
(19) United States
US 20120254586A1

(12) Patent Application Publication (10) Pub. No.: US 2012/0254586 A1
Amin et al. (43) Pub. Date: Oct. 4, 2012

(54)

(75)

(73)

(21)

(22)

(63)

(60)

QUANTUMAND DIGITAL PROCESSOR Publication Classification
HYBRD SYSTEMIS AND METHODS TO (51) Int. Cl
SOLVE PROBLEMS G06F 5/76 (2006.01)

Inventors: Mohammad Amin, Vancouver G06F 9/02 (2006.01)
(CA); Michael D. Coury, (52) U.S. Cl. 712/29, 712/E09.002
Vancouver (CA)

(57) ABSTRACT
Assignee: D-WAVE SYSTEMS INC.,

Burnaby (CA) Quantum processors and classical computers are employed
together to solve computational problems. The classical com

Appl. No.: 13/439,685 puter may include a parameter learning module that produces
a set of parameters. The quantum processor may be config

Filed: Apr. 4, 2012 ured with the set of parameters to define a problem Hamilto
nian and operated to perform adiabatic quantum computation

Related U.S. Application Data and/or quantum annealing on the problem Hamiltonian to
Continuation of application No. 12/945,717, filed on return a first solution to the problem. The parameter learnin9.

- 0 module of the classical computer may then be used to revise
Nov. 12, 2010, now Pat. No. 8,175,995, which is a the set of parameters bV performing a classical optimization
continuation of application No. PCT/US2009/04.6791, paran ype ning a p s Such as a classical heuristic optimization. The quantum pro filed on Jun. 9, 2009. cessor may then be programmed with the revised set of
Provisional application No. 61/060,318, filed on Jun. parameters to return a revised solution to the problem. The
10, 2008, provisional application No. 61/095,527, quantum processor may include a Superconducting quantum
filed on Sep. 9, 2008. processor implementing Superconducting flux qubits.

136 108
f02

BIOS 100
p w Operating System -/

fSO Client Computing System End User Application Interfaces
N Server

Client Program Solver
Parameter Learning
Translator

170 33
4.

Database Analog Processor Interface
System Networking

f04

Qubit Node 1
Qubit Node 2

Coupling 1
Coupling 2 -158 -160

Qubit Node 3
Qubit Node n

Coupling 3 Coupling
Device
Control System

Qubit
Control System Coupling m

Oct. 4, 2012 Sheet 1 of 9 US 2012/O254586 A1 Patent Application Publication

00/

801

L–– – – – – – – – – – – – – – – – ––

09/

06/ 99 /

Oct. 4, 2012 Sheet 2 of 9 US 2012/O254586 A1 Patent Application Publication

090/

99,0/

Patent Application Publication Oct. 4, 2012 Sheet 3 of 9 US 2012/O254586 A1

202

Receive information indicative of a problem

Determining a set of features associated with
the problem

Compare the set of features with previously
determined sets of features associated with

other problems

Generate a set of parameters for a solver
based at least in part on the comparing the
set of features with the previously determined

sets of features

Solve the problem using the set of
parameters to generate a solution

FIG 2

Patent Application Publication Oct. 4, 2012 Sheet 4 of 9 US 2012/O254586 A1

302

Store the set of parameters used to solve
the problem

304

Vary at least one parameter of the set of
parameters to generate a revised set of

parameters

Solve the problem using the revised set of
parameters to generate a revised solution

Compare the revised solution with the solution

306

303

310

Store the revised set of parameters if the
revised solution is of a higher quality

than the Solution

FIC, 3

Patent Application Publication Oct. 4, 2012 Sheet 5 of 9 US 2012/O254586 A1

402

Determine a training set of features
associated with a training problem having a

previously determined answer
404

Generate an initial set of parameters for a
solver

406

Vary at least one parameter of the initial set
of parameters to generate a revised set of

parameters
408

Solve the training problem using the revised
set of parameters to generate a revised

solution

410

previously determined answer
412

Store the revised set of parameters as a
training set of parameters based at least in
part on the comparing the revised solution

with the previously determined answer
414

Logically associate the training set of
features with the training set of parameters

Save information indicative of the training
set of features as one of the previously

determined sets of features

FIG. 4

Patent Application Publication Oct. 4, 2012 Sheet 6 of 9 US 2012/O254586 A1

502

Identify an undetermined characteristic of a
solver associated with a problem

Vary at least one parameter of a set of
parameters to generate a revised set of

parameters

Solve the problem using the revised
set of parameters

Generate information associated with the
undetermined characteristic based at least in

part on the solving the problem

FIG 5

Patent Application Publication Oct. 4, 2012 Sheet 7 of 9 US 2012/O254586 A1

s

3

US 2012/O254586 A1 Oct. 4, 2012 Sheet 8 of 9

{}{}}

Patent Application Publication

Oct. 4, 2012 Sheet 9 of 9 US 2012/O254586 A1 Patent Application Publication

US 2012/O254586 A1

QUANTUMAND DIGITAL PROCESSOR
HYBRD SYSTEMIS AND METHODS TO

SOLVE PROBLEMS

CROSS REFERENCE TO RELATED
APPLICATIONS

0001. This is a continuation application of U.S. patent
application Ser. No. 12/945,717, filed Nov. 12, 2010, which is
a continuation application of PCT/US2009/04.6791 filed on
Jun. 9, 2009, which claims benefit under 35 U.S.C. 119(e) of
U.S. Provisional Patent Application Ser. No. 61/060,318,
filed Jun. 10, 2008 and entitled “PARAMETER LEARNING
SYSTEM FOR SOLVERS, and U.S. Provisional Patent
Application Ser. No. 61/095,527, filed Sep. 9, 2008 and
entitled METHODS AND APPARATUS FOR SOLVING
COMPUTATIONAL PROBLEMS, each of which are incor
porated herein by reference in their entirety.

BACKGROUND OF THE DISCLOSURE

0002 1. Field of the Disclosure
0003. This disclosure generally relates to solvers, and,
more particularly, to Solvers for computationally complex
problems.
0004 2. Description of the Related Art
0005. A Turing machine is a theoretical computing sys
tem, described in 1936 by Alan Turing. A Turing machine that
can efficiently simulate any other Turing machine is called a
Universal Turing Machine (UTM). The Church-Turing thesis
states that any practical computing model has either the
equivalent of or a subset of the capabilities of a UTM.
0006. A quantum computer is any physical system that
harnesses one or more quantum effects to perform a compu
tation. A quantum computer that can efficiently simulate any
other quantum computer is called a Universal Quantum Com
puter (UQC).
0007. In 1981 Richard P. Feynman proposed that quantum
computers could be used to solve certain computational prob
lems more efficiently thana UTM and therefore invalidate the
Church-Turing thesis. See, e.g., Feynman R. P. “Simulating
Physics with Computers’. International Journal of Theoreti
cal Physics, Vol. 21 (1982) pp. 467-488. For example, Mr.
Feynman noted that a quantum computer could be used to
simulate certain other quantum systems, allowing exponen
tially faster calculation of certain properties of the simulated
quantum systems than is possible using a UTM.
0008 Complex Problems
0009. In complexity theory, a first problem class P is
defined as the set of decision problems that can be solved in
polynomial time on a deterministic Turing machine. These
problems are generally considered tractable; i.e., they are
problems that can be solved in reasonable computation time
on a Turing machine.
0010. In contrast, a second problem class NP is defined as
the set of decision problems that can be solved in polynomial
time on a nondeterministic Turing machine. This means that
solutions to problems in the NP problem class can be verified
in polynomial time on a deterministic Turing machine, but
this does not imply that these problems can be solved in
polynomial time on a deterministic Turing machine. All prob
lems in Pare also in NP. However, it is not yet known if there
are problems in NP that are not in P.
0011. A subset of the class NP is the NP-complete class of
problems. The NP-complete class of problems includes all

Oct. 4, 2012

problems that are in NP and that have been identified as
NP-hard. The NP-hard class of problems, in turn, includes all
problems that are at least as hard as any other problem in the
class NP. That is, a problem R is NP-hard if there is an
NP-complete problem that can be “reformulated into an
instance of the problem R in deterministic polynomial time.
0012 Some examples of NP-hard problems are: the trav
eling salesman problem (given a number of cities and the
costs of travelling between the cities, what is the least-cost
round-trip route that visits each city exactly once and then
returns to the starting city?); the maximum satisfiability
(“MAX-SAT) problem (given a series of Boolean expres
sions, what assignment of TRUE and FALSE values to the
variables in the expressions will make the maximum number
of expressions true?); the Hamiltonian path/circuit problem
(does a graph G define a path that travels through all nodes
exactly once?); and the graph coloring problem (what is the
minimum number of colors needed to color the vertices of a
given graph Such that no two adjacent vertices have the same
color?).
0013 Another problem class BQP relating specifically to
quantum computers is defined as the set of decision problems
that can be solved in polynomial time by a quantum computer,
with an error probability between 0 and 1/2 for all instances.
It is believed that BQP is a superset of P that does not include
the NP-complete problems (PCBQPC PSPACE; Po NP
CPSPACE). However, it should be noted that many believe
that the problems within NP-complete might be solved using
a quantum computer much more quickly than using a UTM.
(0014. Heuristic Solvers for Complex Problems
0015. A number of algorithms have been developed to find
the exact, optimal solutions to the above-described NP-hard
problems. However, even when employing quantum compu
tation, these algorithms are not guaranteed to find the optimal
Solution in polynomial time. As a result, heuristic algorithms
are typically used in order to find at least a locally optimal
Solution in a relatively small amount of computation time.
0016. A number of heuristic solvers have been developed
to find locally optimal solutions to computationally complex
problems (e.g., NP-hard problems) using both classical/digi
tal computers and quantum computers. Many of these heu
ristic solvers function by searching through the landscape of
potential solutions in order to find a locally optimal solution.
Although these heuristic solvers are not guaranteed to find the
global optimal solution to these problems, they may find close
to the global optimal solution with sufficient run time. Such
heuristic solvers include: genetic algorithms (in which good
Solutions evolve in a process designed to mimic natural selec
tion); tabu search methods (a local search algorithm that
permits non-improving moves and prevents cycling back to
previously visited solutions by using “tabulists’ to record a
recent solution history); and simulated annealing algorithms
(another local search algorithm that permits non-improving
moves with decreasing probability as the search comes to an
end). More information regarding Such solvers may be found,
for example, in the text, Search Methodologies. Introductory
Tutorials in Optimization and Design Support Techniques,
edited by Edmund Burke and Graham Kendall, 2005, ISBN
10: O-387-23460-8.
0017 Unfortunately, the ability of such heuristic solvers to
find a good solution relatively quickly is often highly depen
dent upon the particular values chosen for a number of param
eters associated with each solver. Optimal parameters for the
heuristic solvers may vary greatly from problem to problem,

US 2012/O254586 A1

and typically an expert user determines these parameters
empirically through extensive experimentation. Such work
by experts has been detailed in Hutter. F., et al., Automatic
Algorithm Configuration based on Local Search, In Proceed
ings of the Twenty-First Conference on Artificial Intelligence,
http://www.cs.ubc.ca/~hutter/papers/aaai07 param ils.pdf.
(2007). Indeed, a problem may be more amenable to solution
by a certain type of heuristic solver, and even the choice of
which solver to employ may require significant experimen
tation by an expert user.
0018 Approaches to Quantum Computation
0019. There are several general approaches to the design
and operation of quantum computers. One such approach is
the “circuit model of quantum computation. In this
approach, qubits are acted upon by sequences of logical gates
that are the compiled representation of an algorithm. Circuit
model quantum computers have several serious barriers to
practical implementation. In the circuit model, it is required
that qubits remain coherent over time periods much longer
than the single-gate time. This requirement arises because
circuit model quantum computers require operations that are
collectively called quantum error correction in order to oper
ate. Quantum error correction cannot be performed without
the circuit model quantum computer's qubits being capable of
maintaining quantum coherence over time periods on the
order of 1,000 times the single-gate time. Much research has
been focused on developing qubits with coherence Sufficient
to form the basic information units of circuit model quantum
computers. See, e.g., Shor, P. W. “Introduction to Quantum
Algorithms arXiv.org:quant-ph/0005003 (2001), pp. 1-27.
The art is still hampered by an inability to increase the coher
ence of qubits to acceptable levels for designing and operat
ing practical circuit model quantum computers.
0020. Another approach to quantum computation,
involves using the natural physical evolution of a system of
coupled quantum systems as a computational system. This
approach does not make critical use of quantum gates and
circuits. Instead, starting from a known initial Hamiltonian, it
relies upon the guided physical evolution of a system of
coupled quantum systems wherein the problem to be solved
has been encoded in the terms of the system's Hamiltonian, so
that the final state of the system of coupled quantum systems
contains information relating to the answer to the problem to
be solved. This approach does not require long qubit coher
ence times. Examples of this type of approach include adia
batic quantum computation, cluster-state quantum computa
tion, one-way quantum computation, quantum annealing and
classical annealing, and are described, for example, in Farhi,
E. et al., “Quantum Adiabatic Evolution Algorithms versus
Simulated Annealing.” arXiv.org:quant-ph/0201031 (2002),
pp. 1-16.
0021 Qubits
0022. As mentioned previously, qubits can be used as fun
damental units of information for a quantum computer. As
with bits in UTMs, qubits can refer to at least two distinct
quantities; a qubit can refer to the actual physical device in
which information is stored, and it can also refer to the unit of
information itself, abstracted away from its physical device.
Examples of qubits include quantum particles, atoms, elec
trons, photons, ions, and the like.
0023. Qubits generalize the concept of a classical digital

bit. A classical information storage device can encode two
discrete states, typically labeled “0” and “1”. Physically these
two discrete states are represented by two different and dis

Oct. 4, 2012

tinguishable physical states of the classical information Stor
age device, such as direction or magnitude of magnetic field,
current, or Voltage, where the quantity encoding the bit state
behaves according to the laws of classical physics. A qubit
also contains two discrete physical states, which can also be
labeled “O'” and “1”. Physically these two discrete states are
represented by two different and distinguishable physical
states of the quantum information storage device. Such as
direction or magnitude of magnetic field, current, or Voltage,
where the quantity encoding the bit state behaves according to
the laws of quantum physics. If the physical quantity that
stores these states behaves quantum mechanically, the device
can additionally be placed in a superposition of 0 and 1. That
is, the qubit can exist in both a “0” and “1” state at the same
time, and so can perform a computation on both states simul
taneously. In general, Ngubits can beina Superposition of 2^
states. Quantum algorithms make use of the Superposition
property to speed up some computations.
0024. In standard notation, the basis states of a qubit are
referred to as the 10) and 1) states. During quantum com
putation, the State of a qubit, in general, is a Superposition of
basis states so that the qubit has a nonzero probability of
occupying the 10) basis state and a simultaneous nonzero
probability of occupying the 1) basis state. Mathematically,
a Superposition of basis states means that the overall state of
the qubit, which is denoted IIT), has the form 1) =a.0
) +b|1), where a and b are coefficients corresponding to the
probabilities la' and blf, respectively. The coefficients a and
beach have real and imaginary components, which allows the
phase of the qubit to be characterized. The quantum nature of
a qubit is largely derived from its ability to exist in a coherent
superposition of basis states and for the state of the qubit to
have a phase. A qubit will retain this ability to exist as a
coherent Superposition of basis states when the qubit is Suf
ficiently isolated from sources of decoherence.
0025 To complete a computation using a qubit, the state of
the qubit is measured (i.e., read out). Typically, when a mea
Surement of the qubit is performed, the quantum nature of the
qubit is temporarily lost, and the Superposition of basis states
collapses to either the 10) basis state or the 11) basis state.
The qubit thus regains its similarity to a conventional bit. The
actual state of the qubit after it has collapsed depends on the
probabilities lal’ and bl’ immediately prior to the readout
operation.
0026
0027. There are many different hardware and software
approaches under consideration for use in quantum comput
ers. One hardware approach uses integrated circuits formed
of Superconducting materials, such as aluminum or niobium.
Some of the technologies and processes involved in designing
and fabricating Superconducting integrated circuits are simi
lar in some respects to those used for conventional integrated
circuits.
0028 Superconducting qubits are a type of superconduct
ing device that can be included in a Superconducting inte
grated circuit. Typical Superconducting qubits, for example,
have the advantage of Scalability and are generally classified
depending on the physical properties used to encode infor
mation including, for example, charge and phase devices,
phase or flux devices, hybrid devices, and the like. Supercon
ducting qubits can be separated into several categories
depending on the physical property used to encode informa
tion. For example, they may be separated into charge, flux and

Superconducting Qubits

US 2012/O254586 A1

phase devices, as discussed in, for example, Makhlin et al.,
2001, Reviews of Modern Physics 73, pp. 357-400.
0029 Charge devices store and manipulate information in
the charge states of the device, where elementary charges
consist of pairs of electrons called Cooper pairs. A Cooper
pair has a charge of 2e and consists of two electrons bound
together by, for example, a phonon interaction. See, e.g.,
Nielsen and Chuang, Quantum Computation and Ouantum
Information, Cambridge University Press, Cambridge
(2000), pp. 343-345. Flux devices store information in a
variable related to the magnetic flux through some part of the
device. Phase devices store information in a variable related
to the difference in Superconducting phase between two
regions of the phase device. Recently, hybrid devices using
two or more of charge, flux and phase degrees of freedom
have been developed. See, e.g., U.S. Pat. No. 6,838,694 and
U.S. Pat. No. 7,335,909.
0030 Examples of flux qubits that may be used include
rf-SQUIDs, which include a superconducting loop inter
rupted by one Josephson junction, or a compound junction
(where a single Josephsonjunction is replaced by two parallel
Josephson junctions), or persistent current qubits, which
include a Superconducting loop interrupted by three Joseph
son junctions, and the like. See, e.g., Mooi et al., 1999,
Science 285, 1036; and Orlando et al., 1999, Phys. Rev. B 60,
15398. Other examples of superconducting qubits can be
found, for example, in Ilichev et al., 2003, Phys. Rev. Lett. 91,
097906: Blatter et al., 2001, Phys. Rev. B 63, 174511, and
Friedman et al., 2000, Nature 406, 43. In addition, hybrid
charge-phase qubits may also be used.
0031. The qubits may include a corresponding local bias
device. The local bias devices may include a metal loop in
proximity to a Superconducting qubit that provides an exter
nal flux bias to the qubit. The local bias device may also
include a plurality of Josephson junctions. Each Supercon
ducting qubit in the quantum processor may have a corre
sponding local bias device or there may be fewer local bias
devices than qubits. In some embodiments, charge-based
readout and local bias devices may be used. The readout
device(s) may include a plurality of dc-SQUID magnetom
eters, each inductively connected to a different qubit within a
topology. The readout device may produce a Voltage or cur
rent. DC-SQUID magnetometers including a loop of super
conducting material interrupted by at least one Josephson
junction are well known in the art.
0032 Quantum Processor
0033. A computer processor may take the form of an ana
log processor. For instance, a quantum processor, Such as a
Superconducting quantum processor, may be used. A quan
tum processor may include a number of qubits and associated
local bias devices, such as two or more Superconducting
qubits. Further detail and embodiments of exemplary quan
tum processors that may be used in conjunction with the
present systems, methods, and apparatus are described in US
Patent Publication No. 2006-0225165, US Patent Publication
2008-0176750, US Patent Application Publication No. 2009
0121215, and PCT Patent Application Serial No. PCT/US09/
37984.
0034. A quantum processor may also include a number of
coupling devices operable to selectively couple respective
pairs of qubits. Examples of Superconducting coupling
devices include rf-SQUIDs and dc-SQUIDs, which may
couple qubits together by flux. SQUIDs include a supercon
ducting loop interrupted by one Josephson junction (an rf

Oct. 4, 2012

SQUID) or two Josephsonjunctions (adc-SQUID). The cou
pling devices may be capable of both ferromagnetic and
anti-ferromagnetic coupling, depending on how the coupling
device is being utilized within the interconnected topology. In
the case offlux coupling, ferromagnetic coupling implies that
parallel fluxes are energetically favorable, and anti-ferromag
netic coupling implies that anti-parallel fluxes are energeti
cally favorable. Alternatively, charge-based coupling devices
may also be used. Other coupling devices can be found, for
example, in U.S. Patent Application Publication No. 2006
0147154, U.S. Patent Application Publication No. 2008
0238531, U.S. Patent Application Publication No. 2008
0274898 and US Patent Application Publication No. 2009
0078932. Respective coupling strengths of the coupling
devices may be tuned between Zero and a maximum value, for
example, to provide ferromagnetic oranti-ferromagnetic cou
pling between qubits.
0035 Adiabatic Quantum Computation
0036 Adiabatic quantum computation typically involves
evolving a system from a known initial Hamiltonian (the
Hamiltonian being an operator whose eigenvalues are the
allowed energies of the system) to a final Hamiltonian by
gradually changing the Hamiltonian. A simple example of an
adiabatic evolution is:

where H, is the initial Hamiltonian, H, is the final Hamilto
nian, H is the evolution or instantaneous Hamiltonian, and S
is an evolution coefficient which controls the rate of evolu
tion. As the system evolves, the coefficients goes from 0 to 1
such that at the beginning (i.e., s=0) the evolution Hamilto
nian H is equal to the initial Hamiltonian H, and at the end
(i.e., s=1) the evolution Hamiltonian H is equal to the final
Hamiltonian H. Before the evolution begins, the system is
typically initialized in a ground state of the initial Hamilto
nian H, and the goal is to evolve the system in Such a way that
the system ends up in a ground State of the final Hamiltonian
H, at the end of the evolution. If the evolution is too fast, then
the system can be excited to a higher energy state, such as the
first excited State. In the present systems, methods, and appa
ratus, an “adiabatic' evolution is considered to be an evolu
tion that satisfies the adiabatic condition:

where s is the time derivative of s, g(s) is the difference in
energy between the ground State and first excited State of the
system (also referred to herein as the 'gap size) as a function
ofs, and 6 is a coefficient much less than 1.
0037. The evolution process in adiabatic quantum com
puting may sometimes be referred to as annealing. The rate
that S changes, sometimes referred to as an evolution or
annealing schedule, is normally slow enough that the system
is always in the instantaneous ground state of the evolution
Hamiltonian during the evolution, and transitions at anti
crossings (i.e., when the gap size is Smallest) are avoided.
Further details on adiabatic quantum computing systems,
methods, and apparatus are described in U.S. Pat. No. 7,135,
701.

0038 Quantum Annealing
0039 Quantum annealing is a computation method that
may be used to find a low-energy state, typically preferably
the ground state, of a system. Similar in concept to classical
annealing, the method relies on the underlying principle that
natural systems tend towards lower energy States because

US 2012/O254586 A1

lower energy states are more stable. However, while classical
annealing uses classical thermal fluctuations to guide a sys
tem to its global energy minimum, quantum annealing may
use quantum effects, such as quantum tunneling, to reach a
global energy minimum more accurately and/or more
quickly. It is known that the Solution to a hard problem, Such
as a combinatorial optimization problem, may be encoded in
the ground state of a system Hamiltonian and therefore quan
tum annealing may be used to find the Solution to such hard
problems. Adiabatic quantum computation is a special case of
quantum annealing for which the system, ideally, begins and
remains in its ground State throughout anadiabatic evolution.
Thus, those of skill in the art will appreciate that quantum
annealing systems and methods may generally be imple
mented on an adiabatic quantum computer, and vice versa.
Throughout this specification and the appended claims, any
reference to quantum annealing is intended to encompass
adiabatic quantum computation unless the context requires
otherwise.
0040 Quantum annealing is an algorithm that uses quan
tum mechanics as a source of disorder during the annealing
process. The optimization problem is encoded in a Hamilto
nian H, and the algorithm introduces strong quantum fluc
tuations by adding a disordering Hamiltonian H, that does
not commute with H. An example case is:

where T changes from a large value to Substantially Zero
during the evolution and H may be thought of as an evolution
Hamiltonian similar to H described in the context of adia
batic quantum computation above. The disorder is slowly
removed by removing H (i.e., reducing F). Thus, quantum
annealing is similar to adiabatic quantum computation in that
the system starts with an initial Hamiltonian and evolves
through an evolution Hamiltonian to a final “problem”
Hamiltonian H, whose ground state encodes a solution to the
problem. If the evolution is slow enough, the system will
typically settle in a local minimum close to the exact solution;
the slower the evolution, the better the solution that will be
achieved. The performance of the computation may be
assessed via the residual energy (distance from exact solution
using the objective function) versus evolution time. The com
putation time is the time required to generate a residual
energy below some acceptable threshold value. In quantum
annealing. He may encode an optimization problem and
therefore Hip may be diagonal in the subspace of the qubits
that encode the Solution, but the system does not necessarily
stay in the ground state at all times. The energy landscape of
He may be crafted so that its global minimum is the answer to
the problem to be solved, and low-lying local minima are
good approximations.
0041. The gradual reduction of T in quantum annealing
may follow a defined schedule known as an annealing sched
ule. Unlike traditional forms of adiabatic quantum computa
tion where the system begins and remains in its ground State
throughout the evolution, in quantum annealing the system
may not remain in its ground state throughout the entire
annealing schedule. As such, quantum annealing may be
implemented as a heuristic technique, where low-energy
states with energy near that of the ground state may provide
approximate solutions to the problem.
Adiabatic Quantum Computing and Quantum Annealing
Algorithms
0.042 Typically, an adiabatic quantum computing algo
rithm may be directed towards producing an exact solution to

Oct. 4, 2012

a given problem. This underlying goal may lead to many
complications in the implementation of the algorithm. For
instance, in order to achieve an exact solution it is typically
necessary to prevent transitions at all anti-crossings in the
evolution of the system Hamiltonian. Since some anti-cross
ings may correspond to very Small energy gaps, an algorithm
focused on achieving an exact solution may require an
impractically long evolution schedule. As previously dis
cussed, adiabatic quantum computing may be considered to
be a special case of quantum annealing, and quantum anneal
ing is well-suited to be implemented as a heuristic technique.
Accordingly, the various embodiments described herein pro
vide methods for improving the final Solution of a quantum
computation achieved by either adiabatic quantum comput
ing and/or by quantum annealing. In some embodiments, this
is achieved by using a classical algorithm to improve the
approximate solution obtained by adiabatic quantum compu
tation and/or quantum annealing.

BRIEF SUMMARY

0043. A computer-implemented method of determining
parameters for Solving problems may be Summarized as
including receiving information indicative of a problem;
determining a set of features associated with the problem;
comparing the set of features with previously determined sets
offeatures associated with other problems; generating a set of
parameters for a solver based at least in part on the comparing
the set of features with the previously determined sets of
features; and solving the problem using the set of parameters
to generate a solution.
0044 Receiving the information indicative of the problem
may include receiving the information indicative of the prob
lem via a user interface. Determining the set of features may
includes generating a matrix representation of the problem,
and determining at least one characteristic of the matrix rep
resentation as at least one feature of the set of features. Theat
least one characteristic of the matrix representation may beat
least one of diagonal dominance, positivity, an average of
matrix values, a range of matrix values and sparsity. Deter
mining the set of features may include generating a graphical
representation of the problem, and determining at least one
characteristic of the graphical representation as at least one
feature of the set of features. The at least one characteristic of
the graphical representation may be at least one of eccentric
ity, radius, circumference, and a characteristic of a plurality of
random measurements of the graphical representation. Deter
mining the set of features may include performing a plurality
of walks through a solution space of the problem, and deter
mining at least one characteristic of the plurality of walks as
at least one feature of the set of features. The plurality of
walks may include a plurality of stochastic hill climbs, and
wherein the at least one characteristic of the plurality of walks
may be an average of a number of steps to complete each hill
climb. The problem may be one of an NP-hard or NP-com
plete problem. Determining the set of features may include
determining the set of features in the computer. Determining
the set of features may include generating a problem vector
indicative of the set of features in an n-dimensional feature
space, wherein each dimension of the feature space corre
sponds to a respective feature. Comparing the set of features
with the previously determined sets of features may include
comparing the problem vector with other vectors indicative of
the previously determined sets of features in the n-dimen
sional feature space. Generating the set of parameters for the

US 2012/O254586 A1

Solver may include selecting at least one proximate vector
from among the other vectors, the at least one proximate
vector being relatively proximate the problem vector in the
n-dimensional space, and generating the set of parameters
based at least in part on a prior set of parameters used to Solve
at least one problem associated with the at least one proximate
vector. Generating the set of parameters based at least in part
on the prior set of parameters may include setting the set of
parameters equal to the prior set of parameters. The method
may further include selecting the solver from among a plu
rality of solvers based at least in part on the comparing the set
of features with the previously determined sets of features.
The method may further include determining a training set of
features associated with a training problem having a previ
ously determined answer, generating an initial set of param
eters for the solver, varying at least one parameter of the initial
set of parameters to generate a revised set of parameters,
Solving the training problem using the revised set of param
eters to generate a revised solution, comparing the revised
Solution with the previously determined answer, storing the
revised set of parameters as a training set of parameters based
at least in part on the comparing the revised solution with the
previously determined answer, logically associating the train
ing set of features with the training set of parameters, and
saving information indicative of the training set of features as
one of the previously determined sets of features. The method
may include repeatedly varying at least one parameter of the
revised set of parameters to generate a second revised set of
parameters, solving the problem using the second revised set
of parameters to generate a second revised solution, compar
ing the second revised solution with the previously deter
mined answer, and storing the second revised set of param
eters as the training set of parameters based at least in part on
the comparing the second revised solution with the previously
determined answer. The previously determined answer may
comprises a high quality answer. The method may include
storing the set of parameters used to Solve the problem, vary
ing at least one parameter of the set of parameters to generate
a revised set of parameters, solving the problem using the
revised set of parameters to generate a revised solution, com
paring the revised solution with the Solution, and storing the
revised set of parameters if the revised solution is of a higher
quality than the solution. The acts of varying the at least one
parameter, Solving the problem using the revised set of
parameters, comparing the revised solution with the solution,
and storing the revised set of parameters may be performed
during otherwise idle cycles of the computer. The method
may include storing the set of parameters used to solve the
problem, identifying an undetermined characteristic of the
Solver associated with the problem, varying at least one
parameter of the set of parameters to generate a revised set of
parameters, Solving the problem using the revised set of
parameters, and generating information associated with the
undetermined characteristic based at least in part on solving
the problem using the revised set of parameters. Generating
the information associated with the undetermined character
istic may include determining a timing associated with solv
ing the problem using the revised set of parameters. Solving
the problem using the set of parameters may include solving
the problem on a quantum computer. The computer may be a
classical computer. The computer may be a quantum com
puter.
0045. A computer-implemented method of determining
parameters for Solving problems may be summarized as

Oct. 4, 2012

including receiving information indicative of a problem;
determining a set of features associated with the problem;
comparing the set of features with previously determined sets
of features associated with other problems; and generating a
set of parameters for a solver based at least in part on the
comparing the set of features with the previously determined
sets of features.

0046. The method may include providing the set of param
eters to the solver for use in solving the problem. Receiving
the information indicative of the problem may include receiv
ing the information indicative of the problem via a user inter
face. Determining the set of features may include generating
a matrix representation of the problem, and determining at
least one characteristic of the matrix representation as at least
one feature of the set of features. The at least one character
istic of the matrix representation may be at least one of diago
nal dominance, positivity, an average of matrix values, a
range of matrix values and sparsity. Determining the set of
features may includes generating a graphical representation
of the problem, and determining at least one characteristic of
the graphical representation as at least one feature of the set of
features. The at least one characteristic of the graphical rep
resentation may be at least one of eccentricity, radius, circum
ference, and a characteristic of a plurality of random mea
Surements of the graphical representation. Determining the
set of features may include performing a plurality of walks
through a solution space of the problem, and determining at
least one characteristic of the plurality of walks as at least one
feature of the set of features. The plurality of walks may
include a plurality of stochastic hill climbs, and the at least
one characteristic of the plurality of walks may be an average
of a number of steps to complete each hill climb. The problem
may be one of a NP-hard or NP-complete problem. Deter
mining the set of features may include generating a problem
vector indicative of the set of features in an n-dimensional
feature space wherein each dimension of the feature space
corresponds to a respective feature. Comparing the set of
features with the previously determined sets of features may
include comparing the problem vector with other vectors
indicative of the previously determined sets of features in the
n-dimensional feature space. Generating the set of param
eters for the solver may include selecting at least one proxi
mate vector from among the other vectors, the at least one
proximate vector being relatively proximate the problem vec
tor in the n-dimensional space, and generating the set of
parameters based at least in part on a prior set of parameters
used to solve at least one problem associated with the at least
one proximate vector. Generating the set of parameters based
at least in part on the prior set of parameters may include
setting the set of parameters equal to the prior set of param
eters. The method may include selecting the solver from
among a plurality of solvers based at least in part on the
comparing the set of features with the previously determined
sets of features. The method may include determining a train
ing set of features associated with a training problem having
a previously determined answer, generating an initial set of
parameters for the solver, varying at least one parameter of the
initial set of parameters to generate a revised set of param
eters, receiving a revised solution to the training problem
from the solver, the revised solution associated with the
revised set of parameters, comparing the revised solution with
the previously determined answer, storing the revised set of
parameters as a training set of parameters based at least in part
on the comparing the revised solution with the previously

US 2012/O254586 A1

determined answer, logically associating the training set of
features with the training set of parameters, and saving infor
mation indicative of the training set of features as one of the
previously determined sets of features. The method may
include repeatedly varying at least one parameter of the
revised set of parameters to generate a second revised set of
parameters, receiving a second revised solution to the training
problem from the solver, the second revised solution associ
ated with the second revised set of parameters, comparing the
second revised solution with the previously determined
answer, and storing the second revised set of parameters as
the training set of parameters based at least in part on the
comparing the second revised solution with the previously
determined answer. The method may include receiving a
solution to the problem from the solver, the solution associ
ated with the set of parameters, storing the set of parameters,
varying at least one parameter of the set of parameters to
generate a revised set of parameters, receiving a revised solu
tion to the problem from the solver, the revised solution
associated with the revised set of parameters, comparing the
revised solution with the solution, and storing the revised set
of parameters if the revised solution is of higher quality than
the solution. The method may include storing the set of
parameters, identifying an undetermined characteristic of the
Solver associated with the problem, varying at least one
parameter of the set of parameters to generate a revised set of
parameters, providing the revised set of parameters to the
Solver for use in solving the problem, causing the solver to
solve the problem using the revised set of parameters, and
generating information associated with the undetermined
characteristic based at least in part on the solver Solving the
problem using the revised set of parameters. Generating the
information associated with the undetermined characteristic
may include determining a timing associated with the solver
Solving the problem using the revised set of parameters. The
Solver may comprise a quantum computer.
0047. A classical computer for determining parameters for
Solving problems may be Summarized as including a proces
Sor that executes instructions and a computer-readable
memory that stores instructions, and the instructions stored
on the computer-readable memory may cause the processor to
determine parameters for Solving problems by receiving
information indicative of a problem, determining a set of
features associated with the problem, comparing the set of
features with previously determined sets of features associ
ated with other problems, and generating a set of parameters
for a solver based at least in part on the comparing the set of
features with the previously determined sets of features.
0048. The computer-readable memory may store further
instructions that cause the processor to provide the set of
parameters to the solver for use in Solving the problem.
Receiving the information indicative of the problem may
include receiving the information indicative of the problem
via a user interface. Determining the set of features may
include generating a matrix representation of the problem,
and determining at least one characteristic of the matrix rep
resentation as at least one feature of the set of features. Theat
least one characteristic of the matrix representation may beat
least one of diagonal dominance, positivity, an average of
matrix values, a range of matrix values and sparsity. Deter
mining the set of features may include generating a graphical
representation of the problem, and determining at least one
characteristic of the graphical representation as at least one
feature of the set of features. Theat least one characteristic of

Oct. 4, 2012

the graphical representation may be at least one of eccentric
ity, radius, circumference, and a characteristic of a plurality of
random measurements of the graphical representation. Deter
mining the set of features may include performing a plurality
of walks through a solution space of the problem, and deter
mining at least one characteristic of the plurality of walks as
at least one feature of the set of features. The plurality of
walks may include a plurality of stochastic hill climbs, and
the at least one characteristic of the plurality of walks may be
an average of a number of steps to complete each hill climb.
The problem may be one of a NP-hard or NP-complete prob
lem. Determining the set of features may include generating
a problem vector indicative of the set of features in an n-di
mensional feature space wherein each dimension of the fea
ture space corresponds to a respective feature. Comparing the
set of features with the previously determined sets of features
may include comparing the problem vector with other vectors
indicative of the previously determined sets of features in the
n-dimensional feature space. Generating the set of param
eters for the solver may include selecting at least one proxi
mate vector from among the other vectors, the at least one
proximate vector being relatively proximate the problem vec
tor in the n-dimensional space, and generating the set of
parameters based at least in part on a prior set of parameters
used to solve at least one problem associated with the at least
one proximate vector. Generating the set of parameters based
at least in part on the prior set of parameters may include
setting the set of parameters equal to the prior set of param
eters. The computer-readable memory may store further
instructions that cause the processor to select the Solver from
among a plurality of solvers based at least in part on the
comparing the set of features with the previously determined
sets of features. The computer-readable memory may store
further instructions that cause the processor to determine
parameters for Solving problems by determining a training set
of features associated with a training problem having a pre
viously determined answer, generating an initial set of param
eters for the solver, varying at least one parameter of the initial
set of parameters to generate a revised set of parameters,
receiving a revised solution to the training problem from the
solver, the revised solution associated with the revised set of
parameters, comparing the revised solution with the previ
ously determined answer, storing the revised set of param
eters as a training set of parameters based at least in part on the
comparing the revised solution with the previously deter
mined answer, logically associating the training set of fea
tures with the training set of parameters, and saving informa
tion indicative of the training set of features as one of the
previously determined sets of features. The computer-read
able memory may store further instructions that cause the
processor to determine parameters for solving problems by,
repeatedly, varying at least one parameter of the revised set of
parameters to generate a second revised set of parameters,
receiving a second revised solution to the training problem
from the solver, the second revised solution associated with
the second revised set of parameters, comparing the second
revised solution with the previously determined answer, and
storing the second revised set of parameters as the training set
of parameters based at least in part on the comparing the
second revised solution with the previously determined
answer. The computer-readable memory may store further
instructions that cause the processor to determine parameters
for Solving problems by receiving a solution to the problem
from the solver, the solution associated with the set of param

US 2012/O254586 A1

eters, storing the set of parameters, varying at least one
parameter of the set of parameters to generate a revised set of
parameters, receiving a revised solution to the problem from
the solver, the revised solution associated with the revised set
of parameters, comparing the revised solution with the Solu
tion, and storing the revised set of parameters if the revised
Solution is of higher quality than the solution. The computer
readable memory may store further instructions that cause the
processor to determine parameters for Solving problems by
storing the set of parameters, identifying an undetermined
characteristic of the solver associated with the problem, vary
ing at least one parameter of the set of parameters to generate
a revised set of parameters, providing the revised set of
parameters to the solver for use in Solving the problem, caus
ing the solver to solve the problem using the revised set of
parameters, and generating information associated with the
undetermined characteristic based at least in part on the solver
Solving the problem using the revised set of parameters. Gen
erating the information associated with the undetermined
characteristic may include determining a timing associated
with the solver solving the problem using the revised set of
parameters.
0049. A computer-readable medium that stores instruc
tions may cause a processor to determine parameters for
Solving problems and may be Summarized by receiving infor
mation indicative of a problem, determining a set of features
associated with the problem, comparing the set of features
with previously determined sets of features associated with
other problems, and generating a set of parameters for a solver
based at least in part on the comparing the set of features with
the previously determined sets of features.
0050. The computer-readable medium may store further
instructions that cause a processor to provide the set of param
eters to the solver for use in solving the problem. Receiving
the information indicative of the problem may include receiv
ing the information indicative of the problem via a user inter
face. Determining the set of features may include generating
a matrix representation of the problem, and determining at
least one characteristic of the matrix representation as at least
one feature of the set of features. The at least one character
istic of the matrix representation may be at least one of diago
nal dominance, positivity, an average of matrix values, a
range of matrix values and sparsity. Determining the set of
features may include generating a graphical representation of
the problem, and determining at least one characteristic of the
graphical representation as at least one feature of the set of
features. The at least one characteristic of the graphical rep
resentation may beat least one of eccentricity, radius, circum
ference, and a characteristic of a plurality of random mea
Surements of the graphical representation. Determining the
set of features may include performing a plurality of walks
through a solution space of the problem, and determining at
least one characteristic of the plurality of walks as at least one
feature of the set of features. The plurality of walks may
include a plurality of stochastic hill climbs, and the at least
one characteristic of the plurality of walks may be an average
of a number of steps to complete each hill climb. The problem
may be one of a NP-hard or NP-complete problem. Deter
mining the set of features may include generating a problem
vector indicative of the set of features in an n-dimensional
feature space wherein each dimension of the feature space
corresponds to a respective feature. Comparing the set of
features with the previously determined sets of features may
include comparing the problem vector with other vectors

Oct. 4, 2012

indicative of the previously determined sets of features in the
n-dimensional feature space. Generating the set of param
eters for the solver may include selecting at least one proxi
mate vector from among the other vectors, the at least one
proximate vector being relatively proximate the problem vec
tor in the n-dimensional space, and generating the set of
parameters based at least in part on a prior set of parameters
used to solve at least one problem associated with the at least
one proximate vector. Generating the set of parameters based
at least in part on the prior set of parameters may include
setting the set of parameters equal to the prior set of param
eters. The computer-readable medium may store further
instructions that cause a processor to select the solver from
among a plurality of solvers based at least in part on the
comparing the set of features with the previously determined
sets of features. The computer-readable medium may store
further instructions that cause a processor to determine
parameters for Solving problems by determining a training set
of features associated with a training problem having a pre
viously determined answer, generating an initial set of param
eters for the solver, varying at least one parameter of the initial
set of parameters to generate a revised set of parameters,
receiving a revised solution to the training problem from the
solver, the revised solution associated with the revised set of
parameters, comparing the revised solution with the previ
ously determined answer, storing the revised set of param
eters as a training set of parameters based at least in part on the
comparing the revised solution with the previously deter
mined answer, logically associating the training set of fea
tures with the training set of parameters, and saving informa
tion indicative of the training set of features as one of the
previously determined sets of features. The computer-read
able medium may store further instructions that cause a pro
cessor to determine parameters for Solving problems by,
repeatedly, varying at least one parameter of the revised set of
parameters to generate a second revised set of parameters,
receiving a second revised solution to the training problem
from the solver, the second revised solution associated with
the second revised set of parameters, comparing the second
revised solution with the previously determined answer, and
storing the second revised set of parameters as the training set
of parameters based at least in part on the comparing the
second revised solution with the previously determined
answer. The computer-readable medium may store further
instructions that cause a processor to determine parameters
for Solving problems by receiving a solution to the problem
from the solver, the solution associated with the set of param
eters, storing the set of parameters, varying at least one
parameter of the set of parameters to generate a revised set of
parameters, receiving a revised solution to the problem from
the solver, the revised solution associated with the revised set
of parameters, comparing the revised solution with the solu
tion, and storing the revised set of parameters if the revised
Solution is of higher quality than the Solution. The computer
readable medium may store further instructions that cause a
processor to determine parameters for Solving problems by
storing the set of parameters, identifying an undetermined
characteristic of the solver associated with the problem, vary
ing at least one parameter of the set of parameters to generate
a revised set of parameters, providing the revised set of
parameters to the solver for use in Solving the problem, caus
ing the solver to solve the problem using the revised set of
parameters, and generating information associated with the
undetermined characteristic based at least in part on the solver

US 2012/O254586 A1

Solving the problem using the revised set of parameters. Gen
erating the information associated with the undetermined
characteristic may include determining a timing associated
with the solver solving the problem using the revised set of
parameters.
0051. A method of solving problems may be summarized
as including quantum computationally determining a first
Solution to a problem; and computationally refining the first
Solution to the problem via an optimization algorithm. The
quantum computationally determining a first Solution to a
problem may include performing at least one adiabatic quan
tum computation. The quantum computationally determining
a first Solution to a problem may include performing at least
one quantum annealing computation. Computationally refin
ing the first Solution to the problem via an optimization algo
rithm may include computationally executing a classical
algorithm. Computationally executing a classical algorithm
may include computationally executing a local search algo
rithm. Computationally executing a classical algorithm may
include computationally executing a simulated annealing
algorithm. Computationally refining the first solution to the
problem may include using the first solution as a starting point
for the optimization algorithm. Using the first solution as a
starting point for the optimization algorithm may include
using the first solution as an initial guess for the optimization
algorithm. The first solution to the problem may be an
approximate solution and computationally refining the first
Solution includes producing a second solution to the problem
that is at least as good as the first solution to the problem.
0052 A method of solving problems may be summarized
as quantum computationally determining a first solution to a
problem; casting the first Solution to the problem as the start
ing point for an optimization; and computationally perform
ing an optimization to determine a second solution to the
problem. Quantum computationally determining a first solu
tion to a problem may include performing at least one of
adiabatic quantum computation. Quantum computationally
determining a first Solution to a problem may include per
forming a quantum annealing. Computationally performing
an optimization may include performing a classical optimi
Zation. Performing a classical optimization may include per
forming at least one local search. Performing a classical opti
mization may include performing at least one local simulated
annealing.
0053 A system to solve problems may be summarized as
including at least one quantum processor configured to quan
tum computationally determine a first solution to a problem;
and the system configured to computationally refine the first
Solution to the problem via an optimization algorithm. The
system may, for example, include a classical processor con
figured to execute the optimization algorithm to refine the first
solution to the problem.
0054. A system to solve problems may be summarized as
including at least one quantum processor configured to quan
tum computationally determine a first Solution to a problem
and at least one classical digital processor configured to per
form an optimization to determine a second solution to the
problem based on the first solution to the problem as a starting
point for the optimization.

BRIEF DESCRIPTION OF THE DRAWINGS

0055. In the drawings, identical reference numbers iden
tify similar elements or acts. The sizes and relative positions
of elements in the drawings are not necessarily drawn to scale.

Oct. 4, 2012

For example, the shapes of various elements and angles are
not drawn to scale, and some of these elements are arbitrarily
enlarged and positioned to improve drawing legibility. Fur
ther, the particular shapes of the elements as drawn, are not
intended to convey any information regarding the actual
shape of the particular elements, and have been solely
selected for ease of recognition in the drawings.
0056 FIG. 1A is a high-level block diagram showing a
computing system for Solving complex problems employing
at least one analog processor, according to one illustrated
embodiment.
0057 FIG. 1B is a high-level block diagram showing a
computing system for Solving complex problems employing
at least one solver system, according to one illustrated
embodiment.
0.058 FIG. 2 is a flow diagram illustrating a method of
determining parameters for Solving problems, according to
one illustrated embodiment.
0059 FIG. 3 is a flow diagram illustrating a method of
revising the parameters determined in accordance with the
method of FIG. 2, according to one illustrated embodiment.
0060 FIG. 4 is a flow diagram illustrating a method of
training a computing system to determine parameters for
Solving problems, according to one illustrated embodiment.
0061 FIG. 5 is a flow diagram illustrating a method of
determining undetermined characteristics of a solver used to
Solve problems, according to one illustrated embodiment.
0062 FIG. 6 is an illustrative diagram of an exemplary
energy landscape of a problem Hamiltonian.
0063 FIG. 7 is a flow diagram of an embodiment of a
method for determining a solution to a computational prob
lem.
0064 FIG. 8 is a schematic diagram of a portion of a
conventional Superconducting quantum processor generally
designed for quantum annealing and/or adiabatic quantum
computation.

DETAILED DESCRIPTION

0065. In the following description, certain specific details
are set forth in order to provide a thorough understanding of
various disclosed embodiments. However, one skilled in the
art will understand that the present systems, methods and
articles may be practiced without these details, or with other
methods, components, computing systems, etc. In other
instances, well-known structures and methods associated
with classical, analog and quantum computers, computation
ally complex problems, and heuristic solvers have not been
shown or described in detail to avoid unnecessarily obscuring
descriptions of the embodiments of the present systems,
methods and articles.

0066. In addition, various heuristic solvers are described
herein with reference to certain exemplary complex prob
lems. Of course, heuristic and other types of solvers may be
used to generate solutions for a variety of problems. Such as
optimization problems (e.g., logistics, planning, network uti
lization, etc.), as well as constraint satisfaction problems
(e.g., Scheduling, configuration management, etc.). Accord
ingly, the techniques and systems described herein may be
utilized to solve, or to construct systems that solve, a wide
range of problems.
0067. Unless the context requires otherwise, throughout
the specification and claims which follow, the words “com
prise' and “include and variations thereof, such as, “com

US 2012/O254586 A1

prises”, “comprising”, “includes and “including are to be
construed in an open, inclusive sense, that is, as “including,
but not limited to.”
0068 Reference throughout this specification to “one
embodiment”, “an embodiment”, “one alternative”, “an alter
native' or similar phrases means that a particular feature,
structure or characteristic described is included in at least one
embodiment of the present systems, methods and articles.
Thus, the appearances of Such phrases in various places
throughout this specification are not necessarily all referring
to the same embodiment. Furthermore, the particular fea
tures, structures, or characteristics may be combined in any
Suitable manner in one or more embodiments.
0069. As used in this specification and the appended
claims, the singular forms “a,” “an,” and “the include plural
referents unless the context clearly dictates otherwise. It
should also be noted that the term 'or' is generally employed
in its sense including “and/or unless the context clearly
dictates otherwise.
0070 The headings and Abstract of the Disclosure pro
vided herein are for convenience only and do not interpret the
Scope or meaning of the embodiments.

Description of Exemplary Computing Systems
0071 FIGS. 1A and 1B illustrate two exemplary comput
ing systems 100, 1000 incorporating parameter learning
modules 126, 1026. Although not required, these embodi
ments will be described in the general context of computer
executable instructions. Such as program application mod
ules, objects or macros being executed by computing
systems. Those skilled in the relevant art will appreciate that
the present systems, methods and apparatus can be practiced
with other computing system configurations, including hand
held devices, multiprocessor Systems, microprocessor-based
or programmable consumer electronics, personal computers
(“PCs'), network PCs, mini-computers, mainframe comput
ers, and the like. The embodiments can also be practiced in
distributed computing environments, where tasks or modules
are performed by remote processing devices, which are
linked through a communications network. In a distributed
computing environment, program modules may be located in
both local and remote memory storage devices.
0072 FIG. 1A shows a computing system 100 operable to
Solve complex problems using at least one analog processor,
according to one illustrated embodiment. As will be described
in greater detail below, computing system 100 may further
include a parameter learning module 126 operable to deter
mine parameters for Solving the complex problems.
0073. In one embodiment, computing system 100 includes
a digital/classical computing Subsystem 102 and an analog
computing Subsystem 104 communicatively coupled to digi
tal computing Subsystem 102.
0074 Digital computing subsystem 102 may include at
least one processing unit 106, at least one system memory
108, and at least one system bus 110 that couples various
Subsystem components, including system memory 108 to
processing unit 106. Digital computing subsystem 102 will at
times be referred to in the singular herein, but this is not
intended to limit the application to a single digital computing
subsystem 102. In many embodiments, there will be more
than one digital computing Subsystem 102 or other classical
computing device involved.
0075 Processing unit 106 may be any logic processing

unit, such as one or more central processing units ("CPUs),

Oct. 4, 2012

digital signal processors ("DSPs'), application-specific inte
grated circuits (ASICs'), etc. Unless described otherwise,
the construction and operation of the various blocks shown in
FIG. 1A are of conventional design. As a result, such blocks
need not be described in further detail herein, as they will be
understood by those skilled in the relevant art.
0076 System bus 110 can employ any known bus struc
tures or architectures, including a memory bus with a memory
controller, a peripheral bus, and a local bus. System memory
108 may include read-only memory (“ROM) and random
access memory (“RAM) (not shown). A basic input/output
system (“BIOS) 112, which can form part of the ROM,
contains basic routines that help transfer information between
elements within digital computing Subsystem 102. Such as
during startup.
0077. Digital computing subsystem 102 may also include
non-volatile memory 114. Non-volatile memory 114 may
take a variety of forms, including: a hard disk drive for read
ing from and writing to a hard disk, an optical disk drive for
reading from and writing to removable optical disks, and/or a
magnetic disk drive for reading from and writing to magnetic
disks. The optical disk can be a CD-ROM or DVD, while the
magnetic disk can be a magnetic floppy disk or diskette.
Non-volatile memory 114 may communicate with processing
unit 106 via system bus 110 and may include appropriate
interfaces or controllers 116 coupled between non-volatile
memory 114 and system bus 110. Non-volatile memory 114
may serve as long-term storage for computer-readable
instructions, data structures, program modules and other data
for digital computing Subsystem 102. Although digital com
puting Subsystem 102 has been described as employing hard
disks, optical disks and/or magnetic disks, those skilled in the
relevant art will appreciate that other types of non-volatile
computer-readable media may be employed, such a magnetic
cassettes, flash memory cards, Bernoulli cartridges, RAMS,
ROMs, smart cards, etc.
0078 Various program modules, application programs
and/or data can be stored in system memory 108. For
example, system memory 108 may store an operating system
118, end user application interfaces 120, server applications
122, at least one solver module 124, a parameter learning
module 126 and a translator module 128. In addition, system
memory 108 may store at least one analog processor interface
module 132. The operation and function of these modules are
discussed in detail below.

0079 System memory 108 may also include one or more
networking applications 134, for example, a Web server
application and/or Web client or browser application for per
mitting digital computing Subsystem 102 to exchange data
with Sources via the Internet, corporate Intranets, or other
networks, as well as with other server applications executing
on server computers. Networking application 134 in the
depicted embodiment may be markup language based. Such
as hypertext markup language (“HTML'), extensible hyper
text markup language (XHTML'), extensible markup lan
guage (XML) or wireless markup language (“WML'), and
may operate with markup languages that use syntactically
delimited characters added to the data of a document to rep
resent the structure of the document. A number of Web server
applications and Web client or browser applications are com
mercially available, such as those available from Mozilla and
Microsoft.

0080 While shown in FIG. 1A as being stored in system
memory 108, operating system 118 and various applications/

US 2012/O254586 A1

modules 120, 122, 124,126, 128, 132,134 and other data can
also be stored in nonvolatile memory 114.
0081 Digital computing subsystem 102 can operate in a
networking environment using logical connections to at least
one client computing system 136 and at least one database
system 170. These logical connections may be formed using
any means of digital communication, for example, through a
network 138, such as a local area network (“LAN”) or a wide
area network (“WAN') including, for example, the Internet.
The networking environment may include wired or wireless
enterprise-wide computer networks, intranets, extranets, and/
or the Internet. Other embodiments may include other types
of communication networks Such as telecommunications net
works, cellular networks, paging networks, and other mobile
networks. The information sent or received via the logical
connections may or may not be encrypted. When used in a
LAN networking environment, digital computing Subsystem
102 may be connected to the LAN through an adapter or
network interface card (“NIC) 140 (communicatively linked
to system bus 110). When used in a WAN networking envi
ronment, digital computing Subsystem 102 may include an
interface and modem (not shown), or a device such as NIC
140, for establishing communications over the WAN.
0082 In a networked environment, program modules,
application programs, data, or portions thereof can be stored
outside of digital computing subsystem 102. Those skilled in
the relevant art will recognize that the logical connections
shown in FIG. 1A are only some examples of establishing
communications between computers, and other connections
may also be used.
0083. While digital computing subsystem 102 may gener
ally operate automatically, an end user application interface
120 may also be provided such that an operator can interact
with digital computing subsystem 102 through different user
interfaces 148, including output devices. Such as a monitor
142, and input devices, such as a keyboard 144 and a pointing
device (e.g., mouse 146). Monitor 142 may be coupled to
system bus 110 via a video interface, such as a video adapter
(not shown). Digital computing Subsystem 102 can also
include other output devices, such as speakers, printers, etc.
Other input devices can also be used, including a microphone,
joystick, Scanner, etc. These input devices may be coupled to
processing unit 106 via a serial port interface that couples to
system bus 110, a parallel port, a game port, a wireless inter
face, a universal serial bus (“USB) interface, or via other
interfaces.
0084 Analog computing subsystem 104 may include at
least one analog processor, such as quantum processor 150.
Quantum processor 150 may comprise multiple qubit nodes
152a-152n (collectively 152) and multiple coupling devices
154a-154m (collectively 154).
0085 Analog computing subsystem 104 may further
include a readout device 156 for reading out one or more of
qubit nodes 152. For example, readout device 156 may
include multiple dc-SQUID magnetometers, with each do
SQUID magnetometer being inductively connected to a
respective qubit node 152. NIC 140 may then be communi
catively coupled to readout device 156 in order to receive a
Voltage or current indicative of a reading from readout device
156. The dc-SQUID magnetometers may each comprise a
loop of Superconducting material interrupted by two Joseph
Sonjunctions and are well known in the art.
I0086 Analog computing subsystem 104 may also include
a qubit control system 158 including at least one controller for

Oct. 4, 2012

controlling or setting one or more parameters for Some or all
of qubit nodes 152. Analog computing Subsystem 104 may
further include a coupling device control system 160 includ
ing at least one coupling controller for coupling devices 154.
For example, each coupling controller in coupling device
control system 160 may be operable to tune a coupling
strength of a coupling device 154 between a minimum and a
maximum value. Coupling devices 154 may also be tunable to
provide ferromagnetic or anti-ferromagnetic coupling
between qubit nodes 152.
I0087. Referring again to certain components of digital
computing Subsystem 102 in greater detail, in one embodi
ment, NIC 140 may include appropriate hardware and/or
software for interfacing with qubit nodes 152 and coupling
devices 154, either directly or indirectly through readout
device 156, qubit control system 158, and/or coupling device
control system 160. In other embodiments, different hard
ware may be used to facilitate communications between digi
tal computing Subsystem 102 and analog computing Sub
system 104.
I0088. The functionality of NIC 140 when interfacing with
analog computing Subsystem 104 may be divided into two
classes: data acquisition and control. Different types of chips
may be used to handle each of these discrete tasks. When
acquiring data, NIC 140 may measure the physical properties
of qubit nodes 152 after quantum processor 150 has com
pleted a computation. These physical properties can be mea
Sured using any number of customized or commercially avail
able data acquisition micro-controllers including, for
example, data acquisition cards manufactured by Elan Digital
Systems (Fareham, UK), including the AD 132, AD 136,
MF232, MF236, AD 142, AD218 and CF241 cards. In other
embodiments, both data acquisition and control may be
handled by a single microprocessor, such as the Elan D403C
or D480C. Digital computing subsystem 102 may also
include multiple NICs 140 in other embodiments, in order to
provide sufficient control over qubit nodes 152 and coupling
devices 154 and in order to efficiently measure the results of
a computation conducted using quantum processor 150.
I0089. In one embodiment, analog processor interface
module 132 of digital computing subsystem 102 may include
run-time instructions for coordinating the Solution of compu
tationally complex problems using quantum processor 150.
For instance, analog processor interface module 132 may
cause quantum processor 150 to begin solving an embedded
graph problem that is representative of, or equivalent to, a
constraint satisfaction problem received by server application
122. This may include, e.g., setting initial coupling values and
local bias values for coupling devices 154 and qubit nodes
152, respectively. Qubit nodes 152 and associated local bias
values may represent vertices of an embedded graph, while
coupling devices 154 and associated coupling values may
represent edges of the embedded graph. For example, a vertex
in a graph may be embedded in quantum processor 150 as a
set of qubit nodes 152 coupled to each other ferromagneti
cally, and an edge in the graph may be embedded as a ferro
magnetic or anti-ferromagnetic coupling between sets of
coupled qubit nodes 152. Further information regarding this
form of quantum computation may be found in U.S. Pat. No.
7,418.283, U.S. Patent Application Publication No. 2005/
0250651, and U.S. Pat. No. 7,135,701, each entitled “Adia
batic Quantum Computation with Superconducting Qubits.”
the contents of which applications and patent are hereby
incorporated by reference herein in their entirety. Analog

US 2012/O254586 A1

processor interface module 132 may also include instructions
for reading out the states of one or more qubit nodes 152 at the
end of an evolution via readout device 156. This readout may
represent a solution to the problem.
0090. In one embodiment, server application 122 on digi

tal computing Subsystem 102 may receive and at least par
tially process various types of problems, including computa
tionally complex problems. In particular, server application
122 may be configured to receive a digital representation of a
problem from a local problem source or from a client com
puting system 136. In one embodiment, the problem may be
expressed in a data query language. Server application 122
may then decipher the problem to determine whether the
problem may be solved using solver module 124. If the
received data represents such a problem, server application
122 may then interact with solver module 124 in order to
obtain a solution to the problem. In one embodiment, trans
lator module 128 may be used to translate the problem into a
form usable by solver module 124. For example, translator
module 128 may convert the received expression into an
intermediate problem expression, and a grounder module
may convert the intermediate problem expression into a
primitive problem expression that is usable by solver module
124. In other embodiments, server application 122 may inter
act with other modules, such as parameter learning module
126, before the problem is passed on to solver module 124.
0091 Solver module 124 may carry out various tasks in
order to facilitate the solution of a problem received via server
application 122. In one embodiment, solver module 124 may
interact with analog processor interface 132 in order to cause
quantum processor 150 to provide a solution to the problem.
In another embodiment, Solver module 124 may instead, or in
addition, interact with other solver applications executing on
digital processing Subsystem 102 in order to solve a problem.
Instill another embodiment, solver module 124 may solve the
problem itself, without interacting with other computing sys
tems or Software applications. The Solution may then be
translated into a response that may be forwarded (e.g., by the
server application) back to a requesting entity. Details of an
example Software design for Solving problems using Such an
architecture may be found in co-pending and co-owned U.S.
Patent Publication No. 2009-0077001, the content of which is
hereby incorporated by reference herein in its entirety.
0092. As used herein, the term “solver may refer to any
combination of hardware and/or software components that
generates a solution corresponding to a problem. Such solvers
may comprise solvers designed to calculate an exact, optimal
Solution to the problem (e.g., by exhaustive enumeration) or
may comprise heuristic solvers configured to calculate a solu
tion in a reasonable time period. As described above, in one
embodiment, solver module 124 in combination with quan
tum processor 150 may comprise a solver for certain types of
problems. In another embodiment, solver module 124 in con
junction with other software applications executing in digital
processing Subsystem 102 may comprise a solver for other
problems. It may be understood that the solutions calculated
by Such solvers may be approximate, imperfect and/or only
locally optimal.
0093. As discussed in greater detail below, each solver
within computing subsystem 100 may be associated with a
variety of parameters. For example, if the solver comprises a
heuristic algorithm for searching through a solution space of
a problem, the set of parameters may include variables related
to the duration, scope, starting point and other characteristics

Oct. 4, 2012

of the search. As another example, if the problem is an opti
mization problem, the set of parameters may include vari
ables defining a range of acceptable solutions.
0094. In one embodiment, parameter learning module 126
of digital computing Subsystem 102 may be configured to
automatically generate at least Some of the parameters for a
Solver based at least in part upon particular features of a
problem. In order to facilitate this process, server application
122 or solver module 124 may be operable to send at least
Some information indicative of a new problem on to param
eter learning module 126, and parameter learning module 126
may, in turn, generate parameters that may be forwarded to
Solver module 124. In some embodiments, parameter learn
ing module 126 may be further configured to select a solver
from among a plurality of Solvers in computing system 100
based at least in part upon the features of the problem. Exem
plary methods by which parameter learning module 126 may
determine solvers and/or parameters for solvers are described
in greater detail below with reference to FIGS. 2-5.
0.095 Although illustrated as a separate module, param
eter learning module 126 may, of course, be packaged with
Solver module 124 as a single application in Some embodi
ments. In other embodiments, parameter learning module 126
may execute on a computing system that is logically separate
from digital computing Subsystem 102.
0096 Client computing system 136 may comprise any of
a variety of computing devices communicatively coupled to
computing system 100, and may include a client program 190
configured to properly format and send problems directly or
indirectly to server application 122. Once computing system
100 has determined a solution, server application 122 may be
configured to send information indicative of this solution
back to client program 190.
(0097 FIG. 1B illustrates a computing system 1000 oper
able to solve complex problems by interacting with one or
more solver computing systems, according to one illustrated
embodiment. Computing system 1000, like computing sys
tem 100, may further include a parameter learning module
1026 operable to determine parameters for solving the com
plex problems. Computing system 1000 may be configured
generally similarly to computing system 100 described
above, except as set forth below.
0.098 Computing system 1000 lacks analog processing
subsystem 104 illustrated in FIG. 1A. As a result, computing
system 1000 may also lack analog processor interface 132 of
FIG. 1A. Instead, in one embodiment, computing system
1000 may be communicatively coupled to one or more solver
computing systems 1050. Solver computing systems 1050
may comprise one or more logically separate computing sys
tems that provide solver components for assisting in the solu
tion of various problems, such as computationally complex
constraint satisfaction and optimization problems. In one
embodiment, solver computing systems 1050 may comprise
classical/digital processors executing solver components that
may be communicatively coupled to solver module 1024
executing on computing system 1000. For example, solver
computing systems 1050 may form a distributed computing
network configured to assist in the Solution of computation
ally complex problems under the direction of solver module
1024. In other embodiments, solver computing systems 1050
may include one or more analog processors as well.
0099. Of course, in other embodiments, computing sys
tem 1000 may not be communicatively coupled to solver
computing systems 1050. Instead, solver module 1024 (or

US 2012/O254586 A1

other solver applications executed by computing system
1000) may be operable to solve the problems independently
of any other computing systems.

Description of an Exemplary Method for Determining
Parameters

0100 FIG. 2 illustrates a flow diagram foramethod 200 of
determining parameters for Solving problems, according to
one embodiment. This method 200 will be discussed in the
context of computing system 100 of FIG. 1A. However, it
may be understood that the acts disclosed herein may be
executed in a variety of computing systems and computing
devices (e.g., in computing system 1000 of FIG. 1B) and may
involve different types of solvers, in accordance with the
described method.

0101 Method begins at 202, when information indicative
of a problem is received. As described above, the problem
may comprise any of a variety of problems formatted for
Solution by a computer. In one embodiment, the problem may
comprise a computationally complex problem. For example,
the problem may comprise an NP-hard or NP-complete prob
lem. In another embodiment, the problem may be expressed
as an optimization or constraint satisfaction problem.
0102 Some examples of NP-hard problems are: the trav
eling salesman problem (given a number of cities and the
costs of travelling between the cities, what is the least-cost
round-trip route that visits each city exactly once and then
returns to the starting city?); the MAX-SAT problem (given a
series of Boolean expressions, what assignment of TRUE and
FALSE values to the variables in the expressions will make
the maximum number of expressions true?); the Hamiltonian
path/circuit problem (does a graph G define a path that travels
through all nodes exactly once?); and the graph coloring
problem (what is the minimum number of colors needed to
color the vertices of agraph Such that no two adjacent vertices
have the same color?).
0103) In one embodiment, the problem may be generated
by a client computing system 136, and information indicative
of the problem may be sent via network 138 to computing
system 100. The problem may be generated automatically or
by a user of client computing system 136, and the correspond
ing information may be sent via any of a variety of protocols.
In one embodiment, information indicative of the problem
may be sent from client computing system 136 via hypertext
transfer protocol (“HTTP) or secure hypertext transfer pro
tocol (“HTTPS) over the Internet.
0104. In another embodiment, the problem may be gener
ated automatically by computing system 100. For example,
the problem may be generated by a problem generator (not
shown) executing on digital computing Subsystem 102, and
information indicative of the problem may be sent to server
application 122 or to solver module 124. In yet another
embodiment, a user of computing system 100 may interact
with user interfaces 148 (e.g., keyboard 144) of digital com
puting subsystem 102 and thereby enter information indica
tive of the problem.
0105. The information indicative of the problem may
comprise any of a variety of computer-readable representa
tions of the problem. In one embodiment, the problem may be
received as a data query language ("DQL') expression. This
DQL expression may represent, for example, a search prob
lem. In another embodiment, a logical statement of the prob
lem or a graphical representation of the problem may be used.

Oct. 4, 2012

0106. As described herein, the information indicative of
the problem may be received at a classical computer, such as
digital computing Subsystem 102, and, more particularly, at a
server application 122. In one embodiment, digital comput
ing Subsystem 102 may store this information in database
system 170. In another embodiment, digital computing Sub
system 102 may store the information locally, for example, in
nonvolatile memory 114. Of course, in other embodiments,
the information indicative of the problem may be received at
an analog or other computing device.
0107. In one embodiment, an original problem may be
translated or reduced to a new problem that is more easily
solved by a particular solver in a translator module 128. For
example, a graph coloring problem received at digital com
puting subsystem 102 may be reduced to a SAT problem for
solution by a SAT problem solver. In such an embodiment,
this translation or reduction may be performed by any of a
variety of components. The new information indicative of the
new problem may then be received, and the acts described
below may also be performed with reference to the new
problem.
0108. At act 204, a set of features associated with the
problem is determined. This set of features may comprise one
or more characteristics associated with the problem. In one
embodiment, the set of features may be associated with par
ticular representations of the problem. In another embodi
ment, the set of features may include information associated
with the type of problem or may comprise other intrinsic
characteristics associated with the problem.
0109. In one embodiment, at least one feature of the set of
features may be associated with a matrix representation of the
problem. In such an embodiment, a matrix representation of
the problem may be generated, and a characteristic of the
matrix representation may be determined as the at least one
feature. As would be well understood by those skilled in the
art, for many NP-complete and NP-hard problems, a matrix
representation may be relatively easily generated. For
example, for a traveling salesman problem involving in cities,
annxn matrix may be generated, wherein each element of the
matrix denotes a distance between a respective pair of cities.
As another example, for a graph coloring problem involving
in Vertices, an nxn adjacency matrix may be generated,
wherein each non-diagonal element of the matrix denotes a
number of edges between a respective pair of Vertices, and
each diagonal element corresponds to a number of loops at a
respective vertex.
0110. A variety of characteristics of the matrix represen
tation may be determined as at least one feature of the set of
features. In one embodiment, a diagonal dominance of the
matrix may be used. In another embodiment, a positivity of
the matrix may be used. In yet another embodiment, an aver
age of the values of the matrix elements may be used. In
another embodiment, a range of the values of the matrix
elements may be used. In still another embodiment, a sparsity
of the matrix may be used. Any or all of these characteristics
of the matrix representation may comprise features in the set
of features associated with the problem.
0111. In another embodiment, at least one feature of the
set of features may be associated with a graphical represen
tation of the problem. In such an embodiment, a graphical
representation of the problem may be generated, and a char
acteristic of the graphical representation may be determined
as the at least one feature. As would be well understood by
those skilled in the art, for many NP-complete and NP-hard

US 2012/O254586 A1

problems, a graphical representation may be relatively easily
generated. For example, for a traveling salesman problem, a
weighted graph may be generated, wherein each vertex of the
graph represents a city, and edges joining the vertices of the
graph represent distances between respective cities. For other
problems, such as the graph coloring problem, a definition of
the problem may itself define a graphical representation.
0112 A variety of characteristics of the graphical repre
sentation may be determined as at least one feature of the set
of features. In one embodiment, an eccentricity of the graph
may be used. In another embodiment, a radius or circumfer
ence of the graph may be used. In yet another embodiment, a
plurality of random measurements of the graph may be taken
(e.g., for a large number of random vertices of the graph, find
an average number of vertices located within 3 edges of that
Vertex; or start a random walk at a random initial vertex and
walk to a random vertex adjacent to the random initial vertex
and continue for a number of steps and determine various
characteristics, such as eccentricity, girth, radius, and diam
eter, of the induced subgraph). Characteristics of Such ran
dom measurements may then be used as features of the set of
features. Any or all of these characteristics of the graphical
representation may comprise features in the set of features
associated with the problem.
0113. In still another embodiment, at least one feature of
the set of features may be associated with a plurality of walks
through a solution space of the problem. In Such an embodi
ment, a plurality of walks through the Solution space may be
performed, and a characteristic of the plurality of walks may
be determined as the at least one feature. Each walk of the
plurality of walks may be performed by any of a variety of
algorithms operable to navigate along a number of Solutions
through the solution space. For example, a simple hill climb
ing search algorithm may be used. As would be well under
stood by those skilled in the art, Such an algorithm begins with
an initial Solution and then iteratively improves the Solution at
each step by applying a minor change to a preceding solution.
A simple hill climbing algorithm will then stop when a local
optimal solution is found. In one embodiment, the plurality of
walks may include a plurality of randomhill climbs, or simple
hill climbs beginning at random solutions within the Solution
space. Of course, in other embodiments, other techniques for
walking through the solution space may be used.
0114. A variety of characteristics of the plurality of walks
may be determined as at least one feature within the set of
features. In the random hill climb example described above,
an average of a number of steps required to complete each hill
climb may be used. In other embodiments, other characteris
tics of the plurality of walks may be used.
0115. In one embodiment, characteristics of all of the
above representations may comprise features in the set of
features. In other embodiments, characteristics of one or
more of the above representations may comprise features in
the set of features. Of course, in other embodiments, still
other characteristics of a problem may comprise the set of
features.
0116. In one embodiment, digital computing Subsystem
102, and, in particular, parameter learning module 126, may
determine the set of features associated with the problem.
Parameter learning module 126 may also take advantage of
other available computing resources when determining the
set of features. For example, in order to obtain characteristics
concerning the plurality of walks, parameter learning module
126 may request that analog processing Subsystem 104 per

Oct. 4, 2012

form the walks under the direction of parameter learning
module 126. As another example, parameter learning module
126 may leverage the computing resources of a plurality of
networked computers (e.g., solver computing systems 1050)
in order to perform tasks necessary to determine the set of
features associated with the problem. Of course, in other
embodiments, other modules and other computing devices
may be used in order to determine the set of features.
0117. In one embodiment, a set of features may be repre
sented by a vector in an n-dimensional feature space, wherein
each dimension of the feature space corresponds to a respec
tive feature. In such an embodiment, determining the set of
features may further include generating a vector indicative of
the set of features. Such a vector may be digitally represented
in a variety of ways, and, in one embodiment, the vector may
be represented by a set of numerical values corresponding to
the set of features. In one embodiment, the numerical values
may be normalized in Some manner, Such that features asso
ciated with relatively large numbers do not skew a shape the
importance of vector components.
0118. Once determined, the set of features may be stored
at a variety of locations. In one embodiment, the set of fea
tures may be stored in database system 170. In another
embodiment, the set of features may be locally stored in
nonvolatile memory 114.
0119. At act 206, the set of features is compared with
previously determined sets of features associated with other
problems. In one embodiment, a number of sets of features
may have been previously determined for a variety of other
problems in a manner similar to that described above with
reference to act 204. These sets of features may be stored in
database system 170, or may be locally stored in nonvolatile
memory 114.
I0120 In one embodiment, the previously determined sets
of features may have been determined by digital computing
subsystem 102 and then stored. However, in other embodi
ments, the sets offeatures may have been determined by other
computing devices, and information indicative of these sets of
features may have been made available to digital computing
subsystem 102.
I0121. In one embodiment, each of the previously deter
mined sets of features may be represented by a corresponding
vector in an n-dimensional feature space, as described above
with reference to act 204. In such an embodiment, each of
these vectors may be represented by a set of numerical values
corresponding to the previously determined sets of features.
The above comparison may then be performed by comparing
a vector associated with the current problem with other vec
tors indicative of the previously determined sets of features.
In other embodiments, a variety of other methods may be used
to compare the set of features with the previously determined
sets of features.
0122. In one embodiment, digital computing Subsystem
102, and, in particular, parameter learning module 126, may
perform this comparison. However, in other embodiments,
other modules or components may be used.
I0123. At act 208, a set of parameters for a solver is gener
ated based at least in part on the comparing the set of features
with the previously determined sets of features. As described
above, the solver may comprise any combination of hardware
and/or software components that may generate a solution
corresponding to the problem. The solver may comprise a
Solver operable to calculate an exact, optimal solution to the
problem (e.g., by exhaustive enumeration) or may comprise a

US 2012/O254586 A1

Solver implementing a heuristic algorithm configured to cal
culate a solution in a reasonable time period. In one embodi
ment, the solver may include an analog computer, Such as
analog computing Subsystem 104.
0.124. The set of parameters may comprise one or more
variables associated with the solver. In one embodiment, the
set of parameters may be associated with physical character
istics of the solver (e.g., the settings used by analog comput
ing Subsystem 104). In another embodiment, the set of param
eters may comprise parameters that describe a heuristic
algorithm used by the solver.
0125. In one embodiment, if a tabu search solver is used,
the parameters may include: a definition of a search space
associated with the problem (e.g., a search space may be
defined to include infeasible solutions); a definition of a
neighboring Solution; characteristics of the tabu list (e.g.,
length and type); termination criteria (e.g., the number of
permissible iterations, the number of consecutive iterations
without improvement, a termination threshold value); and/or
restart diversification characteristics. In another embodiment,
if a simulated annealing solver is used, the parameters may
include: an initial value of a control parameter; a decrement
function for lowering a value of the control parameter, and/or
termination criteria (e.g., a termination value of the control
parameter). It may be understood that a variety of parameters
may be generated for the above and other types of solvers.
0126. In one embodiment, sets of parameters associated
with previously solved problems may be available to param
eter learning module 126. For example, for each previously
solved problem, database system 170 or nonvolatile memory
114 may have stored therein: a vector indicative of a previ
ously determined set offeatures, and at least one set of param
eters used to solve the problem by at least one solver. As
described above, this data may have been generated by com
puting system 100 or may be shared among a plurality of
computing Systems.
0127 Based upon this stored data, the set of parameters for
the current problem may be generated by first selecting at
least one vector from among the previously determined vec
tors in the n-dimensional feature space that is near the vector
associated with the current problem. In one embodiment, the
at least one proximate vector may be selected from among the
previously determined vectors by determining a single vector
separated by a shortest distance from the vector associated
with the current problem in the n-dimensional feature space.
In another embodiment, a plurality of proximate vectors may
be selected as a predetermined number of vectors that are
closest to the vector associated with the current problem. In
still another embodiment, a plurality of proximate vectors
may be selected based upon whichever vectors are within a
predetermined distance from the vector associated with the
current problem. Of course, other methods may also be used
to select the at least one proximate vector.
0128. Once the at least one proximate vector has been
selected, the set of parameters may be generated based at least
in part on a prior set of parameters used to solve at least one
problem associated with the at least one proximate vector.
That is, once the at least one proximate vector is selected, the
parameter learning module 126 may access the prior set of
parameters associated with the at least one proximate vector
and the Solver. In one embodiment, if a single proximate
vector is selected, the set of parameters may simply be set
equal to the prior set of parameters used to solve that earlier
problem. In another embodiment, if a plurality of proximate

Oct. 4, 2012

vectors are selected, the set of parameters may be set equal to
an average or a weighted average of prior sets of parameters
associated the plurality of proximate vectors. In still other
embodiments, the set of parameters may be extrapolated
based upon the prior set of parameters associated with the at
least one proximate vector. In other embodiments, of course,
even more complex methods of generating the set of param
eters may be used.
I0129. In one embodiment, parameter learning module 126
may generate the set of parameters. Of course, in other
embodiments, other modules or components may be used.
0.130. This method of generating the set of parameters
may, of course, be extended in order to select the solver from
among a plurality of solvers based at least in part on the
comparing the set of features with the previously determined
sets of features. In one embodiment, a variety of different
Solvers may be available to digital computing Subsystem 102.
Moreover, information indicative of optimal solvers associ
ated with previously solved problems may be available to
parameter learning module 126. For example, for each pre
viously solved problem, database system 170 or nonvolatile
memory 114 may have stored therein: a vector indicative of a
previously determined set of features, at least one optimal
Solver from among a plurality of Solvers, and at least one set
of parameters used to solve the problem by the at least one
solver.

0131 Thus, in a manner similar to that described above,
the solver used to solve the current problem may be selected
based at least in part on the solver used to solve at least one
problem associated with at least one vector that is relatively
proximate the vector associated with the current problem.
That is, once the at least one proximate vector is selected,
parameter learning module 126 may determine the solver
associated with the at least one proximate vector. In one
embodiment, the solver for the current problem may simply
be selected to be the same as the prior solver used to solve that
earlier problem.
0.132. At act 210, the problem may be solved using the set
of parameters to generate a solution. As described above, the
Solver may comprise any combination of hardware and/or
Software components that may generate a solution corre
sponding to the problem.
I0133. In one embodiment, parameter learning module 126
may pass the set of parameters generated at act 208 on to
solver module 124. Solver module 124 may then employ the
set of parameters itself and/or may use the set of parameters in
order to control analog computing Subsystem 104. In one
embodiment, the problem may be solved on quantum proces
sor 150. In such an embodiment, the set of parameters may be
associated with respective parameters that control qubit con
trol system 158 and/or the coupling device control system
160.

I0134 FIG.3 illustrates a flow diagram foramethod 300 of
revising the set of parameters determined in accordance with
method 200 of FIG. 2. This method begins at act 302, when
the set of parameters used to solve the problem is stored. As
described above, this set of parameters may be stored in
database system 170 or in nonvolatile memory 114 associated
with digital computing Subsystem 102. In another embodi
ment, the set of parameters may simply be temporarily stored
in system memory 108.
I0135) In one embodiment, the set of parameters may be
stored such that they are logically associated with the set of
features associated with the problem. In Such an embodiment,

US 2012/O254586 A1

this set of parameters and corresponding features may be used
to solve future problems as described in method 200. Param
eter learning module 126 may store the set of parameters. Of
course, in other embodiments, other modules or components
may also be used.
0136. At act 304, at least one parameter of the set of
parameters is varied to generate a revised set of parameters. In
one embodiment, parameter learning module 126 may vary a
single parameter. However, in other embodiments, multiple
parameters may be varied at once.
0.137 The variation of the set of parameters may be intel
ligent. For example, parameter learning module 126 may
determine that variations in particular parameters may be
more likely to lead to optimal solutions. Indeed, some prob
lems may be more sensitive to variations in certain param
eters. Parameter learning module 126 may also determine that
variations in a certain direction are leading to improved solu
tions and may therefore vary the parameters in that direction.
In another embodiment, parameter learning module 126 may
maintain a history of prior variation of the set of parameters
and may take this history into account when varying the
parameters. Other intelligent computer learning techniques
for varying the parameters may also be used. In another
embodiment, the variation in the set of parameters may be at
least partially guided by a user of digital computing Sub
system 102.
0.138. At act 306, the problem is solved using the revised
set of parameters to generate a revised solution. As described
above, the solver may comprise any combination of hardware
and/or software components that may generate a revised solu
tion to the problem. In one embodiment, parameter learning
module 126 may pass the revised set of parameters generated
at act 304 on to solver module 124. Solver module 124 may
then employ the revised set of parameters itself and/or may
use the revised set of parameters in order to control the analog
computing Subsystem 104.
0.139. At act308, the revised solution is compared with the
Solution generated at act 210. In one embodiment, parameter
learning module 126 performs the comparison between the
revised solution and the solution. In other embodiments,
other modules or components may be used.
0140. At act 310, the revised set of parameters is stored if
the revised solution is of a higher quality than the Solution. In
one embodiment, the revised set of parameters may be stored
Such that they replace the original set of parameters used to
solve the problem. In another embodiment, the original set of
parameters may also be kept in order to maintain a history of
the variation of the set of parameters. The revised set of
parameters may be stored Such that they may be used to Solve
future problems as described in method 200.
0141. A variety of methods may be used in order to deter
mine whether or not the revised solution is of a higher quality
than the original Solution. In one embodiment, the revised
Solution may be of higher quality if it has a higher or lower
value than the original Solution (e.g., if the problem is to find
a global maximum or minimum respectively). In another
embodiment, the revised solution may be of higher quality if
it comprises a narrower range of values than the original
Solution, which may be indicative of greater accuracy. In yet
another embodiment, the revised solution may be of higher
quality if it is arrived at in less time than the original Solution
with substantially similar values. In still other embodiments,
other characteristics of the two solutions may be compared, as
would be well understood by those skilled in the art.

Oct. 4, 2012

0142. In one embodiment, these acts of varying the at least
one parameter (act 304), Solving the problem using the
revised set of parameters (act 306), comparing the revised
solution with the previous solution (act308), and storing the
revised set of parameters (act310) may be performed during
otherwise idle computing cycles of digital computing Sub
system 102. In one embodiment, these acts may further take
advantage of otherwise idle time of the solver, such as idle
time associated with analog computing Subsystem 104. Thus,
these computationally intensive acts may be performed when
computing system 100 is not otherwise needed. In another
embodiment, these acts may be performed by a plurality of
computers in a distributed computing network, such that
these computationally intensive acts may be performed using
the computing resources of many networked computers.
0143. In one embodiment, these acts 304-310 may be con
tinuously executed in order to determine more and more
improved sets of parameters for each of the problems in a
problem database associated with computing system 100.
Thus, future problems directed to computing system 100 for
Solution may be associated with improved sets of parameters,
and more optimal solutions may be achieved in less time.

Description of an Exemplary Method for Training a Comput
ing System

014.4 FIG. 4 illustrates a flow diagram for a method 400 of
training a computing system to determine parameters for
Solving problems, according to one embodiment. This
method 400 will be discussed in the context of computing
system 100 of FIG. 1A. However, it may be understood that
the acts disclosed herein may be executed in a variety of
computing Systems and computing devices (e.g., in comput
ing system 1000 of FIG. 1B) and may involve different types
of solvers, in accordance with the described method.
0145 The method begins at 402, when a training set of
features associated with a training problem having a previ
ously determined answer are determined. The training prob
lem may comprise any of a variety of problems formatted for
Solution by a computer. In one embodiment, the previously
determined answer may comprise a high quality answer to the
training problem. For example, the training problem may
comprise a computationally complex problem for which a
brute force solution has already been calculated. This brute
force, exact solution may comprise the previously determined
answer. In another embodiment, the training problem may
comprise a problem for which extensive solutions have been
determined using heuristic solvers, such that a high quality
answer has been determined. In still other embodiments,
other mechanisms for determining an answer for the training
problem may have been employed.
0146 In one embodiment, the training problem may be
initially selected by computing system 100. For example, the
training problem may be automatically selected by parameter
learning module 126 from a database of problems for which
high quality answers are known. In another embodiment, a
user of computing system 100 may interact with user inter
faces 148 (e.g., keyboard 144) and thereby enter information
indicative of the training problem.
0147 The training set of features may comprise one or
more characteristics associated with the training problem, as
described above with reference to act 204. In one embodi
ment, parameter learning module 126 may determine the
training set of features associated with the training problem
with or without additional components. Of course, in other

US 2012/O254586 A1

embodiments, other modules and other computing devices
may be used in order to determine the training set of features.
0148. At act 404, an initial set of parameters is generated
for a solver. The solver may comprise any combination of
hardware and/or software components that may generate a
Solution corresponding to the training problem, as described
in greater detail above.
014.9 The initial set of parameters may be generated by
any of a variety of methods. In one embodiment, a random set
of parameters may be generated by parameter learning mod
ule 126. In another embodiment, the initial set of parameters
may be entered by a user using user interfaces 148. In yet
another embodiment, the initial set of parameters may be
generated as described above with reference to method 200,
by comparing the training set of features with previously
determined sets of features.

0150. After generating the initial set of parameters, the
training problem may be solved using the initial set of param
eters. In Such an embodiment, the training problem may be
solved as described above with reference to act 210.

0151. At act 406, at least one parameter of the initial set of
parameters is varied to generate a revised set of parameters. In
one embodiment, parameter learning module 126 may vary
only a single parameter. However, in other embodiments,
multiple parameters may be varied at once. As described
above with reference to act304, the variation of the initial set
of parameters may be more or less intelligent in certain
embodiments.

0152. At act 408, the problem is solved using the revised
set of parameters to generate a revised solution. In one
embodiment, parameter learning module 126 may pass the
revised set of parameters generated at act 406 on to solver
module 124. Solver module 124 may then employ the revised
set of parameters itself and/or may use the revised set of
parameters in order to control analog computing Subsystem
104.

0153 Atact 410, the revised solution is compared with the
previously determined answer. In one embodiment, param
eter learning module 126 performs the comparison between
the revised solution and the previously determined answer. In
other embodiments, other modules or components may be
used.

0154) At act 412, the revised set of parameters is stored as
a training set of parameters based at least in part on the
comparing the revised solution with the previously deter
mined answer. In one embodiment, the revised set of param
eters may be stored such that they replace another set of
parameters previously used as the training set of parameters.
0155. In one embodiment, the revised set of parameters is
stored as the training set of parameters if the revised solution
is sufficiently similar to the previously determined answer.
For example, a solution error margin may be set, Such that if
the revised solution is within the solution error margin from
the previously determined answer, then the revised set of
parameters is stored. In another embodiment, the revised
Solution may be compared with a previously revised solution
as well as the previously determined answer, and if the revised
solution is better than the previously revised solution, the
revised set of parameters may replace a previous training set
of parameters. In one embodiment, if the revised solution is
not sufficiently similar to the previously determined answer,
acts of 406, 408 and 410 may be repeated until a revised set of
features is finally stored.

Oct. 4, 2012

0156. At act 414, the training set of features is logically
associated with the training set of parameters. In one embodi
ment, the training set of features may be stored Such that they
are logically associated with the training set of parameters in
database system 170.
0157 At act 416, information indicative of the training set
offeatures is saved as one of the previously determined sets of
features referred to in method 200. In one embodiment, the
training set of features may thus be compared with sets of
features associated with future problems, and, if sufficiently
similar, the training set of parameters may be used to deter
mine a set of parameters for a future problem.
0158. In one embodiment, these acts of varying the at least
one parameter (act 406), Solving the training problem using a
revised set of parameters (act 408), comparing a revised solu
tion with the previously determined answer (act 410), and
storing the revised set of parameters (act 412) may be per
formed during otherwise idle computing cycles of digital
computing Subsystem 102. In one embodiment, these acts
may further take advantage of otherwise idle time of the
Solver. Thus, these computationally intensive acts may be
performed when computing system 100 is not otherwise
needed. In another embodiment, these acts 406-412 may be
repeatedly executed in order to determine more and more
improved sets of parameters for training problems in a prob
lem database associated with computing system 100. In still
another embodiment, computing system 100 may dedicate
Some time before an initial use of parameter learning module
126 in order to generate a population of these training prob
lems in the n-dimensional feature space.

Description of an Exemplary Method for Determining Unde
termined Characteristics of a Solver

0159 FIG.5 illustrates a flow diagram foramethod 500 of
determining undetermined characteristics of a solver. The
method begins at act 502, when an undetermined character
istic of a solver associated with a problem is identified. This
undetermined characteristic may comprise any of a variety of
characteristics of the solver. In one embodiment, character
istics of the solver employing different sets of parameters
may not be determined. For example, it may not be known
whether or not a solution to the problem will improve or
worsen as a certain parameter is increased, decreased or oth
erwise changed. In another embodiment, a timing associated
with solution of the problem employing different sets of
parameters may not be determined.
0160. In one embodiment, a user of digital computing
subsystem 102 may determine which characteristics of the
solver are currently undetermined. Information indicative of
these undetermined characteristics may then be entered via
user interfaces 148. In another embodiment, parameter learn
ing module 126 or other software within digital computing
Subsystem 102 may develop a knowledge base and may be
configured to recognize undetermined characteristics auto
matically.
0.161. At act 504, at least one parameter of a set of param
eters is varied to generate a revised set of parameters. In one
embodiment, parameter learning module 126 may vary only
a single parameter. However, in other embodiments, multiple
parameters may be varied at once. In one embodiment, the
varied parameters may be selected based at least in part on the
undetermined characteristic.
0162. At act 506, the problem is solved using the revised
set of parameters. In one embodiment, parameter learning

US 2012/O254586 A1

module 126 may pass the revised set of parameters generated
at act 504 on to solver module 124. Solver module 124 may
then employ the revised set of parameters itself and/or may
use the revised set of parameters in order to control analog
computing Subsystem 104.
0163 Atact 508, information associated with the undeter
mined characteristic is generated based at least in part on
Solving the problem. In one embodiment, parameter learning
module 126 may monitor characteristics of the Solving act
506. For example, if the undetermined characteristic includes
a timing associated with Solution of the problem using the
revised set of parameters, then parameter learning module
126 may time the solver. In other embodiments, other char
acteristics of the solving process or of the solution itself may
be used in order to generate information associated with the
undetermined characteristic. In one embodiment, the infor
mation associated with the undetermined characteristic may
then be used to Supplement a knowledge base maintained by
digital computing Subsystem 102.
0164. As described above, the acts of method 500 may be
performed during otherwise idle computing cycles of digital
computing Subsystem 102. Thus, these computationally
intensive acts may be performed when computing system 100
is not otherwise needed. Method 500 may also be repeatedly
executed in order to help complete a knowledge base main
tained by computing system 100.

Description of an Exemplary Solver

(0165. Once a revised the set of parameters are determined
for a problem, the problem may be solved by a solver. The
problem may translated into a problem Hamiltonian and may
be transmitted to a solver which may be capable of complet
ing adiabatic quantum computation (AQC) or quantum
annealing (“OA”).
0166 In theory, AQC and QA may both be used to find the
global minimum of a problem Hamiltonian, and the problem
Hamiltonian may be structured Such that this global mini
mum corresponds to an optimal solution to a computational
problem. The problem Hamiltonian defines an energy land
scape which may, according to quantum mechanics, include a
number of energy levels. The global minimum of a problem
Hamiltonian is typically referred to as the ground State and
corresponds to the lowest energy level in this energy land
scape, though many higher energy levels may also exist. The
global minimum typically corresponds to the bottom of the
deepest energy well in the energy landscape of the problem
Hamiltonian. Other energy levels that are present within the
energy well of the global minimum are said to be in the
“neighborhood of the global minimum. However, the energy
landscape may also include additional energy wells, the base
of each of which is typically known as a local minimum. Each
local minimum typically corresponds to an energy level that
is higher in energy than the global minimum. Other energy
levels that are present within the well of a local minimum are
said to be in the “neighborhood' of the local minimum.
0167 FIG. 6 is an illustrative diagram of an exemplary
energy landscape 600 of a problem Hamiltonian. Energy
landscape 600 includes global minimum 610, which is the
lowest energy level in energy landscape 600 and corresponds
to the ground state of the problem Hamiltonian. A group of
energy levels 615 is illustrated as being present in the energy
well that corresponds to the global minimum 610. Thus, each
energy level in group of energy levels 615 is said to be in the
neighborhood of the global minimum 610. Energy landscape

Oct. 4, 2012

600 also includes a plurality of local minima, only one of
which (local minimum 620) is called out in the Figure. Local
minimum 620 corresponds to the base of an energy well in
energy landscape 600, but is higher in energy than global
minimum 610. A group of energy levels 625 is illustrated as
being present in the energy well that corresponds to local
minimum 620. Thus, each energy level in group of energy
levels 625 is said to be in the neighborhood of local minimum
620.

0.168. During AQC or QA, the evolution of the state of the
system can be influenced by the sizes of the gaps that separate
energy levels. For instance, in some applications it can be
difficult to evolve a system to the ground state if this evolution
passes through a set of energy levels that are particularly close
together (e.g., energy levels that are separated by an energy
that is smaller than the temperature of the system or smaller
than the error size due to energy level broadening). The adia
batic theorem stipulates that evolution through a set of closely
packed States may be achieved by driving the evolution pro
portionately slowly. However, this can necessitate impracti
cally long evolution times and, furthermore, very slow evo
lution may increase the likelihood of experiencing an
undesirable thermal transition from a lower to a higher energy
state. In order to reduce the likelihood of such a thermal
transition, it may be desirable to reduce the system tempera
ture and/or reduce the magnitude of noise in the system.
0169. In practice, there are limitations on how much the
system temperature can be reduced (i.e., how cold the system
can be made to be) and how much system noise can be
reduced. Furthermore, there are limitations on how long the
computation time can be before the computation itself
becomes impractical. A balance may be sought, and some
compromise may be necessary. For example, the system may
be evolved to a low energy state that is not the lowest energy
state (i.e., not the ground state). In some cases, a low energy
state that is not the ground state may still correspond to an
acceptable approximate Solution to the problem. Throughout
this specification and the appended claims, the term “approxi
mate solution' is generally used to refer to any Solution that
corresponds to an energy state that is not a ground state.
(0170. It can be difficult to evolve to and remain in the
ground state if the neighborhood of the global minimum
includes a set of one or more higher energy states that are
closely packed together. In some implementations, impracti
cal parameters (e.g., overly long computation time) or con
ditions (e.g., unrealistically cold system temperature) may be
required in order to evolve from a state in the neighborhood of
a minimum to the actual minimum itself. In accordance with
the present methods and apparatus, implementations of AQC
and QA where the ground state is not practically attainable
may be improved upon by settling for a higher energy state
(i.e., an approximate Solution) as the outcome of the AQC or
QA and then using this energy state as the starting point for an
optimization algorithm, for example a classical algorithm
Such as local search or simulated annealing.
0171 For a given system temperature and level of noise,
the computation time of an implementation of AQC or QA
may be reduced by settling for an approximate Solution as
opposed to an exact solution to the computational problem.
That is, the computation time may be reduced by permitting
the system to evolve to a low energy state (i.e., an approxi
mate solution) that is not quite the lowest energy state (i.e., the
exact solution). The gap that separates the exact Solution from
any number of approximate Solutions may be so Small that an

US 2012/O254586 A1

impractical extension of the computation time is required to
evolve from the approximate solution to the final solution.
Higher energy states that are packed near the ground state in
the neighborhood of the global minimum usually differ from
the ground state by a finite number of bit flips. In accordance
with the present methods and apparatus, the effectiveness of
AQC or QA may be improved by using an optimization
algorithm to reveal a lower energy state (Such as the global
minimum) when the AQC or QA itself returns an excited
state. To do this, the outcome of the AQC or QA may be used
as an initial guess for an optimization algorithm, for example
a classical algorithm such as local search or simulated anneal
ing. If the initial guess is close enough to the global answer,
the optimization algorithm may reveal the global minimum in
polynomial time. In implementations where the AQC or QA
produces a state that is in the neighborhood of a local mini
mum which is far away from the global minimum, the Sub
sequent application of an optimization algorithm may still
yield the actual local minimum. Thus, Vetting the outcome of
an implementation of AQC or QA through an optimization
algorithm Such as local search or simulated annealing may
generally provide a new solution that is at least as good as, and
often better than, the outcome of the AQC or QA.
0172 FIG. 2 is a flow diagram of an embodiment of a
method 700 for determining a solution to a computational
problem. Method 700 includes three acts, 701-703, though
any number of acts may be included before, after, or in
between acts 701-703. At 701, a first solution to the problem
is determined by AQC or QA. At 702, the first solution to the
problem is cast as the starting point for an optimization algo
rithm. At 703, a second solution to the problem is determined
using the optimization algorithm.
0173. In some embodiments, the first solution to the prob
lem that is determined at 701 may bean approximate solution
corresponding to a first energy state that is not the ground
state. Since, in some instances, using AQC or QA to evolve
from the first energy state to the ground state can extend the
computation time by an impractical amount, it can be advan
tageous to settle for a 'good” approximate solution that is
readily attainable by AQC or QA. This “good” approximate
Solution may then be improved upon by implementing an
optimization algorithm.
0.174. At 702, the first solution that is determined at 701 is
cast as the starting point for an optimization algorithm. In
Some embodiments, the first Solution may be used as an initial
guess in a local search algorithm or in an implementation of
simulated annealing. At 703, the optimization algorithm is
performed to determine a second solution to the problem,
where the second solution is at least as good as the first
solution. If the initial guess is in the neighborhood of the
global minimum, then the optimization algorithm may reveal
the global minimum in polynomial time. Even if the initial
guess is in the neighborhood of a local minimum, the optimi
Zation algorithm may yield the actual local minimum in poly
nomial time, which is still an improvement over the first
Solution.

0.175. A further aspect of the present methods and appa
ratus incorporates the concept of Statistical averaging. AQC
and QA may generally be used as statistical approaches to
problem solving whereby multiple iterations are executed
very quickly and the probability distribution of the results is
analyzed. Statistical averaging may be incorporated into
Some embodiments of the present methods and apparatus by
taking the average of multiple iterations of method 700. That

Oct. 4, 2012

is, method 700 may be executed multiple times, with each
iteration producing a respective second solution. The statis
tical average or median of the second solutions may then be
determined.

0176). In some implementations, AQC and QA are particu
larly well-suited to quickly evolve to an energy state in the
neighborhood of the global minimum. That is, AQC and QA
are generally able to evolve to the neighborhood of a global
minimum more quickly than alternative (e.g., classical)
approaches. However, in some implementations of AQC and
QA, evolving from the neighborhood of the global minimum
to the actual global minimum may necessitate impractically
long computation time in order to avoid unwanted transitions
to higher energy states (due to thermal transitions, Landau
Zener transitions, noise, etc.). On the other hand, some opti
mization algorithms (e.g. local search and simulated anneal
ing) are particularly well-suited to quickly evolve to a
minimum from within the neighborhood of that minimum.
That is, an optimization algorithm, for example a classical
algorithm Such as local search or simulated annealing, may
generally be able to evolve to a ground State more quickly
than AQC or QA if the evolution begins within the neighbor
hood of the global minimum. The present methods and appa
ratus combine quantum and classical techniques of problem
Solving to take advantage of the merits of each.
0177 QA and/or AQC may be implemented in a variety of
different ways, but the end goal is generally the same: find a
low-energy state, such as a ground state, of a system Hamil
tonian that encodes a computational problem where the low
energy state represents a solution to the computational prob
lem. The system Hamiltonian may therefore be referred to as
a “problem Hamiltonian.” The exact form of the problem
Hamiltonian may vary depending on the hardware upon
which it is being implemented. As an illustrative example, a
quantum processor comprising Superconducting flux qubits
may be used to embody a problem Hamiltonian in the form of
a 2-local Ising Hamiltonian given in equation 1:

(1)

(0178 Here, in represents the number of qubits, O, is the
Pauli Z-matrix for the i'qubit, and h, and J, are local fields
coupled to each qubit. The h, terms in equation 1 may be
physically realized by coupling signals or fields (p to the
qubit loop of eachi'qubit. The J terms in equation 1 may be
physically realized by coupling the qubit loops of pairs of
qubits (qubits i and j, respectively) together with a coupling
strength that is at least partially governed by an applied cou
pler flux bias (p. Determining a low-energy state, such as the
ground state, of the 2-local Ising Hamiltonian in equation 1 is
known to be computationally difficult. Other problems may
be mapped to the 2-local Ising Hamiltonian; thus, this Hamil
tonian may be used as the problem Hamiltonian in an imple
mentation of AQC or QA. To anneal the Hamiltonian
described by equation 1, a disorder term may be added as
previously described, thereby realizing an evolution Hamil
tonian given by equation 2:

US 2012/O254586 A1

(2)

where O, is the Pauli X-matrix for the i'qubit and A, is the
single qubit tunnel splitting. During annealing, the tunnel
splitting A, is gradually removed until only the problem
Hamiltonian given by equation 1 remains. A brief description
of how QA of the 2-local Ising Hamiltonian may be realized
using a quantum processor comprising Superconducting flux
qubits is now provided.
0179 FIG. 8 is a schematic diagram of a portion of a
conventional Superconducting quantum processor 800 gener
ally designed for QA (and/or AQC). The portion of supercon
ducting quantum processor 800 shown in FIG. 8 includes two
superconducting flux qubits 801, 802 and a tunable ZZ-cou
pler 811 coupling information therebetween. While the por
tion of quantum processor 800 shown in FIG. 8 includes only
two qubits 801, 802 and one coupler 811, those of skill in the
art will appreciate that quantum processor 800 may include
any number of qubits, and any number of coupling devices
coupling information therebetween.
0180. The portion of quantum processor 800 shown in
FIG.8 may be implemented to physically realize the Hamil
tonians described by equation 1 and equation 2. In order to
provide the of and o' terms, quantum processor 800 includes
programming interfaces 821-825 that are used to configure
and control the state of quantum processor 800. Each of
programming interfaces 821-825 may be realized, for
example, by a respective inductive coupling structure to a
programming system (not shown).
0181. In the operation of quantum processor 800, pro
gramming interfaces 821 and 824 may each be used to couple
a flux signal (p, into a respective compound Josephsonjunc
tion 831, 832 of qubits 801 and 802, thereby realizing the A,
terms in the system Hamiltonian. This coupling can modulate
the O terms of equation 2. Similarly, programming interfaces
822 and 823 may each be used to couple a flux signal p, into
a respective qubit loop of qubits 801 and 802, thereby realiz
ing the h, terms in the system Hamiltonian. This coupling
provides the of terms of equations 1 and 2. Furthermore,
programming interface 825 may be used to control the cou
pling between qubits 801 and 802 through coupler 811,
thereby realizing the J, terms in the system Hamiltonian. This
coupling provides the Oro terms of equations 1 and 2. In FIG.
8, the contribution of each of programming interfaces 821
825 to the system Hamiltonian is indicated in boxes 821a
825a, respectively.
0182 A Small-scale, two-qubit QA computation may gen
erally be performed using the portion of quantum processor
800 shown in FIG.8. The problem Hamiltonian described by
equation 1 may be realized by using programming interfaces
822 and 823 to establish the ho terms and coupler 811, as
controlled by programming interface 825, to establish the
Joo term. During annealing, the disorder term TH, may be
realized by using programming interfaces 821 and 824 to
establish the AO terms. This induces tunnel splitting in
qubits 801 and 802. As the system evolves, the AO terms
established by programming interfaces 821 and 824 may be
gradually removed such that, at the end of the annealing
process, only the terms that define equation 1 remain.

19
Oct. 4, 2012

0183 The above description of a superconducting quan
tum processor is intended for illustrative purposes only.
Those of skill in the art will appreciate that the present meth
ods and apparatus may be implemented using any form of
quantum computing hardware (e.g., quantum computer
designs that implement any of quantum dots, ion traps,
nuclear magnetic resonance, electronic spins, optical devices,
and the like) and are not limited to implementations of Super
conducting devices alone.
0184. In some embodiments, the present methods and
apparatus incorporate the implementation of a classical algo
rithm run on classical computer hardware. As used herein, a
classical computer is a computer that represents information
by numerical binary digits known as “bits, where each bit has
a value of “0” or “1” such as in a binary digital computer.
Throughout this specification and the appended claims, the
term “classical algorithm' is used to refer to a computer
algorithm that is Suitable to be implemented on a classical
computer.
0185. The above description of illustrated embodiments,
including what is described in the Abstract, is not intended to
be exhaustive or to limit the embodiments to the precise forms
disclosed. Although specific embodiments of and examples
are described herein for illustrative purposes, various equiva
lent modifications can be made without departing from the
spirit and scope of the disclosure, as will be recognized by
those skilled in the relevant art. The teachings provided herein
of the various embodiments can be applied to other systems,
methods and apparatus of quantum computation, not neces
sarily the exemplary systems, methods and apparatus for
quantum computation generally described above.
0186 The various embodiments described above can be
combined to provide further embodiments. All of the U.S.
patents, U.S. patent application publications, U.S. patent
applications, foreign patents, foreign patent applications and
non-patent publications referred to in this specification and/or
listed in the Application Data Sheet, including but not limited
to: U.S. Pat. No. 6,838,694, U.S. Pat. No. 7,335,909, US
Patent Publication No. 2006-0225165, U.S. patent applica
tion Ser. No. 12/013,192, U.S. Provisional Patent Application
Ser. No. 60/986,554 filed Nov. 8, 2007 and entitled “Systems,
Devices and Methods for Analog Processing, U.S. Provi
sional Patent Application Ser. No. 61/039,710, filed Mar. 26,
2008 and entitled “Systems, Devices, And Methods For Ana
log Processing, US Patent Publication No. 2006-0147154,
U.S. patent application Ser. No. 12/017,995, and U.S. Pat. No.
7,135,701 are incorporated herein by reference, in their
entirety. Aspects of the embodiments can be modified, if
necessary, to employ systems, circuits and concepts of the
various patents, applications and publications to provide yet
further embodiments.

0187. These and other changes can be made to the embodi
ments in light of the above-detailed description. In general, in
the following claims, the terms used should not be construed
to limit the claims to the specific embodiments disclosed in
the specification and the claims, but should be construed to
include all possible embodiments along with the full scope of
equivalents to which Such claims are entitled. Accordingly,
the claims are not limited by the disclosure.
0188 As will be apparent to those skilled in the art, the
various embodiments described above can be combined to
provide further embodiments. Aspects of the present systems,
methods and articles can be modified, if necessary, to employ
systems, methods, articles and concepts of the various pat

US 2012/O254586 A1

ents, applications and publications to provide yet further
embodiments of the present systems, methods and apparatus.
For example, the various methods described above may omit
Some acts, include other acts, and/or execute acts in a different
order than set out in the illustrated embodiments.
0189 The present methods, systems and articles may be
implemented as a computer program product that comprises
a computer program mechanism embedded in a computer
readable storage medium. For instance, the computer pro
gram product could contain program modules. These pro
gram modules may be stored on CD-ROM, DVD, magnetic
disk storage product, flash media or any other computer
readable data or program storage product. The Software mod
ules in the computer program product may also be distributed
electronically, via the Internet or otherwise, by transmission
of a data signal (in which the Software modules are embed
ded) Such as embodied in a carrier wave.
0190. The foregoing detailed description has set forth vari
ous embodiments of the devices and/or processes via the use
of block diagrams, schematics, and examples. Insofar as Such
block diagrams, schematics, and examples contain one or
more functions and/or operations, it will be understood by
those skilled in the art that each function and/or operation
within Such block diagrams, flowcharts, or examples can be
implemented, individually and/or collectively, by a wide
range of hardware, Software, firmware, or virtually any com
bination thereof. In one embodiment, the present subject mat
ter may be implemented via Application Specific Integrated
Circuits (ASICs). However, those skilled in the art will rec
ognize that the embodiments disclosed herein, in whole or in
part, can be equivalently implemented in Standard integrated
circuits, as one or more computer programs running on one or
more computers (e.g., as one or more programs running on
one or more computer systems), as one or more programs
running on one or more controllers (e.g., microcontrollers) as
one or more programs running on one or more processors
(e.g., microprocessors), as firmware, or as virtually any com
bination thereof, and that designing the circuitry and/or writ
ing the code for the software and or firmware would be well
within the skill of one of ordinary skill in the art in light of this
disclosure.
0191 In addition, those skilled in the art will appreciate
that the mechanisms taught herein are capable of being dis
tributed as a program product in a variety of forms, and that an
illustrative embodiment applies equally regardless of the par
ticular type of signal bearing media used to actually carry out
the distribution. Examples of signal bearing media include,
but are not limited to, the following: recordable type media
such as floppy disks, hard disk drives, CDROMs, digital tape,
flash drives and computer memory; and transmission type
media Such as digital and analog communication links using
TDM or IP based communication links (e.g., packet links).
0.192 In general, in the following claims, the terms used
should not be construed to limit the present systems, methods
and apparatuses to the specific embodiments disclosed in the
specification, but should be construed to include all possible
embodiments along with the full scope of equivalents to
which Such claims are entitled. Accordingly, the present sys
tems, methods and apparatuses are not limited by the disclo
sure, but instead their scope is to be determined entirely by the
claims.

I claim:
1. A quantum processor and classical computer based

method of using both a quantum processor and a classical

20
Oct. 4, 2012

computer to Solve a problem, wherein the quantum processor
and the classical computer are communicatively coupled to
one another, the method comprising:

generating an initial set of parameters for the quantum
processor via the classical computer,

providing the initial set of parameters from the classical
computer to the quantum processor via a communicative
coupling between the classical computer and the quan
tum processor;

determining a first Solution to the problem via a quantum
computation performed by the quantum processor using
the initial set of parameters;

varying at least one parameter of the initial set of param
eters via the classical computer to generate a revised set
of parameters for the quantum processor, wherein vary
ing at least one parameter of the initial set of parameters
includes performing a classical optimization via the
classical computer;

providing the revised set of parameters from the classical
computer to the quantum processor via the communica
tive coupling between the classical computer and the
quantum processor, and

determining a revised solution to the problem via a quan
tum computation performed by the quantum processor
using the revised set of parameters.

2. The method of claim 1 wherein determining a first solu
tion to the problem via a quantum computation performed by
the quantum processor using the initial set of parameters
includes determining a first solution to the problem via an
adiabatic quantum computation performed by the quantum
processor using the initial set of parameters, and wherein
determining a revised solution to the problem via a quantum
computation performed by the quantum processor using the
revised set of parameters includes determining a revised solu
tion to the problem via an adiabatic quantum computation
performed by the quantum processor using the revised set of
parameters.

3. The method of claim 1 wherein determining a first solu
tion to the problem via a quantum computation performed by
the quantum processor using the initial set of parameters
includes determining a first solution to the problem via an
implementation of quantum annealing performed by the
quantum processor using the initial set of parameters, and
wherein determining a revised solution to the problem via a
quantum computation performed by the quantum processor
using the revised set of parameters includes determining a
revised solution to the problem via an implementation of
quantum annealing performed by the quantum processor
using the revised set of parameters.

4. The method of claim 1 wherein performing a classical
optimization via the classical computer includes performing a
classical heuristic optimization via the classical computer.

5. The method of claim 4 wherein performing a classical
heuristic optimization via the classical computer includes
refining the first solution to the problem via a classical heu
ristic optimization algorithm performed by the classical com
puter.

6. The method of claim 4 wherein the classical heuristic
optimization algorithm includes at least one of local search,
tabu search, a genetic algorithm, or simulated annealing.

7. The method of claim 1 wherein the first solution to the
problem is an approximate solution and determining a revised

US 2012/O254586 A1

Solution to the problem includes determining a second solu
tion to the problem that is at least as good as the first Solution
to the problem.

8. The method of claim 1 wherein the quantum processor
includes a plurality of qubits and a plurality of coupling
devices, and wherein the set of initial parameters includes
parameters that control the plurality of qubits and parameters
that control the plurality of coupling devices.

9. The method of claim 8 wherein a Hamiltonian of the
quantum processor is given by:

and wherein generating an initial set of parameters for the
quantum processor via the classical computer includes
generating initial values for the h, terms and the J, terms
in the Hamiltonian of the quantum processor.

10. The method of claim 9 wherein varying at least one
parameter of the initial set of parameters includes varying at
least one of an h, term in the Hamiltonian of the quantum
processor or a J, term in the Hamiltonian of the quantum
processor.

11. The method of claim 1, further comprising:
comparing the revised solution to the first solution via the

classical computer.
12. The method of claim 1 wherein the classical computer

includes a system memory storing a parameter learning mod
ule and wherein varying at least one parameter of the initial
set of parameters via the classical computer includes varying
at least one parameter of the initial set of parameters via the
parameter learning module of the classical computer.

13. The method of claim 12, further comprising:
comparing the revised solution to the first solution via the

classical computer;
determining, via the parameter learning module, that vary

ing a first parameter in a first direction leads to an
improved revised solution compared to the first solution;
and

varying the first parameter in the first direction via the
parameter learning module.

14. A computing system operable to Solve problems, the
computing System comprising:

a quantum processor,
a classical computing Subsystem communicatively

coupled to the quantum processor, the classical comput

Oct. 4, 2012

ing Subsystem including a classical processor and a sys
tem memory storing a parameter learning module,
wherein the parameter learning module is configured to
generate a set of parameters for the quantum processor
and to revise the set of parameters for the quantum
processor to produce a revised set of parameters by
varying at least one parameter of the set of parameters,
wherein varying at least one parameter of the set of
parameters includes performing a classical optimiza
tion.

15. The system of claim 14 wherein a Hamiltonian of the
quantum processor is given by:

and wherein the parameter learning module is configured
to generate values for the h, terms and the J, terms in the
Hamiltonian of the quantum processor.

16. The system of claim 14 wherein the quantum processor
is operable to perform at least one of adiabatic quantum
computation or quantum annealing.

17. The system of claim 14, further comprising a solver
module stored in the system memory of the classical comput
ing Subsystem, the solver module configured to:

receive the set of parameters from the parameter learning
system and employ the set of parameters to control the
quantum processor and cause the quantum processor to
provide a first solution to a problem; and

receive the revised set of parameters from the parameter
learning system and employ the revised set of param
eters to control the quantum processor and cause the
quantum processor to provide a revised solution to the
problem.

18. The system of claim 14 wherein the parameter learning
module is configured to vary at least one parameter of the set
of parameters by performing a classical heuristic optimiza
tion.

19. The system of claim 18 wherein the parameter learning
module is configured to vary at least one parameter of the set
of parameters by performing at least one of local search, tabu
search, a genetic algorithm, or simulated annealing.

20. The system of claim 14 wherein the quantum processor
comprises a Superconducting quantum processor implement
ing Superconducting flux qubits.

c c c c c

