CVS. The value of hrdcpbcnt minus shall be in the range of 0 to 31,

inclusive.

[00235] hrd-max-temporalid[i] specifies the Temporalld of the highest sub-layer

representation for which the HRD parameters are contained in the i-th

layer levelhrdparameters() syntax structure. The value of hrdmax-temporal id[i] shall be in

the range of 0 to vps-max-sub-layersminus1, inclusive. When vps-max-sub-layers_minus1 is

equal to 0, the value of hrdmaxtemporalid[i] is inferred to be equal to 0.

[00236] ols hrd idx[i] specifies the index of the olshrdparameters() syntax structure that

applies to the i-th OLS. The value of ols-hrd idx[[i] shall be in the range of 0 to

numols-hrdparams_minus1, inclusive. When not present, the value of olshrdidx[[i] is

inferred to be equal to 0.

[00237] The reference picture list structure semantics are as follows.

[00238] The ref piclist_struct(listIdx, rplsIdx) syntax structure may be present in an SPS or

in a slice header. Depending on whether the syntax structure is included in a slice header or an

SPS, the following applies:

[00239] - If present in a slice header, the ref pic liststruct(listIdx, rplsIdx) syntax structure

specifies reference picture list listIdx of the current picture (the picture containing the slice).

[00240] - Otherwise (present in an SPS), the ref pic list struct(listIdx, rplsIdx) syntax

structure specifies a candidate for reference picture list listIdx, and the term "the current picture" in

the semantics specified in the remainder of this clause refers to each picture that 1) has one or more

slices containing ref piclist idx[listIdx] equal to an index into the list of the

ref pic_list_struct(listIdx, rplsIdx) syntax structures included in the SPS, and 2) is in a CVS that

refers to the SPS.

52

WO 2021/022269 PCT/US2020/054450

[00241] num-refentries[listIdx][rplsIdx] specifies the number of entries in the

ref pic_list_struct(listIdx, rplsIdx) syntax structure. The value of

numref entries[listIdx][rplsIdx] shall be in the range of 0 to MaxDecPicBuffMinusl + 14,

inclusive.

[00242] The VPS 704, the SPS 706, and the PPS 708 are contained in different types of

Network Abstraction Layer (NAL) units. A NAL unit is a syntax structure containing an

indication of the type of data to follow (e.g., coded video data). NAL units are classified into video

coding layer (VCL) and non-VCL NAL units. The VCL NAL units contain the data that

represents the values of the samples in the video pictures, and the non-VCL NAL units contain any

associated additional information such as parameter sets (important data that can apply to a number

of VCL NAL units) and supplemental enhancement information (timing information and other

supplemental data that may enhance usability of the decoded video signal but are not necessary for

decoding the values of the samples in the video pictures).

[00243] In an embodiment, the VPS 704 is contained in a non-VCL NAL unit designated as a

VPS NAL unit. Therefore, the VPS NAL unit has a VPS NUT. In an embodiment, the SPS 706 is

a non-VCL NAL unit designated as a SPS NAL unit. Therefore, the SPS NAL unit has an SPS

NUT. In an embodiment, the PPS 708 is contained in a non-VCL NAL unit designated as a PPS

NAL unit. Therefore, the PPS NAL unit has a PPS NUT.

[00244] The slice header 712 is a syntax structure containing syntax elements that apply to all

slices of a coded picture (e.g., picture 725). In an embodiment, the slice header 712 is in a VCL

NAL.

[00245] The image data 720 contains video data encoded according to inter-prediction, intra

prediction, or inter-layer prediction, as well as corresponding transformed and quantized residual

data. As shown in FIG. 7, the image data 720 includes one or more OLSs 721. The one or more

OLSs 721 are similar to OLS 1, OLS 2, and OLS 3 of FIG. 6. Each OLS 721 includes one or more

layers 723. The layers 723 are similar to the layers 631-635 in FIG. 6. Each of the layers 723

includes one or more pictures 725. The pictures 725 are similar to the pictures 615-618, 611-614,

641-644, 651-654, and 661-664 in FIG. 6.

[00246] Each picture 725 is an array of luma samples in monochrome format or an array of

luma samples and two corresponding arrays of chroma samples in 4:2:0, 4:2:2, and 4:4:4 colour

format. The pictures 725 may be either a frame or a field. However, in one CVS (e.g., CVS 690),

53

WO 2021/022269 PCT/US2020/054450

either all pictures 725 are frames or all pictures 725 are fields. The CVS 690 is a coded video

sequence for every coded layer video sequence (CLVS) in the video bitstream 600. Notably, the

CVS 690 and the CLVS are the same when the video bitstream 600 includes a single layer. The

CVS 690 and the CLVS are only different when the video bitstream 600 includes multiple layers

(e.g., as shown in FIGS. 5 and 6).

[00247] Each picture 725 contains one or more slices 727. A slice 727 is an integer number of

complete tiles or an integer number of consecutive complete CTU rows within a tile of a picture

(e.g., picture 725). Each slice 727 is exclusively contained in a single NAL unit (e.g., a VCL NAL

unit). A tile (not shown) is a rectangular region of CTUs within a particular tile column and a

particular tile row in a picture (e.g., picture 725). A CTU (not shown) is a CTB of luma samples,

two corresponding CTBs of chroma samples of a picture that has three sample arrays, or a CTB of

samples of a monochrome picture or a picture that is coded using three separate color planes and

syntax structures used to code the samples. A CTB (not shown) is an NxN block of samples for

some value of N such that the division of a component into CTBs is a partitioning. A block (not

shown) is an MxN (M-column by N-row) array of samples (e.g., pixels), or an MxN array of

transform coefficients.

[00248] The pictures 725 and their slices 727 comprise data associated with the images or video

being encoded or decoded. Thus, the pictures 725 and their slices 727 may be simply referred to as

the payload or data being carried in the bitstream 700.

[00249] Those skilled in the art will appreciate that the bitstream 700 may contain other

parameters and information in practical applications.

[00250] A sub-bitstream 701 can be extracted from the bitstream 700 according to a sub

bitstream extraction process 703. A sub-bitstream extraction process 703 is a specified mechanism

that removes NAL units from a bitstream 700 that are not a part of a target set resulting in an

output sub-bitstream 701 that includes the NAL units that are included in the target set. The sub

bitstream extraction process 703 may be performed by an encoder or an associated slicer

configured to dynamically alter a bitstream 700 based on user behavior/requests.

[00251] Because the SPS 706 contains the dpbparameters() for the i-th OLS 784 when the i-th

OLS contains only a single layer (e.g., OLS 3 in FIG. 6), the VPS 704 can be removed during the

extraction process 703. That is, the sub-bitstream 701 does not need to include the VPS 704 in the

sub-bitstream 701 because the identical dpbparameters() for the i-th OLS 784 is also present in

54

WO 2021/022269 PCT/US2020/054450

the SPS 706. Therefore, the decoder may obtain the dpbparameters() for the i-th OLS 784 from

the SPS 706 when the i-th OLS contains only a single layer.

[00252] FIG. 8 is an embodiment of a method 800 of decoding implemented by a video

decoder (e.g., video decoder 400). The method 800 may be performed after a bitstream has been

directly or indirectly received from a video encoder (e.g., video encoder 300). The method 800

improves the decoding process by ensuring the decoded picture buffer (DPB) parameters are

included in a sequence parameter set (SPS) when an output layer set (OLS) contains only a single

layer. Because the SPS includes the DPB parameters for the OLS with the single layer, a video

parameter set (VPS) may be removed from the bitstream, which reduces redundancy and increases

coding efficiency. Thus, the coder / decoder (a.k.a., "codec") in video coding is improved relative

to current codecs. As a practical matter, the improved video coding process offers the user a better

user experience when videos are sent, received, and/or viewed.

[00253] In block 802, the video decoder receives a sub-bitstream (e.g., sub-bitstream 701)

having a sequence parameter set (e.g., SPS 706) with a decoded picture buffer (DPB) syntax

structure (e.g., dpbparameters() for i-th OLS 784) for an output layer set (OLS) with only one

layer (e.g., OLS 3).

[00254] In an embodiment, the DPB syntax structure is designated dpbparameters(). In an

embodiment, the only one layer is the i-th layer, and wherein the OLS is the i-th OLS. In an

embodiment, the DPB syntax structure is present in an i-th profile tier level() syntax structure in

the SPS. In an embodiment, the sub-bitstream does not include a video parameter set (VPS 704).

That is, the VPS has been removed as part of the extraction process 703.

[00255] In block 804, the video decoder obtains the DPB syntax structure for the OLS with

the one layer from the SPS. In an embodiment, the SPS is referred to by the only one layer in the

OLS.

[00256] In block 806, the video decoder decodes a picture (e.g., picture 725) from the only one

layer using the DPB syntax structure to obtain a decoded picture. In an embodiment, the

decoded picture is stored in a decoded picture buffer (DPB) until or prior to being displayed.

[00257] Once the picture has been decoded, the picture may be used to generate or produce an

image or video sequence for display to a user on the display or screen of an electronic device

(e.g., a smart phone, tablet, laptop, personal computer, etc.).

55

WO 2021/022269 PCT/US2020/054450

[00258] FIG. 9 is an embodiment of a method 900 of encoding a video bitstream implemented

by a video encoder (e.g., video encoder 300). The method 900 may be performed when a picture

(e.g., from a video) is to be encoded into a video bitstream and then transmitted toward a video

decoder (e.g., video decoder 400). The method 900 improves the encoding process by ensuring the

decoded picture buffer (DPB) parameters are included in a sequence parameter set (SPS) when an

output layer set (OLS) contains only a single layer. Because the SPS includes the DPB parameters

for the OLS with the single layer, a video parameter set (VPS) may be removed from the bitstream,

which reduces redundancy and increases coding efficiency. Thus, the coder / decoder (a.k.a.,

"codec") in video coding is improved relative to current codecs. As a practical matter, the

improved video coding process offers the user a better user experience when videos are sent,

received, and/or viewed.

[00259] In block 902, the video encoder generates a video parameter set (e.g., VPS 704) and a

sequence parameter set (e.g., SPS 706). The VPS includes a list of decoded picture buffer (DPB)

syntax structures for all output layer sets (e.g., PTL syntax structures 780). The SPS includes the

DPB syntax structure for each OLS having only one layer (e.g., dpbparameters() for i-th OLS

784). For example, the SPS includes the DPB syntax structure for OLS 3 in FIG. 6, which is

designated dpbparameters() for OLS3 in FIG. 7. The SPS does not include the DPB syntax

structure for any OLS having more than one layer. For example, the SPS does not include the

DPB syntax structure for OLS 1 and OLS 2 in FIG. 6, which are designated dpb_parameters()

for OLS2 and dpbparameters() for OLS3 in FIG. 7.

[00260] In an embodiment, the VPS includes an index to the list of PTL syntax structures, and

wherein the index is designated vps olsdpbparamsidx[i]. In an embodiment, a value of

vps olsdpbparamsidx[i] is in a range of zero to a total number of the DPB syntax structures in

the VPS. In an embodiment, the VPS includes vps num dpbparams minus, and wherein

vps num dpbparams minus plus 1 specifies the total number of the DPB syntax structures.

[00261] In block 904, the video encoder encodes the VPS and the SPS into a video bitstream.

In block 906, the video encoder stores the video bitstream for communication toward a video

decoder. In an embodiment, the method 900 further includes extracting a sub-bitstream (e.g.,

sub-bitstream 701) from the bitstream (e.g., bitstream 700). As described above, the extraction

process 703 retains the SPS but removes the VPS. That is, the sub-bitstream includes the SPS

from the bitstream but does not include the VPS from the bitstream.

56

WO 2021/022269 PCT/US2020/054450

[00262] Like the video bitstream, the sub-bitstream may be stored in memory for

communication toward a video decoder. In an embodiment, the video bitstream and/or the sub

bitstream is transmitted toward the video decoder. Once received by the video decoder, the

encoded video bitstream and/or the encoded sub-bitstream may be decoded (e.g., as described

above) to generate or produce an image or video sequence for display to a user on the display or

screen of an electronic device (e.g., a smart phone, tablet, laptop, personal computer, etc.).

[00263] Additional and/or supplemental details are provided below.

[00264] The general decoding process is as follows.

[00265] Input to this process is a bitstream BitstreamToDecode. Output of this process is a list

of decoded pictures.

[00266] The decoding process is specified such that all decoders that conform to a specified

profile and level will produce numerically identical cropped decoded output pictures when

invoking the decoding process associated with that profile for a bitstream conforming to that

profile and level. Any decoding process that produces identical cropped decoded output pictures to

those produced by the process described herein (with the correct output order or output timing, as

specified) conforms to the decoding process requirements of the VVC standard.

[00267] For each IRAP AU in the bitstream, the following applies.

[00268] - If the AU is the first AU in the bitstream in decoding order, each picture is

an instantaneous decoding refresh (IDR) picture, or each picture is the first picture of the layer that

follows an end of sequence NAL unit in decoding order, the variable NoIncorrectPicOutputFlag is

set equal to 1.

[00269] - Otherwise, if some external means not specified in this Specification is available to

set the variable HandleCraAsCvsStartFlag to a value for the AU, HandleCraAsCvsStartFlag is set

equal to the value provided by the external means and NoIncorrectPicOutputFlag is set equal to

HandleCraAsCvsStartFlag.

[00270] - Otherwise, HandleCraAsCvsStartFlag and NoIncorrectPicOutputFlag are both set

equal to 0.

[00271] For each GDR AU in the bitstream, the following applies.

[00272] - If the AU is the first AU in the bitstream in decoding order or each picture is the

first picture of the layer that follows an end of sequence NAL unit in decoding order, the variable

NoIncorrectPicOutputFlag is set equal to 1.

57

WO 2021/022269 PCT/US2020/054450

[00273] - Otherwise, if some external means not specified in this Specification is available to

set the variable HandleGdrAsCvsStartFlag to a value for the AU, HandleGdrAsCvsStartFlag is set

equal to the value provided by the external means and NoIncorrectPicOutputFlag is set equal to

HandleGdrAsCvsStartFlag.

[00274] - Otherwise, HandleGdrAsCvsStartFlag and NoIncorrectPicOutputFlag are both set

equal to 0.

[00275] NOTE - The above operations, for both IRAP pictures and GDR pictures, are needed

for identification of the CVSs in the bitstream.

[00276] Clause 8.1.2 is repeatedly invoked for each coded picture in BitstreamToDecode in

decoding order.

[00277] The decoding process for reference picture lists construction is as follows.

[00278] This process is invoked at the beginning of the decoding process for each slice of a

non-IDR picture.

[00279] Reference pictures are addressed through reference indices. A reference index is an

index into a reference picture list. When decoding an I slice, no reference picture list is used in

decoding of the slice data. When decoding a P slice, only reference picture list 0 (i.e.,

RefPicList[0]), is used in decoding of the slice data. When decoding a B slice, both reference

picture list 0 and reference picture list 1 (i.e., RefPicList[1]) are used in decoding of the slice data.

[00280] It is a requirement of bitstream conformance that the following constraints apply.

[00281] - For each i equal to 0 or 1, numrefentries[i][Rplsldx[i]]shall not be less than

NumRefldxActive[i].

[00282] - The picture referred to by each active entry in RefPicList[0] or RefPicList[1]

shall be present in the DPB and shall have Temporalld less than or equal to that of the current

picture.

[00283] - The picture referred to by each entry in RefPicList[0] or RefPicList[1] shall not

be the current picture and shall have nonreferencepicture flag equal to 0.

[00284] - A short-term reference picture (STRP) entry in RefPicList[0] or RefPicList[1] of

a slice of a picture and an LTRP entry in RefPicList[0] or RefPicList[1] of the same slice or a

different slice of the same picture shall not refer to the same picture.

58

WO 2021/022269 PCT/US2020/054450

[00285] - There shall be no LTRP entry in RefPicList[0] or RefPicList[1] for which the

difference between the PicOrderCntVal of the current picture and the PicOrderCntVal of the

picture referred to by the entry is greater than or equal to 224.

[00286] - Let setOfRefPics be the set of unique pictures referred to by all entries in

RefPicList[0] that have the same nuh layerid as the current picture and all entries in

RefPicList[1] that have the same nuh layer id as the current picture. The number of pictures in

setOfRefPics shall be less than or equal to MaxDecPicBuffMinusl and setOfRefPics shall be the

same for all slices of a picture.

[00287] - When the current picture is a Step-wise Temporal Sub-layer Access (STSA)

picture, there shall be no active entry in RefPicList[0] or RefPicList[1] that has Temporalld

equal to that of the current picture.

[00288] When the current picture is a picture that follows, in decoding order, an STSA picture

that has Temporald equal to that of the current picture, there shall be no picture that has

Temporald equal to that of the current picture included as an active entry in RefPicList[0] or

RefPicList[1] that precedes the STSA picture in decoding order.

[00289] - The picture referred to by each ILRP entry in RefPicList[0] or RefPicList[1] of a

slice of the current picture shall be in the same access unit as the current picture.

[00290] - The picture referred to by each ILRP entry in RefPicList[0] or RefPicList[1] of a

slice of the current picture shall be present in the DPB and shall have nuh-layerid less than that of

the current picture.

[00291] - Each ILRP entry in RefPicList[0] or RefPicList[1] of a slice shall be an active

entry.

[00292] The HRD general aspects in clause C.1 of the VVC standard include the following.

[00293] This annex specifies the hypothetical reference decoder (HRD) and its use to check

bitstream and decoder conformance.

[00294] A set of bitstream conformance tests is needed for checking the conformance of a

bitstream, which is referred to as the entire bitstream, denoted as entireBitstream. The set of

bitstream conformance tests are for testing the conformance of each OP of each OLS specified by

the VPS.

[00295] For each test, the following ordered steps apply in the order listed, followed by the

processes described after these steps in this clause:

59

WO 2021/022269 PCT/US2020/054450

[00296] 1. An operation point under test, denoted as targetOp, is selected by selecting a target

OLS with OLS index opOlsIdx and a highest Temporalld value opTid. The value of opOlsIdx is in

the range of 0 to TotalNumOlss - 1, inclusive. The value of opTid is in the range of 0 to

vps maxsublayers minus, inclusive. Each pair of selected values of opOlsIdx and opTid shall

be such that the sub-bitstream that is the output by invoking the sub-bitstream extraction process as

specified in clause C.6 with entireBitstream, opOlsIdx, and opTid as inputs satisfy the following

conditions:

[00297] - There is at least one VCL NAL unit with nuhlayer id equal to each of the

nuhlayer id values in LayerIdInOls[opOlsIdx] in BitstreamToDecode.

[00298] - There is at least one VCL NAL unit with Temporalld equal to opTid in

BitstreamToDecode.

[00299] 2. If the layers in targetOp include all layers in entireBitstream and opTid is equal to

greater than the highest Temporalld value among all NAL units in entireBitstream,

BitstreamToDecode is set to be identical to entireBitstream. Otherwise, BitstreamToDecode is set

to be the output by invoking the sub-bitstream extraction process as specified in clause C.6 with

entireBitstream, opOlsIdx, and opTid as inputs.

[00300] 3. The values of TargetOlsdx and Htid are set equal to opOlsIdx and opTid,

respectively, of targetOp.

[00301] 4. A value of ScIdx is selected. The selected ScIdx shall be in the range of 0 to

hrdcpb_cntminus1, inclusive.

[00302] 5. An access unit in BitstreamToDecode associated with buffering period SEI

messages (present in TargetLayerBitstream or available through external means not specified in

this Specification) applicable to TargetOlsdx is selected as the HRD initialization point and

referred to as access unit 0 for each layer in the target OLS.

[00303] 6. The olshrdparameters() syntax structure and the sub-layer hrd-parameters()

syntax structure applicable to BitstreamToDecode are selected as follows:

[00304] - The olshrd idx[TargetOlsldx]-th olshrdparameters() syntax structure in the

VPS (or provided through an external means not specified in this Specification) is selected.

[00305] - Within the selected olshrdparameters() syntax structure, if BitstreamToDecode

is a Type I bitstream, the sub layer hrd_parameters(Htid) syntax structure that immediately

follows the condition "if(general vcl hrdparamspresent flag)" is selected and the variable

60

WO 2021/022269 PCT/US2020/054450

NalHrdModeFlag is set equal to 0; otherwise (BitstreamToDecode is a Type II bitstream), the

sublayer hrdparameters(Htid) syntax structure that immediately follows either the condition

"if(general_vel_hrdparamspresent flag)" (in this case the variable NalHrdModeFlag is set

equal to 0) or the condition "if(generalnal_hrdparamspresent flag)" (in this case the variable

NalHrdModeFlag is set equal to 1) is selected. When BitstreamToDecode is a Type II bitstream

and NalHrdModeFlag is equal to 0, all non-VCL NAL units except filler data NAL units, and all

leadingzero_8bits, zerobyte, start codeprefixone_3bytes and trailing zero_8bits syntax

elements that form a byte stream from the NAL unit stream (as specified in Annex B), when

present, are discarded from BitstreamToDecode and the remaining bitstream is assigned to

BitstreamToDecode.

[00306] 7. When decoding unit hrdparamspresent flag is equal to 1, the CPB is scheduled

to operate either at the access unit level (in which case the variable DecodingUnitHrdFlag is set

equal to 0) or at the decoding unit level (in which case the variable DecodingUnitHrdFlag is set

equal to 1). Otherwise, DecodingUnitHrdFlag is set equal to 0 and the CPB is scheduled to operate

at the access unit level.

[00307] 8. For each access unit in BitstreamToDecode starting from access unit 0, the

buffering period SEI message (present in BitstreamToDecode or available through external means

not specified in this Specification) that is associated with the access unit and applies to

TargetOlsdx is selected, the picture timing SEI message (present in BitstreamToDecode or

available through external means not specified in this Specification) that is associated with the

access unit and applies to TargetOlsldx is selected, and when DecodingUnitHrdFlag is equal to 1

and decoding unitcpbparams_inpic timingseiflag is equal to 0, the decoding unit

information SEI messages (present in BitstreamToDecode or available through external means not

specified in this Specification) that are associated with decoding units in the access unit and apply

to TargetOlsldx are selected.

[00308] Each conformance test consists of a combination of one option in each of the above

steps. When there is more than one option for a step, for any particular conformance test only one

option is chosen. All possible combinations of all the steps form the entire set of conformance

tests. For each operation point under test, the number of bitstream conformance tests to be

performed is equal to nO * nI * n2 * n3, where the values of nO, n1, n2, and n3 are specified as

follows:

61

WO 2021/022269 PCT/US2020/054450

[00309] - nI is equal to hrd cpbcntminus1 + 1.

[00310] - nI is the number of access units in BitstreamToDecode that are associated with

buffering period SEI messages.

[00311] - n2 is derived as follows:

[00312] - If BitstreamToDecode is a Type I bitstream, nO is equal to 1.

[00313] - Otherwise (BitstreamToDecode is a Type II bitstream), nO is equal to 2.

[00314] - n3 is derived as follows:

[00315] - If decodingunithrdparamspresentflag is equal to 0, n3 is equal to 1.

[00316] - Otherwise, n3 is equal to 2.

[00317] The HRD contains a bitstream extractor (optionally present), a coded picture buffer

(CPB), an instantaneous decoding process, a decoded picture buffer (DPB) that conceptually

contains a sub-DPB for each layer, and output cropping.

[00318] For each bitstream conformance test, the CPB size (number of bits) is

CpbSize[Htid][ScIdx] as specified in clause 7.4.5.2, where ScIdx and the HRD parameters are

specified above in this clause, and DPB parameters maxdec-pic buffering minus[Htid],

maxnumreorderpics[Htid], and MaxLatencyPictures[Htid] for each layer are found in or

derived from the dpbparameters() syntax structure that applies to the layer depending on whether

the layer is an independent layer and whether the layer is an output layer of the target OLS.

[00319] The HRD operates as follows.

[00320] - The HRD is initialized at decoding unit 0, with both the CPB and each sub-DPB of

the DPB being set to be empty (the sub-DPB fullness for each sub-DPB is set equal to 0).

[00321] NOTE - After initialization, the HRD is not initialized again by subsequent buffering

period SEI messages.

[00322] - Data associated with decoding units that flow into each CPB according to a

specified arrival schedule are delivered by the hypothetical stream scheduler (HSS).

[00323] - The data associated with each decoding unit are removed and decoded

instantaneously by the instantaneous decoding process at the CPB removal time of the decoding

unit.

[00324] - Each decoded picture is placed in the DPB.

[00325] - A decoded picture is removed from the DPB when it becomes no longer needed for

inter prediction reference and no longer needed for output.

62

WO 2021/022269 PCT/US2020/054450

[00326] The operation of the decoded picture buffer is provided.

[00327] The specifications in this clause apply independently to each set of decoded picture

buffer (DPB) parameters selected as specified in clause C.1.

[00328] The decoded picture buffer conceptually consists of sub-DPBs and each sub-DPB

contains picture storage buffers for storage of decoded pictures of one layer. Each of the picture

storage buffers may contain a decoded picture that is marked as "used for reference" or is held for

future output. The processes specified in clauses C3.2, C3.3, and C3.4 are sequentially applied as

specified below, and are applied independently for each layer, starting from the lowest layer in the

OLS, in increasing order of nuh layerid values of the layers in the OLS. When these processes

are applied for a particular layer, only the sub-DPB for the particular layer is affected. In the

descriptions of these processes, the DPB refers to the sub-DPB for the particular layer, and the

particular layer is referred to as the current layer.

[00329] NOTE - In the operation of output timing DPB, decoded pictures with PicOutputFlag

equal to 1 in the same access unit are output consecutively in ascending order of the nuh layer id

values of the decoded pictures.

[00330] Let picture n and the current picture be the coded picture or decoded picture of the

access unit n for a particular value of nuh layerid, wherein n is a non-negative integer number.

[00331] The removal of pictures from the DPB before decoding the current picture is described.

[00332] The removal of pictures from the DPB before decoding of the current picture (but after

parsing the slice header of the first slice of the current picture) happens instantaneously at the CPB

removal time of the first decoding unit of access unit n (containing the current picture) and

proceeds as follows:

[00333] - The decoding process for reference picture list construction as specified in clause

8.3.2 is invoked and the decoding process for reference picture marking as specified in clause 8.3.3

isinvoked.

[00334] - When the current AU is a CVSS AU that is not AU 0, the following ordered steps

are applied:

[00335] 1. The variable NoOutputOfPriorPicsFag is derived for the decoder under test as

follows:

[00336] - If the value of pic width-max-in-luma samples,

pic height-max-in-luma samples, chromaformatidc, separate colourplane flag,

63

WO 2021/022269 PCT/US2020/054450

bitdepthlumaminus8, bitdepth-chromaminus8, or maxdec-pic buffering minus[Htid]

derived for any picture in the current AU is different from the value of

picwidthinluma samples, picheightinluma-samples, chromaformatide,

separatecolourplaneflag, bitdepth lumaminus8, bit_depth-chromaminus8, or

maxdecpic buffering minus[Htid], respectively, derived for the preceding picture in the same

CLVS, NoOutputOfPriorPicsFlag may (but should not) be set to 1 by the decoder under test,

regardless of the value of no output of priorpics flag.

[00337] NOTE - Although setting NoOutputOfPriorPicsFlag equal to

nooutput of priorpics flag is preferred under these conditions, the decoder under test is allowed

to set NoOutputOfPriorPicsFlag to 1 in this case.

[00338] - Otherwise, NoOutputOfPriorPicsFlag is set equal to no output of priorpics flag.

[00339] 2. The value of NoOutputOfPriorPicsFlag derived for the decoder under test is applied

for the HRD, such that when the value of NoOutputOfPriorPicsFlag is equal to 1, all picture

storage buffers in the DPB are emptied without output of the pictures they contain, and the DPB

fullness is set equal to 0.

[00340] - When both of the following conditions are true for any pictures k in the DPB, all

such pictures k in the DPB are removed from the DPB:

[00341] - picture k is marked as "unused for reference".

[00342] - picture k has PictureOutputFlag equal to 0 or its DPB output time is less than or

equal to the CPB removal time of the first decoding unit (denoted as decoding unit m) of the

current picture n; i.e., DpbOutputTime[k] is less than or equal to DuCpbRemovalTime[m].

[00343] - For each picture that is removed from the DPB, the DPB fullness is decremented by

one.

[00344] The operation of the output order DPB is described.

[00345] The specifications in this clause apply independently to each set of decoded picture

buffer (DPB) parameters selected as specified in clause C.1.

[00346] The decoded picture buffer conceptually consists of sub-DPBs and each sub-DPB

contains picture storage buffers for storage of decoded pictures of one layer. Each of the picture

storage buffers contains a decoded picture that is marked as "used for reference" or is held for

future output.

64

WO 2021/022269 PCT/US2020/054450

[00347] The process for output and removal of pictures from the DPB before decoding of the

current picture as specified in clause C.5.2.2 is invoked, followed by the invocation of the process

for current decoded picture marking and storage as specified in clause C.3.4, and finally followed

by the invocation of the process for additional bumping as specified in clause C.5.2.3. The

"bumping" process is specified in clause C.5.2.4 and is invoked as specified in clauses C.5.2.2 and

C.5.2.3.

[00348] These processes are applied independently for each layer, starting from the lowest layer

in the OLS, in increasing order of the nuh layerid values of the layers in the OLS. When these

processes are applied for a particular layer, only the sub-DPB for the particular layer is affected.

[00349] NOTE- In the operation of output order DPB, same as in the operation of output

timing DPB, decoded pictures with PicOutputFlag equal to 1 in the same access unit are also

output consecutively in ascending order of the nuh layer id values of the decoded pictures.

[00350] Let picture n and the current picture be the coded picture or decoded picture of the

access unit n for a particular value of nuh layerid, wherein n is a non-negative integer number.

[00351] The output and removal of pictures from the DPB is described.

[00352] The output and removal of pictures from the DPB before the decoding of the current

picture (but after parsing the slice header of the first slice of the current picture) happens

instantaneously when the first decoding unit of the access unit containing the current picture is

removed from the CPB and proceeds as follows:

[00353] - The decoding process for reference picture list construction as specified in clause

8.3.2 and decoding process for reference picture marking as specified in clause 8.3.3 are invoked.

[00354] - If the current AU is a CVSS AU that is not AUO, the following ordered steps are

applied:

[00355] 1. The variable NoOutputOfPriorPicsFag is derived for the decoder under test as

follows:

[00356] - If the value of pic width-max-in-luma samples,

pic height-max-in_lumasamples, chromaformatidc, separate colourplane flag,

bitdepthlumaminus8, bitdepth-chromaminus8 or maxdecpic buffering minus[Htid]

derived for any picture of the current AU is different from the value of

pic width in luma samples, pic height-in-luma-samples, chromaformatidc,

separatecolourplaneflag, bit_depth lumaminus8, bit_depth-chroma-minus8 or

65

WO 2021/022269 PCT/US2020/054450

maxdecpic buffering minus[Htid], respectively, derived for the preceding picture in the same

CLVS, NoOutputOfPriorPicsFlag may (but should not) be set to 1 by the decoder under test,

regardless of the value of no output of priorpics flag.

[00357] NOTE - Although setting NoOutputOfPriorPicsFlag equal to

nooutput of priorpics flag is preferred under these conditions, the decoder under test is allowed

to set NoOutputOfPriorPicsFag to 1 in this case.

[00358] - Otherwise, NoOutputOfPriorPicsFag is set equal to no output of priorpics flag.

[00359] 2. The value of NoOutputOfPriorPicsFag derived for the decoder under test is applied

for the HRD as follows:

[00360] - If NoOutputOfPriorPicsFag is equal to 1, all picture storage buffers in the DPB are

emptied without output of the pictures they contain and the DPB fullness is set equal to 0.

[00361] - Otherwise (NoOutputOfPriorPicsFag is equal to 0), all picture storage buffers

containing a picture that is marked as "not needed for output" and "unused for reference" are

emptied (without output) and all non-empty picture storage buffers in the DPB are emptied by

repeatedly invoking the "bumping" process specified in clause C.5.2.4 and the DPB fullness is set

equal to 0.

[00362] - Otherwise (the current picture is not a CLVSS picture), all picture storage buffers

containing a picture which are marked as "not needed for output" and "unused for reference" are

emptied (without output). For each picture storage buffer that is emptied, the DPB fullness is

decremented by one. When one or more of the following conditions are true, the "bumping"

process specified in clause C.5.2.4 is invoked repeatedly while further decrementing the DPB

fullness by one for each additional picture storage buffer that is emptied, until none of the

following conditions are true:

[00363] The number of pictures in the DPB that are marked as "needed for output" is greater

than maxnumreorder-pics[Htid].

[00364] max latencyincreaseplus1[Htid] is not equal to 0 and there is at least one picture in

the DPB that is marked as "needed for output" for which the associated variable PicLatencyCount

is greater than or equal to MaxLatencyPictures[Htid].

[00365] The number of pictures in the DPB is greater than or equal to

maxdecpic bufferingminus1[Htid] + 1.

[00366] Additional bumping is described.

66

WO 2021/022269 PCT/US2020/054450

[00367] The processes specified in this clause happen instantaneously when the last decoding

unit of access unit n containing the current picture is removed from the CPB.

[00368] When the current picture has PictureOutputFlag equal to 1, for each picture in the DPB

that is marked as "needed for output" and follows the current picture in output order, the associated

variable PicLatencyCount is set equal to PicLatencyCount + 1.

[00369] The following applies:

[00370] - If the current decoded picture has PictureOutputFlag equal to 1, it is marked as

"needed for output" and its associated variable PicLatencyCount is set equal to 0.

[00371] - Otherwise (the current decoded picture has PictureOutputFlag equal to 0), it is

marked as "not needed for output".

[00372] When one or more of the following conditions are true, the "bumping" process

specified in clause C.5.2.4 is invoked repeatedly until none of the following conditions are true:

[00373] - The number of pictures in the DPB that are marked as "needed for output" is greater

than maxnumreorder-pics[Htid].

[00374] - maxlatencyincreaseplus1[Htid] is not equal to 0 and there is at least one

picture in the DPB that is marked as "needed for output" for which the associated variable

PicLatencyCount that is greater than or equal to MaxLatencyPictures[Htid].

[00375] The bumping process is described.

[00376] The "bumping" process consists of the following ordered steps:

[00377] The picture or pictures that are first for output are selected as the one having the

smallest value of PicOrderCntVal of all pictures in the DPB marked as "needed for output".

[00378] Each of these pictures, in ascending nuh layer id order, is cropped, using the

conformance cropping window for the picture, the cropped picture is output, and the picture is

marked as "not needed for output".

[00379] Each picture storage buffer that contains a picture marked as "unused for reference" and

that was one of the pictures cropped and output is emptied and the fullness of the associated sub

DPB is decremented by one.

[00380] NOTE- For any two pictures picA and picB that belong to the same CVS and are

output by the "bumping process", when picA is output earlier than picB, the value of

PicOrderCntVal of picA is less than the value of PicOrderCntVal of picB.

[00381] The sub-bitstream extraction process is described.

67

WO 2021/022269 PCT/US2020/054450

[00382] Inputs to this process are a bitstream inBitstream, a target OLS index targetOlsIdx, and

a target highest Temporalld value tIdTarget.

[00383] Output of this process is a sub-bitstream outBitstream.

[00384] It is a requirement of bitstream conformance for the input bitstream that any output sub

bitstream that is the output of the process specified in this clause with the bitstream, targetOlsdx

equal to an index to the list of OLSs specified by the VPS, and tIdTarget equal to any value in the

range of 0 to 6, inclusive, as inputs, and that satisfies the following conditions shall be a

conforming bitstream:

[00385] - The output sub-bitstream contains at least one VCL NAL unit with nuh layer-id

equal to each of the nuhlayer id values in LayerIdInOls[targetOlsldx].

[00386] - The output sub-bitstream contains at least one VCL NAL unit with Temporalld

equal to tIdTarget.

[00387] NOTE - A conforming bitstream contains one or more coded slice NAL units with

Temporald equal to 0, but does not have to contain coded slice NAL units with nuh layer id

equal to 0.

[00388] The output sub-bitstream OutBitstream is derived as follows:

[00389] - The bitstream outBitstream is set to be identical to the bitstream inBitstream.

[00390] - Remove from outBitstream all NAL units with Temporalld greater than tIdTarget.

[00391] - Remove from outBitstream all NAL units with nuhlayer-id not included in the list

LayerIdInOls[targetOlsldx].

[00392] - Remove from outBitstream all SEI NAL units that contain a scalable nesting SEI

message that has nestingols flag equal to 1 and there is no value of i in the range of 0 to

nestingnumolssminus1, inclusive, such that NestingOlsldx[i] is equal to targetOlsIdx.

[00393] - When targetOlsldx is greater than 0, remove from outBitstream all SEI NAL units

that contain a non-scalable-nested SEI message with payloadType equal to 0 (buffering period), 1

(picture timing), or 130 (decoding unit information).

[00394] Scalable nesting SEI message syntax is provided.

68

WO 2021/022269 PCT/US2020/054450

scalablenesting(payloadSize){ Descripto

r

nestingols flag u(1)

if(nestingols flag){

nesting numolssminus1 ue(v)

for(i = 0; i <= nesting num olss_minusI; i++)

nestingolsidxdeltaminusI[i] ue(v)

}else {

nestingalllayers flag u(1)

if(Inestingalllayers flag){

nesting num layersminus1 ue(v)

for(i = 1; i <= nesting num layers minus; i++)

nestinglayer id[i] u(6)

}
}
nesting-num-seisminus1 ue(v)

while(!byte aligned())

nesting zerobit /* equal to 0/ u(1)

for(i = 0; i <= nesting num seis_minusI; i++)

seimessage()

}

[00395] General SEI payload semantics are provided.

[00396] The following applies on the applicable layers or OLS of non-scalable-nested SEI

messages.

[00397] - For a non-scalable-nested SEI message, when payloadType is equal to 0 (buffering

period), 1 (picture timing), or 130 (decoding unit information), the non-scalable-nested SEI

message applies only to the 0-th OLS.

[00398] - For a non-scalable-nested SEI message, when payloadType is equal to any value

among VclAssociatedSeiList, the non-scalable-nested SEI message applies only to the layer for

69

WO 2021/022269 PCT/US2020/054450

which the VCL NAL units have nuh layer id equal to the nuhlayerid of the SEI NAL unit

containing the SEI message.

[00399] It is a requirement of bitstream conformance that the following restrictions apply on the

value of nuh-layerid of SEI NAL units:

[00400] - When a non-scalable-nested SEI message has payloadType equal to 0 (buffering

period), 1 (picture timing), or 130 (decoding unit information), the SEI NAL unit containing the

non-scalable-nested SEI message shall have nuh-layer id equal to vps layer id[0].

[00401] - When a non-scalable-nested SEI message has payloadType equal to any value

among VclAssociatedSeiList, the SEI NAL unit containing the non-scalable-nested SEI message

shall have nuhlayer id equal to the value of nuh layer id of the VCL NAL unit associated with

the SEI NAL unit.

[00402] - An SEI NAL unit containing a scalable nesting SEI message shall have

nuhlayer id equal to the lowest value of nuhlayeridofalllayers to which the scalable-nested

SEI message apply (when nestingols flag of the scalable nesting SEI message is equal to 0) or the

lowest value of nuh layerid of all layers in the OLSs to which the scalable-nested SEI message

apply (when nestingols flag of the scalable nesting SEI message is equal to 1).

[00403] The scalable nesting SEI message semantics are provided.

[00404] The scalable nesting SEI message provides a mechanism to associate SEI messages

with specific OLSs or with specific layers.

[00405] A scalable nesting SEI message contains one or more SEI messages. The SEI messages

contained in the scalable nesting SEI message are also referred to as the scalable-nested SEI

messages.

[00406] It is a requirement of bitstream conformance that the following restrictions apply on

containing of SEI messages in a scalable nesting SEI message:

[00407] - An SEI message that has payloadType equal to 132 (decoded picture hash) or 133

(scalable nesting) shall not be contained in a scalable nesting SEI message.

[00408] - When a scalable nesting SEI message contains a buffering period, picture timing, or

decoding unit information SEI message, the scalable nesting SEI message shall not contain any

other SEI message with payloadType not equal to 0 (buffering period), 1 (picture timing), or 130

(decoding unit information).

70

WO 2021/022269 PCT/US2020/054450

[00409] It is a requirement of bitstream conformance that the following restrictions apply on the

value of the nalunit type of the SEI NAL unit containing a scalable nesting SEI message:

[00410] - When a scalable nesting SEI message contains an SEI message that has

payloadType equal to 0 (buffering period), 1 (picture timing), 130 (decoding unit information), 145

(dependent RAP indication), or 168 (frame-field information), the SEI NAL unit containing the

scalable nesting SEI message shall have nalunit-type equal to PREFIX_SEI_NUT.

[00411] nestingols flag equal to 1 specifies that the scalable-nested SEI messages apply to

specific OLSs. nesting olsflag equal to 0 specifies that the scalable-nested SEI messages apply to

specific layers.

[00412] It is a requirement of bitstream conformance that the following restrictions apply on the

value of nestingols flag:

[00413] - When the scalable nesting SEI message contains an SEI message that has

payloadType equal to 0 (buffering period), 1 (picture timing), or 130 (decoding unit information),

the value of nestingols flag shall be equal to 1.

[00414] - When the scalable nesting SEI message contains an SEI message that has

payloadType equal to a value in VclAssociatedSeiList, the value of nestingols flag shall be equal

to 0.

[00415] nesting num-olss-minusl plus 1 specifies the number of OLSs to which the scalable

nested SEI messages apply. The value of nesting num olssminus1 shall be in the range of 0 to

TotalNumOlss - 1, inclusive.

[00416] nestingols-idxdeltaminus1[i] is used to derive the variable NestingOlsldx[i] that

specifies the OLS index of the i-th OLS to which the scalable-nested SEI messages apply when

nestingols flag is equal to 1. The value of nesting olsidxdeltaminus1[i] shall be in the range

of 0 to TotalNumOlss - 2, inclusive, inclusive.

[00417] The variable NestingOlsldx[i] is derived as follows.

if(i == 0)

NestingOlsldx[i]= nestingolsidxdelta-minus1[i]

else

NestingOlsldx[i]=NestingOlsldx[i- 1]+nestingolsidxdeltaminus1[i]+1

[00418] nestingalllayers flag equal to 1 specifies that the scalable-nested SEI messages apply

to all layers that have nuh layer id greater than or equal to the nuh-layer id of the current SEI

71

WO 2021/022269 PCT/US2020/054450

NAL unit. nestingalllayers flag equal to 0 specifies that the scalable-nested SEI messages may

or may not apply to all layers that have nuhlayer id greater than or equal to the nuhlayer id of

the current SEI NAL unit.

[00419] nesting num layers minus plus 1 specifies the number of layers to which the

scalable-nested SEI messages apply. The value of nesting num layers-minus1 shall be in the

range of 0 to vps max layers-minus1 - GeneralLayerdx[nuh layer id], inclusive, where

nuhlayer id is the nuh-layerid of the current SEI NAL unit.

[00420] nestinglayer id[i] specifies the nuh layer id value of the i-th layer to which the

scalable-nested SEI messages apply when nestingalllayers flag is equal to 0. The value of

nestinglayer id[i] shall be greater than nuhlayer id, where nuhlayerid is the nuhlayer id of

the current SEI NAL unit.

[00421] When nesting-ols-flag is equal to 0, the variable NestingNumLayers, specifying the

number of layer to which the scalable-nested SEI messages apply, and the list NestingLayerld[i]

for i in the range of 0 to NestingNumLayers - 1, inclusive, specifying the list of nuh layer id

value of the layers to which the scalable-nested SEI messages apply, are derived as follows, where

nuhlayer id is the nuh-layerid of the current SEI NAL unit.

if(nestingalllayers flag) {

NestingNumLayers =

ps max layers-minus1 + 1 - GeneralLayerdx[nuh layer id]

for(i = 0; i < NestingNumLayers; i ++)

NestingLayerld[i]= vps layer id[GeneralLayerdx[nuh layer id]+ i]

}else {

NestingNumLayers= nesting num layersminus1 + 1

for(i = 0; i < NestingNumLayers; i ++)

NestingLayerld[i]= (i =0) ? nuh layer id . nesting layer id[i]

}
[00422] nesting num-seisminus1 plus 1 specifies the number of scalable-nested SEI

messages. The value of nesting num seisminus1 shall be in the range of 0 to 63, inclusive.

[00423] nesting zero-bit shall be equal to 0.

[00424] FIG. 10 is a schematic diagram of a video coding device 1000 (e.g., a video encoder

300 or a video decoder 400) according to an embodiment of the disclosure. The video coding

72

WO 2021/022269 PCT/US2020/054450

device 1000 is suitable for implementing the disclosed embodiments as described herein. The

video coding device 1000 comprises ingress ports 1010 and receiver units (Rx) 1020 for receiving

data; a processor, logic unit, or central processing unit (CPU) 1030 to process the data; transmitter

units (Tx) 1040 and egress ports 1050 for transmitting the data; and a memory 1060 for storing the

data. The video coding device 1000 may also comprise optical-to-electrical (OE) components and

electrical-to-optical (EO) components coupled to the ingress ports 1010, the receiver units 1020,

the transmitter units 1040, and the egress ports 1050 for egress or ingress of optical or electrical

signals.

[00425] The processor 1030 is implemented by hardware and software. The processor 1030

may be implemented as one or more CPU chips, cores (e.g., as a multi-core processor), field

programmable gate arrays (FPGAs), application specific integrated circuits (ASICs), and digital

signal processors (DSPs). The processor 1030 is in communication with the ingress ports 1010,

receiver units 1020, transmitter units 1040, egress ports 1050, and memory 1060. The processor

1030 comprises a coding module 1070. The coding module 1070 implements the disclosed

embodiments described above. For instance, the coding module 1070 implements, processes,

prepares, or provides the various codec functions. The inclusion of the coding module 1070

therefore provides a substantial improvement to the functionality of the video coding device 1000

and effects a transformation of the video coding device 1000 to a different state. Alternatively, the

coding module 1070 is implemented as instructions stored in the memory 1060 and executed by

the processor 1030.

[00426] The video coding device 1000 may also include input and/or output (/0) devices 1080

for communicating data to and from a user. The 1/O devices 1080 may include output devices such

as a display for displaying video data, speakers for outputting audio data, etc. The I/O devices

1080 may also include input devices, such as a keyboard, mouse, trackball, etc., and/or

corresponding interfaces for interacting with such output devices.

[00427] The memory 1060 comprises one or more disks, tape drives, and solid-state drives and

may be used as an over-flow data storage device, to store programs when such programs are

selected for execution, and to store instructions and data that are read during program execution.

The memory 1060 may be volatile and/or non-volatile and may be read-only memory (ROM),

random access memory (RAM), ternary content-addressable memory (TCAM), and/or static

random-access memory (SRAM).

73

WO 2021/022269 PCT/US2020/054450

[00428] FIG. 11 is a schematic diagram of an embodiment of a means for coding 1100. In an

embodiment, the means for coding 1100 is implemented in a video coding device 1102 (e.g., a

video encoder 300 or a video decoder 400). The video coding device 1102 includes receiving

means 1101. The receiving means 1101 is configured to receive a picture to encode or to receive a

bitstream to decode. The video coding device 1102 includes transmission means 1107 coupled to

the receiving means 1101. The transmission means 1107 is configured to transmit the bitstream to

a decoder or to transmit a decoded image to a display means (e.g., one of the I/O devices 1080).

[00429] The video coding device 1102 includes a storage means 1103. The storage means 1103

is coupled to at least one of the receiving means 1101 or the transmission means 1107. The storage

means 1103 is configured to store instructions. The video coding device 1102 also includes

processing means 1105. The processing means 1105 is coupled to the storage means 1103. The

processing means 1105 is configured to execute the instructions stored in the storage means 1103

to perform the methods disclosed herein.

[00430] It should also be understood that the steps of the exemplary methods set forth herein are

not necessarily required to be performed in the order described, and the order of the steps of such

methods should be understood to be merely exemplary. Likewise, additional steps may be

included in such methods, and certain steps may be omitted or combined, in methods consistent

with various embodiments of the present disclosure.

[00431] While several embodiments have been provided in the present disclosure, it should be

understood that the disclosed systems and methods might be embodied in many other specific

forms without departing from the spirit or scope of the present disclosure. The present examples

are to be considered as illustrative and not restrictive, and the intention is not to be limited to the

details given herein. For example, the various elements or components may be combined or

integrated in another system or certain features may be omitted, or not implemented.

[00432] In addition, techniques, systems, subsystems, and methods described and illustrated in

the various embodiments as discrete or separate may be combined or integrated with other systems,

modules, techniques, or methods without departing from the scope of the present disclosure. Other

items shown or discussed as coupled or directly coupled or communicating with each other may be

indirectly coupled or communicating through some interface, device, or intermediate component

whether electrically, mechanically, or otherwise. Other examples of changes, substitutions, and

74

WO 2021/022269 PCT/US2020/054450

alterations are ascertainable by one skilled in the art and could be made without departing from the

spirit and scope disclosed herein.

75

WO 2021/022269 PCT/US2020/054450

CLAIMS

What is claimed is:

1. A method of decoding implemented by a video decoder, comprising:

receiving, by the video decoder, a sub-bitstream having a sequence parameter set (SPS)

with a decoded picture buffer (DPB) syntax structure for an output layer set (OLS) with only one

layer;

obtaining, by the video decoder, the DPB syntax structure for the OLS with the one layer

from the SPS; and

decoding, by the video decoder, a picture from the only one layer using the DPB syntax

structure to obtain a decoded picture.

2. The method of claim 1, wherein the DPB syntax structure is designated

dpbparameters().

3. The method of any of claims 1 to 2, wherein the only one layer is the i-th layer, and

wherein the OLS is the i-th OLS.

4. The method of any of claims 1 to 3, wherein the DPB syntax structure is present in an i-th

dpbparameters() syntax structure in the SPS.

5. The method of any of claims 1 to 4, wherein the sub-bitstream does not include a video

parameter set (VPS).

6. The method of any of claims 1 to 5, further comprising storing the decoded picture in a

DPB prior to being displayed.

7. The method of any of claims 1 to 6, wherein the SPS is referred to by the only one layer

in the OLS.

76

WO 2021/022269 PCT/US2020/054450

8. The method of any of claims 1 to 7, further comprising displaying the decoded picture on

a display of an electronic device.

9. A method of encoding implemented by a video encoder, the method comprising:

generating, by the video encoder, a video parameter set (VPS) and a sequence parameter

set (SPS), wherein the VPS includes a list of decoded picture buffer (DPB) syntax structures for

all output layer sets (OLSs), and wherein the SPS includes the DPB syntax structure for each

OLS having only one layer;

encoding, by the video encoder, the VPS and the SPS into a video bitstream; and

storing, by the video encoder, the video bitstream for communication toward a video

decoder.

10. The method of claim 9, wherein the VPS includes an index to the list of DPB syntax

structures, and wherein the index is designated vps olsdpbparamsidx[i].

11. The method of any of claims 9 to 10, wherein a value of vpsolsdpbparams idx[i] is

in a range of zero to a total number of the DPB syntax structures in the VPS.

12. The method of any of claims 10 to 11, wherein the VPS includes

vps num dpbparamsminus1, and wherein vps num dpbparamsminusl plus 1 specifies a

total number of the DPB syntax structures in the VPS.

13. The method of any of claims 10 to 12, further comprising extracting a sub-bitstream from

the bitstream, wherein the sub-bitstream includes the SPS from the bitstream but does not

include the VPS from the bitstream.

14. The method of any of claims 10 to 13, further comprising transmitting the sub-bitstream

toward a video decoder.

77

WO 2021/022269 PCT/US2020/054450

15. A decoding device, comprising:

a receiver configured to receive a sub-bitstream having a sequence parameter set (SPS)

with a decoded picture buffer (DPB) syntax structure for an output layer set (OLS) with only one

layer;and

a processor coupled to the memory, the processor configured to execute the instructions

to cause the decoding device to:

set a number of layers in the OLS equal to one based on the OLS having the only

one layer;

obtain the DPB syntax structure for the OLS with the one layer from the SPS

when the number of layers in the OLS has been set equal to one; and

decode a picture from the only one layer using the DPB syntax structure to obtain

a decoded picture.

16. The decoding device of claim 15, wherein the DPB syntax structure is designated

dpbparameters(), wherein the only one layer is the i-th layer, and wherein the OLS is the i-th

OLS.

17. The decoding device of any of claims 15 to 16, wherein the DPB syntax structure is

present in an i-th dpbparameters() syntax structure in the SPS.

18. The decoding device of any of claims 15 to 17, wherein the sub-bitstream does not

include a video parameter set (VPS).

19. The decoding device of any of claims 15 to 18, wherein the SPS is referred to by the only

one layer in the OLS.

20. The decoding device of any of claims 15 to 19, further comprising a display configured to

display the decoded picture.

21. An encoding device, comprising:

a memory containing instructions;

78

WO 2021/022269 PCT/US2020/054450

a processor coupled to the memory, the processor configured to implement the instructions

to cause the encoding device to:

generate a video parameter set (VPS) and a sequence parameter set (SPS),

wherein the VPS includes a list of decoded picture buffer (DPB) syntax structures for all

output layer sets (OLSs), and wherein the SPS includes the DPB syntax structure for each

OLS having only one layer; and

encode the VPS and the SPS into a video bitstream; and

a transmitter coupled to the processor, the transmitter configured to transmit the video

bitstream toward a video decoder.

22. The encoding device of claim 21, wherein the VPS includes an index to the list of DPB

syntax structures, and wherein the index is designated vps olsdpbparams idx[i].

23. The encoding device of any of claims 21 to 22, wherein a value of

vps olsdpbparamsidx [i] is in a range of zero to a total number of the DPB syntax structures

in the VPS.

24. The encoding device of any of claims 23 to 25, wherein the VPS includes

vps num dpbparamsminus1, and wherein vps num dpbparams minus plus 1 specifies the

total number of the DPB syntax structures in the VPS.

25. A coding apparatus, comprising:

a receiver configured to receive a picture to encode or to receive a bitstream to decode;

a transmitter coupled to the receiver, the transmitter configured to transmit the bitstream to

a decoder or to transmit a decoded image to a display;

a memory coupled to at least one of the receiver or the transmitter, the memory configured

to store instructions; and

a processor coupled to the memory, the processor configured to execute the instructions

stored in the memory to perform the method in any of claims 1 to 8 and any of claims 9 to 14.

79

WO 2021/022269 PCT/US2020/054450

26. The coding apparatus of claim 25, further comprising a display configured to display a

decoded picture.

27. A system, comprising:

an encoder; and

a decoder in communication with the encoder, wherein the encoder or the decoder includes

the decoding device, the encoding device, or the coding apparatus of any of claims 15 to 26.

28. A means for coding, comprising:

receiving means configured to receive a picture to encode or to receive a bitstream to

decode;

transmission means coupled to the receiving means, the transmission means configured to

transmit the bitstream to a decoding means or to transmit a decoded image to a display means;

storage means coupled to at least one of the receiving means or the transmission means, the

storage means configured to store instructions; and

processing means coupled to the storage means, the processing means configured to

execute the instructions stored in the storage means to perform the method in any of claims 1 to 8

and any of claims 9 to 14.

80

	Abstract
	Description
	Claims
	Drawings

