PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau -

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7 : (11) International Publication Number: WO 00/38149
G09B 7/04, GO6F 17/60 Al

’ (43) International Publication Date: 29 June 2000 (29.06.00)

(21) International Application Number: PCT/US99/02737 der [US/US]; 70 Springbrook Drive, Middletown, CT 06457

(22) International Filing Date: 8 February 1999 (08.02.99)

(30) Priority Data:

09/218,945 22 December 1998 (22.12.98) US

(71) Applicant (for all designated States except US): AC PROPER-
TIES B.V. [NL/NL]; Parkstraat 83, NL-2514 JG,’S Graven-
hage (NL). :

(72) Inventors; and

(75) Inventors/Applicants (for US only): ROSENFELD, Eren,
Tolga [US/US]; 96 Greenwich Avenue, New York, NY
10011 (US). BASSEY, Ekpedeme, Mfon [US/US]; 1801
South Michigan Avenue #408, Chicago, IL 60616 (US).
ZADIK, Beth, Elyse [US/US]; 3752 North Wolcott Av-
enue, Chicago, IL 60613 (US). O’'CONNOR, Martha, Tor-
rey [US/US]; 162 Linden Avenue, Verona, NJ 07044
(US). POON, Alexander, Han, Leung [US/US]; 51 Pratte
Lane, Wolcott, CT 06716 (US). LANNERT, Eric, Jef-
frey [US/US]; Apartment 1N, 544 W. Brompton, Chicago,
IL 60657 (US). SOLOMON, Tracey, Andrea [CA/CA]J;
52 Armagh Way, Nepean, Ontario K2J 4C1 (CA). CO-
NANT, Jonathan, Christian [US/US]; Unit 305, 60 Salis-
bury Street, Worcester, MA 01609 (US). ZORBA, Alexan-

(US). PUCCIO, Carl, Michael [US/US]; 1201 Old Mill
Lane, Elk Grove Village, IL 60007 (US). GOBRAN, Tim-
othy, John [US/US]; 11 Silver Hill Lane #7, Natick, MA
01760 (US). GILCHRIST, James, Andrew [US/US]; Apart-
ment 2, 110 Elm Street, Charlestown, MA 02129 (US).
NICHOLS, Mark, Stewart [US/US]; 1032 W. 67th Street,
Downers Grove, IL 60516 (US). FLEISHER, Brandon, Den-
ning [US/US]; 18 Mountain Pine Drive, Littleton, CO 80127
(US). FRIEDMAN, Craig, William [US/US]; Apartment
#72, 151 Andrew Avenue, Naugatuck, CT 06770 (US). LI-
PEDE, Adebisi, Adetoro [US/US]; Apartment 2, 259 Shaw-
mut Avenue, Boston, MA 02118 (US). BAILEY, Matthew,
Allen [US/US]; 1317 Wyndham Circle #104, Palatine, IL
60067 (US).

(74) Agent: STEPHENS, L., Keith; Hickman Stephens & Coleman,
LLP, P.O. Box 52037, Palo Alto, CA 94303-0746 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR,
BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE,
GH, GM, HR, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ,
LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW,
MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL,
TJ, T™M, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO
patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR,
IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF,
CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published
With international search report.

(54) Title: A SYSTEM, METHOD AND ARTICLE OF MANUFACTURE FOR A GOAL BASED SYSTEM UTILIZING A TABLE

BASED ARCHITECTURE

(57) Abstract

A system is disclosed that provides a goal based learning system utilizing a rule based expert training system to provide a cognitive

educational experience. The system provides the user with a simulated environment that presents a business opportunity to understand and
solve optimally. Mistakes are noted and remedial educational material presented dynamically to build the necessary skills that a user requires
for success in the business endeavor. The system utilizes an artificial intelligence engine driving individualized and dynamic feedback with
synchronized video and graphics used to simulate real-world environment and interactions. Multiple "correct" answers are integrated into
the learning system to allow individualized learning experiences in which navigation through the system is at a pace controlled by the
leamner. A robust business model provides support for realistic activities and allows a user to experience real world consequences for their
actions and decisions and entails realtime decision-making and synthesis of the educational material. The system is architected around a
table of components to manage and control the system.

AL

AT
AU
AZ
BA
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG
CH
C1
CcM
CN
Ccu
Cz
DE
DK
EE

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cdte d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES

KR
Kz
LC
LI

LK
LR

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Treland

Tsrael

Iceland

Italy

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
Ly
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
Sz
™
TG
T
™
TR
TT
UA
uG
us
vz
VN
YU
W

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

10

15

20

25

30

35

WO 00/38149 PCT/US99/02737 _
A SYSTEM, METHOD AND ARTICLE OF MANUFACTURE FOR A

"GOAL BASED SYSTEM UTILIZING A TABLE BASED ARCHITECTURE
Field Of The Invention

The present invention relates to education systems and more particularly to a rule based tutorial system that utilizes a

table of components to control business simulations of actual environments to teach new skills.
Background of the Invention

When building a knowledge based system or expert system, at least two disciplines are necessary to properly construct
the rules that drive the knowledge base, the discipline of the knowledge engineer and the knowledge of the expert. The domain
expert has knowledge of the domain or field of use of the expert system. For example, the domain expert of an expert for
instructing students in an automotive manufacturing facility might be a process control engineer while the domain expert for a
medical instruction system might be a doctor or a nurse. The knowledge engineer is a person that understands the expert system
and utilizes the expert's knowledge to create an application for the system. In many instances, the knowledge engineer and
domain expert are separate people who have to collaborate to construct the expert system.

Typically, this collaboration takes the form of the knowledge engineer asking questions of the domain expert and
incorporating the answers to these questions into the design of the system. This approach is labor intensive, slow and error
prone. The coordination of the two separate disciplines may lead to problems. Although the knowledge engineer can transcribe
input from the expert utilizing videotape, audio tape, text and other sources, efforts from people of both disciplines have to be
expended. Further, if the knowledge engineer does not ask the right questions or asks the questions in an incorrect way, the
information utilized to design the knowledge base could be incorrect. Feedback to the knowledge engineer from the expert
system is often not available in prior art system until the construction is completed. With conventional system, there is a time
consuming feedback loop that ties together various processes from knowledge acquis'ition to validation.

Educational systems utilizing an expert system component often suffer from a lack of motivational aspects that result in
a user becoming bored or ceasing to complete a training program. Current training programs utilize static, hard-coded feedback
with some linear video and graphics used to add visual appeal and illustrate concepts. These systems typically support one
“correct” answer and navigation through the system is only supported through a single defined path which results in a two-
dimensional generic interaction, with no business model support and a single feedback to the learner of correct or incorrect
based on the selected response. Current tutorial systems do not architect real business simulations into the rules to provide a
creative learning environment to a user.

SUMMARY OF THE INVENTION

According to a broad aspect of a preferred embodiment of the invention, a goal based learning system utilizes a rule
based expert training system to provide a cognitive educational experience. The system provides the user with a simulated
environment that presents a business opportunity to understand and solve optimally. Mistakes are noted and remedial
educational material presented dynamically to build the necessary skills that a user requires for success in the business
endeavor. The system utilizes an artificial intelligence engine driving individualized and dynamic feedback with synchronized
video and graphics used to simulate real-world environment and interactions. Multiple “correct’ answers are integrated into the
learning system to allow individualized learning experiences in which navigation through the system is at a pace controlled by the
learner. A robust business model provides support for realistic activities and allows a user to experience real world
consequences for their actions and decisions and entails realtime decision-making and synthesis of the educational material. The

system is architected around a table of components to manage and control the system.

-

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 00/38149 PCT/US99/02737 _
DESCRIPTION OF THE DRAWINGS

The foregoing and other objects, aspects and advantages are better understood from the following detailed description
of a preferred embodiment of the invention with reference to the drawings, in which: ‘

Figure 1 is a block diagram of a representative hardware environment in accordance with a preferred embodiment;

Figure 2 is a block diagram of a system architecture in accordance with a preferred embodiment;

Figure 3 depicts the timeline and relative resource requirements for each phase of development for a typical application
development in accordance with a preferred embodiment;

Figure 4 illustrates a small segment of a domain model for claims handlers in the auto insurance industry in

accordance with a preferred embodiment;

Figure 5 illustrates an insurance underwriting profile in accordance with a preferred embodiment;

Figure 6 illustrates a fransformation component in accordance with a preferred embodiment;

Figure 7 illustrates the use of a toolbar to navigate and access application level features in accordance with a preferred
embodiment;

Figure 8 is a GBS display in accordance with a preferred embodiment;

Figure 9 is a feedback display in accordance with a preferred embodiment;

Figure 10 iflustrates a journal entry simulation in accordance with a preferred embodiment;

Figure 11 illustrates a simulated Bell Phone Bill journal entry in accordance with a preferred embodiment;

Figure 12 illustrates a feedback display in accordance with a preferred embodiment;

Figure 13 illustrates the steps of the first scenario in accordance with a preferred embodiment;

Figure 14 and 1§ illustrate the steps associated with a build scenario in accordance with a preferred embodiment;

Figure 16 illustrates a test scenario in accordance with a preferred embodiment. The test students work through the
journalization activity;

Figure 17 illustrates how the tool suite supports student administration in accordance with a preferred embodiment,

Figure 18 illustrates a suite fo support a student interaction in accordance with a preferred embodiment;

Figure 19 illustrates the remediation process in accordance with a preferred embodiment;

Figure 20 illustrates the objects for the journalization task in accordance with a preferred embodiment;

Figure 21 illustrates the mapping of a source item to a target item in accordance with a preferred embodiment;

Figure 22 illustrates an analysis of rules in accordance with a preferred embodiment;

Figure 23 illustrates a feedback selection in accordance with a preferred embodiment;

Figure 24 is a flowchart of the feedback logic in accordance with a preferred embodiment;

Figure 25 is a block diagram setting forth the architecture of a simulation model in accordance with a preferred
embodiment;

Figure 26 illustrates the steps for configuring a simulation in accordance with a preferred embodiment;

Figure 27 is a block diagram presenting the detailed architecture of a system dynamics model in accordance with a
preferred embodiment;

Figure 28 is an overview diagram of the logic utilized for initial configuration in accordance with a preferred
embodiment;

Figure 29 is a display of video information in accordance with a preferred embodiment; and

Figure 30 illustrates an ICA utility in accordance with a preferred embodiment.

2.

SUBSTITUTE SHEET (RULE 26)

15

20

25

30

35

WO 00/38149 PCT/US99/02737 _
DETAILED DESCRIPTION)

A preferred embodiment of a system in accordance with the present invention is preferably practiced in the context of a
personal computer such as an IBM compatible personal computer, Apple Macintosh computer or UNIX based workstation. A
representative hardware environment is depicted in Figure 1, which illustrates a typical hardware configuration of a workstation in
accordance with a preferred embodiment having a central processing unit 110, such as a microprocessor, and a number of other
units interconnected via a system bus 112. The workstation shown in Figure 1 includes a Random Access Memory (RAM) 114,
Read Only Memory (ROM}) 116, an |/O adapter 118 for connecting peripheral devices such as disk storage units 120 to the bus
112, a user interface adapter 122 for connecting a keyboard 124, a mouse 126, a speaker 128, a microphone 132, and/or other
user interface devices such as a touch screen (not shown) to the bus 112, communication adapter 134 for connecting the
workstation to a communication network (e.g., a data processing network) and a display adapter 136 for connecting the bus 112
to a display device 138. The workstation typically has resident thereon an operating system such as the Microsoft Windows NT or
Windows/95 Operating System (OS), the IBM OS/2 operating system, the MAC OS, or UNIX operating system. Those skilled in
the art will appreciate that the present invention may also be implemented on platforms and operating systems other than those
mentioned.

A preferred embodiment is written using JAVA, C, and the C++ language and utilizes object oriented programming
methodology. Object oriented programming (OOP) has become increasingly used to develop complex applications. As OOP
moves toward the mainstream of software design and development, various software solutions require adaptation to make use of
the benefits of OOP. A need exists for these principles of OOP to be applied to a messaging interface of an electronic messaging
system such that a set of OOP classes and objects for the messaging interface can be provided. A simulation engine in
accordance with a preferred embodiment is based on a Microsoft Visual Basic component developed to help design and test
feedback in relation to a Microsoft Excel spreadsheet. These spreadsheet models are what simulate actual business functions
and become a task that will be performed by a student The Simulation Engine accepts simulation inputs and calculates various
outputs and notifies the system of the status of the simulation at a given time in order to obtain appropriate feedback.

Relationship of Components

The simulation model executes the business function that the student is learning and is therefore the center point of the
application. An activity ‘layer' allows the user to visually guide the simulation by passing inputs into the simulation engine and
receiving an output from the simulation model. For example, if the student was working on an income statement activity, the net
sales and cost of goods sold calculations are passed as inputs to the simulation model and the net income value is calculated
and refrieved as an output. As calculations are passed to and retrieved from the simulation model, they are also passed to the
Intelligent Coaching Agent (ICA). The ICA analyzes the Inputs and Outputs to the simufation model and generates feedback
based on a set of rules. This feedback is received and displayed through the Visual Basic Architecture.

Figure 2 is a block diagram of a system architecture in accordance with a preferred embodiment. The Presentation
‘layer' 210 is separate from the activity ‘layer’ 220 and communication is facilitated through a set of messages 230 that control
the display specific content topics. A preferred embodiment enables knowledge workers 200 & 201 to acquire complex skilis
rapidly, reliably and consistently across an organization to deliver rapid acquisition of complex skills. This result is achieved by
placing individuals in a simulated business environment that “looks and feels” like real work, and challenging them to make
decisions which support a business’ strategic objectives utilizing highly effective learning theory (e.g., goal based learning, learn
by doing, failure based learning, etc.), and the latest in multimedia user interfaces, coupled with three powerful, integrated

.3

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 00/38149 PCT/US99/02737 _
software components. The first of these components is a software Solution Construction Aid (SCA) 230 consisting of a
mathematical modeling tool 234 which simulates business outcomes of an individual's collective actions over a period of time.]
The second component is a knowledge system 250 consisting of an HTML content layer which organizes and presents packaged
knowledge much like an online text book with practice exercises, video war stories, and a glossary. The third component is a
software tutor 270 comprising an artificial intefligence engine 240 which generates individualized coaching messages based on
decisions made by learner. ’

Feedback is unique for each individual completing the course and supports client cultural messages 242 "designed
into” the course. A business simulation methodology that includes support for content acquisition, story line design, interaction
design, feedback and coaching delivery, and content delivery is architected into the system in accordance with a preferred
embodiment. A large number of “pre-designed" learning interactions such as drag and drop association of information 238,
situation assessment/action planning, interviewing (one-on-one, one-to-many), presenting (to a group of experts/executives),
metering of performance (handie now, handle later), “time jumping” for impact of decisions, competitive landscape shift (while
‘time jumping’, competitors merge, customers are acquired, etc.) and video interviewing with automated note taking are also
included in accordance with a preferred embodiment.

Business simulation in accordance with a preferred embodiment delivers training curricula in an optimal manner. This
is because such applications provide effective training that mirrors a student's actual work environment. The application of skills
“on the job” facilitates increased retention and higher overall job performance. While the results of such training applications are
impressive, business simulations are very complex to design and build correctly. These simulations are characterized by a very
open-ended environment, where students can go through the application along any number of paths, depending on their learning
style and prior experiences/knowledge.

A category of learning approaches called Learn by Doing, is commonly used as a solution to support the first phase
(Learn) of the Workforce Performance Cycle. However, it can also be a solution to support the second phase (Perform) of the
cycle to enable point of need learning during job performance. By adopting the approach presented, some of the benefits of a
technology based approach for building business simulation solutions which create more repeatable, predictable projects
resulting in more perceived and actual user value at a lower cost and in less time are highlighted.

Most corporate training programs today are misdirected because they have failed to focus properly on the purpose of
their training. These programs have confused the memorization of facts with the ability to perform tasks; the knowing of "that"
with the knowing of "how". By adopting the methods of traditional schools, businesses are teaching a wide breadth of
disconnected, decontextualized facts and figures, when they should be focused on improved performance. How do you teach
performance, when lectures, books, and tests inherently are designed around facts and figures? Throw away the lectures,
books, and tests. The best way to prepare for high performance is to perform; experience is the best teacher! Most business
leaders agree that workers become more effective the more time they spend in their jobs. The best approach for training novice
employees, therefore, would be letting them learn on the job, acquiring skills in their actual work environment. The idea of
learning-by-doing is not revolutionary, yet it is resisted in business and academia. Why is this so, if higher competence is
universally desired?

Learners are reluctant to adopt learning-by-doing because they are frightened of failure. People work hard to avoid
making mistakes in front of others. Business leaders are hesitant to implement learning-by-doing because novice failure may

have dramatic safety, legal and financial implications. imagine a novice pilot learning-by-doing as he accelerates a iarge jet plane

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 00/38149 PCT/US99/02737
down a runway, likewise, consider a new financial analyst learning-by-doing as he structures a multi-million dollar financial loan.

Few employers are willing to endure such failures to have a more competent workforce.

The key to such a support system is that it is seamlessly integrated into the business system that the knowledge
worker uses to execute their job tasks. Workers don't need to go "off-line" or seek out cryptic information buried within paper
manuals and binders for guidance or to find the answer to queries. All the support components are made available through the
same applications the worker's use, at the point in which they need them, tailored to the individual to show "how", not just "what".
Learning would be occurring all the time, with lttle distinction between performing and improving performance. Establishing that
training should focus on performance (how), rather than facts (what), and extending the model of learning to include assistance
while performing, rather than only before performance, still leaves us dangerously exposed in preparing to compete in the new,
chaotic economy. As was mentioned in the opening of this paper, the pace of change in business today is whiplash fast. Not only
are new methods of doing business evolving every 18-24 months, new competitors emerge, dominate, and fade in time periods
businesses used to take to perform demographic studies. Now more than ever, those who do not reinvent themselves on a
regular basis will be fossilized by the pace of change. A typical BusSim engagement takes between one and two years to
complete and requires a variety of both functional and technical skills. Figure 3 depicts the timeline and relative resource
requirements for each phase of development for a typical application development in accordance with a preferred embodiment,
The chart clearly depicts the relationship between the large number of technical resources required for both the build and test
phases of development. This is because the traditional development process used to build BusSim solutions reflects more of a
"one off" philosophy, where development is done from scratch in a monolithic fashion, with little or no reuse from one application
to the next. This lack of reuse makes this approach prohibitively expensive, as well as lengthy, for future BusSim projects.

The solution to this problem is to put tools in the hands of instructional designers that allows them to create their
BusSim designs and implement them without the need for programmers to write code. And to put application architectures that
integrate with the tools in the hands of developers, providing them with the ability to quickly deliver solutions for a number of
different platforms. The reuse, then, comes in using the tools and architectures from one engagement to another. Both functional
and technical resources carry with them the knowledge of how to use the technology, which also has an associated benefit of
establishing a best-practice development methodology for BusSim engagements.

Development Cycle Activities

In the Design Phase, instructional designers become oriented to the content area and begin to conceptualize an
instructional approach. They familiarize themselves with the subject matter through reading materials and interviews with Subject
Matter Experts (SMEs). They also identify learning objectives from key client contacts. Conceptual designs for student
interactions and interface layouts also begin to emerge. After the conceptual designs have taken shape, Low-Fi user testing
(a.k.a. Conference Room Piloting) is performed. Students interact with interface mock-ups while facilitators observe and record
any issues. Finally, detailed designs are created that incorporate findings. These detailed designs are handed off to the
development team for implementation. The design phase has traditionally been fraught with several problems. Unlike a traditional
business system, BusSim solutions are not rooted in tangible business processes, so requirements are difficult to identify in a
concrete way. This leaves instructional designers with a ‘blue sky' design problem. With few business-driven constraints on the
solution, shallow expertise in the content area, and limited technical skills, instructional designers have little help in beginning a
design. Typically, only experienced designers have been able to conjure interface, analysis, and feedback designs that meet the

learning objectives yet remain technically feasible to implement. To compound the problem, BusSim solutions are very open

.5-

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 00/38149 PCT/US99/02737 -
ended in nature. The designer must anticipate a huge combination of student behavior to design feedback that is helpful and
realistic.

During the build phase, the application development team uses the detailed designs to code the application. Coding
tasks include the interfaces and widgets that the student interacts with. The interfaces can be made up of buttons, grids, check
boxes, or any other screen controls that allow the student to view and manipulate his deliverables. The developer must aiso code
logic that analyzes the student's work and provides feedback interactions. These interactions may take the form of text and/or
multimedia feedback from simulated team members, conversations with simulated team members, or direct manipulations of the
student's work by simulated team members. in paraliel with these coding efforts, graphics, videos, and audio are being created
for use in the application. Managing the development of these assets have their own complications. Risks in the build phase
include misinterpretation of the designs. If the developer does not accurately understand the designer's intentions, the application
will not function as desired. Also, coding these applications requires very skilled developers because the logic that analyzes the
student's work and composes feedback is very complex.

The Test Phase, as the name implies, is for testing the application. Testing is performed to verify the application in
three ways: first that the application functions properly (functional testing), second that the students understand the interface and
can navigate effectively (usability testing), and third that the earning objectives are met (cognition testing). Functional testing of
the application can be carried out by the development team or by a dedicated test team. If the application fails to function
properly, it is debugged, fixed, recompiled and retested until its operation is satisfactory. Usability and cognition testing can only
be carried out by test students who are unfamiliar with the application. If usabilty is unsatisfactory, parts of the interface and or
feedback logic may need to be redesigned, recoded, and retested. If the learning objectives are not met, large parts of the
application may need to be removed and completely redeveloped from a different perspective. The test phase is typically where
most of the difficuities in the BusSim development cycle are encountered. The process of discovering and fixing functional,
usability, and cognition problems is a difficult process and not an exact science.

For functional testing, testers operate the application, either by following a test script or by acting spontaneously and
documenting their actions as they go. When a problem or unexpected result is encountered, it too is documented. The
application developer responsible for that part of the application then receives the documentation and attempts to duplicate the
problem by repeating the tester's actions. When the problem is duplicated, the developer investigates further to find the cause
and implement a fix. The developer once again repeats the tester's actions to verify that the fix solved the problem. Finally, all
other test scripts must be rerun to verify that the fix did not have unintended consequences elsewhere in the application.The
Execution Phase refers to the steady state operation of the completed application in its production environment. For some
clients, this involves phone support for students. Clients may also want the ability to track students’ progress and controf their
progression through the course. Lastly, clients may want the ability to track issues so they may be considered for inclusion in
course maintenance releases.

One of the key values of on-line courses is that they can be taken at a time, location, and pace that is convenient for
the individual student. Hdwever, because students are not centrally located, support is not always readily available. For this
reason it is often desirable to have phone support for students. Clients may also desire to track students’ progress, or control
their advancement through the course. Under this strategy, after a student completes a section of the course, he will transfer his
progress data to a processing center either electronically or by physically mailing a disk. There it can be analyzed to verify that

he completed all required work satisfactorily. One difficulty commonly associated with student tracking is isolating the student

-

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

Wb 00/38149 PCT/US99/02737 _
data for analysis. It can be unwieldy to transmit all the course data, so it is often imperative to isolate the minimum data required
to perform the necessary analysis of the student's progress.

A Delivery Framework for Business Simulation

As discussed earlier, the traditional development process used to build BusSim solutions reflects more of a "one off"
philosophy, where development is done from scratch in a monolithic fashion, with little or no reuse from one application to the
next. A better approach would be to focus on reducing the total effort required for development through reuse, which, in turn
would decrease cost and development time. The first step in considering reuse as an option is the identification of common
aspects of the different BusSim applications that can be generalized to be useful in future applications. In examination of the
elements that make up these applications, three common aspects emerge as integral parts of each: Interface, Analysis and
Interpretation. Every BusSim application must have a mechanism for interaction with the student. The degree of complexity of
each interface may vary, from the high interactivity of a high-fidelity real-time simulation task, to the less complex information
delivery requirements of a business case background information task. Regardless of how sophisticated the User Interface (un,
itis a vital piece of making the underlying simulation and feedback logic useful to the end user.

Every BusSim application does analysis on the data that defines the current state of the simulation many times
throughout the execution of the application. This analysis is done either to determine what is happening in the simulation, or to
perform additional calculations on the data which are then fed back into the simulation. For example, the analysis may be the
recognition of any actions the student has taken on artifacts within the simulated environment (notebooks, number values,
interviews conducted, etc.), or it may be the calculation of an RO! based on numbers the student has supplied. Substantive,
useful feedback is a critical piece of any BusSim application. It is the main mechanism to communicate if actions taken by the
student are helping or hurting them meet their performance objectives. The interpretation piece of the set of proposed
commonaities takes the results of any analysis performed and makes sense of it. It takes the non-biased view of the world that
the Analysis portion delivers (i.e., "Demand is up 3%") and places some evaluative context around it (i.e., "Demand is below the
expected 7%; you're in trouble!", or "Demand has exceeded projections of 1.5%; Great job!").

There are several approaches to capturing commonalties for reuse. Two of the more common approaches are
framework-based and component-based. To help illustrate the differences between the two approaches, we will draw an analogy
between building an application and building a house. One can construct a house from scratch, using the raw materials, 2x4s,
nails, paint, concrete, etc. One can also construct an application from scratch, using the raw materials of new designs and new
code. The effort involved in both undertakings can be reduced through framework-based andfor component-based reuse. Within
the paradigm of framework-based reuse, a generic framework or architecture is constructed that contains commonaities. in the
house analogy, one could purchase a prefabricated house framework consisting of floors, outside walls, bearing walls and a roof.
The house can be customized by adding partition walls, wall-paper, woodwork, carpeting etc. Similarly, prefabricated application
frameworks are available that contain baseline application structure and functionality. Individual applications are completed by
adding specific functionality and customizing the look-and-feel. An example of a commonly used application framework is
Microsoft Foundation Classes. It is a framework for developing Windows applications using C++. MFC supplies the base
functionality of a windowing application and the developer completes the application by adding functionality within the framework.
Framework-based reuse is best suited for capturing template-like features, for example user interface management, procedurat
object behaviors, and any other features that may require specialization. Some benefits of using a framework include:

Extensive functionality can be incorporated into a framework. In the house analogy, if | know | am going to build a
whole neighborhood of three bedroom ranches, | can build the plumbing, wiring, and partition walls right into the framework,

7-

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 00/38149 PCT/US99/02737 -
reducing the incremental effort required for each house. If | know | am going to build a large number of very similar applications,
they will have more commonalties that can be inciuded in the framework rather than built individually.

Applications can override the framework-supplied functionality wherever appropriate. If a house framework
came with pre-painted walls, the builder could just paint over them with preferred colors. Similarly, the object oriented principle of
inheritance allows an application developer to override the behavior of the framework. In the paradigm of component-based
reuse, key functionality is encapsulated ina component. The component can then be reused in multiple applications. In the
house analogy, components correspond to appliances such as dishwashers, refrigerators, microwaves, etc. Similarly, many
application components with pre-packaged functionality are available from a variety of vendors. An example of a popular
component s a Data Grid. It is a component that can be integrated into an application to deliver the capability of viewing
columnar data in a spreadsheet-like grid. Component-based reuse is best suited for capturing black-box-like features, for
example text processing, data manipulation, or any other features that do not require specialization.

Several applications on the same computer can share a single component. This is not such a good fit with the
analogy, but imagine if all the houses in a neighborhood could share the same dishwasher simultaneously. Each home wouid
have to supply its own dishes, detergent, and water, but they could all wash dishes in parallel. In the application component
world, this type of sharing is easily accomplished and results in reduced disk and memory requirements.

Components tend to be less platform and tool dependent. A microwave can be used in virtually any house,
whether it's framework is steel or wood, and regardless of whether it was customized for building mansions or shacks. You can
put a high-end microwave in a low-end house and vice-versa. You can even have multiple different microwaves in your house.
Component technologies such as CORBA, COM, and Java Beans make this kind of flexibility commonplace in application
deveiopment. Often, the best answer to achieving reuse is through a combination of framework-based and component-based
techniques. A framework-based approach for building BusSim applications is appropriate for developing the user interface,
handling user and system events, starting and stopping the application, and other application-specific and delivery platform-
specific functions. A component-based approach is appropriate for black-box functionality. That is, functionality that can be used
as-is with no specialization required. In creating architectures to support BusSim application development, it is imperative that
any assets remain as flexible and extensible as possible or reusability may be diminished. Therefore, we chose to implement the
unique aspects of BusSim applications using a component approach rather than a framework approach. This decision is further
supported by the following observations.

Delivery Framework for Business Simulation

Components are combined with an Application Framework and an Application Architecture to achieve maximum reuse
and minimum custom development effort. The Application Architecture is added to provide communication support between the
application interface and the components, and between the components. This solution has the following features: The
components (identified by the icons) encapsulate key BusSim functionality. The Application Architecture provides the glue that
allows application-to-component and component-to-component communication. The Application Framework provides structure
and base functionality that can be customized for different interaction styles. Only the application interface must be custom
developed. The next section discusses each of these components in further detail.

The Business Simulation Toolset

We have clearly defined why a combined component/framework approach is the best solution for delivering high-
quality BusSim solutions at a lower cost. Given that there are a number of third party frameworks already on the market that
provide delivery capability for a wide variety of platforms, the TEL project is focused on defining and developing a set of

-8-

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 00/38149 PCT/US99/02737 -
components that provide unique services for the development and delivery of BusSim solutions. These components along with a

set of design and test workbenches are the tools used by instructional designers to support activities in the four phases of
BusSim development. We call this suite of tools the Business Simulation Toolset. Following is a description of each of the
components and workbenches of the toolset. A Component can be thought of as a black box that encapsulates the behavior
and data necessary to support a related set of services. It exposes these services to the outside world through published
interfaces. The published interface of a component allows you to understand what it does through the services it offers, but not
how it does it. The complexity of its implementation is hidden from the user. The following are the key components of the BusSim
Toolset. Domain Component - provides services for modeling the state of a simulation. Profiling Component - provides services

for rule-based evaluating the state of a simulation. Transformation Component - provides services for manipulating the state of a

simulation. Remediation Component - provides services for the rule-based delivering of feedback to the student The Domain

Mode! component is the central component of the suite that facilitates communication of context data across the application and
the other components. Itis a modeling tool that can use industry-standard database such as Informix, Oracle, or Sybase to store
its data. A domain model is a representation of the objects in a simulation. The objects are such pseudo tangible things as a
lever the student can pull, a form or notepad the student fills out, a character the student interacts with in a simulated meeting,
etc. They can also be abstract objects such as the RO for a particular investment, the number of times the student asked a
particular question, etc. These objects are called entities. Some example entities include: Vehicles, operators and incidents in
an insurance domain; Journal entries, cash flow statements and balance sheets in a financial accounting domain and Consumers
and purchases in a marketing domain.

An entity can also contain other entities. For example, a personal bank account entity might contain an entity that
represents a savings account. Every entity has a set of properties where each property in some way describes the entity. The
set of properties owned by an entity, in essence, define the entity. Some example properties include: An incident entity on an
insurance application owns properties such as “Occurrence Date”, “Incident Type Code", etc. A journal entry owns properties
such as “Credit Account”, "Debit Account”, and “Amount’; and a revolving credit account entity on a mortgage application owns
properties such as “Outstanding Balance’, “Available Limit", etc. Figure 4 llustrates a small segment of a domain mode for claims
handlers in the auto insurance industry in accordance with a preferred embodiment.

Profiling Component

In the simplest terms, the purpose of the Profiling Component is to analyze the current state of a domain and identify
specific things that are true about that domain. This information is then passed to the Remediation Component which provides
feedback to the student. The Profiling Component analyzes the domain by asking questions about the domain'’s state, akin to an
investigator asking questions about a case. The questions that the Profiler asks are called profiles. For example, suppose there
is a task about building a campfire and the student has just thrown a match on a pile of wood, but the fire didn't start. In order to
give useful feedback to the student, a tutor would need to know things like: was the match iit?, was the wood wet?, was there
kindiing in the pile?, etc. These questions would be among the profiles that the Profiling Component would use to analyze the
domain. The results of the analysis would then be passed off to the Remediation Component which would use this information to
provide specific feedback to the student. Specifically, a profile is a set of criteria that is matched against the domain. The
purpose of a profile is to check whether the criteria defined by the profile is met in the domain. Using a visual editing tool,
instructional designers create profiles to identify those things that are important to know about the domain for a given task.
During execution of a BusSim application at the point that feedback is requested either by the student or pro-actively by the
application, the set of profiles associated with the current task are evaluated to determine which ones are true. Example profiles

-9-

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 00/38149 PCT/US99/02737 _
include: Good productions strategy but wrong Break-Even Formula; Good driving record and low claims history; and Correct
Cash Flow Analysis but poor Return on Investment (ROI)

A profile is composed of two types of structures: characteristics and collective characteristics. A characteristic is a
conditional (the if haif of a rule) that identifies a subset of the domain that is important for determining what feedback to deliver to
the student. Example characteristics include: Wrong debit account in transaction 1; Perfect cost classification; At Least 1 DUl in
the last 3 years; More than $4000 in claims in the fast 2 years; and More than two at-fault accidents in 5 years
A characteristic's conditional uses one or more atomics as the operands to identify the subset of the domain that defines the
characteristic. An atomic only makes reference to a single property of a single entity in the domain; thus the term atomic.
Example atomics include: The number of DUI's >= 1; ROI > 10%; and Income between $75,000 and $110,000. A collective
characteristic is a conditional that uses multiple characteristics and/or other collective characteristics as its operands. Collective
characteristics allow instructional designers to build richer expressions (i.e., ask more complex questions). Example collective
characteristics include: Bad Household driving record; Good Credit Rating; Marginal Credit Rating; Problems with Cash for
Expense transactions; and Problems with Sources and uses of cash. Once created, designers are able to reuse these elements
within multiple expressions, which significantly eases the burden of creating additional profiles. When building a profile from its
elements, atomics can be used by multiple characteristics, characteristics can be used by multiple collective characteristics and
profiles, and collective characteristics can be used by multiple collective characteristics and profiles. Figure 5 illustrates an
insurance underwriting profite in accordance with a preferred embodiment.

Example Profile for Insurance Underwriting

Transformation Component - Whereas the Profiling Component asks questions about the domain, the
Transformation Component performs calculations on the domain and feeds the results back into the domain for further analysis
by the Profiling Component. This facilitates the modeling of complex business systems that would otherwise be very difficult to
implement as part of the application. Within the Analysis phase of the Interface/Analysis/Interpretation execution flow, the
Transformation Component actually acts on the domain before the Profiling Component does its analysis. The Transformation
Component acts as a shell that wraps one or more data modeling components for the purpose of integrating these components
into a BusSim application. The Transformation Component facilitates the transfer of specific data from the domain to the data
modeling component (inputs) for calculations to be performed on the data, as well as the transfer of the results of the calculations
from the data modeling component back to the domain (outputs). Figure 6 illustrates a transformation component in accordance
with a preferred embodiment. The data modeling components could be third party modeling environments such as spreadsheet-
based modeling (e.g., Excel, Formula1) or discrete time-based simulation modeling (e.g., PowerSim, VenSim). The components
could also be custom built in C++, VB, Access, or any tool that is ODBC compliant to provide unique modeling environments.
Using the Transformation Component to wrap a third party spreadsheet component provides an easy way of integrating into an
application spreadsheet-based data analysis, created by such tools as Excel. The Transformation Component provides a shell
for the spreadsheet so that it can look into the domain, pull out values needed as inputs, performs its calculations, and post
outputs back to the domain.

For example, if the financial statements of a company are stored in the domain, the domain would hold the baseline
data like how much cash the company has, what its assets and liabilities are, etc. The Transformation Component would be able
to look at the data and calculate additional values like cash flow ratios, ROl or NPV of investments, or any other calculations to
quantitatively analyze the financial health of the company. Depending on their complexity, these calculations could be performed
by pre-existing spreadsheets that a client has already spent considerable time developing.

-10-

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 00/38149 PCT/US99/02737 _

Remediation Component - The Remediation Component is an expert system that facilitates integration of intelligent
feedback into BusSim applications. It has the following features: Ability to compose high quality text feedback; Ability to compose
multimedia feedback that includes video and/or audio; Ability to include reference material in feedback such as Authorware
pages or Web Pages and Ability to actively manipulate the users deliverables to highiight or even fix users' errors. A proven
remediation theory embedded in its feedback composition algorithm allows integration of digital assets into the Remediation of a
training or IPS application. The Remediation mode! consists of three primary objects: Concepts; Coach Topics and Coach ltems.
Concepts are objects that represent real-world concepts that the user will be faced with in the interface. Concepts can be broken
into sub-concepts, creating a hierarchical tree of concepts. This tree can be arbitrarily deep and wide to support rich concept
modeling. Concepts can also own an arbitrary number of Coach Topics. Coach Topics are objects that represent a discussion
topic that may be appropriate for a concept. Coach Topics can own an arbitrary number of Coach Items. Coach Items are items
of feedback that may include text, audio, video, URL's, or updates to the Domain Model. Coach Items are owned by Coach
Topics and are assembled by the Remediation Component algorithm.

Workbenches- The BusSim Toolset also includes a set of workbenches that are used by instructional designers to
design and build BusSim applications. A workbench is a tool that facilitates visual editing or testing of the data that the BusSim
Components use for determining an application’s run-time behavior. The BusSim Toolset includes the following workbenches:
Knowledge Workbench - The Knowledge Workbench is a too! for the creation of domain, analysis and feedback data that is
used by the BusSim Components. It has the following features: Allows the designer to ‘paint' knowledge in a drag-and-drop
interface; Knowledge is represented visually for easy communication among designers: The interface is intelligent, allowing
designers to only paint valid interactions; Designer's Task creations are stored in a central repository; The workbench supports
check-in / check-out for exclusive editing of a task; Supports LAN-based or untethered editing; Automatically generates
documentation of the designs; and it Generates the data files that drive the behavior of the components. Simulated Student
Test Workbench- The Simulated Student Test Workbench is a tool for the creation of data that simulates student's actions for
testing BusSim Component behaviors. It has the following features: The Test Bench generates a simulated application interface
based on the Domain Mode!; The designer manipulates the objects in the Domain Model to simulate student activity; The
designer can invoke the components to experience the interactions the student will experience in production; and The designer
can fully test the interaction behavior prior to development of the application interface. Regression Test Workbench - The
Regression Test Workbench is a tool for replaying and testing of student sessions to aid debugging. It has the following features:
Each student submission can be individually replayed through the components; An arbitrary number of student submissions from
the same session can be replayed in succession; Entire student sessions can be replayed in batch instantly; The interaction
results of the student are juxtaposed with the results of the regression test for comparison.

Development Cycle Activities

The design phase of a BusSim application is streamlined by the use of the Knowledge Workbench. The Knowledge
Workbench is a visual editor for configuring the objects of the component engines to control their runtime behavior. The
components are based on proven algorithms that capture and implement best practices and provide a conceptual framework and
methodology for instructional design. In conceptual design, the workbench allows the designer to paint a model of the hierarchy
of Concepts that the student will need to master in the activity. This helps the designer organize the content in a logical way. The
visual representation of the Concepts helps to communicate ideas to other designers for review. The consistent look and feel of
the workbench also contributes to a streamlined Quality Assurance process. In addition, standard documentation can be
automatically generated for the entire design. As the design phase progresses, the designer adds more detail to the design of the

-11-

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 00/38149 PCT/US99/02737 _
Concept hierarchy by painting in Coach Topics that the student may need feedback on. The designer can associate multiple
feedback topics with each Concept. The designer also characterizes each topic as being Praise, Polish, Focus, Redirect or one
of several other types of feedback that are consistent with a proven remediation methodology. The designer can then fill each
topic with text, video war stories, Web page links, Authorware links, or any other media object that can be delivered to the
student as part of the feedback topic.

The toolset greatly reduces effort during functionality testing. The key driver of the effort reduction is that the
components can automatically track the actions of the tester without the need to add code support in the application. Whenever
the tester takes an action in the interface, it is reported to the domain model. From there it can be tracked in a database. Testers
no longer need to write down their actions for use in debugging; they are automatically written to disk. There is also a feature for
attaching comments to a tester's actions. When unexpected behavior is encountered, the tester can hit a control key sequence
that pops up a dialog to record a description of the errant behavior. During the Execution Phase, the components are deployed to
the student's platform. They provide simulated team member and feedback functionality with sub-second response time and
error-free operation. If the client desires it, student tracking mechanisms can be deployed at runtime for evaluation and
administration of students. This also enables the isolation of any defects that may have made it to production.

Scenarios for Using the Business Simulation Toolset

A good way to gain a better appreciation for how the BusSim Toolset can vastly improve the BusSim development
effort is to walk through scenarios of how the tools would be used throughout the development lifecycle of a particutar task in a
BusSim application. For this purpose, we'll assume that the goal of the student in a specific task is to journalize invoice
transactions, and that this task is within the broader context of learning the fundamentals of financial accounting. A cursory
description of the task from the student's perspective will help set the context for the scenarios. Following the description are five
scenarios which describe various activities in the development of this task. The figure below shows a screen shot of the task
interface. Figure 7 illustrates the use of a toolbar to navigate and access application level features in accordance with a
preferred embodiment. A student uses a toolbar to navigate and also to access some of the application-level features of the
application. The toolbar is the inverted L-shaped object across the top and left of the interface. The top section of the toolbar
aliows the user to navigate to tasks within the current activity. The left section of the toolbar allows the student to access other
features of the application, including feedback. The student can have his deliverables analyzed and receive feedback by clicking
on the Team button.

In this task, the student must journalize twenty-two invoices and other source documents to record the flow of budget
dollars between internal accounts. (Note: “Journalizing’, or “Journalization”, is the process of recording journal entries in a
general ledger from invoices or other source documents during an accounting period. The process entails creating debit and
balancing credit entries for each document. At the completion of this process, the general ledger records are used to create a
trial balance and subsequent financial reports.) In accordance with a preferred embodiment, an Intelligent Coaching Agent Tool
(ICAT) was developed to standardize and simplify the creation and delivery of feedback in a highly complex and open-ended
environment. Feedback from a coach or tutor is instrumental in guiding the leamner through an application. Moreover, by
diagnosing trouble areas and recommending specific actions based on predicted student understanding of the domain student
comprehension of key concepts is increased. By writing rules and feedback that correspond to a proven feedback strategy,
consistent feedback is delivered throughout the application, regardiess of the interaction type or of the specific
designer/developer creating the feedback. The ICAT is packaged with a user-friendly workbench, so that it may be reused to
increase productivity on projects requiring a similar rule-based data engine and repository.

-12-

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 00/38149 PCT/US99/02737 -
Definition of ICAT In Accordance with a Preferred Embodiment

The Intelligent Coaching Agent Tool (ICAT) is a suite of tools--a database and a Dynamic Link Library (DLL) run-time
engine — used by designers to create and execute just-in-time feedback of Goal Based training. Designers write feedback and
rules in the development tools. Once the feedback is set, the run-time engine monitors user actions, fires rules and composes
feedback which describes the business deliverable. The remediation model used within ICAT dynamically composes the most
appropriate feedback to deliver to a student based on student's previous responses. The ICAT model is based on a theory of
feedback which has been proven effective by pilot results and informal interviews. The model is embodied in the object model
and algorithms of the ICAT. Because the model is built into the tools, all feedback created with the tool will conform to the mode!.
ICAT plays two roles in student training. First, the ICAT is a teaching system, helping students to fully comprehend and apply
information. Second, ICAT is a gatekeeper, ensuring that each student has mastered the material before moving on to additional
information. ICAT is a self contained module, separate from the application. Separating the ICAT from the application allows
other projects to use the ICAT and allows designers to test feedback before the application is complete. The ICAT Module is built
on six processes which allow a student to interact effectively with the interface to compose and deliver the appropriate feedback
for a student's mistakes. ICAT development methodology is a seven step methodology for creating feedback. The methodology
contains specific steps, general guidelines and lessons learned from the field. Using the methodology increases the effectiveness
of the feedback to meet the educational requirements of the course. The processes each contain a knowledge model and some
contain algorithms. Each process has specific knowledge architected into its design to enhance remediation and teaching. There
is a suite of testing tools for the ICAT. These tools allow designers and developers test all of their feedback and rules. In addition,
the utilities let designers capture real time activities of students as they go through the course. The tools and run-time engine in
accordance with a preferred embodiment include expert knowledge of remediation. These objects include logic that analyzes a
student's work to identify problem areas and deliver focused feedback. The designers need only instantiate the objects to put the
tools to work. Embodying expert knowledge in the tools and engine ensures that each section of a course has the same effective
feedback structure in place. A file structure in accordance with a preferred embodiment provides a standard system environment
for all applications in accordance with a preferred embodiment. A development directory holds a plurality of sub-directories. The
content in the documentation directory is part of a separate instaliation from the architecture. This is due to the size of the
documentation directory. It does not require any support files, thus it may be placed on a LAN or on individual computers. When
the architecture is instalied in accordance with a preferred embodiment, the development directory has an _Arch, _Tools,
_Utilities, Documentation, QED, and XDefault development directory. Each folder has its own directory structure that is inter-
linked with the other directories. This structure must be maintained to assure consistency and compatibility between projects to
clarify project differences, and architecture updates.

The _Arch directory stores many of the most common parts of the system architecture. These files generally do not
change and can be reused in any area of the project. If there is common visual basic code for applications that will continuously
be used in other applications, the files will be housed in a folder in this directory. The sub-directories in the _Arch directory are
broken into certain objects of the main project. Object in this case refers to parts of a project that are commonly referred to within
the project. For example, modules and classes are defined here, and the directory is analogous to a library of functions, APls,
etc... that do not change. For example the IcaObj directory stores code for the Intelligent Coaching Agent (ICA). The InBoxObj
directory stores code for the InBox part of the project and so on. The file structure uses some primary object references as file
directories. For example, the IcaObj directory is a component that contains primary objects for the ICA such as functional forms,
modules and classes. The BrowserObj directory contains modules, classes and forms related to the browser functionality in the

13-

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 00/38149 PCT/US99/02737 _
architecture. The HTMLGlossary directory contains code that is used for the HTML reference and glossary component of the
architecture. The lcaObj directory contains ICA functional code to be used in an application. This code is instantiated and
enhanced in accordance with a preferred embodiment. The InBoxObj directory contains code pertaining to the inbox
functionality used within the architecture. Specifically, there are two major components in this architecture directory. There is a
new .ocx control that was created to provide functionality for an inbox in the application. There is also code that provides support
for a legacy inbox application. The PracticeObj directory contains code for the topics component of the architecture. The topics
component can be implemented with the HTMLGlossary component as well. The QmediaObj directory contains the components
that are media related. An example is the QVIDctrl.cls. The QVIDctrl is the code that creates the links between QVID files in an
application and the system in accordance with a preferred embodiment. The SimObj directory contains the Simulation Engine, a
component of the application that notifies the tutor of inputs and outputs using a spreadsheet to facilitate communication. The
StaticObj directory holds any component that the application will use statically from the rest of the application. For example, the
login form is kept in this folder and is used as a static object in accordance with a preferred embodiment. The SysDynObj
directory contains the code that allows the Systems Dynamics Engine (Powersim) to pass values to the Simulation Engine and
return the values to the tutor. The VBODbj directory contains common Visual Basic objects used in applications. For example the
NowWhat, Visual Basic Reference forms, and specific message box components are stored in this folder. The _Tools directory
contains two main directories. They represent the two most used tools in accordance with a preferred embodiment. The two
directories provide the code for the tools themselves. The reason for providing the code for these tools is to aliow a developer to
enhance certain parts of the tools to extend their ability. This is important for the current project development and also for the
growth of the tools. The lcautils directory contains a data, database, default, graphics, icadoc, and testdata directory. The
purpose of all of these directories is to provide a secondary working directory for a developer to keep their testing environment of
enhanced Icautils applications separate from the project application. It is built as a testbed for the tool only. No application
specific work should be done here. The purpose of each of these directories will be explained in more depth in the project
directory section. The TestData folder is unique to the _Tools/ICAULils directory. It contains test data for the regression bench
among others components in ICAUtils.

The Utilities directory holds the available utilities that a Business Simulation project requires for optimal results. This is
arepository for code and executable utilities that developers and designers may utilize and enhance in accordance with a
preferred embodiment. Most of the utilities are small applications or tools that can be used in the production of simulations which
comprise an executable and code to go with it for any enhancements or changes to the utility. If new utilities are created on a
project or existing utilities are enhanced, it is important to notify the managers or developers in charge of keeping track of the
Business Simulation assets. Any enhancements, changes or additions to the Business Simulation technology assets are

important for future and existing projects.

In the ICAT mode of feedback, there are four levels of severity of error and four corresponding levels of feedback. The

tutor goes through the student's work, identifies the severity of the error and then provides the corresponding leve! of feedback.

Educational Categories of Feedback

ERROR FEEDBACK

Error Descripti Feedbac Description
-14-

SUBSTITUTE SHEET (RULE 26)

WO 00/38149

PCT/US99/02737 _
Type on k Type

None No errors Praise Confirmation that the student
exist. The student's completed the task correctly.
work is perfect. Example:Great. You have journalized

all accounts correctly. | am happy to
see you recognized we are paying for
most of our bills “on account’.

Syntacti | There may be Polish Tells the student the

c spelling mistakes or specific actions he did incorrectly,
other syntactic and possibly correct them for him.
errors. As a
designer, you Example:
should be confident There are one or two errors
that the student will in your work. It looks like you
have mastered the misclassified the purchase of the fax
material at this as a cash purchase when itis really a
point. purchase on account.

Local A Focus Focus the student on this
paragraph of a area of his work. Point out that he
paper is missing or does not understand at least one
the student has major concept.
made a number of
mistakes all in one Example:
area. The student Looking over your work, |
clearly does not see that you do not understand the
understand this concept of “on account”. Why don't
area. you review that concept and review

your work for errors.

Global The Redirect Restate the goal of the
student has written activity and tell the student to review
on the wrong main concepts and retry the activity.
subject or there are “There are lots of mistakes
mistakes ali over the throughout your work. You need to
student's work think about what type of transaction

each source document represents
before journalizing it.”

Returning to the analogy of helping someone write a paper, if the student writes on the wrong subject, this as a global

error requiring redirect feedback. If the student returns with the paper rewritten, but with many errors in one area of the paper,

-15-

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 00/38149 PCT/US99/02737 _
focus feedback is needed. With all of those errors fixed and only spelling mistakes--syntactic mistakes--polish feedback is
needed. When all syntactic mistakes were corrected, the tutor would return praise and restate why the student had written the
correct paper. Focusing on the educational components of completing a task is not enough. As any teacher knows, student will
often try and cheat their way through a task. Students may do no work and hope the teacher does not notice or the student may
only do minor changes in hope of a hint or part of the answer. To accommodate these administrative functions, there are three
additional administrative categories of feedback. The administrative and the educational categories of feedback account for every
piece of feedback a designer can write and a student can receive. To provide a better understanding of how the feedback works
together, an example is provided below.

Figure 8 is a GBS display in accordance with a preferred embodiment. The upper right area of the screen shows the
account fist. There are four types of accounts: Assets, Liabilities & Equity, Revenues, and Expenses. The user clicks on one of
the tabs to show the accounts of the corresponding type. The student journalizes a transaction by dragging an account from the
account list onto the journal entry Debits or Credits. The student then enters the dollar amounts to debit or credit each account in
the entry. In the interface, as in real life, the student can have multi-legged journal entries (i.e., debiting or crediting multiple
accounts).A Toolbar 1200 and the first transaction of this Task 1210 appear prominently on the display. The student can move
forward and back through the stack of transactions. For each transaction, the student must identify which accounts to debit and
which to credit. When the student is done, he clicks the Team button. Figure 9 is a feedback display in accordance with a
preferred embodiment. The student may attempt to outsmart the system by submitting without doing anything. The ICAT system
identifies that the student has not done a substantial amount of work and returns the administrative feedback depicted in Figure
9. The feedback points out that nothing has been done, but it also states that if the student does some work, the tutor will focus
on the first few journal entries. Figure 10 illustrates a journal entry simulation in accordance with a preferred embodiment. Figure
11 illustrates a simulated Bell Phone Bill journal entry in accordance with a preferred embodiment. The journal entry is
accomplished by debiting Utilities Expenses and Crediting Cash for $700 each. Figure 12 illustrates a feedback display in
accordance with a preferred embodiment. After attempting to journalize the first three transactions, the student submits his work
and receives the feedback depicted in Figure 12. The feedback starts by focusing the student on the area of work being
evaluated. The ICAT states that it is only looking at the first three journal entries. The feedback states that the first two entries are
completely wrong, but the third is close. If the student had made large mistakes on each of the first three transactions, then the
ICAT may have given redirect feedback, thinking a global error occurred. The third bullet point also highlights how specific the
feedback can become, identifying near misses.

Design Scenario-This Scenario illustrates how the tools are used to support conceptual and detailed design of a
BusSim application. Figure 13 illustrates the steps of the first scenario in accordance with a preferred embodiment. The designer
has gathered requirements and determined that to support the client's learning objectives, a task is required that teaches
journalization skills. The designer begins the design first by learning about journalization herself, and then by using the
Knowledge Workbench to sketch a hierarchy of the concepts she want the student to learn. At the most general level, she
creates a root concept of ‘Journalization'. She refines this by defining sub-concepts of ‘Cash related transactions’, ‘Expense
related Transactions', and 'Expense on account transactions'. These are each further refined to whatever level of depth is
required to support the quality of the learning and the fidelity of the simulation. The designer then designs the journalization
interface. Since a great way to learn is by doing, she decides that the student should be asked to Journalize a set of transactions.
She comes up with a set of twenty-two documents that typify those a finance professional might see on the job. They include the
gamut of Asset, Expense, Liability and Equity, and Revenue transactions. Also included are some documents that are not

-16-

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 00/38149 PCT/US99/02737 _
supposed to be entered in the journal. These ‘Distracters’ are included because sometimes errant documents occur in real life.
The designer then uses the Domain Mode! features in the Knowledge Workbench to paint a Journal. An entity is created in the
Domain Model to represent each transaction and each source document. Based on the twenty-two documents that the designer
chose, she can anticipate errors that the student might make. For these errors, she creates topics of feedback and populates
them with text. She also creates topics of feedback to tell the student when they have succeeded. Feedback Topics are created
to handie a variety of situations that the student may cause.

The next step is to create profiles that the will trigger the topics in the concept tree (this task is not computational in
nature, so the Transformation Component does not need to be configured) . A profile resolves to true when its conditions are met
by the student's work. Each profile that resolves to true triggers a topic. To do some prefiminary testing on the design, the
designer invokes the Student Simufator Test Workbench. The designer can manipulate the Domain Model as if she were the
student working in the interface. She drags accounts around to different fransactions, indicating how she would like them
journalized. She also enters the dollar amounts that she would fike to debit or credit each account. She submits her actions to the
component engines to see the feedback the student would get if he had performed the activity in the same way. All of this occurs
in the test bench without an application interface. The last step in this phase is low-fi user testing. A test student interacts with a
PowerPoint slide or bitmap of the proposed application interface for the Journalization Task. A facilitator mimics his actions in the
test bench and tells him what the feedback would be. This simplifies low-fi user testing and helps the designer to identify usability
issues earlier in the design when they are much cheaper to resolve.

Figures 14 and 15 illustrate the steps associated with a build scenario in accordance with a preferred embodiment.
The instructional designer completes the initial interaction and interface designs as seen in the previous Scenario. After low-fi
user testing, the Build Phase begins. Graphic artists use the designs to create the bitmaps that will make up the interface. These
include bitmaps for the buttons, tabs, and transactions, as well as all the other screen widgets. The developer builds the interface
using the bitmaps and adds the functionality that notifies the Domain Mode! of student actions. Standard event-driven
programming techniques are used to create code that will react to events in the interface during application execution and pass
the appropriate information to the Domain Model. The developer does not need to have any deep knowledge about the content
because she does not have to build any logic to support analysis of the student actions or feedback. The developer also codes
the logic to rebuild the interface based on changes to the domain model. A few passes through these steps will typically be
required to get the application communicating correctly with the components. The debug utilities and Regression Test
Workbench streamline the process. After the application interface and component communication are functioning as designed,
the task is migrated to Usability testing.

The Test Scenario demonstrates the cycle that the team goes through to test the application. It specifically addresses
usability testing, but it is easy to see how the tools also benefit functional and cognition testing. Again, we will use the
Journalization Task as an example. Figure 16 illustrates a test scenario in accordance with a preferred embodiment. The test
students work through the journalization activity. One of the students has made it over half way through the task and has just
attempted to journalize the sixteenth transaction. The student submits to the Financial Coach, but the feedback comes back
blank. The student notifies the facilitator who right-clicks on the Financial Coach’s face in the feedback window. A dialog pops up
that shows this is the twenty-seventh submission and shows some other details about the submission. The facilitator (or even the
student in recent efforts) enters a text description of the problem, and fills out some other fields to indicate the nature and
severity of the problem. All the student's work and the feedback they got for the twenty-seven submissions is posted to the User
Acceptance Test (UAT) archive database. The instructional designer can review all the student histories in the UAT database

A17-

SUBSTITUTE SHEET (RULE 26)

20

25

30

35

WO 00/38149 PCT/US99/02737 _
and retrieve the session where the student in question attempted the Journalization Task. The designer then recreates the
problem by replaying the student's twenty-seven submissions through the component engines using the Regression Test
Workbench. The designer can then browse through each submission that the student made and view the work that the student
did on the submission, the feedback the student got, and the facilitator comments, if any. Now the designer can use the
debugging tools to determine the source of the problem. In a few minutes, she is able to determine that additional profites and
topics are needed to address the specific combinations of mistakes the student made. She uses the Knowledge Workbench to
design the new profiles and topics. She also adds a placeholder and a script for a video war story that supports the learning
under these circumstances. The designer saves the new design of the task and reruns the Regression Test Workbench on the
student's session with the new task design. After she is satisfied that the new profiles, topics, and war stories are giving the
desired coverage, she ships the new task design file to user testing and it's rolled out to all of the users.

Execution Scenario: Student Administration - Figure 17 illustrates how the tool suite supports student
administration in accordance with a preferred embodiment. When a student first enters a course she performs a pre-test of his
financial skills and fills out an information sheet about his job role, level, etc. This information is reported to the Domain Model.
The Profiling Component analyzes the pre-test, information sheet, and any other data to determine the specific learning needs of
this student. A curriculum is dynamically configured from the Task Library for this student. The application configures its main
navigational interface (if the app has one) to indicate that this student needs to learn Journalization, among other things. As the
student progresses through the course, his performance indicates that his proficiency is growing more rapidly in some areas than
in others. Based on this finding, his curriculum is altered to give him additional Tasks that will help him master the content he is
having trouble with. Also, Tasks may be removed where he has demonstrated proficiency. While the student is performing the
work in the Tasks, every action he takes, the feedback he gets, and any other indicators of performance are tracked in the
Student Tracking Database. Periodically, part or all of the tracked data are transmitted to a central location. The data can be
used to verify that the student completed all of the work, and it can be further analyzed to measure his degree of mastery of the
content.

Execution Scenario: Student Interaction - Figure 18 illustrates a suite to support a student interaction in accordance
with a preferred embodiment. In this task the student is trying to journalize invoices. He sees a chart of accounts, an invoice, and
the journal entry for each invoice. He journalizes a transaction by dragging and dropping an account from the chart of accounts
onto the ‘Debits’ or the ‘Credits’ line of the journal entry and entering the dollar amount of the debit or credit. He does this for
each transaction. As the student interacts with the interface, all actions are reported to and recorded in the Domain Model. The
Domain Model has a meta-model describing a transaction, its data, and what information a journal entry contains. The actions of
the student populates the entities in the domain model with the appropriate information. When the student is ready, he submits
the work to a simulated team member for review. This submission triggers the Analysis-Interpretation cycle. The Transformation
Component is invoked and performs additional calculations on the data in the Domain Model, perhaps determining that Debits
and Credits are unbalanced for a given journal entry. The Profiling Component can then perform rule-based pattern matching on
the Domain Model, examining both the student actions and results of any Transformation Component analysis. Some of the
profiles fire as they identify the mistakes and correct answers the student has given. Any profiles that fire activate topics in the
Remediation Component. After the Profiling Component completes, the Remediation Component is invoked. The remediation
algorithm searches the active topics in the tree of concepts to determine the best set of topics to deliver. This set may contain
text, video, audio, URLs, even actions that manipulate the Domain Model. It is then assembled into prose-like paragraphs of text
and media and presented to the student. The text feedback helps the student localize his journalization errors and understand

18-

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 00/38149 PCT/US99/02737 _
why they are wrong and what is needed to correct the mistakes. The student is presented with the opportunity to view a video
war story about the tax and legal consequences that arise from incorrect journalization. He is also presented with links to the
reference materials that describe the fundamentals of journalization. The Analysis-Interpretation cycle ends when any coach
items that result in updates to the Domain Model have been posted and the interface is redrawn to represent the new domain
data. In this case, the designer chose to highlight with a red check the transactions that the student journalized incorrectly.

The Functional Definition of the ICAT

This section describes the feedback processes in accordance with a preferred embodiment. For each process, there is
a definition of the process and a high-level description of the knowledge model. This definition is intended to give the reader a
baseline understanding of some of the key components/objects in the model, so that he can proceed with the remaining sections
of this paper. Refer to the Detailed Components of the ICAT for a more detailed description of each of the components within
each knowledge model. To gain a general understanding of the ICAT, read only the general descriptions. To understand the
ICAT deeply, read this section and the detailed component section regarding knowledge models and algorithms. These
processes and algorithms embody the feedback mode! in the ICAT. There are six main processes in the ICAT, described below
and in more detail on the following pages.

Figure 19 illustrates the remediation process in accordance with a preferred embodiment. Remediation starts as
students interact with the application’s interface (process #1). As the student tries to complete the business deliverable, the
application sends messages to the ICAT about each action taken (process #2). When the student is done and submits work for
review, the ICAT compares how the student completed the activity with how the designer stated the activity should be compieted
(this is called domain knowledge). From this comparison, the ICAT get a count of how many items are right, wrong or irrelevant
(process #3). With the count complete, the ICAT tries to fire al rules (process #4). Any rules which fire activate a coach topic
(process #5). The feedback algorithm selects pieces of feedback to show and composes them into coherent paragraphs of text
(process #6). Finally, as part of creating feedback text paragraphs, the ICAT replaces alf variables in the feedback with specifics
from the student's work. This gives the feedback even more specificity, so that it is truly customized to each student's actions.

Knowledge Model - Interface Obijects in any GBS Task, the student must manipulate controls on the application
interface to complete the required deliverables. Figure 20 illustrates the objects for the journalization task in accordance with a
preferred embodiment. The following abstract objects are used to model all the various types of interface interactions. A
Sourceltem is an object the student uses to complete a task. In the journalization example, the student makes a debit and credit
for each transaction. The student has a finite set of accounts with which to respond for each transaction. Each account that
appears in the interface has a corresponding Sourceltem object. In other words, the items the student can manipulate to
complete the task (account names) are called Sourceitems. A Source is an object that groups a set of Sourceltem objects
together. Source objects have a One-To-Many relationship with Sourceltem objects. In the journalization example, there are four
types of accounts: Assets, Liabilities and Equity, Revenues, and Expenses. Each Account is of one and only one of these types
and thus appears only under the appropriate tab. For each of the Account type tabs, there is a corresponding Source Object. A
Target is a fixed place where students place Sourceltems to complete a task. In the journalization example, the student places
accounts on two possible targets: debits and credits. The top two lines of the journal entry control are Debit targets and the
bottom two fines are Credit targets. These two targets are specific to the twelfth transaction, A TargetPage is an object that
groups a set of Target objects together. TargetPage objects have a One-To-Many relationship with Target objects (just like the

Source to Sourceltem relationship). In the journalization example, there is one journal entry for each of the twenty-two

-19-

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 00/38149 PCT/US99/02737

transactions. For each journal entry there is a corresponding TargetPage object that contains the Debits Target and Credits

Target for that journal entry.

As the student manipulates the application interface, each action is reported to the ICAT. In order to tell the ICAT what
actions were taken, the application calls to a database and asks for a specific interface control's ID. When the application has the
ID of the target control and the Sourceltem control, the application notifies the ICAT about the Target to Sourceltem mapping. In
other words, every time a student manipulates a source item and associates it with a target (e.g., dragging an account name to a
debit line in the journal), the user action is recorded as a mapping of the source item to the target. This mapping is called a
UserSourceltemTarget. Figure 21 illustrates the mapping of a source item to a target item in accordance with a preferred
embodiment. When the student is ready, he submits his work to one of the simulated team members by clicking on the team
member's icon. When the ICAT receives the student's work, it calculates how much of the work is correct by concept. Concepts
in our journalization activity will include Debits, Credits, Asset Accounts, etc. For each of these concepts, the ICAT will review all
student actions and determine how many of the student actions were correct. in order for the ICAT to understand which targets
on the interface are associated with each concept, the targets are bundled into target groups and prioritized in a hierarchy. Once
all possible coach topics are activated, a feedback selection analyzes the active pieces of remediation within the concept
hierarchy and selects the most appropriate for delivery. The selected pieces of feedback are then assembled into a cohesive
paragraph of feedback and delivered to the student. Figure 23 illustrates a feedback selection in accordance with a preferred
embodiment. After the ICAT has activated CoachTopics via Rule firings, the Feedback Selection Algorithm is used to determine
the most appropriate set of Coachltems (specific pieces of feedback text associated with a CoachTopic) to deliver. The Algorithm
accomplishes this by analyzing the concept hierarchy (TargetGroup tree), the active CoachTopics, and the usage history of the
Coachltems. Figure 24 is a flowchart of the feedback logic in accordance with a preferred embodiment. There are five main
areas to the feedback logic which execute sequentially as listed below. First, the algorithm looks through the target groups and
looks for the top-most target group with an active coach topic in it. Second, the algorithm then looks to see if that top-maost coach
item is praise feedback. If it is praise feedback, then the student has correctly completed the business deliverable and the ICAT
will stop and return that coach item. Third, if the feedback is not Praise, then the ICAT will look to see if it is redirect, polish,
mastermind or incomplete-stop. If it is any of these, then the algorithm will stop and return that feedback to the user. Fourth, if the
feedback is focus, then the algorithm looks to the children target groups and groups any active feedback in these target groups
with the focus group header. Fifth, once the feedback has been gathered, then the substitution language is run which repiaces
substitution variables with the proper names. Once the ICAT has chosen the pieces of feedback to return, the feedback pieces
are assembled into a paragraph. With the paragraph assembled, the ICAT goes through and replaces all variables. There are
specific variables for Sourceltems and Targets. Variables give feedback specificity. The feedback can point out which wrong
Sourceltems were placed on which Targets. It also provides hints by providing one or two Sourceltems which are mapped to the
Target.

The Steps Involved in Creating Feedback in Accordance With A Preferred Embodiment

The goal of feedback is o help a student complete a business deliverable. The tutor needs to identify which concepts
the student understands and which he does not. The tutor needs to tell the student about his problems and help him understand
the concepts. There are seven major steps involved in developing feedback for an application. First, creating a strategy — The
designer defines what the student should know. Second, limit errors through interface — The designer determines if the interface
will identify some low level mistakes. Third, creating a target group hierarchy — The designer represents that knowledge in the
tutor. Fourth, sequencing the target group hierarchy — The designer tells the tutor which concepts should be diagnosed first.

-20-

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 00/38149 PCT/US99/02737 _
Fifth, writing feedback — The designer writes feedback which tells the student how he did and what to do next. Sixth, writing
Levels of Feedback — The designer writes different levels of feedback in case the student makes the same mistake more than
once. Seventh, writing rules — The designer defines patterns which fire the feedback.

A feedback strategy is a loose set of questions which guide the designer as he creates rules and feedback. The
strategy describes what the student should learn, how he will try and create the business deliverable and how an expert
completes the deliverable. The goal of the application should be for the student to transition from the novice mode to the expert
model. What should the student know after using the application? The first task a designer needs to complete is to define
exactly what knowledge a student must learn by the end of the interaction. Should the student know specific pieces of
knowledge, such as formulas? Or, should the student understand high level strategies and detailed business processes? This
knowledge is the foundation of the feedback strategy. The tutor needs to identify if the student has used the knowledge correctly,
or if there were mistakes. An example is the journal task. For this activity, students need to know the purpose of the journalizing
activity, the specific accounts to debit/credit, and how much to debit/credit. A student's debit/credit is not correct or incorrect in
isolation, but correct and incorrect in connection with the dollars debited/credited. Because there are two different types of
knowledge--accounts to debit/credit and amounts to debit/credit--the feedback needs to identify and provide appropriate
feedback for both types of mistakes.

How will a novice try and complete the task? Designers should start by defining how they believe a novice will try and
complete the task. Which areas are hard and which are easy for the student. This novice view is the mental mode! a student will
bring to the task and the feedback should help the student move to an expert view. Designers should pay special attention to
characteristic mistakes they believe the student will make. Designers will want to create specific feedback for these mistakes. An
example is mixing up expense accounts in the journal activity. Because students may mix up some of these accounts, the
designer may need to write special feedback to help clear up any confusion.

How does an expert complete the task? This is the expert model of completing the task. The feedback should help
students transition to this understanding of the domain. When creating feedback, a designer should incorporate key features of
the expert model into the praise feedback he writes. When a student completes portion of the task, positive reinforcement should
be provided which confirms to the student that he is doing the task correctly and can use the same process to complete the other
tasks. These four questions are not an outline for creating feedback, but they define what the feedback and the whole
application needs to accomplish. The designer should make sure that the feedback evaluates all of the knowledge a student
should learn. In addition, the feedback should be able to remediate any characteristic mistakes the designer feels the student wil
make. Finally, the designer should group feedback so that it returns feedback as if it were an expert. With these components
identified, a designer is ready to start creating target group hierarchies. Because there are positive and negative repercussions,
designers need to select the when to remediate through the interface carefully. The criteria for making the decision is if the
mistake is a low level data entry mistake or a high level intellectual mistake. If the mistake is a low level mistake, such as miss-
typing data, it may be appropriate to remediate via the interface. If the designer decides to have the interface point out the
mistakes, it should look as if the system generated the message. System generated messages are mechanical checks, requiring
no complex reasoning. In contrast, complex reasoning, such as why a student chose a certain type of account to credit or debit
should be remediated through the ICAT.

System messages - It is very important that the student know what type of remediation he is going to get from each
source of information. Interface based remediation should look and feel like system messages. They should use a different
interface from the ICAT remediation and should have a different feel. In the journalization task described throughout this paper,

-21-

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

W-O 00/38149 PCT/US99/02737 _
there is a system message which states “Credits do not equal debits.” This message is delivered through a different interface
and the blunt short sentence is unlike all other remediation. The motivation for this is that low level data entry mistakes do not
show misunderstanding but instead sloppy work. Sloppy-work mistakes do not require a great deal of reasoning about why they
occurred instead, they simply need to be identified. High-level reasoning mistakes, however, do require a great deal of reasoning
about why they occurred, and the ICAT provides tools, such as target groups, to help with complex reasoning. Target group
hierarchies allow designers to group mistakes and concepts together and ensure that they are remediated at the most
appropriate time (i.e., Hard concepts will be remediated before easy concepts). Timing and other types of human-like
remediation require the ICAT; other low-level mistakes which do not require much reasoning include: Incomplete- If the task
requires a number of inputs, the interface can check that they have all been entered before allowing the student to proceed. By
catching empty fields early in the process, the student may be saved the frustration of having to look through each entry to try
and find the empty one. Empty- A simple check for the system is to look and see if anything has been selected or entered. If
nothing has been selected, it may be appropriate for the system to generate a message stating “You must complete X before
proceeding”. Numbers not matching- Another quick check is matching numbers. As in the journalization activity, is often useful
to put a quick interface check in place to make sure numbers which must match do. Small data entry mistakes are often better
remediated at the interface level than at the tutor or coach level (when they are not critical to the learning objectives of the
course). There are two main issues which must be remembered when using the interface to remediate errors. First, make sure
the interface is remediating low level data entry errors. Second, make sure the feedback looks and feels different from the ICAT
feedback. The interface feedback should look and fee! like it is generated from the system while the ICAT feedback must look as
if it were generated from an intefligent coach who is watching over the student as he works.

Creating the Target Group Hierarchy- Target groups are sets of targets which are evaluated as one. Returning to the
severity principle of the feedback theory, it is clear that the tutor needs to identify how much of the activity the student does not
understand. Is it a global problem and the student does not understand anything about the activity? Or, is it a focal problem and
the student simply is confused over one concept? Using the feedback algorithm described earlier, the tutor will return the highest
target group in which there is feedback. This algorithm requires that the designer start with large target groups and make sub-
groups which are children of the larger groups. The ICAT allows students to group targets in more than one category. Therefore
a debit target for transaction thirteen can be in a target group for transaction thirteen entries as well as a target group about
debits and a target group which includes all source documents. Target should be grouped with four key ideas in mind. Target
groups are grouped according to: Concepts taught; Interface constraints; Avoidance of information overioad and Positive
reinforcement.

The most important issue when creating target groups is to create them along the concepts students need to know to
achieve the goal. Grouping targets into groups which are analogous to the concepts a student needs to know, aflows the tutor to
review the concepts and see which concepts confuse the student. As a first step, a designer should identify in an unstructured
manner all of the concepts in the domain. This first pass will be a large list which includes concepts at a variety of granularities,
from small specific concepts to broad general concepts. These concepts are most likely directly related to the learning objectives
of the course. With all of the concepts defined, designers need to identify all of the targets which are in each target group. Some
targets will be in more than one target group. When a target is in more than one target group, it means that there is some type of
relationship such as a child relationship or a part to whole relationship. The point is not to create a structured list of concepts but

a comprehensive list. Structuring them into a hierarchy will be the second step of the process.

-22-

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 00/38149 PCT/US99/02737 _

* Notes: Loads from Database or Document based on values

* of m_StorageTypeTask and m_StorageTypeStudent
Wi
extern "C"

{
long __export WINAPI TuResumeStudent(long StudentID, long TaskID, int fromSubmissionSeqID); // Resumes a

Student's work for the Task at the specified Submission

}

extern "C"

{
long __export WINAPI TuLoadArchivedSubmissions(long StudentID, long TaskID, int fromSubmissionSeqlD, int

toSubmissionSeqID); // Loads Archived Submissions For a Student's work in a Task

}

extern "C"

{
long __export WINAPI TuUseArchivedSubmissions(int n); // Replays n Archived submissions for debugging

}

extern "C"

{
long __export WINAP| TuSaveCurrentStudent(); // Saves Current Student's work to DB

}

extern "C"

{

long __export WINAP! KillEngine(long ITaskID); // Delete all Dynamic objects before shutdown
* Function Return
* Variables: TUT_ERR_OK

*

*Notes:

FRET R I RAK AR R KT Ik de ek R Rk de e e de de de ek ek
*

" L
extern "C

{
long __export WINAPI TuSetTaskDocPathName(LPCSTR fam);

/*
-23-

SUBSTITUTE SHEET (RULE 26)

10

20

25

30

35

WO 00/38149

* Name: TuSetFeedbackFileName
* Purpose: To set path and name of file to use for holding feedback
* Input

* Parameters: LPCSTR fam
* Path and name of file to use for holding feedback
* Qutput

* Parameters: none

*

* Function Return
* Variables: TUT_ERR_OK

*
extern “C"

{
long __export WINAPI TuSetFeedbackFileName(LPCSTR fnm);

/*

*Name: TuSetFeedbackPrevFileName

* Purpose: To set path and name of file to use for holding previous feedback
* Input

* Parameters: LPCSTR fnm
* Path and name of file to use for holding previous feedback
* Output
* Parameters: none
* Function Return
* Variables: TUT_ERR_OK
* Notes:
*
extern "C"
{

long _export WINAPI TuSetFeedbackPrevFileName(LPCSTR fam);
I

-24-

SUBSTITUTE SHEET (RULE 26)

PCT/US99/02737

10

15

20

25

30

35

WO 00/38149

*Name:

* Purpose:

* Input

* Parameters:

* Output

* Parameters:

* Function Return
* Variables:

* Notes:

TuSetLogFileName

To set path and name of file to use for full logging

LPCSTR fam

Path and name of file to use for full logging

none

TUT_ERR_OK

Fededede ok dedede ek e e de e de S ke e ke ek e e ek e ek

*f
extern "C"

{

long __export WINAPI TuSetLogFileName(LPCSTR fam);

* Name:

* Purpose:

* Input

* Parameters:

* Output

* Parameters:

* Function Return

* Variables:

TuSetlogLoadFileName

To set path and name of file to use for load logging

LPCSTR fam

Path and name of file to use for load logging

none

TUT_ERR_OK

*
extern "C"

{

long __export WINAPI TuSetLogLoadFileName(LPCSTR fam);

/*

-25.

SUBSTITUTE SHEET (RULE 26)

PCT/US99/02737

10

15

20

25

30

35

WO 00/38149

edevrde s s v o dede e o ek

*Name: TuSetLogStudentFileName
* Purpose: To set path and name of file to use for student logging
* Input

* Parameters: LPCSTR fnm
* Path and name of file to use for student logging
* Qutput

* Parameters: none

* Function Return

* Variables: TUT_ERR_OK

*

* Notes:

TR RTRFARHARARAIRTRETRRT R TR IR RR R AR Ak x
¥

" "
extern "C

{
long __export WINAPI TuSetLogStudentFileName(LPCSTR fam);

/t

TR de stk Rk deded dede e ks d ek ke e d s e sk e e ek

* Name: TuSetLogSubmissionFileName

* Purpose: To set path and name of file to use for submission logging
* Input

* Parameters: LPCSTR fnm
* Path and name of file to use for submission logging
* Qutput

* Parameters: none

* Function Return

* Variables: TUT_ERR_OK

*

* Notes:

TR Rk ek itk kAR XA kR A TRk kbR AR kR R IR K
¥

" n
extern "C

{
long __export WINAPI TuSetlogSubmissionFileName(LPCSTR fnm);

-26-

SUBSTITUTE SHEET (RULE 26)

PCT/US99/02737

10

15

20

25

30

35

WO 00/38149

}

/*

sk dedo e de dede ket dedk dedededede ok ek ok d e e dede ke ek

*Name; TuSetLogErrFileName

* Purpose: To set path and name of file to use for error logging
* Input

* Parameters: LPCSTR fam
* Path and name of file to use for error logging
* Output
* Parameters: none
* Function Return
* Variables: TUT_ERR_OK
* Notes:
i
extern "C"
{
long __export WINAPI TuSetLogErrFileName(LPCSTR fam);

}

I

* Name: TuSetTrace

* Purpose: To turn Trace on and off

* Input

* Parameters: int TraceStatus

* TUT_TRACE_ON :Turn Trace On
* TUT_TRACE_OFF :Tumn Trace Off
* Output

* Parameters: none

*

* Function Return

* Variables: Previous Trace Status Value

* TUT_TRACE_ON

* TUT_TRACE_OFF

* TUT_ERR_INVALID_TRACE_STATUS

27-

SUBSTITUTE SHEET (RULE 26)

PCT/US99/02737

WO 00/38149 PCT/US99/02737 _

*Notes:
i
extern "C"
{
long __export WINAPI TuSetTrace(int TraceStatus);
}
e
*Name: TuSetTrack
* Purpose: To turn Tracking on and off. While tracking is on
* all work the user does and all feedback the user receives
* is kept. While Tracking is off only the most recent work is kept.
* input
* Parameters: int TrackStatus
* TUT_TRACK_ON :Turn Tracking On
¥ TUT_TRACK_OFF :Turn Tracking Off
* Output
* Parameters: none

* Function Return

* Variables: Previous Trace Status Value
* TUT_TRACK_ON
* TUT_TRACK_OFF
* TUT_ERR_INVALID_TRACK_STATUS
* Notes:
¥
extern "C"
{
long __export WINAPI TuSetTrack(int TrackStatus);
}

Simulation Engine

The ideais for the designer to model the task that he wants a student to accomplish using an Excel spreadsheet. Then,
have an algorithm or engine that reads all the significant cells of the spreadsheet and notifies the Inteiligent Coaching Agent with
the appropriate information (SourceltemID, TargetID and Attribute). This way, the spreadsheet acts as a central repository for
student data, contains most of the calculations required for the task and in conjunction with the engine handies all the
communication with the ICA. The task is self contained in the spreadsheet, therefore the designers no longer need a graphical
user interface to functionally test their designs (smart spreadsheet. Once the model and feedback for it are completely tested by

-28-

SUBSTITUTE SHEET (RULE 26)

10

15

V\;O 00/38149 PCT/US99/02737 .
designers, developers can incorporate the spreadsheet in a graphical user interface, e.g., Visual Basic as a development
platform. The simulation spreadsheet is usually invisible and populated using functions provided by the engine. it is very
important that all modifications that the ICA needs to know about go through the engine because only the engine knows how to
call the ICA. This significantly reduced the skill level required from programmers, and greatly reduced the time required to
program each task. In addition, the end-product was less prone to bugs, because the tutor management was centralized. If there
was a tutor problem, we only had to check on section of code. Finally, since the simulation engine loaded the data from a
spreadsheet, the chance of data inconsistency between the tutor and the application was nil.

Figure 25 is a block diagram setting forth the architecture of a simulation model in accordance with a preferred
embodiment. The Simulation Object Model consists of a spreadsheet model, a spreadsheet control object, a simulation engine
object, a simulation database, input objects, output objects, list objects and path objects. The first object in our discussion is the
Spreadsheet object. The Spreadsheet is the support for all simutation models. A control object that is readily integrated with the
Visual Basic development plat. The control supports printing and is compatible with Microsoft Excel spreadsheets. With that in
mind, designers can use the power of Excel formulas to build the simulation. The different cells contained in the spreadsheet
model can be configured as Inputs, OQutputs or Lists and belong to a simulation Path. Al cells in the spreadsheet that need to be
manually entered by the designer or the student via the GBS application are represented by input objects. Every input has the
following interface:

Field Name Data Description
Type
InputiD long Primary Key for the table
TaskID fong TaskiD of the task associated with the input
PathiD long PathID of the path associated with the input
InputName string*5 | Name of the input
0
InputDesc string*2 | Description of the input
55
ReferenceNam | string*5 | Name of the spreadsheet cell associated with the input
e 0
TutorAware boolean | Whether the ICA should be nofified of any changes to the input
SourceltemID long SourceltemID if input is a distinct input; 0 if input is a drag drop
input
TargetiD long Target!D of the input
Row long Spreadsheet row number of the input - speed optimization
Column long Spreadsheet column number of the input > speed optimization
SheetName string*5 | Sheet name were the input is located = speed optimization
0

This information is stored for every input in the Input table of the simulation database (ICASim.mdb). Refer to the

example below. When designers construct their simulation model, they must be aware of the fact that there are 2 types of

-29-

SUBSTITUTE SHEET (RULE 26)

10

15

20

WO 00/38149 PCT/US99/02737 _
Inputs: Distinct Input & Drag & Drop Input. The Distinct Input consists of a single spreadsheet cell that can be filled by the
designer at design time or by the GBS application at run time via the simulation engine object's methods. The purpose of the cell)
is to provide an entry point to the simulation model. This entry point can be for example an answer to a question or a parameter
to an equation. If the cell is TutorAware (all inputs are usually TutorAware), the ICA will be notified of any changes to the cell.
When the ICA is notified of a change two messages are in fact sent to the ICA: An ICANotifyDestroy message with the input
information i.e., SourceitemID, TargetID and null as Attribute. This message is to advise the ICA to remove this information from
its memory. An ICANotifyCreate message with the input information i.e., SourceltemiD, TargetID, Attribute (cell numeric value) .
This message is to advise the ICA to add this information to its memory. A Distinct Input never requires that a user answer a
mathematics question.

These are the steps required to configure that simulation: Define a name for cell C2 in Excel. Here we have defined
“Distinct_Input". In the ICA, define a task that will be assigned to the simulation. Ex: a TaskID of 123 is generated by the ICA. In
the ICA, define a Target for the input. Ex: a TargetiD of 4001 is generated by the ICA. In the ICA, define a Sourceltem for the
input. Ex: a SourceltemlID of 1201 is generated by the ICA. Associate the input to a path (refer to Path object discussion). Add

the information in the Input table of the simulation engine database. A record in an Input table is presented below.

InputlD: 12345
TaskiD: 123
PathiD: 1234
InputName: Question 1 input
InputDesc: Distinct input for Question 1
ReferenceNam Distinct_Input

e
TutorAware: True
SourceltemID 1201
TargetID: 4001
Row: 2
Column: 3
SheetName: Sheet!

The Row, Column and SheetName are filled in once the user clicks “Run Inputs/Outputs”. The simulation engine
decodes the defined name (Reference Name) that the designer entered, and populates the table accordingly. This is an
important step. We had several occasions when a designer would change the layout of a spreadsheet, i.e., move a defined name
location, then forget to perform this step. As such, bizarre data was being passed to the tutor; whatever data happened to reside
in the old row and column. Once the configuration is completed, the designer can now utilize the ICA Utilities to test the
simulation.

The drag & drop input consist of two consecutive spreadsheet cells. Both of them have to be filled by the designer at
design time or by the GBS application at run time via the simulation engine object's methods. This type of input is used usually

when the user must choose one answer among a selection of possible answers. Drag & drop inputs are always TutorAware. The

-30-

SUBSTITUTE SHEET (RULE 26)

10

15

20

WO 00/38149 PCT/US99/02737 _
left most cell contains the SourceltemID of the answer picked by the user (every possible answer needs a SourceltemiD) and
the rightmost cell can contain a numeric value associated to that answer. You need to define a name or ReferenceName in the)
spreadsheet for the rightmost cell. ICA will be notified of any changes to either one of the cells. When the ICA is notified of a
change two messages are in fact sent to the ICA: An ICANotifyDestroy message with the input information i.e., SourceltemID
before the change occurred, TargetID of the input and the Attribute value before the change occurred. An ICANotifyCreate
message with the input information i.e., SourceltemID after the change occurred, TargetID of the input and the Attribute value
after the change occurred.

These are the steps required to configure that section of the simulation: Define a name for cell C11 in Excel. Here we
have defined “DragDrop_Input"; Let's use the same TaskID as before since Question 2 is part of the same simulation as
Question 1. Ex: TaskiD is 123; In the ICA, define a Target for the input. Ex: a TargetID of 4002 is generated by the ICA; In the
ICA, define a Sourceltem for every possible answer to the question. Ex: SourceltemIDs 1202 to 1205 are generated by the ICA;
Associate the input to a path (refer to Path object discussion); and Add the information in the Input table of the simulation engine

database. A record in the Input table in accordance with a preferred embodiment is presented below.

InputiD: 12346

TaskID: 123

PathID: 1234
InputName: Question 2 input
InputDesc: Drag & Drop input for Question 2
ReferenceNam DragDrop_Input
TutorAware: True
SourceltemiD 0 b
TargetiD: 4002

Row: 11

Column: 3

SheetName: Sheet1

The list object consists of one cell identifying the list (cell #1) and a series of placeholder rows resembling drag & drop
inputs (cells #1.1 - 1.n to cells #n.1- n.n). The list is used usually when the user must choose muitiple elements among a
selection of possible answers. Cell #1 must have a uniquely defined name also called the list name. Cells #1.1 to #n.1 can
contain the SourceltemlID of one possible answer picked by the user (every possible answer needs a SourceltemID). The content
of these cells must follow this format : ~ListName~Sourceltem!D. Cells #1.2 to #n.2 will hold the numeric value (attribute)
associated with the SourceltemID in the cell immediately to the left. Cells #1.3 - 1.n to #n.3 - n.n are optional placeholders for
data associated with the answer. KEY NOTE: When implementing a list object the designer must leave all the cells under #n.1 to

#n.n blank because this range will shift up every time an item is removed from the list.

31-

SUBSTITUTE SHEET (RULE 26)

10

V_VO 00/38149 PCT/US99/02737

Every list has the foilowing interface:

Field Name Data Description

Type
ListiD long Primary Key for the table
TaskID long TaskID of the task associated with the fist
PathiD fong PathID of the path associated with the list
ListName string*50 | Name of the list
ListDesc string*25 | Description of the list

5

ReferenceNam | string*50 | Name of the spreadsheet cell associated with the list

e
TutorAware boolean | Whether the ICA should be notified of any changes to the st
TargetiD long TargetiD of the output
TotalColumns long Total number of data columns
Row long Spreadsheet row number of the output = speed optimization
Column long Spreadsheet column number of the output - speed

optimization

SheetName string*50 | Sheet name were the input is located = speed optimization

Use of a list is demonstrated by continuing our math test. The math question in this example invites the user to select
multiple elements to construct the answer. These are the steps required to configure that section of the simulation. Figure 26
illustrates the steps for configuring a simulation in accordance with a preferred embodiment. Define a name for cell C23 in Excel.
Here we have defined “The_List". Let's use the same TaskID as before since Question 3 is part of the same simulation as
Question 1 and 2. Ex: TaskID is 123. In the ICA, define a Target for the list. Ex: a TargetID of 4006 is generated by the ICA. In
the ICA, define a Sourceltem for every item that could be placed in the list. Ex: the following Sourceltem!Ds 1209, 1210, 1211,
1212, 1213, 1214 are generated by the ICA. Associate the list to a path (refer to Path object discussion). Add the information in
the List table of the simulation engine database.

Arecord in the List table in accordance with a preferred embodiment is

presented in the table appearing below.

ListiD: 12346
TaskiD: 123
PathiD: 1234
ListName: Question 3 list
ListDesc: List for Question 3
ReferenceNam The_List
e
TutorAware: True

SUBSTITUTE SHEET (RULE 26)

10

WO 00/38149 PCT/US99/02737

TargetiD: 4006
TotalColumns: 1
Row: 23
Column: 3
SheetName: - Sheett

All cells in the spreadsheet that are result of calculations (do not require any external input) can be represented by

output objects. Every output has an interface as outlined in the tabie below.

Field Name Data Description
Type '

OutputlD fong Primary Key for the table

TaskiD fong TaskID of the task associated with the output

PathiD long PathID of the path associated with the output

OutputName string*50 Name of the output

OutputDesc string*25 Description of the output

5
ReferenceNam | string*50 Name of the spreadsheet cell associated with the output
e

TutorAware boolean Whether the ICA should be notified of any changes to the
output

SourceitemID long SourceltemiD of the output

Target/D long TargetID of the output

Row long Spreadsheet row number of the output - speed
optimization

Column long Spreadsheet column number of the output > speed
optimization

SheetName string*50 Sheet name were the input is located - speed
optimization

Al this information is stored for every output in the Output table of the simulation database (ICASim.mdb). When
designers construct their simulation model, they must be aware of the fact that there is only 1 type of Qutputs : the Distinct
Output. A Distinct Output consists of one and only one spreadshest cell that contains a formula or a result of calculations. The
existence of Output cells is the main reason to have a simulation model. If the cell is TutorAware, the ICA will be notified of any
changes to the celi when all outputs are processed otherwise the ICA will be unaware of any changes. When the ICA is notified
of a change two messages are in fact sent to the ICA: An ICANotifyDestroy message with the output information i.e.,
SourceltemiD, TargetlD and null as Atiribute. This message is to advise the ICA to remove this information from its memory. An
ICANotifyCreate message with the output information i.e., SourceltemID, TargetID, Attribute (cell numeric value) . This message

.33

SUBSTITUTE SHEET (RULE 26)

W—O 00/38149 PCT/US99/02737 _

is to advise the ICA to add this information to its memory. As opposed to Distinct Inputs and Drag & Drop Inputs which notify the

ICA on every change, Distinct Outputs are processed in batch just before asking the ICA for feedback. To notify the ICA of the

total dollar amount of the items in the list. We definitely need a Distinct Output for that. The output will contain a sum formula.

Define a name for cell C24 in Excel. Here we have defined “Distinct_Output”.Let's use the same TaskID as before since Question
5 3 is part of the same simulation as Question 1 and 2. Ex: TaskID is 123. In the ICA, define a Target for the output. Ex: a

TargetD of 4005 is generated by the ICA. In the ICA, define a Sourceltem for the output. Ex: a SourceltemiD of 1215 is

generated by the ICA. Associate the output to a path (refer to Path object discussion).

Add the information in the Output table of the simulation engine database.

A record in an Output table in accordance with a preferred embodiment is presented below.

OutputiD: 12347
TaskiD: 123
PathlD: 1234
OutputName; Question 3 output
OutputDesc: Distinct Output for Question 3
ReferenceNam Distinct_Qutput
e
TutorAware: True
SourceltemiD 1215
TargetID: 4005
Row: 24
Column: 6
SheetName: Sheet1
10
Paths are used to divide a simulation model into sub-Simulations meaning that you can group certain inputs, outputs
and lists together to form a coherent subset or path. Every path has the following interface:
Field Name Data Description
Type
PathID long Primary Key for the table
TaskID long TaskID of the task associated with the path
PathNo long Numeric value associated to a path
PathName string* Name of the path
50
PathDesc string* Description of the path
255
All this information is stored for every path in the path table of the simuiation database (ICASim.mdb).
The simulation engine is the interface between the model, the simulation database and the Intelligent Coaching Agent.
15 The simulation engine is of interest to the designer so that he can understand the mechanics of it all. But it is the developer of

.34-

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

Wb 00/38149 PCT/US99/02737
applications using the engine that should know the details of the interface (methods & properties) exposed by the engine and

the associated algorithms. Once the designer has constructed the simulation model (Excel Spreadsheet) and configured all the
inputs, outputs & lists, he is ready to test using the test bench included in the ICA Utilities (refer to ICA Utilities documentation).
The developer, in turn, needs to implement the calls to the simulation engine in the GBS application he’s building. The following

list identifies the files that need to be included in the Visual Basic project to use the simulation workbench :

wSimEng.cls Simulation Engine class

wSimEng.bas Simulation Engine module (this module was introduced only for speed

purposes because all the code should theoretically be encapsulated in the

class)
wConst.bas Intelligent Coaching Agent constant declaration
wDeclare.bas Intelligent Coaching Agent DLL interface
wica.cls Intelligent Coaching Agent class
wlca.bas Intelligent Coaching Agent module (this module was introduced only for

speed purposes because all the code should theoretically be encapsulated

in the class)

To have a working simulation, a developer places code in different strategic areas or stages of the application. There's
the Initial stage that occurs when the form containing the simulation front-end loads. This is when the simulation model is
initialized. There's the Modification stages that take place when the user makes changes to the front-end that impacts the
simulation model. This is when the ICA is notified of what's happening. There's the Feedback stage when the user requests
information on the work done so far. This is when the simulation nofifies the ICA of all output changes. Finally, there's the Final
stage when the simulation front-end unioads. This is when the simulation is saved to disk.

The different stages of creating a simulation, including the Visual Basic code involved, are presented below. Initial
stage; 1. Creating the ICA & the simulation engine object: Code; Set moSimEngine = New classSimEngine; Set moICA =
New classICA; Description: The first step in using the simulation engine is to create an instance of the class classSimEngine and
also an instance of the class ctassICA. Note that the engine and ICA should be module level object “mo” variables. 2. Loading
the simulation; Code: IRet = moSimEngine.OpenSimulation(App.Path & DIR_DATA & FILE_SIMULATION,
Me.bookSimulation); IRet = moSimEngine.LoadSimulation(miICATaskID, App.Path & DIR_DATABASE & DB_SIMULATION, 1);
Description: After the object creation, the OpenSimulation and LoadSimulation methods of the simulation engine object must be
called. The OpenSimulation method reads the specified Excel 5.0 spreadsheet file into a spreadsheet control. The
LoadSimulation method opens the simulation database and loads into memory a list of paths, a list of inputs, a list of outputs and
a list of lists for the specific task. Every method of the simulation engine will return 0 if it completes successfully otherwise an
appropriate error number is returned. 3. Initializing and loading the Intelligent Coaching Agent; Code:IRet =
molCA.Initialize(App.Path & "\" & App.EXEName & ".ini", App.Path & DIR_DATABASE, App.Path & DIR_ICADOC, App.Path &
"\"); IRet = moICA.LoadTask(mlICATaskID, ICAStudentStartNew); Description: The simulation engine only works in conjunction
with the ICA. The Initialize method of the ICA object reads the application .ini file and sets the Tutor32.dil appropriately. The
LoadTask method tells the ICA (Tutor32.dll) to load the .tut document associated to a specific task in memory. From that point
on, the ICA can receive notifications. Note: The .tut document contains all the element and feedback structure of a task. Ex:

SourcePages, Sourceltems, TargetPages, Targets, etc...4. Restoring the simulation; Code: <<Code to reset the simulation
-35-

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

Wb 00/38149 PCT/US99/02737
when starting over>>; <<Code to load the controls on the simulation front-end>>; IRet = moSimEngine.RunInputs(sPaths, True)
IRet = moSimEngine. RunOutputs(sPaths, True); IRet = moSimEngine.RunLists(sPaths, True); Call molCA.Submit(0); Call
molCA .SetDirtyFlag(0, False); Description: Restoring the simulation involves many things: clearing all the inputs and lists when
the user is starting over; loading the interface with data from the simulation model; invoking the RunInputs, RunOutputs and

RunLists methods of the simulation engine object in order to bring the ICA to it's original state; calling the Submit method of the
ICA object with zero as argument to triggér all the rules; calling the SetDirtyFlag of the ICA object with 0 and false as arguments
in order to reset the user's session. Running inputs involves going through the list of TutorAware inputs and notifying the ICA of
the SourceltemID, TargetiD and Attribute value of every input. Running lists invoives going through the list of TutorAware lists
and notifying the ICA of the SourceltemiD, TargetiD and Attribute value of every item in every list. The TargetID is unique for
every item in a list.

Running outputs involves going through the list of TutorAware outputs and notifying the ICA of the SourceltemID, TargetiD and
Attribute value of every output. Modification stage 1. Reading inputs & outputs; Code: Dim sDataArray(2) as string; Dim

vAttribute as variant, Dim ISourceltemID as long; Dim ITargetID as long; IRet = moSimEngine.ReadReference("Distinct_Input”,

vAttribute, ISourceltemID, [TargetiD, sDataArray)

Description: The ReadReference method of the simulation object will return the attribute value of the input or output
referenced by name and optionally retrieve the Sourceltem|D, Target!D and related data. In the current example, the attribute
value, the SourceltemID, the TargetID and 3 data cells will be retrieved for the input named Distinct_Input.

Description: The simulation engine object provides basic functionality to maniputate lists.

The ListAdd method appends an item(SourceltemiD, Attribute, Data array) to the list. Let's explain the algorithm. First,
we find the top of the list using the list name. Then, we seek the first blank cell underneath the top cell. Once the destination is
determine, the data is written to the appropriate celis and the ICA is notified of the change. The ListCount method returns the
number of items in the specified list. The algorithm works exactly like the ListAdd method but returns the total number of items
instead of inserting another element. The ListModify method replaces the specified item with the provided data. Let's explain the
algorithm. First, we find the top of the list using the list name. Second, we calculate the row offset based on the item number
specified. Then, the ICA is notified of the removal of the existing item. Finally, the data related to the new item is written to the
appropriate celis and the ICA is nofified of the change. The ListDelete method removes the specified item. The algorithm works
exactly like the ListModify method but no new data is added and the cells (width of the list set by ‘Total Columns') are deleted
with the ‘move cells up' parameter set to true. Keep this in mind, as designers often enter the wrong number of columns in the
Total Columns parameter. When they overestimate the Total Columns, ListDelete will modify portions of the neighboring fist,

which leads to erratic behavior when that list is displayed.

SYSTEM DYNAMICS IN ACCORDANCE WITH A PREFERRED EMBODIMENT

To use system dynamics models in the architecture, an engine had to be created that would translate student work into
parameters for these models. A complex system dynamics model to interact with an existing simulation architecture is discussed
below. The system dynamics model provides the following capabilities. Aliow designers to build and test their system dynamics
models and ICA feedback before the real interface is built.Reduce the programming complexity of the activities.Centralize the
interactions with the system dynamics models.System Dynamics Engine As with the simulation engine, the designer models the
task that hefshe wants a student to accomplish using a Microsoft Excel spreadsheet. Here, however, the designer also creates a
system dynamics mode! (described later). The system dynamics engine will read all of the significant cells within the simulation

-36-

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

Wb 00/38149 PCT/US99/02737
model (Excel) and pass these values to the system dynamics model and the ICA. After the system dynamics model runs the
information, the output values are read by the engine and then passed to the simulation mode! and the ICA.

Figure 27 is a block diagram presenting the detailed architecture of a system dynamics model in accordance with a
preferred embodiment. Once the simulation model, system dynamics model and feedback are completely tested by designers,
developers can incorporate the spreadsheet in a graphical user interface, e.g., Visual Basic as a development platform. Figure
27 illustrates that when a student completes an activity, the values are passed to the system dynamics engine where the values
are then passed to the system dynamics model (as an input), written to the simulation model and submitted to the ICA. When the
system dynamics model is played, the outputs are pulled by the engine and then passed to the simulation model and the ICA.
Note that the simulation modef can analyze the output from the system dynamics model and pass the results of this analysis to
the ICA as well. The simulation model can then be read for the output values and used to update on-screen activity controls
(such as graphs or reports).It is very important that all modifications that the ICA and system dynamics model need to know
about go through the engine because only the engine knows how to call these objects. This significantly reduces the skill level
required from programmers, and greatly reduces the time required to program each task. In addition, the end-product is less
prone to bugs, because the model and tutor management will be centralized. If there is a problem, only one section of code
needs to be checked. Finally, since the engine loads the data from the spreadsheet, the chance of data inconsistency between
the ICA, the system dynamics model and the application is insignificant.

The system dynamics model generates simulation results over time, based on relationships between the parameters
passed into it and other variables in the system. A system dynamics object is used to integrate with Visual Basic and the
spreadsheet object. The object includes logic that controls the time periods as well as read and write parameters to the system
dynamics model. With Visual Basic, we can pass these parameters to and from the model via the values in the simulation object.
The system dynamics object also controls the execution of the system dynamics model. What this means is that after all of the
parameter inputs are passed to the system dynamics model, the engine can run the model to get the parameter outputs. The
system dynamics object aflows for the system dynamics models to execute one step at a time, all at once, or any fixed number of
time periods. When the system dynamics model runs, each step of the parameter input and parameter output data is written to a
‘backup’ sheet for two reasons. First, the range of data that is received over time (the model playing multiple times) can be used
to create trend graphs or used to calculate statistical values. Second, the system dynamics model can be restarted and this audit
frail of data can be transmitted into the model up to a specific point in time. What this means is that the engine can be used to
play a simulation back in time. When any event occurs within the system dynamics engine, a log is created that tells the
designers what values are passed to the simulation modei, system dynamics model and ICA as well as the current time and the
event that occurred. The log is called “SysDyn.log” and is created in the same location as the application using the engine. As
with the spreadsheet object, the system dynamics object allows a large amount of the calculations to oceur in the system
dynamics model and not in the activity code, again placing more control with the activity designers. Model objects are used to
configure the system dynamics models with regard to the time periods played. Models are what the parameter inputs and
parameter outputs (discussed later) relate to, so these must be created first. Every model has the following application
programming interface:

Field Name Data Description
Type
ModellD Long Primary Key for the table
.37-

SUBSTITUTE SHEET (RULE 26)

WO 00/38149

PCT/US99/02737
TaskiD Long TaskID of the task associated with the model
ModelName String* Name of the madel (informational purposes)
50
ModelDesc String* Description of the model (informational purposes)
50
SysDynModel Sfring* Filename of the actual system dynamics model
50
Start Long Start time to play modal
Stop Long Stop time to play model
Step Long Interval at which to play one model step and record
data

This information is stored in the model table of the simulation database (ICASim.mdb). Al of the values that will need to
be manually entered by the student that are passed into the system dynamics model are configured as parameter inputs
(Plnputs) objects. Every PInput has an interface as detailed below.

Field Name Data Type Description

PinputlD long Primary Key for the table

TaskID long TaskiD of the task associated with the parameter input

ModellD long ID of the model associated with the parameter input

InputName string*50 Name of the parameter input (informational purposes)

InputDesc string*255 Description (informational purposes)

ReferenceName string*50 Name of the spreadsheet cell associated with the
parameter input!

SimReferenceName | string*50 Name of the associated parameter in the system
dynamics model

TutorAware booiean Whether the ICA should be notified of any input
CHANGES

SourceltemID ong SourceltemID of the parameter input

TargetiD long TargetID of the parameter input

Row long Spreadsheet row number of the parameter input

Column long Spreadsheet column number of the parameter input

SheetName string*50 Sheet name were the parameter input is located

All of this information is stored for every parameter input in the Pinput table of the simulation database (ICASim.mdb).

Pinputs consist of one spreadsheet cell that can be populated by a designer at design time or by the GBS application at run time

SUBSTITUTE SHEET (RULE 26)

10

WE) 00/38149 PCT/US99/02737
via the system dynamics engine object's methods. The purpose of the cell is to provide an entry point to the simulation and
system dynamics models. An example of an entry point would be the interest rate parameter in the interest calculation example.
The ICAis nofified of any changes to the cell when an appropriate activity transpires. When the ICA is notified of a change two
messages are sent o the ICA. The first is an ICANotifyDestroy message with the parameter input information i.e., SourceltemiD,
TargetID and null as an attribute. This message is sent to inform the ICA to remove information from its memory. The second
message is an ICANotifyCreate message with the parameter input information i.e., SourceltemID, TargetlD, Attribute (cell

numeric value). This message advises the ICA to add this information to its memory. A Pinput table record in accordance with a

preferred embodiment is presented below.

PinputiD: 12345

TaskID: 123

ModellD: 1

InputName: Interest Rate input

InputDesc: Interest Rate input into interest

calcutation model

ReferenceName: Interest_Rate

SimReferenceNam | Param_interest_Rate
e

TutorAware: True

SourceltemiD 11201

TargetID: 4001

Row: 6

Column: 3

SheetName: Sheet1

Once the configuration is completed, the designer can also use the ICA Utilities to test the simulation. The Row,
Column and SheetName values are automatically populated when the designer runs the parameters in the System Dynamics
Workbench in the ICA Utilities. The following information provides details describing the interaction components in accordance

with a preferred embodiment.

Title Description

Procedural tasks (w/drag Tasks which require the construction of some kind of report with evidence

drop) dragged and dropped to justify conclusions

Procedural tasks (w/o drag |New task designs that are procedural in nature, have very little branching, and

drop) always have a correct answer.

Ding Dong task Tasks that interrupt the student while working on something else. This template
includes interviewing to determine the problem, and a simple checkbox form to

decide how to respond to the situation.

SUBSTITUTE SHEET (RULE 26)

WE) 00/38149 PCT/US99/02737

Analyze and Decide (ANDIE) Most commonly used for static root cause analysis, or identification tasks.
task Developed on SBPC as a result of 3 projects of experience redesigning for the

same skill.

Evaluate Options (ADVISE) {Used for tasks that require learner to evaluate how different options meet stated
goals or requirements. Developed at SBPC after 4 projects experience

redesigning for the same skill. Does not allow drag drop as evidence.

Run a company task Time based simulation where student "chooses own adventure". Each period the
student selects from a pre-determined list of actions to take. Developed on SBPC

as a simplified version of the BDM manage task.

Use a model task When user needs to interact with a quantitative modei to perform what if
analysis. May be used for dynamic root cause analysis - running tests on a part

to analyze stress points.

ICA Dynamic Meeting Task [Developed on BDM to mimic interaction styles from Coach and ILS EPA.
Supports dynamic-rule based branching - will scale to support interactions like
EnCORE defense meetings and YES.

Manage Task Time based simulation where student manages resources. Human Resources

Management, managing a budget, manage an FX portfolio.

QVID Static Meeting Task Developed on Sim2 to support agenda-driven meetings where user is presented
with up to 5 levels of follow-up questions to pursue a line of questioning. As they

ask each question, it's follow-ups appear.

Flow Chart Task Will support most VISIO diagrams. Developed on Sim2 to support simple flow
chart decision models.
QVID Gather Data Static flat list of questions to ask when interviewing someone. Not used when
Component interviewing skills are being taught (use QVID Static meeting task). Supports

hierarchical questions and timed transcripts.

Journalize Task Created to support simple journal entry tasks with up to 2 accounts per debit or
credit.
New Complex Task A new task that requires a simutation component

The system dynamics engine is the interface between the simulation model, the system dynamics model, the simulation
database and the Intelligent Coaching Agent. The system dynamics engine is of interest to the designer so that she can
understand the mechanics of it. Once the designer has constructed the simulation model (Excel Spreadsheet), built the system
dynamics model (PowerSim) and configured all of the parameter inputs and parameter outputs, a test can be performed using
the workbench included in the ICA Utiiities (refer to ICA Utilities documentation). The developers, in turn, need to implement the
calls to the system dynamics engine in the GBS application that is being built. The foliowing list identifies the files that need to be

included in the Visual Basic project to use the system dynamics engine.

40-

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 00/38149 PCT/US99/02737

WSysDynEng.cls System dynamics Engine class

wSysDynEng.bas System dynamics Engine module (this module was introduced only for speed

purposes because all the code should theoretically be encapsulated in the

class)
wConst.bas Intelligent Coaching Agent constant declaration
wDeclare.bas intelligent Coaching Agent DLL interface
wica.cls Intelligent Coaching Agent class
wica.bas Intelligent Coaching Agent module (this module was introduced only for

speed purposes because all of the code should theoretically be encapsulated
in the class)

To utilize the system dynamics engine fully, the developer must place code in different strategic areas or stages of the
appiication. Initial stage - the loading of the form containing the simulation front-end. This is when the simulation model and
system dynamic engine are initialized. Modification stage - Takes place when the user makes changes to the front-end that
impacts the simulation model Pinputs). This is when the ICA is notified of what's happening. Run stage - The system dynamics
model is run and parameter outputs are received. Feedback stage - The user requests feedback on the work that they have
performed. This is when the simulation notifies the ICA of all output changes. Final stage - The simulation front-end unloads.
This is when the simulation model is saved. These stages will be explained by including the Visual Basic code involved as well as
a short description of that code.

Initial Stage Code In Accordance With A Preferred Embodiment

1. Creating the ICA & the simulation engine objects: Code: Set moSysDynEngine = New classSysDynEngine; Set
molCA = New classICA; Description: The first step in using the system dynamics engine is to create an instance of the
classSysDynEngine class and also an instance of the classICA class. Note that the engine and ICA should be module level
object ‘mo” variables. 2. Loading the simulation: Code: IRet = moSysDynEngine.OpenSimuiation(FILE_SIM, Me.bookSim,
True); IRet = moSysDynEngine.LoadSysDyn(mlICATaskiD, DB_SIMULATION, 1); IRet =
moSysDynEngine.LoadModel(MODEL_NAME,mbTaskStarted); Description: After the object creation, the OpenSimulation,
LoadSimulation and LoadModel methods of the system dynamics engine object must be called. The OpenSimulation method
reads the specified Excel 5.0 spreadsheet file (FILE_SIM) into a spreadsheet control (bookSim). The LoadSysDyn method opens
the simulation database (DB_SIMULATION) and loads into memory a list of parameter inputs and a list of parameter outputs.
The LoadModel method opens a system dynamics model (MODEL_NAME). Every method of the system dynamics engine will
return O if it completes successfully otherwise an appropriate error number is returned. 3. Initializing and loading the
Intelligent Coaching Agent; Code: IRet = molCA.Initialize(App.Path & "\' & App.EXEName & ".ini", App.Path &
DIR_DATABASE, App.Path & DIR_ICADOC, App.Path & ""); IRet = molCA.LoadTask(mlICATaskiD, ICAStudentStartNew);
Description: The system dynamics engine only works in conjunction with the ICA. The Initialize method of the ICA object reads
the application .ini file and sets the Tutor32.dll appropriately. The LoadTask method tells the ICA (Tutor32.dll) to load the .tut
document associated to a specific task in memory. From that point on, the ICA can receive notifications. Note: The .tut
document contains all the element and feedback structure of a task. Ex: SourcePages, Sourceltems, TargetPages, Targets,
etc... 4. Restoring the simulation- Code: IRet = moSysDynEngine.RunPInputs(MODEL_NAME, True); IRet =

moSysDynEngine.RunPOutputs(MODEL_NAME, True); IRet = moSysDynEngine.PassPinputsAll; Call moICA.Submit(0); Call
-41-

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 00/38149 PCT/US99/02737
molCA.SetDirtyFlag(0, False) Description: Restoring the simulation involves many things: clearing all of the parameter inputs

and outputs when the user is starting over; loading the interface with data from the simulation medel; invoking the PassPinputsAll
method of the system dynamics engine object in order to bring the ICA to its original state; invoking the RunPInputs and
RunPQutputs methods of the system dynamics engine object in order to bring the system dynamics model to it's original state;
calling the Submit method of the ICA object to trigger the ICA to play all of the rules; calling the SetDirtyFlag of the ICA object to
reset the user's session. Running parameters involves going through the list of TutorAware Plnputs and PQutputs and notifying

the ICA of the Sourceltem!D, TargetID and Attribute value of every one.Modification Stage; 1. Reading parameter inputs &

outputs; Code: Dim sDataArray(2) as string; Dim vAttribute as variant; Dim ISourceltemID as long, ITargetiD as long; |Ret =
moSysDynEngine.ReadReference(“Input_Name’, vAttribute, ISourceltem|D, ITargetiD, sDataArray). Description: The
ReadReference method of the system dynamics object will return the attribute value of the parameter input or output referenced
by name and optionally retrieve the SourceltemID, TargetiD and related data. In the current example, the attribute value, the
SourceitemID, the TargetlD and 3 data cells will be retrieved for the parameter input named Input_Name.
2. Modifying parameter inputs Code: Dim vAttribute as variant; Dim |Sourceltem!D as long; Dim sDataArray(2) as string;
vAttribute=9999; sDataArray(0)="Data Cell #1”; sDataArray(1)="Data Cell #2", sDataArray(2)="Data Cell #3" IRet =
moSysDynEngine. WriteReference(“Input_Name", vAttribute, , sDataArray). Description: To modify a parameter input, call the
WriteReference method of the system dynamics object and pass the Pinput reference name, the new attribute value and
optionally a data array (an additional information to store in the simulation model). The system dynamics engine nofifies the ICA
of the change. Run Stage 1. Playing the System Dynamics Model; Code: IRet =
moSysDynEngine.PlayModel(SYSDYN_PLAYSTEP); IblCurrentTime.Caption = moSysDynEngine.CurrentTime; and
IblLastTime.Caption = moSysDynEngine.LastTime; Description: Playing the system dynamics model is also handled by the
system dynamics engine. There are three ways that the models can be played, all at once, one step at a time (shown above) or
until a specific point in time. These are the parameters that are passed into the PlayModel method. Playing of the model
generates the parameter output values and passes the Tutor Aware PQutputs to the ICAT. The engine also keeps track of time
and these values can be read using the CurrentTime and LastTime properties. 2. Jumping Back in a System Dynamics
Model Code: IRet = molCA LoadTask(milCATaskID, ICAStudentStartNew); IRet =
moSysDynEngine.JumpBack(TIME_TO_JUMP_TO). Description: Because the system dynamics engine writes backup copies
of the parameters passed to and from it, it can start over and resubmit these values back to the system dynamics model until a
given period of time. To do this, the code would need to restart the ICA and then call the system dynamics engine to jump back
to a given time (TIME_TO_JUMP_TO). Feedback stage 1. Triggering the ICA Ruie engine; Code: IRet=
molCA.Submit{ICoachlID); Description: Once the simulation has been processed, the Submit method of the ICA object must be
called to trigger all the rules and deliver the feedback. This feedback will be written by the Tutor32.dll to two RTF formatted files.
One file for previous feedback and one file for the current feedback.

ICA Configuration in Accordance with a Preferred Embodiment

Figure 28 is an overview diagram of the logic utilized for initial configuration in accordance with a preferred
embodiment. Since the structure of the feedback is the same as other on-line activities, the ICA can also be configured in the
same manner. For ease of creation and maintenance of ICA feedback, it is recommended that the feedback is constructed so
that only one rule fires at any point in time. Note that the organization of the example is one of many ways to structure the
feedback. Step 1: Create a map of questions and follow-up questions; Before designers start configuring the ICA, they should
draw a map of the questions, videos and follow-up questions that they wish to use in the on-line meeting. This will give them a

42-

SUBSTITUTE SHEET (RULE 26)

10

15

20

WO 00/38149 PCT/US99/02737
good understanding of the interactions as they configure the ICA. Step 2: Create a coach; Al feedback is given by a coach.

Create a specific coach for the on-line meeting. Step 3: Create the Source Items and Targets

Every question will have one Source Item (1) and Target (2) associated with it. These will be used by the ICA to show
videos and follow-up questions. For organizational purposes and ease of reading, it is recommended that each Source Page (0
Intro”) contain all of the follow up questions (“Intro Q1", “Intro Q2", “Intro Q3"). Targets can be created one per Source Item
(shown here) or one per many Source Items. This is not very important, so long as there are distinct Source Item and Target
associations. Once the Source items and Targets have been created, associate them into SourceltemTargets (3) and give them
arelevance of one. These are the unique identifiers which the ICA will use to fire rules and to provide feedback to the student.
Step 4: Create the Parent Header (Video Information) Figure 29 is a display of video information in accordance with a preferred
embodiment. Feedback (Coach Items) are organized into Target Groups (1). In Figure 29, each on-line question has one Target
Group for ease of maintenance. Each TargetGroup must have at least one related Target (4). These are the SourceltemTarget
mappings that were made at the end of Step 3. Next, Rules (2) are created to fire when the SourceltemTarget is mapped (a
question is clicked). Coach Items (3) are associated to a rule and represent the feedback which will be shown if the rule is fired.
The ICA Utilities incorporate business simulation into a multimedia application. What this means is that there is now a middle
layer between the application and the ICAT. These utilities, along with the simulation engine (described later), allow the
architecture to be a front end to the simulation. Now, any changes to a simulation model do not need to be incorporated into
code. The ICA Utilities and simulation engine work with simulation models created in Microsoft Excel. After the model is created,
the designer uses the Defined Name function in Excel to flag specific cells that are to be used by the application and the ICA
Utilities in accordance with a preferred embodiment. Figure 30 illustrates an ICA utility in accordance with a preferred
embodiment. The ICA Utilities consist of six utilities that work with the Intelligent Coaching Agent Tool (ICAT) to incorporate

business simulation with the multimedia application.

43

SUBSTITUTE SHEET (RULE 26)

VV—O 00/38149 PCT/US99/02737

QD

~

=2

(2

e~ e~ o~
-~

CLAIMS
What is claimed is:

A method for creating a presentation, comprising the steps of:

receiving information indicative of a goal;

integrating information that motivates accomplishment of the goal for use in the presentation:
managing information flow utilizing a table of components; and

evaluating progress toward the goal and providing feedback that further motivates accomplishment of the goal.

A method for creating a presentation as recited in claim 1, including the step of instantiating a component from the
table of components to measure progress toward the goal.

A method for creating a presentation as recited in claim 2, including the step of instantiating a component from the
table of components to interrupt and interview a student to obtain information to measure progress toward the goal

and determine appropriate feedback.

A method for creating a presentation as recited in claim 1, including the step of instantiating a component from the

table of components to analyze progress and determine appropriate feedback.

A method for creating a presentation as recited in claim 1, including the step of instantiating a component from the

table of components to evaluate options and present appropriate feedback to assist a student to achieve the goal.

A method for creating a presentation as recited in claim 1, including the step of instantiating a component from the

table of components to simulate a business application.

A method for creating a presentation as recited in claim 1, including the step of instantiating a component from the

table of components to interact with a quantitative analysis model to perform what-if analysis.

A method for creating a presentation as recited in claim 1, including the step of instantiating a component from the

table of components to interact with a student utilizing rule-based logic.

A method for creating a presentation as recited in claim 1, including the step of instantiating a component from the

table of components to present a time based simulation.

SUBSTITUTE SHEET (RULE 26)

D AW -

NG

12.

13.

14.

15.

16.

17.

18.

V;’O 00/38149 PCT/US99/02737

An apparatus that creates a presentation, comprising;

a processor,

a memory that stores information under the control of the processor;

logic that integrates information that motivates accomplishment of the goal for use in the presentation;
logic that manages information flow utilizing a table of components; and

logic that evaluates progress toward the goal.

An apparatus that creates a presentation as recited in claim 10, including logic that instantiates a component from

the table of components to measure progress toward the goal.
An apparatus that creates a presentation as recited in claim 10, including logic that instantiates a component from
the table of components to interrupt and interview a student to obtain information to measure progress toward the

goal and determine appropriate feedback.

An apparatus that creates a presentation as recited in claim 10, including logic that instantiates a component from

the table of components to analyze progress and determine appropriate feedback.

An apparatus that creates a presentation as recited in claim 10, including logic that instantiates a component from
the table of components to evaluate options and present appropriate feedback to assist a student to achieve the
goal.

An apparatus that creates a presentation as recited in claim 10, including logic that instantiates a component from

the table of components to simulate a business application.

An apparatus that creates a presentation as recited in claim 10, including logic that instantiates a component from

the table of components to interact with a quantitative analysis model to perform what-if analysis.

An apparatus that creates a presentation as recited in claim 10, including logic that instantiates a component from

the table of components to interact with a student utilizing rule-based logic.

An apparatus that creates a presentation as recited in claim 10, including logic that instantiates a component from

the table of components to present a time based simulation.

45.

SUBSTITUTE SHEET (RULE 26)

PCT/US99/02737

WO 00/38149

1/16

4 z_@ ﬁ\
- e || gt | TETT
AY1dSI =
435N =
-~ ~ p 4
8¢ 9¢ il
all
¥314vay ¥3Ldvay
NOILYDINNHKO) 0/l WYY WOY Nd)
T ~ A
bel bl 911 ol

(S£1) yyOMLIN

0Tl

SUBSTITUTE SHEET (RULE 26)

WO 00/38149

PCT/US99/02737

2/16

€ Ol

SHINOW 02-cl

A

T
I
1
)
1
]
]
L}
L}
]
]
1
1

ISHAL0K CITINGe!
A\ ISIVIO0N [43d o)
SHIR0N TN SITAIKONY HORLe! - SLOBUKDAY ONHOL
| s e s |
/SISO e SISO HgeETe |
NIVINIVA 1531 a7ing N9IS30 SIS

STIMS
TVOINHO3L

(0N S30UN0ST 0 #

STIXS
TYNOILONNA

¢ Ol

YO¥80334
WNEg e
0 SINdLN0
W]
"SINaN
A 087
(++9) Oz
INTOY J0M
INHOV0) 1\
INIOITTIN
BN Tag |
STI00W
wm NOLLYINWIS
072
10 _
MILON Qv >>//§
(WISyamod) (D1Sva TWnSIN
TN | Sindino §1NdlN0
SONVIAG | —— —
WISk | ~SInan RS
\ (FHYMHOHLNY)
Nowm W P>
Uit e ovivasaug

W02

002

SUBSTITUTE SHEET (RULE 26)

WO 00/38149

PCT/US99/02737

3/16

¢ Ol

({96 ‘€ ‘78 'p1}=135 3002,",300 INIQINI=AL4340YIVI¥ILI) PR TIIT]

66 XYW ‘T NW “3SY) NIHLIM ‘INIQIDNI INROD 1

\v 10H3SNOH NI NGT <7861 V)
JISYIDVYH) "o

[ava ay3A 040134 LA €22 10 |

o
[oo e i1 H

™

LRI Y

INIHAYd Q4V) 11Q3Y) QISSIW €<-LLE WVH)D
[INIHAVd 3OVDLYOW QISSIW | <b 11 YVH)

| (66'7) NIIM138 h
[TYNIOYYH Q40034 LIa3w) -1z 1@ |
\ [[%0]
JISHIDVEVH) FNDITI0N (L}

[NOILYIddY 1)3(34 491 3114044
373044 —4

v Ol

LLEN

13Q0H

VK

#NIA

DRI |

100] 3dA
INIADNI

11¥a
1INTUNII0

INFADNI

X3S

AYHIYd
01 NOILYI3Y

19¥

401V43d0

INIY/NMO

§s3yaay

a10H3SNOH

NOILYDITddY

§3114340Yd

§3111INT

SUBSTITUTE SHEET (RULE 26)

PCT/US99/02737

WO 00/38149

4/16

L Ol

9 'Ol

SN0
ORIROXY
wm}
S Vo §
9 W AT Sthoxv| 13| e
T
@_ 240 @ @
a SIBBTI0WS 006
SIONVMOTTINA 0281 || ooooooies <ol
9303 SOV QWY STRVYS 0018
S0 NN VBRI 086 . g
MBIBLSTAIN W5 | 00d o 3 ;
STUVEY MO BHIO 086 WO SDAEIN
MBI LSTEN BN 15 LENSIRATLNS [| MAACH
B sosaren 3| || oo WSS 4
T THONA VRAI LI £
oA
] T0S 0009401500 OIS @Mv
S3NIE3
§33848 AUD3Y iz 1601 @
_ SN S35V
\ s3eN1 AN
TYRUNO" 3HL 0L 1577 ENNOJ0Y L HOM{ SO
w_sggw:%ag»m%%ﬁ&&%&ﬁs%gsisﬁﬁs&

AN

S0l 05003 ———

=" gﬂag

(SLndLNO)
INANOJWO9
NIVWOd
ol

~g—

133HSAYIHS

ONITIAOW W3LSAS JNIL TV

WHLIY09TY 110 WOLSND
WHLIHOO TV 8A WOLSND

SINION3 ONIHA0N

ININOJWOD NOILYWHOASNYAL

(SLNdNI)
ININOJWO09
NIVWOd
WY

——

SUBSTITUTE SHEET (RULE 26)

PCT/US99/02737

WO 00/38149

5/16

6 Ol

8 Ol

80800

35010

HHOMHNOA 40 M3IA34 Y404 3N OL

3100 NHL ONY SINFNNI0Q 30UN0S 33uHL 15414 IHL TZrvvnor

OLAYL M3 OL I HOA NUOM ANY INOT LNIAYH NOA

} e

4@ }A-TYNINOF SINNOJDV | #IN3 | 3V

1>

SUI3G8 FU0TN3 0068

@ api v

SLEM0)

354

1IBANDISSY

NOVEd334 4L

v

STAVOTNTORNG 0% | | | ooooouis ol
TG00 SIOVHONSTIS K
STVL TN WBEIS 0% o
80a1S2EN s | | | woond N hnano3
SINH MO EHIO 0%
0BG [SZAN GNN 15 LBHLSHN dYDNS TN
GUVISINDOSAHSY) 8IS Doowy NOLLSI {
TRTVAMEIN L0 05
105 SI09 01500 03§ o %u
W v | | gy ety s3x183 e
BEETE
“VNUNOT 3HL OL 4811 .E:oco« JHL HOYd SINNOIJY ﬂm_mu
JIVINdOYUddY 3H1 ONIOIVHE AG AHINT TYNHNOT ¥3d0Yd 3HL 31¥34D ANV JI0ANI HOVI MIATY
—
F—F vl o ———— |y
{
- 002}

174"

SUBSTITUTE SHEET (RULE 26)

PCT/US99/02737

WO 00/38149

6/16

LL "Old

0l ©l4

] o~
000000543 HSVO(OF HSY3| O
; 00'000°051$ F1GVAIZOY SINNOJDV| 0E | ¢ | IEN 000000128 TUAVINIQNd] b2b | b | BEN
-4) 4a LA-TVNINOT SINNOJJY _ﬁzm 31va LN Y@ FA-TWNHNOS SINNOJJV qﬁzm 3va
é 401 V @_ a0} V
B M SONNENE QNI 1 || oo g SILENGY A0S e8| | —
WUGVINKONG L ST SIONVMOTIV TIOMAY] 0028 | | | womnis ol
[0V NOILVISNYL AONZHNI NOIZ04 290 RGO I9N30E SHOWM ONY STVIVS 0048
3
ININIOVIARINO4 T3S 12 AL E 408 SILHONTEEIN W6 ||
S35S0TAUONIS MO INUTSTY 6l 0K 108 34 0DC00TE INDALSRAN 06 w0 s
IWOONI 034353010y o S3OMVHO TIONVN ¥HLO 06 HOLISDIEIN
$3SN3dX3 A3NYITY 166 » — IONIDA LSTHANE GALNdHI 126 INSNISIANI dIELYYLS
CaNHO0VSIVLYHIO Joe | | | WOTOSH | SOBLIENCO 0TS @WASINIOISIHSYY 8IS | [| wwony NS
|| 030400V 1500 L3038 33A0TGH3 08¢ i JONVISA TR LOQ €15 ey
g C3NEOOV SINVLTIONAV 6L¢ | | | teisvdmy WA g 01055000940 109 OIS
ALNDI S 30I0AN INBNTILL3S N 039 SaMig 3
1800
SIONRNG) SINNBY | SILTEVT1| SISV | | cammag dyy. gy w@, SN | (et | sizssw | [LEHKC <

“VNYNOI 3HL 0L 151 INNOJJY 3HL HOY4 SINNODAY
2UIH4dOYddY FHL ONIOVH AG AYINT TWNHNOr ¥3d0Yd FHL 21340 ONY JI0ANI HOY3 MY

"NSNO 3HL 01 151 INNODJY 3HL HOY4 SINNOJOY
31V1HA0YAdY FHE ONIOY A AXING TVNNOF ¥3dOWd FHL A1v34D ONY ‘30I0ANI HOYI MIARY

SUBSTITUTE SHEET (RULE 26)

PCT/US99/02737

WO 00/38149

7116

€l 9Ol

¢l 9Old

q0800

-3

-

100

AN H0A
404 INN0ODY J5NAdX3 INR3H0Y L3138 01

(HNNOA H3AZHOH “3SN3AXE MY SY'€ LNFNNY00

304105 GFING0OT ATLIFEH00 HN0A »
STNLITNOILIYSNAL
3HL LY 00T 43HLONY DWVL 7 INGHAS00
30410 CFZITYNHNO ATLIRON ¥ AOA ©

SSINISNA FHLAB GINFOR I

HSYO N3M QALO3 44 eV SINNOIY LYHM §30ISNOD
ATLOHON CIITVNENOF S | LN3ANO0Q 30UN0S

‘SARING TVNUNOF 3uHL 15U HNOA LY ONDNOOTN

HSY3| O}

00002$

HIVEQ33 Wy4L

000028 3SNIdX3 SAILIMNLN| 908 | € el
M) ua LA -TYNYNOr SINNOJJY {#1IN3 | 3LV
w40t gv
4] H) SONINYYS GINIVLTY 18
N WUdYONFOVd 1f mw..mmzsszgzﬁﬁ
1Y NOLLYISNYYL AONTUMNO NOIFUOS 78 R TIgINOHd
ININOVI HO4 INTSTY 12k STOUVHD 40 AUVWHIS
S35S0TAYONNS H04 IS 64 T
WOONI GTY33A_ 108 | | |-~ - N3HAVD HNOAHLIMNOILYO ~_ _
S3SNIdX3 GANYIOV 168 mh”wo zwawm Duu%wuww“%a
ol
(3NYO0Y SIXYLYIHLO 18¢ e L L
@3NYIJV 10T LI43N38 33A0TdWT 08¢ 69185HS MIANNN IDIOANI
v Q3NY00V SIXVLTIOUAVd 616 C9EH00 3G INNODIY
ALIND3 B pero 4
SISNIX3| SIINITY | SV | SLISSY JT——
"NNOF 3L OL 1SIT INNOJOY JHLOM SINN0JY
31VIA0YddV FHL ONIIOYYHA AB AULNA TYNHNO H3d0kd FHL 315340 ONY'3I0ANI HOYA M3

SUBSTITUTE SHEET (RULE 26)

WO 00/38149

PCT/US99/02737

8/16

SIRBI0SH OV
U010, BN IVHONGS
S84 A, MO 1
OLLIES RYHONISH] T i
NV IDHAIN NIV © R ARO)
b N
NGB MO SO
[o0l OWSNOLY
— S A0SO TRR NI LN
=l o TN STIN S0 D
NSNS
RN HLSHOLDS 05
e B
OB SO VAN RS MOLMND

RN
_w_so_:%@@

] 5

vl Ol
ONISL 50
L0 OLN CLY40dH00N S HOIviEe
W — i~ B JH0LIS0G3Y L) 0L il
o SLINAOD ONY ALITANOLIONS LM
WMU!IY@ S a—
ALNHISNOD S 30VRAIN ALALOY
OO KOG 7NN O1 HNg ONLISIL §35N L+M01
1531 S350 N9/ MOILIMISNI D)
YOVROZ N G360 JAN) Lo
ROLS WA OTINN0 LB OIS mrere .
ONY S T0RROYTd S350dH0) E_m@mmm 5
%8_5%@%@_%%% J - i o
LT yonshnssmmm 3\)
NO YOYA03H4 i OLH)BBRON TN
(3N AV LGOS L S01G01 31240 S0 MOS0 GT0
0L HONBROM J90THONN S350 01D N30 ¥NISIT TNOLIUISN D

SUBSTITUTE SHEET (RULE 26)

PCT/US99/02737

9/16

WO 00/38149

Ll Ol 91 'Ol

NOLTRONY ., ATTONBID S OL e 003100 (4530
ONCYAL Y0NS 01 SILLI30 ESINGD NN 2 1| NG9 H CTOM 60334 _
030¥07dN ATYOI00I3d NOLVIOINY JONVIHOS43d e % QN S3TH0M MIN I¥HL ST3A S39NYHD 300 LNOHLIM ONLLS3L
Vv STLYLS INFanLS @ IN30NIS N (35v8 @ = ALY INFONLS AVId3y 435N 0L (310160 my.zv_%mouw_
=5 HTTORA0 nf || WM LSO
DHANNIOIND | i SIENOIS30 MOLINISN D
. . A0y ONILS3L BN
. F4HM S0Id0L 3N HF00ML ﬂ
el ||| I STHO SN T Qﬁw 2 [k
| SIDOEEHBONAE Y 7) s}
ﬁn@ . 1| ol ouon ‘
RN = WM ROLSN) = || SIS0 MNOLLILSN D
SYLANTNIRAEND HOLSN) SINAONIS SO 7 -
STN9NG) INORANTHOKG VRN NOLYORIN DX i
SISKTAN JAWNNOLS3ND
0 1S3 M0 (M D .
DAL UMM LY
S31108d NV SIIAOL NOILdW303Y ¥ Egmé J00E1Y W3Sk
= ! THOLLOGY LYWL L0 ONDOWAL LNBGNIS N 310N
TR0ORNIHOON ‘ OLSIUINONGANSION Woeol == SOV NOIITOW LT
(30033 27 S35H0dSH === HIARNOWANLY G B N ST VO34 ON e
UWNOLS0 O i INENOLIDRMNOSS R B NOLYILS ST NS ¥3T O
183134 00 STIH INAUNIS D DN SRS MOLIND
NOULYHLSINIGY 30410

SUBSTITUTE SHEET (RULE 26)

WO 00/38149

PCT/US99/02737

10/16

6} Ol

3

|

TS OL ST

(Y SO1A0L L0 LSO HOM! Mo 0WA0334 S5O0 90 9
SIS TR

IO

O S0 S0 ML NS T30 LNAILS STZATAY)
1901 SAEHEI VL 40300 01 STRYHIATRO SLIANS LNGoniS ¢

| {50101 M0 3 SHOILV NOndS ¢

1491 OL CRLHO0G3N e SNOILDY F0¥34aN AL SLOVAEINT LNACNLS

8l

Ol

(91370 ‘0l0n¥ 030N

. YOYAEN

JNIONG NOLYIC3NEY IN3SSY WLIOH0 ANY 30N

N SOIJOL NONLAVD Ny FNONT NOLLVIaNEY

___ YOYA(334 31¥THd0dddY

Y130 ONY 3504H0D
OL RHLHOI VNIAOH
S35 JNIONG NOILVICHWY

wz_wzgz:gg L
} . @ -
ol = ; @@ %xem%% =
Qillfl| - Moy N sg%%%% wonpsmor 1]
; VOO OH)
- , TSRO ol
® _ m | | MDD
TN 2 (| o nouvoary TN
_ NSJd0L O CGORHOM 131
SEREHIL) NSRS = | | RN I éaﬁﬁez_
e ! = || oo
_ FOVHIINI ALINEDY B |
WO o -
TVAEIN ALALY
NFHOC VIS TIONNVINOQ YLy 0O Zgg aas._m%ﬁ%%oﬁm&
GOV oSty AR AMOLEGY
HOORNOMOR SDassNg ot AR

Y001 INJOV ONIHOYOD LN BIN

NOLVIHOJSNYHL NOILVIRMOJSHYL

SUBSTITUTE SHEET (RULE 26)

WO 00/38149

PCT/US99/02737

11/16

0¢ Ol

COOEHCH 13041 01 (ddv 2021401
ONIddv JivH 2#

TR LR

(02 #0I=30N3dX3 FONVHNSNI 0818

(10HINOD 130 18

E! m#mum_

]
X HSVd| O}
R A 7 JNAaX3 JONVENSNI Y R3]
JONVHNSNI GlvdTud | b0z) | 21 | I
FA-TVNAINOT SINNOJJY |#1N3| 3ivd | |

3ISNIdA TWINTH INGHINDS TIVAS 0258

@_ z40

55>

iz

ISNIAA SIS IS FiG8

| 006§ |

35N3dx3 334 WNOISS3H08d 2158

30

IN0RYSHL AW 5VTK

NIRRT 016k

3ISN3dX3 INOHdTT3L 0S¢

IN3IE SINAINS 30 1K

ISNIDASALNLN 905t

33X 1001 QHVONVLS _Z0%

sss
s=8

|

FexT
7~.

R
54 \a« !,r

+ 38N3dXT JONVNSNI:: 0848 3

HSYD NI QI

TN SSNSE

|

v

43 VINRY INDT 9197908 1098 |

KR
AvmeEd
AT
SRS
Sl

E§

SN 0
LEIEEGEY

Ky

$35N3dX3

SN

ALNDA Y
S3Lmevin

Fy)
L0260 ¥ANI

SI3SSV | lesto. #ioov

JONVINSNI J0IMAYINNOCD

TYNNOF 31 01 1STT.INMOJOY 3HL HOW4 SINNOOY
21IMd0¥ddY 3H1 INIIINVHQ AG AXING TYNHNO H3d0dd 3 30349 NV JOIOAN] HOV3 MIIATY |

SUBSTITUTE SHEET (RULE 26)

WO 00/38149

PCT/US99/02737

12/16

€¢ Ol

uzo;::._n_zsm:# _w mzoo
1J4N0S 404 NOILVZITYNYNOT ¥NOA«

3NO ONOYM 3H1 431)313S
JAVH NOA LNG ‘INNOJIV ALINDI NV

§1 1 1V INOQ 304N0S LHOTY 34¥ NOA« v/

_ 135 1 IVHM SI 3434
SNOILIVSNVYL 33¥HL 15414 IHL 1V ONINOOT)

¥v4a334
§3)31d 33401

WH1I4091Y

¥vaaidd

¢¢ 9ld

€LEl # 1401 HIV0)
€€TE #1401 HIV0D
4 L01% 1401 HOV0)

0TTI# 1401 HIY0)
0FL# 1401 HDY0)
0773 1401 HIY0)
€p1# 1401 HIV0D
114 1401 HIV0)

§31401 HIY0D JAILDY

0TI 21401 HIV0D m=<>_c<2m=_
123440D %ST NVHL $§31 \..H_ﬂ

s3Iy

INVAT34Y %0L
ONOYM %01 "1)3440 9

—STIa34) 404 SINTVA 11Y93499Y
1143¥)
11830

NOILDYSNVYL

AQV3H dNOY¥O13OYYL

SUBSTITUTE SHEET (RULE 26)

WO 00/38149

PCT/US99/02737

13/16

ISIV¥d-NON
ANY Q350

INNOJA1HI
=< 0I5

INNOJA1H)
=< (5N

¥vaa3id =yad

TEREIER

. I9VNONVT NOILALILSANS ¥3LIHVHYd =154
13d J54vd WILIHOY0D =1
S IJOLHVO) =1)

dNOY9LIo¥VL =91

HV0) dNn0Y01394v1
SIHL Y04 11419113

XSVL IA0Y¥ddY | |LSIHOIH OL 09

QIATTNSVLSI

dN0Y¥91394V1

.~

D a@:.zcz ETTEE T O R ——
SThatag 34K |1 -G01530NV QNY L IHL o4
1D Q1K 30 1) I5IV4d-NON 14y1534
SL1 GNY 91 SIHL Y04 S 35174 414X3
*D) 31¥4d LaVLSIY J19I9113NI 9L INYM
1IN 1ivid ‘SYOLSTONV ANY 91 SIH1 404 SINYANTDSId
NON D INIWYd 3| | 55 quy o1 KL Y04
_z___mu a3sN INIWIYONI 34l ISIv4d
LD 0K) 350 -NON [dN0YO1I0YVL
. d01S Q1K) ALIYOIYd
i) QI ILITdHOINI 1X3L 1D IN3¥Vd 350 | | 153HOIH 01 09
341dXINN SVH ANIHYILSYM 1 "
HS10d ,
1D34103Y) INT8vd
915104 40 91 ATIH) . 341dXINR SYH |
 1STHOIH 1XIN 3H1 01 09 S04 “51 3dAL
3 T, NOLLYIOIHNTY_—
.. [INN0) MOHS AHOUVY3IH FHL NI
U T IED ~1131dWONI dN0YD1I9YYL 1SOHAOL 01 09
Yv4a33 YIA10 _
404 dNOYD1I9YY1 AHDYVYIIH OL NIHLIM
IWYS NI'¥00T 's13 IIVAILDY 01 53104 414

SUBSTITUTE SHEET (RULE 26)

PCT/US99/02737

WO 00/38149

14/16

(179%3) 1300H 13004
I NOLLYITHIS §INYNAQ
WILSAS
vy JLIYM
§10d1n0 SINdNI
LIKgns
| A
|
“
s1nd1no | SLNdNI
_
\ 4
(isv4 Tvnsiy

MIAILDY

¢ 9ld

CC)

\HIWd /N s/ \2ndino / \ _IndNI/

NN /L

|
(]

_INI9N3 NOLLYINWIS /

1100
133HSQVIYdS

1041NO)
133HSGVIYdS

SUBSTITUTE SHEET (RULE 26)

“;O 00/38149

PCT/US99/02737

15/16

6¢ Ol

<] | >

a ONEIVITER =5
SHBNMTNYId N TIL TN O
ISVISNENIdIN T OB

NY1d 3W TIINCE S IVM-10 OO 4

NO8 NI VY311 TIM IVHAOMINIC00 (>

{08 S ONOT MOHOUINIZO0 O 4

®ooun G-
S139¥V1dNOY¥9L FOVL Nm_
SdNOY¥9139WV] 0= F
© 030 Hoa 51 v @:
;oEzzs 00V -+
HOg St vH b o

OB SILYHM000 (=1
$0IdOL HOVOD £8 £

© noa s vHWONININ O 4

S0RINHI00, O @
SdNO¥DLITYVL L&
S3ovdi3owvl F2h
$30Vd304N08 C2 -3

STVAONAVHOY0D L2

35v0 SSINISNA INISTYd
0NVN 29

4]

[Nouria0g | uEHONg

NOILS3ND dn MOTI04 +
NOILSIND dN MOTIOS +
NOILS3ND dN MOTI04 +

NOLYIWHOANI O3QIA

8¢ Old

V80334 aNY ONIddvi

9¢ 9ld

€
i
K
il
AN |05 M-S | | %
Tvd | 05718 IS | 19
U0 (0018 WS- | |1
NOLJ0530 &
4
00078 OL 1535010 S 101 3 JYHL 0S SLONGOHd 40 HIAWANKOMIXYW IHL1OT1S | | 12
0508 HRVAONYS 4
05744 Ji fi
0K H5HY B
1] RO Il
0l MyS o
el NH 4
S191008d 353HL N NYD N0A FH0LS TIVMONVHYM | V | 4l
ENOUSIND § £

] i 0 J 8 V

o 19T

31Ny @ 13OUVLNILFIUNOS

NOILS3ND|

SUBSTITUTE SHEET (RULE 26)

WO 00/38149

16/16

i

b
Fle Ul Window

SUBSTITUTE SHEET (RULE 26)

PCT/US99/02737

FIG. 30

INTERNATIONAL SEARCH REPORT Inter. .onal Application No

PCT/US 99/027

37

A. CLASSIFICATION OF SUBJECT MATT

ER
IPC 7 GO9B7/04 G06F17/60

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 GO9B GO6F

Documentation searched other than minimum documentation to the extent that such documents are inciuded in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category > | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X WO 97 44766 A (AGENT BASED CURRICULA INC
;CO0K DONALD A (US); PADWA DAVID J (US);)
27 November 1997 (1997-11-27)

page 9, line 12 - Tine 23

page 57, line 31 -page 61, line 32

page 75, line 13 -page 77, line 5

page 82, line 17 -page 83, line 17

page 109, line 17 -page 111, line 17
page 113, line 8 - Tine 21

page 115, line 3 - line 14

page 119, line 25 -page 124, line 15;
tables 10,11

page 129, Tine 29 - line 37

A US 5 727 161 A (PURCELL JR W RICHARD)
10 March 1998 (1998-03-10)

abstract; figures 6,7

column 1, 1ine 1 —column 2, Tine 50

1-11,
13-18

6,7,15,
16

D Further documents are listed in the continuation of box C. Patent family members are listed in anne:

X.

° Special categories of cited documents :

"A" document defining the general state of the art which is not
considered to be of particular relevance

"T" later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principie or theory underlying the

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, :
Fax: (+31-70) 340-3016 Kingma, Y

invention
"E" earlier document but published on or after the international "* docurnent of particular relevance; the claimed invention
filing date cannot be considered noval or cannot be considered to
"L" document which may throw doubts on priority claim(s) or involve an inventive step when the document is taken alone
which is cited to establish the publication date of another N ; . ; ; i
e) o ocument of particular relevance; the claimed invention
citation or other spectal reason (as specified) cannot be considered to involve an inventive step when the
“Q" document referring to an oral disclosure, use, exhibition or document is comnbined with one or more other such docu—
other means ments, such combination being obvious to a person skilled
"P" document published prior to the international filing date but in the art.
later than the priority date claimed "&" document member of the same patent family
Date of the actual completion of the international search Date of mailing of the international search report
18 October 1999 03/11/1999
Name and mailing address of the ISA Authorized officer

Form PCT/ISA/210 (second sheet) (July 1392)

INTERNATIONAL SEARCH REPORT

,nformation on patent family members

Inte.

.onal Application No

PCT/US 99/02737

Patent document Publication Patent family Publication

cited in search report date member(s) date

WO 9744766 A 27-11-1997 us 5727950 A 17-03-1998
AU 3138397 A 09-12-1997
AU 3209697 A 09-12-1997
EP 0902935 A 24-03-1999
Wo 9744767 A 27-11-1997

Us 5727161 A 10-03-1998 NONE

Form PCT/ISA/210 (patent family annex) (July 1992)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

