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QUANTUMAND DIGITAL PROCESSOR 
HYBRD SYSTEMIS AND METHODS TO 

SOLVE PROBLEMS 

CROSS REFERENCE TO RELATED 
APPLICATIONS 

0001. This is a continuation application of U.S. patent 
application Ser. No. 12/945,717, filed Nov. 12, 2010, which is 
a continuation application of PCT/US2009/04.6791 filed on 
Jun. 9, 2009, which claims benefit under 35 U.S.C. 119(e) of 
U.S. Provisional Patent Application Ser. No. 61/060,318, 
filed Jun. 10, 2008 and entitled “PARAMETER LEARNING 
SYSTEM FOR SOLVERS, and U.S. Provisional Patent 
Application Ser. No. 61/095,527, filed Sep. 9, 2008 and 
entitled METHODS AND APPARATUS FOR SOLVING 
COMPUTATIONAL PROBLEMS, each of which are incor 
porated herein by reference in their entirety. 

BACKGROUND OF THE DISCLOSURE 

0002 1. Field of the Disclosure 
0003. This disclosure generally relates to solvers, and, 
more particularly, to Solvers for computationally complex 
problems. 
0004 2. Description of the Related Art 
0005. A Turing machine is a theoretical computing sys 
tem, described in 1936 by Alan Turing. A Turing machine that 
can efficiently simulate any other Turing machine is called a 
Universal Turing Machine (UTM). The Church-Turing thesis 
states that any practical computing model has either the 
equivalent of or a subset of the capabilities of a UTM. 
0006. A quantum computer is any physical system that 
harnesses one or more quantum effects to perform a compu 
tation. A quantum computer that can efficiently simulate any 
other quantum computer is called a Universal Quantum Com 
puter (UQC). 
0007. In 1981 Richard P. Feynman proposed that quantum 
computers could be used to solve certain computational prob 
lems more efficiently thana UTM and therefore invalidate the 
Church-Turing thesis. See, e.g., Feynman R. P. “Simulating 
Physics with Computers’. International Journal of Theoreti 
cal Physics, Vol. 21 (1982) pp. 467-488. For example, Mr. 
Feynman noted that a quantum computer could be used to 
simulate certain other quantum systems, allowing exponen 
tially faster calculation of certain properties of the simulated 
quantum systems than is possible using a UTM. 
0008 Complex Problems 
0009. In complexity theory, a first problem class P is 
defined as the set of decision problems that can be solved in 
polynomial time on a deterministic Turing machine. These 
problems are generally considered tractable; i.e., they are 
problems that can be solved in reasonable computation time 
on a Turing machine. 
0010. In contrast, a second problem class NP is defined as 
the set of decision problems that can be solved in polynomial 
time on a nondeterministic Turing machine. This means that 
solutions to problems in the NP problem class can be verified 
in polynomial time on a deterministic Turing machine, but 
this does not imply that these problems can be solved in 
polynomial time on a deterministic Turing machine. All prob 
lems in Pare also in NP. However, it is not yet known if there 
are problems in NP that are not in P. 
0011. A subset of the class NP is the NP-complete class of 
problems. The NP-complete class of problems includes all 
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problems that are in NP and that have been identified as 
NP-hard. The NP-hard class of problems, in turn, includes all 
problems that are at least as hard as any other problem in the 
class NP. That is, a problem R is NP-hard if there is an 
NP-complete problem that can be “reformulated into an 
instance of the problem R in deterministic polynomial time. 
0012 Some examples of NP-hard problems are: the trav 
eling salesman problem (given a number of cities and the 
costs of travelling between the cities, what is the least-cost 
round-trip route that visits each city exactly once and then 
returns to the starting city?); the maximum satisfiability 
(“MAX-SAT) problem (given a series of Boolean expres 
sions, what assignment of TRUE and FALSE values to the 
variables in the expressions will make the maximum number 
of expressions true?); the Hamiltonian path/circuit problem 
(does a graph G define a path that travels through all nodes 
exactly once?); and the graph coloring problem (what is the 
minimum number of colors needed to color the vertices of a 
given graph Such that no two adjacent vertices have the same 
color?). 
0013 Another problem class BQP relating specifically to 
quantum computers is defined as the set of decision problems 
that can be solved in polynomial time by a quantum computer, 
with an error probability between 0 and 1/2 for all instances. 
It is believed that BQP is a superset of P that does not include 
the NP-complete problems (PCBQPC PSPACE; Po NP 
CPSPACE). However, it should be noted that many believe 
that the problems within NP-complete might be solved using 
a quantum computer much more quickly than using a UTM. 
(0014. Heuristic Solvers for Complex Problems 
0015. A number of algorithms have been developed to find 
the exact, optimal solutions to the above-described NP-hard 
problems. However, even when employing quantum compu 
tation, these algorithms are not guaranteed to find the optimal 
Solution in polynomial time. As a result, heuristic algorithms 
are typically used in order to find at least a locally optimal 
Solution in a relatively small amount of computation time. 
0016. A number of heuristic solvers have been developed 
to find locally optimal solutions to computationally complex 
problems (e.g., NP-hard problems) using both classical/digi 
tal computers and quantum computers. Many of these heu 
ristic solvers function by searching through the landscape of 
potential solutions in order to find a locally optimal solution. 
Although these heuristic solvers are not guaranteed to find the 
global optimal solution to these problems, they may find close 
to the global optimal solution with sufficient run time. Such 
heuristic solvers include: genetic algorithms (in which good 
Solutions evolve in a process designed to mimic natural selec 
tion); tabu search methods (a local search algorithm that 
permits non-improving moves and prevents cycling back to 
previously visited solutions by using “tabulists’ to record a 
recent solution history); and simulated annealing algorithms 
(another local search algorithm that permits non-improving 
moves with decreasing probability as the search comes to an 
end). More information regarding Such solvers may be found, 
for example, in the text, Search Methodologies. Introductory 
Tutorials in Optimization and Design Support Techniques, 
edited by Edmund Burke and Graham Kendall, 2005, ISBN 
10: O-387-23460-8. 
0017 Unfortunately, the ability of such heuristic solvers to 
find a good solution relatively quickly is often highly depen 
dent upon the particular values chosen for a number of param 
eters associated with each solver. Optimal parameters for the 
heuristic solvers may vary greatly from problem to problem, 
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and typically an expert user determines these parameters 
empirically through extensive experimentation. Such work 
by experts has been detailed in Hutter. F., et al., Automatic 
Algorithm Configuration based on Local Search, In Proceed 
ings of the Twenty-First Conference on Artificial Intelligence, 
http://www.cs.ubc.ca/~hutter/papers/aaai07 param ils.pdf. 
(2007). Indeed, a problem may be more amenable to solution 
by a certain type of heuristic solver, and even the choice of 
which solver to employ may require significant experimen 
tation by an expert user. 
0018 Approaches to Quantum Computation 
0019. There are several general approaches to the design 
and operation of quantum computers. One such approach is 
the “circuit model of quantum computation. In this 
approach, qubits are acted upon by sequences of logical gates 
that are the compiled representation of an algorithm. Circuit 
model quantum computers have several serious barriers to 
practical implementation. In the circuit model, it is required 
that qubits remain coherent over time periods much longer 
than the single-gate time. This requirement arises because 
circuit model quantum computers require operations that are 
collectively called quantum error correction in order to oper 
ate. Quantum error correction cannot be performed without 
the circuit model quantum computer's qubits being capable of 
maintaining quantum coherence over time periods on the 
order of 1,000 times the single-gate time. Much research has 
been focused on developing qubits with coherence Sufficient 
to form the basic information units of circuit model quantum 
computers. See, e.g., Shor, P. W. “Introduction to Quantum 
Algorithms arXiv.org:quant-ph/0005003 (2001), pp. 1-27. 
The art is still hampered by an inability to increase the coher 
ence of qubits to acceptable levels for designing and operat 
ing practical circuit model quantum computers. 
0020. Another approach to quantum computation, 
involves using the natural physical evolution of a system of 
coupled quantum systems as a computational system. This 
approach does not make critical use of quantum gates and 
circuits. Instead, starting from a known initial Hamiltonian, it 
relies upon the guided physical evolution of a system of 
coupled quantum systems wherein the problem to be solved 
has been encoded in the terms of the system's Hamiltonian, so 
that the final state of the system of coupled quantum systems 
contains information relating to the answer to the problem to 
be solved. This approach does not require long qubit coher 
ence times. Examples of this type of approach include adia 
batic quantum computation, cluster-state quantum computa 
tion, one-way quantum computation, quantum annealing and 
classical annealing, and are described, for example, in Farhi, 
E. et al., “Quantum Adiabatic Evolution Algorithms versus 
Simulated Annealing.” arXiv.org:quant-ph/0201031 (2002), 
pp. 1-16. 
0021 Qubits 
0022. As mentioned previously, qubits can be used as fun 
damental units of information for a quantum computer. As 
with bits in UTMs, qubits can refer to at least two distinct 
quantities; a qubit can refer to the actual physical device in 
which information is stored, and it can also refer to the unit of 
information itself, abstracted away from its physical device. 
Examples of qubits include quantum particles, atoms, elec 
trons, photons, ions, and the like. 
0023. Qubits generalize the concept of a classical digital 

bit. A classical information storage device can encode two 
discrete states, typically labeled “0” and “1”. Physically these 
two discrete states are represented by two different and dis 
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tinguishable physical states of the classical information Stor 
age device, such as direction or magnitude of magnetic field, 
current, or Voltage, where the quantity encoding the bit state 
behaves according to the laws of classical physics. A qubit 
also contains two discrete physical states, which can also be 
labeled “O'” and “1”. Physically these two discrete states are 
represented by two different and distinguishable physical 
states of the quantum information storage device. Such as 
direction or magnitude of magnetic field, current, or Voltage, 
where the quantity encoding the bit state behaves according to 
the laws of quantum physics. If the physical quantity that 
stores these states behaves quantum mechanically, the device 
can additionally be placed in a superposition of 0 and 1. That 
is, the qubit can exist in both a “0” and “1” state at the same 
time, and so can perform a computation on both states simul 
taneously. In general, Ngubits can beina Superposition of 2^ 
states. Quantum algorithms make use of the Superposition 
property to speed up some computations. 
0024. In standard notation, the basis states of a qubit are 
referred to as the 10) and 1) states. During quantum com 
putation, the State of a qubit, in general, is a Superposition of 
basis states so that the qubit has a nonzero probability of 
occupying the 10) basis state and a simultaneous nonzero 
probability of occupying the 1) basis state. Mathematically, 
a Superposition of basis states means that the overall state of 
the qubit, which is denoted IIT), has the form 1) =a.0 
) +b|1), where a and b are coefficients corresponding to the 
probabilities la' and blf, respectively. The coefficients a and 
beach have real and imaginary components, which allows the 
phase of the qubit to be characterized. The quantum nature of 
a qubit is largely derived from its ability to exist in a coherent 
superposition of basis states and for the state of the qubit to 
have a phase. A qubit will retain this ability to exist as a 
coherent Superposition of basis states when the qubit is Suf 
ficiently isolated from sources of decoherence. 
0025 To complete a computation using a qubit, the state of 
the qubit is measured (i.e., read out). Typically, when a mea 
Surement of the qubit is performed, the quantum nature of the 
qubit is temporarily lost, and the Superposition of basis states 
collapses to either the 10) basis state or the 11) basis state. 
The qubit thus regains its similarity to a conventional bit. The 
actual state of the qubit after it has collapsed depends on the 
probabilities lal’ and bl’ immediately prior to the readout 
operation. 
0026 
0027. There are many different hardware and software 
approaches under consideration for use in quantum comput 
ers. One hardware approach uses integrated circuits formed 
of Superconducting materials, such as aluminum or niobium. 
Some of the technologies and processes involved in designing 
and fabricating Superconducting integrated circuits are simi 
lar in some respects to those used for conventional integrated 
circuits. 
0028 Superconducting qubits are a type of superconduct 
ing device that can be included in a Superconducting inte 
grated circuit. Typical Superconducting qubits, for example, 
have the advantage of Scalability and are generally classified 
depending on the physical properties used to encode infor 
mation including, for example, charge and phase devices, 
phase or flux devices, hybrid devices, and the like. Supercon 
ducting qubits can be separated into several categories 
depending on the physical property used to encode informa 
tion. For example, they may be separated into charge, flux and 

Superconducting Qubits 
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phase devices, as discussed in, for example, Makhlin et al., 
2001, Reviews of Modern Physics 73, pp. 357-400. 
0029 Charge devices store and manipulate information in 
the charge states of the device, where elementary charges 
consist of pairs of electrons called Cooper pairs. A Cooper 
pair has a charge of 2e and consists of two electrons bound 
together by, for example, a phonon interaction. See, e.g., 
Nielsen and Chuang, Quantum Computation and Ouantum 
Information, Cambridge University Press, Cambridge 
(2000), pp. 343-345. Flux devices store information in a 
variable related to the magnetic flux through some part of the 
device. Phase devices store information in a variable related 
to the difference in Superconducting phase between two 
regions of the phase device. Recently, hybrid devices using 
two or more of charge, flux and phase degrees of freedom 
have been developed. See, e.g., U.S. Pat. No. 6,838,694 and 
U.S. Pat. No. 7,335,909. 
0030 Examples of flux qubits that may be used include 
rf-SQUIDs, which include a superconducting loop inter 
rupted by one Josephson junction, or a compound junction 
(where a single Josephsonjunction is replaced by two parallel 
Josephson junctions), or persistent current qubits, which 
include a Superconducting loop interrupted by three Joseph 
son junctions, and the like. See, e.g., Mooi et al., 1999, 
Science 285, 1036; and Orlando et al., 1999, Phys. Rev. B 60, 
15398. Other examples of superconducting qubits can be 
found, for example, in Ilichev et al., 2003, Phys. Rev. Lett. 91, 
097906: Blatter et al., 2001, Phys. Rev. B 63, 174511, and 
Friedman et al., 2000, Nature 406, 43. In addition, hybrid 
charge-phase qubits may also be used. 
0031. The qubits may include a corresponding local bias 
device. The local bias devices may include a metal loop in 
proximity to a Superconducting qubit that provides an exter 
nal flux bias to the qubit. The local bias device may also 
include a plurality of Josephson junctions. Each Supercon 
ducting qubit in the quantum processor may have a corre 
sponding local bias device or there may be fewer local bias 
devices than qubits. In some embodiments, charge-based 
readout and local bias devices may be used. The readout 
device(s) may include a plurality of dc-SQUID magnetom 
eters, each inductively connected to a different qubit within a 
topology. The readout device may produce a Voltage or cur 
rent. DC-SQUID magnetometers including a loop of super 
conducting material interrupted by at least one Josephson 
junction are well known in the art. 
0032 Quantum Processor 
0033. A computer processor may take the form of an ana 
log processor. For instance, a quantum processor, Such as a 
Superconducting quantum processor, may be used. A quan 
tum processor may include a number of qubits and associated 
local bias devices, such as two or more Superconducting 
qubits. Further detail and embodiments of exemplary quan 
tum processors that may be used in conjunction with the 
present systems, methods, and apparatus are described in US 
Patent Publication No. 2006-0225165, US Patent Publication 
2008-0176750, US Patent Application Publication No. 2009 
0121215, and PCT Patent Application Serial No. PCT/US09/ 
37984. 
0034. A quantum processor may also include a number of 
coupling devices operable to selectively couple respective 
pairs of qubits. Examples of Superconducting coupling 
devices include rf-SQUIDs and dc-SQUIDs, which may 
couple qubits together by flux. SQUIDs include a supercon 
ducting loop interrupted by one Josephson junction (an rf 
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SQUID) or two Josephsonjunctions (adc-SQUID). The cou 
pling devices may be capable of both ferromagnetic and 
anti-ferromagnetic coupling, depending on how the coupling 
device is being utilized within the interconnected topology. In 
the case offlux coupling, ferromagnetic coupling implies that 
parallel fluxes are energetically favorable, and anti-ferromag 
netic coupling implies that anti-parallel fluxes are energeti 
cally favorable. Alternatively, charge-based coupling devices 
may also be used. Other coupling devices can be found, for 
example, in U.S. Patent Application Publication No. 2006 
0147154, U.S. Patent Application Publication No. 2008 
0238531, U.S. Patent Application Publication No. 2008 
0274898 and US Patent Application Publication No. 2009 
0078932. Respective coupling strengths of the coupling 
devices may be tuned between Zero and a maximum value, for 
example, to provide ferromagnetic oranti-ferromagnetic cou 
pling between qubits. 
0035 Adiabatic Quantum Computation 
0036 Adiabatic quantum computation typically involves 
evolving a system from a known initial Hamiltonian (the 
Hamiltonian being an operator whose eigenvalues are the 
allowed energies of the system) to a final Hamiltonian by 
gradually changing the Hamiltonian. A simple example of an 
adiabatic evolution is: 

where H, is the initial Hamiltonian, H, is the final Hamilto 
nian, H is the evolution or instantaneous Hamiltonian, and S 
is an evolution coefficient which controls the rate of evolu 
tion. As the system evolves, the coefficients goes from 0 to 1 
such that at the beginning (i.e., s=0) the evolution Hamilto 
nian H is equal to the initial Hamiltonian H, and at the end 
(i.e., s=1) the evolution Hamiltonian H is equal to the final 
Hamiltonian H. Before the evolution begins, the system is 
typically initialized in a ground state of the initial Hamilto 
nian H, and the goal is to evolve the system in Such a way that 
the system ends up in a ground State of the final Hamiltonian 
H, at the end of the evolution. If the evolution is too fast, then 
the system can be excited to a higher energy state, such as the 
first excited State. In the present systems, methods, and appa 
ratus, an “adiabatic' evolution is considered to be an evolu 
tion that satisfies the adiabatic condition: 

where s is the time derivative of s, g(s) is the difference in 
energy between the ground State and first excited State of the 
system (also referred to herein as the 'gap size) as a function 
ofs, and 6 is a coefficient much less than 1. 
0037. The evolution process in adiabatic quantum com 
puting may sometimes be referred to as annealing. The rate 
that S changes, sometimes referred to as an evolution or 
annealing schedule, is normally slow enough that the system 
is always in the instantaneous ground state of the evolution 
Hamiltonian during the evolution, and transitions at anti 
crossings (i.e., when the gap size is Smallest) are avoided. 
Further details on adiabatic quantum computing systems, 
methods, and apparatus are described in U.S. Pat. No. 7,135, 
701. 

0038 Quantum Annealing 
0039 Quantum annealing is a computation method that 
may be used to find a low-energy state, typically preferably 
the ground state, of a system. Similar in concept to classical 
annealing, the method relies on the underlying principle that 
natural systems tend towards lower energy States because 
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lower energy states are more stable. However, while classical 
annealing uses classical thermal fluctuations to guide a sys 
tem to its global energy minimum, quantum annealing may 
use quantum effects, such as quantum tunneling, to reach a 
global energy minimum more accurately and/or more 
quickly. It is known that the Solution to a hard problem, Such 
as a combinatorial optimization problem, may be encoded in 
the ground state of a system Hamiltonian and therefore quan 
tum annealing may be used to find the Solution to such hard 
problems. Adiabatic quantum computation is a special case of 
quantum annealing for which the system, ideally, begins and 
remains in its ground State throughout anadiabatic evolution. 
Thus, those of skill in the art will appreciate that quantum 
annealing systems and methods may generally be imple 
mented on an adiabatic quantum computer, and vice versa. 
Throughout this specification and the appended claims, any 
reference to quantum annealing is intended to encompass 
adiabatic quantum computation unless the context requires 
otherwise. 
0040 Quantum annealing is an algorithm that uses quan 
tum mechanics as a source of disorder during the annealing 
process. The optimization problem is encoded in a Hamilto 
nian H, and the algorithm introduces strong quantum fluc 
tuations by adding a disordering Hamiltonian H, that does 
not commute with H. An example case is: 

where T changes from a large value to Substantially Zero 
during the evolution and H may be thought of as an evolution 
Hamiltonian similar to H described in the context of adia 
batic quantum computation above. The disorder is slowly 
removed by removing H (i.e., reducing F). Thus, quantum 
annealing is similar to adiabatic quantum computation in that 
the system starts with an initial Hamiltonian and evolves 
through an evolution Hamiltonian to a final “problem” 
Hamiltonian H, whose ground state encodes a solution to the 
problem. If the evolution is slow enough, the system will 
typically settle in a local minimum close to the exact solution; 
the slower the evolution, the better the solution that will be 
achieved. The performance of the computation may be 
assessed via the residual energy (distance from exact solution 
using the objective function) versus evolution time. The com 
putation time is the time required to generate a residual 
energy below some acceptable threshold value. In quantum 
annealing. He may encode an optimization problem and 
therefore Hip may be diagonal in the subspace of the qubits 
that encode the Solution, but the system does not necessarily 
stay in the ground state at all times. The energy landscape of 
He may be crafted so that its global minimum is the answer to 
the problem to be solved, and low-lying local minima are 
good approximations. 
0041. The gradual reduction of T in quantum annealing 
may follow a defined schedule known as an annealing sched 
ule. Unlike traditional forms of adiabatic quantum computa 
tion where the system begins and remains in its ground State 
throughout the evolution, in quantum annealing the system 
may not remain in its ground state throughout the entire 
annealing schedule. As such, quantum annealing may be 
implemented as a heuristic technique, where low-energy 
states with energy near that of the ground state may provide 
approximate solutions to the problem. 
Adiabatic Quantum Computing and Quantum Annealing 
Algorithms 
0.042 Typically, an adiabatic quantum computing algo 
rithm may be directed towards producing an exact solution to 
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a given problem. This underlying goal may lead to many 
complications in the implementation of the algorithm. For 
instance, in order to achieve an exact solution it is typically 
necessary to prevent transitions at all anti-crossings in the 
evolution of the system Hamiltonian. Since some anti-cross 
ings may correspond to very Small energy gaps, an algorithm 
focused on achieving an exact solution may require an 
impractically long evolution schedule. As previously dis 
cussed, adiabatic quantum computing may be considered to 
be a special case of quantum annealing, and quantum anneal 
ing is well-suited to be implemented as a heuristic technique. 
Accordingly, the various embodiments described herein pro 
vide methods for improving the final Solution of a quantum 
computation achieved by either adiabatic quantum comput 
ing and/or by quantum annealing. In some embodiments, this 
is achieved by using a classical algorithm to improve the 
approximate solution obtained by adiabatic quantum compu 
tation and/or quantum annealing. 

BRIEF SUMMARY 

0043. A computer-implemented method of determining 
parameters for Solving problems may be Summarized as 
including receiving information indicative of a problem; 
determining a set of features associated with the problem; 
comparing the set of features with previously determined sets 
offeatures associated with other problems; generating a set of 
parameters for a solver based at least in part on the comparing 
the set of features with the previously determined sets of 
features; and solving the problem using the set of parameters 
to generate a solution. 
0044 Receiving the information indicative of the problem 
may include receiving the information indicative of the prob 
lem via a user interface. Determining the set of features may 
includes generating a matrix representation of the problem, 
and determining at least one characteristic of the matrix rep 
resentation as at least one feature of the set of features. Theat 
least one characteristic of the matrix representation may beat 
least one of diagonal dominance, positivity, an average of 
matrix values, a range of matrix values and sparsity. Deter 
mining the set of features may include generating a graphical 
representation of the problem, and determining at least one 
characteristic of the graphical representation as at least one 
feature of the set of features. The at least one characteristic of 
the graphical representation may be at least one of eccentric 
ity, radius, circumference, and a characteristic of a plurality of 
random measurements of the graphical representation. Deter 
mining the set of features may include performing a plurality 
of walks through a solution space of the problem, and deter 
mining at least one characteristic of the plurality of walks as 
at least one feature of the set of features. The plurality of 
walks may include a plurality of stochastic hill climbs, and 
wherein the at least one characteristic of the plurality of walks 
may be an average of a number of steps to complete each hill 
climb. The problem may be one of an NP-hard or NP-com 
plete problem. Determining the set of features may include 
determining the set of features in the computer. Determining 
the set of features may include generating a problem vector 
indicative of the set of features in an n-dimensional feature 
space, wherein each dimension of the feature space corre 
sponds to a respective feature. Comparing the set of features 
with the previously determined sets of features may include 
comparing the problem vector with other vectors indicative of 
the previously determined sets of features in the n-dimen 
sional feature space. Generating the set of parameters for the 
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Solver may include selecting at least one proximate vector 
from among the other vectors, the at least one proximate 
vector being relatively proximate the problem vector in the 
n-dimensional space, and generating the set of parameters 
based at least in part on a prior set of parameters used to Solve 
at least one problem associated with the at least one proximate 
vector. Generating the set of parameters based at least in part 
on the prior set of parameters may include setting the set of 
parameters equal to the prior set of parameters. The method 
may further include selecting the solver from among a plu 
rality of solvers based at least in part on the comparing the set 
of features with the previously determined sets of features. 
The method may further include determining a training set of 
features associated with a training problem having a previ 
ously determined answer, generating an initial set of param 
eters for the solver, varying at least one parameter of the initial 
set of parameters to generate a revised set of parameters, 
Solving the training problem using the revised set of param 
eters to generate a revised solution, comparing the revised 
Solution with the previously determined answer, storing the 
revised set of parameters as a training set of parameters based 
at least in part on the comparing the revised solution with the 
previously determined answer, logically associating the train 
ing set of features with the training set of parameters, and 
saving information indicative of the training set of features as 
one of the previously determined sets of features. The method 
may include repeatedly varying at least one parameter of the 
revised set of parameters to generate a second revised set of 
parameters, solving the problem using the second revised set 
of parameters to generate a second revised solution, compar 
ing the second revised solution with the previously deter 
mined answer, and storing the second revised set of param 
eters as the training set of parameters based at least in part on 
the comparing the second revised solution with the previously 
determined answer. The previously determined answer may 
comprises a high quality answer. The method may include 
storing the set of parameters used to Solve the problem, vary 
ing at least one parameter of the set of parameters to generate 
a revised set of parameters, solving the problem using the 
revised set of parameters to generate a revised solution, com 
paring the revised solution with the Solution, and storing the 
revised set of parameters if the revised solution is of a higher 
quality than the solution. The acts of varying the at least one 
parameter, Solving the problem using the revised set of 
parameters, comparing the revised solution with the solution, 
and storing the revised set of parameters may be performed 
during otherwise idle cycles of the computer. The method 
may include storing the set of parameters used to solve the 
problem, identifying an undetermined characteristic of the 
Solver associated with the problem, varying at least one 
parameter of the set of parameters to generate a revised set of 
parameters, Solving the problem using the revised set of 
parameters, and generating information associated with the 
undetermined characteristic based at least in part on solving 
the problem using the revised set of parameters. Generating 
the information associated with the undetermined character 
istic may include determining a timing associated with solv 
ing the problem using the revised set of parameters. Solving 
the problem using the set of parameters may include solving 
the problem on a quantum computer. The computer may be a 
classical computer. The computer may be a quantum com 
puter. 
0045. A computer-implemented method of determining 
parameters for Solving problems may be summarized as 
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including receiving information indicative of a problem; 
determining a set of features associated with the problem; 
comparing the set of features with previously determined sets 
of features associated with other problems; and generating a 
set of parameters for a solver based at least in part on the 
comparing the set of features with the previously determined 
sets of features. 

0046. The method may include providing the set of param 
eters to the solver for use in solving the problem. Receiving 
the information indicative of the problem may include receiv 
ing the information indicative of the problem via a user inter 
face. Determining the set of features may include generating 
a matrix representation of the problem, and determining at 
least one characteristic of the matrix representation as at least 
one feature of the set of features. The at least one character 
istic of the matrix representation may be at least one of diago 
nal dominance, positivity, an average of matrix values, a 
range of matrix values and sparsity. Determining the set of 
features may includes generating a graphical representation 
of the problem, and determining at least one characteristic of 
the graphical representation as at least one feature of the set of 
features. The at least one characteristic of the graphical rep 
resentation may be at least one of eccentricity, radius, circum 
ference, and a characteristic of a plurality of random mea 
Surements of the graphical representation. Determining the 
set of features may include performing a plurality of walks 
through a solution space of the problem, and determining at 
least one characteristic of the plurality of walks as at least one 
feature of the set of features. The plurality of walks may 
include a plurality of stochastic hill climbs, and the at least 
one characteristic of the plurality of walks may be an average 
of a number of steps to complete each hill climb. The problem 
may be one of a NP-hard or NP-complete problem. Deter 
mining the set of features may include generating a problem 
vector indicative of the set of features in an n-dimensional 
feature space wherein each dimension of the feature space 
corresponds to a respective feature. Comparing the set of 
features with the previously determined sets of features may 
include comparing the problem vector with other vectors 
indicative of the previously determined sets of features in the 
n-dimensional feature space. Generating the set of param 
eters for the solver may include selecting at least one proxi 
mate vector from among the other vectors, the at least one 
proximate vector being relatively proximate the problem vec 
tor in the n-dimensional space, and generating the set of 
parameters based at least in part on a prior set of parameters 
used to solve at least one problem associated with the at least 
one proximate vector. Generating the set of parameters based 
at least in part on the prior set of parameters may include 
setting the set of parameters equal to the prior set of param 
eters. The method may include selecting the solver from 
among a plurality of solvers based at least in part on the 
comparing the set of features with the previously determined 
sets of features. The method may include determining a train 
ing set of features associated with a training problem having 
a previously determined answer, generating an initial set of 
parameters for the solver, varying at least one parameter of the 
initial set of parameters to generate a revised set of param 
eters, receiving a revised solution to the training problem 
from the solver, the revised solution associated with the 
revised set of parameters, comparing the revised solution with 
the previously determined answer, storing the revised set of 
parameters as a training set of parameters based at least in part 
on the comparing the revised solution with the previously 
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determined answer, logically associating the training set of 
features with the training set of parameters, and saving infor 
mation indicative of the training set of features as one of the 
previously determined sets of features. The method may 
include repeatedly varying at least one parameter of the 
revised set of parameters to generate a second revised set of 
parameters, receiving a second revised solution to the training 
problem from the solver, the second revised solution associ 
ated with the second revised set of parameters, comparing the 
second revised solution with the previously determined 
answer, and storing the second revised set of parameters as 
the training set of parameters based at least in part on the 
comparing the second revised solution with the previously 
determined answer. The method may include receiving a 
solution to the problem from the solver, the solution associ 
ated with the set of parameters, storing the set of parameters, 
varying at least one parameter of the set of parameters to 
generate a revised set of parameters, receiving a revised solu 
tion to the problem from the solver, the revised solution 
associated with the revised set of parameters, comparing the 
revised solution with the solution, and storing the revised set 
of parameters if the revised solution is of higher quality than 
the solution. The method may include storing the set of 
parameters, identifying an undetermined characteristic of the 
Solver associated with the problem, varying at least one 
parameter of the set of parameters to generate a revised set of 
parameters, providing the revised set of parameters to the 
Solver for use in solving the problem, causing the solver to 
solve the problem using the revised set of parameters, and 
generating information associated with the undetermined 
characteristic based at least in part on the solver Solving the 
problem using the revised set of parameters. Generating the 
information associated with the undetermined characteristic 
may include determining a timing associated with the solver 
Solving the problem using the revised set of parameters. The 
Solver may comprise a quantum computer. 
0047. A classical computer for determining parameters for 
Solving problems may be Summarized as including a proces 
Sor that executes instructions and a computer-readable 
memory that stores instructions, and the instructions stored 
on the computer-readable memory may cause the processor to 
determine parameters for Solving problems by receiving 
information indicative of a problem, determining a set of 
features associated with the problem, comparing the set of 
features with previously determined sets of features associ 
ated with other problems, and generating a set of parameters 
for a solver based at least in part on the comparing the set of 
features with the previously determined sets of features. 
0048. The computer-readable memory may store further 
instructions that cause the processor to provide the set of 
parameters to the solver for use in Solving the problem. 
Receiving the information indicative of the problem may 
include receiving the information indicative of the problem 
via a user interface. Determining the set of features may 
include generating a matrix representation of the problem, 
and determining at least one characteristic of the matrix rep 
resentation as at least one feature of the set of features. Theat 
least one characteristic of the matrix representation may beat 
least one of diagonal dominance, positivity, an average of 
matrix values, a range of matrix values and sparsity. Deter 
mining the set of features may include generating a graphical 
representation of the problem, and determining at least one 
characteristic of the graphical representation as at least one 
feature of the set of features. Theat least one characteristic of 
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the graphical representation may be at least one of eccentric 
ity, radius, circumference, and a characteristic of a plurality of 
random measurements of the graphical representation. Deter 
mining the set of features may include performing a plurality 
of walks through a solution space of the problem, and deter 
mining at least one characteristic of the plurality of walks as 
at least one feature of the set of features. The plurality of 
walks may include a plurality of stochastic hill climbs, and 
the at least one characteristic of the plurality of walks may be 
an average of a number of steps to complete each hill climb. 
The problem may be one of a NP-hard or NP-complete prob 
lem. Determining the set of features may include generating 
a problem vector indicative of the set of features in an n-di 
mensional feature space wherein each dimension of the fea 
ture space corresponds to a respective feature. Comparing the 
set of features with the previously determined sets of features 
may include comparing the problem vector with other vectors 
indicative of the previously determined sets of features in the 
n-dimensional feature space. Generating the set of param 
eters for the solver may include selecting at least one proxi 
mate vector from among the other vectors, the at least one 
proximate vector being relatively proximate the problem vec 
tor in the n-dimensional space, and generating the set of 
parameters based at least in part on a prior set of parameters 
used to solve at least one problem associated with the at least 
one proximate vector. Generating the set of parameters based 
at least in part on the prior set of parameters may include 
setting the set of parameters equal to the prior set of param 
eters. The computer-readable memory may store further 
instructions that cause the processor to select the Solver from 
among a plurality of solvers based at least in part on the 
comparing the set of features with the previously determined 
sets of features. The computer-readable memory may store 
further instructions that cause the processor to determine 
parameters for Solving problems by determining a training set 
of features associated with a training problem having a pre 
viously determined answer, generating an initial set of param 
eters for the solver, varying at least one parameter of the initial 
set of parameters to generate a revised set of parameters, 
receiving a revised solution to the training problem from the 
solver, the revised solution associated with the revised set of 
parameters, comparing the revised solution with the previ 
ously determined answer, storing the revised set of param 
eters as a training set of parameters based at least in part on the 
comparing the revised solution with the previously deter 
mined answer, logically associating the training set of fea 
tures with the training set of parameters, and saving informa 
tion indicative of the training set of features as one of the 
previously determined sets of features. The computer-read 
able memory may store further instructions that cause the 
processor to determine parameters for solving problems by, 
repeatedly, varying at least one parameter of the revised set of 
parameters to generate a second revised set of parameters, 
receiving a second revised solution to the training problem 
from the solver, the second revised solution associated with 
the second revised set of parameters, comparing the second 
revised solution with the previously determined answer, and 
storing the second revised set of parameters as the training set 
of parameters based at least in part on the comparing the 
second revised solution with the previously determined 
answer. The computer-readable memory may store further 
instructions that cause the processor to determine parameters 
for Solving problems by receiving a solution to the problem 
from the solver, the solution associated with the set of param 
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eters, storing the set of parameters, varying at least one 
parameter of the set of parameters to generate a revised set of 
parameters, receiving a revised solution to the problem from 
the solver, the revised solution associated with the revised set 
of parameters, comparing the revised solution with the Solu 
tion, and storing the revised set of parameters if the revised 
Solution is of higher quality than the solution. The computer 
readable memory may store further instructions that cause the 
processor to determine parameters for Solving problems by 
storing the set of parameters, identifying an undetermined 
characteristic of the solver associated with the problem, vary 
ing at least one parameter of the set of parameters to generate 
a revised set of parameters, providing the revised set of 
parameters to the solver for use in Solving the problem, caus 
ing the solver to solve the problem using the revised set of 
parameters, and generating information associated with the 
undetermined characteristic based at least in part on the solver 
Solving the problem using the revised set of parameters. Gen 
erating the information associated with the undetermined 
characteristic may include determining a timing associated 
with the solver solving the problem using the revised set of 
parameters. 
0049. A computer-readable medium that stores instruc 
tions may cause a processor to determine parameters for 
Solving problems and may be Summarized by receiving infor 
mation indicative of a problem, determining a set of features 
associated with the problem, comparing the set of features 
with previously determined sets of features associated with 
other problems, and generating a set of parameters for a solver 
based at least in part on the comparing the set of features with 
the previously determined sets of features. 
0050. The computer-readable medium may store further 
instructions that cause a processor to provide the set of param 
eters to the solver for use in solving the problem. Receiving 
the information indicative of the problem may include receiv 
ing the information indicative of the problem via a user inter 
face. Determining the set of features may include generating 
a matrix representation of the problem, and determining at 
least one characteristic of the matrix representation as at least 
one feature of the set of features. The at least one character 
istic of the matrix representation may be at least one of diago 
nal dominance, positivity, an average of matrix values, a 
range of matrix values and sparsity. Determining the set of 
features may include generating a graphical representation of 
the problem, and determining at least one characteristic of the 
graphical representation as at least one feature of the set of 
features. The at least one characteristic of the graphical rep 
resentation may beat least one of eccentricity, radius, circum 
ference, and a characteristic of a plurality of random mea 
Surements of the graphical representation. Determining the 
set of features may include performing a plurality of walks 
through a solution space of the problem, and determining at 
least one characteristic of the plurality of walks as at least one 
feature of the set of features. The plurality of walks may 
include a plurality of stochastic hill climbs, and the at least 
one characteristic of the plurality of walks may be an average 
of a number of steps to complete each hill climb. The problem 
may be one of a NP-hard or NP-complete problem. Deter 
mining the set of features may include generating a problem 
vector indicative of the set of features in an n-dimensional 
feature space wherein each dimension of the feature space 
corresponds to a respective feature. Comparing the set of 
features with the previously determined sets of features may 
include comparing the problem vector with other vectors 
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indicative of the previously determined sets of features in the 
n-dimensional feature space. Generating the set of param 
eters for the solver may include selecting at least one proxi 
mate vector from among the other vectors, the at least one 
proximate vector being relatively proximate the problem vec 
tor in the n-dimensional space, and generating the set of 
parameters based at least in part on a prior set of parameters 
used to solve at least one problem associated with the at least 
one proximate vector. Generating the set of parameters based 
at least in part on the prior set of parameters may include 
setting the set of parameters equal to the prior set of param 
eters. The computer-readable medium may store further 
instructions that cause a processor to select the solver from 
among a plurality of solvers based at least in part on the 
comparing the set of features with the previously determined 
sets of features. The computer-readable medium may store 
further instructions that cause a processor to determine 
parameters for Solving problems by determining a training set 
of features associated with a training problem having a pre 
viously determined answer, generating an initial set of param 
eters for the solver, varying at least one parameter of the initial 
set of parameters to generate a revised set of parameters, 
receiving a revised solution to the training problem from the 
solver, the revised solution associated with the revised set of 
parameters, comparing the revised solution with the previ 
ously determined answer, storing the revised set of param 
eters as a training set of parameters based at least in part on the 
comparing the revised solution with the previously deter 
mined answer, logically associating the training set of fea 
tures with the training set of parameters, and saving informa 
tion indicative of the training set of features as one of the 
previously determined sets of features. The computer-read 
able medium may store further instructions that cause a pro 
cessor to determine parameters for Solving problems by, 
repeatedly, varying at least one parameter of the revised set of 
parameters to generate a second revised set of parameters, 
receiving a second revised solution to the training problem 
from the solver, the second revised solution associated with 
the second revised set of parameters, comparing the second 
revised solution with the previously determined answer, and 
storing the second revised set of parameters as the training set 
of parameters based at least in part on the comparing the 
second revised solution with the previously determined 
answer. The computer-readable medium may store further 
instructions that cause a processor to determine parameters 
for Solving problems by receiving a solution to the problem 
from the solver, the solution associated with the set of param 
eters, storing the set of parameters, varying at least one 
parameter of the set of parameters to generate a revised set of 
parameters, receiving a revised solution to the problem from 
the solver, the revised solution associated with the revised set 
of parameters, comparing the revised solution with the solu 
tion, and storing the revised set of parameters if the revised 
Solution is of higher quality than the Solution. The computer 
readable medium may store further instructions that cause a 
processor to determine parameters for Solving problems by 
storing the set of parameters, identifying an undetermined 
characteristic of the solver associated with the problem, vary 
ing at least one parameter of the set of parameters to generate 
a revised set of parameters, providing the revised set of 
parameters to the solver for use in Solving the problem, caus 
ing the solver to solve the problem using the revised set of 
parameters, and generating information associated with the 
undetermined characteristic based at least in part on the solver 
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Solving the problem using the revised set of parameters. Gen 
erating the information associated with the undetermined 
characteristic may include determining a timing associated 
with the solver solving the problem using the revised set of 
parameters. 
0051. A method of solving problems may be summarized 
as including quantum computationally determining a first 
Solution to a problem; and computationally refining the first 
Solution to the problem via an optimization algorithm. The 
quantum computationally determining a first Solution to a 
problem may include performing at least one adiabatic quan 
tum computation. The quantum computationally determining 
a first Solution to a problem may include performing at least 
one quantum annealing computation. Computationally refin 
ing the first Solution to the problem via an optimization algo 
rithm may include computationally executing a classical 
algorithm. Computationally executing a classical algorithm 
may include computationally executing a local search algo 
rithm. Computationally executing a classical algorithm may 
include computationally executing a simulated annealing 
algorithm. Computationally refining the first solution to the 
problem may include using the first solution as a starting point 
for the optimization algorithm. Using the first solution as a 
starting point for the optimization algorithm may include 
using the first solution as an initial guess for the optimization 
algorithm. The first solution to the problem may be an 
approximate solution and computationally refining the first 
Solution includes producing a second solution to the problem 
that is at least as good as the first solution to the problem. 
0052 A method of solving problems may be summarized 
as quantum computationally determining a first solution to a 
problem; casting the first Solution to the problem as the start 
ing point for an optimization; and computationally perform 
ing an optimization to determine a second solution to the 
problem. Quantum computationally determining a first solu 
tion to a problem may include performing at least one of 
adiabatic quantum computation. Quantum computationally 
determining a first Solution to a problem may include per 
forming a quantum annealing. Computationally performing 
an optimization may include performing a classical optimi 
Zation. Performing a classical optimization may include per 
forming at least one local search. Performing a classical opti 
mization may include performing at least one local simulated 
annealing. 
0053 A system to solve problems may be summarized as 
including at least one quantum processor configured to quan 
tum computationally determine a first solution to a problem; 
and the system configured to computationally refine the first 
Solution to the problem via an optimization algorithm. The 
system may, for example, include a classical processor con 
figured to execute the optimization algorithm to refine the first 
solution to the problem. 
0054. A system to solve problems may be summarized as 
including at least one quantum processor configured to quan 
tum computationally determine a first Solution to a problem 
and at least one classical digital processor configured to per 
form an optimization to determine a second solution to the 
problem based on the first solution to the problem as a starting 
point for the optimization. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0055. In the drawings, identical reference numbers iden 
tify similar elements or acts. The sizes and relative positions 
of elements in the drawings are not necessarily drawn to scale. 
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For example, the shapes of various elements and angles are 
not drawn to scale, and some of these elements are arbitrarily 
enlarged and positioned to improve drawing legibility. Fur 
ther, the particular shapes of the elements as drawn, are not 
intended to convey any information regarding the actual 
shape of the particular elements, and have been solely 
selected for ease of recognition in the drawings. 
0056 FIG. 1A is a high-level block diagram showing a 
computing system for Solving complex problems employing 
at least one analog processor, according to one illustrated 
embodiment. 
0057 FIG. 1B is a high-level block diagram showing a 
computing system for Solving complex problems employing 
at least one solver system, according to one illustrated 
embodiment. 
0.058 FIG. 2 is a flow diagram illustrating a method of 
determining parameters for Solving problems, according to 
one illustrated embodiment. 
0059 FIG. 3 is a flow diagram illustrating a method of 
revising the parameters determined in accordance with the 
method of FIG. 2, according to one illustrated embodiment. 
0060 FIG. 4 is a flow diagram illustrating a method of 
training a computing system to determine parameters for 
Solving problems, according to one illustrated embodiment. 
0061 FIG. 5 is a flow diagram illustrating a method of 
determining undetermined characteristics of a solver used to 
Solve problems, according to one illustrated embodiment. 
0062 FIG. 6 is an illustrative diagram of an exemplary 
energy landscape of a problem Hamiltonian. 
0063 FIG. 7 is a flow diagram of an embodiment of a 
method for determining a solution to a computational prob 
lem. 
0064 FIG. 8 is a schematic diagram of a portion of a 
conventional Superconducting quantum processor generally 
designed for quantum annealing and/or adiabatic quantum 
computation. 

DETAILED DESCRIPTION 

0065. In the following description, certain specific details 
are set forth in order to provide a thorough understanding of 
various disclosed embodiments. However, one skilled in the 
art will understand that the present systems, methods and 
articles may be practiced without these details, or with other 
methods, components, computing systems, etc. In other 
instances, well-known structures and methods associated 
with classical, analog and quantum computers, computation 
ally complex problems, and heuristic solvers have not been 
shown or described in detail to avoid unnecessarily obscuring 
descriptions of the embodiments of the present systems, 
methods and articles. 

0066. In addition, various heuristic solvers are described 
herein with reference to certain exemplary complex prob 
lems. Of course, heuristic and other types of solvers may be 
used to generate solutions for a variety of problems. Such as 
optimization problems (e.g., logistics, planning, network uti 
lization, etc.), as well as constraint satisfaction problems 
(e.g., Scheduling, configuration management, etc.). Accord 
ingly, the techniques and systems described herein may be 
utilized to solve, or to construct systems that solve, a wide 
range of problems. 
0067. Unless the context requires otherwise, throughout 
the specification and claims which follow, the words “com 
prise' and “include and variations thereof, such as, “com 
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prises”, “comprising”, “includes and “including are to be 
construed in an open, inclusive sense, that is, as “including, 
but not limited to.” 
0068 Reference throughout this specification to “one 
embodiment”, “an embodiment”, “one alternative”, “an alter 
native' or similar phrases means that a particular feature, 
structure or characteristic described is included in at least one 
embodiment of the present systems, methods and articles. 
Thus, the appearances of Such phrases in various places 
throughout this specification are not necessarily all referring 
to the same embodiment. Furthermore, the particular fea 
tures, structures, or characteristics may be combined in any 
Suitable manner in one or more embodiments. 
0069. As used in this specification and the appended 
claims, the singular forms “a,” “an,” and “the include plural 
referents unless the context clearly dictates otherwise. It 
should also be noted that the term 'or' is generally employed 
in its sense including “and/or unless the context clearly 
dictates otherwise. 
0070 The headings and Abstract of the Disclosure pro 
vided herein are for convenience only and do not interpret the 
Scope or meaning of the embodiments. 

Description of Exemplary Computing Systems 
0071 FIGS. 1A and 1B illustrate two exemplary comput 
ing systems 100, 1000 incorporating parameter learning 
modules 126, 1026. Although not required, these embodi 
ments will be described in the general context of computer 
executable instructions. Such as program application mod 
ules, objects or macros being executed by computing 
systems. Those skilled in the relevant art will appreciate that 
the present systems, methods and apparatus can be practiced 
with other computing system configurations, including hand 
held devices, multiprocessor Systems, microprocessor-based 
or programmable consumer electronics, personal computers 
(“PCs'), network PCs, mini-computers, mainframe comput 
ers, and the like. The embodiments can also be practiced in 
distributed computing environments, where tasks or modules 
are performed by remote processing devices, which are 
linked through a communications network. In a distributed 
computing environment, program modules may be located in 
both local and remote memory storage devices. 
0072 FIG. 1A shows a computing system 100 operable to 
Solve complex problems using at least one analog processor, 
according to one illustrated embodiment. As will be described 
in greater detail below, computing system 100 may further 
include a parameter learning module 126 operable to deter 
mine parameters for Solving the complex problems. 
0073. In one embodiment, computing system 100 includes 
a digital/classical computing Subsystem 102 and an analog 
computing Subsystem 104 communicatively coupled to digi 
tal computing Subsystem 102. 
0074 Digital computing subsystem 102 may include at 
least one processing unit 106, at least one system memory 
108, and at least one system bus 110 that couples various 
Subsystem components, including system memory 108 to 
processing unit 106. Digital computing subsystem 102 will at 
times be referred to in the singular herein, but this is not 
intended to limit the application to a single digital computing 
subsystem 102. In many embodiments, there will be more 
than one digital computing Subsystem 102 or other classical 
computing device involved. 
0075 Processing unit 106 may be any logic processing 

unit, such as one or more central processing units ("CPUs), 
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digital signal processors ("DSPs'), application-specific inte 
grated circuits (ASICs'), etc. Unless described otherwise, 
the construction and operation of the various blocks shown in 
FIG. 1A are of conventional design. As a result, such blocks 
need not be described in further detail herein, as they will be 
understood by those skilled in the relevant art. 
0076 System bus 110 can employ any known bus struc 
tures or architectures, including a memory bus with a memory 
controller, a peripheral bus, and a local bus. System memory 
108 may include read-only memory (“ROM) and random 
access memory (“RAM) (not shown). A basic input/output 
system (“BIOS) 112, which can form part of the ROM, 
contains basic routines that help transfer information between 
elements within digital computing Subsystem 102. Such as 
during startup. 
0077. Digital computing subsystem 102 may also include 
non-volatile memory 114. Non-volatile memory 114 may 
take a variety of forms, including: a hard disk drive for read 
ing from and writing to a hard disk, an optical disk drive for 
reading from and writing to removable optical disks, and/or a 
magnetic disk drive for reading from and writing to magnetic 
disks. The optical disk can be a CD-ROM or DVD, while the 
magnetic disk can be a magnetic floppy disk or diskette. 
Non-volatile memory 114 may communicate with processing 
unit 106 via system bus 110 and may include appropriate 
interfaces or controllers 116 coupled between non-volatile 
memory 114 and system bus 110. Non-volatile memory 114 
may serve as long-term storage for computer-readable 
instructions, data structures, program modules and other data 
for digital computing Subsystem 102. Although digital com 
puting Subsystem 102 has been described as employing hard 
disks, optical disks and/or magnetic disks, those skilled in the 
relevant art will appreciate that other types of non-volatile 
computer-readable media may be employed, such a magnetic 
cassettes, flash memory cards, Bernoulli cartridges, RAMS, 
ROMs, smart cards, etc. 
0078 Various program modules, application programs 
and/or data can be stored in system memory 108. For 
example, system memory 108 may store an operating system 
118, end user application interfaces 120, server applications 
122, at least one solver module 124, a parameter learning 
module 126 and a translator module 128. In addition, system 
memory 108 may store at least one analog processor interface 
module 132. The operation and function of these modules are 
discussed in detail below. 

0079 System memory 108 may also include one or more 
networking applications 134, for example, a Web server 
application and/or Web client or browser application for per 
mitting digital computing Subsystem 102 to exchange data 
with Sources via the Internet, corporate Intranets, or other 
networks, as well as with other server applications executing 
on server computers. Networking application 134 in the 
depicted embodiment may be markup language based. Such 
as hypertext markup language (“HTML'), extensible hyper 
text markup language (XHTML'), extensible markup lan 
guage (XML) or wireless markup language (“WML'), and 
may operate with markup languages that use syntactically 
delimited characters added to the data of a document to rep 
resent the structure of the document. A number of Web server 
applications and Web client or browser applications are com 
mercially available, such as those available from Mozilla and 
Microsoft. 

0080 While shown in FIG. 1A as being stored in system 
memory 108, operating system 118 and various applications/ 
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modules 120, 122, 124,126, 128, 132,134 and other data can 
also be stored in nonvolatile memory 114. 
0081 Digital computing subsystem 102 can operate in a 
networking environment using logical connections to at least 
one client computing system 136 and at least one database 
system 170. These logical connections may be formed using 
any means of digital communication, for example, through a 
network 138, such as a local area network (“LAN”) or a wide 
area network (“WAN') including, for example, the Internet. 
The networking environment may include wired or wireless 
enterprise-wide computer networks, intranets, extranets, and/ 
or the Internet. Other embodiments may include other types 
of communication networks Such as telecommunications net 
works, cellular networks, paging networks, and other mobile 
networks. The information sent or received via the logical 
connections may or may not be encrypted. When used in a 
LAN networking environment, digital computing Subsystem 
102 may be connected to the LAN through an adapter or 
network interface card (“NIC) 140 (communicatively linked 
to system bus 110). When used in a WAN networking envi 
ronment, digital computing Subsystem 102 may include an 
interface and modem (not shown), or a device such as NIC 
140, for establishing communications over the WAN. 
0082 In a networked environment, program modules, 
application programs, data, or portions thereof can be stored 
outside of digital computing subsystem 102. Those skilled in 
the relevant art will recognize that the logical connections 
shown in FIG. 1A are only some examples of establishing 
communications between computers, and other connections 
may also be used. 
0083. While digital computing subsystem 102 may gener 
ally operate automatically, an end user application interface 
120 may also be provided such that an operator can interact 
with digital computing subsystem 102 through different user 
interfaces 148, including output devices. Such as a monitor 
142, and input devices, such as a keyboard 144 and a pointing 
device (e.g., mouse 146). Monitor 142 may be coupled to 
system bus 110 via a video interface, such as a video adapter 
(not shown). Digital computing Subsystem 102 can also 
include other output devices, such as speakers, printers, etc. 
Other input devices can also be used, including a microphone, 
joystick, Scanner, etc. These input devices may be coupled to 
processing unit 106 via a serial port interface that couples to 
system bus 110, a parallel port, a game port, a wireless inter 
face, a universal serial bus (“USB) interface, or via other 
interfaces. 
0084 Analog computing subsystem 104 may include at 
least one analog processor, such as quantum processor 150. 
Quantum processor 150 may comprise multiple qubit nodes 
152a-152n (collectively 152) and multiple coupling devices 
154a-154m (collectively 154). 
0085 Analog computing subsystem 104 may further 
include a readout device 156 for reading out one or more of 
qubit nodes 152. For example, readout device 156 may 
include multiple dc-SQUID magnetometers, with each do 
SQUID magnetometer being inductively connected to a 
respective qubit node 152. NIC 140 may then be communi 
catively coupled to readout device 156 in order to receive a 
Voltage or current indicative of a reading from readout device 
156. The dc-SQUID magnetometers may each comprise a 
loop of Superconducting material interrupted by two Joseph 
Sonjunctions and are well known in the art. 
I0086 Analog computing subsystem 104 may also include 
a qubit control system 158 including at least one controller for 
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controlling or setting one or more parameters for Some or all 
of qubit nodes 152. Analog computing Subsystem 104 may 
further include a coupling device control system 160 includ 
ing at least one coupling controller for coupling devices 154. 
For example, each coupling controller in coupling device 
control system 160 may be operable to tune a coupling 
strength of a coupling device 154 between a minimum and a 
maximum value. Coupling devices 154 may also be tunable to 
provide ferromagnetic or anti-ferromagnetic coupling 
between qubit nodes 152. 
I0087. Referring again to certain components of digital 
computing Subsystem 102 in greater detail, in one embodi 
ment, NIC 140 may include appropriate hardware and/or 
software for interfacing with qubit nodes 152 and coupling 
devices 154, either directly or indirectly through readout 
device 156, qubit control system 158, and/or coupling device 
control system 160. In other embodiments, different hard 
ware may be used to facilitate communications between digi 
tal computing Subsystem 102 and analog computing Sub 
system 104. 
I0088. The functionality of NIC 140 when interfacing with 
analog computing Subsystem 104 may be divided into two 
classes: data acquisition and control. Different types of chips 
may be used to handle each of these discrete tasks. When 
acquiring data, NIC 140 may measure the physical properties 
of qubit nodes 152 after quantum processor 150 has com 
pleted a computation. These physical properties can be mea 
Sured using any number of customized or commercially avail 
able data acquisition micro-controllers including, for 
example, data acquisition cards manufactured by Elan Digital 
Systems (Fareham, UK), including the AD 132, AD 136, 
MF232, MF236, AD 142, AD218 and CF241 cards. In other 
embodiments, both data acquisition and control may be 
handled by a single microprocessor, such as the Elan D403C 
or D480C. Digital computing subsystem 102 may also 
include multiple NICs 140 in other embodiments, in order to 
provide sufficient control over qubit nodes 152 and coupling 
devices 154 and in order to efficiently measure the results of 
a computation conducted using quantum processor 150. 
I0089. In one embodiment, analog processor interface 
module 132 of digital computing subsystem 102 may include 
run-time instructions for coordinating the Solution of compu 
tationally complex problems using quantum processor 150. 
For instance, analog processor interface module 132 may 
cause quantum processor 150 to begin solving an embedded 
graph problem that is representative of, or equivalent to, a 
constraint satisfaction problem received by server application 
122. This may include, e.g., setting initial coupling values and 
local bias values for coupling devices 154 and qubit nodes 
152, respectively. Qubit nodes 152 and associated local bias 
values may represent vertices of an embedded graph, while 
coupling devices 154 and associated coupling values may 
represent edges of the embedded graph. For example, a vertex 
in a graph may be embedded in quantum processor 150 as a 
set of qubit nodes 152 coupled to each other ferromagneti 
cally, and an edge in the graph may be embedded as a ferro 
magnetic or anti-ferromagnetic coupling between sets of 
coupled qubit nodes 152. Further information regarding this 
form of quantum computation may be found in U.S. Pat. No. 
7,418.283, U.S. Patent Application Publication No. 2005/ 
0250651, and U.S. Pat. No. 7,135,701, each entitled “Adia 
batic Quantum Computation with Superconducting Qubits.” 
the contents of which applications and patent are hereby 
incorporated by reference herein in their entirety. Analog 
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processor interface module 132 may also include instructions 
for reading out the states of one or more qubit nodes 152 at the 
end of an evolution via readout device 156. This readout may 
represent a solution to the problem. 
0090. In one embodiment, server application 122 on digi 

tal computing Subsystem 102 may receive and at least par 
tially process various types of problems, including computa 
tionally complex problems. In particular, server application 
122 may be configured to receive a digital representation of a 
problem from a local problem source or from a client com 
puting system 136. In one embodiment, the problem may be 
expressed in a data query language. Server application 122 
may then decipher the problem to determine whether the 
problem may be solved using solver module 124. If the 
received data represents such a problem, server application 
122 may then interact with solver module 124 in order to 
obtain a solution to the problem. In one embodiment, trans 
lator module 128 may be used to translate the problem into a 
form usable by solver module 124. For example, translator 
module 128 may convert the received expression into an 
intermediate problem expression, and a grounder module 
may convert the intermediate problem expression into a 
primitive problem expression that is usable by solver module 
124. In other embodiments, server application 122 may inter 
act with other modules, such as parameter learning module 
126, before the problem is passed on to solver module 124. 
0091 Solver module 124 may carry out various tasks in 
order to facilitate the solution of a problem received via server 
application 122. In one embodiment, solver module 124 may 
interact with analog processor interface 132 in order to cause 
quantum processor 150 to provide a solution to the problem. 
In another embodiment, Solver module 124 may instead, or in 
addition, interact with other solver applications executing on 
digital processing Subsystem 102 in order to solve a problem. 
Instill another embodiment, solver module 124 may solve the 
problem itself, without interacting with other computing sys 
tems or Software applications. The Solution may then be 
translated into a response that may be forwarded (e.g., by the 
server application) back to a requesting entity. Details of an 
example Software design for Solving problems using Such an 
architecture may be found in co-pending and co-owned U.S. 
Patent Publication No. 2009-0077001, the content of which is 
hereby incorporated by reference herein in its entirety. 
0092. As used herein, the term “solver may refer to any 
combination of hardware and/or software components that 
generates a solution corresponding to a problem. Such solvers 
may comprise solvers designed to calculate an exact, optimal 
Solution to the problem (e.g., by exhaustive enumeration) or 
may comprise heuristic solvers configured to calculate a solu 
tion in a reasonable time period. As described above, in one 
embodiment, solver module 124 in combination with quan 
tum processor 150 may comprise a solver for certain types of 
problems. In another embodiment, solver module 124 in con 
junction with other software applications executing in digital 
processing Subsystem 102 may comprise a solver for other 
problems. It may be understood that the solutions calculated 
by Such solvers may be approximate, imperfect and/or only 
locally optimal. 
0093. As discussed in greater detail below, each solver 
within computing subsystem 100 may be associated with a 
variety of parameters. For example, if the solver comprises a 
heuristic algorithm for searching through a solution space of 
a problem, the set of parameters may include variables related 
to the duration, scope, starting point and other characteristics 
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of the search. As another example, if the problem is an opti 
mization problem, the set of parameters may include vari 
ables defining a range of acceptable solutions. 
0094. In one embodiment, parameter learning module 126 
of digital computing Subsystem 102 may be configured to 
automatically generate at least Some of the parameters for a 
Solver based at least in part upon particular features of a 
problem. In order to facilitate this process, server application 
122 or solver module 124 may be operable to send at least 
Some information indicative of a new problem on to param 
eter learning module 126, and parameter learning module 126 
may, in turn, generate parameters that may be forwarded to 
Solver module 124. In some embodiments, parameter learn 
ing module 126 may be further configured to select a solver 
from among a plurality of Solvers in computing system 100 
based at least in part upon the features of the problem. Exem 
plary methods by which parameter learning module 126 may 
determine solvers and/or parameters for solvers are described 
in greater detail below with reference to FIGS. 2-5. 
0.095 Although illustrated as a separate module, param 
eter learning module 126 may, of course, be packaged with 
Solver module 124 as a single application in Some embodi 
ments. In other embodiments, parameter learning module 126 
may execute on a computing system that is logically separate 
from digital computing Subsystem 102. 
0096 Client computing system 136 may comprise any of 
a variety of computing devices communicatively coupled to 
computing system 100, and may include a client program 190 
configured to properly format and send problems directly or 
indirectly to server application 122. Once computing system 
100 has determined a solution, server application 122 may be 
configured to send information indicative of this solution 
back to client program 190. 
(0097 FIG. 1B illustrates a computing system 1000 oper 
able to solve complex problems by interacting with one or 
more solver computing systems, according to one illustrated 
embodiment. Computing system 1000, like computing sys 
tem 100, may further include a parameter learning module 
1026 operable to determine parameters for solving the com 
plex problems. Computing system 1000 may be configured 
generally similarly to computing system 100 described 
above, except as set forth below. 
0.098 Computing system 1000 lacks analog processing 
subsystem 104 illustrated in FIG. 1A. As a result, computing 
system 1000 may also lack analog processor interface 132 of 
FIG. 1A. Instead, in one embodiment, computing system 
1000 may be communicatively coupled to one or more solver 
computing systems 1050. Solver computing systems 1050 
may comprise one or more logically separate computing sys 
tems that provide solver components for assisting in the solu 
tion of various problems, such as computationally complex 
constraint satisfaction and optimization problems. In one 
embodiment, solver computing systems 1050 may comprise 
classical/digital processors executing solver components that 
may be communicatively coupled to solver module 1024 
executing on computing system 1000. For example, solver 
computing systems 1050 may form a distributed computing 
network configured to assist in the Solution of computation 
ally complex problems under the direction of solver module 
1024. In other embodiments, solver computing systems 1050 
may include one or more analog processors as well. 
0099. Of course, in other embodiments, computing sys 
tem 1000 may not be communicatively coupled to solver 
computing systems 1050. Instead, solver module 1024 (or 
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other solver applications executed by computing system 
1000) may be operable to solve the problems independently 
of any other computing systems. 

Description of an Exemplary Method for Determining 
Parameters 

0100 FIG. 2 illustrates a flow diagram foramethod 200 of 
determining parameters for Solving problems, according to 
one embodiment. This method 200 will be discussed in the 
context of computing system 100 of FIG. 1A. However, it 
may be understood that the acts disclosed herein may be 
executed in a variety of computing systems and computing 
devices (e.g., in computing system 1000 of FIG. 1B) and may 
involve different types of solvers, in accordance with the 
described method. 

0101 Method begins at 202, when information indicative 
of a problem is received. As described above, the problem 
may comprise any of a variety of problems formatted for 
Solution by a computer. In one embodiment, the problem may 
comprise a computationally complex problem. For example, 
the problem may comprise an NP-hard or NP-complete prob 
lem. In another embodiment, the problem may be expressed 
as an optimization or constraint satisfaction problem. 
0102 Some examples of NP-hard problems are: the trav 
eling salesman problem (given a number of cities and the 
costs of travelling between the cities, what is the least-cost 
round-trip route that visits each city exactly once and then 
returns to the starting city?); the MAX-SAT problem (given a 
series of Boolean expressions, what assignment of TRUE and 
FALSE values to the variables in the expressions will make 
the maximum number of expressions true?); the Hamiltonian 
path/circuit problem (does a graph G define a path that travels 
through all nodes exactly once?); and the graph coloring 
problem (what is the minimum number of colors needed to 
color the vertices of agraph Such that no two adjacent vertices 
have the same color?). 
0103) In one embodiment, the problem may be generated 
by a client computing system 136, and information indicative 
of the problem may be sent via network 138 to computing 
system 100. The problem may be generated automatically or 
by a user of client computing system 136, and the correspond 
ing information may be sent via any of a variety of protocols. 
In one embodiment, information indicative of the problem 
may be sent from client computing system 136 via hypertext 
transfer protocol (“HTTP) or secure hypertext transfer pro 
tocol (“HTTPS) over the Internet. 
0104. In another embodiment, the problem may be gener 
ated automatically by computing system 100. For example, 
the problem may be generated by a problem generator (not 
shown) executing on digital computing Subsystem 102, and 
information indicative of the problem may be sent to server 
application 122 or to solver module 124. In yet another 
embodiment, a user of computing system 100 may interact 
with user interfaces 148 (e.g., keyboard 144) of digital com 
puting subsystem 102 and thereby enter information indica 
tive of the problem. 
0105. The information indicative of the problem may 
comprise any of a variety of computer-readable representa 
tions of the problem. In one embodiment, the problem may be 
received as a data query language ("DQL') expression. This 
DQL expression may represent, for example, a search prob 
lem. In another embodiment, a logical statement of the prob 
lem or a graphical representation of the problem may be used. 
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0106. As described herein, the information indicative of 
the problem may be received at a classical computer, such as 
digital computing Subsystem 102, and, more particularly, at a 
server application 122. In one embodiment, digital comput 
ing Subsystem 102 may store this information in database 
system 170. In another embodiment, digital computing Sub 
system 102 may store the information locally, for example, in 
nonvolatile memory 114. Of course, in other embodiments, 
the information indicative of the problem may be received at 
an analog or other computing device. 
0107. In one embodiment, an original problem may be 
translated or reduced to a new problem that is more easily 
solved by a particular solver in a translator module 128. For 
example, a graph coloring problem received at digital com 
puting subsystem 102 may be reduced to a SAT problem for 
solution by a SAT problem solver. In such an embodiment, 
this translation or reduction may be performed by any of a 
variety of components. The new information indicative of the 
new problem may then be received, and the acts described 
below may also be performed with reference to the new 
problem. 
0108. At act 204, a set of features associated with the 
problem is determined. This set of features may comprise one 
or more characteristics associated with the problem. In one 
embodiment, the set of features may be associated with par 
ticular representations of the problem. In another embodi 
ment, the set of features may include information associated 
with the type of problem or may comprise other intrinsic 
characteristics associated with the problem. 
0109. In one embodiment, at least one feature of the set of 
features may be associated with a matrix representation of the 
problem. In such an embodiment, a matrix representation of 
the problem may be generated, and a characteristic of the 
matrix representation may be determined as the at least one 
feature. As would be well understood by those skilled in the 
art, for many NP-complete and NP-hard problems, a matrix 
representation may be relatively easily generated. For 
example, for a traveling salesman problem involving in cities, 
annxn matrix may be generated, wherein each element of the 
matrix denotes a distance between a respective pair of cities. 
As another example, for a graph coloring problem involving 
in Vertices, an nxn adjacency matrix may be generated, 
wherein each non-diagonal element of the matrix denotes a 
number of edges between a respective pair of Vertices, and 
each diagonal element corresponds to a number of loops at a 
respective vertex. 
0110. A variety of characteristics of the matrix represen 
tation may be determined as at least one feature of the set of 
features. In one embodiment, a diagonal dominance of the 
matrix may be used. In another embodiment, a positivity of 
the matrix may be used. In yet another embodiment, an aver 
age of the values of the matrix elements may be used. In 
another embodiment, a range of the values of the matrix 
elements may be used. In still another embodiment, a sparsity 
of the matrix may be used. Any or all of these characteristics 
of the matrix representation may comprise features in the set 
of features associated with the problem. 
0111. In another embodiment, at least one feature of the 
set of features may be associated with a graphical represen 
tation of the problem. In such an embodiment, a graphical 
representation of the problem may be generated, and a char 
acteristic of the graphical representation may be determined 
as the at least one feature. As would be well understood by 
those skilled in the art, for many NP-complete and NP-hard 
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problems, a graphical representation may be relatively easily 
generated. For example, for a traveling salesman problem, a 
weighted graph may be generated, wherein each vertex of the 
graph represents a city, and edges joining the vertices of the 
graph represent distances between respective cities. For other 
problems, such as the graph coloring problem, a definition of 
the problem may itself define a graphical representation. 
0112 A variety of characteristics of the graphical repre 
sentation may be determined as at least one feature of the set 
of features. In one embodiment, an eccentricity of the graph 
may be used. In another embodiment, a radius or circumfer 
ence of the graph may be used. In yet another embodiment, a 
plurality of random measurements of the graph may be taken 
(e.g., for a large number of random vertices of the graph, find 
an average number of vertices located within 3 edges of that 
Vertex; or start a random walk at a random initial vertex and 
walk to a random vertex adjacent to the random initial vertex 
and continue for a number of steps and determine various 
characteristics, such as eccentricity, girth, radius, and diam 
eter, of the induced subgraph). Characteristics of Such ran 
dom measurements may then be used as features of the set of 
features. Any or all of these characteristics of the graphical 
representation may comprise features in the set of features 
associated with the problem. 
0113. In still another embodiment, at least one feature of 
the set of features may be associated with a plurality of walks 
through a solution space of the problem. In Such an embodi 
ment, a plurality of walks through the Solution space may be 
performed, and a characteristic of the plurality of walks may 
be determined as the at least one feature. Each walk of the 
plurality of walks may be performed by any of a variety of 
algorithms operable to navigate along a number of Solutions 
through the solution space. For example, a simple hill climb 
ing search algorithm may be used. As would be well under 
stood by those skilled in the art, Such an algorithm begins with 
an initial Solution and then iteratively improves the Solution at 
each step by applying a minor change to a preceding solution. 
A simple hill climbing algorithm will then stop when a local 
optimal solution is found. In one embodiment, the plurality of 
walks may include a plurality of randomhill climbs, or simple 
hill climbs beginning at random solutions within the Solution 
space. Of course, in other embodiments, other techniques for 
walking through the solution space may be used. 
0114. A variety of characteristics of the plurality of walks 
may be determined as at least one feature within the set of 
features. In the random hill climb example described above, 
an average of a number of steps required to complete each hill 
climb may be used. In other embodiments, other characteris 
tics of the plurality of walks may be used. 
0115. In one embodiment, characteristics of all of the 
above representations may comprise features in the set of 
features. In other embodiments, characteristics of one or 
more of the above representations may comprise features in 
the set of features. Of course, in other embodiments, still 
other characteristics of a problem may comprise the set of 
features. 
0116. In one embodiment, digital computing Subsystem 
102, and, in particular, parameter learning module 126, may 
determine the set of features associated with the problem. 
Parameter learning module 126 may also take advantage of 
other available computing resources when determining the 
set of features. For example, in order to obtain characteristics 
concerning the plurality of walks, parameter learning module 
126 may request that analog processing Subsystem 104 per 
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form the walks under the direction of parameter learning 
module 126. As another example, parameter learning module 
126 may leverage the computing resources of a plurality of 
networked computers (e.g., solver computing systems 1050) 
in order to perform tasks necessary to determine the set of 
features associated with the problem. Of course, in other 
embodiments, other modules and other computing devices 
may be used in order to determine the set of features. 
0117. In one embodiment, a set of features may be repre 
sented by a vector in an n-dimensional feature space, wherein 
each dimension of the feature space corresponds to a respec 
tive feature. In such an embodiment, determining the set of 
features may further include generating a vector indicative of 
the set of features. Such a vector may be digitally represented 
in a variety of ways, and, in one embodiment, the vector may 
be represented by a set of numerical values corresponding to 
the set of features. In one embodiment, the numerical values 
may be normalized in Some manner, Such that features asso 
ciated with relatively large numbers do not skew a shape the 
importance of vector components. 
0118. Once determined, the set of features may be stored 
at a variety of locations. In one embodiment, the set of fea 
tures may be stored in database system 170. In another 
embodiment, the set of features may be locally stored in 
nonvolatile memory 114. 
0119. At act 206, the set of features is compared with 
previously determined sets of features associated with other 
problems. In one embodiment, a number of sets of features 
may have been previously determined for a variety of other 
problems in a manner similar to that described above with 
reference to act 204. These sets of features may be stored in 
database system 170, or may be locally stored in nonvolatile 
memory 114. 
I0120 In one embodiment, the previously determined sets 
of features may have been determined by digital computing 
subsystem 102 and then stored. However, in other embodi 
ments, the sets offeatures may have been determined by other 
computing devices, and information indicative of these sets of 
features may have been made available to digital computing 
subsystem 102. 
I0121. In one embodiment, each of the previously deter 
mined sets of features may be represented by a corresponding 
vector in an n-dimensional feature space, as described above 
with reference to act 204. In such an embodiment, each of 
these vectors may be represented by a set of numerical values 
corresponding to the previously determined sets of features. 
The above comparison may then be performed by comparing 
a vector associated with the current problem with other vec 
tors indicative of the previously determined sets of features. 
In other embodiments, a variety of other methods may be used 
to compare the set of features with the previously determined 
sets of features. 
0122. In one embodiment, digital computing Subsystem 
102, and, in particular, parameter learning module 126, may 
perform this comparison. However, in other embodiments, 
other modules or components may be used. 
I0123. At act 208, a set of parameters for a solver is gener 
ated based at least in part on the comparing the set of features 
with the previously determined sets of features. As described 
above, the solver may comprise any combination of hardware 
and/or software components that may generate a solution 
corresponding to the problem. The solver may comprise a 
Solver operable to calculate an exact, optimal solution to the 
problem (e.g., by exhaustive enumeration) or may comprise a 
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Solver implementing a heuristic algorithm configured to cal 
culate a solution in a reasonable time period. In one embodi 
ment, the solver may include an analog computer, Such as 
analog computing Subsystem 104. 
0.124. The set of parameters may comprise one or more 
variables associated with the solver. In one embodiment, the 
set of parameters may be associated with physical character 
istics of the solver (e.g., the settings used by analog comput 
ing Subsystem 104). In another embodiment, the set of param 
eters may comprise parameters that describe a heuristic 
algorithm used by the solver. 
0125. In one embodiment, if a tabu search solver is used, 
the parameters may include: a definition of a search space 
associated with the problem (e.g., a search space may be 
defined to include infeasible solutions); a definition of a 
neighboring Solution; characteristics of the tabu list (e.g., 
length and type); termination criteria (e.g., the number of 
permissible iterations, the number of consecutive iterations 
without improvement, a termination threshold value); and/or 
restart diversification characteristics. In another embodiment, 
if a simulated annealing solver is used, the parameters may 
include: an initial value of a control parameter; a decrement 
function for lowering a value of the control parameter, and/or 
termination criteria (e.g., a termination value of the control 
parameter). It may be understood that a variety of parameters 
may be generated for the above and other types of solvers. 
0126. In one embodiment, sets of parameters associated 
with previously solved problems may be available to param 
eter learning module 126. For example, for each previously 
solved problem, database system 170 or nonvolatile memory 
114 may have stored therein: a vector indicative of a previ 
ously determined set offeatures, and at least one set of param 
eters used to solve the problem by at least one solver. As 
described above, this data may have been generated by com 
puting system 100 or may be shared among a plurality of 
computing Systems. 
0127 Based upon this stored data, the set of parameters for 
the current problem may be generated by first selecting at 
least one vector from among the previously determined vec 
tors in the n-dimensional feature space that is near the vector 
associated with the current problem. In one embodiment, the 
at least one proximate vector may be selected from among the 
previously determined vectors by determining a single vector 
separated by a shortest distance from the vector associated 
with the current problem in the n-dimensional feature space. 
In another embodiment, a plurality of proximate vectors may 
be selected as a predetermined number of vectors that are 
closest to the vector associated with the current problem. In 
still another embodiment, a plurality of proximate vectors 
may be selected based upon whichever vectors are within a 
predetermined distance from the vector associated with the 
current problem. Of course, other methods may also be used 
to select the at least one proximate vector. 
0128. Once the at least one proximate vector has been 
selected, the set of parameters may be generated based at least 
in part on a prior set of parameters used to solve at least one 
problem associated with the at least one proximate vector. 
That is, once the at least one proximate vector is selected, the 
parameter learning module 126 may access the prior set of 
parameters associated with the at least one proximate vector 
and the Solver. In one embodiment, if a single proximate 
vector is selected, the set of parameters may simply be set 
equal to the prior set of parameters used to solve that earlier 
problem. In another embodiment, if a plurality of proximate 
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vectors are selected, the set of parameters may be set equal to 
an average or a weighted average of prior sets of parameters 
associated the plurality of proximate vectors. In still other 
embodiments, the set of parameters may be extrapolated 
based upon the prior set of parameters associated with the at 
least one proximate vector. In other embodiments, of course, 
even more complex methods of generating the set of param 
eters may be used. 
I0129. In one embodiment, parameter learning module 126 
may generate the set of parameters. Of course, in other 
embodiments, other modules or components may be used. 
0.130. This method of generating the set of parameters 
may, of course, be extended in order to select the solver from 
among a plurality of solvers based at least in part on the 
comparing the set of features with the previously determined 
sets of features. In one embodiment, a variety of different 
Solvers may be available to digital computing Subsystem 102. 
Moreover, information indicative of optimal solvers associ 
ated with previously solved problems may be available to 
parameter learning module 126. For example, for each pre 
viously solved problem, database system 170 or nonvolatile 
memory 114 may have stored therein: a vector indicative of a 
previously determined set of features, at least one optimal 
Solver from among a plurality of Solvers, and at least one set 
of parameters used to solve the problem by the at least one 
solver. 

0131 Thus, in a manner similar to that described above, 
the solver used to solve the current problem may be selected 
based at least in part on the solver used to solve at least one 
problem associated with at least one vector that is relatively 
proximate the vector associated with the current problem. 
That is, once the at least one proximate vector is selected, 
parameter learning module 126 may determine the solver 
associated with the at least one proximate vector. In one 
embodiment, the solver for the current problem may simply 
be selected to be the same as the prior solver used to solve that 
earlier problem. 
0.132. At act 210, the problem may be solved using the set 
of parameters to generate a solution. As described above, the 
Solver may comprise any combination of hardware and/or 
Software components that may generate a solution corre 
sponding to the problem. 
I0133. In one embodiment, parameter learning module 126 
may pass the set of parameters generated at act 208 on to 
solver module 124. Solver module 124 may then employ the 
set of parameters itself and/or may use the set of parameters in 
order to control analog computing Subsystem 104. In one 
embodiment, the problem may be solved on quantum proces 
sor 150. In such an embodiment, the set of parameters may be 
associated with respective parameters that control qubit con 
trol system 158 and/or the coupling device control system 
160. 

I0134 FIG.3 illustrates a flow diagram foramethod 300 of 
revising the set of parameters determined in accordance with 
method 200 of FIG. 2. This method begins at act 302, when 
the set of parameters used to solve the problem is stored. As 
described above, this set of parameters may be stored in 
database system 170 or in nonvolatile memory 114 associated 
with digital computing Subsystem 102. In another embodi 
ment, the set of parameters may simply be temporarily stored 
in system memory 108. 
I0135) In one embodiment, the set of parameters may be 
stored such that they are logically associated with the set of 
features associated with the problem. In Such an embodiment, 
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this set of parameters and corresponding features may be used 
to solve future problems as described in method 200. Param 
eter learning module 126 may store the set of parameters. Of 
course, in other embodiments, other modules or components 
may also be used. 
0136. At act 304, at least one parameter of the set of 
parameters is varied to generate a revised set of parameters. In 
one embodiment, parameter learning module 126 may vary a 
single parameter. However, in other embodiments, multiple 
parameters may be varied at once. 
0.137 The variation of the set of parameters may be intel 
ligent. For example, parameter learning module 126 may 
determine that variations in particular parameters may be 
more likely to lead to optimal solutions. Indeed, some prob 
lems may be more sensitive to variations in certain param 
eters. Parameter learning module 126 may also determine that 
variations in a certain direction are leading to improved solu 
tions and may therefore vary the parameters in that direction. 
In another embodiment, parameter learning module 126 may 
maintain a history of prior variation of the set of parameters 
and may take this history into account when varying the 
parameters. Other intelligent computer learning techniques 
for varying the parameters may also be used. In another 
embodiment, the variation in the set of parameters may be at 
least partially guided by a user of digital computing Sub 
system 102. 
0.138. At act 306, the problem is solved using the revised 
set of parameters to generate a revised solution. As described 
above, the solver may comprise any combination of hardware 
and/or software components that may generate a revised solu 
tion to the problem. In one embodiment, parameter learning 
module 126 may pass the revised set of parameters generated 
at act 304 on to solver module 124. Solver module 124 may 
then employ the revised set of parameters itself and/or may 
use the revised set of parameters in order to control the analog 
computing Subsystem 104. 
0.139. At act308, the revised solution is compared with the 
Solution generated at act 210. In one embodiment, parameter 
learning module 126 performs the comparison between the 
revised solution and the solution. In other embodiments, 
other modules or components may be used. 
0140. At act 310, the revised set of parameters is stored if 
the revised solution is of a higher quality than the Solution. In 
one embodiment, the revised set of parameters may be stored 
Such that they replace the original set of parameters used to 
solve the problem. In another embodiment, the original set of 
parameters may also be kept in order to maintain a history of 
the variation of the set of parameters. The revised set of 
parameters may be stored Such that they may be used to Solve 
future problems as described in method 200. 
0141. A variety of methods may be used in order to deter 
mine whether or not the revised solution is of a higher quality 
than the original Solution. In one embodiment, the revised 
Solution may be of higher quality if it has a higher or lower 
value than the original Solution (e.g., if the problem is to find 
a global maximum or minimum respectively). In another 
embodiment, the revised solution may be of higher quality if 
it comprises a narrower range of values than the original 
Solution, which may be indicative of greater accuracy. In yet 
another embodiment, the revised solution may be of higher 
quality if it is arrived at in less time than the original Solution 
with substantially similar values. In still other embodiments, 
other characteristics of the two solutions may be compared, as 
would be well understood by those skilled in the art. 
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0142. In one embodiment, these acts of varying the at least 
one parameter (act 304), Solving the problem using the 
revised set of parameters (act 306), comparing the revised 
solution with the previous solution (act308), and storing the 
revised set of parameters (act310) may be performed during 
otherwise idle computing cycles of digital computing Sub 
system 102. In one embodiment, these acts may further take 
advantage of otherwise idle time of the solver, such as idle 
time associated with analog computing Subsystem 104. Thus, 
these computationally intensive acts may be performed when 
computing system 100 is not otherwise needed. In another 
embodiment, these acts may be performed by a plurality of 
computers in a distributed computing network, such that 
these computationally intensive acts may be performed using 
the computing resources of many networked computers. 
0143. In one embodiment, these acts 304-310 may be con 
tinuously executed in order to determine more and more 
improved sets of parameters for each of the problems in a 
problem database associated with computing system 100. 
Thus, future problems directed to computing system 100 for 
Solution may be associated with improved sets of parameters, 
and more optimal solutions may be achieved in less time. 

Description of an Exemplary Method for Training a Comput 
ing System 

014.4 FIG. 4 illustrates a flow diagram for a method 400 of 
training a computing system to determine parameters for 
Solving problems, according to one embodiment. This 
method 400 will be discussed in the context of computing 
system 100 of FIG. 1A. However, it may be understood that 
the acts disclosed herein may be executed in a variety of 
computing Systems and computing devices (e.g., in comput 
ing system 1000 of FIG. 1B) and may involve different types 
of solvers, in accordance with the described method. 
0145 The method begins at 402, when a training set of 
features associated with a training problem having a previ 
ously determined answer are determined. The training prob 
lem may comprise any of a variety of problems formatted for 
Solution by a computer. In one embodiment, the previously 
determined answer may comprise a high quality answer to the 
training problem. For example, the training problem may 
comprise a computationally complex problem for which a 
brute force solution has already been calculated. This brute 
force, exact solution may comprise the previously determined 
answer. In another embodiment, the training problem may 
comprise a problem for which extensive solutions have been 
determined using heuristic solvers, such that a high quality 
answer has been determined. In still other embodiments, 
other mechanisms for determining an answer for the training 
problem may have been employed. 
0146 In one embodiment, the training problem may be 
initially selected by computing system 100. For example, the 
training problem may be automatically selected by parameter 
learning module 126 from a database of problems for which 
high quality answers are known. In another embodiment, a 
user of computing system 100 may interact with user inter 
faces 148 (e.g., keyboard 144) and thereby enter information 
indicative of the training problem. 
0147 The training set of features may comprise one or 
more characteristics associated with the training problem, as 
described above with reference to act 204. In one embodi 
ment, parameter learning module 126 may determine the 
training set of features associated with the training problem 
with or without additional components. Of course, in other 
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embodiments, other modules and other computing devices 
may be used in order to determine the training set of features. 
0148. At act 404, an initial set of parameters is generated 
for a solver. The solver may comprise any combination of 
hardware and/or software components that may generate a 
Solution corresponding to the training problem, as described 
in greater detail above. 
014.9 The initial set of parameters may be generated by 
any of a variety of methods. In one embodiment, a random set 
of parameters may be generated by parameter learning mod 
ule 126. In another embodiment, the initial set of parameters 
may be entered by a user using user interfaces 148. In yet 
another embodiment, the initial set of parameters may be 
generated as described above with reference to method 200, 
by comparing the training set of features with previously 
determined sets of features. 

0150. After generating the initial set of parameters, the 
training problem may be solved using the initial set of param 
eters. In Such an embodiment, the training problem may be 
solved as described above with reference to act 210. 

0151. At act 406, at least one parameter of the initial set of 
parameters is varied to generate a revised set of parameters. In 
one embodiment, parameter learning module 126 may vary 
only a single parameter. However, in other embodiments, 
multiple parameters may be varied at once. As described 
above with reference to act304, the variation of the initial set 
of parameters may be more or less intelligent in certain 
embodiments. 

0152. At act 408, the problem is solved using the revised 
set of parameters to generate a revised solution. In one 
embodiment, parameter learning module 126 may pass the 
revised set of parameters generated at act 406 on to solver 
module 124. Solver module 124 may then employ the revised 
set of parameters itself and/or may use the revised set of 
parameters in order to control analog computing Subsystem 
104. 

0153 Atact 410, the revised solution is compared with the 
previously determined answer. In one embodiment, param 
eter learning module 126 performs the comparison between 
the revised solution and the previously determined answer. In 
other embodiments, other modules or components may be 
used. 

0154) At act 412, the revised set of parameters is stored as 
a training set of parameters based at least in part on the 
comparing the revised solution with the previously deter 
mined answer. In one embodiment, the revised set of param 
eters may be stored such that they replace another set of 
parameters previously used as the training set of parameters. 
0155. In one embodiment, the revised set of parameters is 
stored as the training set of parameters if the revised solution 
is sufficiently similar to the previously determined answer. 
For example, a solution error margin may be set, Such that if 
the revised solution is within the solution error margin from 
the previously determined answer, then the revised set of 
parameters is stored. In another embodiment, the revised 
Solution may be compared with a previously revised solution 
as well as the previously determined answer, and if the revised 
solution is better than the previously revised solution, the 
revised set of parameters may replace a previous training set 
of parameters. In one embodiment, if the revised solution is 
not sufficiently similar to the previously determined answer, 
acts of 406, 408 and 410 may be repeated until a revised set of 
features is finally stored. 
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0156. At act 414, the training set of features is logically 
associated with the training set of parameters. In one embodi 
ment, the training set of features may be stored Such that they 
are logically associated with the training set of parameters in 
database system 170. 
0157 At act 416, information indicative of the training set 
offeatures is saved as one of the previously determined sets of 
features referred to in method 200. In one embodiment, the 
training set of features may thus be compared with sets of 
features associated with future problems, and, if sufficiently 
similar, the training set of parameters may be used to deter 
mine a set of parameters for a future problem. 
0158. In one embodiment, these acts of varying the at least 
one parameter (act 406), Solving the training problem using a 
revised set of parameters (act 408), comparing a revised solu 
tion with the previously determined answer (act 410), and 
storing the revised set of parameters (act 412) may be per 
formed during otherwise idle computing cycles of digital 
computing Subsystem 102. In one embodiment, these acts 
may further take advantage of otherwise idle time of the 
Solver. Thus, these computationally intensive acts may be 
performed when computing system 100 is not otherwise 
needed. In another embodiment, these acts 406-412 may be 
repeatedly executed in order to determine more and more 
improved sets of parameters for training problems in a prob 
lem database associated with computing system 100. In still 
another embodiment, computing system 100 may dedicate 
Some time before an initial use of parameter learning module 
126 in order to generate a population of these training prob 
lems in the n-dimensional feature space. 

Description of an Exemplary Method for Determining Unde 
termined Characteristics of a Solver 

0159 FIG.5 illustrates a flow diagram foramethod 500 of 
determining undetermined characteristics of a solver. The 
method begins at act 502, when an undetermined character 
istic of a solver associated with a problem is identified. This 
undetermined characteristic may comprise any of a variety of 
characteristics of the solver. In one embodiment, character 
istics of the solver employing different sets of parameters 
may not be determined. For example, it may not be known 
whether or not a solution to the problem will improve or 
worsen as a certain parameter is increased, decreased or oth 
erwise changed. In another embodiment, a timing associated 
with solution of the problem employing different sets of 
parameters may not be determined. 
0160. In one embodiment, a user of digital computing 
subsystem 102 may determine which characteristics of the 
solver are currently undetermined. Information indicative of 
these undetermined characteristics may then be entered via 
user interfaces 148. In another embodiment, parameter learn 
ing module 126 or other software within digital computing 
Subsystem 102 may develop a knowledge base and may be 
configured to recognize undetermined characteristics auto 
matically. 
0.161. At act 504, at least one parameter of a set of param 
eters is varied to generate a revised set of parameters. In one 
embodiment, parameter learning module 126 may vary only 
a single parameter. However, in other embodiments, multiple 
parameters may be varied at once. In one embodiment, the 
varied parameters may be selected based at least in part on the 
undetermined characteristic. 
0162. At act 506, the problem is solved using the revised 
set of parameters. In one embodiment, parameter learning 
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module 126 may pass the revised set of parameters generated 
at act 504 on to solver module 124. Solver module 124 may 
then employ the revised set of parameters itself and/or may 
use the revised set of parameters in order to control analog 
computing Subsystem 104. 
0163 Atact 508, information associated with the undeter 
mined characteristic is generated based at least in part on 
Solving the problem. In one embodiment, parameter learning 
module 126 may monitor characteristics of the Solving act 
506. For example, if the undetermined characteristic includes 
a timing associated with Solution of the problem using the 
revised set of parameters, then parameter learning module 
126 may time the solver. In other embodiments, other char 
acteristics of the solving process or of the solution itself may 
be used in order to generate information associated with the 
undetermined characteristic. In one embodiment, the infor 
mation associated with the undetermined characteristic may 
then be used to Supplement a knowledge base maintained by 
digital computing Subsystem 102. 
0164. As described above, the acts of method 500 may be 
performed during otherwise idle computing cycles of digital 
computing Subsystem 102. Thus, these computationally 
intensive acts may be performed when computing system 100 
is not otherwise needed. Method 500 may also be repeatedly 
executed in order to help complete a knowledge base main 
tained by computing system 100. 

Description of an Exemplary Solver 

(0165. Once a revised the set of parameters are determined 
for a problem, the problem may be solved by a solver. The 
problem may translated into a problem Hamiltonian and may 
be transmitted to a solver which may be capable of complet 
ing adiabatic quantum computation (AQC) or quantum 
annealing (“OA”). 
0166 In theory, AQC and QA may both be used to find the 
global minimum of a problem Hamiltonian, and the problem 
Hamiltonian may be structured Such that this global mini 
mum corresponds to an optimal solution to a computational 
problem. The problem Hamiltonian defines an energy land 
scape which may, according to quantum mechanics, include a 
number of energy levels. The global minimum of a problem 
Hamiltonian is typically referred to as the ground State and 
corresponds to the lowest energy level in this energy land 
scape, though many higher energy levels may also exist. The 
global minimum typically corresponds to the bottom of the 
deepest energy well in the energy landscape of the problem 
Hamiltonian. Other energy levels that are present within the 
energy well of the global minimum are said to be in the 
“neighborhood of the global minimum. However, the energy 
landscape may also include additional energy wells, the base 
of each of which is typically known as a local minimum. Each 
local minimum typically corresponds to an energy level that 
is higher in energy than the global minimum. Other energy 
levels that are present within the well of a local minimum are 
said to be in the “neighborhood' of the local minimum. 
0167 FIG. 6 is an illustrative diagram of an exemplary 
energy landscape 600 of a problem Hamiltonian. Energy 
landscape 600 includes global minimum 610, which is the 
lowest energy level in energy landscape 600 and corresponds 
to the ground state of the problem Hamiltonian. A group of 
energy levels 615 is illustrated as being present in the energy 
well that corresponds to the global minimum 610. Thus, each 
energy level in group of energy levels 615 is said to be in the 
neighborhood of the global minimum 610. Energy landscape 
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600 also includes a plurality of local minima, only one of 
which (local minimum 620) is called out in the Figure. Local 
minimum 620 corresponds to the base of an energy well in 
energy landscape 600, but is higher in energy than global 
minimum 610. A group of energy levels 625 is illustrated as 
being present in the energy well that corresponds to local 
minimum 620. Thus, each energy level in group of energy 
levels 625 is said to be in the neighborhood of local minimum 
620. 

0.168. During AQC or QA, the evolution of the state of the 
system can be influenced by the sizes of the gaps that separate 
energy levels. For instance, in some applications it can be 
difficult to evolve a system to the ground state if this evolution 
passes through a set of energy levels that are particularly close 
together (e.g., energy levels that are separated by an energy 
that is smaller than the temperature of the system or smaller 
than the error size due to energy level broadening). The adia 
batic theorem stipulates that evolution through a set of closely 
packed States may be achieved by driving the evolution pro 
portionately slowly. However, this can necessitate impracti 
cally long evolution times and, furthermore, very slow evo 
lution may increase the likelihood of experiencing an 
undesirable thermal transition from a lower to a higher energy 
state. In order to reduce the likelihood of such a thermal 
transition, it may be desirable to reduce the system tempera 
ture and/or reduce the magnitude of noise in the system. 
0169. In practice, there are limitations on how much the 
system temperature can be reduced (i.e., how cold the system 
can be made to be) and how much system noise can be 
reduced. Furthermore, there are limitations on how long the 
computation time can be before the computation itself 
becomes impractical. A balance may be sought, and some 
compromise may be necessary. For example, the system may 
be evolved to a low energy state that is not the lowest energy 
state (i.e., not the ground state). In some cases, a low energy 
state that is not the ground state may still correspond to an 
acceptable approximate Solution to the problem. Throughout 
this specification and the appended claims, the term “approxi 
mate solution' is generally used to refer to any Solution that 
corresponds to an energy state that is not a ground state. 
(0170. It can be difficult to evolve to and remain in the 
ground state if the neighborhood of the global minimum 
includes a set of one or more higher energy states that are 
closely packed together. In some implementations, impracti 
cal parameters (e.g., overly long computation time) or con 
ditions (e.g., unrealistically cold system temperature) may be 
required in order to evolve from a state in the neighborhood of 
a minimum to the actual minimum itself. In accordance with 
the present methods and apparatus, implementations of AQC 
and QA where the ground state is not practically attainable 
may be improved upon by settling for a higher energy state 
(i.e., an approximate Solution) as the outcome of the AQC or 
QA and then using this energy state as the starting point for an 
optimization algorithm, for example a classical algorithm 
Such as local search or simulated annealing. 
0171 For a given system temperature and level of noise, 
the computation time of an implementation of AQC or QA 
may be reduced by settling for an approximate Solution as 
opposed to an exact solution to the computational problem. 
That is, the computation time may be reduced by permitting 
the system to evolve to a low energy state (i.e., an approxi 
mate solution) that is not quite the lowest energy state (i.e., the 
exact solution). The gap that separates the exact Solution from 
any number of approximate Solutions may be so Small that an 
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impractical extension of the computation time is required to 
evolve from the approximate solution to the final solution. 
Higher energy states that are packed near the ground state in 
the neighborhood of the global minimum usually differ from 
the ground state by a finite number of bit flips. In accordance 
with the present methods and apparatus, the effectiveness of 
AQC or QA may be improved by using an optimization 
algorithm to reveal a lower energy state (Such as the global 
minimum) when the AQC or QA itself returns an excited 
state. To do this, the outcome of the AQC or QA may be used 
as an initial guess for an optimization algorithm, for example 
a classical algorithm such as local search or simulated anneal 
ing. If the initial guess is close enough to the global answer, 
the optimization algorithm may reveal the global minimum in 
polynomial time. In implementations where the AQC or QA 
produces a state that is in the neighborhood of a local mini 
mum which is far away from the global minimum, the Sub 
sequent application of an optimization algorithm may still 
yield the actual local minimum. Thus, Vetting the outcome of 
an implementation of AQC or QA through an optimization 
algorithm Such as local search or simulated annealing may 
generally provide a new solution that is at least as good as, and 
often better than, the outcome of the AQC or QA. 
0172 FIG. 2 is a flow diagram of an embodiment of a 
method 700 for determining a solution to a computational 
problem. Method 700 includes three acts, 701-703, though 
any number of acts may be included before, after, or in 
between acts 701-703. At 701, a first solution to the problem 
is determined by AQC or QA. At 702, the first solution to the 
problem is cast as the starting point for an optimization algo 
rithm. At 703, a second solution to the problem is determined 
using the optimization algorithm. 
0173. In some embodiments, the first solution to the prob 
lem that is determined at 701 may bean approximate solution 
corresponding to a first energy state that is not the ground 
state. Since, in some instances, using AQC or QA to evolve 
from the first energy state to the ground state can extend the 
computation time by an impractical amount, it can be advan 
tageous to settle for a 'good” approximate solution that is 
readily attainable by AQC or QA. This “good” approximate 
Solution may then be improved upon by implementing an 
optimization algorithm. 
0.174. At 702, the first solution that is determined at 701 is 
cast as the starting point for an optimization algorithm. In 
Some embodiments, the first Solution may be used as an initial 
guess in a local search algorithm or in an implementation of 
simulated annealing. At 703, the optimization algorithm is 
performed to determine a second solution to the problem, 
where the second solution is at least as good as the first 
solution. If the initial guess is in the neighborhood of the 
global minimum, then the optimization algorithm may reveal 
the global minimum in polynomial time. Even if the initial 
guess is in the neighborhood of a local minimum, the optimi 
Zation algorithm may yield the actual local minimum in poly 
nomial time, which is still an improvement over the first 
Solution. 

0.175. A further aspect of the present methods and appa 
ratus incorporates the concept of Statistical averaging. AQC 
and QA may generally be used as statistical approaches to 
problem solving whereby multiple iterations are executed 
very quickly and the probability distribution of the results is 
analyzed. Statistical averaging may be incorporated into 
Some embodiments of the present methods and apparatus by 
taking the average of multiple iterations of method 700. That 
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is, method 700 may be executed multiple times, with each 
iteration producing a respective second solution. The statis 
tical average or median of the second solutions may then be 
determined. 

0176). In some implementations, AQC and QA are particu 
larly well-suited to quickly evolve to an energy state in the 
neighborhood of the global minimum. That is, AQC and QA 
are generally able to evolve to the neighborhood of a global 
minimum more quickly than alternative (e.g., classical) 
approaches. However, in some implementations of AQC and 
QA, evolving from the neighborhood of the global minimum 
to the actual global minimum may necessitate impractically 
long computation time in order to avoid unwanted transitions 
to higher energy states (due to thermal transitions, Landau 
Zener transitions, noise, etc.). On the other hand, some opti 
mization algorithms (e.g. local search and simulated anneal 
ing) are particularly well-suited to quickly evolve to a 
minimum from within the neighborhood of that minimum. 
That is, an optimization algorithm, for example a classical 
algorithm Such as local search or simulated annealing, may 
generally be able to evolve to a ground State more quickly 
than AQC or QA if the evolution begins within the neighbor 
hood of the global minimum. The present methods and appa 
ratus combine quantum and classical techniques of problem 
Solving to take advantage of the merits of each. 
0177 QA and/or AQC may be implemented in a variety of 
different ways, but the end goal is generally the same: find a 
low-energy state, such as a ground state, of a system Hamil 
tonian that encodes a computational problem where the low 
energy state represents a solution to the computational prob 
lem. The system Hamiltonian may therefore be referred to as 
a “problem Hamiltonian.” The exact form of the problem 
Hamiltonian may vary depending on the hardware upon 
which it is being implemented. As an illustrative example, a 
quantum processor comprising Superconducting flux qubits 
may be used to embody a problem Hamiltonian in the form of 
a 2-local Ising Hamiltonian given in equation 1: 

(1) 

(0178 Here, in represents the number of qubits, O, is the 
Pauli Z-matrix for the i'qubit, and h, and J, are local fields 
coupled to each qubit. The h, terms in equation 1 may be 
physically realized by coupling signals or fields (p to the 
qubit loop of eachi'qubit. The J terms in equation 1 may be 
physically realized by coupling the qubit loops of pairs of 
qubits (qubits i and j, respectively) together with a coupling 
strength that is at least partially governed by an applied cou 
pler flux bias (p. Determining a low-energy state, such as the 
ground state, of the 2-local Ising Hamiltonian in equation 1 is 
known to be computationally difficult. Other problems may 
be mapped to the 2-local Ising Hamiltonian; thus, this Hamil 
tonian may be used as the problem Hamiltonian in an imple 
mentation of AQC or QA. To anneal the Hamiltonian 
described by equation 1, a disorder term may be added as 
previously described, thereby realizing an evolution Hamil 
tonian given by equation 2: 
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(2) 

where O, is the Pauli X-matrix for the i'qubit and A, is the 
single qubit tunnel splitting. During annealing, the tunnel 
splitting A, is gradually removed until only the problem 
Hamiltonian given by equation 1 remains. A brief description 
of how QA of the 2-local Ising Hamiltonian may be realized 
using a quantum processor comprising Superconducting flux 
qubits is now provided. 
0179 FIG. 8 is a schematic diagram of a portion of a 
conventional Superconducting quantum processor 800 gener 
ally designed for QA (and/or AQC). The portion of supercon 
ducting quantum processor 800 shown in FIG. 8 includes two 
superconducting flux qubits 801, 802 and a tunable ZZ-cou 
pler 811 coupling information therebetween. While the por 
tion of quantum processor 800 shown in FIG. 8 includes only 
two qubits 801, 802 and one coupler 811, those of skill in the 
art will appreciate that quantum processor 800 may include 
any number of qubits, and any number of coupling devices 
coupling information therebetween. 
0180. The portion of quantum processor 800 shown in 
FIG.8 may be implemented to physically realize the Hamil 
tonians described by equation 1 and equation 2. In order to 
provide the of and o' terms, quantum processor 800 includes 
programming interfaces 821-825 that are used to configure 
and control the state of quantum processor 800. Each of 
programming interfaces 821-825 may be realized, for 
example, by a respective inductive coupling structure to a 
programming system (not shown). 
0181. In the operation of quantum processor 800, pro 
gramming interfaces 821 and 824 may each be used to couple 
a flux signal (p, into a respective compound Josephsonjunc 
tion 831, 832 of qubits 801 and 802, thereby realizing the A, 
terms in the system Hamiltonian. This coupling can modulate 
the O terms of equation 2. Similarly, programming interfaces 
822 and 823 may each be used to couple a flux signal p, into 
a respective qubit loop of qubits 801 and 802, thereby realiz 
ing the h, terms in the system Hamiltonian. This coupling 
provides the of terms of equations 1 and 2. Furthermore, 
programming interface 825 may be used to control the cou 
pling between qubits 801 and 802 through coupler 811, 
thereby realizing the J, terms in the system Hamiltonian. This 
coupling provides the Oro terms of equations 1 and 2. In FIG. 
8, the contribution of each of programming interfaces 821 
825 to the system Hamiltonian is indicated in boxes 821a 
825a, respectively. 
0182 A Small-scale, two-qubit QA computation may gen 
erally be performed using the portion of quantum processor 
800 shown in FIG.8. The problem Hamiltonian described by 
equation 1 may be realized by using programming interfaces 
822 and 823 to establish the ho terms and coupler 811, as 
controlled by programming interface 825, to establish the 
Joo term. During annealing, the disorder term TH, may be 
realized by using programming interfaces 821 and 824 to 
establish the AO terms. This induces tunnel splitting in 
qubits 801 and 802. As the system evolves, the AO terms 
established by programming interfaces 821 and 824 may be 
gradually removed such that, at the end of the annealing 
process, only the terms that define equation 1 remain. 
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0183 The above description of a superconducting quan 
tum processor is intended for illustrative purposes only. 
Those of skill in the art will appreciate that the present meth 
ods and apparatus may be implemented using any form of 
quantum computing hardware (e.g., quantum computer 
designs that implement any of quantum dots, ion traps, 
nuclear magnetic resonance, electronic spins, optical devices, 
and the like) and are not limited to implementations of Super 
conducting devices alone. 
0184. In some embodiments, the present methods and 
apparatus incorporate the implementation of a classical algo 
rithm run on classical computer hardware. As used herein, a 
classical computer is a computer that represents information 
by numerical binary digits known as “bits, where each bit has 
a value of “0” or “1” such as in a binary digital computer. 
Throughout this specification and the appended claims, the 
term “classical algorithm' is used to refer to a computer 
algorithm that is Suitable to be implemented on a classical 
computer. 
0185. The above description of illustrated embodiments, 
including what is described in the Abstract, is not intended to 
be exhaustive or to limit the embodiments to the precise forms 
disclosed. Although specific embodiments of and examples 
are described herein for illustrative purposes, various equiva 
lent modifications can be made without departing from the 
spirit and scope of the disclosure, as will be recognized by 
those skilled in the relevant art. The teachings provided herein 
of the various embodiments can be applied to other systems, 
methods and apparatus of quantum computation, not neces 
sarily the exemplary systems, methods and apparatus for 
quantum computation generally described above. 
0186 The various embodiments described above can be 
combined to provide further embodiments. All of the U.S. 
patents, U.S. patent application publications, U.S. patent 
applications, foreign patents, foreign patent applications and 
non-patent publications referred to in this specification and/or 
listed in the Application Data Sheet, including but not limited 
to: U.S. Pat. No. 6,838,694, U.S. Pat. No. 7,335,909, US 
Patent Publication No. 2006-0225165, U.S. patent applica 
tion Ser. No. 12/013,192, U.S. Provisional Patent Application 
Ser. No. 60/986,554 filed Nov. 8, 2007 and entitled “Systems, 
Devices and Methods for Analog Processing, U.S. Provi 
sional Patent Application Ser. No. 61/039,710, filed Mar. 26, 
2008 and entitled “Systems, Devices, And Methods For Ana 
log Processing, US Patent Publication No. 2006-0147154, 
U.S. patent application Ser. No. 12/017,995, and U.S. Pat. No. 
7,135,701 are incorporated herein by reference, in their 
entirety. Aspects of the embodiments can be modified, if 
necessary, to employ systems, circuits and concepts of the 
various patents, applications and publications to provide yet 
further embodiments. 

0187. These and other changes can be made to the embodi 
ments in light of the above-detailed description. In general, in 
the following claims, the terms used should not be construed 
to limit the claims to the specific embodiments disclosed in 
the specification and the claims, but should be construed to 
include all possible embodiments along with the full scope of 
equivalents to which Such claims are entitled. Accordingly, 
the claims are not limited by the disclosure. 
0188 As will be apparent to those skilled in the art, the 
various embodiments described above can be combined to 
provide further embodiments. Aspects of the present systems, 
methods and articles can be modified, if necessary, to employ 
systems, methods, articles and concepts of the various pat 
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ents, applications and publications to provide yet further 
embodiments of the present systems, methods and apparatus. 
For example, the various methods described above may omit 
Some acts, include other acts, and/or execute acts in a different 
order than set out in the illustrated embodiments. 
0189 The present methods, systems and articles may be 
implemented as a computer program product that comprises 
a computer program mechanism embedded in a computer 
readable storage medium. For instance, the computer pro 
gram product could contain program modules. These pro 
gram modules may be stored on CD-ROM, DVD, magnetic 
disk storage product, flash media or any other computer 
readable data or program storage product. The Software mod 
ules in the computer program product may also be distributed 
electronically, via the Internet or otherwise, by transmission 
of a data signal (in which the Software modules are embed 
ded) Such as embodied in a carrier wave. 
0190. The foregoing detailed description has set forth vari 
ous embodiments of the devices and/or processes via the use 
of block diagrams, schematics, and examples. Insofar as Such 
block diagrams, schematics, and examples contain one or 
more functions and/or operations, it will be understood by 
those skilled in the art that each function and/or operation 
within Such block diagrams, flowcharts, or examples can be 
implemented, individually and/or collectively, by a wide 
range of hardware, Software, firmware, or virtually any com 
bination thereof. In one embodiment, the present subject mat 
ter may be implemented via Application Specific Integrated 
Circuits (ASICs). However, those skilled in the art will rec 
ognize that the embodiments disclosed herein, in whole or in 
part, can be equivalently implemented in Standard integrated 
circuits, as one or more computer programs running on one or 
more computers (e.g., as one or more programs running on 
one or more computer systems), as one or more programs 
running on one or more controllers (e.g., microcontrollers) as 
one or more programs running on one or more processors 
(e.g., microprocessors), as firmware, or as virtually any com 
bination thereof, and that designing the circuitry and/or writ 
ing the code for the software and or firmware would be well 
within the skill of one of ordinary skill in the art in light of this 
disclosure. 
0191 In addition, those skilled in the art will appreciate 
that the mechanisms taught herein are capable of being dis 
tributed as a program product in a variety of forms, and that an 
illustrative embodiment applies equally regardless of the par 
ticular type of signal bearing media used to actually carry out 
the distribution. Examples of signal bearing media include, 
but are not limited to, the following: recordable type media 
such as floppy disks, hard disk drives, CDROMs, digital tape, 
flash drives and computer memory; and transmission type 
media Such as digital and analog communication links using 
TDM or IP based communication links (e.g., packet links). 
0.192 In general, in the following claims, the terms used 
should not be construed to limit the present systems, methods 
and apparatuses to the specific embodiments disclosed in the 
specification, but should be construed to include all possible 
embodiments along with the full scope of equivalents to 
which Such claims are entitled. Accordingly, the present sys 
tems, methods and apparatuses are not limited by the disclo 
sure, but instead their scope is to be determined entirely by the 
claims. 

I claim: 
1. A quantum processor and classical computer based 

method of using both a quantum processor and a classical 
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computer to Solve a problem, wherein the quantum processor 
and the classical computer are communicatively coupled to 
one another, the method comprising: 

generating an initial set of parameters for the quantum 
processor via the classical computer, 

providing the initial set of parameters from the classical 
computer to the quantum processor via a communicative 
coupling between the classical computer and the quan 
tum processor; 

determining a first Solution to the problem via a quantum 
computation performed by the quantum processor using 
the initial set of parameters; 

varying at least one parameter of the initial set of param 
eters via the classical computer to generate a revised set 
of parameters for the quantum processor, wherein vary 
ing at least one parameter of the initial set of parameters 
includes performing a classical optimization via the 
classical computer; 

providing the revised set of parameters from the classical 
computer to the quantum processor via the communica 
tive coupling between the classical computer and the 
quantum processor, and 

determining a revised solution to the problem via a quan 
tum computation performed by the quantum processor 
using the revised set of parameters. 

2. The method of claim 1 wherein determining a first solu 
tion to the problem via a quantum computation performed by 
the quantum processor using the initial set of parameters 
includes determining a first solution to the problem via an 
adiabatic quantum computation performed by the quantum 
processor using the initial set of parameters, and wherein 
determining a revised solution to the problem via a quantum 
computation performed by the quantum processor using the 
revised set of parameters includes determining a revised solu 
tion to the problem via an adiabatic quantum computation 
performed by the quantum processor using the revised set of 
parameters. 

3. The method of claim 1 wherein determining a first solu 
tion to the problem via a quantum computation performed by 
the quantum processor using the initial set of parameters 
includes determining a first solution to the problem via an 
implementation of quantum annealing performed by the 
quantum processor using the initial set of parameters, and 
wherein determining a revised solution to the problem via a 
quantum computation performed by the quantum processor 
using the revised set of parameters includes determining a 
revised solution to the problem via an implementation of 
quantum annealing performed by the quantum processor 
using the revised set of parameters. 

4. The method of claim 1 wherein performing a classical 
optimization via the classical computer includes performing a 
classical heuristic optimization via the classical computer. 

5. The method of claim 4 wherein performing a classical 
heuristic optimization via the classical computer includes 
refining the first solution to the problem via a classical heu 
ristic optimization algorithm performed by the classical com 
puter. 

6. The method of claim 4 wherein the classical heuristic 
optimization algorithm includes at least one of local search, 
tabu search, a genetic algorithm, or simulated annealing. 

7. The method of claim 1 wherein the first solution to the 
problem is an approximate solution and determining a revised 
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Solution to the problem includes determining a second solu 
tion to the problem that is at least as good as the first Solution 
to the problem. 

8. The method of claim 1 wherein the quantum processor 
includes a plurality of qubits and a plurality of coupling 
devices, and wherein the set of initial parameters includes 
parameters that control the plurality of qubits and parameters 
that control the plurality of coupling devices. 

9. The method of claim 8 wherein a Hamiltonian of the 
quantum processor is given by: 

and wherein generating an initial set of parameters for the 
quantum processor via the classical computer includes 
generating initial values for the h, terms and the J, terms 
in the Hamiltonian of the quantum processor. 

10. The method of claim 9 wherein varying at least one 
parameter of the initial set of parameters includes varying at 
least one of an h, term in the Hamiltonian of the quantum 
processor or a J, term in the Hamiltonian of the quantum 
processor. 

11. The method of claim 1, further comprising: 
comparing the revised solution to the first solution via the 

classical computer. 
12. The method of claim 1 wherein the classical computer 

includes a system memory storing a parameter learning mod 
ule and wherein varying at least one parameter of the initial 
set of parameters via the classical computer includes varying 
at least one parameter of the initial set of parameters via the 
parameter learning module of the classical computer. 

13. The method of claim 12, further comprising: 
comparing the revised solution to the first solution via the 

classical computer; 
determining, via the parameter learning module, that vary 

ing a first parameter in a first direction leads to an 
improved revised solution compared to the first solution; 
and 

varying the first parameter in the first direction via the 
parameter learning module. 

14. A computing system operable to Solve problems, the 
computing System comprising: 

a quantum processor, 
a classical computing Subsystem communicatively 

coupled to the quantum processor, the classical comput 
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ing Subsystem including a classical processor and a sys 
tem memory storing a parameter learning module, 
wherein the parameter learning module is configured to 
generate a set of parameters for the quantum processor 
and to revise the set of parameters for the quantum 
processor to produce a revised set of parameters by 
varying at least one parameter of the set of parameters, 
wherein varying at least one parameter of the set of 
parameters includes performing a classical optimiza 
tion. 

15. The system of claim 14 wherein a Hamiltonian of the 
quantum processor is given by: 

and wherein the parameter learning module is configured 
to generate values for the h, terms and the J, terms in the 
Hamiltonian of the quantum processor. 

16. The system of claim 14 wherein the quantum processor 
is operable to perform at least one of adiabatic quantum 
computation or quantum annealing. 

17. The system of claim 14, further comprising a solver 
module stored in the system memory of the classical comput 
ing Subsystem, the solver module configured to: 

receive the set of parameters from the parameter learning 
system and employ the set of parameters to control the 
quantum processor and cause the quantum processor to 
provide a first solution to a problem; and 

receive the revised set of parameters from the parameter 
learning system and employ the revised set of param 
eters to control the quantum processor and cause the 
quantum processor to provide a revised solution to the 
problem. 

18. The system of claim 14 wherein the parameter learning 
module is configured to vary at least one parameter of the set 
of parameters by performing a classical heuristic optimiza 
tion. 

19. The system of claim 18 wherein the parameter learning 
module is configured to vary at least one parameter of the set 
of parameters by performing at least one of local search, tabu 
search, a genetic algorithm, or simulated annealing. 

20. The system of claim 14 wherein the quantum processor 
comprises a Superconducting quantum processor implement 
ing Superconducting flux qubits. 
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