(12) PATENT (11) Application No. AU 199671889 B2
(19) AUSTRALIAN PATENT OFFICE (10) Patent No. 712005

(54)

Title

System and method for runtime optimization of private variable function calls in a secure

interpreter

International Patent Classification(s)
GOBF o09/45

Application No: 199671889 (22) Application Date: 1996 .11 20

Pricrity Data

Number (32) Date (33) Country
08/569754 1995 12 08 s
Publication Date : 1997 06 .12

Publication Journal Date : 1997 06 12

Accepted Journal Date : 1999 10 28

Applicant(s)
Sun Microsystems, Inc.

Inventor(s)

Frank Yellin

Agent/Attorney
DAVIES COLLISON CAVE,1 Little Collins Street,MELBOURNE VIC 3000

nene
a2
.
P
s s
. .

.
eveven
. »

10

15

ABSTRACT OF THE DISCLOSURE .

A secure program interpreter performs a special check the first time it
executes a method call to determine if the sole purpose of the called method
is to access the value of private variable, modify the value of a private
variable, or return a constant value. When this is the case, the interpreter’s
internal representation of the method being executed is modified so as to
directly access the private variable of the called method, or to direclly access
the stored constant of the cafled method. The madified methed
representation uses special “privileged” load and store instructions, not
available in normal source code programs, that access private variables and
constants outside the method being executed without causing a security
violation to be flagged. When the modified portion of the method is executed,
the private variable or constant is accessed directly by the executed method
using a privileged load or sfore instruction, the use of which avoids the
flagging of a security violation by the program interprster. When execution of
the program is completed, the modified intemal representation of the method
is flushed, such that when the program is executed again said interpreter

generates a new working representation of the aforementioned method.

. s
-

. ee

.« =0

.,

.
tevens
- .

.
+ seen
.

[T
snse
tenn

LT

.
XYY
. .

ssse
- .
suse
L

.

AUSTRALIA
PATENTS ACT 1990
COMPLETE SPECIFICATION

NAME OF APPLICANT(S):

Sun Microsystems, Inc.

ADDRESS FOR SERVICE:

DAVIES COLLISON CAVE

Patent Attorneys
1 Little Collins Street, Melbourne, 3000.

INVENTION TITLE:

System and method for runtime optimization of private variable function calls in a
secure interpreter

The following statement is a full description of this invention, including the best method
of performing it known to me/us:-

10

15

20

SYSTEM AND METHOD FOR RUNTIME OPTIMIZATION OF
PRIVATE VARIABLE FUNCTION CALLS IN A SECURE INTERPRETER

The present invention relates generally to object oriented computer systems
in which an interpreter executes object methods in a secure manner, and

particularly to an improved interpreter for optimizing calls to methods whose
sole purpose is to access the value of private variable, modify the value of a

private variable, or return a constant value.

BACKGROUND OF THE INVENTION

In object-oriented programming languages, every object belongs to a specific
“class,” sometimes called an object class. The class of an object indicates
what variables the object has and what actions (“methods™ may be

petformed on an object.

Some variables (i.e., in objects) are marked “private.” This marking indicates
that the variable may only be accessed or modified by methods belongs to
the same class as the object. They may not be modified or accessed from
other classes. It is not uncommon for certain classes of objects to have
methods whose sole purpose is to access the value of a private variable,
modify the value of a private variable, or return a constant value. By creating
such methods, the implementor of the class is better able to hide the details
of the implementation of the class. It also gives the implementar greater
freedom to re-implement the class, without requiring all users of the class to

recompile their code.

10

15

20

25

30

-2-

However, method calis are often far more expensive (i.e., take much more
CPU time) than variable accesses. Similarly, method calls are more

expensive than accessing a constant value.

Some optimizing compilers will, when approptiate, automatically convert a
method call into a simple variable access or modification, sometimes called

“n-lining”. However, this scheme is unacceptable within a secure

environment for two reasons:

1) within the resulting optimized code, it will appear that the
optimized code Is directly using the private variable of an object
of another class, However, a secure runtime system will notice
this and flag a security violation. In particular, a secure runtime
system must not normally allow a method to access private
variables inside an object of another class; and

2) the author of the original class loses the ability to modify the
implementation if there is a possibility than anyone has
compiled optimized code against the “old” definition of the
object class (i.e., with old versions of the methods that access

private variables).

It is an object of the present invention to optimize the run time interpretation
of methods that call upon other methods whose sole purpose Is to access a
private variable or constant value, but without creating a permanently revised

program.

It is another object of the present invention is to a optimize & run time
interpreter for efficient execution of methods whose sole purpose is 10 access
a private variable or constant value in such a way that a security violation is

avoided, without disabling the interpreter’s normal security provisions for

20

25

PAOPERUKATATIS80-90 229 - 17/8/99

.

preventing a method of one class from accessing the private variables of an object of

another class.

SUMMARY OF THE INVENTION

In summary, the present invention is a secure program interpreter for interpreting
object oriented programs in a computer system having a memory that stores a plurality
of objects of multiple classes and a plurality of procedures. In a preferred
embodiment, a secure program interpreter performs a special check the first time it
executes a method call to determine if the sole purpose of the called method is to
access the value of private variable of an instance of the called method's class, modify
the value of a private variable of an instance of the called method's class, or return a
constant value. If this is the case, the interpreter's internal representation of the
method being executed is modified so as to directly access the private variable of an
instance of the called method's class, or to directly access the stored constant of the

called method.

The modified method representation, stored internally by the program interpreter, uses
special "privileged" load and store instructions, not available in normal source code
programs, that are allowed to access private variables in instances of objects of other
classes and constants outside the method being executed. When the modified portion
of the method is executed, the private variable or constant is accessed directly by the
executed method using a privileged load or store instructions, the use of which avoids

the flagging of a security violation by the program interpreter.

Furthermore, when execution of the entire program is completed, the modified internal
representation of the method is flushed. As a result, the modification of the executed
method is ephemeral. If any of the called methods are modified between uses of

programs that execute the calling

10

15

20

25

-4-

method, such as to revise the value assigned to a private variable or
constant, or to have the method no longer simple access a private variable
but instead to calculate a value, the revised version of the called methads will
be used during such subsequent executions, thereby preserving the author’s

ability to modify the associated object class.

BRIEF DESCRIPTION OF THE DRAWINGS

Additional objects and features of the invention will be more readily apparent
from the following detailed description and appended claims when taken in

conjunction with the drawings, in which:

Fig. 1 is a block diagram of a computer system incorperating a preferred

embodiment of the present invention.

Fig. 2 is a block diagram of the data structure for an object in a preferred

embodiment of the present invention,

Fig. 3 is a block diagram of the data structure for an object class having a

plurality of simple methods.

Fig. 4 is a conceptual representation of the methed loading and optimization

process of the present invention.

Fig. 5 is a flow chart of the program interpreter procedure used in a preferred

embodiment of the present invention.

10

15

20

25

30

-5-

DESCRIPTION OF THE PREFERRED EMBODIMENT

Referring to Fig. 1, there is shown a distributed computer system 100 having
multiple client computers 102 and multiple server computers 104, In the
preferred embodiment, each client computer 102 is connected to the servers
104 via the Internet 103, although other types of communication connections
could be used. While most client computers ars desktop computers, such as
Sun workstations, IBM compatible computers and Macintosh computers, '
virtually any type of computer can be a client computer. In the preferred
embodiment, each client computer includes a CPU 105, a communications
interface 106, a user interface 107, and memory 108, Memory 108 stores:

. an operating system 109,

L an Internet communications manager program 110,

. a bytecode program verifier 112 for verifying whether or not a specified
program satisfies certain predefined integrity criteria;

. a bytecode program interpreter 114 for executing application
programs;

. a class Joader 116, which loads object classes into a user’s address
space and utilizes the bytecode program verifier to verify the integrity
of the methods asscciated with each loaded object class;

° at least one class repository 120, for locally storing object classes 122
in use and/or available for use by user’s of the computer 102;

. at least one object repository 124 for storing objects 126, which are
instances of objects of the object classes stored in the object

repository 120.

In the preferred embodiment the operating system 109 is an object oriented
multitasking operating system that supports multiple threads of executicn
within each defined address space. Howevet, the present invention could be
used in other types of computer systems, including computer systems that do

not have an operating system.

10

15

20

25

30

-6-

The class loader 116 is typically invoked when a user first initiates execution
of a procedure that requires that an object of the appropriate object class be
generated. The class loader 116 loads in the appropriate object class and
calls the bytecode program verifier 112 to verify the integrity of all the
bytecode programs in the loaded object class. If all the methods are
successiully verified, an object instance of the object class is generated, and
the bytecode interpreter 114 is invoked to execute the user requested
procedure, which is typically called a method. If the procedure requested by
the user is not a bytecode program and if execution of the non-bytecode
program is allowed (which is outside the scope of the present document), the

program is executed by a compiled program executer (not shown),

The class loader is also invoked whenever an executing bytecode pregram
encounters a call to an object method for an cbject class that has not yet
been loaded into the user's address space. Once again the class loader 116
loads in the appropriate object class and calls the bytecode program verifier
112 to verify the integrity of all the bytecode programs in the loaded object
class. In many situations the object class will be loaded from a remotely
located computer, such as one of the servers 104 shown in Fig. 1. If all the
metheods in the loaded object class are successfully verified, an object
instance of the object class is generated, and the bytecode interpreter 114 is

invoked to execute the called object method.

As shown in Fig. 1, the bytecode program interpreter 114 includes a work
array 130 in which a working representation of all currently loaded methods
are temporarily stored. The working representation is stored internally to the
interpreter and may be dynamically modified to optimize execution speed, as
is disgussed in more detail below.

In the preferred embodiment, the byteccde program interpreter 114 also
includes security procedures 132 or instructions for preventing a number of

program practices that are contrary to secure program execution

10

15

20

25

30

-7-

requirements, including security instructions for preventing standard load and
store instructions in one method from directly accessing a private variable in
an object that is an instance of another class. When execution of any such
instruction is attempted by the program interpreter, it flags the instruction as a
security violation and aborts execution of the method that contains the
instruction. '

The bytecode program interpreter 114 furthermore includes a function call
replacement procedure 134 for replacing procedure calls to certain types of
simple methods with special instructions that directly access or madify
associated private variables or that directly load an associated constant

value.

Data Structures for Objects

Fig. 2 shows the data structure 200 for an abject in a preferred embodiment
of the present invention. An object of object class A has an abject handie 202
that includes a pointar 204 to the methods for the object and a pointer 206 to
a data array 208 for the object.

The pointer 204 to the object's methods is actually an indirect pointer to the
methods of the associated object class. More particularly, the method pointer
204 points to the Virtual Function Table (VFT) 210 for the object's object
class. Each object class has a VFT 210 that includes pointers 212 to each of
the methods 214 of the object class. The VFT 210 also includes a pointer
216 to a data structure called the class descriptor 218 for the object class.
The class descriptor 218 includes, in addition 1o items not relevant here, data
array offsets 220 for each of the variables used by the methods of the object
class (indicating where in the data array 208 the variable’s value is stored).
Furthermore, for each data offset item 220 the class descriptor includes an

identification of the variable (e.g., the variable’s name) plus an indicater of

10

15

20

25

30

-8-

the data type of the variable {e.g., integer) and an indicator as to whether or
not the variable is a private variable. In some embodiments the structure of
objects is more complex than shown in Fig. 2, but those additional structural

elements are not relevant to the discussion in this document.

Fig. 3 shows the data structure 122-A for storing the methods 230 of an
object class having several “simple methods”. For the purposes of this
document, the term “simple method” shall be defined to mean a method
whose sole function is {A) retuming a private variable's value, where the
private variable is private to the simple procedure, (B) storing a specified
valte into the private variable, or (C) returning a constant value.

The security procedures 132 of the bytecode program interpreter prevent any
method of one class from directly accessing the private variables of an object

of another class.

Referring to Fig. 4, the program code associated with a method in an object
class is initially copied into the work array of the interpreter to form a working
internal representation of the loaded method. That initial working
representation of the method may then be modified by the interpreter in
various ways to generate an optimized form of the working representation of
the method. In the case of the present invention, the working representation
of the method is modified so as to make procedure calls to simple methods

more computationally efficient.

The Optimized Method Interpretation Methodology

Table 1 contains a pseudocode representation of the portion of the program
interpreter procedure relevant to the present invention. The pseudocode
used in Table 1 is, essentially, a computer language using universal

computer language conventions. While the pseudocode employed here has

5
10

-
30

-g-
been invented solely for the purposes of this description, it is designed to be

easily understandable by any computer programmer skilled in the ant.

Referring to Fig. 5 and the pseudocede for the program interpreter procedure
shown in Table 1, when execution of a method is requested, a working copy
of the method is loaded into the interpreter’s work array (260). During
exacution of the method by the interpreter, the interpreter selects a next
instruction to execute (262). If the selected instruction is a method call that is
being executed for the first time (264-Y) and the called method is a simple
method whose sole function is (A) retuming a private variable’s value, where
the private variable is private to the simple procedure, (B) storing a specified
value into the private variable, or (C) returning a constant value (266-Y), then
the meathod call is replaced with a corresponding direct access instruction
(268).

In the preferred embodiment, a method call to a simple method whose sole
function is returning a private variable's value is replaced with a special
purpose load instruction that pushes onto the interpreter's operand stack the

value of the referenced private variable:
GetVarSPC PrivateVariable

where “GetVarSPC” is a special form of the Get Variable instruction that is
exempted from the normal security restrictions prohibiting one method from
directly accessing another method's private variables.

In the preferred embediment, a method call to a simple method whase sole
function is storing a specified value into a specified private variable is
replaced with a special purpose store instruction that stores a value from the

interpreter’s operand stack into the referenced private variable:

SetVarSPC PrivateVariable

10

15

20

25

30

-10-

where “SetVarSPC” is a special form of the stack-to-variable store instruction
that is exempted from the normal security restrictions prohibiting one method
from directly accessing the private variables of an object of another class.

In the preferred embodiment, a method call to a simple method whose sole
function is returning a constant value is replaced with an instruction that gets

the constant value:
Get ConstantValue

where “Get” is the instruction for pushing a specified value onto the

interpreter's operand stack.

After the working representation of the method being executed has been
updated, if at all, by steps 264, 266, 268, the security procedures of the
interpreter determine whether execution of the selected next instruction would
violate any security restrictions (270). 1f not, the selected instruction is
executed (272). If execution of the selected instruction would viclate any
security restrictions, such as the restriction on accessing private variables,
then a security violation is flagged and execution of the method is aborted
{274).

In summary, the present invention optimizes the execu'tion of certain types of
simple method calis by replacing those method calls with equivalent in-line
direct access instructions, but does so in such a way that the in-line
instructions are regenerated each time the calling method is reloaded for
execution, thereby ensuring that any revisions of the called simple methods
made by the owner or publisher of the programs are refiected in subsequent

executions of the calling method.

While the present invention has been described with reference to a few

specific embodiments, the description is illustrative of the invention and is not

-1 -
to be construed as limiting the invention. Various modifications may occur o
those skilled in the art without departing from the true spirit and scope of the

invention as defined by the appended claims.

10

15

20

25

30

35

12
TABLE 1
PSEUDOCODE REPRESENTATION OF PROGRAM INTERPRETER

Procedure: INTERPRET (Method)

{

Load Method into internal Work Array
Do Forever

{

Case (Next Program Statement to be Executed):
{
Case = Anything other than a GetVarSPC, SetvVarSPC or
Method Call

{

Standard handling, unrelated to present invention

}
Case = GetVarSPC or SetvarSPG

{

Execute load to stack or store from stack instruction while
suspending normal security prohibition against accessing
private variables in methods other than the method being
executed.

}
Case = Method Call

{

If this Is the first time the methed call is being executed since the
calling method was loaded

{

If the only function of the called method is to read a private
variable and it would not be a security violation for the
called method to read that private vatiable
{

Replace method call in internal representation of the
calling method with a special instruction that directly
accesses the private variable and loads its value

onto the operand stack:
GetVarSPG PrivateVariable

10

15

20

25

-13-

If the only function of the called method is to store a value
into a private variable and it would not be a security
violation for the called method to store a value into that
private variable

{

Replace method call in internal representation of the
calling method with a special instruction that directly
accesses the private variable and stores a value from
the operand stack into that private variable:
SetVarSPC PrivateVariable

}

If the only function of the called method is to retum a constant
value

{

Replace method call in internal representation of the calling
method with a special instruction that directly loads the
canstant value onto the operand stack:

Load ConstantValue

}

Execute resulting instruction, or unchanged instruction, as the
case may be, applying standard security restrictions.
} /* end of Case=Method Call section /*
}/* end of Case Statement */
} /* end of Do Forever loop */
/* Execution of Method has completed */
Flush working representation of Method from said interpreter
Return

}

PAOPERIKATIZI855-96.275 - 2A10/98

.14 -

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:-

1. A computer system, comprising:
memory for storing a plurality of objects and a plurality of procedures, each said
5 object comprising an instance of an associated object class and each said procedure belonging
to a respective object class, said plurality of procedures including simple procedures wherein
the entire function performed by each said simple procedure is selected from the group
consisting of: (A) returning a private variable's value, where said private variable is stored
in and ig private to an object of the object ¢lass to which said simple procedure belongs, (B)
10 storing a specified value into said private variable, and (C) reurning a constant value; and
a secure program interpreter for executing selected ones of said procedures, said

interpreter providing private variable security to restrict access to said private variable, said

interpreter including a load subprocedure for generating a working representation of a first

s one of said procedures io be executed, and an optimization subprocedure for optimizing

I5 execution of said simple procedures when called by other ones of said procedures, said

s optimization subprocedure determining, when said interpreter is processing a procedure call
::..' in said first procedure to a second one of said procedures, whether said second procedure 18
L one of said simple procedures, and if said determination is positive, replacing said procedure

call in said working representation of said first procedure with a direct access instruction that
el 20 does nat violate the private variable security provided by the secure program interpreter,
' wherein said direct access instruction is selected from the group consisting ef (A) a first
instruction that directly returns said private variable's value, (B) a second instruction that
directly stores a specified value into said private variable, and (C) a third instruction that
directly returns said constant value.
25

2. The computer system of claim 1, wherein
said interpreter includes security instructions for preventing standard instructions that
load a variable's value into an operand stack and that store a value on the operand stack into
a variable from accessing any private variable that is not stored in an object of the object class

for the procedure in which said standard instructions reside; and

PAOPERWKATI71889-96.275 - 2/10/58

-15-

said first and second instructions are special purpose instructions that access said
private variable without causing a security violation to be flagged by said security instructions

even if said first procedure and second procedure belong to difterent respective object classes.

5 3. The computer system of claim 2, wherein
said interpreter includes instructions for flushing said working representation of said
first procedure from said procedure interpreter when execution of said first procedure
terminates, such that when satd first procedure is executed again said interpreter generates a

new working representation of said first procedure.

4. A method of operating a computer system, comprising the steps of:

storing a plurality of objects and a plurality of procedures in a computer memory, each
. said object comprising an instance of an associated object class and each said procedure
belonging to a respective object class, said plurality of procedures including simple
15 procedures wherein the entire function performed by each said simple procedure is selecied

from the group consisting of: (A) refurning a private variable's value, where said private

variable is private to an object of the object class to which said simple procedure belongs, (B)

storing a specified value into said private variable, and (C) returning a constant value;
under the control of a secure program interpreter, said interpreter providing private
20 variable security to restrict access to said private variable, executing selected ones of said
procedures, including generating a working representation of a first one of said procedures
to be executed, and optimizing execution of any of said simple procedures when called by
said first procedure, said optimizing step including determining, when said interpreter is
processing a procedure call in said first procedure to a second one of said procedures, whether
25 said second procedure is one of said simple procedures, and if said determination is positive,
replacing said procedure call in said working representation of said first procedure with a
direct access instruction that does not violate the private variable security provided by the

secure program interpreter, wherein said direct access instruction is selected from the group

consisting of (A) a first instruction that directly returns said private variable's value, (B) a

10

15

20

25

30

PUOPERKATVT18B0.06.240 - 3048:0%

-16-
third instruction that directly returns said constant value.

5. The methaod of claim 4, wherein said first and second instructions are special
purpose instructions, said method including the steps of:

preventing standard instructions for loading a variable's value into an operand
stack and for storing a value on the operand stack into a variable from accessing any
private variable outside the procedure in which said standard instructions reside, and
flagging a security violation when execution of any standard instruction would require
accessing any private variable that is not stored in an cbject of the object class for the
procedure in which said standard instructions reside; and

enabling said first and second instructions to access said private variable
without causing a security viotation te be flagged even if said first procedure and
second procedure belong to different respective object classes.

6. The method of claim 5, including:

flushing said working representation of said first procedure from said interpreter
when execution of said first procedure terminates, such that when said first procedure
is executed again said interpreter generates a new working representation of said first

procedure.

7. A memory for storing data for access by programs being executed on a data
processing system, said memory comprising:

a plurality of objects and a plurality of procedures stored in said memory, each
said object comprising an instance of an associated object class and each said
procedure belonging to a respective object class, said plurality of procedures including
simple procedures wherein the entire function performed by each said simple
procedure is selected from the group consisting of. (A) returning a private variable's
value, where said private variable is stored in and is private to an object of the object
class to which said simple procedure belongs, (B) storing a specified value into said
private variable, and (C) returning a constant value; and

a secure program interpreter, stored in said memory, for executing selected
ones of said procedures, said interpreter providing private variable security to restrict

access fo said

15

20

PAOPERSKATYT (BRS-96,275 - 2110108

-17-

private variable, said interpreter including a load subprocedure for generating a working
representation of a first one of said procedures to be executed, and an optimization
subprocedure for optimizing execution of said simple procedures when called by other ones
of said procedures, said optimization subprocedure determining, when said interpreter is
processing a procedure call in said first procedure to a second one of said procedures, whether
said second procedure is one of said simple procedures, and if said determination is positive,
replacing said procedure call in said working representation of said first procedure with a
direct access instruction that does not violate the private variable security provided by the
secure program interpreter, wherein said direct access instruction is selected from the group
consisting of (A} a first instruction that directly returns said private variable’s value, {(B) a
second instruction that directly stores a specified value into said private variable, and (C) a

third instruction that directly returns said constant value.

8. The memory of claim 7, wherein

said interpreter includes security instructions for preventing standard instructions that
load a variable's value into an operand stack and that store a value on the operand stack into
a variable from accessing any private variable that is not stored in an object of the object class
for the procedure in which said standard instructions reside; and

said firet and second instructions are special purpose instructions that can access said

private variable without causing a security violation to be flagged by said security instructions

even if said first procedure and second procedure belong to different respective object classes.

P\OPER\KAT74889-96.275 - 2/10/98

Q. The memory of claim 8, wherein
said interpreter includes instructions for flushing said working representation of said

first procedure from said procedure interpreter when execution of said first procedure
terminates, such that when said first procedure is executed again said Interpreter generates a

5 new waorking representation of said first procedure.

DATED this 2nd day of October, 1998
SUN MICROSYSTEMS, INC.
By its Patent Attarneys

10 Davies Collison Cave

1/4

100 Operating System ™—109
] | cru 108~—_| Internet Access Proc. ~—110
105 Bytecode Pgm Verifier. ~_112
Bytecode Pgm Interpreter ~_114
4 107 Interpreter Work Array —~—_130
@[_(] Security Procedures ~_132
Function Call Replacer ~_134
0656668805 Class Loader ~—116
User Interface Class Repository ~—120
Client Object Class 1
f 106 4 0 0
Object Repository ™~—124
Communications OB
Interface ject 1 126
104
/_1 02 f1 03 £
. Network Interconnectivity Server
Client (Switches, efc)
/-1 04
Server
FIGURE 1

oooooo
.

2/4

200
\y‘
Object A-01 202
Object Handle

Pointer to Pointer to
Methods Data / ?06

1
204 /

Class Descriptor

Data
Count

208

One Copy for Object Class A

r21s:

Count Private Integer | Data Array Offset

1220
I

210 1 |Virtual Function Table
] (VFT)
216*—:-— Pointer to Class /
ipt
212 | Descriptor

~L_|Method A.1 |Painter 4
\L Method A2 |Pointer

Code for Method A1

Code for Method A.2

Method A.3 |Pointer 1~ Code for Method A.3

Method A.4 |Pointer

Code for Method A.4

FIGURE 2

3/4
129-A Object Class: Vector
S Method: Link _'/230-1
Return Count
Method: Reset (In) 230-2
e’
Count <-In
Return 030-3
Method: Const B
Return 231
FIGURE 3
Run Time Interpreter Data
R Object Class: A Structure, Initial Form
Method: A1
Instruction 1 Instruction 1
Instruction 2 Instruction 2
[X N oo ®
X1 <-Vector.Link mPp | GetVar Vector.Link
see Store X1
Return LR
Return
Method: A2)

{

Run Time Interpreter Data
Structure, QOptimized Form

Instruction 1
Instruction 2

GetVarSPC Vector.Count
Store X1

Return

FIGURE 4

.

7:997/%

4/4
114
AN Call for Execution of Method
l /260
Load working copy of method into interpreter
[262] «
Select next instruction to execute

264

Method call,
being executed for first
time?

266

Is called method
a simple method whose sole
function is (A) to return value of a private
variable, (B) to store a value in a private variable, or
(C) return a constant value?

f268

Replace method call instruction with a
corresponding direct access instruction.

b

L

Would
execution of selected instruction violate
security restrictions?

270

. r 274

Flag security violation.
Abort method execution. | | Execute selected instruction

272

FIGURE 5

	BIBLIOGRAPHY
	DESCRIPTION
	CLAIMS
	DRAWINGS

