(54) Titre: REVETEMENTS NANOCOMPOSITES POUR CONNEXIONS FILETEES
(54) Title: NANOCOMPOSITE COATINGS FOR THREADED CONNECTIONS

(57) Abrégé/Abstract:
Coating systems which provide corrosion resistance and, optionally, lubrication, for threaded connections are disclosed. The compositions comprise a first coating composition 200 comprising polymer matrices of polyimides or epoxies which are modified with small amounts of a fluorine containing polymer. Also present in the coating compositions are corrosion inhibiting agents and inorganic particles having a mean diameter of between approximately 10 nm and 10 μm. Solid lubricants, which may include at least one of PTFE, HDPE, Graphite, and MoS2, are optionally added to provide the first coating with a low coefficient of friction. The coating systems may further comprise a second coating composition 202, comprising a solid lubricant dispersed within an epoxy resin and a solvent. The first and second coating compositions 200, 202 are deposited on at least a portion of at least one of

FIG. 1
(57) Abrégé(suite)/Abstract(continued):
the pin and box members 100, 104 of the threaded connections.
Title: NANOCOMPOSITE COATINGS FOR THREADED CONNECTIONS

Abstract: Coating systems which provide corrosion resistance and, optionally, lubrication, for threaded connections are disclosed. The compositions comprise a first coating composition 200 comprising polymer matrices of polyimides or epoxies which are modified with small amounts of a fluorine containing polymer. Also present in the coating compositions are corrosion inhibiting agents and inorganic particles having a mean diameter of between approximately 10 nm and 10 μm. Solid lubricants, which may include at least one of PTFE, HDPE, Graphite, and MoS₂, are optionally added to provide the first coating with a low coefficient of friction. The coating systems may further comprise a second coating composition 202, comprising a solid lubricant dispersed within an epoxy resin and a solvent. The first and second coating compositions 200, 202 are deposited on at least a portion of at least one of the pin and box members 100, 104 of the threaded connections.
NANOCOMPOSITE COATINGS FOR THREADED CONNECTIONS

CROSS REFERENCE TO RELATED APPLICATIONS

[0001] This application claims the benefit of priority under 35 U.S.C. §119(e) of U.S. Provisional Application Number 60/872615, filed on December 1, 2006, entitled Nanocomposite Coatings for Lubrication and Corrosion Resistance, U.S. Provisional Application Number 60/914699, filed April 27, 2007, entitled Polymer Coating for Lubricating and Corrosion Resistance, and U.S Provisional Patent Application Number 60/940690, filed May 29, 2007, entitled Coatings for Lubrication and Corrosion Resistance, the entirety of each of which is incorporated herein by reference.

BACKGROUND OF THE INVENTION

Field of the Invention

[0002] Embodiments of the invention relate to coating systems, particularly for threaded connections, and, in one embodiment, to nanocomposite coatings for corrosion resistance.

Description of the Related Art

[0003] In oilfields, it is common practice to use metallic pipes to extract oil or gas from underground reservoirs or pools. This extraction technique generally requires the boring of a well in the earth and internal casement of the well with relatively large diameter metallic tubes, referred to as the casing, to provide structural stability to the well and prevent it from collapsing. Subsequently, once the necessary depth of the well is achieved, a string of metallic pipes of smaller diameter, referred to as the tubing, are placed in the well in order to pump the gaseous or liquid hydrocarbons to the surface. The pipes which form the tubing are joined in a string of defined length which is sufficient to reach the depth necessary for extraction. Both the casing and tubing strings are formed of pipe segments, which are joined together using threaded connectors.
[0004] During assembly of either of the casing or tubing pipes, galling in the threads and other surfaces of the pipes which are in sliding contact is a significant problem which may arise. It is common practice to use dope or grease on the surface of the threads of male and female elements of the threaded connection during assembly of the pipes in order to avoid galling. The dope typically employs small particles of heavy metals such as Pb or Cu.

[0005] The use of dope presents significant drawbacks, however. Notably, excessive concentrations of heavy metals can result in their accumulation in the bodies of humans and animals, causing serious illness. Furthermore, the heavy metals present in dope may possibly contaminate soil, groundwater, and ocean water, presenting an environmental hazard. Furthermore, in light of these hazards, strict regulations prohibiting discharge of heavy metals requires precautions when utilizing dope that increases the cost of its use.

[0006] In addition to the aforementioned issues, the use of dope necessitates other operations, such as cleaning and doping of the threaded connections in the field during use. These operations are expensive and time consuming, however, as they are labor intensive. Additionally, these operations expose personnel to safety risks, as they require exposure to moving pipes and often take place under adverse conditions.

[0007] Another potential risk in the use of dope is the danger of either "underdoping" or "overdoping." In underdoping, insufficient dope is provided and/or the dope fails to distribute over the entire surface of the threaded connection, resulting in a failure to adequately inhibit galling. While application of excess dope can address underdoping, this approach risks overdoping, the condition of laying too much dope on the threads of the connectors. Overdoping has the potential consequence that, during assembly of the connector, the excess of dope cannot be evacuated through the end of the threaded portions of the pipe segments. The trapped dope can thus develop high pressure within the connector that results in plastic deformation of the pipe segments in the threaded portion. In extreme cases, such plastic deformation may cause the collapse of the male member of the joint, rendering the connector ineffective, and requiring replacement of the pipe segments and/or the sleeve.

[0008] Anti-galling solutions which do not employ dope have been examined to address these problems. In one aspect, international patent application WO2006/075774 to
Imai, et al. discloses a coating composition containing a lower layer, comprising a solid lubricating powder and a binder, and an upper coating layer of a solid corrosion protective coating without solid particles. At the time of fastening the joint, the corrosion protective coating gradually wears in the contact portions due to the friction occurring during fastening, exposing the underlying solid lubricating coating which provides its lubricating action.

[0009] In another aspect, U.S. Patent number 5,253,902 to Petelot, et al. describes an anti-seizing coating for protection of metallic threaded tubes. The coating comprises a thin lead oxide layer, produced by oxidation of a lead layer, which is formed on an underlying layer of copper, nickel, or chromium, which is in turn formed upon the substrate.

[0010] In a further aspect, International Patent Application WO/2006/104251 to Goto, et al. discloses a threaded joint having improved galling and corrosion resistance having a lower layer of a viscous liquid or semisolid lubricating coating comprising at least wax and a fatty acid alkaline earth metal salt without heavy metals. The coating also comprises an upper layer of a dry solid coating formed from an aqueous resin coating composition.

[0011] Each of these approaches has drawbacks, however. The approach of Imai relies upon a relatively soft corrosion protective coating which is worn through to expose the lubricating layer. As a result, the mechanical durability of the corrosion protective layer is low and this layer may wear away over time in undesired areas, significantly reducing the corrosion protection ability of the coating. The approach proposed by Petelot employs heavy metals, such as lead and copper, resulting in the attendant environmental and toxic hazards discussed above. The approach proposed by Goto is also problematic in that the lower layer of a liquid or semisolid lubricating coating will be subject to the problems of overdoping or underdoping when applying the lower layer composition.

[0012] For at least the foregoing reasons, there is a need for protection systems which provide improved corrosion resistance, especially in the severe environments faced within the oil and gas production industries.
SUMMARY OF THE INVENTION

[0013] Embodiments of the present disclosure provide a threaded joint. In one embodiment, the threaded joint comprises a pin member and a box member, where the pin member possesses a first thread portion adapted to mate with a second thread portion of the box member. The threaded joint further comprises a first coating composition deposited on at least a portion of at least one of the pin and box members. In one embodiment, the first coating composition comprises:

a polymer;

a fluorine containing polymer modifier;

at least one anticorrosion additive; and

at least one metal oxide having a diameter ranging between about 10 nm and 10 μm.

[0014] In certain embodiments, the first coating composition may be combined with a second coating composition which is deposited on at least a portion of at least one of the pin and box members. In one embodiment, the second coating composition comprises:

a polymer;

a solid lubricant dispersed within the polymer;

a metal oxide; and

a solvent.

[0015] Another embodiment of the present disclosure also provides a threaded joint. In one embodiment, the threaded joint comprises a pin member and a box member, where the pin member possesses a first thread portion adapted to mate with a second thread portion of the box member. The threaded joint further comprises a first coating composition deposited on the thread portion of at least one of the pin and box members. In one embodiment, the first coating composition comprises

a polymer selected from the group consisting of epoxies and polyimides;

about 0.5 to 15 wt. % of a perfluoropolyether;

about 5 to 15 wt. % of at least one of an anticorrosion compound selected from the group consisting of a zinc calcium strontium orthophosphate silicate hydrate compound, a zinc calcium aluminum strontium orthophosphate polyphosphate silicate hydrate, a zinc
aluminum molybdenum orthophosphate hydrate, a zinc nitroisophthalate, and a zinc phosphomolybdate; and

about 10 to 15 wt. % zinc oxide having a mean diameter ranging between approximately 10 nm to 10 µm;

where the balance of the first coating composition is comprised of the polymer and wherein the percentage of each component is on the basis of the total weight of the first coating composition.

[0016] In another embodiment, a threaded joint comprises a pin member and a box member, where the pin member possesses a first thread portion adapted to mate with a second thread portion of the box member. The threaded joint also comprises a first coating composition deposited on the thread portion of at least one of the pin and box members. The first coating composition comprises

a polymer;

about 0.5 to 15 wt. % of a fluorine containing polymer modifier;

about 5-15 wt. % of a corrosion inhibiting agent comprising at least one of Zn, Ca, Mg, Sr, Al, phosphate functional groups, molybdate functional groups, phosphomolybdate functional groups, and phosphosilicate functional groups; and

about 10-15 wt. % of inorganic particles having a mean diameter ranging between approximately 10 nm and 10 µm;

where the balance of the first composition is comprised of the polymer and where the percentage of each component is on the basis of the total weight of the first coating composition.

[0017] The embodiments of the present disclosure additionally provide a method of protecting a threaded joint. In one embodiment, the method comprises providing a pin member and a box member, where the pin member possesses a first thread portion adapted to mate with a second thread portion of the box member. The method further comprises providing a first composition. The first coating composition comprises:

a polymer;

about 0.5 to 15 wt. % of a fluorine containing polymer modifier;
about 5-15 wt. % of a corrosion inhibiting agent comprising at least one of Zn, Ca, Mg, Sr, Al, phosphate functional groups, molybdate functional groups, phosphomolybdate functional groups, and phosphosilicate functional groups; and

about 10-15 wt. % of inorganic particles having a mean diameter ranging between approximately 10 nm and 10 μm;

where the balance of the first composition is comprised of the polymer and where the percentage of each component is on the basis of the total weight of the first coating composition.

[0018] The method further comprises providing a second coating composition. The second coating composition comprises a dry film lubricant.

[0019] The method also comprises applying each of the first and the second coatings on at least the thread portion of at least one of the pin and box members.

[0020] A further embodiment of the disclosure provides a threaded joint. The joint comprises:

a pin member and a box member, where the pin member possess a first thread portion adapted to mate with a second thread portion of the box member, where at least one surface of the pin or the box member is sandblasted;

a first coating composition deposited on the thread portion of the pin member, comprising:

an epoxy;

about 0.5 to 15 wt. % of a perfluoropolyether;

about 5 to 15 wt. % of at least one of an anticorrosion compound selected from the group consisting of zinc calcium strontium orthophosphate silicate hydrate compound, zinc calcium aluminum strontium orthophosphate polyphosphate silicate hydrate, zinc aluminum molybdenum orthophosphate hydrate, zinc nitroisophthalate, and zinc phosphomolybdate; and

about 10 to 15 wt. % zinc oxide having a mean diameter ranging between approximately 10 nm to 10 μm;
where the balance of the first coating composition is comprised of the epoxy and where the percentage of each component is on the basis of the total weight of the first coating composition; and

a second coating composition deposited on the thread portion of the box member, comprising:

about 4 to 16 wt. % polytetrafluoroethylene (PTFE);
about 8 to 24 wt. % of a reactive epoxy;
about 1 to 6 wt. % titanium dioxide; and
a solvent;

where the amount of each component is on the basis of the total weight of the second coating composition.

[0021] Other embodiments of the present disclosure are directed to compositions that may be applied to a threaded joint or other surfaces.

BRIEF DESCRIPTION OF THE DRAWINGS

[0022] Figure 1 is a cross sectional view of an embodiment of a joint comprising mating threads of a pin member and box member;

[0023] Figures 2A and 2B are cross sectional views of the pin and box members of Figure 1, demonstrating the first and second coating systems deposited on the incipient mating surfaces of the pin and box in order to provide at least corrosion protection;

[0024] Figures 3A-3E are schematic illustrations of the mating surfaces of the pin and box members, illustrating configurations of embodiments of the first and second coating systems;

[0025] Figure 4 is a photograph of a crosscut tape test of one embodiment of a polyimide based coating system using graphite as a solid state lubricant, illustrating that the coating system provides excellent adhesion to the substrate;

[0026] Figure 5 is a graph plotting friction coefficient as a function of rounds for embodiments of polyimide matrix coatings having varied ratios of graphite to SiC;
[0027] Figure 6 is a graph plotting friction coefficient as a function of rounds for embodiments of polyimide matrix coating compositions containing graphite and having varied concentration of polymeric carbon fluorinated alcohol (D10H);

[0028] Figure 7 is a graph plotting friction coefficient as a function of rounds for embodiments of polyimide matrix coatings having varied concentration of MoS₂ and D10H;

[0029] Figure 8 is a graph plotting friction coefficient as a function of rounds for embodiments of polyimide matrix coatings having varied ratios of MoS₂ and SiC;

[0030] Figure 9 is a graph plotting friction coefficient as a function of rounds for embodiments of polyimide matrix coatings having varied concentration of PTFE and SiC;

[0031] Figure 10 is a graph plotting friction coefficient as a function of rounds for embodiments of polyimide matrix coatings containing D10H and having different solid state lubricants (TP9: graphite, TP11: PTFE, TP30: MoS₂, TP36: HDPE, TP33: MoS₂/SiC, TP14: graphite/SiC);

[0032] Figure 11 is a histogram of average friction coefficient and wear coefficient as a function of lubricant for embodiments of polyimide matrix coatings having different solid state lubricants;

[0033] Figure 12 is a photograph of one embodiment of a delaminated polyimide coating, without primer (composition TP30), after an approximately 70 h neutral salt spray test (SST);

[0034] Figure 13 illustrates the mechanism of the hydrolyzation Polyimide/Metal interface layer;

[0035] Figure 14 is a photograph of an embodiment of polyimide coating composition TP9 after an about 500 h SST. A glycidoxypropyltriethoxy silane (GPTES) primer is present between the coating and the substrate;

[0036] Figures 15A and 15B are photographs of an embodiment of polyimide coating composition TP14 with commercial epoxy primer; (15A) after an approximately 300 hour salt spray test; (15B) after an approximately 500 h salt spray test;

[0037] Figures 16A and 16B are photographs of an embodiment of polyimide coating composition TP30 with commercial epoxy primer; (16A) after an approximately 500 h SST (16B) close up view of 16A, illustrating an open blister on the coating surface;

-8-
Figures 17A-17C are photographs of an embodiment of polyimide coating composition TP30 after an approximately 500 h SST, illustrating peeling off of the coating; (17A) immediately after peeling the non-stuck coating - substantially no corrosion is observed; (17B) after about 10 minutes of exposure to environmental conditions, the formerly clean, exposed substrate surface shows rust; (17C) after approximately 10 additional minutes of exposure to environmental conditions, the coating on the top was removed, showing substantially no corrosion;

Figure 18 is a photograph of an embodiment of coating composition TP65 after an approximately 300 h SST;

Figure 19 is a graph plotting friction coefficient as a function of rounds for embodiments of epoxy matrix coatings having varied concentrations of graphite and D10H;

Figure 20 is a graph plotting friction coefficient as a function of rounds for embodiments of epoxy matrix coatings having varied concentrations MoS₂;

Figure 21 is a graph plotting friction coefficient as a function of rounds for embodiments of epoxy matrix coatings having different HDPE concentrations;

Figure 22 is a graph plotting friction coefficient as a function of rounds for embodiments of epoxy matrix coatings having different lubricants;

Figure 23 is a photograph of an embodiment of coating composition TE13, without primer, after an approximately 200 h SST illustrating delamination around the scratch;

Figures 24A and 24B are photographs of embodiments of coating composition TE20, without primer after salt spray testing; (24A) after an approximately 200 h SST; (24B) after an about 500 h;

Figures 25A and 25B are photographs of embodiments of epoxy matrix coating compositions TE33 and TE34 after an approximately 400 h SST; (25A) TE33; (25B) TE44;

Figures 26A-26C are photographs of embodiments of epoxy matrix coating compositions TE48, TE49, TE50 after approximately 400 h SST; (26A) TE48; (26B) TE49; (26C) TE50;
[0049] Figures 27A and 27B are photographs of embodiments of epoxy matrix coating compositions TE49 and TE50 after an approximately 400 b of neutral salt spray exposure; (27A) TE49; (27B) TE50;

[0050] Figure 28 is a graph plotting friction coefficient as a function of rounds for embodiments of epoxy matrix coating compositions TE33, TE44, TE48, TE49, TE50 having varied anticorrosion additives;

[0051] Figures 29A-29C are photographs of an embodiment of epoxy matrix coating composition TE44 after SST; (29A) 500 h; (29B) 1100 h; (29C) 2000 h;

[0052] Figure 30 is a photograph of a metallic substrate underlying epoxy matrix coating composition TE44 after SST;

[0053] Figure 31 is a graph plotting friction coefficient as a function of rounds for embodiments of epoxy matrix coating compositions TE60, TE61, TE64, TE67, TE68 having varied amounts of Heucophos® ZCP and ZnO, as well as varied size of ZnO; and

[0054] Figures 32A and 32B are photographs of embodiments of threaded connections threads partially coated with epoxy matrix coating compositions TE64 (32A) and TE67 (32B); Corrosion can be observed in the uncoated areas.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0055] Embodiments of the present disclosure provide coating systems, and methods of manufacture, for the protection of threaded connections. The coating systems, in certain embodiments, comprise at least a first coating which is configured for deposition upon at least a portion of at least one of the surfaces of the threaded connection in order to provide at least corrosion resistance. Optionally, the first coating may also provide lubrication. In alternative embodiments, the coating systems comprise the first coating in combination with a second coating composition which is configured so for deposition upon at least a portion of at least one of the surfaces of the threaded connection in order to provide lubrication. In particular, the coatings are suitable for applications such as threaded steel pipe connections, where extremely high loads and high local temperatures, caused by friction during the assembly process, are present. Additional details on threaded steel pipes can be found in U.S. Patent Number 6,921,110, entitled “Threaded Join for Tubes”, U.S. Patent

[0056] The coating systems discussed below provide significant performance advantages when utilized with threaded connections. Generally, manufactured pipes are transported overseas, during which time they are exposed to the marine environment. Furthermore, manufactured pipes are typically stored in open air close to a rig site for long periods of time, and are subjected to the local weather conditions, such as rain and low or high temperatures. Exposure to these types of environments can lead to corrosion, resulting in rust formation which is detrimental not only for pipe assembling but for connection integrity and performance as well. Thus, conventional connection systems employ storage compounds in order to avoid corrosion during pipe transportation and storage. The storage compounds must be removed just before pipe assembling and a running dope compound is applied to assist the fastening of pipes.

[0057] Advantageously, the dope-free connections described herein possess anti-corrosion properties and, optionally, lubrication properties. Thus, these connections may be processed at the mill facilities, shipped, and stored without further treatment prior to assembly. As a result, the extra steps of removing the storage compound and applying the running dope compound can be avoided, reducing the time and cost to assemble the pipes.

[0058] In certain embodiments, the first coating composition comprises a single layered, polymer matrix having corrosion inhibiting additives dispersed therein. The additives provide the coating with the ability to protect the underlying threaded connection from corrosion, while the polymer matrix provides the first coating composition with suitable temperature stability and adhesion. In alternative embodiments, nano-scale reinforcements may further be dispersed within the polymer matrix. Advantageously, the reinforcement provides improved mechanical properties, particularly tribological properties such as wear resistance. In further embodiments, solid state lubricants may also be added to the polymer matrix of the first coating composition in order to provide a selected coefficient of friction to the coatings.
In certain embodiments, the second coating comprises a solid lubricant dispersed within a mixture of an epoxy resin and solvent. Additional additives, such as adhesion promoters and polymer modifiers, may be further added to each of the first and second coating compositions, as necessary. These and other objects and advantages of the present disclosure are discussed in greater detail below.

Figure 1 illustrates a first pipe 100 and a second pipe 104. The pipes 100, 104 possess complementary threaded extremities which, when coupled together, form a joint 110. The joint 110 thus comprises the first pipe 100 provided with a thread 102 on an external surface, referred to as the “pin” or “pin member,” and the second pipe 104 provided with a thread 106 on an interior surface, referred to as the “box” or “box member.” The box member 104 is generally a pipe or a sleeve, depending on the type of joint 110. The thread 102 of the pin member 100 is adapted to mate with the thread 106 of the box member 104.

An enlargement of the threads 102, 106 of the pin member 100 and box member 104 is illustrated in Figures 2A, 2B. In certain embodiments, the first coating composition 200, which provides at least corrosion resistance, and optionally lubrication, is deposited on at least a portion of at least one of the pin and the box members 100, 104. In an embodiment, the first coating 200 is deposited upon at least a portion of the pin member 100. The second layer coating 202, when present, provides at least lubrication and is deposited upon at least a portion of at least one of the pin and the box members 102, 104. In an embodiment, the second coating composition 202 is deposited upon at least a portion of the box member 104.

It may be understood that this configuration is just one example of the configuration of the coating systems of the present disclosure. In an alternative embodiment, only the first coating composition may be utilized and is deposited on the box member 104. In other embodiments, the first and second coatings 200, 202 are deposited approximately in the area of the threads 102, 106 of the pin and box members 100, 104, respectively. In further alternative embodiments, the first and second coatings 200, 202 are deposited over at least a portion of the pin and box members 100, 104 which may or may not include at least a portion of the threads 102, 106. In further alternative embodiments, the first and second
coatings 200, 202 are deposited over substantially the entire surface of the pin and box members 100, 104.

[0063] Figures 3A-3E illustrate embodiments of the first and second coating compositions 200, 202 of the present disclosure demonstrating selected coating configurations applied to the pin member 100 and box member 104. In certain embodiments, the first and second coating compositions 200, 202 each comprise a single layer. It may be understood that these configurations are provided as examples and should in no way limit the embodiments of the present disclosure.

[0064] In the embodiment of Figure 3A, the first and second coatings 200, 202 are applied as single layers to the pin 100 and box 104. For example, the first coating 200 is applied to the surface of the pin member 100 and the second coating 202 is applied to the box member 104. Alternatively, as illustrated in Figure 3B, both coatings 200, 202 may be applied to a single surface of the threaded connections, the pin member 100 or box member 104. For example, both the first and second coatings 200, 202 may be applied to the pin member 100. In further embodiments, illustrated in Figure 3C, both of the first and second coatings 200, 202 may be applied to each of the pin and box members 100, 104.

[0065] In additional embodiments, multiple coatings may be layered upon the surfaces adjacent the joint. For example, as illustrated in Figure 3D, the first coating composition 200 may be present as a first and a third layer on the pin member 100, while the second coating composition 202 may be present as a second layer on the pin member 104.

[0066] In further embodiments, the thickness of the first and second coatings 200, 202 may be varied with respect to each other. For example, as illustrated in Figure 3E, the first coating composition 200 may be thicker than the second coating layer 202.

[0067] It may be understood that these configurations illustrated above may be modified as necessary. For example, the coatings may be moved from the pin member 100 to the box member 104 and vice versa. Alternatively, the position of the first and second coating compositions 200, 202 may be swapped. Furthermore, additional layers may be provided according to the embodiments described herein.

[0068] The thickness of the coatings may be varied, as necessary. For example, the thickness of each of the first and second coating compositions 200, 202 may vary between
approximately 1 μm and 100 μm. In certain embodiments, the thickness of each of the first and second coating compositions 200, 202 may range between about 10 to 40 μm. In other embodiments, the combined thickness of the first and second coating layers 200, 202 is less than about 80 μm. In further embodiments, the thickness of the first coating 200 is less than about 40 μm. In additional embodiments, the thickness of the second coating 202 is less than about 30 μm. In other embodiments, the first and second coatings 200, 202 possess approximately equal thickness.

[0069] The first and second coatings 200, 202 may be deposited according to techniques generally understood in the art. For example, the pin and box members 100, 104 may be spray coated. In one embodiment, an automatic spray unit for use with cylindrical geometries may be employed (SPMA GmbH, Bissingen, Germany). Alternatively, the pin and box members 100, 104 may be dip coated. In further embodiments, techniques such as pulsed laser deposition, chemical vapor deposition, and electrochemical deposition may be employed. For deposition of multiple layers on a single pin 100 or box member 104 surface, these techniques may be repeated, as necessary. Further, these techniques may be performed singly or in combination.

[0070] Prior to deposition, in certain embodiments, the surface of at least one of the pin or box members may be subjected to a surface treatment which is designed to enhance the adhesion of the deposited coatings to the surface upon which the coatings are deposited. The treatment is further designed to enhance the quality of the joint of threaded connections so manufactured. Examples of such surface treatments include, but are not limited to, sand blasting, phosphatization, and copper plating.

[0071] In an embodiment, the polymer matrix of the first coating composition comprises a polyimide. Polyimides possess good adhesion to metals, which facilitates the corrosion resistance provided by the first coating composition. Another advantage of polyimide systems is their low water uptake, about 0.1 wt. %. Low water uptake allows the polyimides to serve as a water barrier, enhancing the corrosion resistance provided by the first coating composition. Polyimides further possess high temperature resistance, which stabilizes the tribological properties of the first coating composition during frictional sliding.
[0072] Embodiments of the polyimide may be further combined with primers to promote adhesion of the coating. Examples of suitable primers may include, but are not limited to, silane based primers and commercial epoxy based primers. The silane groups form stable complexes to the surfaces of metals, while in epoxy based primers, the adhesion results by reaction of the epoxy group with the metal surface. For example, silane based systems with glycidoxypropyltriethoxy silane (GPTES) may be utilized to stabilize the interface between polyimide coatings and metal surfaces.

[0073] In an alternative embodiment, the polymer matrix of the first coating composition comprises an epoxy. Epoxies provide excellent adhesion to polar surfaces. Furthermore, epoxies may form self curing films which do not require intensive exterior heating of the coating for densification, facilitating processing of nanocomposites incorporating these materials. In certain embodiments, laminating resin “L20” (R&G GmbH), which consists of oligomeric Bisphenol-A-Epichlorhydrine resins, may be utilized in conjunction with isophoronediamine as a hardener.

[0074] In certain embodiments, the matrix polymer of the first coating composition is modified. For example, the polymers may be modified with small amounts of fluorine containing compounds, such as reactive perfluoropolyethers. The modifier improves the barrier properties of the polymers against water penetration due to the hydrophobic character of the fluorine containing compound. In an embodiment, the perfluoropolyether chemically reacts with the polymer, forming a plurality of covalent bonds between the perfluoropolyether and the polymer. Furthermore, the perfluoropolyether may be condensable with the main matrix polymer chain. In an embodiment, the perfluoropolyether comprises Fluorolink® D10H (Solvay Solexis). This compound may alternatively be referred to as D10H herein. In certain embodiments, about 0.5 to 15 wt. % of the fluorine containing polymer modifier, on the basis of the total weight of the first coating composition, may be utilized. In other embodiments, non-reactive fluoro-compounds may be used to accomplish this purpose.

[0075] In further embodiments, additional polymer modifiers may be employed. For example, the polyimide matrix may be modified with flexible polysiloxane units using polydimethylsiloxane which is aminopropyl terminated. The siloxane decreases the glass
transition temperature of the polymer and, therefore, allows for mechanical stress relaxation to occur inside the coating. In certain embodiments, about 10 to 20 wt. % of the polydimethylsiloxane, on the basis of the total weight of the first polymer composition, may be employed.

[0076] In certain embodiments, the first coating composition further comprises nano-scale and/or micron-scale additives which act to improve the performance of the coating. In certain embodiments, the additive may be configured so as to promote adhesion of the coating composition to the substrate. In alternative embodiments, the additives may promote mechanical stability of the composition. In further embodiments, the additives further enhance corrosion resistance. These additives may be present singly or in any combination within the coating composition.

[0077] In an embodiment, the first coating composition comprises at least one adhesion additive. In certain embodiments, the additive comprises a microparticle or a nanoparticle. Examples of adhesion additives include, but are not limited to, zinc oxide (ZnO) and a talc. ZnO improves adhesion of the coating composition, especially in humid environments, by acting as a filler, substantially inhibiting uptake of moisture by the polymer matrix. In other embodiments, the adhesion additive comprises a talc, such as Microtalc® AT1. Owing to its platelet-like structure, the talc improves adhesion of the coating composition by also acting as a barrier, similarly inhibiting the uptake of water into the polymer matrix. Beneficially, the zinc oxide may also enhance the corrosion resistance of the coating, as discussed below. In certain embodiments, ZnO additives having a mean diameter of between about 10 nm and 100 μm may be employed. In alternative embodiments, the mean diameter of the ZnO additives range between about 10 nm to 10 μm. In further embodiments, the mean diameter of the ZnO additives range between approximately 10 nm to 300 nm. Approximately 10 to 15 wt. % of the adhesion additive, on the basis of the total weight of the first coating composition, may be utilized.

[0078] Reinforcements may also be incorporated into the polymer matrix of the first coating composition. The addition of reinforcements improves the hardness and wear resistance of the coatings, enhancing their mechanical durability. In certain embodiments, the reinforcements comprise inorganic particles. The particles may further possess mean
diameters which range approximately between the micro-scale (about 1 μm to about 500 μm) and the nano-scale (1 nm to about 500 nm), respectively. In certain embodiments, the particles possess mean diameters less than about 300 nm. Advantageously, as a result of the mechanical durability imparted to the coatings by the reinforcement, the coatings require less maintenance and replacement than less durable coatings. In an embodiment, silicon carbide (SiC), titanium dioxide (TiO₂), aluminum oxide (Al₂O₃), or silicon dioxide (SiO₂) nanoparticles may be employed. In another embodiment, the surface of the reinforcement may be modified with organic functional groups. In certain embodiments, about 5 to 10 wt. % of the reinforcement, on the basis of the total weight of the first coating composition, may be utilized.

[0079] Solid state lubricants may also be added to the coating composition in order to provide the coating with a low coefficient of friction, improving its lubrication ability. This lubricating property reduces the mechanical stresses and wear experienced by mating components of the threaded connection, as well as reducing the heat generated during contact of the components. In one embodiment, the solid state lubricants comprise micron sized solids. Examples of the solid state lubricant may include, but are not limited to polytetrafluoroethylene (PTFE), High Density Polyethylene (HDPE), Graphite, and MoS₂. Specific formulations are discussed in the examples below. In certain embodiments, approximately 3 to 30 wt. % of the solid lubricant, on the basis of the total weight of the first coating composition, may be utilized in the coating composition.

[0080] In additional embodiments, the composition comprises corrosion inhibiting compounds. In certain embodiments, the anticorrosion compound comprises at least one of Zn, Ca, Mg, Sr, Al, phosphate functional groups, orthophosphate functional groups, borophosphate functional groups, polyphosphate functional groups, molybdate functional groups, phosphomolybdate functional groups, borosilicates, and phosphosilicate functional groups. Examples may include, but are not limited to, aluminum triphosphate, strontium zinc phosphosilicate, zinc phosphate, zinc oxide, zinc molybdate, zinc phosphomolybdate, calcium zinc molybdate, and calcium zinc phosphomolybdate, zinc aluminum orthophosphate hydrate, zinc orthophosphate hydrate, zinc molybdenum orthophosphate hydrate, zinc calcium aluminum strontium orthophosphate polyphosphate.
silicate hydrate, strontium aluminum polyphosphate hydrate, calcium aluminum polyphosphate hydrate, zinc calcium strontium orthophosphate silicate hydrate, zinc borate orthophosphate hydrate, calcium hydrogen phosphate, barium borophosphate, strontium borophosphate, calcium borosilicate, barium phosphosilicate, strontium phosphosilicate, and calcium phosphosilicate. In certain embodiments at least one of Heucophos® ZCP, Heucophos® ZCP-Plus, Heucophos® ZAM, Heucophos® ZAM-Plus, and Heucorin® RZ (Heubach GmbH Germany) may be utilized. These compounds may be alternatively referred to as ZCP, ZCP-Plus, ZAM, ZAM-Plus, and RZ herein. In certain embodiments, the total amount of all anticorrosion compounds is about 5 to 15 wt. % on the basis of the total weight of the first coating composition.

[0081] In other embodiments, the first coating composition may further comprise additives to enhance conductivity. For example, about 1 to 5 wt. % carbon black, where the amount is on the basis of the total weight of the first coating composition, may be utilized.

[0082] The table below illustrates selected embodiments of the relative amounts of each component present in the first coating composition:

<table>
<thead>
<tr>
<th>Sample</th>
<th>Epoxy (L20)</th>
<th>HDPE (g)</th>
<th>D10H (g)</th>
<th>ZCP (g)</th>
<th>ZnO - 1 μm (g)</th>
<th>ZnO - 50 nm (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TE60</td>
<td>25</td>
<td>1</td>
<td>0.3</td>
<td>0</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>TE61</td>
<td>25</td>
<td>1</td>
<td>0.3</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>TE62</td>
<td>25</td>
<td>1</td>
<td>0.3</td>
<td>0.5</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>TE63</td>
<td>25</td>
<td>1</td>
<td>0.3</td>
<td>1</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>TE64</td>
<td>25</td>
<td>1</td>
<td>0.3</td>
<td>2</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>TE65</td>
<td>25</td>
<td>1</td>
<td>0.3</td>
<td>0.5</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>TE66</td>
<td>25</td>
<td>1</td>
<td>0.3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>TE67</td>
<td>25</td>
<td>1</td>
<td>0.3</td>
<td>2</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>TE68</td>
<td>25</td>
<td>1</td>
<td>0.3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

[0083] For example, composition TE64 comprises approximately 77.4 wt. % L20 epoxy resin, approximately 3.1 wt. % HDPE and 0.9 wt. % Fluorolink® D10H as solid state lubricants, about 6.2 wt. % Heucophos® ZCP, and about 12.4 wt. % ZnO having a size of about 1 μm. TE67 comprises approximately 77.4 wt. % L20 epoxy resin, approximately 3.1 wt. % HDPE and 0.9 wt. % Fluorolink® D10H as solid state lubricants, approximately 6.2 wt.
% Heucophos® ZCP, and about 12.4 wt. % ZnO having a mean diameter of about 50 nm. All percentages were on the basis of total weight of the composition.

[0084] Embodiments of the second coating composition comprise a dry film lubricant. A solid lubricant powder is dispersed within a mixture comprising a reactive epoxy resin and solvents. In certain embodiments, the lubricant powder comprises polytetrafluoroethylene (PTFE) and the solvent comprises 2-methoxy-1-methyl-ethyl acetate. In some embodiments, titanium dioxide (TiO₂) powder may be further added to the composition. The TiO₂ may be added before, after, or concurrently with the PTFE powder.

[0085] The ratio of the components may be varied, as necessary. The solid components (powders and epoxy) are present in the range of about 20-40 wt. % and the solvent present in the range of about 60-70 wt. %, where the percentages are on the basis of the total weight of the second coating composition. Of the solids, the PTFE powder is present in an amount between about 20-40 wt. %, the epoxy resin is present in an amount between about 40-60 wt. %, and the TiO₂ powder is present in an amount between about 5-15% of the total weight of the solid components.

[0086] In one embodiment, the second coating composition comprises:
- about 4 to 16 wt. % polytetrafluoroethylene (PTFE);
- about 8 to 24 wt. % of a reactive epoxy;
- about 1 to 6 wt. % titanium dioxide; and
- a solvent.

[0087] To provide a substantially homogeneous dispersion of the solid powders, the composition was stirred for approximately 20 minutes. The resulting resin possessed a viscosity in the range of about 28-32 s in Ford No. 4 cup at 25°C. In alternative embodiments, the resin viscosity was about 26-28 s in Ford No. 4 cup at 25°C.

[0088] In alternative embodiments, a mixture of solvents may be employed. For example, a mixture of 2-methoxy-1-methyl-ethyl acetate and xylene may be employed.

[0089] In alternative embodiments, the dry film lubricant may comprise a self lubricating film, such as a metal alloy.
Examples

[0090] Embodiments of the first and second coatings, as discussed above, may be utilized on threaded connectors. In order to evaluate the performance of the coatings, the coatings were spray coated on metal substrates and subjected to a variety of tests. Unless otherwise noted, N80 steel substrates samples were employed in the testing. Adhesion, friction coefficient, surface roughness, wear resistance, corrosion and resistance were examined in polyimide- and epoxy-matrix coatings compositions.

[0091] Corrosion testing was performed by the neutral salt spray test (SST) according to DIN 50021/ASTM B117, “Standard Practice for Operating Salt Spray (Fog) Apparatus.” In general, test samples were exposed to an NaCl solution spray at specific locations and angles. The concentration of the NaCl solution may range from about 3.5 to 20% and was about 5%, unless otherwise noted. Scratches were further introduced into the coating in order to investigate how corrosion proceeds when the coating layer is damaged and the base metal is exposed.

[0092] The friction coefficient of the coating compositions was examined through pin-on-disc tribometer testing according to DIN 50324. Approximate testing parameters were $P = 2 \text{ N}$, $v = 10 \text{ cm/s}$, 10 cm/s, $r = 15 \text{ mm}$, and $s = 1000 \text{ m}$.

[0093] In certain embodiments, the surfaces of the pin and box members 100, 104 were cleaned prior to application of the coating compositions. One or more of several cleaning techniques may be utilized, as necessary.

[0094] In a first cleaning technique, the metal surfaces of the pin and box members were first washed with acetone. Next, the surfaces were cleaned in an ultrasonic bath for about 15 minutes at approximately 75°C by using an industrial cleaning agent (Bonder T5400). The bath was followed by tap water cleaning and cleaning for about 2 minutes at about room temperature with UNIBOND HDH cleaning agent. The remaining cleaning agent was removed with tap water and the surfaces were dried for about 10 minutes at approximately 120°C.

[0095] In a second cleaning technique, the metal surfaces of the pin and box members were first washed with xylene. Next, the surfaces were cleaned in an ultrasonic bath for about 15 minutes at approximately 75°C by using an industrial cleaning agent
(Bonder T5400). The bath was followed by tap water cleaning and cleaning for about 10 minutes at about 80°C with UNIBOND HDH cleaning agent. The remaining cleaning agent was removed with tap water and the surfaces were dried for about 10 minutes at approximately 120°C. The surfaces so prepared demonstrated an average roughness (R_a) of about 0.61 µm, a mean roughness depth (R_z) of about 3.8 µm, and a peak to valley roughness (R_max) of about 4.32 µm.

[0096] In a third cleaning technique, the metal surfaces of the pin and box members were initially sand blasted. Next, the surfaces were cleaned in an ultrasonic bath for about 15 minutes at approximately 80°C by using an industrial cleaning agent (Bonder T5400). The bath was followed by tap water cleaning and cleaning for about 5 minutes at about 60°C with UNIBOND HDH cleaning agent. The remaining cleaning agent was removed with tap water and the surfaces were dried for about 10 minutes at approximately 120°C. It is noted that this procedure provided substantially reproducible surfaces and changes in surface roughness. The surfaces so prepared demonstrated an average roughness (R_a) of about 0.92 µm, a mean roughness depth (R_z) of about 6.09 µm, and a peak to valley roughness (R_max) of about 8.4 µm.

[0097] In alternative embodiments, the cleaning procedure comprised only sandblasting.

Examples - Polyimide based systems

[0098] The polyimide matrix was fabricated from 4,4'-Bis(3-aminophenoxy)diphenylsulfone (BAPPS) and pyromellitic dianhydride (PMDA) co-monomers by a polyaddition reaction in N-Methylpyrrolidone (NMP) as solvent. This monomer composition is slightly polar, arising from the phenoxy and the phenylsulfone groupings, which is beneficial for adhesion. This composition further allows the matrix material to disperse high amounts of inorganic nano-particles and lubricant particles, as necessary. Additionally, the hydroxyl group containing perfluoropolyether (Fluorolink® D10H, Solvay Solexis) was added as co-monomer to the reaction mixture. The resulting intermediate product was a polyamic acid structure with pendant perfluoropolyether side groups.
In a first trial, the uncured polyimide was mixed with SiC nanoparticles and a solid state lubricant (graphite) in the ratios shown below in Table 1. The mixtures were subsequently spray coated on the cleaned steel surfaces and cured thermally up to about 150 °C.

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>PMDA 97% pure [g]</th>
<th>BAPPs 95% pure [g]</th>
<th>Graphite [g]</th>
<th>SiC [g]</th>
<th>D10H [g]</th>
<th>k [mm^3/N/m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>TP20</td>
<td>3.8</td>
<td>8.46</td>
<td>3.5</td>
<td>0</td>
<td>0.3</td>
<td>1.20E-04</td>
</tr>
<tr>
<td>TP19</td>
<td>3.8</td>
<td>8.46</td>
<td>3.5</td>
<td>0</td>
<td>0.7</td>
<td>5.65E-05</td>
</tr>
<tr>
<td>TP21</td>
<td>3.8</td>
<td>8.46</td>
<td>4.95</td>
<td>0</td>
<td>0.7</td>
<td>2.12E-04</td>
</tr>
<tr>
<td>TP22</td>
<td>3.8</td>
<td>8.46</td>
<td>6.5</td>
<td>0</td>
<td>0.7</td>
<td>3.98E-04</td>
</tr>
<tr>
<td>TP9</td>
<td>3.8</td>
<td>8.46</td>
<td>3.5</td>
<td>0</td>
<td>1.5</td>
<td>2.48E-04</td>
</tr>
<tr>
<td>TP13</td>
<td>3.8</td>
<td>8.46</td>
<td>0</td>
<td>3.5</td>
<td>1.5</td>
<td>1.41E-06</td>
</tr>
<tr>
<td>TP14</td>
<td>3.8</td>
<td>8.46</td>
<td>1.75</td>
<td>1.75</td>
<td>1.5</td>
<td>5.18E-06</td>
</tr>
<tr>
<td>TP15</td>
<td>3.8</td>
<td>8.46</td>
<td>2.6</td>
<td>0.9</td>
<td>1.5</td>
<td>6.78E-06</td>
</tr>
</tbody>
</table>

Example 1: Cross-Cut Tape Tests – Graphite/Polyimide compositions

The cross-cut tape test was used to characterize the adhesion of the coating according to ASTM D3359-02, “Standard Test Methods for Measuring Adhesion by Tape Test”. According to the standard, a bladed cutting tool is used to make the cross-hatch cuts in the coating deposited on the substrate. Subsequently, an adhesive tape is placed over the cut surface and then peeled off. If parts of the coating remain on the tape, the coating’s adhesion is determined to be insufficient.

The classification of test results is done by a visual comparison with the Standard, which defines the affected area of the test section in terms of the percentage of the coating which is detached from the surface by the pull-off tape. A rating of 0 through 5 classifies the adhesion of the test sample section from 100% pass (0) to fail (5), where more than 65% of the test area delaminates from the surface.

The Cross Cut Tape Test showed good adhesion (cc/tt 0/0) for the coating compositions presented in Table 1. Figure 4 shows a photograph of a representative example initially examined for adhesion. The image illustrates that the coating remains substantially adhered to the substrate.
Example 2: Tribological characterization – Graphite/Polyimide nanocomposites

[0103] The influence of the solid state lubricants and the reinforcement on the friction and wear of the nanocomposite was examined through pin-on-disc tribometer testing according to DIN 50324. Approximate testing parameters comprised $P = 2 \text{ N}$, $v = 10 \text{ cm/s}$, 10 cm/s, $r = 15 \text{ mm}$, and $s = 1000 \text{ m}$. Coating systems TP9, TP13, TP14, and TP15 were investigated, each having approximately equal amounts of D10H, about 1.5g. Notably, the TP9 sample lacks the SiC reinforcement.

[0104] The results of the pin-on-disc testing are presented in Figure 5 and summarized in Table 1 above, where k is the wear resistance. From Figure 5 it can be derived that, with graphite as solid state lubricant, coefficients of friction in the ranged of $\mu = 0.1$-0.2 were obtained. The measured wear coefficients were found to be around $k = 2.5 \times 10^{-4}$ mm3/Nm. The low wear resistance for graphite containing coatings is believed to be caused by the intrinsic softness of graphite, which results in a decrease of stiffness of the coatings. The addition of graphite and SiC in a ratio of about 1:1 (composition TP14) show that the wear resistance is improved, and the friction behavior was also slightly improved.

Example 3: Surface Roughness - Graphite/Polyimide coating systems

[0105] An important tribology topic is the question of how the surface roughness influences the friction behavior. As friction and wear are generally concurrent processes, wear debris generally starts developing from the point when a sliding process occurs on a surface. These debris increase the friction coefficient dramatically and, therefore, it is important that they are removed away from the sliding path. This removal is done by the collection of the debris in the depressions of the surface roughness. Since wear depends also on the surface roughness, with rough surfaces producing more wear debris than smooth surfaces, there may be determined a range of surface roughness which substantially optimizes the wear/friction balance. This effect can be seen in the surface with the lowest friction coefficient.

[0106] In the polyimide system, the surface roughness is modified and substantially optimized by using the polymeric carbon fluorinated alcohol (D10H). D10H acts like a surfactant, enriching the surface of the resulting polyimide coating because of
thermodynamic reasons. The result is a reduction in surface free energy, which can be used to vary the roughness of the surface. Table 2 and Figure 6 show the dependence of the friction coefficient on the surface roughness.

Table 2 - Influence of D10H on the surface roughness of graphite/polyimide coating systems.

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>PMDA 97% pure</th>
<th>BAPPS 95% pure</th>
<th>Graphite [g]</th>
<th>D10H [g]</th>
<th>Ra [μm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>TP9</td>
<td>3.8</td>
<td>8.46</td>
<td>3.5</td>
<td>1.5</td>
<td>0.29</td>
</tr>
<tr>
<td>TP19</td>
<td>3.8</td>
<td>8.29</td>
<td>3.5</td>
<td>0.7</td>
<td>0.17</td>
</tr>
<tr>
<td>TP20</td>
<td>3.8</td>
<td>8.29</td>
<td>3.5</td>
<td>0.3</td>
<td>0.31</td>
</tr>
</tbody>
</table>

From Figure 6, it can be derived that the coefficient of friction changes by more than about 100%, depending on the surface roughness of the samples. In one embodiment, an optimum surface roughness for the polyimide systems, with respect to a low coefficient of friction, is about Ra = 0.3 μm. This is achieved by the use of about 8.5 wt. % Fluorolink® D10H in the polymer matrix. Additionally, it should be mentioned that besides the concentration of fluorinated alcohol, the surface roughness also depends on the volume fraction of lubricant in the matrix. In order to prepare comparable matrix systems, the concentration of perfluoropolyether has been kept approximately constant with respect to the unreinforced matrix.

Example 4: Tribological characterization - MoS₂/Polyimide coating systems

The wear and friction behavior of embodiments of coating systems incorporating a second type of solid state lubricant, MoS₂ was also investigated. Table 3 shows the compositions of the polyimide systems containing MoS₂ as lubricant, and the corresponding wear coefficients from the friction experiments. Unless otherwise noted, the matrix material comprised the polyimide.
Table 3 – Wear testing results for MoS$_2$ / SiC coating systems

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>PMDA 97% pure</th>
<th>BAPPS 95% pure</th>
<th>MoS$_2$ [g]</th>
<th>SiC [g]</th>
<th>D10H [g]</th>
<th>k [mm3/Nm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>TP30</td>
<td>3.8</td>
<td>8.29</td>
<td>3.5</td>
<td>0</td>
<td>1.5</td>
<td>2.98E-04</td>
</tr>
<tr>
<td>TP31</td>
<td>3.8</td>
<td>8.29</td>
<td>1.75</td>
<td>0</td>
<td>1.5</td>
<td>5.18E-05</td>
</tr>
<tr>
<td>TP32</td>
<td>3.8</td>
<td>8.29</td>
<td>0.9</td>
<td>0</td>
<td>1.5</td>
<td>2.36E-06</td>
</tr>
<tr>
<td>TP41</td>
<td>3.8</td>
<td>8.29</td>
<td>3.1</td>
<td>0.4</td>
<td>1.5</td>
<td>4.88E-04</td>
</tr>
<tr>
<td>TP33</td>
<td>3.8</td>
<td>8.29</td>
<td>2.6</td>
<td>0.9</td>
<td>1.5</td>
<td>2.36E-06</td>
</tr>
<tr>
<td>TP34</td>
<td>3.8</td>
<td>8.29</td>
<td>1.75</td>
<td>1.75</td>
<td>1.5</td>
<td>1.17E-05</td>
</tr>
<tr>
<td>TP35</td>
<td>3.8</td>
<td>8.29</td>
<td>0.9</td>
<td>2.6</td>
<td>1.5</td>
<td>n.d.</td>
</tr>
<tr>
<td>TP36 (HDPE)</td>
<td>3.8</td>
<td>8.46</td>
<td>3.5</td>
<td>0</td>
<td>1.5</td>
<td>n.d.</td>
</tr>
<tr>
<td>TP13</td>
<td>3.8</td>
<td>8.46</td>
<td>0</td>
<td>3.5</td>
<td>1.5</td>
<td>1.41E-06</td>
</tr>
<tr>
<td>TP44</td>
<td>3.8</td>
<td>8.46</td>
<td>3.5</td>
<td>0</td>
<td>0.7</td>
<td>7.72E-04</td>
</tr>
<tr>
<td>TP45</td>
<td>3.8</td>
<td>8.46</td>
<td>3.5</td>
<td>0</td>
<td>0.3</td>
<td>2.64E-03</td>
</tr>
</tbody>
</table>

[0109] Figure 7 shows the corresponding dependence of the friction coefficient on the number of sliding rounds for polyimide systems containing only MoS$_2$ without the SiC nanoparticles (TP30, PT31, PT32, TP44, and TP45). MoS$_2$, compared with graphite as lubricant, shows approximately the same behavior according to the testing parameters. In the case of graphite, a concentration of about 8.5 wt. % of perfluoropolyether (compositions TP30, TP31, TP32) was found to be an optimum for the friction behavior.

[0110] To investigate the influence of the SiC nanoparticles on the tribological properties, different ratios of MoS$_2$ to SiC were used in the matrix and the coatings were characterized. The results of this characterization are presented in Figure 8.

[0111] For MoS$_2$ containing compositions, the addition of SiC only showed a substantial effect on the wear resistance, while the friction coefficient was nearly the same as for the coatings without SiC. This can be better observed on the comparison presented in Figure 11, discussed in detail below.

[0112] On the other hand, as further illustrated in Figure 8, a relatively low friction factor, less than about 0.1, was observed in some coatings at up to about 4000 cycles (rounds). This tendency was also noticed in Figure 9, with the PTFE/SiC systems after about 2500 cycles.
Example 5: Tribological Characterization – PTFE lubricants

[0113] To obtain lower friction values, polymer based solid state lubricant additions to the coating system were investigated. Table 4 and Figure 9 present selected experiments with PTFE and PTFE/SiC.

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>PMDA 97% pure</th>
<th>BAPP 95% pure</th>
<th>PTFE [g]</th>
<th>SiC [g]</th>
<th>D10H [g]</th>
<th>k [mm3/N/m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>TP11</td>
<td>3.8</td>
<td>8.46</td>
<td>3.5</td>
<td>0</td>
<td>1.5</td>
<td>7.07E-04</td>
</tr>
<tr>
<td>TP17</td>
<td>3.8</td>
<td>8.46</td>
<td>1.75</td>
<td>1.75</td>
<td>1.5</td>
<td>2.35E-06</td>
</tr>
</tbody>
</table>

[0114] The behavior of PTFE (TP11) and PTFE/SiC (TP17) was substantially opposite that of the graphite and MoS2 coatings discussed above. In the case of PTFE, the addition of SiC significantly improved the wear coefficient but, also, dramatically increased the friction coefficient.

Example 6: Tribological Characterization – Polyimide/HDPE lubricants

[0115] One characteristic of the polyimide systems is their relatively high curing temperature, which may result in phase separation when HDPE is utilized as polymeric lubricant. This coating was synthesized (composition shown in Table 3, TP36) and this system demonstrated lowest friction coefficient of the compositions discussed up to this point (Figure 10).

[0116] However, the coating system synthesized with HDPE does exhibit phase separation, which may be detrimental to the corrosion resistance properties of the coating system.

Example 7: Comparison of Tribological Properties of polyimide coating systems having different lubricants

[0117] A comparison of the friction and wear behavior of coating compositions having different solid state lubricants is shown in Figure 11. The investigations of the friction behavior of the selected solid state lubricants showed, in one embodiment, that the
lowest friction was obtained by using HDPE and PTFE as lubricants (Figure 10). Compositions comprising more than about 20 wt. % of solid state lubricant were tested in the pin-on-disc test, due to the fact that a polymer coating also contains about 8.5 wt. % D10H and a content of about 30 wt. % filler. Higher amounts of solids resulted in substantially brittle coatings, which could not be subjected to friction experiments. The addition of SiC, as hard filler to the coating, improved the wear resistance significantly. In the case of graphite, the addition of SiC also showed positive effects on the friction behavior of the samples (Figure 10, Figure 11).

Example 8: Corrosion testing of Polyimide-based coating systems

[0118] To investigate the corrosion protection properties of the polyimide coatings, all coatings were subjected to SST for approximately 500 h, according to DIN 50021/ASTM B117. These experiments demonstrate that the interface between the polyimide matrix and the metal substrate is very sensitive for hydrolysis. All polyimide coatings which were applied directly on the cleaned steel surface delaminated after about 70 h of SST. A representative illustration of this delamination is shown in Figure 12.

[0119] A reason for the sensitivity against hydrolysis and the delamination might be explained by the fact that the adhesion of the polyimides is based on the formation of ester bonds between the polymer layer and the metal surface. The origin of these ester groups can be polyamide acid, which is used as precursor for the polyimide system. These ester bonds are possible sites for hydrolysis, leading to imidisation, which can result in the loss of adhesion (Figure 13).

[0120] To address this problem, a stabilization of the interface to the metal can be performed by the use of appropriate primers, or a modification of the polyimide matrix itself, in order to obtain different stable anchor groups on the surface. Isocyanates form complexes with metal surfaces and a modification of the ester surface groups by reaction with diisocyanates to obtain isocyanate anchor groups. This type of matrix modification was examined in trial tests but was not found to solve the delamination problem.

[0121] To improve the adhesion of the polyimide coatings, two different primer systems were tested: (a) silane based primers, where the silane groups form stable complexes
to the metal surface and (b) commercial epoxy based primers where the adhesion results by reaction of the epoxy group with the metal surface. The silane based systems with GPTES (glycidoxypropyltriethoxy silane) are expected to stabilize the interface between the polyimide coating and the metal substrate surface. Based on the results of the SST, it can be concluded that the GPTES primer system itself tends to be sensitive for hydrolysis, which results in a delamination after 500 h SST (Figure 14).

[0122] With epoxy based primers, the following results were achieved (Figures 15A, 15B and Figure 16A). Compared to the GPTES primer (Figure 14), the use of the epoxy primer leads to an increase in adhesion. Furthermore, after about 300 h of SST(Figure 15A), as well as about 500 h of SST (Figure 15B), the polyimide system with MoS₂/SiC (TP30) and graphite/SiC (TP14) respectively, showed substantially no delamination close to the scratches. On both samples, only small blistering was detected (for example, Figure 16B).

[0123] At least one difference between the graphite/SiC (TP14) and MoS₂/SiC (TP30) coatings was the blisters of the MoS₂/SiC coating which were smaller than those in the graphite/SiC coating.

[0124] To investigate the corrosion under the blisters after passing the requirement of about 500 h SST, a blister of the MoS₂/SiC coating was opened manually. Under the blister there was substantially no corrosion detected on the metal surface. The same results were obtained by full peeling off the coating, with substantially no corrosion observed, corroborating the previous statement (Figures 17A, 17B, 17C).

[0125] From the results shown above, it may be concluded that the barrier properties of the polyimide matrix may be sufficient to at least partially inhibit the corrosion tendency, even in partially delaminated areas.

Example 9: Further improvement of the selected polyimide coating systems

[0126] After analyzing the presence of blisters in the two most promising coating systems, it is assumed that the mechanical stress inside the coating is the main cause of blistering. A possible solution for this problem is expected to be the increase of the flexibility or the relaxation ability of the coating. This hypothesis was investigated through a modification of the polyimide matrix with flexible polysiloxane units (Polydimethylsiloxane,
aminopropyl terminated, Mw about 900 – 1000 g/mol), in order to decrease the glass transition point and, therefore, enable mechanical stress relaxation to occur inside the coating. Figure 18 shows the coating of this polysiloxane improved matrix (TP65) after about 300 h SST.

[0127] The coating of TP65 is the coating TP14 modified with about 1 g polydimethylsiloxane. The coating showed substantially no blistering, no corrosion and excellent adhesion.

Summary of polyimide coating system coating characterization

[0128] In one aspect, the polyimide-based coating systems exhibit promising tribological properties, as shown in the overview in the following table:

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Graphite</th>
<th>MoS2</th>
<th>SiC</th>
<th>μ</th>
<th>k</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[g]</td>
<td>[g]</td>
<td>[g]</td>
<td></td>
<td>[mm²/N/m]</td>
</tr>
<tr>
<td>TP14</td>
<td>1.75</td>
<td>0</td>
<td>1.75</td>
<td>0.1-0.14</td>
<td>5.18E-6</td>
</tr>
<tr>
<td>TP15</td>
<td>2.6</td>
<td>0</td>
<td>0.9</td>
<td>0.15-0.16</td>
<td>6.78E-06</td>
</tr>
<tr>
<td>TP34</td>
<td>0</td>
<td>1.75</td>
<td>1.75</td>
<td>0.15</td>
<td>1.17E-05</td>
</tr>
<tr>
<td>TP33</td>
<td>0</td>
<td>2.6</td>
<td>0.9</td>
<td>0.05-0.12</td>
<td>2.36E-06</td>
</tr>
</tbody>
</table>

[0129] In another aspect, coating systems passed the neutral salt spray test with exposure times of about 500 h with only some blisters and substantially no corrosion beneath the blister. Further work performed showed evidence that the reason for the blister appearance can be overcome.

[0130] In a further aspect, the studies performed, as described above, show that different composition parameters can be used during the further development to balance and optimize the final coating material.

Examples - Epoxy-based coating systems

[0131] The polymer matrix for the epoxide systems was based on a laminating resin “L20,” which consists of oligomeric Bisphenol-A-Epichlorhydrine resins. As hardener for this system, isophoronediamine, was used. Typical applications for such a resin are glass fiber reinforced products. This material was selected due to the fact that the resin has low
viscosity, which should allow dispersing of inorganic fillers even in relatively high concentrations, as necessary. Epoxide systems show excellent adhesion to substantially any polar surface and should, therefore, provide improved intrinsic corrosion protection ability over the polyimide matrix-based coating systems. From this point of view, initial experiments were carried out without additional use of primers in the tribological as well as in the corrosion testing. So configured, the epoxy based coating systems are expected to provide more options to obtain improved corrosion protection compared to the polyimide systems.

Example 10: Tribological characterization - Graphite/Epoxy coating systems

[0132] Figure 19 and Table 5 present selected experiments performed upon epoxy-based coating compositions containing graphite.

Table 5 – Wear testing results for Graphite/Epoxy coating systems

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Epoxy Resin L20 [g]</th>
<th>Graphite [g]</th>
<th>D10H [g]</th>
<th>k [mm³/N/m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>TE2</td>
<td>12.5</td>
<td>1</td>
<td>0</td>
<td>failure</td>
</tr>
<tr>
<td>TE3</td>
<td>12.5</td>
<td>2</td>
<td>0</td>
<td>failure</td>
</tr>
<tr>
<td>TE4</td>
<td>12.5</td>
<td>3</td>
<td>0</td>
<td>failure</td>
</tr>
<tr>
<td>TE5</td>
<td>12.5</td>
<td>2</td>
<td>1</td>
<td>2.98E-04</td>
</tr>
<tr>
<td>TE6</td>
<td>12.5</td>
<td>2</td>
<td>2</td>
<td>failure</td>
</tr>
<tr>
<td>TE7</td>
<td>12.5</td>
<td>2</td>
<td>3</td>
<td>failure</td>
</tr>
</tbody>
</table>

[0133] In epoxy based systems with graphite as a lubricant, results comparable to the polyimide based systems were obtained. The average friction coefficient was in the range of approximately $\mu = 0.15 - 0.3$. Determination of the wear coefficient was not possible, however, because of failure of the coating layers.

[0134] Addition of D10H to the systems showed a slightly positive effect in the short term sliding process (TE5 – TE6), where a coefficient of friction of about $\mu = 0.1 - 0.15$ was obtained. During the test it was observed that the coating layers tended to fail after about 2000 cycles and 4000 cycles, respectively. A possible reason for this behavior may have been the lower intrinsic thermal stability of the epoxy matrix compared to the formerly investigated polyimide matrix, resulting in a thermal destruction and failure of the matrix during the friction process.
Example 11: Tribological characterization – MoS₂/Epoxy coating systems

MoS₂ as solid state lubricant in the epoxy systems was also evaluated. Table 6 and Figure 20 show the results of characterization of epoxy-based coatings containing MoS₂ as solid state lubricant:

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Epoxy L20 [g]</th>
<th>MoS2 [g]</th>
<th>D10H [g]</th>
<th>k [mm3/N/m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>TE8</td>
<td>12.5</td>
<td>1</td>
<td>0</td>
<td>failure</td>
</tr>
<tr>
<td>TE9</td>
<td>12.5</td>
<td>2</td>
<td>0</td>
<td>failure</td>
</tr>
</tbody>
</table>

For layers containing MoS₂, the average friction was measured to be approximately μ = 0.55 after about 1000 and 2000 cycles, respectively (Figure 20).

MoS₂ in combination with the oxides formed through tribochemistry at high temperature, as lubricants when in contact with metal, play a significant role in the friction process. In the present case, it is believed that the oxides cannot be substantially formed because the epoxy based matrix softens before reaching the critical point of temperature for its formation.

Example 12: Tribological characterization – HDPE/D10H containing epoxy coating systems

A third solid state lubricant investigated was polymeric HDPE. HDPE may be used in epoxy resins due to the low curing temperature required for epoxy resins (Table 7, Figure 21).

Table 7 – Wear testing results for HDPE/D10H containing epoxy coating systems
<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Epoxy Resin [g]</th>
<th>HDPE [g]</th>
<th>D10H [g]</th>
<th>Zinc Phosphate [g]</th>
<th>Zinc(II) Black [g]</th>
<th>Carbon Black [g]</th>
<th>k [mm^3/N/m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>TE12</td>
<td>25</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td><2.0 E-06</td>
</tr>
<tr>
<td>TE14</td>
<td>25</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td><2.0 E-06</td>
</tr>
<tr>
<td>TE15</td>
<td>25</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.26 E-04</td>
</tr>
<tr>
<td>TE17</td>
<td>25</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td><2.0 E-06</td>
</tr>
<tr>
<td>TE18</td>
<td>25</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td><2.0 E-06</td>
</tr>
<tr>
<td>TE19</td>
<td>25</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td><2.0 E-06</td>
</tr>
<tr>
<td>TE20</td>
<td>25</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>0.5</td>
<td>0.5</td>
<td><2.0 E-06</td>
</tr>
<tr>
<td>TE21</td>
<td>25</td>
<td>4</td>
<td>2</td>
<td>4.5</td>
<td>0.5</td>
<td>0.5</td>
<td><2.0 E-06</td>
</tr>
</tbody>
</table>

[0139] Investigations on coatings containing HDPE showed that as the HDPE amount increases, the friction coefficient decreases. For coatings with HDPE content greater than about 4 g, the friction coefficient was measured and was in the range of about $\mu = 0.05 \sim 0.15$. The wear coefficient also measured to be substantially low, approximately $k < 2.0 \text{ E-6 mm}^3/\text{Nm}$.

Example 13: Comparison of tribological properties of epoxy-based coating systems having different lubricants

[0140] Figure 22 summarizes the tribological characterization of epoxy-based coating systems having different lubricants.

[0141] Examination of the effect of different lubricants on the tribological characteristics of epoxy-based coating systems showed that a relatively low friction coefficient can be obtained with HDPE (Figure 22). In contrast to the polyimide systems, HDPE can be used in the epoxy coatings due to the lower curing temperatures of epoxy resins, which are below about 120°C.

[0142] From these results, it can be derived that epoxy matrix based coating systems possessing HDPE as solid state lubricant are promising. With this combination, it is possible to obtain a system where the base matrix and the lubricant itself are polymers, which means that both, the epoxy and HDPE, act as the matrix components of the coating. This means, additionally, that the coating would be built-in with corrosion inhibitors based on nanoparticles, if additional corrosion protection was required.
Example 14: Corrosion testing of Epoxy/HDPE coating systems

[0143] Owing to the excellent tribological behavior of the HDPE containing epoxy coating systems, corrosion evaluation was performed. Due to the promising results mentioned above and the expected good adhesion of the epoxy systems on polar surfaces, the coatings were applied on the cleaned steel surfaces without any primer. The results of the SST of composition TE13 (unfilled Epoxy/HDPE coating) are shown in Figure 23.

[0144] From Figure 23 it was observed that the coating shows delamination around the scratch after a salt spray test of about 200 h.

[0145] To further improve the corrosion resistance of the Epoxy/HDPE coatings additional compounds may be added to the coating composition. Examples include, but are not limited to, Zinc and Zinc(II)phosphate as corrosion inhibitors, carbon black for conductivity, as well as SiC for reinforcement. An investigated coating, TE20, contained about 25 g Epoxy, about 4 g HDPE, about 0.5 g zinc(II)phosphate, about 2 g zinc and about 0.5 g carbon black (Table 7). The results of the salt spray test on this system are shown in Figure 24.

[0146] As illustrated in Figures 24A and 24B, the composition TE20 showed no blistering, good adhesion and no corrosion after 500h SST. Advantageously, this result was obtained without the use of a primer.

Example 15 - Epoxy matrix coating systems having single additives

[0147] Selected experiments were conducted in order to evaluate the influence of the anticorrosion and adhesion additives individually. In Example 15, anticorrosion additives examined were: a talc, Microtalc® AT1 (Norwegian Talc Deutschland GmbH), zinc oxide, Heucophos® ZCP (a zinc calcium strontium orthophosphate silicate hydrate), Heucophos® ZAM (a zinc aluminum molybdenum orthophosphate hydrate), and Heucorin® RZ (zinc-5-nitroisophthalate). The epoxy was prepared as discussed above and mixed with the anticorrosion compound. The coating compositions were subsequently spray coated and cured on steel surfaces cleaned according to the second cleaning procedure discussed above. Table 8 illustrates the compositions examined.
Table 8 – Polymer coating formulations containing single additive

<table>
<thead>
<tr>
<th>Sample</th>
<th>Epoxy (L20)</th>
<th>HDPE (g)</th>
<th>Additive</th>
</tr>
</thead>
<tbody>
<tr>
<td>TE33</td>
<td>25</td>
<td>4</td>
<td>4g Microtalc® AT1</td>
</tr>
<tr>
<td>TE44</td>
<td>25</td>
<td>4</td>
<td>4g ZnO</td>
</tr>
<tr>
<td>TE48</td>
<td>25</td>
<td>4</td>
<td>3g Heucorin® RZ</td>
</tr>
<tr>
<td>TE49</td>
<td>25</td>
<td>4</td>
<td>3g Heucorin® ZAM</td>
</tr>
<tr>
<td>TE50</td>
<td>25</td>
<td>4</td>
<td>3g Heucorin® ZCP</td>
</tr>
</tbody>
</table>

[0148] Figures 25A and 25B compare the performance of compositions TE33 and TE44 after neutral salt spray testing for about 400 h. Approximately 12 wt. % Microtalc® AT1 was present in TE33, while approximately 12 wt. % ZnO was present in TE44. Examining the surfaces of each coating after testing, the TE33 coating (Figure 26A) was found to exhibit subsurface migration, while the TE44 coating (Figure 26B) exhibited substantially no blisters at the scratch. From these observations, ZnO appears more effective as an adherence additive as the AT1.

[0149] Figures 26A-26C compare the performance of compositions TE48 (Figure 26A), TE49 (Figure 26B), and TE50 (Figure 27C) after about 400 h SST. Approximately 10 wt. % Heucorin® RZ was present in composition TE48, while approximately 10 wt. % Heucophos® ZAM was present in composition TE49, and approximately 10 wt. % Heucophos® ZCP was present in composition TE50. Examining the surfaces of each coating after testing, the TE48 coating (Figure 26A) was found to exhibit significant surface corrosion, while the TE49 (Figure 26B) and TE50 coatings (Figure 26C) exhibited substantially no blisters and approximately no corrosion at the scratch. From these observations, the orthophosphate compositions, TE49 and TE50, appear to provide improved corrosion resistance over the nitroisophthalate composition, TE48.

[0150] Figures 27A and 27B compare the performance of compositions TE49 and TE50 (Heucophos® ZAM and ZCP, respectively) after about 668 h SST. Examining the surfaces of each coating after testing, the TE49 coating (Figure 27A) was found to exhibit scratch delamination, while the TE50 (Figure 27B) exhibited only partial delamination.

[0151] The friction coefficient of compositions TE33, TE44, TE48, TE49, and TE50 were also examined through pin-on-disc tests. The results of these tests are
summarized in Figure 28. The ZnO containing coating, TE44, was found to exhibit the lowest friction coefficient of the samples tested. Over a short initial time period, coatings containing Heucophos® ZAM and ZCP, TE49 and TE50, respectively, exhibited comparable friction coefficients to ZnO.

Example 16 - Corrosion resistance - ZnO additive, extended exposure

[0152] Coating composition TE44, a coating comprising an epoxy matrix with HDPE lubricant and ZnO adhesion additives were examined. In one embodiment, the epoxy comprised epoxy resin L20 and curing agent EPI161 (R&G GmbH). The resin and curing agent were mixed in a ratio of about 100:29 by volume to provide a total epoxy mass of about 25g. To this epoxy mixture was added about 4g of ZnO and about 4g HDPE. The composition was mixed to disperse the ZnO and HDPE substantially uniformly within the polymer matrix. The coating composition was subsequently spray coated and cured on steel surfaces cleaned according to procedure two, described above. In one embodiment, the cure may be performed according to the manufacturer's instructions, roughly 24 h at about room temperature, followed by annealing for about 15 h at a minimum temperature of about 60°C. In alternative embodiments, the coating can be annealed at temperatures up to about 150°C.

[0153] The corrosion resistance of the coating so formed was examined on flat samples using the salt spray test. Figures 29A-C illustrate samples tested for SST exposure times of about 500 h (Figure 29A), 1100 h (Figure 29B), and 2000 h (Figure 29C). The results indicate that the coating passes the salt spray test and substantially no delamination or blistering is observed in the samples, even up to 2000 h of exposure.

[0154] To further examine the corrosion protection ability of the coating, the coating was substantially removed to allow examination of the underlying metallic surface. Coating removal was performed by exposure to an approximately 10% NaOH solution for about 1h at about 100°C.

[0155] Figure 30 illustrates the resulting exposed metal surface. Substantially no corrosion was observed on the surface. However, other surface features are present. It is speculated that these features may be attributed to blistering at the scratch or insufficient cleaning of the surface.
Example 17 – Corrosion resistance – epoxy matrix coatings with D10H, ZnO, and ZCP additives

[0156] The composition of Example 17 is further modified to improve the coating performance. In certain embodiments, a reactive fluoropolymer, comprising Fluorolink D10H, and an additional corrosion inhibiting agent, comprising Heucophos® ZCP, were added to the coating composition. The coating composition was spray coated and cured on steel surfaces cleaned according to cleaning procedure three, discussed above. The proportions of each component in the compositions examined are outlined in Table 9 below.

Table 9 – Epoxy matrix coating formulations containing anticorrosion compound and D10H

<table>
<thead>
<tr>
<th>Sample</th>
<th>Epoxy (L20)</th>
<th>HDPE (g)</th>
<th>D10H (g)</th>
<th>ZnO - 1 μm (g)</th>
<th>ZnO - 50 nm (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TE60</td>
<td>25</td>
<td>1</td>
<td>0.3</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>TE61</td>
<td>25</td>
<td>1</td>
<td>0.3</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>TE62</td>
<td>25</td>
<td>1</td>
<td>0.3</td>
<td>0.5</td>
<td>4</td>
</tr>
<tr>
<td>TE63</td>
<td>25</td>
<td>1</td>
<td>0.3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>TE64</td>
<td>25</td>
<td>1</td>
<td>0.3</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>TE65</td>
<td>25</td>
<td>1</td>
<td>0.3</td>
<td>0.5</td>
<td>0</td>
</tr>
<tr>
<td>TE66</td>
<td>25</td>
<td>1</td>
<td>0.3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>TE67</td>
<td>25</td>
<td>1</td>
<td>0.3</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>TE68</td>
<td>25</td>
<td>1</td>
<td>0.3</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

[0157] As illustrated in Table 9, samples TE60 and TE61 investigated the influence of the size of the ZnO in the absence of ZCP. Samples TE62, TE63, and TE64 investigated the influence of the amount of ZCP, ranging from about 0.5 to 2 g for ZnO particles of about 1 μm in size, while samples TE65, TE66, and TE67 investigated the same for ZnO particles of about 50 nm in size. Sample TE68 provided a baseline without any ZCP or ZnO addition.

[0158] The results of SST testing after 2000h exposure are illustrated below in Table 10. Three samples were prepared for each composition. Results are presented for each sample, as well as the average of the three samples.
Table 10 – Corrosion testing results

<table>
<thead>
<tr>
<th>Sample</th>
<th>Size ZnO</th>
<th>Plate #1 scratch/surface</th>
<th>Plate #2 scratch/surface</th>
<th>Plate #3 scratch/surface</th>
<th>Average scratch/surface</th>
</tr>
</thead>
<tbody>
<tr>
<td>TE60</td>
<td>1 µm</td>
<td>-- / 60h</td>
<td>-- / 1196h</td>
<td>860h / 1004h</td>
<td>-- / 963h</td>
</tr>
<tr>
<td>TE62</td>
<td>1 µm</td>
<td>690h / 1196h</td>
<td>1004h / 1196h</td>
<td>860h / 1196h</td>
<td>851h / 1196h</td>
</tr>
<tr>
<td>TE63</td>
<td>1 µm</td>
<td>690h / 1196h</td>
<td>860h / 1388h</td>
<td>1532h / OK</td>
<td>1027h / --</td>
</tr>
<tr>
<td>TE64</td>
<td>1 µm</td>
<td>1196h / OK</td>
<td>1388h / OK</td>
<td>1388h / OK</td>
<td>1324h / OK</td>
</tr>
<tr>
<td>TE61</td>
<td>50 nm</td>
<td>690h / 1004h</td>
<td>690h / 1196h</td>
<td>690h / 1196h</td>
<td>690h / 1123h</td>
</tr>
<tr>
<td>TE65</td>
<td>50 nm</td>
<td>690h / 1316h</td>
<td>1388h / 1868h</td>
<td>1532h / 1700h</td>
<td>1203h / 1628h</td>
</tr>
<tr>
<td>TE66</td>
<td>50 nm</td>
<td>1004h / 2000h</td>
<td>1196h / OK</td>
<td>1004h / OK</td>
<td>1068h / OK</td>
</tr>
<tr>
<td>TE67</td>
<td>50 nm</td>
<td>1196h / OK</td>
<td>1388h / OK</td>
<td>1868h / OK</td>
<td>1484h / OK</td>
</tr>
</tbody>
</table>

[0159] The first number in Table 10 represents the time at which blisters are first observed at about the scratch. The second value in Table 10 represents the time at which blisters were observed on the surface of the sample. An entry of OK indicates that substantially no blistering is observed when the test was concluded after about 2000 h. As illustrated in Table 10, compositions TE64 and TE67 both survived 2000 h with substantially no apparent blistering on the surface of the sample. As these two compositions possessed the highest amount of Heucophos® ZCP, this result indicates that the Heucophos® ZCP plays a significant role in improving corrosion resistance.

[0160] Coating composition TE64 comprised approximately 77.4% L20 epoxy resin, approximately 3.1 wt. % HDPE and 0.9 wt. % Fluorolink D10H as solid state lubricants, 6.2 wt. % Heucophos ZCP, and about 12.4 wt. % ZnO having a size of about 1µm. TE67 comprises approximately 77.4 wt. % L20 epoxy resin, approximately 3.1 wt. % HDPE and 0.9 wt. % Fluorolink D10H as solid state lubricants, 6.2 wt. % Heucophos ZCP, and about 12.4 wt. % ZnO having a size of about 50 nm. All percentages are on the basis of weight of the composition.

[0161] The extent of corrosion in coatings TE64 and TE67 were also examined after various approximate exposure times: 500 h, 860 h, 1500 h, 1868 h, and 2000 h (TE64) and 860 h, 1000 h, 1500 h, 1500 h, 1868 h, and 2000 h (TE67). Upon examination, it was found in both coating systems that substantially no surface corrosion was observed in areas protected by the coating. Examining the appearance of the metal surface after the coatings were removed in the vicinity of the scratch by treatment with NaOH, as discussed above with
respect to Example 18, found substantially no corrosion in the metal within the area proximate to the scratch. Based upon these results, the two ZnO containing compositions, TE64 and TE67, exhibit substantially comparable performance as anti-corrosion coatings.

[0162] The friction coefficient of compositions TE60, TE61, TE64, and TE67, as well as a reference coating without the incorporation of ZnO or ZCP, designated TE68, were examined through pin-on-disc tests. The results of these tests are summarized in Figure 31. These results indicate that, for short durations, friction coefficients of less than about 0.15 may be obtained.

Example 18 – Corrosion resistance – threaded connections

[0163] Figures 32A and 32B illustrate the results of salt spray testing performed on threaded connections partially coated with compositions TE64 (Figure 32A) and TE67 (Figure 32B). The left hand side of each threaded connection was coated, while the right hand side was not. Each connection was subjected to SST for approximately 500h. As illustrated in Figures 32A, 32B the coated, left hand side of each threaded connection is substantially free of corrosion, while the uncoated, right hand side of each threaded connection exhibits significant corrosion.

Example 19 – Corrosion resistant layer in combination with as second lubricating layer.

[0164] The coating systems TE64 and TE67, which showed good corrosion resistance, were applied over a commercially available threaded connection known as a “premium connection”, having a metal-to-metal seal and torque shoulder and an external diameter of about 3.5 inches (TenarisBlue®, Tenaris, Argentina), in order to evaluate frictional and tribological properties of the coatings.

[0165] Several assembling and disassembling operations were carried out using a pin coated with TE64 and a bared box; and a pin coated with TE67 and a bared box. The important parameters of the test are torque versus turn behavior, shoulder torque (which is related to the friction during sliding) and its consistency through successive assembling and disassembling operations and galling resistance performance. The term “shoulder torque” as used herein has its ordinary meaning as known to those skilled in the art. In the context of
the threaded connections described herein, shoulder torque will be understood as reference to the torque when the shoulder of the pin and the shoulder of the box substantially abut, producing an abrupt change in the slope of a plot of torque versus turns measured during the assembly of a pipe. Satisfactory anti-galling properties were observed with both coating systems, with variations in shoulder torque ranging from about 3000 to 4500 lbf.ft.

[0166] Further testing was performed in which the coating systems TE64 and TE67 were applied over the pins, and the second, lubricating coating composition recited above was applied over the inner surfaces of the box.

[0167] During the successive assembling and disassembling operations, both coating systems showed extraordinary anti-galling features and consistent frictional properties. Shoulder torque values ranged from about 2000 to 3000 lbf.ft, showing a decrease in friction coefficient due to the contribution of the dry film lubricant applied to the box.

Example 20 - Corrosion resistant layer without incorporation of solid lubricant.

[0168] Corrosion resistant coating systems based on epoxy, reactive fluoropolymer (D10H), a corrosion inhibiting agent (Heucophos® ZCP), and nanoparticles of ZnO were investigated. These coating systems did not contain solid state lubricants. The coating compositions investigated are detailed in Table 11 below:

Table 11 – Epoxy matrix coating formulations without solid state lubricants

<table>
<thead>
<tr>
<th>Sample</th>
<th>Epoxy (wt. %)</th>
<th>D10H (wt. %)</th>
<th>ZCP (wt. %)</th>
<th>ZnO - 50 nm (wt. %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TE105</td>
<td>92</td>
<td>1</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>TE106</td>
<td>85</td>
<td>1</td>
<td>0</td>
<td>14</td>
</tr>
<tr>
<td>TE107</td>
<td>81</td>
<td>0</td>
<td>6</td>
<td>13</td>
</tr>
<tr>
<td>TE108</td>
<td>80</td>
<td>1</td>
<td>6</td>
<td>13</td>
</tr>
</tbody>
</table>

[0169] The coating systems were applied over Q-panels (Q-Lab Corporation, Cleveland, OH) and cured for about 30 minutes at about 150°C, with three testing panels prepared per sample. The Q-panels, made from low-carbon steel, exhibit corrosion more quickly than N80 substrates, under substantially similar conditions, providing a method by which to perform accelerated corrosion tests. Thus, corrosion testing using Q-panels allows a
comparison of the corrosion resistance of the different coating systems through an accelerated test.

[0170] Testing samples were placed in the testing chamber and continuously exposed to a salt solution (about 5 wt.% NaCl) at about 35°C in accordance with ASTM Standard B117. The corrosion advance was further monitored at regular intervals of time. After an exposure time of about 750 h, each of the coating systems showed good corrosion resistance, with only small evidence of corrosion. Of the coating systems TE105, TE106, TE107, and TE 108, the TE108 coating showed the best corrosion resistance, with the fewest corrosion signs.

[0171] Although the foregoing description has shown, described, and pointed out the fundamental novel features of the present teachings, it will be understood that various omissions, substitutions, and changes in the form of the detail of the apparatus as illustrated, as well as the uses thereof, may be made by those skilled in the art, without departing from the scope of the present teachings. Consequently, the scope of the present teachings should not be limited to the foregoing discussion, but should be defined by the appended claims.
WHAT IS CLAIMED IS:

1. A threaded joint, comprising:
 a. a pin member and a box member, wherein the pin member possesses a
 first thread portion adapted to mate with a second thread portion of the box
 member;
 b. a first coating composition deposited on the thread portion of at least
 one of the pin and box members, comprising:
 a polymer selected from the group consisting of epoxies and polyimides;
 about 0.5 to 15 wt. % of a perfluoropolyether;
 about 5 to 15 wt. % of at least one of an anticorrosion compound
 selected from the group consisting of a zinc calcium strontium orthophosphate
 silicate hydrate compound, a zinc calcium aluminum strontium
 orthophosphate polyphosphate silicate hydrate, a zinc aluminum molybdenum
 orthophosphate hydrate, a zinc nitroisophthalate, and a zinc
 phosphomolybdate; and
 about 10 to 15 wt. % zinc oxide having a mean diameter ranging
 between approximately 10 nm to 10 µm;
 wherein the balance of the first coating composition is comprised of the
 polymer and wherein the percentage of each component is on the basis of the
 total weight of the first coating composition.

2. The threaded joint of Claim 1, wherein the perfluoropolyether chemically
 reacts with the polymer so as to form a plurality of covalent bonds between the polymer and
 the perfluoropolyether.

3. The threaded joint of Claim 2, wherein the perfluoropolyether is condensable
 with the polymer.

4. The threaded joint of any of the preceding claims, wherein the first coating
 composition comprises a single layer.

5. The threaded joint of any of the preceding claims, wherein the first coating
 composition further comprises about 3 to 30 wt. % of a solid lubricant.
6. The threaded joint of Claim 5, wherein the solid lubricant comprises at least one of high density polyethylene (HDPE), polytetrafluoroethylene (PTFE), graphite, and molybdenum disulfide (MoS₂).

7. The threaded joint of any of the preceding claims, wherein the mean diameter of the zinc oxide ranges between about 10 to 300 nm.

8. The threaded joint of any of the preceding claims, wherein the first coating composition further comprises an inorganic reinforcement.

9. The threaded joint of Claim 8, wherein the inorganic reinforcement possesses a mean diameter less than about 300 nm.

10. The threaded joint of Claim 9, wherein the reinforcement is present in an amount ranging from about 5 to 10 wt %, based on the total weight of the first composition.

11. The threaded joint of Claim 10, wherein the reinforcement comprises at least one of silicon carbide (SiC), titanium dioxide (TiO₂), aluminum oxide (Al₂O₃), and silicon dioxide (SiO₂).

12. The threaded joint of any of the preceding claims, wherein the first coating composition further comprises at least one of:

 about 3 to 8 wt % zinc;
 about 1 to 5 wt. % zinc(II)phosphate;
 about 1 to 5 wt. % Carbon black; and
 about 10 to 20 wt. % of polydimethylsiloxane;

 wherein the amount of each is based upon the total weight of the first composition.

13. The threaded joint of any of the preceding claims, wherein the wear coefficient of the coating composition is less than approximately 2.0 e-6 mm³/Nm.

14. The threaded joint of Claim 5, wherein the friction coefficient of the coating composition ranges between approximately 0.03 and 0.10.

15. The threaded joint of Claim 5, wherein the coating exhibits substantially no corrosion up to about 1000h of exposure as tested according to ASTM B117.
16. The threaded joint of any of the preceding claims, wherein a second coating layer comprising a dry film lubricant is deposited on a thread portion of at least one of the pin and the box members.

17. The threaded joint of Claim 16, wherein the second coating composition comprises:

- about 4 to 16 wt. % polytetrafluoroethylene (PTFE);
- about 8 to 24 wt. % of a reactive epoxy;
- about 1 to 6 wt. % titanium dioxide; and
- a solvent;

wherein the amount of each component is on the basis of the total weight of the second coating composition.

18. The coating composition of any of Claims 16 and 17, wherein the combined thickness of the first and second coating layers is less than about 80 μm.

19. The coating composition of Claim 18, wherein the first coating possesses a thickness less than about 40 μm.

20. The coating composition of any of Claims 16 to 19, wherein the second coating possesses a thickness less than about 30 μm.

21. The threaded joint of any of Claims 16 to 20, wherein the thickness of the first and second coatings are approximately equal.

22. The threaded joint of any of Claims 16 to 21, wherein the first coating composition is deposited on the pin member and the second coating composition is deposited on the box member.

23. The threaded joint of any of the preceding claims, wherein the pin and box members are metallic.

24. A threaded joint, comprising:

- a pin member and a box member, wherein the pin member possesses a first thread portion adapted to mate with a second thread portion of the box member;
- a first coating composition deposited on the thread portion of at least one of the pin and box members, comprising:
a polymer;
about 0.5 to 15 wt. % of a fluorine containing polymer modifier;
about 5 to 15 wt. % of a corrosion inhibiting agent comprising at least
one of Zn, Ca, Mg, Sr, Al, phosphate functional groups, molybdate functional
groups, phosphomolybdate functional groups, and phosphosilicate functional
groups; and
about 10 to 15 wt. % of inorganic particles having a mean diameter
ranging between approximately 10 nm and 10 μm;
wherein the balance of the first composition is comprised of the
polymer and wherein the percentage of each component is on the basis of the
total weight of the first coating composition.

25. The threaded joint of Claim 24, wherein the polymer is selected from the
group consisting of epoxies and polyimides.

26. The threaded joint of any of Claims 24 and 25, wherein the polymer modifier
comprises a perfluoropolyether.

27. The threaded joint of Claim 26, wherein the perfluoropolyether chemically
reacts with the polymer so as to form a plurality of covalent bonds between the polymer and
the perfluoropolyether.

28. The threaded joint of Claim 27, wherein the perfluoropolyether is condensable
with the polymer.

29. The threaded joint of any of Claims 24 to 28, wherein the first coating
composition comprises a single layer.

30. The threaded joint of any of Claims 24 to 29, wherein the inorganic particles
comprise zinc oxide having a mean diameter ranging between about 10 to 300 nm.

31. The threaded joint of any of Claims 24 to 30 wherein the coating composition
further comprises about 3 to 30 wt. % of a solid lubricant.

32. The threaded joint of Claim 31, wherein the solid lubricant comprises at least
one of high density polyethylene (HDPE), polytetrafluoroethylene (PTFE), graphite, and
molybdenum disulfide (MoS₂).
33. The threaded joint of any of Claims 24 to 32, wherein the coating composition further comprises an inorganic reinforcement.

34. The threaded joint of Claim 33, wherein the inorganic reinforcement possesses a mean diameter less than about 300 nm.

35. The threaded joint of Claim 34, wherein the reinforcement is present in an amount ranging from about 5 to 10 wt. %, based on the total weight of the first composition.

36. The threaded joint of Claim 35, wherein the reinforcement comprises at least one of silicon carbide (SiC), titanium dioxide (TiO₂), aluminum oxide (Al₂O₃), and silicon dioxide (SiO₂).

37. The threaded joint of any of Claims 24 to 36, wherein the first coating composition further comprises at least one of:
 about 3 to 8 wt % zinc;
 about 1 to 5 wt. % zinc(II)phosphate;
 about 1 to 5 wt. % Carbon black; and
 about 10 to 20 wt. % of the polydimethylsiloxane;
 wherein the amount of each is based upon the total weight of the first composition.

38. The threaded joint of any of Claims 24 to 37, wherein the wear coefficient of the first coating composition is less than approximately 2.0 e-6 mm³/Nm.

39. The threaded joint of Claim 31, wherein the friction coefficient of the first coating composition ranges between approximately 0.03 and 0.10.

40. The threaded joint of Claim 31, wherein the coating exhibits substantially no corrosion up to about 1000h of exposure as tested according to ASTM B117.

41. The threaded joint of any of Claims 24 to 40, wherein a second coating layer comprising a dry film lubricant is deposited on a thread portion of at least one of the pin and the box members.

42. The threaded joint of Claim 41, wherein the second coating composition comprises:
 about 4 to 16 wt. % polytetrafluoroethylene (PTFE);
 about 8 to 24 wt. % of a reactive epoxy;
about 1 to 6 wt. % titanium dioxide; and
a solvent;
wherein the amount of each component is on the basis of the total weight of the second composition.

43. The threaded joint of any of Claims 41 and 42, wherein the thickness of the first and second coatings are approximately equal.

44. The threaded joint of any of Claims 41 to 43, wherein the first coating composition is deposited on the pin member and the second coating composition is deposited on the box member.

45. The threaded joint of any of Claims 24 to 43, wherein the pin and box members are metallic.

46. A method of protecting a threaded joint, comprising:
providing a pin member and a box member, wherein the pin member possesses a first thread portion adapted to mate with a second thread portion of the box member;
providing a first composition comprising:
a polymer;
about 0.5 to 15 wt. % of a fluorine containing polymer modifier;
about 5 to 15 wt. % of a corrosion inhibiting agent comprising at least one of Zn, Ca, Mg, Sr, Al, phosphate functional groups, molybdate functional groups, phosphomolybdate functional groups, and phosphosilicate functional groups; and
about 10-15 wt. % of inorganic particles having a mean diameter ranging between approximately 10 nm and 10 μm;
wherein the balance of the first composition is comprised of the polymer and wherein the percentage of each component is on the basis of the total weight of the first coating composition;
providing a second coating composition comprising a dry film lubricant; and
applying each of the first and the second coatings on at least the thread portion of at least one of the pin and box members.

47. The method of Claim 46, wherein the polymer is selected from the group consisting of epoxies and polyimides.

48. The method of any of Claims 46 and 47, wherein the polymer modifier comprises a perfluoropolyether.

49. The method of Claim 48, wherein the perfluoropolyether chemically reacts with the polymer so as to form a plurality of covalent bonds between the polymer and the perfluoropolyether.

50. The method of Claim 49, wherein the perfluoropolyether is condensable with the polymer.

51. The method of any of Claims 46 to 50, wherein the first coating composition comprises a single layer.

52. The method of any of Claims 46 to 51, wherein inorganic particles comprise zinc oxide having a mean diameter ranging between about 10 to 300 nm.

53. The method of any of Claims 46 to 52, wherein the first coating composition further comprises about 3 to 30 wt. % of a solid lubricant.

54. The method of Claim 53, wherein the solid lubricant comprises at least one of high density polyethylene (HDPE), polytetrafluoroethylene (PTFE), graphite, and molybdenum disulfide (MoS₂).

55. The method of any of Claims 46 to 54, wherein the coating composition further comprises an inorganic reinforcement.

56. The method of Claim 55, wherein the inorganic reinforcement possesses a mean diameter less than about 300 nm.

57. The method of Claim 56, wherein the reinforcement is present in an amount ranging from about 5 to 10 wt. %, based on the total weight of the first composition.

58. The method of Claim 57, wherein the reinforcement comprises at least one of silicon carbide (SiC), titanium dioxide (TiO₂), aluminum oxide (Al₂O₃), and silicon dioxide (SiO₂).
59. The method of any of Claims 46 to 58, wherein the first coating composition further comprises at least one of:
 about 3 to 8 wt % zinc;
 about 1 to 5 wt. % zinc(II)phosphate;
 about 1 to 5 wt. % Carbon black; and
 about 10 to 20 wt. % of the polydimethylsiloxane;
 wherein the amount of each is based upon the total weight of the first coating composition.

60. The method of any of Claims 46 to 59, wherein the first coating composition is deposited on the pin member and the second coating composition is deposited on the box member.

61. The method of any of Claims 46 to 60, wherein the dry film lubricant comprises a solid lubricant dispersed within a polymer matrix and a solvent.

62. The method of Claim 61, wherein the dry film lubricant comprises at least one of a self lubricating film and a metal alloy.

63. The method of any of Claims 46 to 62, wherein the second coating composition comprises:
 about 4 to 16 wt. % polytetrafluoroethylene (PTFE);
 about 8 to 24 wt. % of a reactive epoxy;
 about 1 to 6 wt. % titanium dioxide; and
 a solvent;
 wherein the amount of each component is on the basis of the total weight of the second coating composition

64. The method of any of Claims 46 to 63, wherein the thickness of the first and second coating compositions are approximately equal.

65. The method of any of Claims 46 to 64, further comprising curing at least one of the first and second coating compositions at a temperature of less than about 150°C.

66. The method of any of Claims 46 to 65, wherein the pin and box members are metallic.
67. The method of any of Claims 46 to 66, wherein at least one of the pin and the box members are subjected to a surface treatment in order to improve the adherence of the coating to the surface of said pin and box members.

68. The method of Claim 67, wherein the surface treatment comprises at least one of sand blasting, phosphatization, and copper plating.

69. A threaded joint, comprising:

 a pin member and a box member, wherein the pin member possesses a first thread portion adapted to mate with a second thread portion of the box member, wherein at least one surface of the pin or the box member is sandblasted;

 a first coating composition deposited on the thread portion of the pin member, comprising:

 an epoxy;

 about 0.5 to 15 wt. % of a perfluoropolyether;

 about 5 to 15 wt. % of at least one of an anticorrosion compound selected from the group consisting of a zinc calcium strontium orthophosphate silicate hydrate compound, a zinc calcium aluminum strontium orthophosphate polyphosphate silicate hydrate, a zinc aluminum molybdenum orthophosphate hydrate, a zinc nitroisophthalate, and a zinc phosphomolybdate; and

 about 10 to 15 wt. % zinc oxide having a mean diameter ranging between approximately 10 nm to 10 µm;

 wherein the balance of the first coating composition is comprised of the epoxy and wherein the percentage of each component is on the basis of the total weight of the first coating composition; and

 a second coating composition deposited on the thread portion of the box member, comprising:

 about 4 to 16 wt. % polytetrafluoroethylene (PTFE);

 about 8 to 24 wt. % of a reactive epoxy;

 about 1 to 6 wt. % titanium dioxide; and
a solvent;

wherein the amount of each component is on the basis of the total weight of the second coating composition.

70. The threaded joint of Claim 69, wherein the first coating composition further comprises about 3 to 30 wt. % of a solid lubricant.

71. The threaded joint of Claim 70, wherein the solid lubricant comprises at least one of high density polyethylene (HDPE), polytetrafluoroethylene (PTFE), graphite, and molybdenum disulfide (MoS₂).
Figure 1.1 - Friction and Wear Coefficients
FIG. 13