
US 20080294669A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2008/0294669 A1

Narayanan (43) Pub. Date: Nov. 27, 2008

(54) PROGRAM-DATA COMBINING SYSTEM Publication Classification

(76) Inventor: Sarukkai R. Narayanan, (51) Int. Cl.
Oklahoma City, OK (US) G06F 7/30 (2006.01)

Correspondence Address: (52) U.S. Cl. 707/101: 707/E17.009
DUNLAPCODDING, PC.
PO BOX 16370
OKLAHOMA CITY, OK 73113 (US) (57) ABSTRACT

(21) Appl. No.: 12/121,394 Methods for securing at least one program application and
data associated with the program application are herein

(22) Filed: May 15, 2008 described. In one embodiment, the method includes com
pressing the program application and data associated with the
program application into a program-data combine having a

(60) Provisional application No. 60/931,153, filed on May compressed format and storing the program-data combine on
21, 2007. a program-data combine computer.

Related U.S. Application Data

12 14
18

COMPRESSION/
DECOMPRESSION

PUMP

36

MEMORY

Patent Application Publication Nov. 27, 2008 Sheet 1 of 5 US 2008/0294669 A1

F/G. 1

N
CPU/ALU ------ N COMPRESSION/

28 DECOMPRESSION
PUMP

12

30

12 14 F/G, 2
f3

COMPRESSION/
DECOMPRESSION

16 PUMP

36

MEMORY

Patent Application Publication Nov. 27, 2008 Sheet 2 of 5 US 2008/0294669 A1

a f
RADIO LOCAL

DPU 20

IPU 22

C
FIBER MOUSE

OTHER TELEPHONE

KEYBOARD

F 33 SERVICE N - RESES
STACK

STACK
POINTER

40

REQUEST 42
REGISTER

F/G, 3

Patent Application Publication Nov. 27, 2008 Sheet 3 of 5 US 2008/0294669 A1

REQUEST
REGISTER

TOKENS

46

43
DENIED PENDING CLEARED

4 REQUESTS REQUESTS REQUESTS
44

DPU 12

FIG. 4

Patent Application Publication Nov. 27, 2008 Sheet 4 of 5 US 2008/0294669 A1

52
26 28

EXECUTION 14
REGISTER CPU/ALU DMU

16

COMPRESSION/
DECOMPRESSION

PUMP

DPU SIAIs or PROGRAM/54
DATA

22

IPU WPU OPU
OUTPUT 53

20 30 REQUEST

Patent Application Publication Nov. 27, 2008 Sheet 5 of 5 US 2008/0294669 A1

COMPRESSION/
DECOMPRESSION

PUMP

62 MAIN
MEMORY

FIG. 6

US 2008/0294669 A1

PROGRAM-DATA COMBINING SYSTEM

CROSS-REFERENCE TO RELATED
APPLICATIONS

0001. This application claims priority to U.S. Provisional
Application Ser. No. 60/931,153, filed on May 21, 2007, the
entire disclosure of which is hereby incorporated into this
disclosure.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH ORDEVELOPMENT

0002. Not applicable.

NAMES OF PARTIES TO AJOINT RESEARCH
AGREEMENT

0003) Not applicable.

REFERENCE TO A “SEQUENCE LISTING. A
TABLE, ORACOMPUTER PROGRAM LISTING
APPENDIX SUBMITTED ON A COMPACT DISC
AND AN INCORPORATION BY REFERENCE OF

THE MATERIAL ON THE COMPACT DISC

0004) Not applicable.

BACKGROUND

0005 1. Field of the Invention
0006. The present invention relates generally to a pro
gram-data combining system. More specifically, but not by
way of limitation, the invention relates to storage and retrieval
of programs and data as a single unit.
0007 2. Brief Description of Related Art
0008 Programs are a set of instructions developed to
accomplish a certain objective. Generally, programs operate
on input data and stored data to accomplish the desired result.
The output data produced as a result is either stored or pro
vides instructions to external device(s) for further action.
0009. The bifurcation between programs and data pro
vides great flexibility. For example, one program may be able
to operate on several different sets of data or several different
programs may operate on the same data. With this flexibility,
however, there is vulnerability.
0010 Within bifurcated programs and data, a "rogue pro
gram' or a virus may operate on any file containing the
programs and/or data in the system and corrupt the file. Such
viruses may flood the computer system with spurious data,
place the processor in a "loop, or other similar malfeasant
acts that hinder the processor from productive work.
0011 Currently within the field of computer technology,
immunity from attacks by computer viruses is a daily threat.
Security in most systems is not built in, but instead added on.
For example, currently implemented security systems include
firewalls, anti-virus Software, and other similar mechanisms.
0012. One of the principle reasons attacks are so prevalent

is the ability to exploit the weakness in the separation between
programs and data. This separation between the programs and
data is an easy target to prey upon.
0013 Within the art, separation of programs and data has
been necessitated by the fact that programs and data can get
arbitrarily large. As such, associating programs and data as a
single entity becomes a practical improbability due to storing
and transmission considerations. Great Strides have been

Nov. 27, 2008

made, however, in the compression of programs and data
increasing the feasibility of joining programs and data for
storage and transmission.
0014 For example, compression of data as disclosed in
U.S. Pat. No. 7,298,293, entitled, “METHOD OF ENCOD
ING DATA, produces a compressed set of data that is only a
small fraction of the size of the program and/or data that it
operates on. See U.S. Pat. No. 7,298.293, filed on May 18,
2006, the entire contents of which is hereby incorporated into
this disclosure. Subsequent provisional applications disclose
decompression of this compressed set to reproduce the origi
nal program and/or data. See U.S. Provisional Patent No.
61/016,022, filed on Dec. 21, 2007, and U.S. Provisional
Patent No. 61/038,527, filed on Mar. 21, 2008, the entire
contents of which are hereby incorporated by reference in
their entirety.
0015 The use of these compression techniques, and/or
other similar compression techniques, provide a mechanism
for combining program and data into a single entity for Stor
age and transmission.

BRIEF SUMMARY OF THE EMBODIMENTS

0016. The present invention advances the concepts of
securing computer systems. In one embodiment, programs
and data are treated as a unit. This unit is derived in a com
pressed format and referred to as a program-data combine.
Within a program-data combine, a program may only operate
and/or modify the data that is associated with the program.
For example, a first program and its data are compressed to
form a program-data combine. The program-data combine is
stored on the program-data combine computer. A second
program and/or external computer requests use of the data
within the first program. The program-data combine com
puter provides the data to the second program, but only as a
program-data combine. The second program must have the
needed software and/or hardware to decompresses the pro
gram-data combine, modify the data, and recompress the
program and data to provide a new version of the program
data combine to be sent back to the program-data combine
computer leaving the original program-data combine unal
tered. Generally, the program within the program-data com
bine is only operable on the data space attached to it in the
program-data combine computer.
0017. Further, the program-data combine capitalizes on
the efficiencies gained from the compression and decompres
sion of data. Generally, program-data combines are received
from sources external to the program-data combine computer.
Having the program-data combines in a compressed format
allows for efficient transmission and storage of programs and
data.

BRIEF DESCRIPTION OF SEVERAL VIEWS OF
THE DRAWINGS

0018 So that the above recited features and advantages of
the present invention can be understood in detail, a more
particular description of the invention, briefly summarized
above, may be had by reference to the embodiments thereof
that are illustrated in the appended drawings. It is to be noted,
however, that the appended drawings illustrate only typical
embodiments of the invention and are therefore not to be
considered limiting of its scope, for the invention may admit
to other equally effective embodiments.

US 2008/0294669 A1

0019 FIG. 1 is a block diagram of one embodiment of a
program-data combine computer system.
0020 FIG. 2 is a flow chart of one embodiment of a
method for powering up components for use in the program
data combine computer system of FIG. 1.
0021 FIG. 3 is a flow chart of one embodiment of a
method for service request processing for use in the program
data combine computer system of FIG. 1.
0022 FIG. 4 is a flow chart of one embodiment of a
method for security clearance processing for use in the pro
gram-data combine computer system of FIG. 1.
0023 FIG. 5 is a flow chart of one embodiment of a
method for providing data and output processing for use in the
program-data combine computer system of FIG. 1.
0024 FIG. 6 is a flow chart of one embodiment of a
method for providing power down processing for use in the
program-data combine computer system of FIG. 1.

DETAILED DESCRIPTION OF THE
EMBODIMENTS

0.025 Present embodiments of the invention are shown in
the above-identified figures and described in detail below. In
describing the embodiments, like or identical reference
numerals are used to identify common or similar elements.
The figures are not necessarily to Scale and certain features in
certain views of the figures may be shown exaggerated in
scale or in Schematic in the interest of clarity and conciseness.
0026 Referring now to the figures, and in particular to
FIG. 1, shown therein and designated by reference numeral
10 is a program-data combine computer for interrelating pro
gram and data information. The program-data combine com
puter 10 provides a mechanism for removing the bifurcation
of programs and data in the current art. The program-data
combine computer may also herein be referred to as a spinner
10.
0027. In the spinner 10, programs and data are treated as
one entity known as the program data compact (PDC). Only
programs within the PDC may manipulate the data within the
PDC. Generally, the program-data compact is received, acted
upon, stored, and/or transmitted in a compressed format.
0028 Generally, the program-data combine computer 10
includes a director processing unit (DPU) 12 that controls the
functions of spinner 10. The DPU 12 is capable of activating
and/or deactivating any of the components within the spinner
10. The DPU 12 may be any computational device capable of
receiving and providing instructions to other computational
devices.
0029. The DPU 12 communicates with a data manage
ment unit (DMU) 14. The DMU 14 is capable of performing
memory management functions required within the spinner
10. The DMU 14 may be any memory storage device capable
of storing PDCs.
0030. The DPU 12 within the spinner 10 oversees a variety
of processes Such as the following six separate processes to
provide and utilize the PDC: the power up sequence, a service
request process, security clearance process, data processing,
output processing, and a power down sequence and other
functions as may be warranted.
0031. The power up sequence provides the operating sys
tem and memory at the time of the last power down sequence.
During this process, the DPU 12 communicates directly with
a compression/decompression pump (C/D/pump) 16. Gener
ally, the C/D pump 16 performs the process of compressing
programs and/or data and decompressing Such programs and/

Nov. 27, 2008

or data on demand. In the power up process, the C/D pump 16
decompresses data from a kernel to obtain the operating sys
tem and memory at the time of the last power down of the
spinner 10.
0032. Once the spinner 10 is powered up, the DPU 12 can
coordinate service requests from external sources through the
service request process. Service requests are generally pro
vided by wireless sources and/or direct sources.
0033. The wireless sources are managed through a wire
less processing unit (WPU) 20. The WPU 20 receives signals
from wireless sources such as radio, TV, local area wireless
networks, and/or the like.
0034. The direct connect sources are managed through an
input processing unit (IPU) 22. The IPU 22 manages data
input from devices in direct communication with the spinner
10. Devices in direct communication with the spinner 10 may
include a keyboard, mouse, telephone line, fiber optic line,
and/or the like.
0035 Certain service requests may require security clear
ance. A security clearance unit (SCU) 24 manages security
clearance aspects for the service requests acted upon by vari
ous components of the spinner 10.
0036) A service request cleared by the SCU24 is able to be
processed by a central processing unit (CPU) 26 within the
spinner 10. The CPU generally abstracts each instruction
within an active program and executes it until completion. An
arithmetic logic unit (ALU) 28 provides assistance to the
CPU 26 during execution of the active program by perform
ing the arithmetic and logic functions encoded within the
active program.
0037 Output provided by execution of the program is
processed by an output processing unit (OPU) 30. The OPU
30 manages the output and provides the output to other
devices external to the spinner 10. For example, the OPU 30
may provide output from the executed program to printers,
fax machines, telephone line, external spinner, and/or the
like.
0038 Interaction between components of the spinner 10
illustrated in FIG. 1 provides for the storage, modification,
transmission, and retrieval of the PDC. Each of the processes
designed to provide and utilize the PDC are described in
further detail herein below.

1. Power-Up Sequence

0039 FIG. 2 is a block diagram of one embodiment of
power up components for use in the spinner 10 of FIG.1. The
power-up sequence generally provides the operating system
and memory from the last power-down sequence.
0040. Initially, the DPU 12 deactivates all major compo
nents within the spinner 10. After deactivation, the DPU 12
provides an activation signal to the DMU 14. The activation
signal provides the DMU 14 a specific memory address for
the power-up sequence known as the “Initial Program Load.”
0041. The DMU 14 searches and provides the data within
the kernel 18 to the C/D pump 16 and includes a request to
perform an initial load. The C/D pump 16 decompresses the
data from the kernel 18. Decompressing data from the kernel
16 provides an operating system32 and user memory 34 at the
time of the last power down sequence. The operating system
32 and user memory 34 at the time of the last power down
sequence is loaded by the C/D pump 16 to the memory
address, provided by the DMU 14 thereby accomplishing an
“Initial Program Load'. The operating system 32 and user
memory 34 are then capable of being displayed on an external

US 2008/0294669 A1

device 36. For example, the operating system 32 and user
memory 34 may be displayed on a monitor. Once the operat
ing system 32 and user memory 34 are loaded starting at the
designated memory location, the DMU 14 signals the DPU 12
the “Initial Program Load and therefore the power up
sequence is complete.

2. Service Request Process
0042 FIG. 3 is a block diagram of one embodiment of a
method for service request processing. Generally, a service
request process for the spinner 10 may be provided by several
Sources. The sources may be broadly grouped into two cat
egories: wireless and direct connect.
0043. The wireless sources are managed through the WPU
20. The WPU20 receives signals from wireless sources such
as radio, TV, local area wireless networks, and/or the like.
0044) The direct connect sources are managed through the
IPU 22. The IPU 22 manages data input from devices in direct
communication with the spinner 10. Devices in direct com
munication with the spinner 10 may include a keyboard,
mouse, telephone line, fiber optic line, and/or the like.
0045. The DPU 12 receives at least one request for service
for the spinner 10 from the WPU 20 and/or the IPU 22. The
DPU 12 catalogs the request for service on a service request
stack 38. In one embodiment, the catalog provides a mecha
nism for prioritizing two or more requests for service from the
spinner 10. The catalog may include one or more prioritizing
criteria for the two or more requests for service. Examples of
prioritizing criteria may include time, memory space, and/or
the like.
0046. A stack pointer 40 selects the request for service
within the request stack 38. The stack pointer 40 places the
request for service in a request register 42.
0047. If the request for service requires security clearance,
the DPU12 signals the SCU 24 to request security clearance
as illustrated in FIG. 4. Specifically, the DPU 12 inserts
information into the request register 42 if the request for
service requires security clearance or further security clear
ance processing.

3. Security Clearance Processing

0048 FIG. 4 is a block diagram of one embodiment of a
method for security clearance processing. The SCU 24
obtains information from the request register 42 on the
request for service through a token 44. Generally, tokens 44
contain security clearance requirements of PDC in the form
of information and/or procedures. For example, tokens 44
may contain the licensing information regarding the specific
application, password authentication procedures, instruc
tions regarding the copying and/or dissemination of data,
special clearance needs required before the execution of the
program is allowed and/or other similar information. Addi
tionally, tokens 44 may contain PDCs requiring execution.
0049. The SCU 24 receives information from a specific
token 44a. The specific token 44a stores information related
to the request for service. The SCU 24 determines whether all
of the procedures outlined in the token 44a are met. For
example, if the token 44a contains specific information
regarding a password, the SCU 24 determines whether the
password has been authenticated.
0050. Once all of the procedures outlined in the token 44a
are met, the SCU 24 provides the service request to a cleared
request stack 46. If any of the procedures as outlined in the

Nov. 27, 2008

token 44 are not satisfied, the SCU 24 provides the request for
service to a denied request stack 48. If additional procedures
as outlined in the token 44 require further processing, the
SCU 24 provides the request for service to a pending request
Stack 50.
0051. Once the SCU 24 provides the request for service to
either the cleared request stack 46, the denied request stack
48, or the pending request stack 50, the SCU 24 may provide
a signal to the DPU 12 regarding the status of the request for
service. The DPU 12 receives the status signal and dispatches
at least one message indicating the status of the request for
service to the Source that initially requested service.
0052. If the request for service is placed in the cleared
request stack 46, the DPU 12 provides the request for service
into an execution register 52 and signals the CPU 26 to
process the request for service as illustrated in FIG. 5.

4. Data Processing/Output Processing

0053 FIG. 5 is a block diagram of one embodiment of a
method for providing data and output processing. Generally,
the CPU 26 receives the request for service from the execu
tion register 52 and signals the DMU 14 to retrieve the
required PDC 54. The PDC 54 may be on the cleared request
stack 46 (not illustrated in FIG. 5) or the PDC may be stored
within the system memory (not illustrated in FIG. 5).
0054 The DMU 14 retrieves the token 44a and processes
the token 44a by placing a time stamp on the token 44a.
tagging the token 44a as “before copy,” and/or other similar
processing techniques known within the art. The DMU 14
stores the token 44 in the main memory of the PDC 54 as part
of user data.
0055. The PDC 54 is then sent by the DMU 14 to the C/D
Pump 16, or similar pump, capable of decompressing the
PDC 54 from its compressed format. Decompressing the
PDC 54 will expand the PDC 54 to provide the program and
associated data in a decompressed format. The C/D Pump 16
places the decompressed program and data information in the
main memory of the spinner 10 at a location requested by the
DMU 14. The C/D Pump 16 then signals the CPU 26 to
commence execution of the decompressed program and oper
ate on the decompressed data.
0056. As the program execution continues, the CPU 26
and the ALU 28 generate statistics 56 on the progress of the
program to monitor program execution. Such statistics 56
may include information on whether the request for memory
has exceeded a certain threshold, if the program is in a loop,
and/or other similar information. Based on these statistics 56,
a signal may be sent by the DPU 12 in order to disable the
CPU 26 and/or ALU 28 and terminate execution of the pro
gram if needed.
0057. At the termination of program execution, the CPU
26 signals the C/D Pump 16 to recompress the program and
data into the PDC 54 format. The CPU 26 may also instruct
the C/D Pump 16 to create an “after copy’ of the token 44a
with the resulting PDC attached. The “after copy’ of the token
44a is associated with the “before copy’ of the token 44a and
stored in the main memory of the spinner 10 as part of the user
data. If output was requested and cleared at the termination of
the program execution, the output may be provided to an
output request stack 58 in the form of the “after copy’ of the
token 44a.
0058. The CPU 26 then signals the DPU 12 that program
execution is complete. At this point, the DPU 12 directs the
OPU 30 to process the output derived from the program

US 2008/0294669 A1

execution. Output may be processed by the OPU 30 accord
ing to security clearance restraints instructed within the token
44a and provided to external devices 60 such as a parallel
port, USB port or serial port for transmission purposes.
0059 Data processing and output processing are repeated
for every request for service on the cleared request stack 46.
When all such requests for service on the cleared request
stack 46 have been processed, the spinner 10 goes into a wait
state until additional requests are available to be serviced.

5. Power Down Sequence

0060 FIG. 6 is a block diagram of one embodiment of a
method for providing power down processing. Generally, the
DPU 12 disables various components of the spinner 10 and
signals the DMU 14 to initiate a shut down of the components
within the spinner 10.
0061 The DMU 14 sends a signal request to the C/D Pump
16 to compress the operating system 32 and user data 34
within the main memory. As previously discussed, user data
consists of tokens 44 stored in the main memory 62 of the
spinner system 10 may include the “before copy' and the
“after copy.” The operating system 32 and the user data may
be compressed together or compressed separately as needed
for storage within the kernel 18.
0062. During the power down sequence, the C/D Pump 16
consolidates information into an archived operating system
32a and archived user data 34a to provide back-up copies of
the operating system 32 and user data 34. Generally, the
archives 32a and 34a would normally be stored in a non
Volatile memory (e.g. hard drive or flash memory) device as
back up in case the operating system and user data are dam
aged or lost.
0063. From the above description, it is clear that the
present invention is well adapted to carry out the objects and
to attain the advantages mentioned herein, as well as those
inherent in the invention. Although the foregoing invention
has been described in some detail by way of illustration and
example, it will be apparent to those skilled in the art that
certain changes and modifications may be practiced without
departing from the spirit and scope of the present invention, as

Nov. 27, 2008

described herein. Thus, the present invention is not intended
to be limited to the embodiments shown, but is to be accorded
the widest scope consistent with the principles and features
described herein.
What is claimed is:
1. A method for securing at least one program application

and data associated with the program application, compris
ing:

compressing the program application and data associated
with the program application into a program-data com
bine having a compressed format;

the program application being adapted to only operate on
the data associated with the program application;

storing the program-data combine on a program-data com
bine computer.

2. The method of claim 1, further comprising the step of:
transmitting the program-data combine from the program

data combine computer to an external computer, the
external computer storing and transmitting the program
data combine in the compressed format.

3. The method of claim 2, further comprising the steps of:
decompressing, by the external computer, the program

data combine to enable the program application to oper
ate on the associated data in a decompressed State; and,

recompressing, by the external computer, the program
application and the associated data to provide a modified
program-data combine distinct from the original pro
gram data combine for storage and transmission.

4. The method of claim 2, further comprising the step of:
validating the program-data combine by identifying at

least one security feature compressed within the associ
ated program-data combine.

5. The method of claim 4, wherein the security feature is a
time stamp identifying the before and after execution of the
program by the external computer.

6. The method of claim 5, further comprising the step of
storing the program-data combine within a kernel, wherein

the program and the associated data are compressed and
stored as separate entities within the kernel.

c c c c c

