
US 2013 0212599A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2013/0212599 A1

Giampaolo et al. (43) Pub. Date: Aug. 15, 2013

(54) EVENT NOTIFICATION MANAGEMENT Publication Classification

(71) Applicant: APPLE INC., (US) (51) Int. Cl.
G06F 9/54 (2006.01)

(72) Inventors: Dominic Giampaolo, Mountain View, (52) U.S. Cl.
CA (US); Eric Weiss, Paris (FR); Brent CPC G06F 9/542 (2013.01)
Knight, Austin, TX (US); Pavel Cisler, USPC .. 71.9/318
Los Gatos, CA (US); Peter McInerney,
Cupertino, CA (US)

(57) ABSTRACT
(73) Assignee: APPLE INC., Cupertino, CA (US)

(21) Appl. No.: 13/724,148 Systems and methods are provided for event notification. In

(22) Filed:
one implementation, a method is provided. A determination is

Dec. 21, 2012 made as to whether a threshold associated with pending event
notifications has been exceeded by an incoming event notifi

Related U.S. Application Data cation. A plurality of pending event notifications that can be
(63) Continuation of application No. 1 1/499,866, filed on combined are identified. Two or more event notifications are

Aug. 4, 2006, now Pat. No. 8,370,853. combined.

Application
Programs Backup Component

Preference
Management Engine

e Location
e Device identification

Activity Monitoring
Engine

Schedule
Applications 24

Operating System

Backup Capture
Engine

Changeldentifying
Engine

232

Storage Device

Backup Version

incremental Update

218 222

234

Device Management
Engine

Backup Management
Engine 236

216

Backup Restoration
Engine

Archive Management
Engine

Event Managing
Component 226

78

US 2013/0212599 A1 Aug. 15, 2013 Sheet 1 of 6 Patent Application Publication

QuÐAE

ŽOT Je?nduolo

Patent Application Publication Aug. 15, 2013 Sheet 2 of 6 US 2013/0212599 A1

o

Event Notification
Monitoring Engine Queue

202 204

Combining Event Notification
Engine Manager

206 208

FG. 2

Patent Application Publication Aug. 15, 2013 Sheet 3 of 6 US 2013/0212599 A1

lo
Receiving incoming event notification
302

NO
Incoming event

notification exceeds
threshold?

Identify combinable event notifications
306

Determine number of event
notifications to COmbine Such that

incoming event notification does not
308 exceed threshold

Combine event notifications
370

Add incoming event notification
312

FIG 3

Patent Application Publication Aug. 15, 2013 Sheet 4 of 6 US 2013/0212599 A1

o
Initiate Processing of Event

Notifications
402

Notification is a
Combination?

Scan Area implicated by the
406 Combined Events

identify the Changes for the
408 Area

PrOCeSS the identified
470 Change(s)

Last Event
Notification?

FIG. 4

US 2013/0212599 A1 Aug. 15, 2013 Sheet 5 of 6 Patent Application Publication

r – – – – – – – –9IZ
JEZ

suue 16OJE

US 2013/0212599 A1 Aug. 15, 2013 Sheet 6 of 6 Patent Application Publication

[X]

GEE)?ueuunO as

[7]

?ounos

US 2013/0212599 A1

EVENT NOTIFICATION MANAGEMENT

CROSS REFERENCE TO RELATED
APPLICATIONS

0001. This application is a continuation of U.S. patent
application Ser. No. 1 1/499,866, filed on Aug. 4, 2006, the
entire contents of which are hereby incorporated by refer
CCC.

TECHNICAL FIELD

0002 The disclosed implementations relate generally to
storing and restoring data.

BACKGROUND

0003. A hallmark of modern graphical user interfaces is
that they allow a large number of graphical objects or items to
be displayed on a display Screen at the same time. Leading
personal computer operating systems, such as Apple Mac
OSR), provide user interfaces in which a number of windows
can be displayed, overlapped, resized, moved, configured,
and reformatted according to the needs of the user or appli
cation. Taskbars, menus, virtual buttons and other user inter
face elements provide mechanisms for accessing and activat
ing windows even when they are hidden behind other
windows.
0004. With the sophisticated tools available, users are
encouraged not only to create and save a multitude of items in
their computers, but to revise or otherwise improve on them
over time. For example, a user can work with a certain file and
thereafter save its current version on a storage device. The
next day, however, the user could have had second thoughts
about the revisions, or could have come up with new ideas,
and therefore opens the file again.
0005. The revision process is usually straightforward if
the user wants to add more material to the file or make
changes to what is there. But it is typically more difficult for
a user who has changed his/her mind about changes that were
previously made and wants the file back as it was once before.
Application programs for word processing typically let the
user “undo' previous edits of a text, at least up to a predefined
number of past revisions. The undo feature also usually is
configured so that the previously made revisions must be
undone in reverse chronological order; that is, the user must
first undo the most recently made edit, then the second-most
recent one, and so on. If the user saves and closes the docu
ment and thereafter opens it again, it may not be possible to
automatically undo any previous edits.
0006 Virtually all computer systems generate event infor
mation of some form during operation. For example, "file
system events’ are used in the Apple Mac OSR X (a corre
sponding PC version is NT ChangeLog) to provide event
notifications for all file system activity (e.g., add file, change
file, delete file, etc). Some event information can generate a
large data stream, and the capacity to store event notifications
can be limited. Additionally, a particular event can require
some action by the system and can therefore block the flow of
events. To address this situation, event notifications are some
times dropped to make room for incoming events.

SUMMARY

0007 Systems and methods are provided for event notifi
cation. Events, such as file changes, can be monitored. The
event notifications from these events can be used, for

Aug. 15, 2013

example, by a backup system to identify changed data for the
next incremental backup operation. The number of event
notifications can be limited, leading to dropped events.
Dropped events prevent the system from knowing what was
changed without searching everything (e.g., searching an
entire file system). The loss can be limited by managing the
event notifications to combine the event notifications as nec
essary to maintain space for new incoming events. For
example, event notifications for changes to files in a same
folder can be combined to a single event notification at a
parent level (e.g., a folder that contains the files) to reduce
space. Only that parent will need scanned or otherwise exam
ined to determine the changed files instead of the entire file
system.
0008. In general, in one aspect, a method is provided. A
determination is made as to whether a threshold associated
with pending event notifications has been exceeded by an
incoming event notification. A plurality of pending event
notifications that can be combined are identified. Two or more
event notifications are combined.
0009 Implementations of the method can include one or
more of the following features. Each event notification can
identify a change to an entry in a data system. Each event
notification can be associated with one or more parent levels
of a hierarchical file system and identifying event notifica
tions that can be combined comprises determining two or
more event notifications having a common parent level. Com
bining two or more event notification can include replacing
two or more event notifications with a single event notifica
tion identifying a change to the common parent level.
0010. The method can further include scanning the com
mon parent level to identify the combined event notifications
and performing a backup operation including backup data
associated with the combined event notifications. Scanning
the common parent level can include comparing the parent
data with data from a previous backup to identify changed
data. Receiving an incoming event notification can include
receiving an event notification identifying a change to a file
system at an event notification queue. The method can further
include identifying one or more event notifications as pro
tected, where protected event notifications can not be com
bined. The method can further include determining a number
of event notifications to combine according to one or more
criteria. The criteria can include minimizing a number of
combined event notifications. Minimizing the number of
combined event notifications can include combining a mini
mum number of event notifications such that the incoming
event notification does not exceed the threshold.
0011. In general, in one aspect, a system is provided. The
system includes a monitoring engine for monitoring incom
ing event notifications. The system includes an event notifi
cation queue and an event combiner for combining event
notifications in the event notification queue. The system also
includes an event notification manager.
0012. In general, in one aspect, a method is provided. A
determination of whether a backup event has occurred is
made. Event notifications are evaluated. A backup is gener
ated according to the event notifications. Evaluating event
notifications can include identifying an event notification that
is a combination of two or more event notifications and scan
ning data associated with the event notification to identify the
combined event notifications.

0013 Particular embodiments of the subject matter
described in this specification can be implemented to realize

US 2013/0212599 A1

one or more of the following advantages. The system can
combine event notifications in order to reduce dropped event
notifications. By combining events, the original event notifi
cations can be more easily identified.
0014. The details of the various aspects of the subject
matter described in this specification are set forth in the
accompanying drawings and the description below. Other
features, aspects, and advantages of the invention will
become apparent from the description, the drawings, and the
claims.

BRIEF DESCRIPTION OF THE DRAWINGS

0015 FIG. 1 is a block diagram of an example of an
architecture for tracking file system events.
0016 FIG. 2 is a block diagram of an example of an
architecture of an event managing component.
0017 FIG. 3 is a flow chart of exemplary operations that
can be performed to store an event notification.
0018 FIG. 4 is a flow chart of exemplary operations that
can be performed to process event notifications.
0019 FIG. 5 is a block diagram of an example of an
architecture for backing up and restoring application files.
0020 FIG. 6 is a screen shot showing a time machine
interface.

DETAILED DESCRIPTION

0021 FIG. 1 is a block diagram of an architecture 100 that
manages generated event notifications and handles them
accordingly. As used herein, an event notification corre
sponds to activity related to one or more data elements within
a computer system. The architecture 100 includes a personal
computer 102 communicatively coupled to a remote server
107 via a network interface 116 and a network 108 (e.g., local
area network, wireless network, Internet, intranet, etc.). The
computer 102 generally includes a processor 103, memory
105, one or more input devices 114 (e.g., keyboard, mouse,
etc.) and one or more output devices 115 (e.g., a display
device). A user interacts with the architecture 100 via the
input and output devices 114, 115. Architecture 100 as dis
closed includes various hardware elements. Architecture 100
can include hardware, software, and combinations of the two.
0022. The computer 102 also includes a local storage
device 106 and agraphics module 113 (e.g., graphics card) for
storing information and generating graphical objects, respec
tively. The local storage device 106 can be a computer-read
able medium. The term “computer-readable medium” refers
to any medium that includes data and/or participates in pro
viding instructions to a processor for execution, including
without limitation, non-volatile media (e.g., optical or mag
netic disks), Volatile media (e.g., memory) and transmission
media. Transmission media includes, without limitation,
coaxial cables, copper wire, fiber optics, and computer buses.
Transmission media can also take the form of acoustic, light
or radio frequency waves.
0023. While event management is described herein with
respect to a personal computer 102, it should be apparent that
the disclosed implementations can be incorporated in, or
integrated with, any electronic device that has a user interface,
including without limitation, portable and desktop comput
ers, servers, electronics, media players, game devices, mobile
phones, email devices, personal digital assistants (PDAs),
embedded devices, televisions, other consumer electronic
devices, etc.

Aug. 15, 2013

0024 Systems and methods are provided for managing
events regarding system information, application information
or system, application, or user interface state. The systems
and methods can be stand alone, or otherwise integrated into
a more comprehensive application. In the materials presented
below, an integrated System and method for event manage
ment is disclosed.

0025. One of ordinary skill in the art will recognize that the
engines, methods, processes and the like that are described
can themselves bean individual process or application, part of
an operating system, a plug-in, an application, or the like. In
one implementation, the system and methods can be imple
mented as one or more plug-ins that are installed and run on
the personal computer 102. The plug-ins are configured to
interact with an operating system (e.g., MAC OSR X, WIN
DOWS XP, LINUX, etc.) and to perform the various func
tions, as described with respect to the Figures. A system and
method for modifying a user interface view can also be imple
mented as one or more software applications running on the
computer 102. As used herein, a view refers to an item,
element, or other content, capable of being presented in a user
interface, that can be subjected to a backup operation by a
backup component 117. For example, a user interface view
can contain any number of icons, files, folders, application
state information and/or machine State information, etc. Such
a system and method can be characterized as a framework or
model that can be implemented on various platforms and/or
networks (e.g., client/server networks, wireless networks,
stand-alone computers, portable electronic devices, mobile
phones, etc.), and/or embedded or bundled with one or more
Software applications (e.g., email, media player, browser,
etc.).
0026. The computer 102 includes a backup component
117 that allows for the storage of versions of the computer's
files or other items, for example within the local storage 106
or in an external storage repository. The backup component
117 captures versions of one or more interface views and
manages an archive of such backups, for example to facilitate
user-initiated restoration based on any of them. As used
herein, a view refers to an item, element or other content,
capable of being presented in a user interface, that can be
Subjected to a backup operation by the backup component
117. For example, a user interface view can contain any
number of icons, files, folders, application state information,
and/or machine State information, etc. In one implementa
tion, the backup component 117 also allows a user to select
any of the stored versions and use it to initiate a restoration of
that version in the computer 102.
0027. Though discussion is made with reference to a par
ticular user interface view, those of ordinary skill will recog
nize that such a view can be based on various data structures,
files, processes, and other aspects of information manage
ment. It follows that modification to file structures, data and
the like is also contemplated in order to achieve the modifi
cation to the user interface view. In other words, while the
restoration of the user interface view from one state to another
is the most apparent change from the user's perspective, this
is accomplished through the corresponding changes in the
underlying system content.
0028. An event managing component 118 monitors and
manages events within the computer 102. For example, Such
events can be generated by one or more event logging tools. In
one implementation, the event logging tool is a file system
event tool such as FS Events (available in products from

US 2013/0212599 A1

Apple Computer in Cupertino, Calif.). The event managing
component 118 stores and manages the event notifications as
will be described below. For example, the backup component
117 can use a compiled list of events to determine which
changed elements should be archived.
0029 FIG. 2 is a block diagram of an architecture 200 with
examples of features that can be included in the event man
aging component 118. The event managing component 118
here contains a monitoring engine 202, an event notification
queue 204, a combining engine 206, and an event notification
manager 208. An exemplary operation of the event managing
component 118 is as follows. The monitoring engine 202
captures a new event that is to be forwarded for storage in the
event notification queue 204 until it can be processed. If the
event notification manager 208 recognizes that the event noti
fication queue 204 is reaching capacity, the event notification
manager 208 can instruct the combining engine 206 to com
bine two or more of the events into a combined event to save
capacity in the event notification queue 204. For example, if
the newly received event relates to a change in a particular
directory or folder, that event can be combined with one or
more other events relating to the same directory or folder. In
Some implementations, this causes the information about the
specific changes to be lost, but the combined event identifies
the localized area (e.g., the directory or folder) that was
changed. When the combined event is to be processed, the
system can scan the identified directory or folder to identify
the changes that were made.
0030 The monitoring engine 202 detects incoming event
notifications. In one implementation, the event notifications
originate from a file system activity monitor. An event can
occur to a file, folder, data set, system setting, state informa
tion, or other individual data element within a computer sys
tem. Events include, but are not limited to, element addition,
element modification, element deletion, etc. The monitoring
engine 202 sends the incoming events for storage processing.
If there is currently sufficient capacity in the event notification
queue 204, the detected events remain stored there. In con
trast, if the event notification queue 204 currently has insuf
ficient capacity, a check is made to determine whether two or
more events can be combined. For example, if the event
notification queue 204 is above a set threshold capacity, auto
matic combining of events can help clear space within the
queue.

0031 When the event notification queue 204 receives an
incoming event, it is first determined whether the event noti
fication queue has the capacity to add the new notification. In
one implementation, the capacity determination is made by
the event notification queue 204 and the results forwarded to
the event notification manager 208. In another implementa
tion, the capacity determination is made by the event notifi
cation manager 208 acting on event Volume information
received from the event notification queue 204.
0032 Events can be removed from the event notification
queue 204 by processing the events stored within the queue.
For example, after the backup component 117 uses the events
stored within the event notification queue 204 to create a new
archive view, the information within the event notification
queue is no longer needed. Events can also be removed from
the event notification queue by creating a combined event. In
one implementation, all events covered by the scope of the
combined event are deleted from the queue upon the addition
of the combined event. Thereafter, individual events can be

Aug. 15, 2013

rediscovered by Scanning the structure shared by the com
bined events, such as a parent folder.
0033. When the event notification queue 204 is at or above
capacity or threshold, the combining engine 206 can first
attempt to find one or more events within the event notifica
tion queue 204 that can be combined with a newly received
event. As another example, the combining engine 206 can
attempt to find two or more events within the event notifica
tion queue 204 that can be combined with each other, to free
up resources for handling the newly received event. Thus, in
the latter situation, the newly received event is not included in
the event combination.
0034. The combining engine 206 can take into account
one or more protection levels in attempting to combine event
notifications. That is, one or more event notifications can be
identified as protected, meaning that the event notification(s)
can not be combined with other event notifications. For
example, the protection can be set for those event notifica
tions that can be expected to create worse problems than other
event notifications if they are lost before they can be pro
cessed.

0035) If the event notification queue 204 is at or above
capacity and there are no combinable events, one or more
events can be dropped based on a prioritization scheme. For
example, it can be considered critical not to lose a file renam
ing event, because it can later lead to anomalies and be very
difficult to detect. Such critical events can be identified as
protected event notifications, which are not combinable. In
contrast, a regularly scheduled Status update can sometimes
be lost without causing significant problems. In one imple
mentation, non-critical events can be dropped in these or
other situations. In the later event of queue processing, the
backup component 117 will need to scan globally for all
element changes in addition to using the critical events con
tained within the event notification queue 204.
0036. The combining engine 206 can be triggered by the
event notification manager 208 to combine individual events
within the event notification queue 204. In one implementa
tion, the combining engine is activated when the event noti
fication queue 204 is at maximum capacity. In another imple
mentation, the event notification queue 204 has a threshold
level determining when to engage the combining engine 206.
0037. In some implementations, the scope of combining
activity is based upon system or user settings. For example,
the combining engine 206 can begin combining events in no
particular order until a queue threshold level has been met. In
another implementation, the combining engine 206 can seek
out the combinations that are more preferable to make. For
example, it could be preferable to combine events that have a
high degree of common hierarchical parentage. Such as by
being related to the same structure in the hierarchy. In con
trast, it could be less preferable to combine events that are
more unrelated to each other in the hierarchy. This is because
the scope and amount of scanning needed in the former case
can be less than that necessary in the latter case.
0038. To create a combination event, the combining
engine 206 scans the event notification queue 204 and ana
lyzes the events to determine whether two or more events are
combinable. For example, the combining engine 206 can look
for elements that share a common feature. Such as a parent
directory. The combining engine 206 then creates a new com
bination event regarding the common feature. The combining
engine 206 drops the individual events comprising the new
combination event from the event notification queue 204 and

US 2013/0212599 A1

replaces them with the combination event. In some imple
mentations, the combining engine 206 merges the involved
events to form the combined event.
0039. The event notification manager 208 manages the
operation of the monitoring engine 202 and the combining
engine 206. In addition, the event notification manager 208
can monitor the status of the event notification queue 204. In
one implementation, the event notification manager 208
instructs the combining engine 206 to combine events. In one
implementation, the event notification manager 208 contains
a set of values relating to the trigger events for the combining
engine 206. For example, the set of values can contain a queue
threshold value at which combination of events should occur.
The set of values can also include a lower threshold value at
which the combining engine 206 should cease the combining
operation. The event notification manager 208, in one imple
mentation, triggers the removal of unnecessary event notifi
cations, for example, after the contents of the event notifica
tion queue 204 have been processed by the backup
component 117.
0040. During the processing of events within the event
notification queue 204, the shared feature listed within each
combination event can be perused to determine which ele
ments within that shared feature have undergone changes. For
example, if the event combination involved two events relat
ing to changes in two images located in the same photo album,
the combined event can identify the photo album as a general
indication that two or more system events relating to that
album have been dropped. In the event processing, then, the
album contents can be scanned (or otherwise analyzed) to
determine what events relating to the album need to be redis
covered. Upon determining, in this example, that the dropped
events related to changes in two of the images, the event
managing component 118 can process these rediscovered
events similarly to a scenario where they had not been
dropped.
0041. The processing of events can include interaction
with the backup component 117. In the above example, where
there had been changes in two images, the event managing
component 118 can trigger the backup component 117 to
create new backup versions of the altered images.
0042. In one implementation, the combining engine 206
can also prune events from the event notification queue 204.
For example, the combining engine 206 can scan the event
notification queue 204 for multiple events that occurred to the
same element, because Such events can render each other
Superfluous or moot, at least in part. For example, adding a
new element and then deleting the same element is an
example of two events that effectively cancel each other out.
In another example, Successive additions to a text file can be
pruned to a single modification event. Thus, the combining
engine 206 can drop one or more events as redundant.
0043 FIG. 3 is a flow chart of exemplary operations 300
that can be performed in relation to event generation and
management. The operations begin in step 302 with receiving
an incoming event notification. In one implementation, the
event notification can be detected by the monitoring engine
202 (FIG. 2). The incoming event, in one example, originates
from a file system event logging tool.
0044. In step 304, the operation determines whether the
addition of the incoming event notification exceeds a thresh
old value associated with the event queue. For example, this
determination can be made by the event notification queue
204 (FIG. 2). In another implementation, the threshold capac

Aug. 15, 2013

ity can be detected by the event notification manager 208
(FIG. 2). If the answer in step 304 is yes, then combinable
event notifications are identified in step 306. For example,
event notifications are combinable if they have a shared fea
ture, e.g., a shared parent directory or other hierarchical struc
ture, such that by scanning the shared feature, all of the
combinable event elements can be located within that feature.
In one implementation, the combining engine 206 (FIG. 2)
locates combinable events. For example, the operation can
first attempt to identify any elements that share the same
parent structure. If there are no such events, or if the combi
nation thereofdoes not free up sufficient space in the notifi
cation queue, the operation can then move up a hierarchical
tree, determining potential combinations among two or more
events that share relatively less commonality that those con
sidered earlier.

0045. Once combinable event notifications have been
identified, the number of event notifications to combine can
be determined, in step 308. In one implementation, the opera
tion desires to combinea sufficient number of events such that
an incoming event notification will not exceed the queue
threshold. The number of event notifications to combine can,
in one implementation, be based on default or user settings.
For example, in addition to a higher threshold setting that
triggers event combination, the event notification manager
208 can contain a lower threshold setting that is the goal for
the combining engine 206 when combining events. In one
implementation, the order of steps 306 and 308 can be
reversed.

0046. In step 310, event notifications are combined. For
example, the combining engine 206 can combine the most
recently received event notification with one or more previ
ously received ones. In one implementation, notification
events can be combined with previously combined events, or
previously combined events can be combined with each
other, to create additional combination events at a higher
hierarchical level. In some implementations, a new event
notification is generated and used as the combined event, in
other implementations one of the events being combined is
modified to be the combined event.
0047. In one implementation, the system can scan (e.g.,
prior to initiating a backup operation) the particular structure
(e.g., folder, directory, or other hierarchical level) that
includes combined event notifications in order to determine
the underlying events. For example, if two file events were
combined into a single folder event notification, the folder is
examined to identify which files were the source of the file
events that have been lost. In one implementation, the system
can compare the folder data with an archive version (e.g.,
from a previous backup operation) in order to determine
which files have changed data, indicating they were the
source of the combined file event notifications.

0048. In step 312, the incoming event notification is added
to the notification queue. When the threshold was not
exceeded in step 304, the newly received notification can be
added without modification. In contrast, when the threshold
was exceeded in step 304, the notification that is added in step
312 can be a combined event resulting from the steps 306–
310. In one implementation, the event notification manager
208 adds the incoming event to the event notification queue
204.

0049 FIG. 4 is a flow chart of exemplary operations 400
that can be performed in relation to event generation and
management. For example, the operations 400 can be per

US 2013/0212599 A1

formed in processing a queue of event notifications that could
include one or more combined event notifications. AS has
been noted above, in Some implementations, when two or
more event notifications are combined, the information about
the events that triggered them is lost, at least in part. In Such
situations, for example, the operations 400 can be performed
in an attempt to rediscover that missing information so that
the events can be processed.
0050. The operations begin at step 402 with the initiation
of the processing of event notifications. For example, this can
involve initiating the event managing component 118 (FIG.
1). AS has been mentioned, the event managing component
118 can process event notifications that are stored in a queue.
0051. In step 404, it is determined, for each event notifi
cation, whether the notification is a combination of two or
more event notifications. If so, the operation scans the area
implicated by the combined events, in step 406. For example,
when two events relating to the same folder are combined,
information about the events can be lost. Although the spe
cifics of the events are no longer known, it is known that they
related to a particular folder. The folder can then be consid
ered a hierarchical region that is implicated by these com
bined events. The system can attempt to rediscover the miss
ing information by scanning the folder. For example, the
event managing component 118 can scan each element within
the hierarchical region implicated by the combined event,
Such as by comparing each element's timestamp to the times
tamp of the previously generated backup version. In another
implementation, the backup component 117 compares the
contents of the hierarchical region to the contents of that
region within the previously generated backup version to
determine the change(s). Other approaches can be used to
rediscover the lost event notifications.
0052. In step 408, the operation identifies all changed
elements within the implicated area. For example, changes
can include added data elements, modified data elements, and
deleted data elements, etc. The operation then processes the
identified change(s) in step 410. The change(s) processed in
step 410 can be from a non-combined event following the
determination in step 404, or from two or more previously
combined events that were rediscovered in steps 406-408. In
processing the changes, in one implementation, the backup
component 117 can use the list of changed elements to gen
erate a new backup version of each element.
0053) If, at step 412, it is found that this is not the last event
notification in the list, the operation returns to step 404 to
process at least one more event notification. If, instead, this is
the last notification to be processed, the operation ends. In one
implementation, at the termination of the event processing
operation, the event notification manager (208) can trigger
the cleaning of the event notification queue 204 to clear it of
all stored events. The operations 400 can be repeated in part or
in whole as required.
0054 Some operations of the backup component 117 have
been described in some of the examples above. There will
now be provided an example of features that can be included
in the backup component 117. FIG. 5 is a block diagram of an
exemplary architecture 201 for enabling the back up and
restoration of data (e.g., application files, application data,
settings, parameters or the like). Such as those associated with
a set of application programs 228. Backup component 117
provides back up and restoration capability for the system.
Many different items or elements can be the subject of a
backup operation in the system. For example, folders, files,

Aug. 15, 2013

items, information portions, directories, images, system or
application parameters, playlists, e-mail, inbox, application
data, address book, preferences, and the like all can be can
didates for archiving. Other types are also possible. In this
example, the backup component 117 includes at least one
storage device 232. This can be an internal or external
resource, or a combination of the two. Any number of local
and/or external storage devices can be used by the backup
component 117 for storing versions. In this implementation,
the backup component 117 views any and all storage device
(s) designated for version storage as a single memory bank.
0055. In one implementation, the backup component 117
runs as a background task on an operating system 230. Such
that the task is not visible to the user. The backup component
117 can be capable of running across multiple user accounts.
0056. The backup component 117 includes an activity
monitoring engine 212. In one implementation, the activity
monitoring engine 212 monitors for changes within an appli
cation view (e.g. files) that are targeted for a backup opera
tion. A change can also include the addition of new files or
data or the deletion of the same. In one implementation, the
activity monitoring engine 212 is capable of discerning
between a Substantive change (e.g. the text within a document
has been modified) and a non-Substantive change (e.g. the
play count within an iTunes playlist has been updated, or
several changes cancel each other out) through its interaction
with the application programs 228. The activity monitoring
engine 212 can, for example, create a list of modified ele
ments to be used when a backup event is eventually triggered.
In one implementation, the activity monitoring engine 212
can monitor the system for periods of inactivity. The activity
monitoring engine 212 can then triggera backup event during
a period of time in which the backup operation will not cause
a system slowdown for an active user.
0057. A preference management engine 214 specifies
Some operating parameters of the backup component 117. In
one implementation, preference management engine 214
contains user-specified and/or system default application
parameters for the backup component 117. These can include
settings for the details of capturing and storing the earlier
versions. For example, the preference management engine
214 can determine the frequency of the backup capture, the
storage location for the backup versions, the types of files,
data, or other items that are eligible for backup capture, and
the events which trigger a backup capture (periodic or event
driven, etc.).
0058. In one implementation, the preference management
engine 214 can detect that a new storage device is being added
to the system and prompt the user whether it should be
included as a backup repository. Files and other items can be
scheduled for a backup operation due to location (e.g. every
thing on the C: drive and within D:/photos), a correlation with
specific applications (e.g. all pictures, music, e-mail, address
book, preferences, and system settings), or a combination of
strategies. Different types of items can be scheduled to be
stored on different devices or on different segments of a
storage device during a backup operation. In one implemen
tation, the backup component 117 stores the versions in a
format corresponding to a file system structure.
0059 A backup management engine 216 coordinates the
collection, storage, and retrieval of view versions performed
by the backup component 117. For example, the backup
management engine 216 can trigger the activity monitoring

US 2013/0212599 A1

engine 212 to watch for activities that satisfy a requirement
specified in the preference management engine 214.
0060 A change identifying engine 218 locates specific
views or other items within to determine if they have changed.
The change identifying engine 218 can be capable of discern
ing a Substantive change from a non-Substantive change,
similar to the example described above for the activity moni
toring engine 212. In one implementation, the change identi
fying engine 218 traverses a target set of files, data, or other
items, comparing a previous version to the current version to
determine whether or not a modification has occurred.
0061 Abackup capture engine 220 locates files, data, or
other items that are to be backed up. The backup capture
engine 220 can invoke the activity monitoring engine 212
and/or the change identifying engine 218, for example, to
generate a capture list. The backup capture engine 220 can
then store copies of these elements in one or more targeted
storage repositories. The backup capture engine 220 can track
multiple version copies of each item included in the backup
repository.
0062. The backup component 117 includes a backup res
toration engine 222 to restore previous views (e.g. versions of
files, data, or other items). In one implementation, the backup
restoration engine 222 provides a user interface (e.g., a
graphical user interface) where a user can select the item(s) to
be restored.
0063 A device management engine 224 handles the addi
tion and removal of individual storage devices to be used for
archiving views. In one implementation, the preference man
agement engine 214 obtains user settings regarding the iden
tification of individual storage devices for use in archiving.
These settings could include, but are not limited to, particular
segments of individual devices to use, a threshold capacity
which can be filled with archive data, and individual applica
tions to archive to each device. The device management
engine 224 records the storage device settings obtained by the
preference management engine and uses them to monitor
storage device activity. In one implementation, the device
management engine 224 can alert the user when a new device
has been added to the system. In one implementation, the
device management engine 224 can alert the user when an
archive-enabled device has been removed from the system. In
yet another implementation, the device management engine
224 can alert the user when an archive-enabled device is
nearing its threshold storage capacity setting.
0064. An archive management engine 226 tracks where
archived views are being stored. In one implementation, the
archive management engine 226 obtains user options from
the preference management engine. Such settings can
include, but are not limited to, methods to be used to remove
older or otherwise unnecessary archived views. These set
tings can establish criteria for archived view deletion, for
instance in the event of storage capacity being reached or on
a regular basis. In one implementation, the archive manage
ment engine 226 alerts the user when archives are missing
because a device has gone offline. In another implementation,
the archive management engine 226 bars a user from viewing
another user's archived data due to system permissions set
tings.
0065. In this example, the first external storage device 232

is being used by the backup component 117 for archiving. The
first device 232 contains an initial backup version 234, which
is the first archived view created within this device for a
particular item. The first device 232 also contains an incre

Aug. 15, 2013

mental update 236. In one implementation, the incremental
update 236 contains links back to data stored within initial
backup 234. Such that only one copy of an unchanged piece of
data is retained. In this manner, links can also exist between
incremental updates. Each incremental update can then con
tain a copy of each new or changed data item plus a link back
to a previously stored copy of each unchanged data item. Any
number of incremental updates can exist. If the user changes
the scope of data that is being backed up from one incremental
update period to another so that the scope of data now
includes new data areas, a portion of an incremental update
can be considered similar to an initial backup version. Other
archive management techniques could be used.
0066. The backup component 117 can use information
stored by the event managing component 118 during incre
mental backup creation. For example, as described with ref
erence to FIG. 4, events stored by the event managing com
ponent 118 can provide the backup component 117 with a list
of changed elements since the last incremental backup event.
In some implementations, the backup component 117
includes some or all portions of the event managing compo
nent 118. In another implementation, the event managing
component 118 includes some or all portions of the backup
component 117.
0067. Any number of storage devices can be used by the
backup component. In one implementation, different storage
devices contain the backup version and incremental updates
of data belonging to different applications or to different users
on the system. As another example, two or more storage
devices can be responsible for backing up contents from
separate applications in the system.
0068. The archived copies can be compressed and/or
encrypted. An example of a compression technique is the ZIP
file format for data compression and archiving. An example of
an encryption technique is the RSA algorithm for public key
encryption. Other compression techniques or encryption
techniques could be used.
0069. In one implementation, if multiple users make use of
the time machine backup component 117 on a single system,
each user can select to keep separate archives. Access to an
individual user's archives can be password protected or oth
erwise held in a secure manner. In one implementation, the
archive storage structure mimics a typical file system struc
ture, such that the archived versions can be perused using a
standard file system viewing utility.
0070. It has been mentioned that the backup component
117 can be used for selective restoration of a captured backup
version, or a portion thereof. There will now be described
with reference to FIG. 6 an example of a user interface that
can be generated to facilitate Such restoration. The interface is
here referred to as a time machine interface 500, and includes
a presentation window 501, a timeline 502, and function
buttons. The timeline 502 includes a number of snapshots. As
used herein, a Snapshot refers to a backup element stored in a
historical archive that includes a backup of selected items or
content as specified by the backup component 117 (FIG. 1).
The time machine engine can be activated to backup or restore
media content within the iTunesTM application (available
from Apple Computer in Cupertino, Calif.) or another appli
cation.

(0071. The time machine user interface 500 can also
include function buttons. For example, the interface 500 can
include arrow buttons 503a and 503b, and an associated scroll
bar 505 to allow the user to navigate to additional snapshots

US 2013/0212599 A1

not shown in the current timeline window. Thus, there can be
a large number of snapshots from which to select. As shown,
the presentation window 501 is displaying the current state of
the iTunesTM application because a “current snapshot 504
has been selected (highlighted) in the timeline. The current
Snapshot can be a default selection. The presentation window
501 can show the contents corresponding to the currently
selected snapshot, or a portion thereof. Here, the window 501
shows a list of songs that are available in the iTunesTM appli
cation, a list sometimes referred to as a playlist.
0072. In this particular example, the timeline contains a
date beneath each Snapshot indicating when the Snapshot was
taken. In some implementations, the user can select items or
content within the playlist of any of the snapshots. The selec
tion functionality can be used in earlier Snapshots, such as
Snapshot 514, to restore missing data to the state associated
with the current snapshot 504.
0073. The timeline 502 can include a number of snapshots
representing earlier versions or states of the iTunesTM library
that have been backed up. Each Snapshot provides a screen
shot representation of the earlier version of the iTunesTM
library at a particular point in time. In some implementations,
the timeline 502 includes a visual representation of backup
elements, such as a miniature version of the earlier state. The
timeline can appear across the top portion of the time machine
interface 502 (as shown). Alternatively, the timeline does not
appear in the top portion of the time machine interface 500
until a user moves their cursor to (or otherwise activates) the
timeline (e.g., by activating the top portion of the interface).
0074 The snapshots within the timeline 502, in one imple
mentation, were created by the backup component 117 using
a list of event notifications generated by the event manage
ment component 118 (FIG. 1). In another implementation,
changes occurring to the current playlist are captured by the
monitoring engine 202 (FIG. 2) of the event management
component 118.
0075. In the case where the event notification queue 204 is
at or beyond its threshold value, for example, the event noti
fications generated through the modification of the contents
of the iTunesTM application can be combined by the combin
ing engine 206. For example, assume that modifications are
made to the songs “RichGirl” and “Crash', both belonging to
the album Love, Angel, Music, Baby and that the event noti
fication queue is currently above its capacity. The notifica
tions relating to these modifications can then be combined to
create a single event notification regarding the album Love,
Angel, Music, Baby. At a later time, when the combined event
notification is to be processed, the album Love, Angel, Music,
Baby can be scanned to determine what events were dropped,
and the corresponding backups can thereafter be performed.
Assume, as another example, that modifications are instead
made to “RichGirl' of the album Love, Angel, Music, Baby
and to “St. Louis Blues” of the album The Blues, and that the
event notifications corresponding to these changes are Subse
quently combined. Later, upon event processing, the playlist
covering both affected albums (and, in some situations, sev
eral other albums) can be scanned to determine what events
were dropped, for performing the corresponding backup
operations. Thus, the latter example can require more exten
sive scanning than the former.
0076. In the above description, for purposes of explana

tion, numerous specific details are set forthin order to provide
a thorough understanding. It will be apparent, however, to one
skilled in the art that implementations can be practiced with

Aug. 15, 2013

out these specific details. In other instances, structures and
devices are shown in block diagram form in order to avoid
obscuring the disclosure.
0077. In particular, one skilled in the art will recognize that
other architectures and graphics environments can be used,
and that the examples can be implemented using graphics
tools and products other than those described above. In par
ticular, the client/server approach is merely one example of an
architecture for providing the functionality described herein;
one skilled in the art will recognize that other, non-client/
server approaches can also be used. Some portions of the
detailed description are presented in terms of algorithms and
symbolic representations of operations on data bits within a
computer memory. These algorithmic descriptions and rep
resentations are the means used by those skilled in the data
processing arts to most effectively convey the Substance of
their work to others skilled in the art. An algorithm is here,
and generally, conceived to be a self-consistent sequence of
steps leading to a desired result. The steps are those requiring
physical manipulations of physical quantities. Usually,
though not necessarily, these quantities take the form of elec
trical or magnetic signals capable of being stored, transferred,
combined, compared, and otherwise manipulated. It has
proven convenient at times, principally for reasons of com
mon usage, to refer to these signals as bits, values, elements,
symbols, characters, terms, numbers, or the like.
0078. It should be borne in mind, however, that all of these
and similar terms are to be associated with the appropriate
physical quantities and are merely convenient labels applied
to these quantities. Unless specifically stated otherwise as
apparent from the discussion, it is appreciated that throughout
the description, discussions utilizing terms such as “process
ing or “computing or "calculating or “determining or
“displaying or the like, refer to the action and processes of a
computer system, or similar electronic computing device,
that manipulates and transforms data represented as physical
(electronic) quantities within the computer system's registers
and memories into other data similarly represented as physi
cal quantities within the computer system memories or reg
isters or other such information storage, transmission or dis
play devices.
0079 An apparatus for performing the operations herein
can be specially constructed for the required purposes, or it
can comprise a general-purpose computer selectively acti
vated or reconfigured by a computer program Stored in the
computer. Such a computer program can be stored in a com
puter readable storage medium, Such as, but is not limited to,
any type of disk including floppy disks, optical disks, CD
ROMs, and magnetic-optical disks, read-only memories
(ROMs), random access memories (RAMs), EPROMs,
EEPROMs, magnetic or optical cards, or any type of media
Suitable for storing electronic instructions, and each coupled
to a computer system bus.
0080. The algorithms and modules presented herein are
not inherently related to any particular computer or other
apparatus. Various general-purpose systems can be used with
programs in accordance with the teachings herein, or it could
prove convenient to construct more specialized apparatuses
to perform the method steps. The required structure for a
variety of these systems will appear from the description. In
addition, the present examples are not described with refer
ence to any particular programming language. It will be
appreciated that a variety of programming languages can be
used to implement the teachings as described herein. Further

US 2013/0212599 A1

more, as will be apparent to one of ordinary skill in the
relevant art, the modules, features, attributes, methodologies,
and other aspects can be implemented as Software, hardware,
firmware or any combination of the three. Of course, wher
evera component is implemented as Software, the component
can be implemented as a standalone program, as part of a
larger program, as a plurality of separate programs, as a
statically or dynamically linked library, as a kernel loadable
module, as a device driver, and/or in every and any other way
known now or in the future to those of skill in the art of
computer programming. Additionally, the present description
is in no way limited to implementation in any specific oper
ating system or environment.
0081. The subject matter described in this specification
can be implemented as one or more computer program prod
ucts, i.e., one or more modules of computer program instruc
tions encoded on a computer readable medium for execution
by, or to control the operation of data processing apparatus.
The instructions can be organized into modules (or engines)
in different numbers and combinations from the exemplary
modules described. The computer readable medium can be a
machine-readable storage device, a machine-readable stor
age substrate, a memory device, a composition of matter
effecting a machine-readable propagated signal, or a combi
nation of one or more them. The term “data processing appa
ratus' encompasses all apparatus, devices, and machines for
processing data, including by way of example a program
mable processor, a computer, or multiple processors or com
puters. The apparatus can include, in addition to hardware,
code that creates an execution environment for the computer
program in question, e.g., code that constitutes processor
firmware, a protocol stack, a database management system,
an operating system, or a combination of one or more of them.
A propagated signal is an artificially generated signal, e.g., a
machine-generated electrical, optical, or electromagnetic sig
nal, that is generated to encode information for transmission
to Suitable receiver apparatus.
0082 While this specification contains many specifics,
these should not be construed as limitations on the scope of
what may be claimed, but rather as descriptions of features
specific to particular implementations of the Subject matter.
Certain features that are described in this specification in the
context of separate embodiments can also be implemented in
combination in a single embodiment. Conversely, various
features that are described in the context of a single embodi
ment can also be implemented in multiple embodiments sepa
rately or in any suitable subcombination. Moreover, although
features may be described above as acting in certain combi
nations and even initially claimed as such, one or more fea
tures from a claimed combination can in some cases be
excised from the combination, and the claimed combination
may be directed to a subcombination or variation of a sub
combination.

0083. Similarly, while operations are depicted in the draw
ings in a particular order, this should not be understood as
requiring that such operations be performed in the particular
order shown or in sequential order, or that all illustrated
operations be performed, to achieve desirable results. In cer
tain circumstances, multitasking and parallel processing may
be advantageous. Moreover, the separation of various system
components in the embodiments described above should not
be understood as requiring such separation in all embodi
ments, and it should be understood that the described program

Aug. 15, 2013

components and systems can generally be integrated together
in a single software product or packaged into multiple soft
ware products.
I0084. The subject matter of this specification has been
described in terms of particular embodiments, but other
embodiments can be implemented and are within the scope of
the following claims. For example, the actions recited in the
claims can be performed in a different order and still achieve
desirable results. As one example, the processes depicted in
the accompanying figures do not necessarily require the par
ticular order shown, or sequential order, to achieve desirable
results. In certain implementations, multitasking and parallel
processing may be advantageous. Other variations are within
the scope of the following claims.
What is claimed is:
1. (canceled)
2. A method comprising:
determining, by a computer system, that a threshold num

ber of pending event notifications in a queue has been
exceeded by an incoming event notification;

determining that two or more event notifications in the
queue are associated with a common feature of the com
puter system; and

combining the two or more event notifications based on the
common feature Such that the number of pending event
notifications, including the combined two or more event
notifications, in the queue no longer exceeds the thresh
old number of event notifications, including replacing
two or more event notifications with a single event noti
fication indicating that a change has occurred with
regard to the common feature.

3. The method of claim 2, further comprising:
scanning the computer system to identify the combined

event notifications associated with the common feature;
and

performing a backup operation including backup data
associated with the combined event notifications.

4. The method of claim 3, where scanning the computer
system includes comparing current data related to the com
mon feature with data from a previous backup to identify
changed data.

5. The method of claim 2, where receiving an incoming
event notification includes receiving an event notification at
an event notification queue that identifies a change to a feature
of the computer system.

6. The method of claim 2, further comprising:
identifying one or more event notifications as protected,
where protected event notifications cannot be combined.

7. The method of claim 2, further comprising:
determining a number of event notifications to combine

according to one or more criteria.
8. A non-transitory computer-readable medium including

instructions which, when executed by one or more processors
CalSCS

determining that a threshold number of pending event noti
fications in a queue has been exceeded by an incoming
event notification;

determining that two or more event notifications in the
queue are associated with a common feature of a com
puter system; and

combining the two or more event notifications based on the
common feature Such that the number of pending event
notifications, including the combined two or more event
notifications, in the queue no longer exceeds the thresh

US 2013/0212599 A1

old number of event notifications, including replacing
two or more event notifications with a single event noti
fication indicating that a change has occurred with
regard to the common feature.

9. The non-transitory computer-readable medium of claim
8, wherein the instructions cause:

Scanning the computer system to identify the combined
event notifications associated with the common feature;
and

performing a backup operation including backup data
associated with the combined event notifications.

10. The non-transitory computer-readable medium of

Aug. 15, 2013

determining that a threshold number of pending event noti
fications in a queue has been exceeded by an incoming
event notification;

determining that two or more event notifications in the
queue are associated with a common feature of a com
puter system; and

combining the two or more event notifications based on the
common feature Such that the number of pending event
notifications, including the combined two or more event
notifications, in the queue no longer exceeds the thresh
old number of event notifications, including replacing
two or more event notifications with a single event noti
fication indicating that a change has occurred with
regard to the common feature.

15. The system of claim 14, wherein the instructions cause:
scanning the computer system to identify the combined

event notifications associated with the common feature;
and

performing a backup operation including backup data
associated with the combined event notifications.

16. The system of claim 15, where the instructions that
cause scanning the computer system include instructions that
cause comparing current data related to the common feature
with data from a previous backup to identify changed data.

17. The system of claim 14, where the instructions that
cause receiving an incoming event notification include
instructions that cause receiving an event notification at an
event notification queue that identifies a change to a feature of
the computer system.

18. The system of claim 14, where the instructions cause:
identifying one or more event notifications as protected,
where protected event notifications cannot be combined.

19. The system of claim 14, where the instructions cause:
determining a number of event notifications to combine

according to one or more criteria.

claim 9, where the instructions that cause Scanning the com
puter system include instructions that cause comparing cur
rent data related to the common feature with data from a
previous backup to identify changed data.

11. The non-transitory computer-readable medium of
claim 8, where the instructions that cause receiving an incom
ing event notification include instructions that cause receiv
ing an event notification at an event notification queue that
identifies a change to a feature of the computer system.

12. The non-transitory computer-readable medium of
claim 8, where the instructions cause:

identifying one or more event notifications as protected,
where protected event notifications cannot be combined.

13. The non-transitory computer-readable medium of
claim 8, where the instructions cause:

determining a number of event notifications to combine
according to one or more criteria.

14. A system comprising:
one or more processors; and
a non-transitory computer-readable medium including

instructions which, when executed by the one or more
processors causes: k

