
USOO5925117A

United States Patent (19) 11 Patent Number: 5,925,117
Kirby et al. (45) Date of Patent: *Jul. 20, 1999

54 METHOD AND APPARATUS FOR ENABLING 5,323,291 6/1994 Boyle et al. 361/683
APPLICATION PROGRAMS TO CONTINUE 5,347,425 9/1994 Herron et al. 361/683
OPERATION WHEN AN APPLICATION 5,386,567 1/1995 Lien et al. 395/700
RESOURCE IS NO LONGER PRESENT 5,463,742 10/1995 Kobayashi 395/281
AFTER UNIDOCKING FROM A NETWORK 5,488,572 1/1996 Belmont 364/514 R

75 Inventors: Graham D. Kirby; Sriram 5,526,493 6/1996 Shu ... 395/281
Viswanathan; Suresh K. Marisetty, all 5,596,728 1/1997 Belmont - 395/281

of San Jose, Calif. 5,598,537 1/1997 Swanstrom et al. 395/281
5,642,517 6/1997 Shirota 395/750

73 Assignee: Intel Corporation, Santa Clara, Calif.

* Notice: This patent issued on a continued pros- Primary Examiner Majid A. Banankhah
ecution application filed under 37 CFR Attorney, Agent, or Firm-Blakely, Sokoloff, Taylor &
1.53(d), and is subject to the twenty year Zafman LLP
patent term provisions of 35 U.S.C.
154(a)(2). 57 ABSTRACT

21 Appl. No.: 08/367,444 The present invention provides a method and apparatus for
22 Filed: Dec. 28, 1994 maintaining application integrity in a hot, disconnected

network environment. The present invention provides a
Related U.S. Application Data System having a computer Subsystem with a processor

(51) Int. Cl. .. G06F 13/00 executing application programs in an operating System envi
52 U.S. Cl. ... 710/101; 361/281 ronment. The System also includes a network and a connec
58 Field of Search 395/650, 700; tion to connect the network to the computer System. A

364/514; 361/683, 686; 709/102,500, 686, notification mechanism detects when the network resources
101, 100 are no longer connected and permits continued use of the

56) References Cited computer Subsystem while it remains disconnected from the
network.

U.S. PATENT DOCUMENTS

5,302,947 4/1994 Fuller et al. 340/825.34 20 Claims, 5 Drawing Sheets

NOTIFICATION MECHANISM

7

%61666 y2,

WINDOWS
it - - - - -

DOS
PROTOCOLSTACK

2
ra OUR

% 2 EVENT DEVELOPMENT
C99RDNATOB2

w is us um m m ms as - - - -

DOCK/UNDOCKEVENT HARDWARE

DOCKING STATION
WITHNIC

U.S. Patent Jul. 20, 1999 Sheet 1 of 5 5,925,117

DISCONNECT COMPUTER FROM 101
THE NETWORK

OF UNDOCKEVENT

FIH A

705 706 70 A

APPLICATION
APPLICATION APPLICATION APPLICATION APPLICATION NESGN I HIDE

AND REVEAL

NETWORKRESOURCEACCESS MONITOR

CONNECT
AND OPERATING SYSTEM DISCONNECT

EVENTS

NETWORK
INFRASTRUCTURE

FIH

U.S. Patent Jul. 20, 1999 Sheet 2 of 5 5,925,117

NOTIFICATION MECHANISM

7

%61A66 VxD M

WINDOWS
- - - - -

DOS

NETWORK DRIVER

OUR
Z DEVELOPMENT 2 EVENT %5% 2

--- DOCK/UNDOCKEVENT HARDWARE
DOCKING STATION

WITHNIC

FIG -
- EVENT COORDINATOR

up is b on but us an a m

INTERRUPTPROCESSING

IDENTIFY EVENT TYPE
DOCKUNDOCK?

IDENTIFYIRQ
FOREVENT

NOTIFICATION

U.S. Patent Jul. 20, 1999 Sheet 3 of 5 5,925,117

NOTIFICATION WycDFLOW
r

APFUNC, O APFUNC. 2

STORE INCOMING 410
RETURNVERSION 140 DOCK FLAG STATE

AP FUNC.

STORE DLL
CALLBACK
ADDRESS

STORE WINDOW

402

HANDLE

NOTIFICATION DLL FLOW
as as a has a see n is a s up s is a us was as a us ve re

INTERFACE CALLBACK
LIBMAIN() so FUNCTIONS / FUNCTION -52
CHECKENHANCED REGISTER WINDOW
MODE STATUS HANDLE |Dock EVENT

502 YES

Post Dock
MESSAGE TO
HANDLE

523
POSTUNDOCK

WEP |MESSAGETO HANDLE
L - L

"I
A.

U.S. Patent Jul. 20, 1999 Sheet 4 of 5 5,925,117

NETWORKED APP, MANAGER FLOW

DISABLE NETWORK 62
RELATED APPS.

632

613 IRE-ACTIVATEDSABLEDL-838
NETWORKAPPS.

621

REGISTER WINDOW
HANDLE WITH VxD

THRUDLL

622
PROCESS
MESSAGES

U.S. Patent Jul. 20, 1999 Sheet 5 of 5 5,925,117

MASS MAIN STATIC
DISPLAY STORAGE SPL MEMORY MEMORY DEVICE

72 704 706 707

KEYBOARD

722 BUS 20

CURSOR
CONTROL
DEVICE

723
PROCESSOR

HARD 702
COPY 700
DEVICE -

724

F. Z

SYSTEM VM DOSWM DOS VM

WINDOWSAPPLICATIONS

CALLS

RINGS O-3 WINDOWS DOS APPLICATION DOS APPLICATION
DLL's

SHARED RERAL MODE MEMORY

RNGO

SYSTEM

HARDWARE

F --

5,925,117
1

METHOD AND APPARATUS FOR ENABLING
APPLICATION PROGRAMS TO CONTINUE
OPERATION WHEN AN APPLICATION
RESOURCE IS NO LONGER PRESENT

AFTER UNIDOCKING FROM A NETWORK

FIELD OF THE INVENTION

This invention relates to the field of computer systems;
more particularly, the invention relates to the field of moni
toring the presence and absence of resources and maintain
ing the integrity of an application program running when an
application resource is determined to be absent.

BACKGROUND OF THE INVENTION

Today, mobile computer Systems have incorporated more
features that were once only available on desktop personal
computers. A docking Station with a network interface card
used in conjunction with a mobile computer System allows
a user to acceSS Services usually only available to a desktop
computer System, and in doing So, resemble a desktop
computer.

Presently, in order to dock (connect) and undock
(disconnect) a computer System from a docking Station
coupled to a network, the user must close all network related
applications, one by one. The user then logs off the network.
At that time, the user may undock the mobile computer from
the docking Station. When the System is docked again (e.g.,
the user connects the docking Station to the computer
System), a log-on sequence has to be executed by the user.
If the user desires to edit files that were being edited prior to
undocking of the mobile computer System, then the corre
sponding application(s) and file(s) have to be reopened. This
is the only method of returning to the previous State of the
network. To maintain mobility of a computer System, it is
desirable that once a user has logged onto a network, that he
or she be free to remove the mobile computer system from
the docking Station, return back to the docking Station and
return to the State the System was in immediately prior to
removal.

When a user disconnects the mobile computer from the
docking Station without following these Steps, the System
may crash or hang up when a network resource disappears.
Today, applications do not have any inherent knowledge of
the dynamic nature of the network or that the network has to
be controlled by other means when network resources
appear or disappear (if the appearance and disappearance of
network resources are to occur dynamically).

Developments in the networking operating System allow
a user to disconnect from the network without having to log
out and thereafter log on. Currently there is a network that
is capable providing a virtual connection for a short period
of time after disconnect from the docking Station during
which time the network assumes that it is coupled to the
mobile computing System. However, if the user does not
close all the applications or the user wishes to edit the file or
manipulate the network after undocking, the System may
crash or hang up.

The present invention provides for maintaining applica
tion integrity in the hot networking environment, Such that
the appearance and disappearance of network resources can
occur dynamically.

SUMMARY OF THE INVENTION

The present invention provides a method and apparatus
for maintaining application integrity in a hot, disconnected

15

25

35

40

45

50

55

60

65

2
network environment. The present invention provides a
System having a computer Subsystem with a processor
executing application programs in an operating System envi
ronment. The System also includes a network and a connec
tion to connect the network to the computer System. A
notification mechanism detects when the network resources
are no longer connected and permits continued use of the
computer Subsystem while it remains disconnected from the
network.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will be understood more fully from
the detailed description given below and from the accom
panying drawings of various embodiments of the invention,
which, however, should not be taken to limit the invention
to the Specific embodiments, but are for explanation and
understanding only.

FIG. 1A is a flow diagram illustrating the process of the
present invention.

FIG. 1B illustrates one embodiment of an architecture of
the present invention.

FIG. 2 illustrates one embodiment of the notification
mechanism of the present invention.

FIG. 3A is a flow diagram illustrating one embodiment of
the initialization process for the event coordinator of the
present invention.

FIG. 3B is a flow diagram illustrating one embodiment of
the interrupt processing for the event coordinator of the
present invention.

FIG. 4A is a flow diagram illustrating one embodiment of
the initialization process of the notification virtual device
driver (VxD) of the present invention.

FIG. 4B is a flow diagram illustrating one embodiment of
the a function of the notification virtual device driver (VxD)
of the present invention that may be called by the event
coordinator.

FIGS.5A, 5B and 5C illustrate the notification DLL flow
of the present invention.

FIG. 6A is a flow diagram of one embodiment of the
initialization process of the networked application manager
of the present invention.

FIG. 6B is a flow diagram of one embodiment of the
message processing of the networked application manager
of the present invention.

FIG. 7 is a block diagram of one embodiment of the
computer System of the present invention.

FIG. 8 illustrates the Windows operating system operating
in enhanced mode.

DETAILED DESCRIPTION OF THE
INVENTION

A method and apparatus for providing a network connec
tion to a computer System is described. In the following
detailed description of the present invention numerous spe
cific details are Set forth, Such as Specific interrupts, module
names, Signal names, etc., in order to provide a thorough
understanding of the present invention. However, it will be
apparent to one skilled in the art that the present invention
may be practiced without these specific details. In other
instances, well-known Structures and devices are shown in
block diagram form, rather than in detail, in order to avoid
obscuring the present invention.
Some portions of the detailed descriptions which follow

are presented in terms of algorithms and Symbolic repre

5,925,117
3

Sentations of operations on data bits within a computer
memory. These algorithmic descriptions and representations
are the means used by those skilled in the data processing
arts to most effectively convey the substance of their work
to otherS Skilled in the art. An algorithm is here, and
generally, conceived to be a Self-consistent Sequence of steps
leading to a desired result. The Steps are those requiring
physical manipulations of physical quantities. Usually,
though not necessarily, these quantities take the form of
electrical or magnetic Signals capable of being Stored,
transferred, combined, compared, and otherwise manipu
lated. It has proven convenient at times, principally for
reasons of common usage, to refer to these signals as bits,
values, elements, Symbols, characters, terms, numbers, or
the like.

It should be borne in mind, however, that all of these and
Similar terms are to be associated with the appropriate
physical quantities and are merely convenient labels applied
to these quantities. Unless Specifically Stated otherwise as
apparent from the following discussions, it is appreciated
that throughout the present invention, discussions utilizing
terms Such as “processing or “computing or "calculating
or “determining” or “displaying or the like, refer to the
action and processes of a computer System, or Similar
electronic computing device, that manipulates and trans
forms data represented as physical (electronic) quantities
within the computer System's registers and memories into
other data Similarly represented as physical quantities within
the computer System memories or registers or other Such
information Storage, transmission or display devices.
Overview of the Present Invention
The present invention maintains the integrity of a com

puter system when that system becomes disconnected (hot)
from a resource Such as, for instance, a network. By main
taining the integrity of a computer System, the present
invention allows the computer System (e.g., mobile PC) to
continue in use without rebooting even though applications
are loaded and running on the computer System that require
access to network (or other) resources yet no longer have
them available.

The present invention allows the user to freely remove a
mobile computer System from a docking Station and return
to the same State once connection is reestablished. In order
to provide for Such application integrity, the present inven
tion comprises a notification mechanism to indicate that the
docking Station is no longer connected to the computer
System. While disconnected from the docking Station, and
thus the network, the network maintains the client connec
tion as if the computer System is still connected to the
docking Station and the network.

The present invention also provides an environment that
allows management of all network related applications
(clients). The dynamic events associated with appearance
and disappearance of resources (e.g., network resources) are
monitored on behalf of the applications and the user is
presented with a choice of either closing the networked
application or disabling it (when resources are no longer
available) until the reconnect is achieved.

FIG. 1A illustrates a flow chart of the present invention.
Referring to FIG. 1A, the process of the present invention
begins by disconnecting the personal computer from the
network, or other resource (processing block 101). In
response to the computer System being disconnected from
the network, an event (e.g., an interrupt) is generated
(processing block 102). That is, an event is generated when
a resource is no longer available. Next, an intelligent Server
(e.g., L VxD) notifies an application manager that manages

15

25

35

40

45

50

55

60

65

4
applications using the network of the presence of the inter
rupt (processing block 103). The application manager pro
vides an interface to the user (processing block 104). This
interface indicates to the user of any network Services which
might have been opened when the disconnect occurred. The
interface allows the user to indicate to the computer System
what should be done with the application and those
resources. For instance, if a file on the network was being
accessed, the interface may ask the user whether the file
should be closed. In response, the user makes a desired
Selection or performs the desired task to respond to the
prompt (processing block 105). In one embodiment, the
application manager removes the application (that no longer
has access to its resources) from use, while allowing use of
the other applications being run on the computer System.

FIG. 1B illustrates a block diagram overview of the
interaction of the present invention. Referring to FIG. 1B, an
operating system 708 is shown in communication with
network infrastructure 709. Various applications such as
applications 701-704 run in the computer system. Process
ing logic in the computer System runs acceSS monitor
Software that resides below applications 701-704 to track
what resources are being used by each application. Such
resources may include, for example, disk accesses,
messaging, and printer resources. In conjunction with oper
ating system 708, applications 701-704 gains access to
network infrastructure 709. The processing logic of the
computer System runs application interrogation Software
705 that operates as a detection module to detect when
resources are and are not presently available to applications
701-704 (in response to connect/disconnect events 710).
Similarly, application “hide and reveal” software 706
executing in the computer System hides an application's
instance (e.g., availability/accessability) when disconnected
if that application uses network resources that are no longer
available. The execution of application “hide and reveal”
Software 706 reveals an applications instance (e.g.,
availability/accessibility) when those resources are once
again available.

Note that the software referred to in the present invention
controls the operation of hardware in the computer System
and may be implemented in various programming lan
guages. Also the Software may be implemented, in full or in
part, as firmware.
The Windows Environment
The Microsoft(R) Windows operating environment pro

vides a graphical user interface (GUI) which makes Win
dows application programs easier to use. MicroSoft(R) Win
dows environment runs Windows applications located in the
extended area of memory above the 1 megabyte boundary
using the protected mode of a processor, Such as an Intel
Architecture Microprocessor, manufactured by Intel Corpo
ration of Santa Clara, Calif., the corporate assignee of the
present invention.
The Microsoft(R) Windows 3.1 system can operate in one

of two modes: "standard” mode and "enhanced” mode. The
Standard mode exists So that personal computers equipped
with older 80286 processors can use the Windows environ
ment. The enhanced mode of Microsoft(R) Windows is used
when Microsoft(R) Windows is run on a computer system
which uses an 80386 microprocessor or more recently
available microprocessors such as, for instance, the i486 TM
processor.
The enhanced mode of Microsoft(R) Windows operates in

the protected mode of the Intel Architecture Microproces
sors (e.g., i386"M processor, i486TM processor, etc.). In this
manner, the enhanced mode of Microsoft(R) Windows takes

5,925,117
S

advantage of features in the Intel Architecture Microproces
Sors to offer virtual memory and multitasking operation. The
processor hardware Supports execution of Several Windows
applications in protected mode.
The enhanced mode of Microsoft(R) Windows supports

DOS applications using “DOS virtual machines.” In a DOS
Virtual Machine, the Intel Architecture Microprocessor
operates in Virtual 8086 mode and uses the virtual memory
feature to provide DOS, device drivers, and Terminate and
Stay Resident (TSR) programs originally loaded into the
computer to a DOS virtual machine in extended memory.
Windows uses the virtual memory system to make the
application area and the DOS, device drivers, and TSR
programs appear to be a single contiguous block of real
mode memory. When the microprocessor is operating in
Virtual 8086 mode within the address area of DOS virtual
machine, the Virtual 8086 mode microprocessor is unaware
of any memory outside of the DOS virtual machine.

FIG. 8 provides a conceptual diagram of the Windows
system in enhanced mode. Referring to FIG. 8, the computer
system hardware is represented as a label. The Ring 0 level
with the Kernel and virtual device drivers (VxDs) is also
shown, along with the system virtual machine (VM) and the
various DOS virtual machines (VMs). Windows creates
DOS virtual machines by mapping DOS, device drivers, and
TSR programs in the system VM into the DOS VMs.
Therefore, all the virtual machines share a region of memory
called the shared real mode memory.
The Virtual device drivers (VxDs) at ring 0 are a special

feature of Microsoft(R) Windows enhanced mode. A virtual
device driver is actually a routine which manages a System
resource Such that more than one application can use the
System resource at a time. Virtual device drivers therefore
Support Windows ability to act as a multitasking operating
system. The virtual device drivers, including the VxD of the
present invention, have access to a wide range of kernel
Services, including those for hardware management,
memory management, task Scheduling, and communicating
with other virtual devices.
As illustrated in FIG. 8, all the Windows applications run

within the System virtual machine which operates in pro
tected mode. The Windows Dynamic Link Libraries (DLLs)
which support Windows applications also run within the
System virtual machine.

Each DOS application in FIG. 8 runs within its own DOS
virtual machine. Since the DOS virtual machines usually
operate in the Virtual 8086 mode of the microprocessor, the
DOS applications generally only address the 1 Megabyte of
memory in the DOS virtual machine.
The Notification Mechanism of the Present Invention

FIG. 2 illustrates the notification mechanism of the
present invention. Referring to FIG. 2, one embodiment of
the notification mechanism of the present invention includes
a docking station 201 with a network interface card (NIC) in
the hardware environment coupled to provide a dock/undock
event 220 to an event coordinator 202. Dock/Undock event
220 indicates whether the computer system has become
docked to docking station 201 or whether the computer
System has become undocked from docking Station 201.

In the present invention, event coordinator 202 is in the
network environment in DOS along with the protocol stack
204 and network driver 203. Event coordinator 202, protocol
stack 204 and network driver 203 operate together to pro
vide an interface between the computer System (e.g., the
processing logic of the computer System) and the network
(not shown). Different networks for use with the present
invention may include, but are not limited to, Novell,

15

25

35

40

45

50

55

60

65

6
Banyan, etc. In one embodiment, protocol Stack 204 may
refer to IPX/ODI, NDIS or TCP/IP, which are well-known in
the art. In one embodiment, event coordinator 202 comprises
an interrupt handler (e.g., IRQ handler). Event coordinator
202 may Support other events along with dock/undock event
220 and, in Such a case, may act as a central event dispatcher
Sending events to multiple virtual device drivers.

After Sensing dock/undock event 220, event coordinator
202 notifies a notification virtual device driver (VxD) 205
operating in the Windows environment under the control of
the Windows operating system 206. VxD 205 determines the
type of event that occurred, i.e. whether the event is a dock
or undock event.

After determining that the event comprises a dock or
undock event, VxD 205 communicates the dock/undock
Status to the network application manager 207. Application
manager 207 is aware of the applications that are currently
running and polls applications, Such as applications
208-210, to determine which applications are using the
network resource (e.g., which applications are using the
network).

In response to an undocked Status indication from VxD
205, application manager 207 maintains the integrity of any
of applications 208-210 that are running and using the
network resource. That is, the present invention allows the
user to continue using the computer System even though it
is no longer connected to the network. In one embodiment,
application manager 207 provides a dialog box to the user
prompting the user that an application that is using a
resource (e.g., file) on the network. Application manager 207
may question the user as to whether the user desires the file
to be closed. If the user's response is affirmative, application
manager 207 indicates to the user that the computer System
must be redocked to docking station 201. Once redocked,
the application manager 207 closes the file.

In one embodiment, application manager 207 may make
the application inaccessible. That is, application manager
207 may prevent the user from accessing the application
until the computer System has been coupled to docking
Station 201 again.

During the period of time in which the computer System
is undocked from docking Station 201, the network main
tains the connection. When the user redocks, the computer
System returns to the State it was in prior to being undocked.
Thus, if the user desired to close a file that was left open
when the computer System became undocked from docking
Station 201, the file is automatically closed by application
manager 207 when the computer System is redocked, even
though the computer System was undocked for a period of
time.
The dock/undocked event may be Sensed in multiple

ways. In one embodiment, at least one of the pins (e.g., 2 or
more) is shorter than the rest of the pins of the connector that
electrically couples the computer System and docking Station
201. When undocking the computer system from docking
Station 201, any Shorter pins become disconnected before
the remainder of the pins. Once these Shorter pins become
disconnected, yet prior to the other pins being disconnected,
the computer System generates an interrupt (e.g., undock/
dock event) to event coordinator 202. This interrupt is then
trapped and broadcast throughout the computer System.
The Event Coordinator
The present invention provides an event coordinator 202

which senses the dock/undock event. Event coordinator 202
operates Similarly to an event generator when the computer
System is disconnected or connected. In one embodiment,
the interface of docking station 201 is a standard bus

5,925,117
7

interface (e.g., ISA, PCI) with an interrupt line, e.g. IRQ,
indicating the Status of the docking Station. Whenever dock
ing Station 201 communicates with the computer System, the
interrupt line (e.g., IRQ) is toggled. When the interrupt line
is toggled, an interrupt routine (ISR) corresponding to the
interrupt line detects the presence or absence of docking
station 201. The information obtained when performing the
detection is passed onto VxD 205 under Windows operating
system 206. If need be, then VxD 205 could as well directly
monitor of the dock Status. 20 Note that apart from passing
the information to VxD 205, network driver 203 may also
utilize the information to Save State information of one or
more applications (e.g., clients) when an undocked message
is received.

FIGS. 3A and 3B illustrate one embodiment of the pro
cessing of the event coordinator of the present invention.
Specifically, FIG. 3A depicts the initialization process of the
event coordinator, while FIG. 3B depicts the interrupt pro
cessing of the event coordinator of the present invention.

Referring to FIG. 3A, during boot-up of the computer
System, event coordinator 202 undergoes initialization by
first identifying the interrupt line (e.g., IRQ) for the event
notification (processing block 301). Event coordinator 202
determines which IRQ is assigned to docking station 201 in
order for docking Station 201 to communicate and Send
messages to the computer System. In one embodiment, the
interrupt line assigned to docking Station 201 is fixed, while
in an alternative embodiment, the System Basic Input Output
Structure (BIOS) may have to identify the interrupt to event
coordinator 202.

After identifying the interrupt assigned to docking Station
201, event coordinator 202 installs an interrupt handler for
handling the interrupt (processing block 302).

Referring to FIG. 3B, after an interrupt from docking
station 201 has occurred, event coordinator 202 begins
processing the interrupt by invoking the handler (processing
block 310). Once the handler is invoked, event coordinator
202 identifies the event type as being a dock or undock event
(processing block 311). In one embodiment, event handler
202 determines the type of interrupt by reading one or more
register bit locations or flags Set when the interrupt occurs.

After determining that the interrupt is a dock/undock
event, event coordinator 202 determines whether the com
puter System is operating in Windows enhanced mode
(processing block 312). In one embodiment, event coordi
nator 202 checks for the presence of Windows enhanced
mode by using a standard multiplex interrupt (e.g., int 2F)
call. The return value from this interrupt call indicates the
status of Windows currently active in the system. If the
computer System is not operating in Windows enhanced
mode, event coordinator 202 does not respond to the occur
rence of the dock/undock event and returns to a State in
which its waiting for events to occur (processing block 313).

If event coordinator 202 determines that the computer
System is operating in Windows enhanced mode, processing
continues at processing block 314 where event coordinator
202 determines if VxD 205 of the present invention is
present. In one embodiment, event coordinator 205 deter
mines whether VxD 205 is present by testing whether the
entry point of VxD 205 is equal to null. If the entry point of
VxD 205 is null, then VxD 205 is not present and processing
returns event coordinator 202 to the state in which event
coordinator 202 waits for events to occur (processing block
313). However, if the entry point of VxD 205 is not null,
then event coordinator 205 calls a VxD Application Pro
gramming Interface (API) function and sends VxD 205 the
event that occurred (processing block 315). This specific

15

25

35

40

45

50

55

60

65

8
function called by event coordinator 205 is a function
recognized by VxD 205. After calling the VxD API function
with the event, processing returns to the State in which event
coordinator 202 waits for events to occur (processing block
313).
The Notification VxD of the Present Invention
The notification VxD 205 of the present invention acts as

an interface between DOS and Windows operating system
206. Under the Windows 3.1 architecture, a message cannot
be posted directly to an applications queue by a VxD.
Whenever notification is received by the VxD, it makes Sure
that the System VM is running by calling an associate DLL,
which would then post the appropriate message to applica
tion manager 207.

FIGS. 4A and 4B illustrate the processing logic of one
embodiment of the notification VxD 205. FIG. 4A depicts
two Separate functions that are called during the initializa
tion of VxD 205, while FIG. 4B depicts the processing logic
of the function that is called by event coordinator 202 during
interrupt processing (FIG. 3B).

Referring to FIG. 4A, during initialization of the notifi
cation VxD window, the processing logic of the present
invention performs a return version function. In one
embodiment, the return version function (processing block
401) returns the version number of VxD 205, as opposed to
that of Windows. This is one of the interface functions
available to allow an application that communicates to VxD
205 to first obtain its version number and decide on what
calls VxD 205 Supports. It also helps in maintenance of
future releases of a VxD.

Also during initialization, the DLL in application manager
207 calls API function 1. In response to the DLL call, VxD
205 Stores the DLL callback address using the processing
logic of the present invention (processing block 402). By
storing the call back address, VxD 205 knows of the
existence of the DLL and is able to Send messages to
application manager 207, via the DLL, when notified of
dock/undock events from event coordinator 202. After stor
ing the DLL callback address, VxD 205 stores the window
handle (processing block 403). VxD 205 cannot call the
application manager 207 directly with the window handle.
The reason for passing the window handle to VxD 205 (via
DLL) is to ensure that the application that loaded the DLL
passed a valid handle to the DLL VxD 205 internally will
check for a non-Zero windows handle before passing on the
type of event received from event coordinator 202.

Referring to FIG. 4B, when event coordinator 202 calls
VxD API Function 2 with the dock/undock event, the
processing logic of VxD 205 initially stores the incoming
dock/flag State passed from event coordinator 202 during
interrupt processing (processing block 410). Then VxD 205
determines whether messages may be Sent to the DLL and
application manager 207 (processing block 411). In one
embodiment, VxD 205 determines whether messages may
be sent to the DLL and application manager 207 by checking
whether the callback address is null. If the callback address
equals null, Such that no DLL callback address is present, the
processing logic of VxD 205 returns (processing block 412).
If the callback address is not null, processing continues at
processing block 413 where a test determines whether the
computer System is in System VM. If the computer System
is in system (SYS) VM, then a call is made to the DLL with
the dock/undock flag (processing block 414). On the other
hand, if the computer system is not in SYS VM, then the
processing logic of VxD 205 schedules a SYS VM call to
transition the system into SYS VM (processing block 415)
and then processing continues at processing block 414

5,925,117
9

where the call using the callback address is made to the DLL
with the dock/undock flag. In other words, once the System
is in SYS VM, then VxD 205 posts a message to the DLL
with the dock/undock flag.
Notification DLL of the Present Invention

In one embodiment, the DLL is separate Software
executed in the computer System (e.g., by the processor)
apart from application manager 207. This DLL is automati
cally loaded whenever application manager 207 is initial
ized. In other words, initially there is a check to determine
if the enhanced mode of Windows is active.

The networked application manager 207 examines all of
the tasks currently active and determines which of them
have any relation to the network Services. Upon receiving an
undock notification, application manager 207 may inactivate
all Such applications. By inactivating all Such applications,
WindowS messages will not be sent to that application until
a dock notification reactivates all of them. At that time, the
user is free to use all of the application that are local to the
computer System.

FIGS. 5A, 5B and 5C illustrate the notification DLL
processing logic flow. Referring to FIG. 5A, the notification
DLL flow begins by calling the main library Subroutine
during initialization of Windows. This call represents an
entry point to the DLL that is well-known to those in the art.
The processing logic of the library call begins by performing
a check to determine whether the computer System is in
enhanced mode (processing block 501). In other words,
initially there is a check to determine whether Windows is
running. After determining that Windows is running, the
processing logic obtains the entry point of VxD 205
(processing block 502). Based on the entry point that is
obtained, the processing logic updates an error code
(processing block 503). If the entry point of VxD 205 is not
null, then the error code indicates that VxD 205 exists. On
the other hand, if the entry point of VxD 205 is null, the error
code is updated to indicate that VxD 205 does not exist.

FIG. 5B illustrates the interface functions performed by
the notification DLL processing logic. The DLL exports four
interface functions that application manager 207 or the DLL
loader will call. “LibMain” and “WEP” are used by Win
dows while loading/unloading the DLL from memory.
Application manager 207 uses the Register Handle function
to register its window handle with the DLL. When this API
is called, internally the DLL will attempt to register a
callback function and the passed-in handle with the VxD.
Also, application manager 207 uses the “Get DLL error
code” function to obtain the status of the DLL (processing
block 512). If this function call returns a valid error code,
then application manager 207 will not get loaded. The DLL
will also be automatically unloaded. Finally, the processing
logic executes the Windows Exit Procedure (WEP) of Win
dows 3.1, which is well-known to those skilled in the art
(processing block 513).

FIG. 5C illustrates the callback function of the notifica
tion DLL processing logic. When performing the callback
function, the processing logic tests whether the flag received
from VxD 205 is a dock or undock event (processing block
521). If the dock event does exist, a dock message is posted
to the handle (processing block 522). On the other hand, if
the dock event does not exist, then an undocked message is
posted to the handle (processing block 523). The DLL posts
the messages using the handle registered with the DLL
during initialization. Note that if the virtual device driver is
capable of Sending messages directly to an application, then
a DLL is not required.

15

25

35

40

45

50

55

60

65

10
Networked Applications Manager Processing Logic

FIGS. 6A and 6B illustrate the processing logic for
networked application manager 207. FIG. 6A illustrates the
processing logic during initialization, while FIG. 6B depicts
the message processing.

Referring to FIG. 6A, during initialization, the networked
application manager initially checks to determine whether
there is a unique instance of Windows running (processing
block 601). Then, the processing logic obtains the DLL and
VxD presence status (processing block 602). The status of
the DLL and VxD 205 are obtained when the DLL gets
loaded and application manager 207 obtains the error code
for VxD 205 (that was obtained during processing block
512). Thus, by communicating with the DLL, the networked
application manager 207 obtains both the DLL and VxD
Status.

After obtaining the DLL and VxD status, the Window
handle is registered with VxD 205 through the DLL
(processing block 603). In one embodiment, the Window
handle is registered using the callback address. Note that this
registration corresponds to the callback and handle being
registered with VxD 205 in the DLL flow at processing
block 511.
The application manager 207 then evaluates the network

drives to obtain a list of drive that are currently available
(processing block 604). The drives are available after
completion of the log-on Sequence. In one embodiment, the
network drives may be identified as those drives that are not
fixed. Using a call to the BIOS and load layers, all of the
drives that belong to the network may be obtained.
Thereafter, application manager 207 processes messages
that are associated with Windows (processing block 605),
including the dock/undock messages.

Referring to FIG. 6B, the message processing of appli
cation manager 207 for an undocked event begins by receiv
ing the notification of the undock from the DLL (processing
block 611). Upon receiving the undock notification, appli
cation manager 207 disables the network related applica
tions (processing block 612) and/or informs the user about
the disconnect (processing block 613).

In one embodiment, the present invention only disables
the network related applications or informs the user about
the disconnect. The notification may be in the form of a
dialog box, or window, that appears on the display Screen
notifying the user that there has been a disconnect from
docking station 201. The dialog box may list network
resources that are still in use or Still required by currently
running applications.
When disabling the applications, application manager 207

may hide the application or represent the application on the
desktop as an icon while disabling the application to prevent
access. In another embodiment, application manager 207
creates an icon which is non-responsive to user input, Such
that the application cannot be accessed until the user redocks
or reboots the computer System. Creation of an icon on a
computer display is well-known to those skilled in the art.

Note that Solely hiding the application from the user may
cause concern to the user because the user may not be
knowledgeable regarding the computer System.

After processing the message, application manager 207
destroys the message received (processing block 621), reg
isters a null handle with VxD 205 to eliminate VXD 205 for
the next event (processing block 622). Because VxD 205 is
registered with a null handle, application manager 207 will
not send messages to it, effectively disabling an application.
That is, messages will not be posted to VxD 205 because
event coordinator 202 cannot locate VxD 205. This prevents

5,925,117
11

the application from crashing. Thereafter, application man
ager 207 posts a quit message (processing block 623).
The message processing for a dock notification begins

with receipt of a dock notification from the DLL (processing
block 631). In response to the dock notification, the pro
cessing logic of application manager 207 evaluates the
network drives to reestablish those drives (processing block
632), such that the network drives may be identified once
again. This allows files on the network to be opened. Next,
disabled network applications are reactivated (processing
block 633). Note that at this time, the virtual connection to
the network remains alive during the disconnect period, Such
that connection of docking Station 201 to the computer
System reestablishes the communication channel between
the network and the computer System as if the computer
System was never undocked.

Note that the network is responsible for maintaining the
(virtual) connection. AS far as the network is concerned, the
connection Still exists. Therefore, when the user redocks the
computer System to the docking Station, a log-on Sequence
is not required to obtain access to the network resources. The
network Server is responsible for maintaining the Virtual
connection. Such a network server is provided by Novell
Inc. of Provo, Utah. Thus, the present invention uses the
Virtual connection maintained by the network Server to
maintain application integrity in a hot networking environ
ment.

In Summary, the present invention provides an architec
ture that maintains the integrity of a networked application
after a network has been disconnected (hot) from a computer
System. The present invention may disable an application
when the network disconnect occurs. The disabled applica
tion is restored back to its original active State as Soon as the
network connection has been re-established. In this manner,
the present invention prevents a network application from
crashing the System when a network resource has been
removed.

Also the System may continue to be used without reboo
ting even though applications might be loaded and running
on the computer System which require access to no longer
available resources. In other words, the present invention
avoids having to manually close all applications and logout
from the network before undocking. On a reconnect, the
present invention allows the user to avoid having log-on and
reopen the applications.

Note that the present invention is applicable to monitoring
the presence/absence of resources Such as file Systems,
docking, peripheral devices, etc.
Exemplary Computer System of the Present Invention

FIG. 7 is a block diagram of one embodiment of the
computer System that may incorporate the teachings of the
present invention. Referring to FIG.7, computer system 700
comprises a bus or other communication means 701 for
communicating information, and a processor 702 coupled
with bus 701 for processing information. Processor 702 may
comprise, but is not limited to microprocessorS Such as the
IntelTM Architecture Microprocessor, such as manufactured
by Intel Corporation of Santa Clara, Calif., the corporate
assignee of the present invention, PowerPCTM, Alpha TM, etc.

System 700 further comprises a random access memory
(RAM) or other dynamic storage device 704 (referred to as
main memory), coupled to bus 701 for storing information
and instructions to be executed by processor 702. Main
memory 704 also may be used for storing temporary vari
ables or other intermediate information during execution of
instructions by processor 702. Computer system 700 also
comprises a read only memory (ROM) and/or other static

15

25

35

40

45

50

55

60

65

12
storage device 706 coupled to bus 701 for storing static
information and instructions for processor 702, and a data
Storage device 707 Such as a magnetic disk or optical disk
and its corresponding disk drive. Data storage device 707 is
coupled to bus 701 for storing information and instructions.

Computer system 700 may further be coupled to a display
device 721, such as a cathode ray tube (CRT) or liquid
crystal display (LCD) coupled to bus 701 for displaying
information to a computer user. An alphanumeric input
device 722, including alphanumeric and other keys, may
also be coupled to bus 701 for communicating information
and command Selections to processor 702. An additional
user input device is cursor control 723, Such as a mouse, a
trackball, stylus, or cursor direction keys, coupled to bus 701
for communicating direction information and command
Selections to processor 702, and for controlling cursor move
ment on display 721. Another device which may be coupled
to bus 701 is hard copy device 724 which may be used for
printing instructions, data, or other information on a medium
Such as paper, film, or Similar types of media. Furthermore,
a Sound recording and playback device, Such as a speaker
and microphone may optionally be coupled to bus 701 for
interfacing with computer system 700.
As described above and shown in FIG. 2, the computer

System of the present invention may comprise a docking
Station capable of receiving various cards, Such as a network
interface card (NIC), that allow the computer System access
to resources, Such as a network (in case of an NIC).

In functional terms, processor 702 is the central process
ing unit for computer system 700. RAM 704 and ROM 706
are used to Store the operating System of computer System
700 as well as other programs, such as file directory routines
and application programs, and I/O data. In one embodiment,
ROM 706 is used to store the operating system of computer
system 700, while RAM 704 is utilized as the internal
memory of computer system 700 for accessing data and
application programs.

Note that any or all of the components of system 700 and
asSociated hardware may be used, however, it can be appre
ciated that any type of configuration of the System may be
used for various purposes as the user requires.

Whereas, many alterations and modifications of the
present invention will no doubt become apparent to a perSon
of ordinary skill in the art after having read the foregoing
description, it is to be understood that the particular embodi
ment shown and described by way of illustration is in no
way intended to be considered limiting. Therefore, refer
ences to details of various embodiment are not intended to
limit the Scope of the claims which in themselves recite only
those features regarded as essential to the invention.

Thus, a method and apparatus for maintaining application
integrity has been described.
We claim:
1. A System comprising:
a bus,
at least one memory coupled to the bus,
a processor coupled to the bus to execute instructions and

run an operating System and at least one application;
the bus, Said at least one memory and the processor

forming a computer Subsystem;
a network;
a network connection coupled to the computer Subsystem

and the network to interface the computer Subsystem to
the network;

a notification mechanism to dynamically detect when the
computer Subsystem is undocked from the network and

5,925,117
13

allow continued use of the computer Subsystem without
rebooting after undocking.

2. The system defined in claim 1 wherein the network
connection comprises a docking Station.

3. The System defined in claim 1 further comprising an
application manager, and wherein the notification mecha
nism comprises an event coordinator to detect an event
indicative of the dock/undock state of the network and to
post the event and a virtual device driver (VxD) coupled to
the event coordinator to provide a notification of the event
to the application manager, which prompts the user with the
state of the network.

4. The system defined in claim 3 wherein the application
manager comprises a dynamic load library (DLL) to trans
late messages from the VxD to Said at least one application.

5. The system defined in claim 1 wherein the notification
mechanism detects when the network is redocked to the
network connection and allows the computer System to use
network resources without logging-in.

6. A System comprising:
a bus,
at least one memory coupled to the bus, wherein Said at

least one memory Stores an operating System, an appli
cation program, an application manager, and a notifi
cation mechanism;

a processor coupled to the bus to run the operating System,
the application program, the application manager, and
a virtual device driver, wherein the bus, Said at least one
memory and the processor form a computer Subsystem;

a network connection interfacing the computer Subsystem
to the network;

wherein the virtual device driver is responsive to an event
from an event coordinator that dynamically indicates
when the computer Subsystem is undocked, therein
causing the virtual device driver to provide a notifica
tion of the event to the application manager, which
allows continued use of the computer Subsystem with
out rebooting after undocking.

7. The system defined in claim 6 wherein the application
manager prompts the user regarding the State of the network.

8. The system defined in claim 6 wherein the application
manager comprises a dynamic load library (DLL) to trans
late messages from the VxD.

9. The system defined in claim 6 wherein the virtual
device driver receives an indication from the event coordi
nator when the network is redocked to the network connec
tion to allow the computer Subsystem to use network
resources without logging-in.

10. The system defined in claim 1 further comprising an
application manager to determine whether the application
uses a network resource provided by the network.

15

25

35

40

45

50

14
11. The system defined in claim 10, wherein the applica

tion manager further notifies a user that the application is not
available when the computer Subsystem is undocked from
the network and the application uses the network resource.

12. The System defined in claim 11, further comprising a
user interface to notify the user that the application is not
available.

13. The system defined in claim 11, wherein the applica
tion is grayed out when the application is not available.

14. The system defined in claim 1, wherein the notifica
tion mechanism further dynamically detects when the com
puter Subsystem is redocked to the network.

15. The system defined in claim 14, wherein the notifi
cation mechanism further determines whether there are any
applications that use a network resource provided by the
network.

16. The system defined in claim 15, wherein the notifi
cation mechanism makes the application available again, if
the application uses the network resource, and was not
available when the computer Subsystem was undocked from
the network.

17. A computer System comprising:
a bus,
a processor coupled to the bus to execute instructions and

run an operating System and at least one application;
a network connection coupled to the computer System to

interface the computer System to a network;
a notification mechanism to dynamically detect when the

computer System is undocked from the network and
allow continued use of the computer Subsystem without
rebooting after undocking, and

an application manager to determine whether the at least
one application uses network resources provided by the
network and to disable those applications that use the
network resources, when the computer System is
undocked from the network.

18. The computer system defined in claim 17, further
comprising a user interface to notify the user that the
application is not available if the application uses the
network resources and the computer System is undocked
from the network.

19. The computer system defined in claim 17, wherein the
notification mechanism further dynamically detects when
the computer Subsystem is redocked to the network.

20. The computer system defined in claim 17, wherein the
notification mechanism makes the application available
again, if the application uses the network resource, and was
not available when the computer Subsystem was undocked
from the network.

