LECKIE, Kyle [CA/CA]; 20 Betzner Avenue N., Kitchener, Ontario N2H 3B7 (CA). LEE, Andrew [CA/CA]; 4978 Yonge Street, Suite 2706, Toronto, Ontario M2N 7G8 (CA). NIGAM, Samir [US/US]; 8438e North Lake Drive, Dublin, CA 94568 (US). SETTZ, Rudi [US/US]; 1411 Washington Street #5, Boston, MA 02118 (US).

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, Uganda, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),

[Continued on next page]

(51) International Patent Classification:
H04H 20/71 (2008.01)

(21) International Application Number:
PCT/US2008/008117

(22) International Filing Date: 30 June 2008 (30.06.2008)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
US 11/882,749 3 August 2007 (03.08.2007)

(72) Inventors; and

(54) Title: UNWIRED ENTERPRISE PLATFORM

(57) Abstract: Systems, methods and computer program products for inherently integrating mobility with an enterprise are described herein. Enterprise data is accessed from one or more data sources data sources, wherein such data sources may comprise structured and unstructured data sources. The data is transferred from the enterprise to a plurality of mobile devices over a plurality of diverse networks. In an embodiment, such transfer takes into consideration characteristics of the diverse networks. The enterprise receives data generated by mobile devices while performing enterprise-related operations at the wireless edge. The enterprise responds to environmental changes using the received data.

FIG. 1
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, NO, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published: — with international search report
UNWIRED ENTERPRISE PLATFORM

BACKGROUND OF THE INVENTION

Field of the Invention

[0001] The present invention is generally related to mobility, and more particularly related to incorporating mobility as an intrinsic component of an enterprise.

Background Art

[0002] In the way that mobile devices have changed consumer lifestyle, mobility is also transforming the enterprise. This space lies at the intersection of enterprise software, networks, and mobile devices. Although relatively new, this space is a rapidly growing business segment.

[0003] Not only is mobility becoming increasingly important to the enterprise, it represents a huge opportunity as enterprises unwire. The total worldwide opportunity for mobility - taking into account the services, the infrastructure, the handsets and the glue that holds it together - is potentially $340 billion by 2008.

[0004] The various sub-segments of this market are growing at a compound annual growth rate ranging from 8 to 60 percent. The Gartner Group, a leading information technology research and advisory company, has said: "Mobile and wireless technologies will proliferate and mature in the next few years, bringing the Internet and new consumer and business applications to ever more places and devices. These technologies must be at the strategic heart of every organization's IT plans."

[0005] To date, mobility implementations have started at the edge, with mobile devices, and have attempted to work back into the core of the enterprise architecture.

[0006] There are many flaws with this approach. For example, using this approach, it is difficult, if not impossible, to ensure consistency of the total information technology architecture. As a result, it is difficult to ensure the integrity of the data delivered to the point of action.

[0007] This approach also does not afford a global view of the enterprise, or incorporate mobility as an intrinsic extension of the enterprise infrastructure. As a result, mobile
interactions for the enterprise tend to be siloed and disjointed from the enterprise's information network.

[0008] Accordingly, what is needed is an improved approach for integrating mobility with the enterprise.
BRIEF SUMMARY OF THE INVENTION

[0009] The present invention is directed to systems, methods and computer program products for inherently integrating mobility with an enterprise. Briefly stated, according to an embodiment, enterprise data from, for example, business processes and applications is accessed from one or more data sources data sources, wherein such data sources may comprise structured and unstructured data sources. The data is transferred from the enterprise to a plurality of mobile devices over a plurality of diverse networks. In an embodiment, such transfer takes into consideration characteristics of the diverse networks. The enterprise receives data generated by mobile devices while performing enterprise-related operations at the wireless edge. The enterprise responds to environmental changes using the received data. The mobile applications that are built using this data are provisioned on to the devices in a secure way across various devices.

[0010] Further features and advantages of the present invention, as well as the structure and operation of various embodiments thereof, are described in detail below with reference to the accompanying drawings. It is noted that the invention is not limited to the specific embodiments described herein. Such embodiments are presented herein for illustrative purposes only. Additional embodiments will be apparent to persons skilled in the relevant art(s) based on the teachings contained herein.

BRIEF DESCRIPTION OF THE DRAWINGS/FIGURES

[0011] The accompanying drawings, which are incorporated herein and form part of the specification, illustrate the present invention and, together with the description, further serve to explain the principles of the invention and to enable a person skilled in the relevant art(s) to make and use the invention.

[0012] FIG. 1 illustrates a view of an unwired enterprise platform (UEP), according to an embodiment of the invention.

[0013] FIG. 2 illustrates a conceptual view of the UEP, according to an embodiment of the invention.

[0014] FIG. 3 is a block diagram of the UEP, according to an embodiment of the invention.
FIG. 4 is a logic block diagram of the UEP, according to an embodiment of the invention.

FIG. 5 is a device services functional architecture diagram, according to an embodiment of the invention.

FIG. 6 is a mobile services functional architecture diagram, according to an embodiment of the invention.

FIG. 7 is a data services functional architecture diagram, according to an embodiment of the invention.

FIG. 8 is a development tool functional architecture diagram, according to an embodiment of the invention.

FIG. 9 is a flowchart illustrating an example operational embodiment of the UEP.

FIG. 10 is a flowchart illustrating a method for generating device applications for use with the UEP, according to an embodiment of the invention.

FIG. 11 is a data flow diagram used to illustrate the method of FIG. 10, according to an embodiment of the invention.

FIG. 12 is a data flow diagram illustrating a use case applicable to the UEP, according to an embodiment of the invention.

FIG. 13 illustrates an example computer useful for implementing components of the invention.

FIG. 14 illustrates the operation of context-based data pre-fetching and notification for mobile applications, in accordance with an embodiment of the present invention.

FIG. 15 illustrates a process for developing and provisioning applications to mobile devices, in accordance with an embodiment of the present invention.

The features and advantages of the present invention will become more apparent from the detailed description set forth below when taken in conjunction with the drawings. In the drawings, like reference numbers generally indicate identical, functionally similar, and/or structurally similar elements. Generally, the drawing in which an element first appears is indicated by the leftmost digit(s) in the corresponding reference number.
DETAILED DESCRIPTION OF THE INVENTION

1. Overview of the Invention

[0028] The present invention is directed to embodiments for an unwired enterprise. An unwired enterprise is an enterprise that includes mobility as an intrinsic feature. In this context, mobility refers to mobile devices, including those presently known and those developed in the future. Mobility also refers to mobile users, as well as the operations and processes of the enterprise that involve mobile devices and mobile users.

[0029] According to the invention, the unwired enterprise is built from the core of the enterprise outwards to the edge. The edge (also referred to as the wireless edge) refers to enterprise operations and processes performed by mobile users using untethered mobile devices, where such mobile devices are always or occasionally connected to the enterprise via a diverse plurality of wireless communication mediums. According to the invention, the unwired enterprise is built securely from the enterprise applications and business processes to the middleware to the wireless edge.

[0030] The invention enables an unwired enterprise through use of an unwired enterprise platform (UEP). FIG. 2 illustrates a conceptual view 202 of the UEP. The UEP includes a number of data sources 208, such as but not limited to computer applications 208A, server platforms 208B, and databases 208C. Data is provided from data sources 208 to mobile devices 212 operating on the edge via a link 210 (this is represented by the computing on the edge arrow 204). The UEP ensures that such data is integrated and extended to mobile devices 212 in a secure manner. Mobile devices 212 may be any existing or future mobile device, and may be operating from any location.

[0031] Mobile devices 212 perform enterprise-related operations, processes and/or tasks on the wireless edge. Information generated, collected or otherwise obtained by mobile devices 212 is sent back to the enterprise (represented by enterprise data 208) via the link 210. The enterprise uses this information to sense and respond to changes in its business environment (this is represented by the sense and respond arrow 206). Business environment refers to any environment, condition or community relevant to the enterprise, such as the enterprise's customers, competitors, market forces, inventory, etc.

[0032] FIG. 1 illustrates another view 102 of the UEP. In an embodiment, the UEP constitutes a multichannel access gateway (MAG) 114. The UEP facilitates connectivity
to multiple diverse and disparate wired and wireless networks, including but not limited
to WiFi, 2G/2.5G, WiMAX, Wired and 3G. Other wired and wireless mediums will be
apparent to persons skilled in the relevant art(s), and fall within the scope of the present
invention.

Accordingly, mobile applications operate in a heterogeneous network
environment with varying degrees of reliability, bandwidth, latency, connectivity, etc.
The user experience can be compromised if a perfect network connection is assumed.
According to embodiments of the invention, the UEP takes into consideration the
characteristics of the diverse networks 118 when moving to and from mobile devices 212.
Features of this aspect of the invention are described below in Sections 7 and 10.
Additional features of this aspect of the invention are provided in Sections 8 and 9.

The UEP allows applications to view the wired and wireless worlds as a single
world (a single context). By doing so, the UEP hides the complexities of
implementations across the multiple diverse networks 118, and across an increasing range
of mobile and fixed devices 212.

According to embodiments of the invention, the data 110 resident on any given
mobile device 212 includes only a subset of the enterprise data 108 (also referred to
herein as the enterprise or consolidated database 108). This is shown as the mapping data
paradigm 104 in FIG. 1. There are a number of factors that influence how much data to
keep on the device 212, such as:

- Even with encryption, it is risky to have enterprise data on a mobile device.

- It is difficult, if not impossible, to keep so much data between the enterprise and all
 clients in sync.

- Device capacity may be measured in gigabytes, but enterprise data is in terabytes,
 petabytes or even exabytes.

Embodiments of the invention include intelligent data fetching and/or
synchronization processes to better ensure that pertinent device data 110 is provided to
the mobile user on a timely basis. These processes are described in sections below, such
as but not limited to in Sections 8 and 10.

FIG. 3 illustrates a block diagram 302 of the UEP. The UEP includes a data
services component 304, a mobile services component 306 and a device services
component 308.
FIG. 4 illustrates a logic block diagram of an embodiment of the UEP 402. Data services 304 represents the interface with data sources and processes 404 (such data sources 404 may be structured, semi-structured and/or un-structured), and device services 308 represents the interface with devices 414. Mobile services 306 and device & application management services 408 represent middleware between data services 304 and device services 308. UEP 402 also includes an administration tool 406 and a development tool 412, which are used to develop applications for mobile devices 414. These components of the UEP 402 are described further in sections below.

Activities enabled by the UEP 402 include, but are not limited to, those shown in Table 1.

<table>
<thead>
<tr>
<th>Table 1 - Activities Enabled by Unwired Enterprise Platform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activities That May Be Performed By the Enterprise Developer (may be performed by others):</td>
</tr>
<tr>
<td>• OO modeling of virtualized view or physical data sources</td>
</tr>
<tr>
<td>• Develop business transactions using data exchange or service invocation for synchronization</td>
</tr>
<tr>
<td>• Define virtualized view</td>
</tr>
<tr>
<td>• Provision virtualized view to Data Services</td>
</tr>
<tr>
<td>• Develop business logic components</td>
</tr>
<tr>
<td>• Specify prefetch policy for OO models</td>
</tr>
<tr>
<td>Activities That May Be Performed By the Mobile Developer (may be performed by others):</td>
</tr>
<tr>
<td>• Develop mobile applications using OO models, UE API, device specific API + UI tools</td>
</tr>
<tr>
<td>Activities That May Be Performed By the Platform Administrator (may be performed by others):</td>
</tr>
<tr>
<td>• Provision and manage mobile application</td>
</tr>
<tr>
<td>* Set up device and platform security policy to support single sign on and end-</td>
</tr>
</tbody>
</table>
to-end data security
 • Configure caching policy in Data Services

[0040] FIG. 9 illustrates a high level operational flowchart 902 of the UEP 402, according to an embodiment of the invention. In step 904, enterprise data is accessed from any data source, such as data sources 404 shown in FIG. 4, as well as enterprise applications and business processes (and any combination thereof). The operation of step 904 involves data services 304 and mobile services 306.

[0041] In step 906, data is transferred over network(s) 410 to devices 414. Such transfer takes into consideration the characteristics of the diverse networks 410. The operation of step 904 involves mobile services 306 and device services 308, and aspects of such operation are described in Sections 7-10.

[0042] In step 908, mobile devices 414 perform enterprise-related operations, processes and/or tasks on the wireless edge.

[0043] In step 910, information generated, collected or otherwise obtained by mobile devices 212 is sent back to the enterprise via the multiple diverse networks 410. The operation of step 910 involves mobile services 306 and device services 308, and aspects of such operation are described in Sections 7-10.

[0044] In step 912, the enterprise uses this information to sense and respond to changes in its business environment.

[0045] Advantages of the invention shall now be described with reference to a field force automation example. Other advantages of the invention will be apparent to persons skilled in the relevant art(s) based on the teachings provided herein.

[0046] Field force automation is a good market segment for understanding the applicability and value of mobile applications. Consider a utility company as the business domain. With a utility company, there is a high volume of field personnel, continuously visiting customer sites across a wide geographic area, either on a preplanned schedule or responding to incidents generated by customer calls. Typically the bulk of these scheduling and reporting tasks are paper based, resulting in a significant amount of time invested in essential but non-skilled activities. By employing mobile field force
automation solutions, the majority of these activities can be automated and optimized, including but not limited to:

- Goal-directed visual interfaces on hand-held devices enable personnel to handle more skilled tasks in the same amount of time by utilizing technologies such as GPS and radio/wireless networks to do intelligent allocation of on-demand tasks.

- Technologies such as mobile middleware can route tasks generated by customer incidents in real-time to the closest field personnel resulting in optimized usage of resources and a higher level of customer service.

- Trip reports captured by combining the original service ticket, task and inventory information captured at the jobsite, and the technician's notes entered through the mobile user interface can be delivered to the enterprise infrastructure for necessary backend processing.

- The billing processes are fully engaged as soon as the technician completes the task.

- Customer satisfaction can be improved by leveraging mobile technology to provide faster processing of customer incidents and more accurate schedule estimates.

- Technicians can be more productive by having a handheld application provide immediate access to part installation instructions and replacement part inventory levels without needing to carry around heavy manuals or make lengthy phone calls to the home office.

[0047] See FIG. 12 for an example depiction of these activities.

[0048] In summary, mobility enhances personnel productivity, making the utility company more efficient. The invention, including the unwired enterprise platform (UEP) described herein, achieves these advantages.

2. Device Services

[0049] FIG. 5 illustrates a functional architecture 502 of the device services module 308, according to an embodiment of the invention. A mobile application 502 runs on top of and interacts with the device services module 308. In an embodiment, a subset of the mobile device's low level native services 506 are managed by device services 308 (in other embodiments, device services 308 manages all low level native device services
This subset is called the managed native device services. Mobile application might also interact with frameworks provided by third parties.

Hi essence, device services is an abstraction layer that provides a common interface to low level native device services. This interface (called an application programming interface, or API) is common among all devices. Consequently, developers are able to more easily program devices without having to know the intricacies of the low level native device services.

Device services run on devices. Specifically, in an embodiment, a device has one or more device services agents that communicate with mobile services in the enterprise to provide data synchronization, messaging, device, application management, as well as other functions described herein.

Functions provided and/or performed by device services include, but are not limited to, those listed in Table 2.

<table>
<thead>
<tr>
<th>Synchronization Agent (See also Sections 7-10):</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Policy based movement of data to and from the device</td>
</tr>
<tr>
<td>• Send presence information to Mobile Server</td>
</tr>
<tr>
<td>• Network information, GPS data</td>
</tr>
<tr>
<td>• Listener and dispatcher of server initiated notifications</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code Generation Support Library:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Object API</td>
</tr>
<tr>
<td>• Persistence access layer including encryption and compression</td>
</tr>
<tr>
<td>• Business operations queuing</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Component Library:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Access to device characteristics and resource information</td>
</tr>
<tr>
<td>• Mobile Server connection parameters</td>
</tr>
</tbody>
</table>
3. Mobile Services

[0053] FIG. 6 illustrates a functional architecture 602 of the mobile services module 306, according to an embodiment of the invention.

[0054] Mobile services 306 (also called mobile middleware services or middleware) represents middleware that "links" mobile applications with the enterprise data and services. It provides runtime support for these mobile applications, and has the ability to invoke web services.

[0055] Mobile services 306 supports the operation of mobile applications on devices 212. According to an embodiment of the invention, mobile services 306 operates with, is applicable to, and/or provides advantages when working with:
- Occasionally connected environments.
• Applications where data is required on mobile devices for uninterrupted operation and good user experience.

• When there is a need for higher programming abstraction to hide complexity, enhance productivity and lower expertise required to generate applications.

• When the data set is too large or sensitive to be completely resident on the device.

• When transactions from mobile application are required to integrate with enterprise data and services.

• When there is a need for a higher level of relevancy and timeliness through the use of context and inference.

• Applications involving asynchronous interaction patterns through events and messages.

Functions performed by mobile services 306 include, but are not limited to the following.

• "Near time" messaging, data synchronization and SMS exchange with client side modules

• Object oriented abstraction over relational data:
 • Ease mobile application development using .NET or Java classes
 • Client and server side code generation for O/R mapping and persistence
 • Upload and download cursor processing leveraging JPA and Java custom base classes
 • Supports both data and operations synchronization patterns to adapt to data-centric, process centric or mixed environments
 • Object oriented modeling via UML
 • Object graph analysis for determination prefetch strategy

• Scalable processing for events received from devices and enterprise.

• "Relevancy and Timeliness" via context and inference. Context awareness offers possibilities for:
 • Intelligent prefetch
 • Smart alert and event notifications
- Capture user provided metadata and intelligence to widen the moat as well as protection against "good enough" and low cost alternatives

[0057] Mobile services 306 communicates with device services 308 (i.e., devices 212) using any format, protocol or means, including but not limited to messages 604A, SMS 604B, and data 604C. A device communications module 626 is an abstraction layer that provides to devices 414 a common interface for interacting with the enterprise.

[0058] Mobile services 306 interacts with data services 304 using any format, protocol or means, including but not limited to JDBC 606A and services 606B. Data/service access 625 is an abstraction layer that provides to the enterprise (and its data sources 404) a common interface for interacting with the mobile services component 306.

[0059] Mobile services 306 includes interface engines 610 (comprising rules 612 and a Bayesian network 614). Mobile services 306 also includes a metadata repository 616, context server 618, an event processor 620, synchronization engine 628, prefetch module 622, and a device management security & provisioning engine 627.

[0060] Features and functions of the synchronization service 628 are described, for example, in Section 7.

[0061] Features and functions of the prefetch service 622 are described, for example, in Sections 8-10.

4. Data Services

[0062] FIG. 7 is a functional architecture 702 of the data services module 304.

[0063] Data services 304 is an abstraction layer enabling common access to back end data sources 404. Data services 304 performs queries over data sources 404, and transforms and caches data retrieved from data sources 404.

[0064] Data services 304 is a functional stack comprising a distributed query processing layer 704, a result set caching layer 706, a layer comprising real time analyticsstreams 708 and a XQuery processor 710, a meta data repository & temporary storage layer 712, a layer comprising replication 714, data federation 716 and ETL 718 and a data access services layer 720.

[0065] Functions provided and/or performed by data services 304 include, but are not limited to, those listed in Table 3.
Table 3 - Data Services Features and Functions

- Provides a homogeneous model for disparate data sources (relational DB, mainframes, flat files)
 - Presents both relational and XML view of data
 - Provides a standard interface to data models using JDBC and XQJ
 - JDBC 4.0 includes XQJ
 - Allows Web service access
- Provides a way to connect to a standard message bus for financial and telecommunication markets
 - Standard adapters to TE3CO, JMS, MQ, Reuters
- Provides multi-node distributed caching of data (relational and XML) out of the enterprise to reduce access to data sources. In an embodiment this is performed by the result set caching layer 706 shown in FIG. 7.
 - Cache synchronized through asynchronous or synchronous replication
 - Data is 100% transactional
 - Provides both scale-out and scale-up
- Provides a way to search streaming data by using continuous querying facility
 - Allows rapid response to customer dynamics
 - Capability to analyze complex business conditions
 - Wide use in both financial and telecommunication markets
- Provides the same level of security as any enterprise class backend database
 - Provides full database compatible access privilege support
 - Strong encryption algorithm as well as provision for hooking up third party encryption/decryption algorithms
- Provides distributed transaction across multiple data sources using transaction coordinator
 - Applicable for data sources that support a standard transaction coordination model
 - Strong Distributed Query Processing
 - Allows intelligent push down of work units to disparate data sources to reduce network traffic and maximize resource usage

5. Development Tool

[0066] FIG. 8 is a functional architecture 802 of the development tool 412, which is used to develop device applications. Modules 804 and 808 (and their sub-modules) generally interface and correspond to device services 304. Module 814 (and its sub-modules) generally interface and correspond to mobile services 306. Module 822 (and its sub-modules) generally interface and correspond to data services 308. A process for generating applications is described in the following section.

6. Run Time Block Diagram

[0067] FIG. 10 is a process for generating and transferring applications to mobile devices, according to an embodiment of the invention. In an embodiment, the development tool 412 described above is used to generate such device applications.

[0068] In step 1004, data sources 404 are selected. These are the data sources 404 that will be accessed by the application when it is executing on the device. Also, mechanisms to access such selected data sources are created using the data services API (see 1104 in FIG. 11).

[0069] In step 1006, user business logic components are determined. Such business logic components correspond to the functions and logic that the application is to perform. Code is written corresponding to the user business logic components (see 1106 in FIG. 11).

[0070] In step 1008, mobile device application(s) (see 1122 in FIG. 11) are built in accordance with the user business logic components using the device services API.
In step 1010, the application(s) 1122 are transferred to mobile device(s) (see 1112 in FIG. 11).

FIG. 15 illustrates process 1502 representing additional features related to developing and provisioning applications to devices 212, according to an embodiment of the invention.

In step 1504, a developer develops an application (according to, for example, the process of FIG. 10 described above). In the course of developing the application, the developer identifies software components that are required on a device 212 to properly execute the application. For example, the developer may identify an operating system, library, plug-in, etc., that are required to be installed on a device 212 so that the application will properly execute on the device 212.

The listing or identity of such required components is considered to be metadata associated with the application developed in step 1504. In 1506, such metadata is provided to mobile services 602 and stored in the metadata repository 616. In an embodiment, the developer provides the metadata to an administrator who stores the metadata in the metadata repository 616.

In step 1508, at some later time, a device 212 that is operating on the wireless edge requests that the application be installed.

In step 1510, mobile services 306 determines whether to grant this request to install the application on the device 212. In an embodiment, this step 1510 is performed by the device management security & provisioning engine 627. In an embodiment, the device management security & provisioning engine 627 determines whether to grant this request in accordance with policies applicable to the requested application. For example, a policy may specify that the application can only be used by certain personnel. In this case, the device management security & provisioning engine 627 would determine whether the user associated with the requesting device 212 is one of those authorized persons. Another policy may specify that the application can only be used in certain geographical locations, or during certain times. In those cases, the device management security & provisioning engine 627 would determine if the device 212 was located in the approved geographical locations, or whether the current time was one of the approved times.
If the device management security & provisioning engine 627 determines, in accordance with applicable policies, that the request of step 1508 should be granted (see step 1512), then in step 1516 any software components required for proper operation of the application are identified. In an embodiment, device services 308 agents operating on the requesting device 212 automatically interact with mobile services 306 to access the applicable metadata in the metadata repository 616, and determine any software components needed by the requested application.

Step 1518, the required software components identified in step 1516 are installed on the device 212. Depending on the nature of the required software components, step 1518 may be automatically performed (i.e., the required software components are automatically pushed to the device 212) or manually (i.e., the user of the device 212 is required to manually install the required software components). Some required software components may be installed automatically and others manually.

Step 1520, the device management security & provisioning engine 627 automatically pushes the requested application to the device 212.

Thus, in accordance with the operation shown in FIG. 15, the invention provisions applications to mobile devices in such a way that application, device and enterprise security are integrated. This is achieved in part by integrating meta-data between development and deployment layers for platform requirements.

7. Background Policy-Based Data Synchronization

In a mobile occasionally connected environment, where connectivity to the enterprise is not always available, applications require enterprise data to be persistent locally on the device in order to run. To do so, a method for tracking changes, both on the remote and in the enterprise, and synchronizing them is required. Conventional techniques for synchronizing remote data sources with enterprise data sources exist today. These techniques require that the application be responsible for initiating synchronization, detecting synchronization failures due to network interruptions and handling these failures in an appropriate manner.

The invention includes a system, method and computer program product for background policy-based data synchronization that eliminates the need for the mobile
application (and therefore the mobile application developer) to deal with data synchronization. This technique automatically performs the task of synchronizing data between the mobile data source and the enterprise data source on behalf of the mobile application and deals with synchronization failures in a way that is transparent to the application.

According to an embodiment, background policy-based data synchronization has the following characteristics:

- The application, and the operations it performs on data, is independent of data synchronization. Data synchronization is performed in the background by a separate process that runs independently of the application. This allows data synchronization to occur even if the application is not running.

- Data synchronization is policy-based. A policy describes when data synchronization occurs and the data that is included in the data synchronization. Pre-defined polices are available that will satisfy most mobile application requirements for data synchronization. More sophisticated applications will have the ability to define their own policy by creating a set of rules.

- Network connectivity is monitored so that data synchronization can occur based on network availability.

- Server-side changes will be promptly delivered to the mobile device. This requires that a mobile device be notified of server-side changes and initiate data synchronization based on the policy being used.

According to an embodiment of the invention, a policy is used to describe how background synchronization takes place. The policy specifies when data synchronization occurs and the data involved in the data synchronization. A set of pre-defined policies are available. These include, but are not limited to, the following: scheduled, automatic, on-demand and custom.

The scheduled policy is one that causes data synchronization to occur at a specified interval. When the specified time interval has elapsed, synchronization will occur if the network is available and connectivity with the server can be established. If the network is not available, an attempt will be made again at the next time interval.

The automatic policy is one that, using heuristics, attempts to keep the mobile and enterprise data sources as up-to-date as possible. One possible heuristic is to synchronize after a specified number of transactions have been applied to the local data source (a default of one could be used if no number is specified). After the specified number of
transactions has occurred, synchronization will occur if the network is available and connectivity with the server can be established. If the network is not available, an attempt will be made again once the network becomes available.

[0087] The on-demand policy is one where data synchronization is left in the hands of the mobile application. When this policy is used, it is the responsibility of the application to initiate synchronization and deal with network connectivity issues. An application will initiate synchronization using an API that will be provided as part of the synchronization service.

[0088] The custom policy allows applications to define their own synchronization policy. This is done by specifying a set of rules. A rule includes two parts: a schedule and a condition. The schedule defines when data synchronization is to occur. The condition defines the conditions that must be satisfied in order for data synchronization to take place. The condition can be based on the characteristics of the network in current use. The condition can also specify constraints on the data and thereby defining the data to be included in the data synchronization.

[0089] The module that is responsible for performing background policy-based synchronization is called the Synchronization Agent. The Agent runs independent of the mobile application. In an embodiment, the Agent runs continuously so that the data available to mobile applications running on the device will be as up-to-date as possible. When the Agent is started, the local data source that the Agent is to monitor is specified along with the policy that the Agent will use to drive the data synchronization process.

[0090] The Agent, while running, monitors network connectivity and keeps track of the network characteristics. This information is persisted as name-value pairs and can be referenced from rules specified in a custom policy.

[0091] The Agent is responsible for implementing the specified policy and driving the synchronization process. It is the Agent that implements pre-defined policies. When a custom policy is specified, a rules engine running inside the Agent is used to execute the rules. Execution of the rules determines when data synchronization occurs.

[0092] The Agent is responsible for listening for notifications from the server that data is waiting to be delivered to the mobile device (this class of notifications is called push notifications). Depending on the policy being used, this will cause data synchronization to occur. When a push notification is received and a scheduled policy is being used, an
attempt to synchronize will be triggered at the next time interval. When an automatic policy is used, an attempt to synchronize will be triggered immediately. When an on-demand policy is used, the application will be notified of the event. The application can then decide whether to trigger an attempt to synchronize. When a custom policy is used, an attempt to synchronize will be triggered if any of the rules specified by the custom policy are satisfied.

[0093] The Agent sends presence information to the server. Presence information includes network status information (current network in use, network address, etc.) and location-based co-ordinates. Network status information is used by the server to send push notifications to the device. Location-based co-ordinates are used by server-side business logic, for example, to deliver location-based content to the device.

8. Persistent Query System for Automatic On-Demand Data Subscriptions from Mobile Devices

[0095] This section describes embodiments of the invention for synchronizing a remote database (such as the enterprise database 108) with a local database (such as a local database in a mobile device 212). These embodiments are further described in the above referenced application "Persistent Query System for Automatic On-Demand Data Subscriptions from Mobile Devices," which is herein incorporated by reference in its entirety.

[0096] Synchronization allows mobile devices 212 to receive the most current data available from the enterprise and its data sources 208, as well as upload its most currently available data to the enterprise, for any given application or set of applications. "Data" as used herein may be any object, including, but not limited to, information in any form (text, video, audio, etc.) and applications.
As noted above, typically, a mobile device 212 is unable to replicate every piece of data contained in enterprise database 108 in its own local database. This was referred to above as the mapping data paradigm 104 (see FIG. 1). The mobile device may also be unable to constantly query enterprise database 108 in order to obtain the most current data. According to an embodiment of the invention, mobile device 104 can create a data subscription in order to attempt to retrieve relevant data from enterprise database 108 into its local database in order to resolve future queries locally.

Accordingly, the invention includes a system, computer program product, and method for creating a data subscription to a remote database. The method includes the steps of creating a meta-data definition of a table, the table located within the remote database, marking a query to be performed on the table, within the definition, as persistent, and generating a persistent query entity based on the definition, wherein the persistent query entity is mapped to a persistent query table in a local database.

The invention furthermore includes a system, computer program product, and method for creating a persistent query, wherein a table in a remote database is represented by a meta-data definition. The method includes the steps of identifying, in the definition, a query to be performed on the table, wherein the query has been marked as a subscribed query, defining a persistent query entity for the subscribed query, mapping the persistent query entity to a persistent query table, and generating query code, the query code operable to perform the query on a local database.

The invention further includes a system, computer program product, and method for synchronizing a local database with a remote database. According to an embodiment, this is achieved by selecting rows from the remote database by joining the table with the persistent query table, and downloading the selected rows to the local database (in an embodiment, such operation creates a copy of the table in the local database). In an embodiment, the set of selected rows includes only rows modified or subscribed to since the last synchronization, in an embodiment, the steps of selecting rows and downloading the selected rows are implemented in a download cursor.

In creating a meta-data definition (i.e., entity) of a table, it is also possible to define a relationship between two such entities. In accordance with an embodiment of the present invention, this is accomplished by modeling an entity’s attributes as having a data type which is another entity or a list (e.g., array) of other entities.
The invention also includes embodiments for deleting rows from the mobile device 212's local database. A deletion, in the context of the present invention, takes on two forms: a complete deletion, which not only deletes the row from the local database, but also marks the row for deletion at the enterprise database 108; and an "eviction," which deletes a row from local database to free space, but does not disturb the equivalent row in enterprise database 108. In an embodiment, both forms delete persistent query rows.

The invention also includes embodiments for deleting rows from the enterprise database 108. When a row is deleted from the central database, the process is handled much like with a client-originated deletion, from the point at which the client-deleted row has been synchronized with the enterprise database 108.

The invention also includes embodiments for intelligent prefetch with multiple devices. According to these embodiments, it is possible for multiple mobile devices to be associated with a particular user. A user need not be an individual, but may also be a group of individuals, such as a team, division, or corporation. The invention includes embodiments by which subscriptions can be optimized for multiple devices controlled by a single user. In accordance with an embodiment of the present invention, a user is able to move between devices and, with at most a single synchronization, be confident that the data available at the current mobile device includes any data the user was recently working with. Subscriptions are associated with the particular user rather than with each individual mobile device.

The invention also includes embodiments for intelligent prefetch with inherited subscriptions. Sometimes it becomes known, perhaps by virtue of optimization testing on an application performing queries on a database, that when a query is performed on a particular data set, a query on a second data set is likely to follow. In the case of a configuration where a mobile device 212's local database only has a subset of the data available in enterprise database 108, performance benefits may be realized by retrieving not only data related to the first query, but also the second query, and storing this data in local database. The invention includes an embodiment for performing this optimization through the use of inherited subscriptions.

The invention also includes embodiments for intelligent prefetch with cascading subscriptions. A mobile device 212 is usually capable of running multiple applications,
often simultaneously. Each of these applications may access, either in turn or simultaneously, the mobile 212's local database. As each application may serve a different purpose, the optimization needs for each application may vary. The optimization needs may include, for example, precisely what data each application needs to retrieve from enterprise database 108 into the local database during a synchronization. Accordingly, the invention includes an embodiment whereby subscriptions can be defined in a cascading manner for multiple applications.

[00107] More information on these embodiments is provided in the above referenced application "Persistent Query System for Automatic On-Demand Data Subscriptions from Mobile Devices."

9. Programming System for Occasionally-Connected Mobile Business Applications

[00108] This section describes additional embodiments of the invention for synchronizing a remote database (such as the enterprise database 108) with a local database (such as a local database in a mobile device 212). These embodiments are further described in the above referenced application "Programming System for Occasionally-Connected Mobile Business Applications," which is herein incorporated by reference in its entirety.

[00109] According to the invention, a developer uses a programming system to create XML files which are processed by a code generator to create generated files. These generated files include, for example, code files, persistence files, and deployment files. In accordance with an embodiment of the present invention, the developer creates custom-developed code, which is then combined with generated files. These generated files form the basis of software running on a mobile device 212 used to interact with the mobile 212's local database and synchronize with enterprise database 108.

[00110] The programming system generates code for execution on mobile device 212 by creating XML class definitions. The code generator is run on the XML files. Thereafter, output code, persistence logic and presentation logic are generated.

[00111] In accordance with an embodiment of the present invention, a class definition includes parameter, attribute, and operation definitions. Parameters, attributes, and potentially other definition types optionally specify a data type. In accordance with an
embodiment of the present invention, built-in data types are specified which have known equivalents in one or more target platforms (e.g., Java, C#).

[00112] A service class is an extension of this basic class. Service classes can be used to support business operation replay for the purposes of synchronizing databases, such as a mobile's local database and the enterprise database 108. Business operation replay allows a service class to perform a set of operations against local database, and, rather than uploading a copy of the results to enterprise database 108, instead captures the operations themselves and replays them against enterprise database 108.

[00113] Additionally, change sets of the operations are captured, in accordance with an embodiment of the present invention. Change sets indicate that an entity has been modified by an operation. When the operations are replayed against enterprise database 108, a conflict may arise whereby fewer data rows are modified in enterprise database 108 than on the local database in mobile device 212 such as, for example, when an operation is dependent on another data row which has been modified directly at the enterprise database 108 or by a different mobile device. If the change sets show that additional row insertions, deletions, or updates were made in the local database that are not reflected in enterprise database 108, then a "harmless update" is issued against the additional rows at the enterprise database 108. When enterprise database 108 next synchronizes with mobile device 212, all rows in the local database will have data that matches that in enterprise database 108.

[00114] Accordingly, the invention includes a system, computer program product and method for synchronizing a local database with a remote database. The method includes the steps of defining a service operation, wherein the service operation comprises a transaction, processing the transaction on the local database, capturing operation calls performed by the transaction, and capturing change sets of the transaction.

[00115] The invention furthermore includes a system, computer program product and method for performing a service operation on a database, the database located on a database system. The method includes the steps of defining a service operation, wherein the service operation comprises a transaction, determining a target environment for the database system, and processing the transaction on the database, wherein the transaction is selected from a set of transactions, the transaction corresponding to the target environment.
More information on these embodiments is provided in the above referenced application "Programming System for Occasionally-Connected Mobile Business Applications."

10. Context-Based Data Pre-Fetching and Notification for Mobile Applications

As mobile computing platforms become increasingly ubiquitous, and with the availability of network access for the mobile computing platforms, it becomes desirable to provide users with as close an approximation to the experience of a full-featured computing platform as possible. In order to conserve space and battery power, mobile computing platforms, such as personal digital assistants ("PDAs"), frequently have small display screens, limited memory, limited processing power, and limited communications bandwidth. Such resource restrictions of mobile computing platforms are often incompatible with the goal of providing users with data needed by the users to enjoy a full-featured experience.

Mobile applications require data to be mobilized from the enterprise and stored on a mobile device for occasional disconnected computing while the device is not connected to the enterprise network. However, as the mobile devices are often resource restricted, the set of data downloaded to the devices is limited to a subset of what is available on enterprise servers and devices (see the mapping data paradigm 104 in FIG. 1). In addition, the subset of enterprise data needed on mobile devices must be determined a priori. At times, the pre-determined subset of data is insufficient to meet the mobile user's needs. Necessary data is unavailable on mobile devices when unplanned and planned changes are not accounted for. Without necessary data available at the mobile devices, corresponding mobile applications can be rendered difficult to use or inoperable, depending on network connectivity.

In traditional enterprise computing environments, users are able to request data (i.e., fetch data and query databases) when it is needed and receive a timely response with the subset of data they have requested. In the mobile environment, this traditional request/response paradigm does not always work due to potential connectivity problems of 'roaming' mobile devices, and/or to characteristics of multiple diverse networks 118. The focus of attention for a mobile user and the corresponding mobile applications is on
the task currently being performed so it is not reasonable to expect mobile users or applications to determine what data is necessary to complete the task. Hence, pertinent information should be 'pushed' to the mobile user's applications rather than requiring them to 'pull' the information from enterprise servers. Relevant data and notifications must be provided at the appropriate time to mobile devices for to enable mobile users to make time sensitive business decisions. This is because mobile users oftentimes do not know when and what subset of data is needed as they are not aware of the situation or 'context' they are currently in.

Accordingly, the invention includes embodiments to dynamically determine the likely set of data needed on a mobile computing platform based on the context of the mobile applications on the platform and the user using the platform. The invention also includes embodiments to provide relevant data and notifications at the appropriate time to a mobile computing platform based on the context of the mobile applications on the platform.

FIG. 14 provides a flowchart of Context-based data pre-fetching and notification 1400 for mobile applications, in accordance with an embodiment of the present invention.

Context model 1405 represents the situational information of the mobile user. Context model 1405 is defined using ontology. Each context model has a set of concepts as well as the relationships between them, expresses in context variables.

Context variables 1415 can be simple or derived by aggregating through inferences of simple variables. Context variables 1415 may include simple context variables which may contain a collection of values.

In order to facilitate "delta-based data updating" (i.e., sending out only information that user does not already have), context model 1405 stores what is already on the device as one or more context variables 1415. Context variables 1415 are part of context model 1405.

There can be many context models 1405 within context server 1410. Context server 1410 maintains the context models. It does so by polling or receiving updates from physical sensors or software-based information for simple variables. Changes in the simple variables will trigger inference to update derived variables.

Context server 1410 provides a context query API to access context variables 1415 within context model 1405.
Data selection functions 1470 are functions that calculate the prefetch data for the mobile applications and users. Data selection functions 1470 may leverage context variables 1415 within context model 1405. For each mobile user/device combination 1495, there can be a set of data selection functions 1470. The output of each function is combined to form new data set 1490. Data selection functions 1470 may use inference (e.g. rules or Bayesian network) to perform calculate the data set 1490 required by each mobile user/device combination 1495. Data selection functions 1470 also access Context model 1485 from context server 1410.

In accordance with an embodiment of the invention, Data selection functions 1470 access Context model 1485 that represents the mobile user's context to determine the new data set 1490 required by each mobile user/device combination 1495.

Each user/device combination 1495 may subscribe to a set of context variables 1415 within context model 1405. Whenever context variables 1415 within the subscription 1420 changes, event engine 1450 will determine and execute the affected sets of Data Selection functions 1470. The new data set 1490 created by the functions will be compared with what is already on the device, stored as context variables 1415, to create a "delta" set of data 1480 that the mobile user/device combination 1495 does not already have.

Event engine 1450 is also responsible for receiving notifications/updates 1420 from sensors and software event mediator and forwards them to context server 1410 to maintain context models 1405.

FIG. 14 also illustrates a method for delivering relevant data and notification at the appropriate times to mobile applications using context-based pre-fetching method described above, in accordance with an embodiment of the present invention.

Notifications and data 1480 delivered to mobile user/device combination 1495 have the following characteristics.

Data set 1490 is packaged with metadata into a "metadata driven container" to assist in displaying the data at the mobile device and the metadata contains a description of data 1480.

Data set 1490 has an identifier with a timestamp, thus data set 1490 is named and versioned.

All versions of data set 1490 with the same identifier are unique.
[00136] Policies on mobile device 1495 supports having only one or multiple versions of data set 1490 per identifier.

[00137] No modification of data set 1490 is allowed, data 1480 is provided to mobile user/device combination 1495 only for reference.

[00138] Data set 1490 includes both structured and unstructured data.

[00139] Data set 1490 requires a client side container to interpret the data set "package" and display it appropriately at mobile device 1495.

[00140] Data set 1490 can be acknowledged and discarded by mobile device/user combination 1495 or after a predetermined time (i.e., a "timeout period") according to a policy on mobile device 1495.

[00141] Data 1480 is generated from mobile device/user combination 1495 specified data selection functions 1470 that are subscribed to context variables 1415 within context model 1405.

[00142] The metadata driven data set/container 1490 uses the metadata within the data set 1490 to determine how best to display the data 1480. Data container 1490 is context aware (i.e., aware of the environment that it is executed under such as the characteristics of mobile device/user combination 1495). Hence, data container 1490 can render data 1480 in a fashion that is most suitable for the device.

[00143] When data 1480 is reviewed by user 1495, it can be deleted from the mobile device 1495. In addition, if data set 1490 has an expiration date set, it will be discarded when appropriate.

[00144] Relevant data 1480 can be pushed to mobile device/user combination 1495 based upon changes in the context 1460 that the Data Selection Functions 1470 subscribed to.

[00145] Change in context 1430 (context variables 1415 within context model 1405) can be caused by changes occurring within the enterprise such as changes in data, execution of business processes, or other change events 1430. These change events 1430 are reported to Event Engine 1450 which notifies Context Server 1410 to update context model 1405.

[00146] Change events 1430 can also be caused by a mobile device/user 1495 triggering a change in context by user actions with mobile applications running on mobile device 1495, natural language commands/queries through messaging or short messaging service (SMS), and device sensor readings.
More information on the embodiments described in this section is provided in the above referenced application "System, Method, and Computer Program Product for Context-Based Data Pre-Fetching and Notification for Mobile Applications," which is herein incorporated by reference in its entirety.

11. Example Computer Implementation

In an embodiment of the present invention, the system and components of the present invention described herein are implemented using well known computers, such as computer 1302 shown in FIG. 13.

The computer 1302 can be any commercially available and well known computer capable of performing the functions described herein, such as computers available from International Business Machines, Apple, Sun, HP, Dell, Compaq, Digital, Cray, etc.

The computer 1302 includes one or more processors (also called central processing units, or CPUs), such as a processor 1306. The processor 1306 is connected to a communication bus 1304.

The computer 1302 also includes a main or primary memory 1308, such as random access memory (RAM). The primary memory 1308 has stored therein control logic 1328A (computer software), and data.

The computer 1302 also includes one or more secondary storage devices 1310. The secondary storage devices 1310 include, for example, a hard disk drive 1312 and/or a removable storage device or drive 1314, as well as other types of storage devices, such as memory cards and memory sticks. The removable storage drive 1314 represents a floppy disk drive, a magnetic tape drive, a compact disk drive, an optical storage device, tape backup, etc.

The removable storage drive 1314 interacts with a removable storage unit 1316. The removable storage unit 1316 includes a computer useable or readable storage medium 1324 having stored therein computer software 1328B (control logic) and/or data. Removable storage unit 1316 represents a floppy disk, magnetic tape, compact disk, DVD, optical storage disk, or any other computer data storage device. The removable storage drive 1314 reads from and/or writes to the removable storage unit 1316 in a well known manner.
The computer 1302 also includes input/output/display devices 1322, such as monitors, keyboards, pointing devices, etc.

The computer 1302 further includes a communication or network interface 1318. The network interface 1318 enables the computer 1302 to communicate with remote devices. For example, the network interface 1318 allows the computer 1302 to communicate over communication networks or mediums 1324B (representing a form of a computer useable or readable medium), such as LANs, WANs, the Internet, etc. The network interface 1318 may interface with remote sites or networks via wired or wireless connections.

Control logic 1328C may be transmitted to and from the computer 1302 via the communication medium 1324B. More particularly, the computer 1302 may receive and transmit carrier waves (electromagnetic signals) modulated with control logic 1330 via the communication medium 1324B.

Any apparatus or manufacture comprising a computer useable or readable medium having control logic (software) stored therein is referred to herein as a computer program product or program storage device. This includes, but is not limited to, the computer 1302, the main memory 1308, the secondary storage devices 1310, the removable storage unit 1316 and the carrier waves modulated with control logic 1330. Such computer program products, having control logic stored therein that, when executed by one or more data processing devices, cause such data processing devices to operate as described herein, represent embodiments of the invention.

The invention can work with software, hardware, and/or operating system implementations other than those described herein. Any software, hardware, and operating system implementations suitable for performing the functions described herein can be used.

12. Appendix

The attached Appendix forms a part of this application, and is thus herein incorporated by reference in its entirety.
While various embodiments of the present invention have been described above, it should be understood that they have been presented by way of example only, and not limitation. It will be understood by those skilled in the relevant art(s) that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined in the appended claims. Accordingly, the breadth and scope of the present invention should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with the following claims and their equivalents.
APPENDIX

The Appendix that begins on the next page forms a part of this application, and is thus herein incorporated by reference in its entirety.
Next Generation Mobility Architecture
TABLE OF CONTENTS
1. Executive Summary
2. Use cases
3. Challenges
 1. Technology Challenges
 2. Business Challenges
4. Market Requirements
5. Application Development Tools
6. Enterprise Data Access
7. Enterprise Service Access
8. Enterprise Events and Messages
9. Application Management and Application Security
10. Systems Administration and Management
11. Mobile Client/Platform
12. Mobile Applications
13. Next Generation Mobility Architecture
14. Components
15. Benefits
16. Summary
EXECUTIVE SUMMARY

In today’s real-time business environment, business execution across the value chain can be optimized by extending the boundaries of the enterprise from within the confines of the desktop or data center to mobile devices. Mobile applications are playing a role in supply chain (manufacturing processes), demand chain (customer interactions), and in many other scenarios by approaching mobility as a strategic initiative and building multiple applications targeting multiple enterprise business processes. Organizations can reap the benefits of mobility in a better way.

Enterprises are using mobile applications in increasing numbers to improve business agility and deliver superior customer service. Information captured and delivered at the edge of the enterprise extends the reach of enterprise applications to the “point of use” — enabling faster, more informed decisions and actions. In the past, mobile interactions for an enterprise tended to be siloed and disjointed. To successfully deliver on the vision of mobility and extend the reach of information, organizations require an architecture and strategy that enables a global view and incorporates mobility as an intrinsic part of the enterprise infrastructure.

To enable businesses to achieve this vision, software vendors must address some basic infrastructure requirements. These include application development tools, data synchronization software, application deployment and management, and data services that provide integration with existing data center infrastructures like enterprise resource planning (ERP) systems, databases, and services-oriented architecture (SOA) infrastructure, etc. A mobile ecosystem also has critical characteristics that are peculiar to mobility including network connectivity, power management, disconnected access, local authentication, etc. that make mobile applications a breed apart from traditional enterprise applications. These unique characteristics have to be considered and dealt with by infrastructure providers and application developers.

This document describes a high-level functional architecture for a technology stack that enables organizations to implement this next wave of mobile applications and satisfy emerging technology requirements. As it is very critical to enable system integrators (ISVs) and independent software vendors (ISVs) to enable adoption of mobile applications, the platform is architected to satisfy requirements that may be specific to how partners may leverage the stack to meet their customer needs. With the increased adoption of mobility as a strategic initiative instead of a project-centric nature, this next generation architecture for mobility will enable enterprises to solve their mobility needs for a variety of business problems across various divisions in a secure fashion.

USE CASE

Field Force Automation is a good market segment for understanding the value of mobile applications. Consider a utility company as the business domain. There is a high volume of field personnel continuously visiting customer sites across a wide geographic area either on a pre-planned schedule or responding to incidents generated by customer calls. The bulk of these scheduling and reporting tasks are paper-based, resulting in a significant amount of time invested in essential but non-skilled activities by employing mobile field force automation solutions. The majority of these activities can be automated and optimized including:

- Goal-directed visual interfaces on mobile devices enable personnel to handle more skilled tasks in the same amount of time by utilizing technologies such as CPS and radio/wireless networks to do intelligent allocation of on-demand tasks.
- Technologies such as mobile middleware can route tasks generated by customer incidents in real time to the closest field personnel resulting in optimized usage of resources and a higher level of customer service.
- Trip reports captured by combining the original service ticket task and inventory information captured at the job site and the technician’s notes entered through the mobile user interface can be delivered to the enterprise infrastructure for necessary backend processing.
- The billing processes are fully engaged as soon as the technician completes the task.
- Customer satisfaction can be improved by leveraging mobile technology to provide faster processing of customer incidents and more accurate schedule estimates.
Technicians can be more productive by having a handheld application provide immediate access to part installation instructions and replacement part inventory levels without needing to carry around heavy manuals or make lengthy phone calls to the home office.

In summary, mobility enhances personnel productivity, making the utility company more efficient.

CHALLENGES
The following section outlines both the technology and business challenges that organizations face when mobilizing the enterprise.

Technology Challenges
- Easing the complexity involved in accessing and processing of heterogeneous enterprise data sources for mobilization
- Reducing the complexity involved in synchronization of enterprise data sources with mobile devices
- Dealing with the lack of integrated tooling environment that simplifies mobile application development
- Overcoming the lack of secure access and deployment of mobile applications
- Allowing uniform administration of various moving pieces of technology stack involved in unwrapping enterprises

Business Challenges
- Solving strategic enterprise mobility issues
- Addressing large percentage of the various users in the value chain
- Integrating mobility into existing and new business processes to sense and respond to changing operating conditions by extending them to mobile users
- Extending intelligence in the enterprise to mobile users at the point of action
- Providing field workers with additional tools to better serve customers
- Enabling faster access to information for better decision making
MARKET REQUIREMENTS

Mobile users within an enterprise's value-chain are playing an increasingly important role on both the supply side and the demand side. Customers want mobile access to their order information, stock portfolios, or shipment tracking for example, while sales people want to evaluate customer credit worthiness and analyze past customer orders in real-time while they are on the road. Wal-Mart and Target have adopted RFID-tagged pallets as a means of collecting data pertaining to suppliers and goods, demonstrating that mobility is starting to become an integral business strategy to optimize agility and productivity.

Quickly becoming history are the days when mobile applications on different devices, such as laptops and Pocket PCs, were a static extension of the enterprise information distribution network rather than playing a critical role in daily operational activities. With increasing network speeds, widespread connectivity, and intelligent and powerful infrastructures for devices and data centers, mobile applications are taking part in near real-time interactions within the enterprise information networks to support increased customer sales, agility in the pricing of goods, and other examples. Data from a trouble ticket system running on SAP® or Remedy® can be routed to the nearest technician on the road who can be directly routed using a map on the device to the location requiring the technician's services. Such intelligent applications are early examples of what we will start seeing and come to expect as widespread adoption and understanding of mobility occurs.

The following section outlines the requirements that enterprises will need as they develop and deploy mobile applications in the future.
Application Development Tools

With the growing adoption of two main tooling platforms — Microsoft® Visual Studio® for the .NET community and Eclipse for the Java community — an application development tool that can coexist within these frameworks is a clear requirement to enable different communities to design and debug mobile applications for various platforms like Windows Mobile, RIM Symbian, etc. Some of the main features of the tooling environment include:

- Visual Interface design
- Modeling
- Data Presentation
- Enterprise Data Connectivity
- Business Logic Development
- Event and Message Development
- Mobile SOA Development
- Debugging etc

Enterprise Data Access

Today's enterprise data exists in many forms in the data center structured, unstructured, and semi-structured. This data is being updated and created on a real-time basis, and the availability of this information on mobile devices determines the value that these applications provide to the business. On the other hand, the mobile application needs to be shielded from the complexities of the data sources and hence a data virtualization layer provides a simplified interface between the varied data sources and the mobile application layer.

Enterprise Service Access

With increased adoption of Services Oriented Architecture (SOA) for enterprise applications, leveraging SOA interfaces for mobile application development will become critical. Infrastructure elements within the platform can provide access to SOA and aid in mobilizing SOA interaction points which will allow for loosely connected mobile applications.

Enterprise Events and Messages

Applications use messages to exchange information and the same holds true in mobile environments. The reliable, seamless, secure exchange of messages between mobile devices and the enterprise across various network protocols like GPRS and Wi-Fi provides a backbone for building mobile applications that represent a view into the enterprise and also allows for enterprises to have a real-time view of the mobile environment.

Application/Device Management and Security

As mobile application deployment achieves widespread adoption, managing and maintaining these deployments has the potential to become a nightmare resembling the problems that data centers face today. To prevent such a scenario from developing, management infrastructure has to be available to handle various tasks associated with application deployment and post-deployment maintenance. Considering that users are prone to losing devices and there are a large number of security threats that are quick to capitalize on, the losses securing applications, data, and devices will become a critical element in a mobile ecosystem. In addition, managing the applications on devices in a secure way, managing the devices is a critical piece as the volume and heterogeneity of devices grow.

Systems Administration and Management

With the complexity of the technology providing a simplified administration and management interface is very critical for this product. A common interface (graphical and programmable) should be available that will also enable 3rd party management tools to support the system using standards-based integration.
Mobile Client Platform

With the heterogeneity of mobile devices, the functionality they provide, and the interfaces that each of them expose, developers need access to a standardized client platform that provides a uniform interaction model hiding the differences and unique complexities from a development standpoint while still leveraging the full potential of the individual devices.

Mobile Applications

Pre-packaged applications that rely on the above mentioned infrastructure elements but provide out-of-the-box business functionality are a requirement for IT shops that don't want to invest in custom development. By assuming a standard set of requirements similar to enterprise applications, mobile applications provide a large set of functionality for mobile sales, mobile field force, and other target markets. Since these applications may not exactly reflect an organization's business processes, the mobile applications have the ability to be configured and modified.

NEXT GENERATION MOBILITY ARCHITECTURE

The following section describes the proposed technology stack and its high level architecture. Details of the various components will be described in follow on documents. The goal is to create an integrated technology stack that is cohesive and provides a complete solution to customers for their mobile enterprise initiatives.

Components

Data Services

The Data Services layer provides bi-directional access to the virtualized data layer provisioned over diverse data sources ranging from structured to unstructured. These data sources could be packaged applications like SAP databases, web services, etc. The Data Services component provides other value add functionality like transformation and cleansing that can be leveraged within the data services layer for provisioning relevant information. The Data Services layer is augmented with a real-time cache to lessen the load on the target physical data sources.
Mobile Middleware Services

The Mobile Middleware Services component provides the bridge between the data network and the device network. With its value-added services like pre-fetching, inference, etc., this component allows for data to be synchronized in an intelligent fashion between the data services layer and the applications running on various devices leveraging multiple communication channels like SMS, HTTP, etc. This layer also includes services to deploy and manage the applications in a secure fashion. With the heterogeneity in the mobile environment, provisioning the application to the right environment is a big concern and by using this layer, applications can be provisioned in a streamlined fashion.
Device Services

This component provides a standardized interface for accessing various device functionality like persistence, synchronization, security, etc. Mobile developers can program to this interface for accessing device specific functionality in a uniform way, thereby reducing the complexity in developing the applications.

Unified Application Development Tool

The unified development tool that is provided by this platform allows developers to perform the tasks associated with developing the data services layer, mobile middleware layer and the device services layer to build a mobile application.

Administration Console

By providing a standards-centric approach, the runtime can be monitored and administered through various 3rd party tools along with Sybase's own unified administration tool. With the feedback generated by the monitoring information, IT administrators can tune the operational systems to perform better under various load conditions.
Benefits

With the combination of these different services, Sybase's next generation mobility architecture will enable enterprises to deploy mobile applications to heterogeneous devices. Some key benefits include:

- Integrated tooling to develop mobile applications
- Virtualized data model for uniform access to different enterprise data sources
- Model/metadata driven development methodology for enterprise and device data sources
- Integrated deployment and management of applications
- Intelligent delivery of core data to mobile applications
- Consolidation of application device and enterprise security
- Ability to manage and secure the devices
- Support for mobile-to-mobile messaging provided via integration with Sybase's mobile messaging services

SUMMARY

With a strong history in providing mobile infrastructure and solutions, Sybase's next generation mobility architecture is an evolution of the current offerings enabling enterprises to extend their mobility deployments to a wider audience thus reaping further benefits. As enterprises start to look at mobility as a strategic initiative, choosing a strong platform plays a key role and Sybase's next generation mobility architecture fits into that requirement with broad-based support of various elements associated with the infrastructure for unwiring enterprises.
WHAT IS CLAIMED IS:

1. A method of inherently integrating mobility with an enterprise, comprising:
 accessing enterprise data from at least one of data sources, enterprise applications
 and business processes;
 transferring said data to a plurality of mobile devices over a plurality of diverse
 networks, wherein said transferring step takes into consideration characteristics of said diverse
 networks;
 receiving from said mobile devices data generated by said mobile devices while
 performing enterprise-related operations at a wireless edge; and
 responding to environmental changes using said received data.

2. The method of claim 1, wherein said data sources comprise structured and
 unstructured data sources.

3. The method of claim 1, wherein said transferring and receiving steps comprise:
 synchronizing said enterprise and said mobile devices according to a background
 policy-based data synchronization process.

4. The method of claim 3, wherein said background policy-based data
 synchronization process comprises a plurality of policies that define how background
 synchronization takes place, wherein said policies comprise at least one of a scheduled policy, an
 automatic policy, an on-demand policy, and a custom policy.

5. The method of claim 1, wherein said transferring and receiving steps comprise
 synchronizing a local database with an consolidated database, said synchronization step
 comprising the following steps which are performed by a mobile device:
 defining a service operation, wherein the service operation comprises a transaction;
 processing the transaction on the local database;
 capturing operation calls performed by the transaction; and
 capturing change sets of the transaction.
6. The method of claim 1, further comprising:
creating a data subscription to a consolidated database.

7. The method of claim 6, wherein said data subscription creating step comprises the following steps which are performed by a mobile device:
creating a meta-data definition of a table, the table located within the remote database;
marking a query to be performed on the table, within the definition, as persistent; and
generating a persistent query entity based on the definition, wherein the persistent query entity is mapped to a persistent query table in a local database.

8. The method of claim 1, further comprising creating a persistent query, wherein a table in a consolidated database is represented by a meta-data definition, said persistent query creating step comprising the following steps which are performed by a mobile device:
identifying, in the definition, a query to be performed on the table, wherein the query has been marked as a subscribed query;
defining a persistent query entity for the subscribed query;
mapping the persistent query entity to a persistent query table; and
generating query code, the query code operable to perform the query on a local database.

9. The method of claim 1, further comprising:
context-based data pre-fetching and notification for mobile applications.

10. The method of claim 9, wherein said context-based data pre-fetching and notification step comprises:
creating a context model;
updating context variables within the context model that can be used by a mobile application;
determining a set of data for the mobile application that will leverage context variables from the context model;
maintaining inference engines used by data selection functions to arrive at a likely set of data needed by the mobile application;
maintaining the context model;
subscribing to changes in context variables for mobile user/device combinations; and executing data selection functions to calculate a data set for the mobile application.

11. The method of claim 1, further comprising:
provisioning applications to mobile devices wherein said provisioning integrates application, device and enterprise security.

12. The method of claim 1, further comprising:
enabling integration of meta-data between development and deployment layers for platform requirements.

13. A computer program product comprising a computer useable medium having computer program logic recorded thereon for enabling a processor to inherently integrate mobility with an enterprise, the computer program logic comprising:
means for enabling a processor to access enterprise data from at least one of data sources, enterprise applications and business processes;
means for enabling a processor to transfer said data to a plurality of mobile devices over a plurality of diverse networks while taking into consideration characteristics of said diverse networks;
means for enabling a processor to receive from said mobile devices data generated by said mobile devices while performing enterprise-related operations at a wireless edge; and
means for enabling a processor to respond to environmental changes using said received data.

14. The computer program product of claim 13, wherein said data sources comprise structured and unstructured data sources.

15. The computer program product of claim 13, wherein said transfer and receive means comprise:
means for enabling a processor to synchronize said enterprise and said mobile devices according to a background policy-based data synchronization process.
16. The computer program product of claim 15, wherein said background policy-based data synchronization process comprises a plurality of policies that define how background synchronization takes place, wherein said policies comprise at least one of a scheduled policy, an automatic policy, an on-demand policy, and a custom policy.

17. The computer program product of claim 13, wherein said transfer and receive means comprise:

 means for enabling a processor to synchronize a local database with an consolidated database, comprising:
 means for enabling a processor to define a service operation, wherein the service operation comprises a transaction;
 means for enabling a processor to process the transaction on the local database;
 means for enabling a processor to capture operation calls performed by the transaction; and
 means for enabling a processor to capture change sets of the transaction.

18. The computer program product of claim 13, the computer program logic further comprising:

 means for enabling a processor to create a data subscription to a consolidated database.

19. The computer program product of claim 18, wherein said data subscription creating means comprises:

 means for enabling a processor to create a meta-data definition of a table, the table located within the remote database;
 means for enabling a processor to mark a query to be performed on the table, within the definition, as persistent; and
 means for enabling a processor to generate a persistent query entity based on the definition, wherein the persistent query entity is mapped to a persistent query table in a local database.

20. The computer program product of claim 13, the computer program logic further comprising:
means for enabling a processor to create a persistent query, wherein a table in a consolidated database is represented by a meta-data definition, comprising:
 means for enabling a processor to identify, in the definition, a query to be performed on the table, wherein the query has been marked as a subscribed query;
 means for enabling a processor to define a persistent query entity for the subscribed query;
 means for enabling a processor to map the persistent query entity to a persistent query table; and
 means for enabling a processor to generate query code, the query code operable to perform the query on a local database.

21. The computer program product of claim 13, the computer program logic further comprising:
 means for enabling a processor to perform context-based data pre-fetching and notification for mobile applications.

22. The computer program product of claim 21, wherein said context-based data pre-fetching and notification means comprises:
 means for enabling a processor to create a context model;
 means for enabling a processor to update context variables within the context model that can be used by a mobile application;
 means for enabling a processor to determine a set of data for the mobile application that will leverage context variables from the context model;
 means for enabling a processor to maintain inference engines used by data selection functions to arrive at a likely set of data needed by the mobile application;
 means for enabling a processor to maintain the context model;
 means for enabling a processor to subscribe to changes in context variables for mobile user/device combinations; and
 means for enabling a processor to execute data selection functions to calculate a data set for the mobile application.
23. The computer program product of claim 13, the computer program logic further comprising:
means for enabling a processor to provision applications to mobile devices wherein said provisioning integrates application, device and enterprise security.

24. The computer program product of claim 13, the computer program logic further comprising:
means for enabling a processor to integrate meta-data between development and deployment layers for platform requirements.

25. A system of inherently integrating mobility with an enterprise, comprising:
means for accessing enterprise data from at least one of data sources, enterprise applications and business processes;
means for transferring said data to a plurality of mobile devices over a plurality of diverse networks, wherein said transferring step takes into consideration characteristics of said diverse networks;
means for receiving from said mobile devices data generated by said mobile devices while performing enterprise-related operations at a wireless edge; and
means for responding to environmental changes using said received data.

26. An unwired enterprise platform (UEP), comprising:
a plurality of data sources;
a mobile services layer;
a data services layer coupling said data sources to said mobile services layer; and
a device services layer at least partially resident in mobile devices and coupling said mobile devices to said mobile services layer.
Access enterprise data from any source

Transfer subset of data across network(s) taking into consideration characteristics of network(s) (occasionally connected, diverse networks, etc.)

Mobile devices use enterprise data on the edge of the network

Data is transferred from mobile devices to enterprise across network(s), again taking into consideration characteristics of network(s)

Enterprise uses data from mobiles to adjust/respond to changing environment

FIG. 9
1002

Select data sources and create access mechanisms to data sources

1004

Determine/generate user business logic components and write code corresponding to business logic

1006

Build mobile applications in accordance with business logic using device services API (device abstraction)

1008

Transfer applications to mobile devices

1010

FIG. 10
Developer develops Application (identifies required components)

Metadata provided to provisioning layer of Middleware

Device requests application

Mobile services identifies user & determines whether to grant request based on applicable policies

Grant Request?

Yes

Device services automatically interacts with middleware to access associated metadata and identify required components

Required components installed on device

Requested application pushed to device

Done

FIG. 15
INTERNATIONAL SEARCH REPORT

International application No
PCT/US 08/08117

A CLASSIFICATION OF SUBJECT MATTER

IPC(8) - H 04H 20/71 (2008.04)
USPC - 455/3 05

According to International Patent Classification (IPC) or to both national classification and IPC

B FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC(8) H 04H 20/71 (2008.04)
USPC 455/3 05

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

IPC(8) H 04H 20/71 (2008.04) (text search)
USPC 455/0 1, 3 05, 709/208, 212, 217, 238, 700/1, 90 (text search)

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

PubWEST (USPT, PGPB, EPAB, JPAB), Internet search via Google Web and Google Scholar search engines Search terms used mobile enterprise query structured synchronize synchronization meta-data context model inference engine persistent query pre-fetching service layer

C DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 6,728,702 B1 (Subramaniam et al) 27 April 2004 (27 04 2004), entire document, especially col 2 through 36, Fig 1</td>
<td>1-26</td>
</tr>
<tr>
<td>A</td>
<td>US 5,857,201 A (Wright Jr et al) 05 January 1999 (05 01 1999), entire document</td>
<td>1-26</td>
</tr>
</tbody>
</table>

* Special categories of cited documents
"A" document defining the general state of the art which is not considered to be of particular relevance
"E" earlier application or patent but published or on or after the international filing date
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
"O" document referring to an oral disclosure, use, exhibition or other means
"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"X" document of particular relevance, the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"Y" document of particular relevance, the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"Z" document member of the same patent family

Date of the actual completion of the international search
08 October 2008 (08 10 2008)

Date of mailing of the international search report
29 OCT 008

Name and mailing address of the ISA/US
Mail Stop PCT, Attn ISA/US, Commissioner for Patents
P.O. Box 1450, Alexandria, Virginia 22313-1450

Authorized officer
Lee W Young
PCT Helpdesk, 571 272-4300
PCT OSP 571 272-7774

Form PCT/ISA/210 (second sheet) (April 2007)