wo 2017/087425 A1 [N NI D000 OO0 O Y O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(43) International Publication Date
26 May 2017 (26.05.2017)

(10) International Publication Number

WO 2017/087425 Al

WIPOIPCT

(51) International Patent Classification:

eay)

(22)

(25)
(26)
(30)

1

(72

74

31

GOG6F 9/45 (2006.01) GOG6F 17/30 (2006.01)

International Application Number:
PCT/US2016/062108

International Filing Date:
15 November 2016 (15.11.2016)

English
English

Filing Language:
Publication Language:

Priority Data:
14/943,964 17 November 2015 (17.11.2015) Us

Applicant: GOOGLE INC. [US/US]; 1600 Amphitheatre
Parkway, Mountain View, California 94043 (US).

Inventors: MARCHIORI, Eugenio Jorge; 1600 Amphi-
theatre Parkway, Mountain View, California 94043 (US).
EARNSHAW, Richard Geoffrey; 1600 Amphitheatre
Parkway, Mountain View, California 94043 (US).

Agents: LANZA, John D. et al,; Foley & Lardner LLP,
3000 K Street N.W., Suite 600, Washington, District of
Columbia 20007 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,

(84)

CN, CO, CR, CU, CZ, DE, DJ, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
ZW.

BZ, CA,CH, CL,
EC, E

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant'’s entitlement to apply for and be granted a
patent (Rule 4.17(i1))

as to the applicant's entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

[Continued on next page]

(54) Title: CONVERTING FLASH CONTENT TO HTML CONTENT BY GENERATING AN INSTRUCTION LIST

=

100

Data Processing System 110

%

==
@J

Transcoder
Module
130

Generator
Module
135

Paolicy

Content Provider

Computing Device

115

[]

i%
Client
Device
125

FIG. 1

Content Publisher
Computing Device
120

(57) Abstract: Systems and methods for
converting FLASH content to HTML con-
tent is described herein. A transcoder mod-
ule can receive a FLASH-based content
item including instructions to cause a com-
puting device to generate or access a dis-
play list comprising display objects. The
transcoder module can traverse the display
list to identify a class type for each display
object. The transcoder module can gener-
ate a set of HTML-based instructions

based on the class type for each display
object. The transcoder module can insett

=

the generated set of HTML-based instruc-
tions into an instruction list. The
transcoder module can store the instruction
list in a data structure. An policy generator
module can generate an execution policy.
The execution policy can specify an ap-
plication of a client device to execute the
sets of HTML-based instructions in the in-
structions list based on a trigger condition.

WO 2017/087425 A1 AT 00T 0O O

Published:
— with international search report (Art. 21(3))

WO 2017/087425 PCT/US2016/062108

CONVERTING FLASH CONTENT TO HTML CONTENT
BY GENERATING AN INSTRUCTION LIST

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application claims the benefit and priority of U.S. Patent Application
Number 14/943,964, titled “CONVERTING FLASH-CONTENT TO HTML CONTENT BY
GENERATING AN INSTRUCTION LIST,” filed November 17, 2015, which is hereby

incorporated herein in its entirety.

BACKGROUND

[0002] In a computer networked environment, visual content, both raster and vector
graphics, may be rendered on Internet-based resource pages (e.g., webpages) using the
ADOBE® FLASH" format, such as a SHOCKWAVE® FLASH (SWF) movie file or
application. Rendering visual content using the FLASH format may consume much of the
computer’s resources. Applications running the FLASH format may also be vulnerable to

security issues.
SUMMARY

[0003] At least one aspect is directed to a method of converting FLASH content to
HyperText Markup Language (HTML) content. The method can include receiving a
FLASH-based content item including a display list comprising a first display object and a
second display object. The method can include traversing the display list to identify a class
type for the first display object. The method can include generating a first set of HTML-
based instructions based on the class type for the first display object. The method can include
inserting the generated first set of HTML-based instructions into an instruction list. The
method can include traversing the display list to identify a class type for the second display
object. The method can include generating a second set of HTML-based instructions based
on the class type for the second display object. The method can include inserting the
generated second set of HTML-based instructions to the instruction list including the first set
of HTML-based instructions. The method can include storing, onto a database, the

mstruction list in a data structure.

WO 2017/087425 PCT/US2016/062108

[0004] In some implementations, the method can include generating, an execution
policy specifying an application to execute the first set of HTML-based instructions and the
second set of HTML-based instructions based on a trigger condition. In some
implementations, trigger condition can specify the application to execute at least one of the
first set of HTML-based instructions and the second set of HTML-based instructions
responsive to determining that the application is idle. In some implementations, the method
can include generating, by a policy generator module, an execution policy specifying an
application to execute the first set of HTML-based instructions and the second set of HTML-
based instructions based on a trigger condition. In some implementations, trigger condition
can specify the application to execute at least one of the first set of HTML-based instructions
and the second set of HTML-based instructions responsive to determining that a time
duration of the execution of at least one of the first set of HTML-based instructions and the
second set of HTML-based instructions exceeds a predefined time delay. In some
implementations, the method can include sorting the instruction list based on a weight for the

first set of HTML-based instructions and the second set of HTML-based instructions.

[0005] In some implementations, the method can include determining that the first
display object includes a child display object. In some implementations, the method can
include identifying, responsive to determining that the first display object includes the child
display object a class type for the child display object. In some implementations, the method
caninclude generating a third set of HTML-based instructions based on the class type for
the child display object. In some implementations, the method can include inserting the third
set of HTML-based instructions into the instruction list. In some implementations, inserting
the generated first set of HTML-based instructions into the instruction list can further include
inserting the first set of HTML-based instructions, subsequent to inserting the third set of

HTML-based instructions to the instruction list.

[0006] In some implementations, identifying the class type for the first display object
can further include determining that the first display object includes a MovieClip display
object container, the MovieClip display object container comprising a first child display
object and a second child display object. In some implementations, generating the first set of
HTML-based instructions can further include generating, responsive to determining that the
first display object includes the MovieClip display object container, a third set of HTML-
based instructions for the first child display object based on the class type of the first child

WO 2017/087425 PCT/US2016/062108

display object. In some implementations, generating the first set of HTML-based instructions
can further include generating, responsive to determining that the first display object includes
the MovieClip display object container, a fourth set of HTML-based instructions for the
second child display object based on the class type of the second child display object. In
some implementations, inserting the generated first set of HTML-based instructions into the
instruction list can further include inserting the third set of HTML-based instructions and the

fourth set of HTML-based instructions.

[0007] In some implementations, generating the third set of HTML-based instructions
can further include generating a blend instruction based on a blend mode of the MovieClip
display object container. In some implementations, generating the fourth set of HTML-based
instructions can further include generating a filter instruction based on a filter of the

MovieClip display object container.

[0008] In some implementations, identifying the class type for the first display object
can further include identifying the class type for the first display object, the class type for the
first display object includes one of a Bitmap, a Shape, a Sprite, a MovieClip, a TextField, a
TextLine, a StaticText, or a Video. In some implementations, identifying the class type for
the second display object can further include identifying the class type for the first display
object, the class type for the second display object includes one of a Bitmap, a Shape, a
Sprite, a MovieClip, a TextField, a TextLine, a StaticText, or a Video. In some
implementations, generating the first set of HTML-based instructions can further include
generating the first set of HTML-based instructions including at least one of a stack
instruction, a clip instruction, a blend instruction, a draw shape instruction, a draw text
instruction, a draw bitmap instruction, and a draw video instruction. In some
implementations, generating the second set of HTML-based instructions can further include
generating the second set of HTML-based instructions including at least one of the stack
instruction, the clip instruction, the blend instruction, the draw shape instruction, and the

draw text instruction, the draw bitmap instruction, and the draw video instruction.

[0009] In some implementations, inserting the generated first set of HTML-based
instructions can further include enqueueing the generated first set of HTML-based into the
instruction list. In some implementations, the instruction list can include a queue data

structure. In some implementations, inserting the generated second set of HTML-based

WO 2017/087425 PCT/US2016/062108

instructions can further include enqueueing the generated second set of HTML-based

instructions into the instruction list.

[0010] At least one aspect is directed to a system for converting FLASH content to
HyperText Markup Language (HTML) content. The system can include a transcoder module
executing one or more processors. The transcoder module can receive a FLASH-based
content item including a display list comprising a first display object and a second display
object. The transcoder module can traverse the display list to identify a class type for the first
display object. The transcoder module can generate a first set of HTML-based instructions
based on the class type for the first display object. The transcoder module can insert the
generated first set of HTML-based instructions into an instruction list. The transcoder
module can traverse the display list to identify a class type for the second display object. The
transcoder module can generate a second set of HTML-based instructions based on the class
type for the second display object. The transcoder module can insert the generated second set
of HTML-based instructions to the instruction list including the first set of HTML-based
instructions. The transcoder module can store, onto a database, the instruction list in a data

structure.

[0011] In some implementations, the system can further include a policy generator.

In some implementations, the policy generator can generate an execution policy specifying an
application of a client device to execute the first set of HTML-based instructions and the
second set of HTML-based instructions based on a trigger condition. In some
implementations, the trigger condition can specify the application to execute at least one of
the first set of HTML-based instructions and the second set of HTML-based instructions
responsive to determining that the application is idle. In some implementations, the policy
generator can generate an execution policy specifying an application of a client device to
execute the first set of HTML-based instructions and the second set of HTML-based
instructions based on a trigger condition. In some implementations, the trigger condition can
specify the application to execute at least one of the first set of HTML-based instructions and
the second set of HTML-based instructions responsive to determining that a time duration of
the execution of at least one of the first set of HTML-based instructions and the second set of
HTML-based instructions exceeds a predefined time delay. In some implementations, the
policy generator can sort the instruction list based on a weight for the first set of HTML-

based instructions and the second set of HTML-based instructions.

WO 2017/087425 PCT/US2016/062108

[0012] In some implementations, the transcoder module can determine that the first
display object includes a child display object. In some implementations, the transcoder
module can identify, responsive to determining that the first display object includes the child
display object, a class type for the child display object. In some implementations, the
transcoder module can generate a third set of HTML-based instructions based on the class
type for the child display object. In some implementations, the transcoder module can insert
the third set of HTML-based instructions into the instruction list. In some implementations,
the transcoder module can insert the first set of HTML-based instructions, subsequent to

inserting the third set of HTML-based instructions to the instruction list.

[0013] In some implementations, the transcoder module can determine that the first
display object includes a MovieClip display object container, the MovieClip display object
container comprising a first child display object and a second child display object. In some
implementations, the transcoder module can generate, responsive to determining that the first
display object includes the MovieClip display object container, a third set of HTML-based
instructions for the first child display object based on the class type of the first child display
object. In some implementations, the transcoder module can generate, responsive to
determining that the first display object includes the MovieClip display object container, a
fourth set of HTML-based instructions for the second child display object based on the class
type of the second child display object. In some implementations, the transcoder module can
insert the third set of HTML-based instructions and the fourth set of HTML-based

instructions.

[0014] In some implementations, the transcoder module can generate a blend
instruction based on a blend property of the MovieClip display object container. In some
implementations, the transcoder module can generate a filter instruction based on a filter of

the MovieClip display object container.

[0015] In some implementations, the transcoder module can identify the class type
for the first display object, the class type for the first display object includes one of a Bitmap,
a Shape, a Sprite, a MovieClip, a TextField, a TextLine, a StaticText, or a Video. In some
implementations, the transcoder module can identify the class type for the first display
object, the class type for the second display object includes one of the Bitmap, the Shape, the
Sprite, the MovieClip, the TextField, theTextLine, the StaticText, or the Video. In some

implementations, the transcoder module can generate the first set of HTML-based

5

WO 2017/087425 PCT/US2016/062108

instructions including at least one of a stack instruction, a clip instruction, a blend
instruction, a draw shape instruction, a draw text instruction, a draw bitmap instruction, and a
draw video instruction. In some implementations, the transcoder module can generate the
second set of HTML-based instructions including at least one of the stack instruction, the
clip instruction, the blend instruction, the draw shape instruction, the draw text instruction,

the draw bitmap instruction, and the draw video instruction.

[0016] In some implementations, the transcoder module can enqueue the generated
first set of HTML-based into the instruction list. In some implementations, the instruction list
can include a queue data structure. In some implementations, the transcoder module can

enqueue the generated second set of HTML-based instructions into the instruction list.

[0017] It will be appreciated that aspects can be implemented in any convenient form.
For example, aspects may be implemented by appropriate computer programs which may be
carried on appropriate carrier media which may be tangible carrier media (e.g. disks) or
intangible carrier media (e.g. communications signals). Aspects may also be implemented
using suitable apparatus which may take the form of programmable computers running

computer programs arranged to implement the aspect.

[0018] These and other aspects and implementations are discussed in detail below.
The foregoing information and the following detailed description include illustrative
examples of various aspects and implementations, and provide an overview or framework for
understanding the nature and character of the claimed aspects and implementations. The
drawings provide illustration and a further understanding of the various aspects and

implementations, and are incorporated in and constitute a part of this specification.
BRIEF DESCRIPTION OF THE DRAWINGS

[0019] The accompanying drawings are not intended to be drawn to scale. Like
reference numbers and designations in the various drawings indicate like elements. For

purposes of clarity, not every component may be labeled in every drawing. In the drawings:

[0020] FIG. 1 is a block diagram depicting one implementation of an environment for
converting FLASH content to HTML content in a computer network environment, according

to an illustrative implementation;

WO 2017/087425 PCT/US2016/062108

[0021] FIG. 2 is a process diagram depicting one implementation of converting

FLASH content to HTML content, according to an illustrative implementation;

[0022] FIG. 3 is a flow diagram depicting a method of converting FLASH content to

HTML content, according to an illustrative implementation; and

[0023] FIG. 4 is a block diagram illustrating a general architecture for a computer
system that may be employed to implement elements of the systems and methods described

and illustrated herein, according to an illustrative implementation.
DETAILED DESCRIPTION

[0024] Following below are more detailed descriptions of various concepts related to,
and implementations of, methods, apparatuses, and systems of converting FLASH content to
HTML content in a computer network environment. The various concepts introduced above
and discussed in greater detail below may be implemented in any of numerous ways, as the

described concepts are not limited to any particular manner of implementation.

[0025] Visual content, both raster and vector graphics, may be rendered on Internet-
based resource pages (e.g., webpages) using the ADOBE FLASH format, such as a
ShockWave FLASH (SWF) movie file or application. Each ADOBE FLASH file can
correspond to visual content such as a content item (e.g., content on an webpage) to be served
to a client device for presentation on an Internet-based resource page. Each ADOBE FLASH
file can include instructions (e.g., compiled code) that can cause a computing device to
generate or access a display list that can specify the composition of the visible elements for
rendering the visual content. The display list can include a plurality of display objects, such
as Shapes, Texts, MovieClips, and Bitmaps, among others, interconnected to one another in a
hierarchical tree structure. Using the ADOBE FLASH format content to render visual
content, however, can require much of the computer’s resources resulting in quicker power
consumption and can also raise Internet security issues. Some of these challenges may be
addressed by converting ADOBE FLASH files to HyperText Markup Language (HTML)
code and using the HTML code to render the visual content. One implementation may be to
convert each display object of the display list to a HTML graphic and then directly render
each of the converted graphic elements onto separate HTML canvas elements. This
implementation, however, may also require much of the available computer’s resources,
thereby delaying other processes such as the loading or rendering of other elements on the

7

WO 2017/087425 PCT/US2016/062108

webpage. Furthermore, from a human-computer interaction (HCI) perspective, the resultant

latency may result in an adverse user experience while accessing the webpage.

[0026] To address these and other challenges, the present disclosure provides systems
and methods for converting ADOBE FLASH content to HTML content by generating an
HTML-based instruction list. A transcoder module can traverse the display objects of the
display list of an ADOBE FLASH file. At each display object, the transcoder module can
parse the display object to identify a class type of the display type. Examples of class types
may include Shape, Text, MovieClip, and Bitmap, among others. Based on the identified
class type, the transcoder module can generate a set of HTML-based instructions for the
current display object. Examples of instructions may include a stack instruction, a clip
instruction, a blend instruction, or a draw instruction. The stack instruction can specify that
the visual element corresponding to the current display object is to be either clipped or
blended with the visual element corresponding to the subsequent display object while
rendering. The clip instruction can specify that the visual element corresponding to the
current display object is to clip, filter, or truncate the visual element corresponding to the
previous display object while rendering. The blend instruction can specify that the visual
element corresponding to the current display object is to be blended with the visual element
corresponding to the previous display object while rendering. The draw instruction can
specify that the visual element corresponding to the current display object is to be rendered
with the graphic (e.g., shape, bitmap, text, or video) specified. While traversing the display
list, the transcoder module can insert each generated set of HTML-based instructions into an

instruction list for rendering the visual content.

[0027] Additionally, an execution policy generator can create an execution policy to
specify the web application to process the instructions of the instruction list according to a
predefined sequence and timing. For example, the execution policy can specify that the web
application is to execute each instruction when the web application is idle, while loading the
webpage. The execution policy can also specify that the web application is to periodically
execute some of the instructions during a specified timeout and then allow the web

application to load the remainder of the webpage.

[0028] In the context of a computer networked environment, a data processing system
can receive the FLASH-based content item from a content publisher computing device or

content provider computing device. Upon a request to convert the FLASH-based content

8

WO 2017/087425 PCT/US2016/062108

item to an HTML-based content item, the data processing system can convert the FLASH-
based content item to the HTML-based instruction by traversing the display objects of the
display list corresponding to the FLASH-based content item and generating the sets of
HTML-based instructions. In addition, upon request for content from a client device, the data
processing system can transmit the instruction list along with the execution policy to the

client device for rendering visual content on the information resource page.

[0029] By using the instruction list to render the visual content rather than
individually converting and rendering each display object onto a canvas, the web application
may be able to further preserve computer resources, thereby reducing the amount of power
consumed by the computing device. Additionally, by executing the instruction list according
to the execution policy, the resources of the web application may be freed up such that the
web application may load the other elements on the webpage more quickly, thereby

enhancing user’s experience with the webpage.

[0030] At least one aspect is directed to a method of converting FLASH content to
HyperText Markup Language (HTML) content. The method can include receiving, by a
transcoder module executing on one or more processors, a FLASH-based content item
including instructions that can cause a computing device to generate or access a display list
comprising a first display object and a second display object. The method can include
traversing the display list to identify a class type for the first display object. The method can
include generating, by the transcoder module, a first set of HTML-based instructions based
on the class type for the first display object. The method can include inserting the generated
first set of HTML-based instructions into an instruction list. The method can include
traversing the display list to identify a class type for the second display object. The method
can include generating a second set of HTML-based instructions based on the class type for
the second display object. The method can include inserting the generated second set of
HTML-based instructions to the instruction list including the first set of HTML-based

instructions. The method can include storing the instruction list in a data structure.

[0031] FIG. 1 is a block diagram depicting one implementation of an environment for
converting FLASH content to HTML content. The environment 100 includes at least one
data processing system 110. The data processing system 110 can include at least one
processor and a memory, i.e., a processing circuit. The memory stores processor-executable

instructions that, when executed by processor, cause the processor to perform one or more of

9

WO 2017/087425 PCT/US2016/062108

the operations described herein. The processor may include a microprocessor, application-
specific integrated circuit (ASIC), field-programmable gate array (FPGA), etc., or
combinations thereof. The memory may include, but is not limited to, electronic, optical,
magnetic, or any other storage or transmission device capable of providing the processor with
program instructions. The memory may further include a floppy disk, CD-ROM, DVD,
magnetic disk, memory chip, ASIC, FPGA, read-only memory (ROM), random-access
memory (RAM), electrically-erasable ROM (EEPROM), erasable-programmable ROM
(EPROM), flash memory, optical media, or any other suitable memory from which the
processor can read instructions. The instructions may include code from any suitable
computer-programming language. The data processing system can include one or more

computing devices or servers that can perform various functions.

[0032] The network 105 can include computer networks such as the internet, local,
wide, metro or other area networks, intranets, satellite networks, other computer networks
such as voice or data mobile phone communication networks, and combinations thereof. The
data processing system 110 of the system 100 can communicate via the network 105, for
instance with at least one content provider computing device 115, at least one content
publisher computing device 120, or at least one client device 125. The network 105 may be
any form of computer network that relays information between the user computing device
115, data processing system 110, and one or more content sources, for example, web servers,
advertising servers, amongst others. For example, the network 105 may include the Internet
and/or other types of data networks, such as a local area network (LAN), a wide area network
(WAN), a cellular network, satellite network, or other types of data networks. The network
105 may also include any number of computing devices (e.g., computer, servers, routers,
network switches, etc.) that are configured to receive and/or transmit data within network
105. The network 105 may further include any number of hardwired and/or wireless
connections. For example, the user computing device 115 may communicate wirelessly
(e.g., via WiFi, cellular, radio, etc.) with a transceiver that is hardwired (e.g., via a fiber optic

cable, a CATS cable, etc.) to other computing devices in network 105,

[0033] The content provider computing devices 115 can include servers or other
computing devices operated by a content provider entity to provide content items for display
on information resources at the client device 125. The content provided by the content

provider computing device 115 can include third party content items or creatives (e.g., ads)

10

WO 2017/087425 PCT/US2016/062108

for display on information resources, such as a website or web page that includes primary
content, e.g. content provided by the content publisher computing device 120. The content
items can also be displayed on a search results web page. For instance, the content provider
computing device 115 can provide or be the source of ads or other content items for display
in content slots of content web pages, such as a web page of a company where the primary
content of the web page is provided by the company, or for display on a search results
landing page provided by a search engine. The content items associated with the content
provider computing device 115 can be displayed on information resources other than web
pages, such as content displayed as part of the execution of an application on a smartphone or

other client device 125.

[0034] The content publisher computing devices 120 can include servers or other
computing devices operated by a content publishing entity to provide primary content for
display via the network 105. For instance, the content publisher computing device 120 can
include a web page operator who provides primary content for display on the web page. The
primary content can include content other than that provided by the content publisher
computing device 120, and the web page can include content slots configured for the display
of third party content items (e.g., ads) from the content provider computing devices 115. For
instance, the content publisher computing device 120 can operate the website of a company
and can provide content about that company for display on web pages of the website. The
web pages can include content slots configured for the display of third party content items
such as ads of the content provider computing device 115. In some implementations, the
content publisher computing device 120 includes a search engine computing device (e.g.
server) of a search engine operator that operates a search engine website. The primary
content of search engine web pages (e.g., a results or landing web page) can include results
of a search as well as third party content items displayed in content slots such as content
items from the content provider computing device 115. In some implementations, the

content publisher computing device 120 can include a server for serving video content.

[0035] The client devices 125 can include computing devices configured to
communicate via the network 105 to display data such as the content provided by the content
publisher computing device 120 (e.g., primary web page content or other information
resources) and the content provided by the content provider computing device 115 (e.g., third

party content items such as ads configured for display in a content slot of a web page). The

11

WO 2017/087425 PCT/US2016/062108

client device 125, the content provider computing device 115, and the content publisher
computing device 120 can include desktop computers, laptop computers, tablet computers,
smartphones, personal digital assistants, mobile devices, consumer computing devices,
servers, clients, digital video recorders, a set-top box for a television, a video game console,
or any other computing device configured to communicate via the network 105. The client
devices 125 can be communication devices through which an end user can submit requests to
receive content. The requests can be requests to a search engine and the requests can include

search queries. In some implementations, the requests can include a request to access a web

page.

[0036] The content provider computing devices 115, the content publisher computing
device 120 and the client devices 125 can include a processor and a memory, i.e., a
processing circuit. The memory stores machine instructions that, when executed by
processor, cause processor to perform one or more of the operations described herein. The
processor may include a microprocessor, application-specific integrated circuit (ASIC), field-
programmable gate array (FPGA), etc., or combinations thereof. The memory may include,
but is not limited to, electronic, optical, magnetic, or any other storage or transmission device
capable of providing the processor with program instructions. The memory may further
include a floppy disk, CD-ROM, DVD, magnetic disk, memory chip, ASIC, FPGA, read-
only memory (ROM), random-access memory (RAM), electrically-erasable ROM
(EEPROM), erasable-programmable ROM (EPROM), flash memory, optical media, or any
other suitable memory from which the processor can read instructions. The instructions may

include code from any suitable computer-programming language.

[0037] The content provider computing devices 115, the content publisher computing
devices 120, and the client devices 125 may also include one or more user interface devices.
In general, a user interface device refers to any electronic device that conveys data to a user
by generating sensory information (e.g., a visualization on a display, one or more sounds,
etc.) and/or converts received sensory information from a user into electronic signals (e.g., a
keyboard, a mouse, a pointing device, a touch screen display, a microphone, etc.). The one
or more user interface devices may be internal to a housing of the content provider
computing devices 115, the content publisher computing device 120 and the client devices
125 (e.g., a built-in display, microphone, etc.) or external to the housing of content provider

computing devices 115, the content publisher computing device 120 and the client devices

12

WO 2017/087425 PCT/US2016/062108

125 (e.g., a monitor connected to the user computing device 115, a speaker connected to the
user computing device 115, etc.), according to various implementations. For example, the
content provider computing devices 115, the content publisher computing device 120 and the
client devices 125 may include an electronic display, which visually displays web pages
using webpage data received from one or more content sources and/or from the data
processing system 110 via the network 105. In some implementations, a content placement
campaign manager or third-party content provider, such as an advertiser, can communicate
with the data processing system 110 via the content provider computing devices 115. In
some implementations, the advertiser can communicate with the data processing system 110
via a user interface displayed on the user interface devices of the content provider computing

devices 115.

[0038] The data processing system 110 can include at least one server. For instance,
the data processing system 110 can include a plurality of servers located in at least one data
center or server farm. In some implementations, the data processing system 110 includes a
content placement system, e.g., an ad server or ad placement system. The data processing
system 110 can include at least one transcoder module 130, at least one policy generator
module 135, and at least one database 140. The content item selection 130 and the policy
generator module 135 each can include at least one processing unit, server, virtual server,
circuit, engine, agent, appliance, or other logic device such as programmable logic arrays
configured to communicate with the database 140 and with other computing devices (e.g.,
the content provider computing device 115, the content publisher computing device 120, or

the client device 125) via the network 105.

[0039] The transcoder module 130 and the policy generator module 135 can include
or execute at least one computer program or at least one script. The transcoder module 130
and the policy generator module 135 can be separate components, a single component, or
part of the data processing system 110, content provider computing device 115, content
publisher computing device 120, or client device 125. The transcoder module 130 and the
policy generator module 135 can include combinations of software and hardware, such as

one or more processors configured to execute one or more scripts.

[0040] The data processing system 110 can also include one or more content
repositories or databases 140. The databases 140 can be local to the data processing system

110. In some implementations, the databases 140 can be remote to the data processing

13

WO 2017/087425 PCT/US2016/062108

system 110 but can communicate with the data processing system 110 via the network 105.
The databases 140 can include web pages, FLASH-formatted visual content, and instruction
lists for rendering HTML-based visual content, among others, to serve to a client device 125.
In some implementations, the web pages, portions of webpages, and content items can
include those illustratively depicted in FIG. 2. Additional details of the contents of the
database 140 will be provided below.

[0041] The transcoder module 130 can receive a FLASH-based content item
including instructions to cause a computing device to generate or access a display list. In
some implementations, the transcoder module 130 can receive the FLASH-based content
item in the form of a file or one or more packets. In some implementations, the transcoder
module 130 can receive the FLASH-based content item from the content provider computing
device 115, the content publisher computing device 120, the client device 125, or an input
device connected to the data processing system 110. The FLASH-based content item can be,
for example , such as a SHOCKWAVE FLASH (SWF) file format, a FLASH VIDEO (FLV,
F4V, F4P, F4A, FAP or SWC) file format, a FLASH ACTIONSCRIPT (AS, ASC, ABC,
ASOQ) file format, an ACTION MESSAGE (AMF) format file, or any other FLASH file

format used to render visual content.

[0042] The display list can comprise one or more display objects arranged
hierarchically, such as in a tree structure. For example, the display list can include a first
display object and a second display object. In this example, the second display object can be
a child of the first display object. Each of the one or more display objects can represent a
visual element or constituent of the visual content rendered using the FLASH-based content
item. All of the one or more display objects included in the display list can be inherited from
a DisplayObject class. Types of display objects derived using the DisplayObject class can be
a stage (Stage class), a display object container (DisplayObjectContainer class), and other
types of display objects, such as a Bitmap class, Shape class, Sprite class, MovieClip class,
TextField class, TextLine class, StaticText class, and Video class among others. The display
object container can include one or more other display objects (e.g., children display objects)
arranged hierarchically within the display list, such as a subset of the tree structure. It should
be appreciated that some of the derived display objects can also be display object containers.
For example, MovieClip and Sprite display objects can be a display object container

including one or more other children display objects.

14

WO 2017/087425 PCT/US2016/062108

[0043] The transcoder module 130 can traverse the display list to identify a class type
of a display object. In some implementations, the transcoder module 130 can traverse the
display list in one of a pre-order (e.g., root, left subtree, then right subtree), in-order (e.g., left
subtree, root, then right subtree), or post-order (left subtree, right subtree, then root). For
example, the transcoder module 130 can traverse the display list to identify the class type of
the current display object. The transcoder module 130 can then traverse the display list by

[543
1

invoking “getChildAt(i)” function and iteratively incrementing the index “i” to retrieve the
display objects of the display list to identify the class types of the children display objects of
the current display object. Once the child display object of the display list has been
retrieved, the transcoder module 130 can determine whether the current display object is of a
specific class type by invoking the “trace()” function. In this example, to determine whether
the display object is a TextField display object, the transcoder module 130 can invoke
“trace(cur_object is TextField)” to obtain a Boolean value indicating whether the current
display object is a TextField display object. In some implementations, the transcoder module

130 can identify the class type of the display object as one of a Bitmap, a Shape, a Sprite, a

MovieClip, a TextField, a TextLine, a StaticText class, and a Video class among others.

[0044] In some implementations, the transcoder module 130 can determine whether
the display object is a display object container. For example, the transcoder module 130 can
invoke the “trace()” function to determine whether the current display object is a display
object container. Class types that can be a display object container include a MovieClip
class, TextLine class, and Sprite class, among others. In some implementations, the
transcoder module 130 can determine whether the display object container includes one or
more children display objects, responsive to determining that the display object is the display
object container. In some implementations, the transcoder module 130 can identify the class
type for each of the one or more children display objects of the display object container. In
some implementations, the transcoder module 130 can determine whether the display object
is a MovieClip display object container or a Sprite display object container. The MovieClip
display object container can include one or more children display objects arranged in a
timeline. The Sprite display object container can include one or more children display
objects. The TextLine display object container can include one or more children display
objects. In some implementations, the transcoder module 130 can identify the class type for
each of the one or more children display objects of the MovieClip display object container.

In some implementations, the transcoder module 130 can identify an external FLASH

15

WO 2017/087425 PCT/US2016/062108

content item referenced by the MovieClip display object container. In some
implementations, the transcoder module 130 can identify the class type for each of the one or

more children display objects of the Sprite display object container.

[0045] The transcoder module 130 can generate a set of HTML-based instructions
based on the class type for the display object. In some implementations, the transcoder
module 130 can generate another set of HTML-based instructions based on the class types
for each of the children display objects of the display object, responsive or subsequent to
determining that the display object is a display object container. The set of HTML-based
instructions can be at least one of a set of draw bitmap instructions, a set of draw text
instructions, a set of draw shape instructions, a set of stack instructions, a set of blend
instructions, a set of clip instructions, a set of filter instructions, and a set of draw video
instructions, among others. The set of draw bitmap instructions can specify that the visual
element corresponding to the display object is to be drawn with the graphic specified by the
display object. The set of draw text instructions can specify that the visual element
corresponding to the display object is to be drawn with the text string specified by the display
object. In some implementations, the set of draw instructions can include a set of draw edit-
text instructions and a set of draw static-text instructions. The set of draw shape instructions
can specify that the visual element corresponding to the display object is to be drawn with
the shape specified by the display object. The set of stack instructions can specify that the
visual element corresponding to the display object is to be drawn (e.g., bitmap, text, or
shape) and clipped or blended with another visual element corresponding to another display
object while rendering. The set of blend instructions can specify that the visual element
corresponding to the display object is to be blended with another visual element
corresponding to the display object while rendering. The set of clip instructions can specify
that the visual element corresponding to the display object is to clip or truncate another visual
element corresponding to another display object while rendering. In some implementations,
the set of clip instructions can include a set of start clipping instructions, a set of apply
clipping instructions, and a set of end clipping instructions. The set of filter instructions can
specify that the visual element corresponding to the display object is to be filtered while
rendering. The set of draw video instructions can specify that video visual elements
corresponding to the display object is to be drawn, rendered, or otherwise played in

accordance to specifications of the video data of display object.

16

WO 2017/087425 PCT/US2016/062108

[0046] The set of HTML-based instructions can include HTML code (e.g., HTMLS5
markup). In some implementations, the set of HTML-based instructions can include
JavaScript code (e.g., using the “<script> ... </script>" tags) and Cascading Style Sheets
(CSS) markup. The set of HTML-based instructions can cause an application (e.g., web
browser) to render the same visual content as the FLASH-based content item. It should be
appreciated that executing the set of HTML-based instructions to render the visual content
may save computer resources (e.g., CPU and memory use) as compared to executing the
FLASH-based content item to render the same visual content. Thus, executing the set of
HTML-based instructions may lower power consumption and allow the computing device to
be available for other processes. Furthermore, the sharing of a single, generated set of
HTML-based instructions to render the visual content across multiple computing devices

may lead to even greater savings in computer resources and power consumption.

[0047] In some implementations, responsive to identifying that the class type of the
display object is a Bitmap class, transcoder module 130 can generate a set of draw bitmap
instructions. In some implementations, the transcoder module 130 can identify a Bitmap
data corresponding to the display object. The Bitmap data can include raster graphics data
from an external image file or source of any raster graphics format, such as the Bitmap
(BMP) format file, Portable Network Graphics (PNG) format file, Tagged Image File Format
(TIFF) format file, Joint Photographic Experts Group (JPEG) format file, and Graphics
Interchange Format (GIF), among others. In some implementations, the transcoder module
130 can identify a location for the external image file or source. The location for the external
image file or source can include a file path name on a storage of a computing device (e.g.,
storage of computer system 400) or a Uniform Resource Locator (URL) identifying a
computer network location (e.g., “https://www.example.com/example BMP”). In some
implementations, the transcoder module 130 can identify one or more alterations to the
Bitmap data. The one or more alterations can be specified by the display object outside the
external image file. The one or more alterations can include, for example, skewing the
dimensions or resolution of the Bitmap data, manipulating pixels of the Bitmap data,
specifying the transparency of the Bitmap data, and changing the color scheme of the Bitmap
data, among others. In some implementations, the transcoder module 130 can generate the
set of draw shape instructions for the Bitmap data including the “" tag, “src” tag
specifying the source of the Bitmap data, and an “alt” tag specifying an alternate name or text

for the Bitmap data. In some implementations, the transcoder module 130 can generate the

17

WO 2017/087425 PCT/US2016/062108

draw shape instructions for the one or more alterations to the Bitmap data using HTML-
based code equivalent to the one or more alterations. For example, if the display object
specifies that an alpha (e.g., opacity) of the Bitmap data is 50%, the transcoder module 130
can generate the HTML-based code including “bmp.global Alpha = 0.5.”

[0048] In some implementations, responsive to identifying that the class type of the
display object is a TextField, TextLine, or StaticText class, the transcoder module 130 can
generate a set of draw text instructions. In some implementations, responsive to identifying
that the class type of the display object is a TextField or TextLine class, the transcoder
module 130 can generate a set of draw edit-text instructions. In some implementations,
responsive to identifying that the class type of the display object is a TextField, TextLine, or
StaticText class, the transcoder module 130 can generate a set of draw static-text instructions.
In some implementations, the transcoder module 130 can identify text data corresponding to
the display object. The text data can include any string included in a text field of the display
object. In some implementations, the transcoder module 130 can generate the set of draw
static-text instructions for the text data using the string included in the text field of the
display object. For example, if the text field of the display object includes the string “XYZ,”
the transcoder module 130 can generate the set of draw static-text instructions to include the
code, “txt.filltext("“"XYZ”).” In some implementations, the transcoder module 130 can
identify one or more properties of the text data. For example, the one or more properties of
the text field can include font, size, color, rotation, scale, and background color, among
others. In some implementations, the transcoder module 130 can generate the set of draw
edit-text instructions for the one or more alterations to the text data using HTML-based code
equivalent to the one or more alterations. For example, if the display object specifies that the
font of the text is “Comic Sans,” the size 20 pixels, and justified to the center of the element,
the transcoder module 130 can generate the set of edit text instructions to include the code

“txt.font = “20px Comic Sans MS and “txt.textAlign = “center”.”

[0049] In some implementations, responsive to identifying that the class type of the
display object is a Shape class, the transcoder module 130 can generate a set of draw shape
instructions. In some implementations, the transcoder module 130 can identify Shape data
corresponding to the display object. The Shape data can include a shape (e.g., rectangle,
circle, and line), one or more reference points (e.g., end points, anchor points, end points, and

coordinates), color, fill, gradient, opacity, rotation, scale, and curve, among others. In some

18

WO 2017/087425 PCT/US2016/062108

implementations, the transcoder module 130 can generate the set of draw shape instructions
for the Shape data using HTML-based code equivalent to the Shape data. For example, if the
display object specifies that the shape is a rectangle at a pixel position of (30, 40) and a pixel
size of (60 x 20) using the FLASH-based code “shape.graphics.drawRect(30, 40, 60, 20),”
the transcoder module 130 can generate the HTML-based code for the set of draw shape
instructions including “shp.fillRect(30, 40, 60 20).” In this example, if the display object
specifies that the rectangle is to be filled with a radial gradient linear from blue to white, the
transcoder module 130 can generate the draw shape instruction with the HTML-based code

including the “createLinearGradient()” function specifying the respective color range.

[0050] In some implementations, responsive to identifying that the class type of the
display object is a MovieClip class or a Sprite class, the transcoder module 130 can generate
the set of HTML-based instructions for each of the one or more children display objects of
the MovieClip display object container or of the Sprite display object container. It should be
appreciated that the MovieClip class may be a derived class of the Sprite class, including
many of the same properties and functions. In some implementations, the transcoder module
130 can generate a stack instruction corresponding to the stage display object of the
MovieClip display object container or the Sprite display object container. The one or more
children display objects can include display objects of other display object classes, such as
the Bitmap class, Shape class, TextField class, TextLine class, and StaticText class. At least
one of the one or more children display objects can be a first child display object and at least
one other of the one or more children display objects can be a second child display object.
As discussed above, the transcoder module 130 can identify the class type for each of the one
or more children display objects of the MovieClip display object container or of the Sprite
display object container. In some implementations, the transcoder module 130 can generate
the set of HTML-based instructions for each of the one or more children display objects
based on the class type identified for the respective frame display object. For example, the
transcoder module 130 can generate the set of HTML-based instructions for the respective

frame display object using the functionalities described above.

[0051] In some implementations, the transcoder module 130 can generate a set of
blend instructions for the MovieClip display object container or the Sprite display object
container. In some implementations, the transcoder module 130 can identify a blend mode

from the one or more children display objects of the MovieClip display object container or

19

WO 2017/087425 PCT/US2016/062108

the Sprite display object container. In some implementations, the transcoder module 130 can
identify the blend mode, responsive or subsequent to generating the set of HTML-based
instructions for each of the one or more children display objects or each of the one or more
children display objects. Examples of blend modes can include normal

(BlendMode NORMAL), layer (BlendMode. LAYER), multiply (BlendMode MULTIPLY),
screen (BlendMode. SCREEN), lighten (BlendMode. LIGHTEN), darken

(BlendMode. DARKEN), difference (BlendMode DIFFERENCE), add (BlendMode. ADD),
subtract (BlendMode. SUBTRACT), invert (BlendMode. INVERT), alpha

(BlendMode. ALPHA), erase (BlendMode. ERASE), overlay (BlendMode. OVERLAY),
hardlight (BlendMode. HARDLIGHT), and shader (BlendMode. SHADER), among others.
In some implementations, the transcoder module 130 can generate the set of blend
instructions to include HTML-based code equivalent to the blend mode identified from the
MovieClip display object container or the Sprite display object container. For example, if
the blend mode specifies that two of the visual elements each corresponding to two children
display objects associated with the MovieClip display object container or the Sprite display
object container is to have color values inverted, multiplied, and inverted again (e.g.,
BlendMode.screen), the transcoder module 130 can generate the set of blend instructions to
include “cur_canvas.globalCompositeOperation = screen.” In this example, the two children
display objects may be children display objects of the MovieClip display object container or
the Sprite display object container and the transcoder module 130 can have generated the set

of HTML-based instructions prior to generating the set of blend instructions.

[0052] In some implementations, the transcoder module 130 can generate a set of clip
instructions for the MovieClip display object container or the Sprite display object container.
In some implementations, the transcoder module 130 can identify at least two of the children
display objects from the MovieClip display object container or the Sprite display object
container. In some implementations, the at least three children display objects can
correspond to a first child display object, a second child display object, and a third child
display object. In some implementations, the transcoder module 130 can identify that a
visual element corresponding to the first child display object is to truncate or mask a visual
element corresponding to the second child display object. In some implementations, the
transcoder module 130 can identify that a visual element corresponding to the first child
display object is to truncate or mask a visual element corresponding to the second child

display object. In some implementations, the transcoder module 130 can identify that a

20

WO 2017/087425 PCT/US2016/062108

visual element corresponding to the third child display object is to un-truncate or de-mask the
visual element corresponding to the second child display object. In some implementations,
the transcoder module 130 can generate a set of start clipping instructions corresponding to
the first child display object. In some implementations, the transcoder module 130 can
generate a set of apply clipping instructions corresponding to the second child display object.
In some implementations, the transcoder module 130 can generate a set of end clipping

instructions corresponding to the third child display object.

[0053] In some implementations, the transcoder module 130 can identify a filter from
the one or more children display objects of the MovieClip display object container or the
Sprite display object container. In some implementations, the transcoder module 130 can
identify the filter, responsive or subsequent to generating the set of HTML-based instructions
for each of the one or more children display objects. Examples of filters can include bevel
(BevelFilter), blur (BlurFilter), drop shadow (DropShadowFilter), glow (GlowFilter),
gradient bevel (GrandientBevelFilter), gradient glow (GradientGlowFilter), color matrix
(ColorMatrixFilter), convolution (ConvolutionFilter), displacement
(DisplacementMapFilter), and shader (ShaderFilter), among others. In some
implementations, the transcoder module 130 can generate the set of clip instructions to
include HTML-based code equivalent to the filter identified from the MovieClip display
object container. In some implementations, the transcoder module 130 can access a library
of HTML-based code filters from the database 140 to identify the HTML-based code
equivalent to the filter identified from the MovieClip display object container or the Sprite
display object container. For example, if the filter identified from the MovieClip display
object container or the Sprite display object container is a drop shadow filter, the transcoder
module 130 can search the database 140 for a drop shadow filter written in HTML-based
code (e.g., JavaScript, CSS, or HTML).

[0054] In some implementations, responsive to identifying that the class type of the
display object is a Video class, the transcoder module 130 can generate a set of draw video
instructions. In some implementations, the transcoder module 130 can identify video data
corresponding to the display object. The video data can include a resolution, cue point,
encoding type, frame information, and key frame information, among others. The resolution
can include width and height of video visual content corresponding to the display object.

The cue point can include times or frames at which to trigger other actions. The encoding

21

WO 2017/087425 PCT/US2016/062108

type can include, for example, video format (e.g., H.264, SPARK) and container (e.g., FLV,
MP4, MP3, or F4V). The frame information can include visual content data for each frame
of the video visual content corresponding to the display object. The key frame information
can include processing data for each of the frames following a particular frame within the
video visual content. In some implementations, the transcoder module 130 can identify a
location for an external video file or source to include into the set of draw video instructions.
In some implementations, the transcoder module 130 can identify a location for an external
video stream source to include into the set of draw video instructions. In some
implementations, the transcoder module 130 can generate HTML-based code equivalent to
the frame information and key information to include into the set of draw video instructions.
For example, if the video class display object specifies that the frames within the video visual
content are to be smoothed by interpolation, the transcoder module 130 can access a library
of HTML-based code for processing visual content to search for HTML-based code
equivalent to the interpolation specified in the video display object and include into the set of

draw video instructions.

[0055] The transcoder module 130 can insert the set of HTML-based instructions into
an instruction list. The instruction list can be any data structure. The data structure can be,
for example, an array, a matrix, a graph, a tree, a queue, a stack, a linked list, a skip list, and
a struct, among others. In some implementations, the transcoder module 130 can stack the
set of HTML-based instructions to a stack of the instruction list. In some implementations,
the transcoder module 130 can append the set of HTML-based instructions to the instruction
list. In some implementations, the transcoder module 130 can append, add, or otherwise
enqueue the set of HTML-based instructions to the instruction list. In some
implementations, the transcoder module 130 can insert the set of HTML-based instructions
into the instruction list, subsequent to inserting another set of HTML-based instructions
corresponding to a child display object into the instruction list. For example, the transcoder
module 130 can generate and insert a first set of HTML-based instructions corresponding to
a display object container into the instruction list, then generate and insert a second set of
HTML-based instructions corresponding to the left child display object into the instruction
list, and finally generate and insert a third set of HTML-based instructions corresponding to

the right child display object into the instruction list.

22

WO 2017/087425 PCT/US2016/062108

[0056] The transcoder module 130 can identify another display object in the display
list. The transcoder module 130 can repeat the functionality detailed above for each of the
other display objects identified in the display list. For example, subsequent to inserting the
set of HTML-based instructions for a first display object of the display list to the instruction
list, the transcoder module 130 can identify a class type for a second display object, generate
a second set of HTML-based instructions based on the identified class type for the second
display object, and insert the second set of HTML-based instructions to the instruction list.
The transcoder module 130 can then again determine whether there are more display objects
in the display list, and repeat the functionality detailed above. It should be appreciated that
this functionality may be repeated by the transcoder module 130 multiple times for each of
the display objects in the display list.

[0057] The transcoder module 130 can store the instruction list in a data structure
onto the database 140. In some implementations, the transcoder module 130 can store the
instruction list onto the database 140, while traversing the display list. For example, the
transcoder module 130 can store the instruction list onto the database 140 as the transcoder
module 130 generates each of the sets of HTML-based instructions. In some
implementations, the transcoder module 130 can create or instantiate a HTML-based content
item. In some implementations, the transcoder module 130 can generate HTML code based
on the sets of HTML-based instructions of the instruction list for writing onto the HTML-
based content item. For example, the transcoder module 130 can create an HTML file
corresponding to an HTML-based content item and write HTML code based on a set of

HTML-based instructions onto the HTML file.

[0058] The policy generator 135 can generate an execution policy for rendering
visual content. The execution policy can specify an application (e.g., web browser or
program executing on a client device 125) to execute the sets of HTML-based instructions in
the instruction list based on a trigger condition. In some implementations, the policy
generator 135 can generate the execution policy concurrent to, independent of, prior to, or
subsequent to generating the sets of HTML-based instructions. In some implementations, the
policy generator 135 can insert the execution policy into the HTML-based content item that
includes the instruction list. In some implementations, the policy generator 135 can insert
the execution policy into the instruction list. In some implementations, the policy generator

135 can store the execution policy onto the database 140.

23

WO 2017/087425 PCT/US2016/062108

[0059] In some implementations, the trigger condition can specify that the
application is to execute at least one of the sets of HTML-based instructions, responsive to
determining that the application is idle. In some implementations, the trigger condition can
specify that the application is to execute at least one of the sets of HTML-based instructions
within a predetermined time window, subsequent to determining that the application is idle.
In some implementations, the trigger condition can specify that the application is monitor for
a remaining idle time period to execute at least one of the sets of HTML-based instructions
and stop execution of the set of HTML-based instructions when the application detects the
remaining idle time period is below a predetermined threshold. For example, if the
instruction list include a first set of HTML-based instructions and a second set of HTML-
based instructions, an application rendering the visual content using the instruction list can
execute the first set of HTML-based instructions while the application is idle run other
processes (e.g., other elements on a web page). The application can then wait until
completing the execution of other processes. Once the application has determined that it is
idle, the application can then execute the second set of HTML-based instructions in the
instruction list. In this example, the application can determine that the application is idle by
invoking the “requestldleCallback()” function. The application can then execute some of the
sets of HTML-based instruction in the instruction list either during a predetermined time

window or until the application determines that the application is no longer idle again.

[0060] In some implementations, the trigger condition can specify that the
application is to execute at least one of the sets of HTML-based instructions, responsive to
determining that a time duration of executing at least one of the sets of HTML-based
instructions exceeds a predefined time delay. For example, if the instruction list includes a
first set of HTML-based instructions and a second set of HTML-based instructions, an
application rendering the visual content using the instruction list can execute the first set of
HTML-based instructions in a first time duration and subsequent execute the second set of
HTML-based instructions in a second time duration. In this example, both the first time
duration and the second time duration can be specified by invoking the “setTimeout()”

function.

[0061] In some implementations, the policy generator 135 can group the HTML-
based instructions in the instruction list based on a weight for each of the sets of the HTML-

based instructions. Each of the weights for the sets of HTML-based instructions can be

24

WO 2017/087425 PCT/US2016/062108

predetermined based on a priority of rendering. For example, weights for sets of draw text
instructions can be set to be greater than the weights for sets of draw shape instructions,
indicating a higher priority of drawing text while rendering the visual content. In some
implementations, the weights for each of the sets of the HTML-based instructions may be
used to group or otherwise partition executions of one or more sets of the HTML-based
instructions. For example, if the weights for the sets of filter instructions are the same as sets
of blend instructions but different from the sets of draw text instructions, a computing device
executing the instruction can execute the filter instructions and the blend instructions

separately from the draw text instructions.

[0062] In some implementations, the data processing system 110 can transmit the
instruction list and the execution policy to the content provider computing device 115,
content publisher computing device 120 or client device 125. In some implementations, the
data processing system 110 can access the instruction list and the execution policy from the
database 140. In some implementations, the data processing system 110 can transmit the
instruction list, responsive to receiving a request for content. In some implementations, the
data processing system 110 can transmit the instruction list in a HTML-based content item
for presentation on an information resource (e.g., webpage). In some implementations, the
HTML-based instructions can cause a computing device (e.g., the content provider
computing device 115, content publisher computing device 120 or client device 125) to
execute the instruction list to render visual content in accordance with an execution policy.
The execution policy includes one or more rules or instructions according to which the
instructions in the instruction list can be executed by the computing device. For example, the
data processing system 110 can transmit the instruction list, responsive to receiving a request
for content from a client device 125. The request may have been sent by the client device
125 while loading a web page including visual content. Subsequent to receiving the
instruction list, the client device 125 can render visual content by executing the sets of
HTML-based instructions. The client device 125 can execute the sets of HTML-based

instructions in accordance with the execution policy.

[0063] In some implementations, the transcoder module 130 can be implemented

using the following pseudo-code:

InstructionGenerator {

var instructions = [];

25

WO 2017/087425 PCT/US2016/062108

function visitBitmap (bitmap) {

enqueuelnstruction (DRAW BITMAP, bitmap);

function visitText (text) {

enqueuelnstruction (DRAW TEXT, bitmap);

function visitMovieClip (displayObject) {
if (displayObject.isLayer()) {

enqueuelnstruction (STACK LAYER);

processList (displayObject.getDisplayList());

enqueuelnstruction (CLIP LAYER,
displayObject.getMasks) ;

enqueuelnstruction (FILTER LAYER,
displayObject.getFilters());

enqueuelnstruction (BLEND LAYER,
displayObject.getBlends ()); }

else {

processList (displayObject.getDisplayList());

function visitShape (shape) {

enqueuelnstruction (DRAW SHAPE, bitmap);

function processList (displayList) {
var activeMask = [];
for (child : displayList) {
while (activeMask.length > 0 &&
child.depth > activeMask.top()) {
activeMask.pop () ;

26

WO 2017/087425 PCT/US2016/062108

enqueuelnstruction (APPLY CLIP);
}

if (child.isClip()) {
activeMask.push (child.depth);
enqueuelnstruction (START CLIP);
child.accept (this);
enqueuelnstruction (END CLIP); }

else {

child.accept (this);

}
[0064] In some implementations, the policy generator module 135 can be

implemented using the following pseudo-code:

Renderer {
// Process instructions while available and before timeout
function processInstructions (instructions, timeout) ({
while (currentTime < timeout &&
instructions.length) {
var instruction = instructions.dequeue ();

// Do actual instruction work }

// Trigger the processing of instructions for a time, and the
schedules the next batch and returns to the browser time out
function dolInstructions (instructions, renderer) {
renderer.processInstructions (instructions,
currentTime + CHUNK TIME);
while (instructions.length) {
window.setTimeout (doInstructions.bind (instructi
ons, renderer)); 1}

else {

27

WO 2017/087425 PCT/US2016/062108

// Finished. Copy the backbuffer to the canvas

canvas.copy (renderer.canvas) ;

[0065] In some implementations, the data processing system 110 can invoke the
functionalities of the transcoder module 130 and the policy generator module 135 and render

the generated instruction list and execution policy using the following pseudo-code:

var instructionGenerator = new InstructionGenerator();
// generates the instructions

stage.accept (instructionGenerator) ;

// The first layer is a back buffer

var renderer = Renderer (new canvas);

doInstructions (instructionGenerator.instructions,

renderer) ;

[0066] Now referring to FIG. 2 in the context of the system 100 described in
conjunction with FIG. 1, FIG. 2 is a process diagram depicting one implementation of
converting FLASH content to HTML content. In this example, the FLASH display list 200
can include five display object 205A-E, each corresponding to a visual element constituting
the visual content. Display object 205A may be a display object container for display objects
205B and 205C. In tum, display object 205C may be a display object container for display
objects 205D and 205E. Display object 205A may be a Bitmap display object and the visual
element corresponding to display object 205A may include a dotted background. Display
object 205B may be a StaticText display object and the visual element corresponding to
display object 205B may include the string “XYZ” to be displayed generally toward the
upper left corner of the visual content. Display object 205C may be a MovieClip display
object specifying that the children display object 205D and 205E are to be blended together
by erasure (e.g., BlendMode. ERASE). Display object 205D may be a Shape display object
and the visual element corresponding to the display object 205C may include an elliptical
shape filled with a tiled pattern. Display object 205E may be a Bitmap display object and the
visual element corresponding to the display object 205D may include a filled pentagon

shape.
28

WO 2017/087425 PCT/US2016/062108

[0067] In the context of FIG. 2, the transcoder module 130 can traverse the display
list 200. For each display object 205A-E in the display list 200, the transcoder module 130
can identify the class type. In this example, the transcoder module 130 can identify that
display object 205A is a Bitmap display object, display object 205B is a StaticText display
object, display object 205C is a MovieClip display object, display object 205D is a Shape
display object, and display object 205E is a Bitmap display object. The transcoder module
130 can transform data from one format to another format. Using the identified class types
of each of the display objects 205A—E, the transcoder module 130 can transform the FLASH
content corresponding to the display list 200 to HTML-based content (e.g., HTMLS,
JavaScript, and CSS) corresponding to a HTML-based instruction list 210. The transcoder
module 130 can generate a respective set of HTML-based instructions 215A—E for each of
the display objects 205A—FE based on the respective class type. The transcoder module 130
can then insert the sets of HTML-based instructions 215A-E into the HTML-based
instruction list 210. In this example, the transcoder module 130 can generate a set of draw
bitmap instructions 215A for display object 205A, a set of draw text instructions 215B for
display object 205B, a set of blend instructions 215C for display object 205C, a set of draw
shape instructions 215D for display object 205D, a set of draw bitmap instructions 215E for
display object 20SE. With the FLASH content transformed into HTML-based content, the
transcoder module 130 can then store the HTML-based instruction list 210 onto a database
140. The policy generator 135 can generate an execution policy for the HTML-based
instruction list 210 and store the execution policy also onto the database 140. The data
processing system 100 can transmit the HTML-based instruction list 210, responsive to

receiving a request from the client device 125.

[0068] Subsequent to receiving the HTML-based instruction list 210, an application
(e.g., web browser or mobile application) running on the client device 125 can execute the
sets of HTML-based instructions 215A-E of the HTML-based instruction list 210 to render
visual content on a web page. In this example, the client device 125 can render each of the
sets of HTML-based instructions 215A-E sequentially onto an HTML canvas 220. Each of
the sets of HTML-based instructions 215A—E may correspond to a visual element 225A-E.
The application can render the first visual element 225 A that includes a dotted background
corresponding to the first set of HTML-based instructions 215A. The application can then
render the second visual element 225B that includes the string “XYZ” generally toward the

upper left corner of the canvas 220 corresponding to the second set of HTML-based

29

WO 2017/087425 PCT/US2016/062108

instructions 215B. The application can then process the third set of HTML-based
instructions 215C to blend the next two visual elements 225C. The application can then
render the fourth visual element 225D that includes an elliptical shape filled with a tiled
pattern corresponding to the fourth set of HTML-based instructions 215D. The application
can then render the fifth visual element 225E that includes a pentagon shape corresponding
to the fifth set of HTML-based instructions 215E while applying the blend specified by the
third set of HTML-based instructions 215C. It should be appreciated that visual elements
225A-E may be rendered on the same HTML canvas 220. In the end, the application can

have rendered all the visual content onto the resultant HTML canvas 220°.

[0069] Referring to FIG. 3, FIG. 3 is a flow diagram depicting a method 300 of
converting FLASH content to HTML content. The functionality described herein with
respect to method 400 can be performed or otherwise executed by transcoder module 130
and the policy generator module 135 of the data processing system 110, content provider
computing device 115, or content publisher computing device 120, or client device 125 as
shown in FIG. 1, or the computer system 400 depicted in FIG. 4, or any combination thereof.
In brief overview, a computing system can receive a FLASH-based content item (BLOCK
305). The computing system can identify a class type for a display object (BLOCK 310).
The computing system can generate a set of HTML-based instructions (BLOCK 315). The
computing system can insert the set of HTML-based instructions (BLOCK 320). The
computing system can determine whether there are more display objects in the display list
(BLOCK 325). The computing system can identify a next display object in the display list
(BLOCK 330). The computing system can generate an execution policy (BLOCK 335). The

computing system can store the instruction list in a database (BLOCK 340).

[0070] In further detail, the computing system can receive a FLASH-based content
item (BLOCK 305). In some implementations, the computing system can receive a FLASH-
based content item including instructions to cause a computing device to generate or access a
display list. In some implementations, the computing system can receive the FLASH-based
content item in the form of a file or one or more packets. In some implementations, the
computing system can receive the FLASH-based content item from the content provider
computing device, the content publisher computing device, the client device, or an input
device connected to the computing system. The FLASH-based content item can be, for

example , such as a SHOCKWAVE FLASH (SWF) file format, a FLASH VIDEO (FLV,

30

WO 2017/087425 PCT/US2016/062108

F4V, F4P, F4A, F4P or SWC) file format, a FLASH ACTIONSCRIPT (AS, ASC, ABC,
ASOQ) file format, an ACTION MESSAGE (AMF) format file, or any other FLASH file

format used to render visual content.

[0071] The display list can comprise one or more display objects arranged
hierarchically, such as in a tree structure. For example, the display list can include a first
display object and a second display object. In this example, the second display object can be
a child of the first display object. Each of the one or more display objects can represent a
visual element or constituent of the visual content rendered using the FLASH-based content
item. All of the one or more display objects included in the display list can be inherited from
a DisplayObject class. Types of display objects derived using the DisplayObject class can be
a stage (Stage class), a display object container (DisplayObjectContainer class), and other
types of display objects, such as a Bitmap class, Shape class, Sprite class, MovieClip class,
TextField class, TextLine class, StaticText class, and Video class among others. The display
object container can include one or more other display objects (e.g., children display objects)
arranged hierarchically within the display list, such as a subset of the tree structure. It should
be appreciated that some of the derived display objects can also be display object containers.
For example, MovieClip and Sprite display objects can be a display object container

including one or more other display objects.

[0072] The computing system can identify a class type for a display object (BLOCK
310). In some implementations, the computing system can traverse the display list in one of
a pre-order (e.g., root, left subtree, then right subtree), in-order (e.g., left subtree, root, then
right subtree), or post-order (left subtree, right subtree, then root). For example, the
computing system can traverse the display list to identify the class type of the current display
object. The computing system can then traverse the display list by invoking “getChild At(i)”

[543
1

function and iteratively incrementing the index “i” to retrieve the display objects of the
display list to identify the class types of the children display objects of the current display
object. Once the child display object of the display list has been retrieved, the computing
system can determine whether the current display object is of a specific class type by
invoking the “trace()” function. In this example, to determine whether the display object is a
TextField display object, the computing system can invoke “trace(cur_object is TextField)”
to obtain a Boolean value indicating whether the current display object is a TextField display

object. In some implementations, the computing system can identify the class type of the

31

WO 2017/087425 PCT/US2016/062108

display object as one of a Bitmap, a Shape, a Sprite, a MovieClip, a TextField, a TextLine, a

StaticText class, and a Video class among others.

[0073] In some implementations, the computing system can determine whether the
display object is a display object container. For example, the computing system can invoke
the “trace()” function to determine whether the current display object is a display object
container. Class types that can be a display object container include a MovieClip class,
TextLine class, and Sprite class, among others. In some implementations, the computing
system can determine whether the display object container includes one or more children
display objects, responsive to determining that the display object is the display object
container. In some implementations, the computing system can identify the class type for
each of the one or more children display objects of the display object container. In some
implementations, the computing system can determine whether the display object is a
MovieClip display object container or a Sprite display object container. The MovieClip
display object container can include one or more children display objects arranged in a
timeline. The Sprite display object container can include one or more children display
objects. The TextLine display object container can include one or more children display
objects. In some implementations, the computing system can identify the class type for each
of the one or more children display objects of the MovieClip display object container. In
some implementations, the computing system can identify an external FLASH content item
referenced by the MovieClip display object container. In some implementations, the
computing system can identify the class type for each of the one or more children display

objects of the Sprite display object container.

[0074] The computing system can generate a set of HTML-based instructions
(BLOCK 315). In some implementations, the computing system can generate a set of
HTML-based instructions based on the class type for the display object. In some
implementations, the computing system can generate another set of HTML-based
instructions based on the class types for each of the children display objects of the display
object, responsive or subsequent to determining that the display object is a display object
container. The set of HTML-based instructions can be at least one of a set of draw bitmap
instructions, a set of draw text instructions, a set of draw shape instructions, a set of stack
instructions, a set of blend instructions, a set of clip instructions, a set of filter instructions,

and a set of draw video instructions, among others. The set of draw bitmap instructions can

32

WO 2017/087425 PCT/US2016/062108

specify that the visual element corresponding to the display object is to be drawn with the
graphic specified by the display object. The set of draw text instructions can specify that the
visual element corresponding to the display object is to be drawn with the text string
specified by the display object. In some implementations, the set of draw instructions can
include a set of draw edit-text instructions and a set of draw static-text instructions. The set
of draw shape instructions can specify that the visual element corresponding to the display
object is to be drawn with the shape specified by the display object. The set of stack
instructions can specify that the visual element corresponding to the display object is to be
drawn (e.g., bitmap, text, or shape) and clipped or blended with another visual element
corresponding to another display object while rendering. The set of blend instructions can
specify that the visual element corresponding to the display object is to be blended with
another visual element corresponding to the display object while rendering. The set of clip
instructions can specify that the visual element corresponding to the display object is to clip
or truncate another visual element corresponding to another display object while rendering.
In some implementations, the set of clip instructions can include a set of start clipping
instructions, a set of apply clipping instructions, and a set of end clipping instructions. The
set of filter instructions can specify that the visual element corresponding to the display
object is to be filtered while rendering. The set of draw video instructions can specify that
video visual elements corresponding to the display object is to be drawn, rendered, or

otherwise played in accordance to specifications of the video data of display object.

[0075] The set of HTML-based instructions can include HTML code (e.g., HTMLS5
markup). In some implementations, the set of HTML-based instructions can also include
JavaScript code (e.g., using the “<script> ... </script>" tags) and Cascading Style Sheets
(CSS) markup. The set of HTML-based instructions can cause an application (e.g., web
browser) to render the same visual content as the FLASH-based content item. It should be
appreciated that executing the set of HTML-based instructions to render the visual content
may save computer resources (e.g., CPU and memory use) as compared to executing the
FLASH-based content item to render the same visual content. Thus, executing the set of
HTML-based instructions may lower power consumption and allow the computing device to
be available for other processes. Furthermore, sharing of the single, generated set of HTML-
based instructions to render the visual content across multiple computing devices may lead to

even greater savings in computer resources and power consumption.

33

WO 2017/087425 PCT/US2016/062108

[0076] In some implementations, responsive to identifying that the class type of the
display object is a Bitmap class, computing system can generate a set of draw bitmap
instructions. In some implementations, the computing system can identify a Bitmap data
corresponding to the display object. The Bitmap data can include raster graphics data from
an external image file or source of any raster graphics format, such as the Bitmap (BMP)
format file, Portable Network Graphics (PNG) format file, Tagged Image File Format (TIFF)
format file, Joint Photographic Experts Group (JPEG) format file, and Graphics Interchange
Format (GIF), among others. In some implementations, the computing system can identify a
location for the external image file or source. The location for the external image file or
source can include a file path name on a storage of a computing device (e.g., storage of
computer system 400) or a Uniform Resource Locator (URL) identifying a computer
network location (e.g., “https://www.example.com/example. BMP”). In some
implementations, the computing system can identify one or more alterations to the Bitmap
data. The one or more alterations can be specified by the display object outside the external
image file. The one or more alternations can include, for example, skewing the dimensions
or resolution of the Bitmap data, manipulating pixels of the Bitmap data, specifying the
transparency of the Bitmap data, and changing the color scheme of the Bitmap data, among
others. In some implementations, the computing system can generate the set of draw shape
instructions for the Bitmap data including the “" tag, “src” tag specifying the source of
the Bitmap data, and an “alt” tag specifying an alternate name or text for the Bitmap data. In
some implementations, the computing system can generate the draw shape instructions for
the one or more alterations to the Bitmap data using HTML-based code equivalent to the one
or more alterations. For example, if the display object specifies that an alpha (e.g., opacity)
of the Bitmap data is 50%, the computing system can generate the HTML-based code
including “bmp.global Alpha=0.5."

[0077] In some implementations, responsive to identifying that the class type of the
display object is a TextField, TextLine, or StaticText class, the computing system can
generate a set of draw text instructions. In some implementations, responsive to identifying
that the class type of the display object is a TextField or TextLine class, the computing
system can generate a set of draw edit-text instructions. In some implementations,
responsive to identifying that the class type of the display object is a TextField, TextLine, or
StaticText class, the computing system can generate a set of draw static-text instructions. In

some implementations, the computing system can identify text data corresponding to the

34

WO 2017/087425 PCT/US2016/062108

display object. The text data can include any string included in a text field of the display
object. In some implementations, the computing system can generate the set of draw static-
text instructions for the text data using the string included in the text field of the display
object. For example, if the text field of the display object includes the string “XYZ,” the
computing system can generate the set of draw static-text instructions to include the code,
“txtfilltext(“XYZ”).” In some implementations, the computing system can identify one or
more properties of the text data. For example, the one or more properties of the text field can
include font, size, color, rotation, scale, and background color, among others. In some
implementations, the computing system can generate the set of draw edit-text instructions for
the one or more alterations to the text data using HTML-based code equivalent to the one or
more alterations. For example, if the display object specifies that the font of the text is
“Comic Sans,” the size 20 pixels, and justified to the center of the element, the computing
system can generate the set of edit text instructions to include the code “txt.font = “20px

Comic Sans MS™ and “txt.textAlign = “center”.”

[0078] In some implementations, responsive to identifying that the class type of the
display object is a Shape class, the computing system can generate a set of draw shape
instructions. In some implementations, the computing system can identify Shape data
corresponding to the display object. The Shape data can include a shape (e.g., rectangle,
circle, and line), one or more reference points (e.g., end points, anchor points, end points, and
coordinates), color, fill, gradient, opacity, rotation, scale, and curve, among others. In some
implementations, the computing system can generate the set of draw shape instructions for
the Shape data using HTML-based code equivalent to the Shape data. For example, if the
display object specifies that the shape is a rectangle at a pixel position of (30, 40) and a pixel
size of (60 x 20) using the FLASH-based code “shape.graphics.drawRect(30, 40, 60, 20),”
the computing system can generate the HTML-based code for the set of draw shape
instructions including “shp.fillRect(30, 40, 60 20).” In this example, if the display object
specifies that the rectangle is to be filled with a radial gradient linear from blue to white, the
computing system can generate the draw shape instruction with the HTML-based code

including the “createLinearGradient()” function specifying the respective color range.

[0079] In some implementations, responsive to identifying that the class type of the
display object is a MovieClip class or a Sprite class, the computing system can generate the

set of HTML-based instructions for each of the one or more children display objects of the

35

WO 2017/087425 PCT/US2016/062108

MovieClip display object container or of the Sprite display object container. It should be
appreciated that the MovieClip class may be a derived class of the Sprite class, including
many of the same properties and functions. In some implementations, the computing system
can generate a stack instruction corresponding to the stage display object of the MovieClip
display object container or the Sprite display object container. The one or more children
display objects can include display objects of other display object classes, such as the Bitmap
class, Shape class, TextField class, TextLine class, and StaticText class. At least one of the
one or more children display objects can be a first child display object and at least one other
of the one or more children display objects can be a second child display object. As
discussed above, the computing system can identify the class type for each of the one or
more children display objects of the MovieClip display object container or of the Sprite
display object container. In some implementations, the computing system can generate the
set of HTML-based instructions for each of the one or more children display objects based on
the class type identified for the respective frame display object. For example, the computing
system can generate the set of HTML-based instructions for the respective frame display

object using the functionalities described above.

[0080] In some implementations, the computing system can generate a set of blend
instructions for the MovieClip display object container or the Sprite display object container.
In some implementations, the computing system can identify a blend mode from the one or
more children display objects of the MovieClip display object container or the Sprite display
object container. In some implementations, the computing system can identify the blend
mode, responsive or subsequent to generating the set of HTML-based instructions for each of
the one or more children display objects or each of the one or more children display objects.
Examples of blend modes can include normal (BlendMode. NORMAL), layer

(BlendMode. LAYER), multiply (BlendMode. MULTIPLY), screen (BlendMode. SCREEN),
lighten (BlendMode LIGHTEN), darken (BlendMode.DARKEN), difference
(BlendMode.DIFFERENCE), add (BlendMode. ADD), subtract (BlendMode. SUBTRACT),
invert (BlendMode. INVERT), alpha (BlendMode. ALPHA), erase (BlendMode. ERASE),
overlay (BlendMode. OVERLAY), hardlight (BlendMode HARDLIGHT), and shader
(BlendMode.SHADER), among others. In some implementations, the computing system can
generate the set of blend instructions to include HTML-based code equivalent to the blend
mode identified from the MovieClip display object container or the Sprite display object

container. For example, if the blend mode specifies that two of the visual elements each

36

WO 2017/087425 PCT/US2016/062108

corresponding to two children display objects associated with the MovieClip display object
container or the Sprite display object container is to have color values inverted, multiplied,
and inverted again (e.g., BlendMode.screen), the computing system can generate the set of
blend instructions to include “cur_canvas.global CompositeOperation = screen.” In this
example, the two children display objects may be children display objects of the MovieClip
display object container or the Sprite display object container and the computing system can
have generated the set of HTML-based instructions prior to generating the set of blend

instructions.

[0081] In some implementations, the computing system can generate a set of clip
instructions for the MovieClip display object container or the Sprite display object container.
In some implementations, the computing system can identify at least two of the children
display objects from the MovieClip display object container or the Sprite display object
container. In some implementations, the at least three children display objects can
correspond to a first child display object, a second child display object, and a third child
display object. In some implementations, the computing system can identify that a visual
element corresponding to the first child display object is to truncate or mask a visual element
corresponding to the second child display object. In some implementations, the computing
system can identify that a visual element corresponding to the first child display object is to
truncate or mask a visual element corresponding to the second child display object. In some
implementations, the computing system can identify that a visual element corresponding to
the third child display object is to un-truncate or de-mask the visual element corresponding to
the second child display object. In some implementations, the computing system can
generate a set of start clipping instructions corresponding to the first child display object. In
some implementations, the computing system can generate a set of apply clipping
instructions corresponding to the second child display object. In some implementations, the
computing system can generate a set of end clipping instructions corresponding to the third

child display object.

[0082] In some implementations, the computing system can identify a filter from the
one or more children display objects of the MovieClip display object container or the Sprite
display object container. In some implementations, the computing system can identify the
filter, responsive or subsequent to generating the set of HTML-based instructions for each of

the one or more children display objects. Examples of filters can include bevel (BevelFilter),

37

WO 2017/087425 PCT/US2016/062108

blur (BlurFilter), drop shadow (DropShadowFilter), glow (GlowFilter), gradient bevel
(GrandientBevelFilter), gradient glow (GradientGlowFilter), color matrix
(ColorMatrixFilter), convolution (ConvolutionFilter), displacement
(DisplacementMapFilter), and shader (ShaderFilter), among others. In some
implementations, the computing system can generate the set of clip instructions to include
HTML-based code equivalent to the filter identified from the MovieClip display object
container. In some implementations, the computing system can access a library of HTML-
based code filters from the database to identify the HTML-based code equivalent to the filter
identified from the MovieClip display object container or the Sprite display object container.
For example, if the filter identified from the MovieClip display object container or the Sprite
display object container is a drop shadow filter, the computing system can search the
database for a drop shadow filter written in HTML-based code (e.g., JavaScript, CSS, or
HTML).

[0083] In some implementations, responsive to identifying that the class type of the
display object is a Video class, the computing system can generate a set of draw video
instructions. In some implementations, the computing system can identify video data
corresponding to the display object. The video data can include a resolution, cue point,
encoding type, frame information, and key frame information, among others. The resolution
can include width and height of video visual content corresponding to the display object.

The cue point can include times or frames at which to trigger other actions. The encoding
type can include, for example, video format (e.g., H.264, SPARK) and container (e.g., FLV,
MP4, MP3, or F4V). The frame information can include visual content data for each frame
of the video visual content corresponding to the display object. The key frame information
can include processing data for each of the frames following a particular frame within the
video visual content. In some implementations, the computing system can identify a location
for an external video file or source to include into the set of draw video instructions. In some
implementations, the computing system can identify a location for an external video stream
source to include into the set of draw video instructions. In some implementations, the
computing system can generate HTML-based code equivalent to the frame information and
key information to include into the set of draw video instructions. For example, if the video
class display object specifies that the frames within the video visual content are to be

smoothed by interpolation, the computing system can access a library of HTML-based code

38

WO 2017/087425 PCT/US2016/062108

for processing visual content to search for HTML-based code equivalent to the interpolation

specified in the video display object and include into the set of draw video instructions.

[0084] The computing system can insert the set of HTML-based instructions
(BLOCK 320). The computing system can insert the set of HTML-based instructions into an
instruction list. The instruction list can be any data structure. The data structure can be, for
example, an array, a matrix, a graph, a tree, a queue, a stack, a linked list, a skip list, and a
struct, among others. In some implementations, the computing system can stack the set of
HTML-based instructions to a stack of the instruction list. In some implementations, the
computing system can append the set of HTML-based instructions to the instruction list. In
some implementations, the computing system can append, add, or otherwise enqueue the set
of HTML-based instructions to the instruction list. In some implementations, the computing
system can insert the set of HTML-based instructions into the instruction list, subsequent to
inserting another set of HTML-based instructions corresponding to a child display object into
the instruction list. For example, the computing system can generate and insert a first set of
HTML-based instructions corresponding to a display object container into the instruction list,
then generate and insert a second set of HTML-based instructions corresponding to the left
child display object into the instruction list, and finally generate and insert a third set of
HTML-based instructions corresponding to the right child display object into the instruction
list.

[0085] The computing system can determine whether there are more display objects
in the display list (BLOCK 325). For example, the computing system can determine whether
index for the current display object is at the length of the display list. If the index is less than
the length of the display list, the computing device can determine that there are more display

objects in the display list.

[0086] The computing system can identify a next display object in the display list
(BLOCK 330). Subsequently, the computing system can repeat the functionality detailed in
BLOCKS 310-325 above for each of the other display objects identified in the display list.
For example, subsequent to inserting the set of HTML-based instructions for a first display
object of the display list to the instruction list, the computing system can identify a class type
for a second display object, generate a second set of HTML-based instructions based on the
identified class type for the second display object, and insert the second set of HTML-based

instructions to the instruction list. The computing system can then again determine whether

39

WO 2017/087425 PCT/US2016/062108

there are more display objects in the display list, and repeat the functionality described in

BLOCKS 310-325.

[0087] The computing system can generate an execution policy (BLOCK 335). The
execution policy can specify an application (e.g., web browser or program executing on a
client device) to execute the sets of HTML-based instructions in the instruction list based on
a trigger condition. In some implementations, the computing system can generate the
execution policy concurrent to, independent of, prior to, or subsequent to generating the sets
of HTML-based instructions. In some implementations, the computing system can insert the
execution policy into the HTML-based content item that includes the instruction list. In
some implementations, the computing system can insert the execution policy into the
instruction list. In some implementations, the computing system can store the execution

policy onto the database.

[0088] In some implementations, the trigger condition can specify that the
application is to execute at least one of the sets of HTML-based instructions, responsive to
determining that the application is idle. In some implementations, the trigger condition can
specify that the application is to execute at least one of the sets of HTML-based instructions
within a predetermined time window, subsequent to determining that the application is idle.
In some implementations, the trigger condition can specify that the application is monitor for
a remaining idle time period to execute at least one of the sets of HTML-based instructions
and stop execution of the set of HTML-based instructions when the application detects the
remaining idle time period is below a predetermined threshold. For example, if the
instruction list include a first set of HTML-based instructions and a second set of HTML-
based instructions, an application rendering the visual content using the instruction list can
execute the first set of HTML-based instructions while the application is idle run other
processes (e.g., other elements on a web page). The application can then wait until
completing the execution of other processes. Once the application has determined that it is
idle, the application can then execute the second set of HTML-based instructions in the
instruction list. In this example, the application can determine that the application is idle by
invoking the “requestldleCallback()” function. The application can then execute some of the
sets of HTML-based instruction in the instruction list either during a predetermined time

window or until the application determines that the application is no longer idle again.

40

WO 2017/087425 PCT/US2016/062108

[0089] In some implementations, the trigger condition can specify that the
application is to execute at least one of the sets of HTML-based instructions, responsive to
determining that a time duration of executing at least one of the sets of HTML-based
instructions exceeds a predefined time delay. For example, if the instruction list includes a
first set of HTML-based instructions and a second set of HTML-based instructions, an
application rendering the visual content using the instruction list can execute the first set of
HTML-based instructions in a first time duration and subsequent execute the second set of
HTML-based instructions in a second time duration. In this example, both the first time
duration and the second time duration can be specified by invoking the “setTimeout()”

function.

[0090] The computing system can store the instruction list in a database (BLOCK
340). In some implementations, the computing system can store the instruction list and the
execution policy in a data structure onto the database. In some implementations, the
computing system can store the instruction list onto the database, while traversing the display
list. For example, the computing system can store the instruction list onto the database as the
computing system generates each of the sets of HTML-based instructions. In some
implementations, the computing system can create or instantiate a HTML-based content
item. In some implementations, the computing system can generate HTML code based on
the sets of HTML-based instructions of the instruction list for writing onto the HTML-based
content item. For example, the computing system can create an HTML file corresponding to
an HTML-based content item and write HTML code based on a set of HTML-based
instructions onto the HTML file.

[0091] In some implementations, the computing system can group the HTML-based
instructions in the instruction list based on a weight for each of the sets of the HTML-based
instructions. Each of the weights for the sets of HTML-based instructions can be
predetermined based on a priority of rendering. For example, weights for sets of draw text
instructions can be set to be greater than the weights for sets of draw shape instructions,
indicating a higher priority of drawing text while rendering the visual content. In some
implementations, the weights for each of the sets of the HTML-based instructions may be
used to group or otherwise partition executions of one or more sets of the HTML-based
instructions. For example, if the weights for the sets of filter instructions are the same as sets

of blend instructions but different from the sets of draw text instructions, a computing device

41

WO 2017/087425 PCT/US2016/062108

executing the instruction can execute the filter instructions and the blend instructions

separately from the draw text instructions.

[0092] In some implementations, the computing system can transmit the instruction
list and the execution policy to the content provider computing system, content publisher
computing system or client device. In some implementations, the computing system can
access the instruction list and the execution policy from the database. In some
implementations, the computing system can transmit the instruction list, responsive to
receiving a request for content. In some implementations, the computing system can transmit
the instruction list in a HTML-based content item for presentation on an information resource
(e.g., webpage). In some implementations, the HTML-based instructions can cause a
computing system (e.g., the content provider computing system, content publisher computing
system or client device) to execute the instruction list to render visual content in accordance
with an execution policy. For example, the computing system can transmit the instruction
list, responsive to receiving a request for content from a client device. The request may have
been sent by the client device while loading a web page including visual content.

Subsequent to receiving the instruction list, the client device can render visual content by
executing the sets of HTML-based instructions. The client device can execute the sets of

HTML-based instructions in accordance with the execution policy.

[0093] FIG. 4 shows the general architecture of an illustrative computer system 400
that may be employed to implement any of the computer systems discussed herein (including
the system 110 and its components such as the transcoder module 130 and the policy
generator module 135) in accordance with some implementations. The computer system 400
can be used to provide information via the network 105 for display. The computer system
400 of FIG. 4 comprises one or more processors 420 communicatively coupled to memory
425, one or more communications interfaces 405, and one or more output devices 410 (e.g.,
one or more display units) and one or more input devices 415. The processors 420 can be
included in the data processing system 110 or the other components of the system 110 such

as the transcoder module 130 and the policy generator module 135, among others.

[0094] In the computer system 400 of FIG. 4, the memory 425 may comprise any
computer-readable storage media, and may store computer instructions such as processor-
executable instructions for implementing the various functionalities described herein for

respective systems, as well as any data relating thereto, generated thereby, or received via the

42

WO 2017/087425 PCT/US2016/062108

communications interface(s) or input device(s) (if present). Referring again to the system
110 of FIG. 1, the data processing system 110 can include the memory 425 to store
information related to the availability of inventory of one or more content units, reservations
of one or more content units, among others. The memory 425 can include the database 140.
The processor(s) 420 shown in FIG. 4 may be used to execute instructions stored in the
memory 425 and, in so doing, also may read from or write to the memory various

information processed and or generated pursuant to execution of the instructions.

[0095] The processor 420 of the computer system 400 shown in FIG. 4 also may be
communicatively coupled to or control the communications interface(s) 405 to transmit or
receive various information pursuant to execution of instructions. For example, the
communications interface(s) 405 may be coupled to a wired or wireless network, bus, or
other communication means and may therefore allow the computer system 400 to transmit
information to or receive information from other devices (e.g., other computer systems).
While not shown explicitly in the system of FIG. 1, one or more communications interfaces
facilitate information flow between the components of the system 400. In some
implementations, the communications interface(s) may be configured (e.g., via various
hardware components or software components) to provide a website as an access portal to at
least some aspects of the computer system 400. Examples of communications interfaces 405
include user interfaces (e.g., web pages), through which the user can communicate with the

data processing system 110.

[0096] The output devices 410 of the computer system 400 shown in FIG. 4 may be
provided, for example, to allow various information to be viewed or otherwise perceived in
connection with execution of the instructions. The input device(s) 415 may be provided, for
example, to allow a user to make manual adjustments, make selections, enter data, or interact
in any of a variety of manners with the processor during execution of the instructions.
Additional information relating to a general computer system architecture that may be

employed for various systems discussed herein is provided further herein.

[0097] Implementations of the subject matter and the operations described in this
specification can be implemented in digital electronic circuitry, or in computer software
embodied on a tangible medium, firmware, or hardware, including the structures disclosed in
this specification and their structural equivalents, or in combinations of one or more of them.

Implementations of the subject matter described in this specification can be implemented as

43

WO 2017/087425 PCT/US2016/062108

one or more computer programs, i.e., one or more modules of computer program
instructions, encoded on computer storage medium for execution by, or to control the
operation of, data processing apparatus. The program instructions can be encoded on an
artificially-generated propagated signal, e.g., a machine-generated electrical, optical, or
electromagnetic signal that is generated to encode information for transmission to suitable
receiver apparatus for execution by a data processing apparatus. A computer storage
medium can be, or be included in, a computer-readable storage device, a computer-readable
storage substrate, a random or serial access memory array or device, or a combination of one
or more of them. Moreover, while a computer storage medium is not a propagated signal, a
computer storage medium can include a source or destination of computer program
instructions encoded in an artificially-generated propagated signal. The computer storage
medium can also be, or be included in, one or more separate physical components or media

(e.g., multiple CDs, disks, or other storage devices).

[0098] The features disclosed herein may be implemented on a smart television
module (or connected television module, hybrid television module, etc.), which may include
a processing module configured to integrate internet connectivity with more traditional
television programming sources (e.g., received via cable, satellite, over-the-air, or other
signals). The smart television module may be physically incorporated into a television set or
may include a separate device such as a set-top box, Blu-ray or other digital media player,
game console, hotel television system, and other companion device. A smart television
module may be configured to allow viewers to search and find videos, movies, photos and
other content on the web, on a local cable TV channel, on a satellite TV channel, or stored on
alocal hard drive. A set-top box (STB) or set-top unit (STU) may include an information
appliance device that may contain a tuner and connect to a television set and an external
source of signal, turning the signal into content which is then displayed on the television
screen or other display device. A smart television module may be configured to provide a
home screen or top level screen including icons for a plurality of different applications, such
as a web browser and a plurality of streaming media services, a connected cable or satellite
media source, other web “channels”, etc. The smart television module may further be
configured to provide an electronic programming guide to the user. A companion
application to the smart television module may be operable on a mobile computing device to
provide additional information about available programs to a user, to allow the user to

control the smart television module, etc. In alternate implementations, the features may be

44

WO 2017/087425 PCT/US2016/062108

implemented on a laptop computer or other personal computer, a smartphone, other mobile

phone, handheld computer, a tablet PC, or other computing device.

[0099] The operations described in this specification can be implemented as
operations performed by a data processing apparatus on data stored on one or more

computer-readable storage devices or received from other sources.

BRI

[00100] The terms “data processing apparatus™, “data processing system”, “user
device” or “computing device” encompasses all kinds of apparatus, devices, and machines
for processing data, including by way of example a programmable processor, a computer, a
system on a chip, or multiple ones, or combinations, of the foregoing. The apparatus can
include special purpose logic circuitry, e.g., an FPGA (field programmable gate array) or an
ASIC (application-specific integrated circuit). The apparatus can also include, in addition to
hardware, code that creates an execution environment for the computer program in question,
e.g., code that constitutes processor firmware, a protocol stack, a database management
system, an operating system, a cross-platform runtime environment, a virtual machine, or a
combination of one or more of them. The apparatus and execution environment can realize
various different computing model infrastructures, such as web services, distributed
computing and grid computing infrastructures. The transcoder module 130 and the policy
generator module 135 can include or share one or more data processing apparatuses,

computing devices, or processors.

[00101] A computer program (also known as a program, software, software
application, script, or code) can be written in any form of programming language, including
compiled or interpreted languages, declarative or procedural languages, and it can be
deployed in any form, including as a stand-alone program or as a module, component,
subroutine, object, or other unit suitable for use in a computing environment. A computer
program may, but need not, correspond to a file in a file system. A program can be stored in
a portion of a file that holds other programs or data (e.g., one or more scripts stored in a
markup language document), in a single file dedicated to the program in question, or in
multiple coordinated files (e.g., files that store one or more modules, sub-programs, or
portions of code). A computer program can be deployed to be executed on one computer or
on multiple computers that are located at one site or distributed across multiple sites and

interconnected by a communication network.

45

WO 2017/087425 PCT/US2016/062108

[00102] The processes and logic flows described in this specification can be performed
by one or more programmable processors executing one or more computer programs to
perform actions by operating on input data and generating output. The processes and logic
flows can also be performed by, and apparatuses can also be implemented as, special purpose
logic circuitry, e.g., an FPGA (field programmable gate array) or an ASIC

(application-specific integrated circuit).

[00103] Processors suitable for the execution of a computer program include, by way
of example, both general and special purpose microprocessors, and any one or more
processors of any kind of digital computer. Generally, a processor will receive instructions
and data from a read-only memory or a random access memory or both. The essential
elements of a computer are a processor for performing actions in accordance with
instructions and one or more memory devices for storing instructions and data. Generally, a
computer will also include, or be operatively coupled to receive data from or transfer data to,
or both, one or more mass storage devices for storing data, e.g., magnetic, magneto-optical
disks, or optical disks. However, a computer need not have such devices. Moreover, a
computer can be embedded in another device, e.g., a mobile telephone, a personal digital
assistant (PDA), a mobile audio or video player, a game console, a Global Positioning
System (GPS) receiver, or a portable storage device (e.g., a universal serial bus (USB)
FLASH drive), for example. Devices suitable for storing computer program instructions and
data include all forms of non-volatile memory, media and memory devices, including by way
of example semiconductor memory devices, e.g., EPROM, EEPROM, and flash memory
devices; magnetic disks, e.g., internal hard disks or removable disks; magneto-optical disks;
and CD-ROM and DVD-ROM disks. The processor and the memory can be supplemented

by, or incorporated in, special purpose logic circuitry.

[00104] To provide for interaction with a user, implementations of the subject matter
described in this specification can be implemented on a computer having a display device,
e.g., a CRT (cathode ray tube), plasma, or LCD (liquid crystal display) monitor, for
displaying information to the user and a keyboard and a pointing device, e.g., a mouse or a
trackball, by which the user can provide input to the computer. Other kinds of devices can be
used to provide for interaction with a user as well; for example, feedback provided to the user
can include any form of sensory feedback, e.g., visual feedback, auditory feedback, or tactile

feedback; and input from the user can be received in any form, including acoustic, speech, or

46

WO 2017/087425 PCT/US2016/062108

tactile input. In addition, a computer can interact with a user by sending documents to and
receiving documents from a device that is used by the user; for example, by sending web
pages to a web browser on a user’s client device in response to requests received from the

web browser.

[00105] Implementations of the subject matter described in this specification can be
implemented in a computing system that includes a back-end component, e.g., as a data
server, or that includes a middleware component, e.g., an application server, or that includes
a front-end component, e.g., a client computer having a graphical user interface or a Web
browser through which a user can interact with an implementation of the subject matter
described in this specification, or any combination of one or more such back-end,
middleware, or front-end components. The components of the system can be interconnected
by any form or medium of digital data communication, e.g., a communication network.
Examples of communication networks include a local area network (“LAN™) and a wide area
network (“WAN?”), an inter-network (e.g., the Internet), and peer-to-peer networks (e.g., ad

hoc peer-to-peer networks).

[00106] The computing system such as system 400 or system 110 can include clients
and servers. For example, the data processing system 110 can include one or more servers in
one or more data centers or server farms. A client and server are generally remote from each
other and typically interact through a communication network. The relationship of client and
server arises by virtue of computer programs running on the respective computers and having
a client-server relationship to each other. In some implementations, a server transmits data
(e.g., an HTML page) to a client device (e.g., for purposes of displaying data to and receiving
user input from a user interacting with the client device). Data generated at the client device

(e.g., aresult of the user interaction) can be received from the client device at the server.

[00107] While this specification contains many specific implementation details, these
should not be construed as limitations on the scope of any inventions or of what may be
claimed, but rather as descriptions of features specific to particular implementations of the
systems and methods described herein. Certain features that are described in this
specification in the context of separate implementations can also be implemented in
combination in a single implementation. Conversely, various features that are described in
the context of a single implementation can also be implemented in multiple implementations

separately or in any suitable subcombination. Moreover, although features may be described

47

WO 2017/087425 PCT/US2016/062108

above as acting in certain combinations and even initially claimed as such, one or more
features from a claimed combination can in some cases be excised from the combination, and
the claimed combination may be directed to a subcombination or variation of a

subcombination.

[00108] Similarly, while operations are depicted in the drawings in a particular order,
this should not be understood as requiring that such operations be performed in the particular
order shown or in sequential order, or that all illustrated operations be performed, to achieve
desirable results. In some cases, the actions recited in the claims can be performed in a
different order and still achieve desirable results. In addition, the processes depicted in the
accompanying figures do not necessarily require the particular order shown, or sequential

order, to achieve desirable results.

[00109] In certain circumstances, multitasking and parallel processing may be
advantageous. Moreover, the separation of various system components in the
implementations described above should not be understood as requiring such separation in all
implementations, and it should be understood that the described program components and
systems can generally be integrated together in a single software product or packaged into
multiple software products. For example, the transcoder module 130 and the policy
generator module 135 can be part of the data processing system 110, a single module, a logic
device having one or more processing modules, one or more servers, or part of a search

engine.

[00110] Having now described some illustrative implementations and
implementations, it is apparent that the foregoing is illustrative and not limiting, having been
presented by way of example. In particular, although many of the examples presented herein
involve specific combinations of method acts or system elements, those acts and those
elements may be combined in other ways to accomplish the same objectives. Acts, elements
and features discussed only in connection with one implementation are not intended to be

excluded from a similar role in other implementations or implementations.

[00111] The phraseology and terminology used herein is for the purpose of description

2% ¢

and should not be regarded as limiting. The use of “including” “comprising™ “having™

9 <Cr

“containing” “involving

% ¢ 2% ¢

characterized by” “characterized in that” and variations thereof

herein, is meant to encompass the items listed thereafter, equivalents thereof, and additional

48

WO 2017/087425 PCT/US2016/062108

items, as well as alternate implementations consisting of the items listed thereafter
exclusively. In one implementation, the systems and methods described herein consist of
one, each combination of more than one, or all of the described elements, acts, or

components.

[00112] Any references to implementations or elements or acts of the systems and
methods herein referred to in the singular may also embrace implementations including a
plurality of these elements, and any references in plural to any implementation or element or
act herein may also embrace implementations including only a single element. References in
the singular or plural form are not intended to limit the presently disclosed systems or
methods, their components, acts, or elements to single or plural configurations. References
to any act or element being based on any information, act or element may include
implementations where the act or element is based at least in part on any information, act, or

element.

[00113] Any implementation disclosed herein may be combined with any other

2% ¢ 2% <<

implementation, and references to “an implementation,” “‘some implementations,” “an

2 < 2% ¢

alternate implementation,” “various implementation,” “one implementation” or the like are
not necessarily mutually exclusive and are intended to indicate that a particular feature,
structure, or characteristic described in connection with the implementation may be included
in at least one implementation. Such terms as used herein are not necessarily all referring to
the same implementation. Any implementation may be combined with any other
implementation, inclusively or exclusively, in any manner consistent with the aspects and

implementations disclosed herein.

[00114] References to “or” may be construed as inclusive so that any terms described

using “or”’ may indicate any of a single, more than one, and all of the described terms.

[00115] Where technical features in the drawings, detailed description or any claim are
followed by reference signs, the reference signs have been included for the sole purpose of
increasing the intelligibility of the drawings, detailed description, and claims. Accordingly,
neither the reference signs nor their absence have any limiting effect on the scope of any

claim elements.

[00116] The systems and methods described herein may be embodied in other specific
forms without departing from the characteristics thereof. Although the examples provided
49

WO 2017/087425 PCT/US2016/062108

herein relate to converting FLASH content to HTML content, the systems and methods
described herein can include applied to other environments. The foregoing implementations
are illustrative rather than limiting of the described systems and methods. Scope of the
systems and methods described herein is thus indicated by the appended claims, rather than
the foregoing description, and changes that come within the meaning and range of

equivalency of the claims are embraced therein.

50

WO 2017/087425 PCT/US2016/062108

What is claimed is:

1. A method of converting FLASH content to HyperText Markup Language (HTML)
content, comprising:

receiving, by a transcoder module executing on one or more processors, a FLASH-
based content item including a display list comprising a first display object and a second
display object;

traversing, by the transcoder module, the display list to identify a class type for the
first display object;

generating, by the transcoder module, a first set of HTML-based instructions based on
the class type for the first display object;

inserting, by the transcoder module, the generated first set of HTML-based
instructions into an instruction list;

traversing, by the transcoder module, the display list to identify a class type for the
second display object;

generating, by the transcoder module, a second set of HTML-based instructions based
on the class type for the second display object;

inserting, by the transcoder module, the generated second set of HTML-based
instructions into the instruction list including the first set of HTML-based instructions; and

storing, by the one or more processors, onto a database, the instruction list in a data

structure.

2. The method of claim 1, further comprising:

generating, by a policy generator module, an execution policy specifying an
application to execute the first set of HTML-based instructions and the second set of HTML-
based instructions based on a trigger condition, the trigger condition specifying the
application to execute at least one of the first set of HTML-based instructions and the second

set of HTML-based instructions responsive to determining that the application is idle.

3. The method of claim 1 or 2, further comprising:

generating, by a policy generator module, an execution policy specifying an
application to execute the first set of HTML-based instructions and the second set of HTML-
based instructions based on a trigger condition, the trigger condition specifying the

application to execute at least one of the first set of HTML-based instructions and the second
51

WO 2017/087425 PCT/US2016/062108

set of HTML-based instructions responsive to determining that a time duration of the
execution of at least one of the first set of HTML-based instructions and the second set of

HTML-based instructions exceeds a predefined time delay.

4, The method of claim 1, 2 or 3, further comprising:
grouping, by a policy generator, the first set of HTML-based instructions and the
second set of HTML-based instructions based on a weight for the first set of HTML-based

mstructions and the second set of HTML-based instructions.

5. The method of any preceding claim, further comprising:

determining, by the transcoder module, that the first display object includes a child
display object;

identifying, responsive to determining that the first display object includes the child
display object, by the transcoder module, a class type for the child display object;

generating, by the transcoder module, a third set of HTML-based instructions based
on the class type for the child display object;

inserting, by the transcoder module, the third set of HTML-based instructions into the
instruction list; and

wherein inserting the generated second set of HTML-based instructions into the
instruction list further comprises inserting the second set of HTML-based instructions,

subsequent to inserting the third set of HTML-based instructions into the instruction list.

6. The method of any preceding claim, wherein identifying the class type for the first
display object further comprises determining that the first display object includes a
MovieClip display object container, the MovieClip display object container comprising a first
child display object and a second child display object; and
wherein generating the first set of HTML-based instructions further comprises:

generating, responsive to determining that the first display object includes the
MovieClip display object container, a third set of HTML-based instructions for the first child
display object based on the class type of the first child display object; and

generating, responsive to determining that the first display object includes the
MovieClip display object container, a fourth set of HTML-based instructions for the second
child display object based on the class type of the second child display object; and

52

WO 2017/087425 PCT/US2016/062108

wherein inserting the generated first set of HTML-based instructions into the
instruction list further comprises inserting the third set of HTML-based instructions and the

fourth set of HTML-based instructions.

7. The method of claim 6, wherein generating the third set of HTML-based instructions
further comprises generating a blend instruction based on a blend mode of the MovieClip
display object container; and

wherein generating the fourth set of HTML-based instructions further comprises

generating a filter instruction based on a filter of the MovieClip display object container.

8. The method of any preceding claim, wherein identifying the class type for the first
display object further comprises identifying the class type for the first display object, the
class type for the first display object includes one of a Bitmap, a Shape, a Sprite, a
MovieClip, a TextField, a TextLine, a StaticText, or a Video; and

wherein identifying the class type for the second display object further comprises
identifying the class type for the first display object, the class type for the second display
object includes one of the Bitmap, the Shape, the Sprite, the MovieClip, the TextField, the
TextLine, the StaticText, or the Video.

9. The method of any preceding claim, wherein generating the first set of HTML-based
instructions further comprises generating the first set of HTML-based instructions including
at least one of a stack instruction, a clip instruction, a blend instruction, a draw shape
instruction, a draw text instruction, a draw bitmap instruction, and a draw video instruction;
and

wherein generating the second set of HTML-based instructions further comprises
generating the second set of HTML-based instructions including at least one of the stack
instruction, the clip instruction, the blend instruction, the draw shape instruction, and the

draw text instruction, the draw bitmap instruction, and the draw video instruction.
10. The method of any preceding claim, wherein inserting the generated first set of

HTML-based instructions further comprises enqueueing the generated first set of HTML-

based into the instruction list, the instruction list including a queue data structure; and

53

WO 2017/087425 PCT/US2016/062108

wherein inserting the generated second set of HTML-based instructions further
comprises enqueueing the generated second set of HTML-based instructions into the

instruction list.

11. A system for converting FLASH content to HyperText Markup Language (HTML)
content, comprising:
a transcoder module executing one or more processors that:

receives a FLASH-based content item a display list comprising a first display
object and a second display object;

traverses the display list to identify a class type for the first display object;

generates a first set of HTML-based instructions based on the class type for the
first display object;

inserts the generated first set of HTML-based instructions into an instruction
list;

traverses the display list to identify a class type for the second display object;

generates a second set of HTML-based instructions based on the class type for
the second display object;

inserts the generated second set of HTML-based instructions into the
instruction list including the first set of HTML-based instructions; and

stores, onto a database, the instruction list in a data structure.

12. The system of claim 11, further comprising:

a policy generator module that generates an execution policy specifying an application
of a client device to execute the first set of HTML-based instructions and the second set of
HTML-based instructions based on a trigger condition, the trigger condition specifying the
application to execute at least one of the first set of HTML-based instructions and the second

set of HTML-based instructions responsive to determining that the application is idle.

13. The system of claim 11, further comprising:

a policy generator that generates an execution policy specifying an application of a
client device to execute the first set of HTML-based instructions and the second set of
HTML-based instructions based on a trigger condition, the trigger condition specifying the
application to execute at least one of the first set of HTML-based instructions and the second

set of HTML-based instructions responsive to determining that a time duration of the
54

WO 2017/087425 PCT/US2016/062108

execution of at least one of the first set of HTML-based instructions and the second set of

HTML-based instructions exceeds a predefined time delay.

14. The system of claim 11, further comprising
a policy generator that groups the first set of HTML-based instructions and the second
set of HTML-based instructions based on a weight for the first set of HTML-based

mstructions and the second set of HTML-based instructions.

15. The system of claim 11, wherein the transcoder module:

determines that the first display object includes a child display object;

identifies, responsive to determining that the first display object includes the child
display object, a class type for the child display object;

generates a third set of HTML-based instructions based on the class type for the child
display object;

inserts the third set of HTML-based instructions into the instruction list; and

inserts the second set of HTML-based instructions, subsequent to inserting the third

set of HTML-based instructions into the instruction list.

16. The system of claim 11, wherein the transcoder module:

determines that the first display object includes a MovieClip display object container,
the MovieClip display object container comprising a first child display object and a second
child display object

generates, responsive to determining that the first display object includes the
MovieClip display object container, a third set of HTML-based instructions for the first child
display object based on the class type of the first child display object;

generates, responsive to determining that the first display object includes the
MovieClip display object container, a fourth set of HTML-based instructions for the second
child display object based on the class type of the second child display object; and

inserts the third set of HTML-based instructions and the fourth set of HTML-based

instructions into the instruction list.

17. The system of claim 16, wherein the transcoder module:
generates a blend instruction based on a blend mode of the MovieClip display object

container; and
55

WO 2017/087425 PCT/US2016/062108

generates a filter instruction based on a filter of the MovieClip display object

container.

18. The system of claim 11, wherein the transcoder module:

identifies the class type for the first display object, the class type for the first display
object includes one of a Bitmap, a Shape, a Sprite, a MovieClip, a TextField, a TextLine, a
StaticText, or a Video; and

identifies the class type for the first display object, the class type for the second
display object includes one of the Bitmap, the Shape, the Sprite, the MovieClip, the
TextField, the TextLine, the StaticText, or the Video.

19. The system of claim 11, wherein the transcoder module:

generates the first set of HTML-based instructions including at least one of a stack
instruction, a clip instruction, a blend instruction, a draw shape instruction, a draw text
instruction, and a draw bitmap instruction; and

generates the second set of HTML-based instructions including at least one of the
stack instruction, the clip instruction, the blend instruction, the draw shape instruction, the

draw text instruction, and the draw bitmap instruction.

20. The system of claim 11, wherein the data structure for the instruction list comprising a
queue data structure; and

wherein the transcoder module enqueues the generated first set of HTML-based into
the instruction list and enqueues the generated second set of HTML-based instructions into

the instruction list.

21. A computer apparatus for converting FLASH content to HyperText Markup Language
(HTML) content, comprising:

a memory storing processor readable instructions; and

a processor arranged to read and execute instructions stored in said memory;
wherein said processor readable instructions comprise instructions arranged to control the

computer to carry out a method according to any one of claims 1 to 10.

56

WO 2017/087425 PCT/US2016/062108

22. A computer readable medium carrying a computer program comprising computer

readable instructions configured to cause a computer to carry out a method according to any

one of claims 1 to 10.

57

PCT/US2016/062108

WO 2017/087425

oct
921A9Q Suindwo)

Jaysljqnd uauo)

l "Old

T4k
3d%1naQ

IET o)

ovl
aseqgeleq

Gel —
oct
Lomﬁ_ww_\mé B > SINPON
y 9 Jopoosuel |
Aoljod

01T walsAg Buissaoold eieq

STt
9212 Sunindwo)

J9pPIAOId JUaTU0)

00l

1/4

PCT/US2016/062108

WO 2017/087425

asce

dscc

esel] = pua|g

ZAX

<mmm\ i

0c¢ seaue) TTNLH

¢ 'Ol

/ d6¢¢

d450¢
/ yeoldo
Aeidsig

3Gl ¢ 18§ uononasuy|

agl ¢ 1eS uononasui

J50¢

0Gl ¢ 18S uononysui

yeldo
Aeidsig

dG1lc i8S uononasuy

VGl ¢ 18§ uononisuj

0l isii uononisul
pesegd-1NLH

V<0c¢
yeldo
Aedsig

00z 1817 Aeidsig
HSV14

2/4

WO 2017/087425

300

Receive FLASH-based
Content ltem

PCT/US2016/062108

Generate HTML Based
Instructlon Set

Insert Instructlon Set
Into Instruction List

310
Identify Class Type for
Dlsplay Object

325

More Display
Objects in Display

Identify Next
Display Object

J/ 330

A

List?

335

Generate Execution
Policy

340 l
Store Instruction List in
Database

FIG. 3

3/4

PCT/US2016/062108

WO 2017/087425

v 'Ol

Gev
Alows|y

0cy
Josse00.d

[]%%
221Aaq Induy

(0]%7
Shll-TqRlalellale)

Sov

=—> |oelaju| <
suoledIuUNWWo)

007 walsAg Jsindwo)

4/4

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2016/062108

A. CLASSIFICATION OF SUBJECT MATTER
I

NV. GO6F9/45 GO6F17/30
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, COMPENDEX, INSPEC, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

ELECT) 26 June 2013 (2013-06-26)
abstract

WO 20147024255 Al (REAL SAMURAI
KYOHO YUICHI [JP]; DANJEC BORIS
13 February 2014 (2014-02-13)

WO 20137179352 Al (REAL SAMURAI
KYOHO YUICHI [JP]; DANJEC BORIS
5 December 2013 (2013-12-05)
the whole document

CN 103 176 986 A (SHANGHAI PATEO YUEZHEN

paragraph [0010] - paragraph [0020]
paragraph [0032] - paragraph [0074]

paragraph [0005] - paragraph [0014]
paragraph [0022] - paragraph [0026]
paragraph [0035] - paragraph [0062]

1-22

INC [JP];
[JP])

1,11,21,
22

INC [JP]; 1-22

[JP])

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

17 February 2017

Date of mailing of the international search report

01/03/2017

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Del Chiaro, Silvia

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2016/062108
C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT
Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A Michael Bebenita: "Intro . 1-22

mozilla/shumway Wiki . GitHub",

16 June 2013 (2013-06-16), XP055346570,
Retrieved from the Internet:

URL:https://github.com/mozilla/shumway/wik
i/Intro

[retrieved on 2017-02-16]
the whole document

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2016/062108
Patent document Publication Patent family Publication
cited in search report date member(s) date
CN 103176986 A 26-06-2013 NONE
WO 2014024255 Al 13-02-2014 JP W02014024255 Al 21-07-2016
WO 2014024255 Al 13-02-2014
WO 2013179352 Al 05-12-2013 JP W02013179352 Al 14-01-2016
WO 2013179352 Al 05-12-2013

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - claims
	Page 54 - claims
	Page 55 - claims
	Page 56 - claims
	Page 57 - claims
	Page 58 - claims
	Page 59 - claims
	Page 60 - drawings
	Page 61 - drawings
	Page 62 - drawings
	Page 63 - drawings
	Page 64 - wo-search-report
	Page 65 - wo-search-report
	Page 66 - wo-search-report

