
(19) United States
(12) Reissued Patent

Syed et al.
(10) Patent Number:
(45) Date of Reissued Patent:

USOORE39549E

US RE39,549 E
Apr. 3, 2007

(54) METHOD AND APPARATUS FOR COPYING
DATA THAT RESIDES IN ADATABASE

(75) Inventors: Nadeem Syed, Castro Valley, CA (US);
Kurt Robson, Foster City, CA (US)

(73) Assignee: Oracle International Corporation,
Redwood Shores, CA (US)

(21) Appl. No.: 10/021.783
(22) Filed: Dec. 13, 2001

Related U.S. Patent Documents
Reissue of:
(64) Patent No.: 6,105,030

Issued: Aug. 15, 2000
Appl. No.: 09/032,095
Filed: Feb. 27, 1998

(51) Int. Cl.
G06F 7700 (2006.01)
G06F 7/30 (2006.01)

(52) U.S. Cl. 707/203; 707/201: 707/8;
707/10, 707/2

(58) Field of Classification Search 707/203,
707/201, 8, 1-10, 200206, 100 103

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,168,444. A 12, 1992 Cukor et al. 70.5/1
5,560,005 A * 9/1996 Hoover et al. TO7/10
5,724,575 A * 3/1998 Hoover et al. 707/10

OTHER PUBLICATIONS

http://www.sciinc.com/techinfo/versioninfo/index.htm.*
http://www.databasejournal.com/features/mssol/article.php/
356O451.*

MERYBASE
PLANNEREXCUEd

302

ANCHA
SNAPSTWORKER

304

SPANNA
Crair
process 308

Norry MotoRoPY
TABLISSCRA)

309

Lock Asles
NTFEAA

CPY Ase
3.

reces Aplurality of
SNAPSHOWORKERS
ASSGSNASMEs

WATAPERFE
FoRSNAPSHOTSMESTO
BEASSNs

RELEASEccKSN
ABLES

coordinaretrial
AAFROMAABASE

AUNCHEE
Workers

32

NYCOxrvator
CAACPE OFA

BEEN DELEED FROM

http://msdn2.microsoft.com/en-usllibrary/ms 173763.aspx.*

http://publib.boulder.ibm.com/infocenter/db2help/in
dex.jsp?topic=/com.ibm.db2.ludb.pd.doc/pd/
cOO2O777.htm.

Rdb/VMS, A Comprehensive Guide by Lilian Hobbs and
Ken England, Copyright (C) 1991 by digital Equipment
Corporation (12 pgs).

BountyQuest Corp., “Database Guru Submits “Snapshot.”
Wins Silver Bullet,” 2000, http://www.bountyquest.com/
winner/winner4.htm, printed Sep. 20, 2001, pp. 1–2.

* cited by examiner

Primary Examiner David Jung
(74) Attorney, Agent, or Firm Hickman Palermo Truong
& Becker LLP

(57) ABSTRACT

A consistent set of data is Supplied to a software application
from databases. When a particular set of data is identified, a
first process is requested to obtain a Snapshot time from a
database server associated with the first database. The snap
shot time causes all subsequent reads of the first database by
the first process to return data that reflects a database state
associated with the snapshot time. A first set of data in the
first database is locked in order to produce a copy of data
from a first database. After locking the first set of data, a
plurality of processes are requested to obtain Snapshot times
from a database server associated with the first database. The
Snapshot time caused all Subsequent reads of the first data
base by the plurality of processes to return data from the first
database as of the Snapshot times.

97 Claims, 10 Drawing Sheets

14

38

38

SNAPSHCASE

US RE39,549 E Sheet 1 of 10 Apr. 3, 2007 U.S. Patent

}}}}ONALEN TWOOT

NO]] VOIN?\WWOOHOSSE OO}}d
|

U.S. Patent Apr. 3, 2007 Sheet 3 of 10 US RE39,549 E

FG, 2A
DATABASE 204

T2 DBA

T1 DB B

T2 DBC

T3 DBD

4.

T5 DB F

U.S. Patent

FG, 2B

T2

T 1

T2

T3

T 4

T5

Apr. 3, 2007 Sheet 4 of 10 US RE39,549 E

DATABASE 204

DB B

DB B

DB B

U.S. Patent Apr. 3, 2007 Sheet S of 10 US RE39,549 E

FG, 3A

WATAPERIOD OF TIME
FOR SNAPSHOTS TIMESTO
BEASSIGNED

MEMORY BASED
PLANNER EXECUTED 34

3O2

RELEASE LOCKSON
LAUNCHA ABLES 316
SNAPSHOTWORKER

304
COORONATE REREVAL
OF DATAFROMDAABASE

CREATEACOPY 38

TABLE LIST

SPAWNA NEFLETE
COORDNATOR 320
PROCESS 308

NOFY COORDNATOR
DATA COPIED TO FLA
FILE

NOTIFY MONITOR COPY
ABLE LIS IS CREATED

322
309

OCKTHE TABLES
DENTFED IN DATA
COPY TABLE

31 O HAVE
CORRESPONDINGABLES
BEEN DEEED FROM
SNAPSHOT TABE

DATABASE

NO

REQUESTAPLURALITY OF
SNAPSHO WORKERS TO BE
ASSIGNEDSNAPSHOTIMES YES

312 Ga)

U.S. Patent Apr. 3, 2007

FG. 3B

LAUNCH LOADER
WORKERTO COPYDATA

328

NOTFY COORONATOR FLAT FILE
LOADED INTO SNAPSHOT TABLE

330

S
THE DATABASE

COPED
332

YES

NO

WAIT FOR ANOTHER
SNAPSHOT WORKERTO
FINISH COPYNG

338

Sheet 6 of 10

CB)

DELAY LAUNCHINGALOADER
UNTIL CORRESPONDING TABLE
IS DELETED,

326

NOTFY MEMORYBASED
PLANNER THE DESRED
DATA HAS BEEN COPED

334

GENERATE THE PLANNING
SCHEDULE

336

US RE39,549 E

US RE39,549 E Sheet 7 of 10 Apr. 3, 2007 U.S. Patent

31ETEC?

787

007

U.S. Patent Apr. 3, 2007 Sheet 8 of 10 US RE39,549 E

F.G. 5A

ASSGN SNAPSHOT
MEMORY BASED WORKER DATA TO COPY
PLANNEREXECUTED

502

LAUNCHA SNAPSHOT LAUNCH DELETE WORKERS
WORKER 516

504

NOTIFY COORONATOR DATA
CREATEACOPY COPED TO FLATFES
TABLE LIST 518

506 (c)
SPAWNA
COORDINATOR CORRESPONDING

TABLES BEEN DELEED
FROM HESNAPSHOT

ABLE DATABASE
SG)

NOTFY MONITOR COPY
TABLE LISTS CREATED

509

LAUNCH LOADERWORKERTO
COPYDATA

RECUEST SINGLESNAPSHOT 524
WORKERTO BEASSIGNEDA
SNAPSHOT TIMESTAMP

510
NOTFY COORONATOR FLAT
FLE IS LOADED INTO

WAT FOR SNAPSHOTWORKER SNAPSHOT TABLE 526
TO BE ASSIGNEDA SNAPSHO
TMESAMP 512

U.S. Patent

THE
DATABASE
COPED?

528

WAIT FOR ANOTHER SNAPSHOT
WORKERTO FINISH COPYNG.

Apr. 3, 2007

F.G. 5B

534

Sheet 9 of 10 US RE39,549 E

DELAY LAUNCHINGALOADER
UNTIL CORRESPONDING TABLE
S DELEED, 522

NOTIFY MEMORY BASED
PLANNER THE DESRED
DATA HAS BEEN COPED

530

GENERATE THE PLANNING
SCHEDULE

532

US RE39,549 E Sheet 10 of 10 Apr. 3, 2007 U.S. Patent

977 HE}}}OM H1ETEG

—T-T-II §§FŒTIT?TTELIGGZ ---T-T-5-I Hi ETEC?T?£5TTOOSIL?? ?992 —T-TEL
| OHSdWNS

US RE39,549 E
1.

METHOD AND APPARATUS FOR COPYING
DATA THAT RESIDES IN ADATABASE

Matter enclosed in heavy brackets appears in the
original patent but forms no part of this reissue specifi
cation; matter printed in italics indicates the additions
made by reissue.

FIELD OF THE INVENTION

The present invention relates to the copying of data and
more specifically to producing a copy of data that resides in
a database.

BACKGROUND OF THE INVENTION

Planning software is used by manufacturers to aid in the
manufacturing process. Based upon the desired product
output and the components needed for each product, the
planning software generates a schedule of what components
need to be manufactured and by when, and what materials
need to be procured and by when. This schedule is generated
based upon data stored in a database. The planning process
is often complicated and, for complex products, can take
many hours to complete.
A typical requirement imposed by the planning software

is that it needs to do its processing based on a single
consistent version of the database. If one process of the
planning software is reading one version of the database
while another process is reading an updated version of the
database, serious errors, such as double counting, can occur.
As a result, planning software requires that data be provided
from a single frozen version of the database in order to
operate properly.
As is well known, a database or a selected subset thereof

can be frozen by obtaining exclusive locks on all of the
tables in the database or the selective subset. Once locked,
the tables can be processed by planning Software to carry out
the planning process. However, as noted above, the planning
process can take many hours to complete. Many companies,
especially those having offices around the world, cannot
afford to lock their tables for extended periods of time.
Hence, locking tables in this manner is often not a viable
Solution.

Another possible solution is to simply make a copy of the
database prior to running the planning software. The prob
lem with this solution is that for large databases, the copying
process itself can take several hours. During this time, the
tables need to be locked to ensure a frozen state. As long as
the tables are locked, no updates can be made. Hence, this
Solution Suffers from the same shortcomings, albeit to a
lesser degree, as the locking Solution.

Based on the foregoing, it is clearly desirable to provide
a mechanism for obtaining a single frozen version of the
database, or a subset thereof, without locking tables in the
database for an extended period of time.

SUMMARY OF THE INVENTION

According to one aspect of the invention, a method and
apparatus for Supplying a consistent set of data to a software
application is provided.

According to the method, a Software application is
launched that requires a particular set of data contained in a
first database. Once the particular set of data is identified, a
first process is requested to obtain a Snapshot time from a
database server associated with the first database. The snap
shot time causes all Subsequent reads of the first database by

10

15

25

30

35

40

45

50

55

60

65

2
the first process to return data that reflects a database state
associated with the snapshot time. After the first process
obtains the Snapshot time, the first process extracts the
particular set of data from the first database. The software
application is then Supplied with the particular set of data
that was extracted from the first database.

In one embodiment, a second process is used to store the
particular set of data that was extracted into a second
database.

According to another aspect of the invention, a method
and apparatus for producing a copy of data from a first
database is provided.

According to the method, a first set of data in the first
database is locked. After locking the first set of data, a
plurality of processes are requested to obtain Snapshot times
from a database server associated with said first database.
The Snapshot times caused all Subsequent reads of the first
database by the plurality of processes to return data from the
first database as of the Snapshot times. After waiting a
particular period of time for the plurality of processes to be
assigned Snapshot times, the locks on the first set of data in
the first database are released.
The plurality of processes that were successful in obtain

ing a Snapshot time within the particular period of time are
used to extract a copy of the first set of data from the first
database. The copy of the first set of data is then separately
stored from the first of data.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example,
and not by way of limitation, in the figures of the accom
panying drawings and in which like reference numerals refer
to similar elements and in which:

FIG. 1 is a block diagram of a system that may be
programmed to implement the present invention;

FIG. 2 is a block diagram of a system that is used for
producing a copy of a database in accordance with an
embodiment of the present invention;

FIG. 2A illustrates the use of a snapshot time in accor
dance with an embodiment of the invention;

FIG. 2B illustrates the locking a database to obtain
Snapshot times that correspond to a single database state;

FIG. 3A is a portion of a flow diagram illustrating a
method for producing a copy of a database without retaining
a lock on the database tables according to an embodiment of
the invention;

FIG. 3B is another portion of a flow diagram illustrating
a method for producing a copy of a database without
retaining a lock on the database tables according to an
embodiment of the invention;

FIG. 4 is a block diagram of a system that is used for
producing a copy of a database in accordance with an
embodiment of the present invention;

FIG. 5A is a portion of a flow diagram illustrating a
method for producing a copy of a database without locking
the database tables;

FIG. 5B is another portion of a flow diagram illustrating
a method for producing a copy of a database without locking
the database tables; and

FIG. 6 is a block diagram of alternate system for produc
ing a copy of a database in accordance with an embodiment
of the present invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

A method and apparatus for producing a consistent copy
of a database, or portion thereof, is described. In the fol

US RE39,549 E
3

lowing description, for the purposes of explanation, numer
ous specific details are set forth in order to provide a
thorough understanding of the present invention. It will be
apparent, however, to one skilled in the art that the present
invention may be practiced without these specific details. In
other instances, well-known structures and devices are
shown in block diagram form in order to avoid unnecessarily
obscuring the present invention.

Hardware Overview

FIG. 1 is a block diagram that illustrates a computer
system 100 upon which an embodiment of the invention
may be implemented. Computer system 100 includes a bus
102 or other communication mechanism for communicating
information, and a processor 104 coupled with bus 102 for
processing information. Computer system 100 also includes
a main memory 106, such as random access memory (RAM)
or other dynamic storage device, coupled to bus 102 for
storing information and instructions to be executed by
processor 104. Main memory 106 also may be used for
storing temporary variable or other intermediate information
during execution of instructions to be executed by processor
104. Computer system 100 further includes a read only
memory (ROM) 108 or other static storage device coupled
to bus 102 for storing static information and instructions for
processor 104. A storage device 110, such as a magnetic disk
or optical disk, is provided and coupled to bus 102 for
storing information and instructions.
Computer system 100 may be coupled via bus 102 to a

display 112, such as a cathode ray tube (CRT), for displaying
information to a computer user. An input device 114, includ
ing alphanumeric and other keys, is coupled to bus 102 for
communicating information and command selections to
processor 104. Another type of user input device is cursor
control 116. Such as a mouse, a trackball, or cursor direction
keys for communicating direction information and com
mand selections to processor 104 and for controlling cursor
movement on display 112. This input device typically has
two degrees of freedom in two axes, a first axis (e.g., x) and
a second axis (e.g., y), that allows the device to specify
positions in a plane.
The invention is related to the use of computer system 100

for producing a copy of a database. According to one
embodiment of the invention, a copy of a database is
produced by computer system 100 in response to processor
104 executing one or more sequences of one or more
instructions contained in main memory 106. Such instruc
tions may be read into main memory 106 from another
computer-readable medium, such as storage device 110.
Execution of the sequences of instructions contained in main
memory 106 causes processor 104 to perform the process
steps described herein. In alternative embodiments, hard
wired circuitry may be used in place of or in combination
with software instructions to implement the invention. Thus,
embodiments of the invention are not limited to any specific
combination of hardware circuitry and software.
The term "computer-readable medium' as used herein

refers to any medium that participates in providing instruc
tions to processor 104 for execution. Such a medium may
take many forms, including but not limited to, non-volatile
media, Volatile media, and transmission media. Non-volatile
media includes, for example, optical or magnetic disks, such
as storage device 110. Volatile media includes dynamic
memory, such as main memory 106. Transmission media
includes coaxial cables, copper wire and fiber optics, includ
ing the wires that comprise bus 102. Transmission media can

5

10

15

25

30

35

40

45

50

55

60

65

4
also take the form of acoustic or light waves, such as those
generated during radio-wave and infra-red data communi
cations.

Common forms of computer-readable media include, for
example, a floppy disk, a flexible disk, hard disk, magnetic
tape, or any other magnetic medium, a CDROM, any other
optical medium, punchcards, papertape, any other physical
medium with patterns of holes, a RAM, a PROM, and
EPROM, a FLASH-EPROM, any other memory chip or
cartridge, a carrier wave as described hereinafter, or any
other medium from which a computer can read.

Various forms of computer readable media may be
involved in carrying one or more sequences of one or more
instructions to processor 104 for execution. For example, the
instructions may initially be carried on a magnetic disk of a
remote computer. The remote computer can load the instruc
tions into its dynamic memory and send the instructions over
a telephone line using a modem. A modem local to computer
system 100 can receive the data on the telephone line and
use an infra-red transmitter to convert the data to an infra-red
signal. An infra-red detector can receive the data carried in
the infra-red signal and appropriate circuitry can place the
data on bus 102. Bus 102 carries the data to main memory
106, from which processor 104 retrieves and executes the
instructions. The instructions received by main memory 106
may optionally be stored on storage device 110 either before
or after execution by processor 104.
Computer system 100 also includes a communication

interface 118 coupled to bus 102. Communication interface
118 provides a two-way data communication coupling to a
network link 120 that is connected to a local network 122.
For example, communication interface 118 may be an inte
grated services digital network (ISDN) card or a modem to
provide a data communication connection to a correspond
ing type of telephone line. As another example, communi
cation interface 118 may be a local area network (LAN) card
to provide a data communication connection to a compatible
LAN. Wireless links may also be implemented. In any such
implementation, communication interface 118 sends and
receives electrical, electromagnetic or optical signals that
carry digital data streams representing various types of
information.

Network link 120 typically provides data communication
through one or more networks to other data devices. For
example, network link 120 may provide a connection
through local network 122 to a host computer 124 or to data
equipment operated by an Internet Service Provider (ISP)
126. ISP 126 in turn provides data communication services
through the worldwide packet data communication network
now commonly referred to as the “Internet 128. Local
network 122 and Internet 128 both use electrical, electro
magnetic, or optical signals that carry digital data streams.
The signals through the various networks and the signals on
network link 120 and through communication interface 118,
which carry the digital data to and from computer system
100, are exemplary forms of carrier waves transporting the
information.
Computer system 100 can send messages and receive

data, including program code, through the network(s), net
work link 120 and communication interface 118. In the
Internet example, a server 130 might transmit a requested
code for an application program through Internet 128. ISP
126, local network 122 and communication interface 118. In
accordance with the invention, one such downloaded appli
cation provides for producing a copy of a database as
described herein.

US RE39,549 E
5

The received code may be executed by processor 104 as
it is received, and/or stored in storage device 110, or other
non-volatile storage for later execution. In this manner,
computer system 100 may obtain application code in the
form of a carrier wave.

Functional Overview

The present invention provides a mechanism for produc
ing a consistent copy of a database, or portion thereof,
without locking the database or desired portion for an
extended period of time. For the purpose of explanation,
embodiments of the invention shall be described with ref
erence to a relational database that stores data in tables. The
database portion of which a consistent copy is required is
therefore referred to herein as the “desired tables'. However,
the techniques described herein are not limited to tables or
relational databases.

In one embodiment, the following steps are performed to
obtain a Snapshot (consistent copy) of a database:

(1) the desired tables (e.g. the tables that contain infor
mation required by a memory-based planner) are identified;

(2) the desired tables are locked to prevent them from
being updated;

(3) a coordinator requests a plurality of Snapshot worker
processes to obtain Snapshot times, where the Snapshot times
allow the snapshot workers to obtain data from the database
as of a particular state of the database;

(4) the coordinator then waits a certain period of time for
the requested plurality of Snapshot workers to obtain Snap
shot times;

(5) the coordinator then releases the locks on the desired
tables;

(6) using the Snapshot workers that obtained a Snapshot
time before the locks were released (the “successful snap
shot workers'), a copy of the desired tables is produced
which represents the state of the database at the time desired
tables were locked.

System Overview
FIG. 2 depicts a block diagram of a system 200 that is

used for producing a copy of desired tables in accordance
with an embodiment of the present invention.
As depicted in FIG. 2, a memory based planner 202 has

been launched by a user to generate a planning schedule that
is based upon a Snapshot of database 204. Typically, gen
eration of a planning schedule will only require data from a
subset of the tables contained in database 204. Therefore, a
copy table list 218 is maintained which lists the database
tables (1...N) in database 204 that are required in the gen
eration of the planning schedule (the “desired tables').
A coordinator 216 interfaces with individual worker

processes, snapshot workers (206–214), loader workers
(230–238) and delete workers(242-248), and is responsible
for the overall coordination of producing a copy of database
204 for use in generation of the planning schedule.

Operation of System 200
To produce a snapshot of database 204, data copy table

218 is generated which identifies the desired set of data
tables (1...N) in database 204. The desired set of tables listed
in data copy table 218 are the tables that contain information
that is needed by the memory based planner 202 in order to
generate the planning schedule. Using the information con
tained in the data copy table 218, the coordinator 216 locks

10

15

25

30

35

40

45

50

55

60

65

6
each desired table (1...N). The locks thus obtained prevent
other processes from modifying the desired tables (1...N).
Once the locks are obtained, the coordinator 216 requests

a plurality of snapshot workers (206, 208, 210, 212, 214 and
215) to obtain a Snapshot time from the database manage
ment system (DBMS). Snapshot times are assigned by the
database management system, and are used by the database
management system to determine what version of data to
Supply to processes. For example, the version of data items
that are Supplied to a process assigned a Snapshot time of Ti
will reflect the state of those data items as of time T1, even
if the data items have been subsequently modified.

Snapshot times are used to guarantee that a particular
version of data is given to a process (i.e. Snapshot worker).
Thus, if a process requests data that has been modified since
obtaining its snapshot time, the DBMS reconstructs the state
of data as of the Snapshot time and Supplies the reconstructed
data to the process.

For example, FIG. 2A illustrates the use of a snapshot
time in accordance with an embodiment of the invention. In
FIG. 2A, DB A, DB B, DB C, DB D, DB E and
DB F respectively represent different states of database 204
at time T0, T1, T2, T3, T4 and T5. If a snapshot time is
issued at time T0 and a read is subsequently performed at
time T3, the DBMS will respond to the read by returning
data as it existed in the database as of time T0 (i.e. DB A).
The DBMS may achieve this using a variety of mechanisms.
According to one embodiment, the DBMS uses log entries
to reconstruct the state of the requested data items to reflect
their state at time T0. In effect, the snapshot time enables a
process to see a snapshot of a database as of a particular
time.

One mechanism by which a DBMS can reconstruct a
particular state of the database is described in detail in U.S.
Patent Applications “Method and Apparatus for Providing
Isolation Levels in a Database', having Ser. No. 08/613,026,
filed Mar. 11, 1996: “Techniques for Providing the Number
of Snapshots of a Database', having Ser. No. 08/838,967,
filed Apr. 23, 1997, and “Dynamic Snapshot Set
Adjustment, having Ser. No. 08/841,541, filed Apr. 23.
1997, which are hereby incorporated by reference.

After the coordinator 216 requests the plurality of snap
shot workers (206, 208, 210, 212, 214 and 215) to obtain
Snapshot times, it then waits for a certain period of time
(T WAIT) for the snapshot times to be assigned to the
snapshot workers by the DBMS. The snapshot times that the
DBMS assigns to the snapshot workers approximately
reflect the times at which the Snapshot time assignments are
made. Since the Snapshot times are being assigned after the
desired tables are locked, and before the locks on the desired
tables are released, the Snapshot times assigned to the
snapshot workers will correspond to a time at which the
desired tables were locked.

In certain embodiments, the Snapshot workers obtain
Snapshot times by executing a “set transaction read only'
command. Once a process issues a “set transaction read
only” command to the DBMS, that process is ensured by the
DBMS that all subsequent reads by that process for that
transaction will return data that was in the database as of the
time the “set transaction read only command was issued.

In certain database systems, using the “set transaction
read only command has certain limitations. Specifically, the
process that issued the command cannot perform any data
base modifications (defined as any inserts, updates, or
deletes). If it does perform database modifications, it loses
the benefits of the command (i.e. loses its Snapshot time).

US RE39,549 E
7

Because of this, it is not possible to use the “set transaction
read only command with a transaction that makes copies
within a database of the relevant tables (since copying would
involve writing into a database).

To circumvent this problem, the Successful Snapshot
workers read the data from the database, and then write the
data to one or more flat files outside of the database. Because
writing to a flat file is an operating system command, and not
a DBMS command, it does not constitute a “write' operation
as far as the DBMS is concerned. Hence, the snapshot times
obtained through the “set transaction read only command
remains in effect for each Snapshot worker.
When the (T WAIT) time period expires, the coordinator

216 releases its locks on the tables. At this time, some of the
Snapshot workers that were requested to obtain Snapshot
times may not yet have been assigned Snapshot times. To
ensure that all processes that participate in the creation of
copies of the relevant tables are seeing the same version of
the relevant tables, only those snapshot workers that have
been assigned Snapshot times prior to the expiration of
T WAIT (the “successful snapshot workers') are used in
retrieving data from database 204. For the purpose of
explanation, it shall be assumed that Snapshot workers
206-214 successfully obtained snapshot times, and that
snapshot worker 215 did not.

Because the tables identified in the copy table list 218
were locked at the time the successful snapshot workers
were assigned their Snapshot times, the Successful snapshot
workers are guaranteed that when they retrieve data from the
desired table, they will retrieve data which corresponds to a
single database state.

For example, FIG. 2B illustrates locking database 204 to
obtain Snapshot times that correspond to a single database
state in accordance with an embodiment of the invention. In
FIG. 2B, DB A, DB B and DB C represent different
states of the relevant tables within database 204. In this
example, the desired tables in database 204 are locked by
coordinator 216 at time T1 for a T WAIT period of “4”,
and, therefore cannot be updated by another process until
T5. The coordinator 216 maintains its locks on the desired
tables in database 204 until T5. Thus, if snapshot workers
206, 208 and 210 obtain snapshot times at T1, T3 and T4.
they will all retrieve data which corresponds to a single
database state (DB B) from the desired tables.

In one embodiment, the Successful Snapshot workers are
not required to wait until the end of the T WAIT period of
time before they begin to retrieve data from database 204.
For example, referring to FIG. 2B, if a snapshot worker
obtains a Snapshot time at T2, the Snapshot worker may
begin to retrieve data from the desired tables before the
tables are unlocked at T5.

Using the Snapshot times, the Successful snapshot workers
(206, 208,210, 212 and 214) retrieve data from database 204
and copy it into a plurality of flat files (220, 22, 224, 226 and
228). The coordinator 216 is responsible for coordinating the
particular data (i.e. the tables identified in data copy table
218) that is retrieved by each of the successful snapshot
workers (206, 208, 210, 212 and 214).
When any flat file of the plurality of flat files (220, 22,

224, 226 and 228) has been completed, one of a plurality of
loader workers (230, 232, 234, 236 and 238) load the flat
files into one of a plurality of snapshot tables (1...N) in
snapshot table database 240. The plurality of snapshot tables
(1...N) in snapshot table database 240 are mapped on a
one-to-one basis with the desired database tables (1...N) in
database 204. In certain embodiments, the loader workers

10

15

25

30

35

40

45

50

55

60

65

8
are SQL loaders that write data from the flat files directly
into the snapshot tables (1...N) in the snapshot table database
240.

Before the data from a flat file thus created can be loaded
into a particular Snapshot table in Snapshot table database
240, any data that was previously stored in the particular
snapshot table (i.e. “stale data from a prior execution of the
planning software process 202) must first be removed. To
perform this task, a plurality of delete workers (242, 244,
246 and 248) are used to delete previously stored snapshot
tables from Snapshot table database 240.
Once the previously stored snapshot tables are deleted and

the flat files are loaded into the snapshot tables in the
snapshot table database 240, Snapshot table database 240
contains a consistent Snapshot of the desired tables identified
in data copy table 218 as of a particular point in time.

In a preferred embodiment, once the desired tables are
copied into the flat files, the memory based planner 202
reads the flat file information to generate a planning sched
ule. In an alternative embodiment, the memory based plan
ner 202 waits for the flat files to be copied into the snapshot
tables in snapshot table database 240 and then reads the
Snapshot table information to generate a planning schedule.

Sequence for Producing a Copy of a Database

FIG. 3A and 3B are flow diagrams illustrating a method
for producing a copy of desired data from database 204
according to an embodiment of the invention. For explana
tion purposes, the flow diagrams of FIGS. 3A and 3B are
described with reference to the components of FIG. 2.
At step 302, a memory based planner 202 is executed by

a user to generate a planning schedule that is based upon
data from database 204. At step 304, the memory based
planner 202 causes a snapshot worker 206 to be launched.
At step 306, the snapshot worker 206 determines which

tables of database 204 are required by the memory based
planner 202 for generating the planning schedule. Using this
information, the Snapshot worker 206 generates a copy table
list 218.

In one embodiment, each entry in the copy table list 218
includes a table ID 250, a delete start time 252 and a delete
complete time 254. The table ID 250 identifies a particular
table in database 204 that is required by the memory based
planner 202 for the generation of the planing schedule. The
delete start time 252 identifies a system timestamp in which
a delete worker began to delete a corresponding Snapshot
table (to remove “stale data') in snapshot table database 240,
as identified by the particular table ID. For example, entry
256 of copy table list 218 indicates that a delete worker
began to delete snapshot table 15 in snapshot table database
240 at the system time of 900.
The delete complete time 254 identifies a system times

tamp in which a delete worker completed the deletion of a
snapshot table in snapshot table database 240, as identified
by the particular table ID. For example, entry 256 of copy
table list 218 indicates that a delete worker completed the
deletion of snapshot table 15 in snapshot table database 240
at the system time of 950. The delete start time 252 and
delete complete time 254 entries are used by the coordinator
216 to determine whether data can be loaded into a particular
snapshot table (1...N).
At step 308, the snapshot worker 206 spawns a coordi

nator process 216 for coordinating the copying of data from
database 204. At step 309, the snapshot worker 206 notifies
the coordinator 216 that the copy table list 218 has been

US RE39,549 E
9

created. At step 310, the coordinator 216 obtains locks on the
tables identified in the copy table list 218.

At step 312, after obtaining a lock on each table identified
in copy table list 218, the coordinator 216 requests a
plurality of snapshot workers (206–214) to solicit snapshot
times from the DBMS. In one embodiment, upon executing
a memory based planner, the user may specify a particular
number of snapshot workers for the coordinator 216 to
request to Solicit Snapshot times.

At step 314, the coordinator waits a certain period of time
(T WAIT) for the requested snapshot workers (206–214) to
be assigned Snapshot times. For example, in one
embodiment, the coordinator 216 waits several minutes after
requesting the plurality of snapshot workers (206–214) to
solicit snapshot times from the DBMS.
At step 316, after the (T WAIT) period of time expires,

the coordinator releases the locks on the tables identified in
copy table list 218.

At step 318, the coordinator 216 uses the copy table list
218 to assign the Successful snapshot workers (in this
example, Snapshot workers 206-214), a particular set of data
to copy from database 204. For example, snapshot worker
206 may be assigned to copy database table “17 from
database 204. Once assigned a set of data, the Successful
Snapshot workers (206-214) begin to copy the assigned data
from database 204 into flat files (220-228).

In certain embodiments, the coordinator 216 assigns the
Snapshot workers a particular set of data to copy before the
(T WAIT) period of time expires. For example, the coor
dinator could assign a particular copying task at the same
time that the coordinator requests the Snapshot workers to
obtain snapshot times. Without waiting to the T WAIT
period to expire, each Snapshot worker can begin the copy
ing task as soon as (1) it is assigned the set of data copy, and
(2) it has successfully obtained a Snapshot time.
At step 320, the coordinator launches delete workers

(242-248) to delete “stale data contained in the snapshot
tables in snapshot table database 240. In deleting the “stale
data”, the delete workers use the copy table list 218 to
identify which snapshot tables in snapshot table database
240 need to be deleted. In one embodiment, the delete
workers (242-248) respectively update the delete start time
252 and delete complete time 254 parameters for the cor
responding entry as they begin and complete the deletion of
a particular table identified in copy table list 218.

For example, the delete worker 242 may use the infor
mation at entry 258 of copy table list 218 to identify a
snapshot table “7” in snapshot table database 240 as a table
that needs to be deleted. The delete worker 242 then stores
the current system time (“1000 in this example) in the
delete start time 252 parameter of entry 258 and begins
deflecting the snapshot table “7”. When delete worker 242
completes the deletion of snapshot table “7”, it stores the
current system time (“1130” in this example) in the delete
complete time 254 parameter of entry 258.

It should be noted that although the delete workers
(242-248) are launched at step 320 in this example, the
coordinator 216 may actually launch them prior to or even
after step 320. For example, in one embodiment, the coor
dinator 216 launches the delete workers (242-248) imme
diately after it is notified that the copy table list 218 has been
created in step 308.

At step 322, a snapshot worker notifies the coordinator
216 it has finished copying the data it was assigned. In one
embodiment, the Snapshot worker informs the coordinator
216 of the data that was copied (i.e. the particular database

10

15

25

30

35

40

45

50

55

60

65

10
tables in database 204) and the location of the one or more
flat files that contains the copy of the data. Although FIG. 2
depicts each Snapshot worker using a single flat file for
copying its assigned data, in certain embodiments, the
Snapshot workers may copy their assigned data to multiple
flat files, informing the coordinator 216 each time one of the
flat files has been completed.
At step 324, the coordinator 216 determines whether the

delete workers (242-248) have deleted the snapshot tables
(i.e. “stale data') in the snapshot table database 240 that
correspond to the data that the Snapshot worker has just
completed copying. For example, if the Snapshot worker
informs the coordinator 216 that database tables '1', '5'.,
and “8” in database 204 have just been copied to the flat file
222, the coordinator 216 determines whether the delete
workers (242-248) have removed the “stale data” by delet
ing snapshot tables “1”. “5” and “8” in snapshot table
database 240.

In certain embodiments, the coordinator 216 uses the
information in the copy table list 218 to determine if a
particular snapshot table has been deleted. In one
embodiment, the coordinator 216 uses the delete complete
time 254 parameter to determine if a snapshot table has been
deleted.

If at step 324 the coordinator 216 determines that a
snapshot table has not been deleted (i.e. snapshot tables “1”,
“5” and “8” for the previous example), then at step 326, the
coordinator 216 delays the launching (e.g. spawning) of a
loader worker (230–238) for loading the information until
the snapshot tables “1”, “5” and “8” have been deleted. For
example, assuming that Snapshot worker 206 has notified
coordinator 216 that it has copied database tables “1”. “5”
and “8” from database 204 into flat file 220, if coordinator
216 determines the snapshot table “5” in snapshot table
database 240 has not been deleted (i.e. the “stale data' has
not been removed), then coordinator 216 will delay launch
ing loader worker 230 for loading the information into
snapshot tables “1”, “5” and “8”, until snapshot table “5” has
been deleted. Control then proceeds to step 338.

If at step 324, the coordinator 216 determines that the
snapshot table has been deleted, then at step 328 the coor
dinator 216 launches a loader worker (230–238) to load the
information from the flat file into the corresponding Snap
shot table in snapshot table database 240.
At step 330, when a loader worker (230–238) finishes

loading a flat file (220-228) into its corresponding snapshot
file in snapshot table database 240, it notifies the coordinator
216. In certain embodiments, the loader workers (230–238)
notify the coordinator 216 of the particular snapshot table in
which the data was loaded.

At step 332, the coordinator 216 determines whether all
the desired tables identified in copy table list 218 have been
copied from database 204 into the flat files (220-228).

If at step 332 the coordinator 216 determines that all the
tables identified in copy table list 218 have been copied, then
at step 334, the coordinator 216 notifies the memory based
planner 202 that the flat files (220-228) contain a valid copy
of the desired tables from database 204. At step 336, the
memory based planner 202 uses the information in the flat
files (220-228) to generate the planning schedule.

In an alternative embodiment, at step 332, the coordinator
216 determines whether all the desired tables identified in
copy table list 218 have been copied from database 204 into
the snapshot tables in snapshot table database 240. If the
coordinator 216 determines that all the tables identified in
copy table list 218 have been copied, then at step 334, the

US RE39,549 E
11

coordinator 216 notifies the memory based planer 202 that
the snapshot table database 240 contains a valid copy of the
desired tables from database 204. At step 336, the memory
base planner 202 then uses the Snapshot tables in Snapshot
table database 240 to generate the planning schedule.

If at step 332 the coordinator 216 determines that all the
tables identified in copy table list 218 have not been copied,
then at step 338, the coordinator 216 continues to accept and
process other completion notifications from Snapshot work
ers (206–214). When the coordinator 216 receives a notifi
cation that a Snapshot worker (206-214) has finished coping
its assigned data to a particular flat file, control proceeds to
step 324 to determine whether the delete workers (242-248)
have deleted the corresponding Snapshot tables in the Snap
shot table database 240.

Producing a Copy Without Locking Database
Tables

In the embodiment described above, the desired tables are
locked for a relatively brief period T WAIT while snapshot
workers obtain Snapshot times. In an alternative
embodiment, a mechanism is provided for producing a copy
of desired tables from a database without locking the desired
tables. For example, in one embodiment, the following steps
are performed to obtain a Snapshot of a database without
locking the desired tables:

(1) the desired tables are identified;
(2) a single Snapshot worker process is requested to obtain

a Snapshot time;
(3) using the single Snapshot worker, a copy of desired

tables is produced which reflects the state of the database
associated with the Snapshot time.

FIG. 4 depicts a block diagram of a system 400 that is
used for producing a copy of a database in accordance with
an embodiment of the present invention. FIG. 4 is similar to
FIG. 2, and therefore like components have been numbered
alike.

The system 400 differs from that shown in FIG. 2 in that
system 400 includes a single snapshot worker 206 which is
used to retrieve data from database 204. By using a single
Snapshot worker 206, only a single Snapshot time is
required. Because only a single Snapshot time is required,
the coordinator 216 is not required to lock the database
tables in database 204.

FIGS.5A and 5B are flow diagrams illustrating a method
for producing a copy of desired data from database 204.
without locking the database tables that contain the desired
data, according to an embodiment of the invention. For
explanation purposes, the flow diagrams of FIGS.5A and 5B
are described with reference to the components of FIG. 4.

At step 502, a memory based planner 202 is executed by
a user to generate a planning schedule that is based upon
data from database 204. At step 504, the memory based
planner 202 causes a snapshot worker 206 to be launched.

At step 506, the snapshot worker 206 determines which
tables of database 204 are required by the memory based
planner 202 for generating the planning schedule. Using this
information, the Snapshot worker 206 generates a copy table
list 218.

In one embodiment, each entry in the copy table list 218
includes a table ID 250, a delete start time 252 and a delete
complete time 254. The table ID 250 identifies a particular
table in database 204 that is required by the memory based
planner 202 for the generation of the planning schedule. The
delete start time 252 identifies a system time stamp in which

10

15

25

30

35

40

45

50

55

60

65

12
a delete worker began to delete a corresponding Snapshot
table (to remove “stale data') in snapshot table database 240,
as identified by the particular table ID. For example, entry
256 of copy table list 218 indicates that a delete worker
began to delete snapshot table 15 to snapshot table database
240 at the system time of 900.
The delete complete time 254 identifies a system time

stamp in which a delete worker completed the deletion of a
snapshot table in snapshot table database 240, as identified
by the particular table ID. For example, entry 256 of copy
table list 218 indicates that a delete worker completed the
deletion of snapshot table 15 in snapshot table database 240
at the system time of 950. The delete start time 252 and
delete complete time 254 entries are used by the coordinator
216 to determine whether data can be loaded into a particular
snapshot table (1...N).
At step 508, the snapshot worker 206 spawns a coordi

nator process 216 for coordinating the copying of data from
database 204. At step 509, the snapshot worker 206 notifies
the coordinator 216 that the copy table list 218 has been
created.
At step 510, the coordinator 216 requests the snapshot

workers 206 to solicit a snapshot times from the DBMS.
At step 512, the coordinator waits for the snapshot worker

206 to be assigned a Snapshot time.
At step 514, the coordinator 216 uses the copy table list

218 to assign the snapshot worker 206, a particular set of
data to copy from database 204. For example, Snapshot
worker 206 may be assigned a copy database table “17
from database 204. Once assigned a set of data, the Snapshot
worker 206 begins to copy the assigned data from database
204 into flat files (220–226).
At step 516, the coordinator launches delete workers

(242-248) to delete “stale data contained in the snapshot
tables in snapshot table database 240. In deleting the “stale
data”, the delete workers use the copy table list 218 to
identify which snapshot tables in snapshot table database
240 need to be deleted. In one embodiment, the delete
workers (242-248) respectively update the delete start time
252 and delete complete time 254 parameters for the cor
responding entry as they begin and complete the deletion of
a particular table identified in copy table list 218.

For example, the delete worker 242 may use the infor
mation at entry 258 of copy table list 218 to identify a
snapshot table “7” in snapshot table database 240 as a table
that needs to be deleted. The delete worker 242 then stores
the current system time (“1000 in this example) in the
delete start time 252 parameter of entry 258 and begins
deleting the snapshot table “7”. When delete worker 242
completes the deletion of snapshot table “7”, it stores the
current system time (“1130” in this example) in the delete
complete time 254 parameter of entry 258.

It should be noted that although the delete workers
(242-248) are launched at step 516 in this example, the
coordinator 216 may actually launch them prior to or even
after step 516. For example, in one embodiment, the coor
dinator 216 launches the delete workers (242-248) imme
diately after it is notified that the copy table list 218 has been
created in step 508.
At step 518, the snapshot worker 206 notifies the coor

dinator 216 it has finished copying the data it was assigned.
In one embodiment, the Snapshot worker informs the coor
dinator 216 of the data that was copied (i.e. the particular
database tables in database 204) and the location of the one
or more flat files that contains the copied data. As illustrated
by flat files (220–226), snapshot worker 206 may copy its

US RE39,549 E
13

assigned data to multiple flat files, informing the coordinator
216 each time one of the flat files has been completed.

At step 520, the coordinator 216 determines whether the
delete workers (242-248) have deleted the snapshot tables
(i.e. removed the “stale data') in the snapshot table database
240 that correspond to the data that the Snapshot worker has
just completed copying. For example, if the Snapshot worker
206 informs the coordinator 216 that database tables “1”,
“5”, and “8” in database 204 have just been respectively
copied to the flat files 222, 224 and 226, the coordinator 216
determines whether the delete worker (242-248) have
deleted snapshot tables “1”, “5” and “8” in snapshot table
database 240, thereby removing the “stale data’.

In certain embodiments, the coordinator 216 uses the
information in the copy table list 218 to determine if a
particular snapshot table has been deleted. In one
embodiment, the coordinator 216 uses the delete complete
time 254 parameter to determine if a snapshot table has been
deleted.

If at step 520 the coordinator 216 determines that a
snapshot table has not been deleted (i.e. snapshot tables “1”,
“5” and “8” for the previous example), then at step 522, the
coordinator 216 delays the launching (e.g. spawning) of a
loader worker (230–238) for loading the information until
the snapshot tables “1”, “5” and “8” have been deleted. For
example, assuming that Snapshot worker 206 has notified
coordinator 216 that it has copied database tables “1”. “5”
and “8” from database 204 into flat file 220, if coordinator
216 determines that snapshot table “5” in snapshot table
database 240 has not been deleted (i.e. the “stale data' has
not been removed), then coordinator 216 will delay launch
ing loader worker 230 for loading the information into
snapshot tables “1”, “5” and “8”, until snapshot table “5” has
been deleted. Control then proceeds to step 534.

If at step 520, the coordinator 216 determines that the
snapshot table has been deleted, then at step 524 the coor
dinator 216 launches a loader worker (230–238) to load the
information from the flat file into the corresponding Snap
shot table in snapshot table database 240.
At step 526, when a loader worker (230–238) finishes

loading a flat file (220-228) into its corresponding snapshot
file in snapshot table database 240, it notifies the coordinator
216. In certain embodiments, the loader workers (230–238)
notify the coordinator 216 of the particular snapshot table in
which the data was loaded.

At step 528, the coordinator 216 determines whether all
the desired tables identified in copy table list 218 have been
copied from database 204 into the snapshot tables in snap
shot table database 240.

If at step 528 the coordinator 216 determines that all the
tables identified in copy table list 218 have been copied, then
at step 530, the coordinator 216 notifies the memory based
planner 202 that the snapshot table database 240 contains a
valid copy of the desired tables from database 204. At step
532, the memory based planner 202 uses the snapshot tables
in Snapshot table database 240 to generate the planning
schedule.

Conversely, if at step 528 the coordinator 216 determines
that all the tables identified in copy table list 218 have not
been copied, then at step 534, the coordinator 216 continues
to accept and process other completion notifications from
snapshot workers (206–214). When the coordinator 216
receives a notification that a snapshot worker (206–214) has
finished copying its assigned data to a particular flat file,
control proceeds to step 520 to determine whether the delete
workers (242-248) have deleted the corresponding snapshot
tables in the snapshot table database 240.

10

15

25

30

35

40

45

50

55

60

65

14
Copying Data Directly Into Another Database

Certain database systems provide Snapshot mechanisms
for transactions that modify the database, as well as for “read
only transactions. Such a mechanism is described in U.S.
patent application Ser. No. 08/613,026, filed Mar. 11, 1996,
Entitled “Method and Apparatus for Providing Isolation
Levels in a Data”, the contents of which are incorporated
herein by this reference. In certain embodiments, such a
Snapshot mechanism is used to allow the Snapshot workers
to copy the desired tables into a database without the use of
flat files.

FIG. 6 depicts a block diagram of a system 600 that is
used for producing a copy of a database in accordance with
an embodiment of the present invention. FIG. 6 is similar to
FIG. 2, and therefore like components have been numbered
alike.
As illustrated in FIG. 6, snapshot workers (206–214)

retrieve database table information from database 204 and
copy it directly into the snapshot table database 240. By
writing directly to the snapshot table database 240, the
intermediate steps of copying data to flat files and launching
loader workers to copy that data from the flat files into the
snapshot table database 240 can be eliminated. In one
embodiment, the snapshot workers (206–214) copy the
database tables (1...N) in database 204 directly into tempo
rary files in snapshot table database 240. These temporary
files are used by the memory based planner 202 for gener
ating a planning Schedule.

In an alternative embodiment, the Snapshot workers
(206–214) copy the desired database tables (1...N) in data
base 204 directly into snapshot table database 240 as “large
binary objects” (BLOBs). In general, a BLOB is a data item
that consists of a large amount of data and may be used by
systems that require data types that are typically much larger
than traditional data types. For example, a single BLOB may
include four gigabytes of data and may be thought of as a file
or a stream of characters or bytes.

In certain embodiments, snapshot workers (206–214)
retrieve database table information from database 204 and
copy it as separate data back into database 204. By copying
the database table information from database 204 as separate
data in database 204, the intermediate steps of copying the
data to flat files can be eliminated. In one embodiment, the
desired database tables (1...N) in database 204 are directly
copied as separate BLOBs in database 204.

In the foregoing specification, the invention has been
described with reference to specific embodiments thereof. It
will, however, be evident that various modifications and
changes may be made thereto without departing from the
broader spirit and scope of the invention. The specification
and drawings are, accordingly, to be regarded in an illus
trative rather than a restrictive sense.
What is claimed is:
1. A method for Supplying a consistent set of data to a

Software application, the method comprising the steps of:
launching said software application
identifying a particular set of data that is required by the

Software application;
requesting a first causing each process of a first set of
two or more processes to obtain a Snapshot time from
a database server associated with a first database,
wherein the Snapshot time causes all subsequent reads
of said first database by the first process to return data
that reflects a database state associated with the Snap
shot time times obtained by the first set of processes
are associated with a same State of the particular set of
data:

US RE39,549 E
15

after the first each process of the first set of processes
obtains thea snapshot time, causing the first process
set of processes to extract the particular set of data from
the first database; and

supplying said software application with the particular
set of data that was extracted from the first database.

causing the first set of processes to store a first copy of the
particular set of data that is extracted from the first
database in One or more files that are separate from the
first database,

causing a second set of one or more processes to store a
second copy of the particular set of data that is stored
in the One or more files, wherein the second copy is
stored separate from the first database, and wherein no
process in the second set of processes is in the first set
of processes, and

allowing the software application to access the second
copy of the particular set of data.

2. The method of claim 1, further comprising the step of
causing a second process to store the particular set of data
wherein the second copy is stored in a second database.

3. The method of claim 2, wherein the step of causing the
second process to store the particular set of data in the
second database includes the steps of:

writing the particular set of data to the one or more files
include one or more flat files; and

executing a loader process. the second set of processes
is a set of one or more loader processes, wherein the set
of loader process processes loads the second copy of
the particular set of data into the second database based
on the first copy that is stored in from the one or more
flat files to the second database.

4. The method of claim3, wherein the step of writing the
particular set of data to one or more flat files includes
fiurther comprising the steps of

each process of the first set of process processes inform
ing a coordinator process when it said each process
has finished writing data to a particular flat file of the
One or more flat files; and

after each process of the first set of processes informs the
coordinator process, the coordinator process using the
information to tell the informing each loader process
of the set of loader processes when it said each loader
process can begin loading the second copy of the
particular set of data into the second database based
on each of the one or more flat file files into the
second database.

5. The method of claim 3, wherein the step of:
writing the particular set of data to the flat file includes
the step of writing the particular set of data to the one
or more flat files comprises a plurality of flat files; and

executing the loader process includes the step of execut
ing the set of loader processes comprises a plurality of
loader processes, wherein the plurality of loader pro
cesses load loads the particular set of data from the
plurality of flat files to the second database.

6. The method of claim 2, wherein the step of supplying
said software application with data from said particular set
of data includes further comprising the steps of:

said software application reading the second copy of the
particular set of data stored in the second database; and

said software application generating a planning schedule
based on the second copy of the particular set of data.

7. The method of claim 1, wherein the step of identifying
the particular set of data includes the step of creating a copy

5

10

15

25

30

35

40

45

50

55

60

65

16
table list, wherein the copy table list contains entries that
identify the particular set of data in the first database.

8. The method of claim 7, further comprising the steps of:
executing a set of one or more delete process processes,

wherein the set of delete process processes uses the
copy table list to identify data that needs to be deleted
in a second database; and

deleting the identified data from the second database.
9. The method of claim 7, where wherein the step of

creating the copy table list includes the steps of:
communicating with the software application to identi

fying identif a set of planning data, where wherein
the planning data is required for generating a planning
Schedule; and

creating the copy table list based on the identified set of
planning data.

10. The method of claim 1, wherein the step of supplying
said software application with data from said particular set
of data includes the steps of:

writing the particular set of data to the one or more files
include one or more flat files, and the method further
comprises the steps of

supplying allowing the software application to access
the one or more flat files to said software application,
wherein such that said software application gener
ates can generate a planning schedule based on infor
mation contained in the one or more flat files.

11. A method for producing a copy of data from a first
database, the method comprising the steps of:

locking a first set of data in the first database;
after locking the first set of data,

requesting each process in a plurality of processes to
obtain its own Snapshot times time from a database
server associated with said first database, wherein
the Snapshot times cause all Subsequent reads of the
first database by the plurality of processes to return
data from the first database as of said Snapshot times;

waiting a particular period of time for the plurality of
processes to be assigned Snapshot times;

releasing the locks on the first set of data in the first
database;

using a Successful set of said plurality of processes to
extract a copy of the first set of data from the first
database, wherein:
said Successful set of said plurality of processes

includes only those processes of the plurality of
processes that were assigned a Snapshot time
within the particular period of time; and

before the successful set of said plurality of pro
cesses finishes extracting the copy of the first set of
data, the state of the first set of data is changed
and

storing the copy of the first set of data separate from said
first set of data.

12. The method of claim 11, wherein the step of identi
fying the first set of data includes the step of creating a copy
table list, wherein the copy table list contains entries that
identify the first set of data in the first database.

13. The method of claim 12, where wherein the step of
creating the copy table list includes the steps of:

identifying a set of planning data, where wherein the
planning data is required to generate a planning sched
ule; and

creating the copy table list based on the planning data
required to generate the planning schedule.

US RE39,549 E
17

14. The method of claim 12, further comprising the steps
of:

executing a plurality of delete processes, wherein the
plurality of delete processes use uses the copy table
list to identify data that needs to be deleted in a second
database; and

deleting the identified data from the second database.
15. The method of claim 11, wherein the step of storing

the copy of the first set of data includes the steps of:
writing the copy of the first set of data to a plurality of flat

files; and
executing a plurality of loader processes, wherein the

plurality of loader processes load the copy of the first
set of data from the plurality of flat files to a second
database.

16. The method of claim 15, wherein:
the steps of writing the copy of the first set of data to a

the plurality of flat files further includes the step of
notifying a coordinator process that data has been
written to one of the plurality of flat files; and

the steps of executing the plurality of loader processes
further includes the step of the coordinator, upon being
notified that data has been written to one of the plurality
of flat files, launching a loader process to load the first
set of data from one of the plurality of flat files to the
second database.

17. The method of claim 15, wherein the step of writing
the copy of the first set of data to the plurality of flat files
includes the steps of:

the plurality of process processes informing a coordi
nator process when it the plurality of processes has
finished writing data to a particular flat file; and

the coordinator process using the information to tell one
of the plurality of loader processes when it said one
of the plurality of loader processes can begin loading
the particular flat file into the second database.

18. The method of claim 11, wherein the step of request
ing the plurality of processes to obtain a Snapshot time
times includes the step of requesting the plurality of pro
cesses based on a user input parameter, wherein the user
input parameter identifies how many processes should be
requested to obtain a snapshot time times.

19. The method of claim 11, wherein the plurality of 45
processes is a plurality of snapshot processes, and wherein
the step of extracting the copy of the first set of data from the
database includes the steps of

assigning a set of copy data to the plurality of Snapshot
processes; and

retrieving data from the first database based on the set of
copy data that was assigned to the plurality of Snapshot
processes.

20. The method of claim 11, wherein the step of storing
the copy of the first set of data includes the steps of storing
the copy of the first set of data as blob files that are separate
from said first set of data.

21. The method of claim 11, wherein the step of storing
the copy of the first set of data includes the steps of storing
the copy of the first set of data in said first of datadatabase.

22. A computer-readable medium carrying one ore more
sequences of one or more instructions for Supplying a
consistent set of data to a software application, the one or
more sequences of one or more instructions including
instructions which, when executed by one or more
processors, cause the one or more processors to perform the
steps of

18
launching said software application
identifying a particular set of data that is required by the

Software application;
requesting a first causing each process of a first set of
two or more processes to obtain a Snapshot time from
a database server associated with a first database,
wherein the Snapshot time causes all subsequent reads
of said first database by the first process to return data
that reflects a database state associated with the Snap
shot time times obtained by the first set of processes
are associated with a same State of the particular set of
data:

after the first each process of the first set of processes
obtains thea snapshot time, causing the first process
set of processes to extract the particular set of data from
the first database; and

supplying said software application with the particular
set of data that was extracted from the first database.

causing the first set of processes to store a first copy of the
particular set of data that is extracted from the first
database in One or more files that are separate from the
first database,

causing a second set of one or more processes to store a
second copy of the particular set of data that is stored
in the One ore more files, wherein the second copy is
stored separate from the first database, and wherein no
process in the second set of processes is in the first set
of processes, and

10

15

25

30 allowing the software application to access the second
copy of the particular set of data.

23. The computer-readable medium of claim 22, wherein
the computer-readable medium further comprises instruc
tions for performing the step of causing a second process to
store the particular set of data wherein the second copy is
stored in a second database.

24. The computer-readable medium of claim 23, wherein
the step of causing the second process to store the particular
set of data in the second database includes the steps of:

writing the particular set of data to the One or more files
include one or more flat files; and

35

40

executing a loader process the second set of processes
is a set of one or more loader processes, wherein the set
of loader process processes loads the second copy of
the particular set of data into the second database based
On the first copy that is stored in from the one or more
flat files to the second database.

25. The computer-readable medium of claim 24, wherein
so the step of writing the particular set of data to one or more

flat files includes further comprising instructions for per
forming the steps of:

each process of the first set of process processes inform
ing a coordinator process when it said each process
has finished writing data to a particular flat file of the
One or more flat files; and

after each process of the first set of processes informs the
coordinator process, the coordinator process using the
information to tell the informing each loader process
of the set of loader processes when it said each loader
process can begin loading the second copy of the
particular set of data into the second database based
on each of the one or more flat file files into the
second database.

26. The computer-readable medium of claim 22, wherein
the step of identifying the particular set of data includes the
step of creating a copy table list, wherein the copy table list

55

60

US RE39,549 E
19

contains certain entries that identify the particular set of data
in the first database.

27. A computer-readable medium carrying one or more
sequences of one or more instructions for producing a copy
of data from a first database, the one or more sequences of 5
one or more instructions including instructions which, when
executed by one or more processors, cause the one or more
processors to perform the steps of

locking a first set of data in the first database;
after locking the first set of data,

requesting each process in a plurality of processes to
obtain its own Snapshot times time from a database
server associated with said first database, wherein
the Snapshot times cause all Subsequent reads of the
first database by the plurality of processes to return
data from the first database as of said Snapshot times;

waiting a particular period of time for the plurality of
processes to be assigned Snapshot times;

releasing the locks on the first set of data in the first
database;

using a Successful set of said plurality of processes to
extract a copy of the first set of data from the first
database, wherein:
said Successful set of said plurality of processes

includes only those processes of the plurality of
processes that were assigned a Snapshot time
within the particular period of time; and

before the successful set of said plurality of pro
cesses finishes extracting the copy of the first set of
data, the state of the first set of data is changed;
and

storing the copy of the first set of data separate from
said first set of data.

28. The computer-readable medium of claim 27, wherein
the step of identifying the first set of data includes the step
of creating a copy table list, wherein the copy table list
contains entries that identify the first set of data in the first
database.

29. The computer-readable medium of claim 27, wherein
the step of storing the copy of the first set of data includes
the steps of:

writing the copy of the first set of data to a plurality of flat
files; and

executing a plurality of loader processes, wherein the
plurality of loader processes load the copy of the first
set of data from the plurality of flat files to a second
database.

30. The computer-readable medium of claim 29, wherein
the step of writing the copy of the first set of data to the
plurality of flat files includes the steps of:

the plurality of process processes informing a coordi
nator process when it the plurality of processes has
finished writing data to a particular flat file; and

the coordinator process using the information to tell one
of the plurality of loader processes when it said one
of the plurality of loader processes can begin loading
the particular flat file into the second database.

31. The computer-readable medium of claim 27, wherein
the plurality of processes is a plurality of snapshot
processes, and wherein the step of extracting the copy of the
first set of data from the database includes the steps of:

assigning a set of copy data to the plurality of Snapshot
processes; and

retrieving data from the first database based on the set of 65
copy data that was assigned to the plurality of Snapshot
processes.

10

15

35

40

45

50

55

60

20
32. A computer system for Supplying a consistent set of

data to a software application, the computer system com
pr1S1ng:

a memory;
one or more processors coupled to the memory; and
a set of computer instructions contained in the memory,

the set of computer instructions including computer
instructions which when executed by the one or more
processors, cause the one or more processors to per
form the steps of:
launching said software application
identifying a particular set of data that is required by the

Software application;
requesting a first causing each process of a first set of
two or more processes to obtain a Snapshot time from
a database server associated with a first database,
wherein the Snapshot time causes all Subsequent
reads of said first database by the first process to
return data that reflects a database state associated
with the snapshot time times obtained by the first set
of processes are associated with a same state of the
particular set of data;

after the first each process of the first set of processes
obtains thea snapshot time, causing the first pro
cess set of processes to extract the particular set of
data from the first database; and

supplying said software application with the particular
set of data that was extracted from the first database.

causing the first set of processes to store a first copy of
the particular set of data that is extracted from the
first database in One or more files that are separate
from the first database,

causing a second set of one or more processes to store
a second copy of the particular set of data that is
stored in the One or more files, wherein the second
copy is stored separate from the first database, and
wherein no process in the second set of processes is
in the first set of processes, and

allowing the software application to access the second
copy of the particular set of data.

33. The computer system of claim 32, further including
instructions for performing the step of causing a second
process to store the particular set of data wherein the second
copy is stored in a second database.

34. The computer system of claim 33, wherein the step
of causing the second process to store the particular set of
data in the second database includes the steps of:

writing the particular set of data to the One or more files
include one or more flat files; and

executing a loader process the second set of processes
is a set of one or more loader processes, wherein the set
of loader process processes loads the second copy of
the particular set of data into the second database based
On the first copy that is stored in from the one or more
flat files to the second database.

35. The computer system of claim 34, wherein the step
of writing the particular set of data to one or more flat files
includes further comprising instructions for performing the
steps of

each process of the first process set of processes inform
ing a coordinator process when it said each process
has finished writing data to a particular flat file of the
One or more flat files; and

after each process of the first set of processes informs the
coordinator process, the coordinator using the infor
mation to tell the process informing each loader pro

US RE39,549 E
21 22

cess of the set of loader processes when it said each 41. The computer system of claim 37, wherein the plu
loader process can begin loading the second copy of the rality of processes is a plurality of snapshot processes, and
particular set of data into the second database based wherein the step of extracting the copy of the first set of data
on each of the one or more flat file files into the from the database includes the steps of:
second database. 5 assigning a set of copy data to the plurality of Snapshot

36. The computer system of claim 32, wherein the step of processes; and
identifying the particular set of data includes the step of retrieving data from the first database based on the set of
creating a copy table list, wherein the copy table list contains copy data that was assigned to the plurality of Snapshot
entries that identify the particular set of data in the first processes.
database. 42. A method for extracting data from a first database, the

37. A computer system for producing a copy of data from method comprising the steps of
a first database, the computer system comprising: causing each process in a set of two or more processes to

a memory; obtain its own snapshot time that cause all subsequent
one or more processors coupled to the memory; and reads of the first database by each process in the set of
a set of computer instructions contained in the memory, 15 processes to return data from a same state of at least a

the set of computer instructions including computer portion of the first database as will be returned to all
instructions which when executed by the one or more Other processes in the set of processes,
processors, cause the one or more processors tO per- Causing the set of processes to extract a Copy of the
form the steps of: 2O portion of the first database, and

locking a first set of data in the first database; wherein before the set of processes finish extracting said
after locking the first set of data, copy, the State of the portion of the first database is

requesting each process in a plurality of processes to changed.
obtain its own Snapshot times time from a database 43. The method of claim 42, wherein the set of processes
server associated with said first database, wherein as are included in a plurality of processes, and the step of
the Snapshot times cause all Subsequent reads of the causing the set of processes to obtain Snapshot times com
first database by the plurality of processes to return prises the step of
data from the first database as of said Snapshot times; causing the plurality of processes to attempt to obtain

waiting a particular period of time for the plurality of Snapshot times that cause all subsequent reads of the
processes to be assigned Snapshot times; 30 first database by each process of the plurality of

releasing the locks on the first set of data in the first processes that successfully obtains one of the Snapshot
database; times to return data from the same state of at least the

using a Successful set of said plurality of processes to portion of the first database as will be returned to all
extract a copy of the first set of data from the first Other processes of the plurality of processes that suc
database, wherein: 35 cessfully obtain one of the Snapshot times.
said Successful set of said plurality of processes 44. The method of claim 43, wherein at least one process

includes only those processes of the plurality of of the plurality of processes falls to One of the Snapshot times
processes that were assigned a Snapshot time within a particular period of time.
within the particular period of time; and 45. The method of claim 42, wherein each process of the

before the successful set of said plurality of pro- a set of processes obtains a snapshot time by sending a request
Cesses finishes extracting the Copy of the first set of for a snapshot time to a database management system that
data, the state of the first set of data is changed is associated with the first database and that assigns a
and Snapshot time in response to the request.

storing the copy of the first set of data separate from 46. The method of claim 42, wherein each process of the
said first set of data. as set of processes is assigned to extract a particular subset of

38. The computer system of claim 37, wherein the step of the portion from the first database.
identifying the first set of data includes the step of creating 47. The method of claim 42, wherein each process of the
a copy table list, wherein the copy table list contains entries set of processes obtains a snapshot time within a particular
that identify the first set of data in the first database. period of time.

39. The computer System of claim 37, wherein the step of so, 48. The method of claim 47, wherein the set of processes
storing the copy of the first set of data includes the steps of: does not begin to extract the copy of the portion until after

writing the copy of the first set of data to a plurality of flat expiration of the particular period of time.
files; and 49. The method of claim 47, wherein at least one process

executing a plurality of loader processes, wherein the of the set of processes begins to extract the copy of the
plurality of loader processes load the copy of the first ss portion prior to expiration of the particular period of time.
set of data from the plurality of flat files to a second 50. The method of claim 47, filrther comprising the step
database. of:

40. The computer system of claim 39, wherein the step of locking the portion of the first database during the par
writing the copy of the first set of data to the plurality of flat ticular period of time.
files includes the steps of: 60 5 1. The method of claim 42, firther comprising the step

the plurality of process processes informing a coordi- of:
nator process when it the plurality of processes has using a set transaction read only command such that each
finished writing data to a particular flat file; and process of the set of processes can obtain a snapshot

the coordinator process using the information to tell one time.
of the plurality of loader processes when it said one 65 52. The method of claim 42, further comprising the step
of the plurality of loader processes can begin loading of:
the particular flat file into the second database. storing the copy separate from the portion.

US RE39,549 E
23

53. The method of claim 52, wherein the step of storing the
copy comprises the step of

sorting the copy in a second database.
54. The method of claim 53, wherein step of storing the

copy in the second database comprises the step of
storing the copy as one or more large binary objects in the

second database.
55. The method of claim 52, wherein the step of storing the

copy comprises the step of
storing the copy in the first database.
56. The method of claim 55, wherein the step of storing the

copy in the first database comprises the step of
storing the copy as one or more large binary objects in the

first database.
57. The method of claim 42, wherein the copy is a first

copy and the set of two or more processes is a first set of two
or more processes, and wherein the method filrther com
prises the steps of

causing the first copy to be stored into one or more files
by the first set of processes, and

requesting each process of a second set of one or more
processes to load a second copy into a second
database, wherein the second copy is based on the first
copy stored in the One or more files.

58. The method of claim 57, wherein:
the One or more files include One or more flat files,
the first set of two or more processes includes a set of two

or more Snapshot worker processes,
the second set of one or more processes includes a set of

one or more loader worker processes, and
the second database is a snapshot table database.
59. The method of claim 57, further comprising the steps

of:
each process of the first set of processes informing a

coordinator process when said each process of the first
set of processes has finished writing to a particular file
of the One or more files, and

after each process of the first set of processes informs the
coordinator process, the coordinator process informing
each process of the second set of processes when said
each process of the second set of processes can begin
loading the second copy to the second database.

60. The method of claim 57, further comprising the steps
of:

allowing an application to read the second copy that is
stored in the second database, wherein the application
generates a schedule based on data within the second
Copy.

61. The method of claim 42, further comprising the steps
of:

causing the first copy to be stored into one or more files
by the set of processes, and

allowing an application to read the first copy that is stored
in the One or more files, wherein the application gen
erates a schedule based on data within the first copy.

62. The method of claim 42, further comprising the step
of:

using a list of database tables to identify the portion of the
first database.

63. The method of claim 62, wherein the set of processes
uses the list of database tables to extract the copy from the
first database.

64. The method of claim 62, wherein the list of database
tables is a copy table list that is generated by One process of

10

15

25

30

35

40

45

50

55

60

65

24
the set of processes, and wherein the method further com
prises the steps of

requesting each process of a third set of processes to
identifi and delete, based on the copy table list, data
from a second database.

65. The method of claim 62, further comprising the steps
of:

communicating with an application to identif a set of
data for generating a schedule, and

causing the list of database tables to be created based on
the identified set of data.

66. A computer-readable medium carrying One or more
sequences of One or more instructions for extracting data
from a first databases, the One or more sequences of one or
more instructions including instructions which, when
executed by One or more processors, cause the One or more
processors to perform the steps of

causing each processor a set of two or more processes to
obtain its own snapshot time that cause all subsequent
reads of the first database by each process in the set of
processes to return data from a same state of at least a
portion of the first database as will be returned to all
Other processes in the set of processes,

causing the set of processes to extract a copy of the
portion of the first database, and

wherein before the set of processes finish extracting said
copy, the State of the portion of the first database is
changed.

67. The computer-readable medium of claim 66, wherein
the set of processes are included in a plurality of processes,
and the step of causing the set of processes to obtain
Snapshot times Comprises the step of

causing the plurality of processes to attempt to obtain
Snapshot times that cause all subsequent reads of the
first database by each process of the plurality of
processes that successfully obtains one of the Snapshot
times to return data from the same state of at least the
portion of the first database as will be returned to all
Other processes of the plurality of the processes that
successfully obtain one of the snapshot times.

68. The computer-readable medium of claim 66, wherein
at least one process of the plurality of processes fails to One
of the Snapshot times within a particular period of time.

69. The computer-readable medium of claim 66, wherein
each process of the set of processes obtains a snapshot time
by sending a request for a snapshot time to a database
management system that is associated with the first database
and that assigns a snapshot time in response to the request.

70. The computer-readable medium of claim 66, wherein
each process of the set of processes is assigned to extract a
particular subset of the portion from the first database.

71. The computer-readable medium of claim 66, wherein
each process of the set of processes obtains a snapshot time
within a particular period of time.

72. The computer-readable medium of claim 71, wherein
the set of processes does not begin to extract the copy of the
portion until after expiration of the particular period of time.

73. The computer-readable medium of claim 71, wherein
at least one process of the set of processes begins to extract
the copy of the portion prior to expiration of the particular
period of time.

74. The computer-readable medium of claim 66, further
comprising instructions for performing the step of

locking the portion of the first database during the par
ticular period of time.

75. The computer-readable medium of claim 66, further
comprising instructions for performing the step of

US RE39,549 E
25

using a set transaction read only command such that each
process of the set of processes can obtain a snapshot
time.

76. The computer-readable medium of claim 66, further
comprising instructions for performing the step of

storing the copy separate from the portion.
77. The computer-readable medium of claim 76, wherein

the step of storing the copy comprises the step of
storing the copy in a second database.
78. The computer-readable medium of claim 77, wherein

step of storing the copy in the second database comprises the
step of

storing the copy as one or more large binary objects in the
second database.

79. The computer-readable medium of claim 76, wherein
the step of storing the copy comprises the step of

storing the copy in the first database.
80. The computer-readable medium of claim 79, wherein

step of storing the copy in the first database comprises the
step of

storing the copy as one or more large binary objects in the
first database.

81. The computer-readable medium of claim 66, wherein
the copy is a first copy and the set of two or more processes
is a first set of two or more processes, and further compris
ing instructions for performing the steps of

causing the first copy to be stored into one or more files
by the first set of processes, and

requesting each process of a second set of one or more
processes to load a second copy into a second
database, wherein the second copy is based on the first
copy stored in the One or more files.

82. The computer-readable medium of claim 81, wherein:
the One or more files include One or more flat files,
the first set of two or more processes includes a set of two

or more Snapshot worker processes,
the second set of one or more processes includes a set of

One or more loader worker processes, and
the second database is a snapshot table database.
83. The computer-readable medium of claim 81, further

comprising instructions for performing the steps of
each process of the first set of processes informing a

coordinator process when said each process of the first
set of processes has finished writing to a particular file
of the One or more files, and

after each process of the first set of processes informs the
coordinator process, the coordinator process informing
each process of the second set of processes when said
each process of the second set of processes can begin
loading the second copy to the second database.

84. The computer-readable medium of claim 81, further
comprising instructions for performing the step of

allowing an application to read the second copy that is
stored in the second database, wherein the application
generates a schedule based on data within the second
Copy.

10

15

25

30

35

40

45

50

55

26
85. The computer-readable medium of claim 66, further

comprising instructions for performing the steps of
causing the first copy to be stored into one or more files

by the set of processes, and
allowing an application to read the first copy that is stored

in the One or more files, wherein the application gen
erates a schedule based on data within the first copy.

86. The computer-readable medium of claim 66, further
comprising instructions for performing the steps of

using a list of database tables to identify the portion of the
first database.

87. The computer-readable medium of claim 86, wherein
the set of processes uses the list of database tables to extract
the copy from the first database.

88. The computer-readable medium of claim 86, wherein
the list of database tables is a copy table list that is
generated by One process of the set of processes, and further
comprising instructions for performing the step of

requesting each process of a third set of processes to
identifi and delete, based on the copy table list, data
from a second database.

89. The computer-readable medium of claim 86 further
comprising instructions for performing the steps of

communicating with an application to identif a set of
data for generating a schedule, and

causing the list of database tables to be created based on
the identified set of data.

90. The method of claim I, wherein the set of two or more
processes includes at least two processes that obtain differ
ent shapshot times.

91. The method of claim II, wherein the plurality of
processes includes at least two processes that obtain differ
ent shapshot times.

92. The computer-readable medium of claim 22, wherein
the two or more processes includes at least two processes
that obtain different shapshot times.

93. The computer-readable medium of claim 27, wherein
the plurality of processes includes at least two processes that
obtain different shapshot times.

94. The computer system of claim 32, wherein the set of
two or more processes includes at least two processes that
obtain different shapshot times.

95. The computer system of claim 37, wherein the plu
rality of processes includes at least two processes that obtain
different shapshot times.

96. The method of claim 42, wherein the set of two or more
processes includes at least two processes that obtain differ
ent shapshot times.

97. The computer-readable medium of claim 66, wherein
the set of two or more processes includes at least two
processes that obtain different shapshot times.

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO. : RE 39,549 E Page 1 of 2
APPLICATIONNO. : 10/021783
DATED : April 3, 2007
INVENTOR(S) : Nadeem Syed and Kurt Robson

It is certified that error appears in the above-identified patent and that said Letters Patent is
hereby corrected as shown below:

On Title page
In the OTHER PUBLICATIONS:

Item (56) Delete http://msdn2. microSoft.com/en-uslibrary/mS 173763.aspx.
And insert -- http://mSdn2. microSoft.com/en-uS/library/mS173763.aspx. --

Delete “Rdb/VMS, A Comprehensive Guide by Lilian Hobbs and Ken England,
Copyright (C1991 by digital Equipment Corporation (12 pgs).
And insert -- Rdb/VMS, A Comprehensive Guide by Lilian Hobbs and Ken England,
Copyright (C1991 by Digital Equipment Corporation (12 pgs). --

In the claims:

Column 22, line 37, replace “falls with --fails--

Column 23, line 3, replace “sorting with --storing--

Column 24, line 14, replace “databases with --database--

Column 26, line 10, replace “steps with --step--

Column 26, line 33, replace “shapshot with --snapshot

Column 26, line 36, replace “shapshot with --snapshot

Column 26, line 39, replace “shapshot with --snapshot

Column 26, line 43, replace “shapshot with --snapshot

Column 26, line 46, replace “shapshot with --snapshot

Column 26, line 49, replace “shapshot with --snapshot

Column 26, line 52, replace “shapshot with --snapshot

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO. : RE 39,549 E Page 2 of 2
APPLICATIONNO. : 10/021783
DATED : April 3, 2007
INVENTOR(S) : Nadeem Syed and Kurt Robson

It is certified that error appears in the above-identified patent and that said Letters Patent is
hereby corrected as shown below:

In the claims (cont'd):

Column 26, line 55, replace “shapshot with --snapshot

Signed and Sealed this

Twelfth Day of June, 2007

WDJ
JON. W. DUDAS

Director of the United States Patent and Trademark Office

