INTEIN-MEDIATED PROTEIN PURIFICATION USING IN VIVO EXPRESSION OF AN AGGREGATOR PROTEIN

Inventors: David W. Wood, Princeton, NJ (US); Mahmoud R. Banki, Princeton, NJ (US); Tillman U. Gerungross, Hanover, NH (US)

Correspondence Address:
CONNOLLY BOVE LODGE & HUTZ, LLP
P O BOX 2207
WILMINGTON, DE 19899 (US)

Appl. No.: 11/274,254
Filed: Nov. 16, 2005

Related U.S. Application Data
Provisional application No. 60/628,443, filed on Nov. 16, 2004. Provisional application No. 60/647,339, filed on Jan. 26, 2005. Provisional application No. 60/661,559, filed on Mar. 14, 2005.

Publication Classification
Int. Cl. C12P 21/06 (2006.01)
 C07H 21/04 (2006.01)
 C12P 7/62 (2006.01)
 C12N 9/18 (2006.01)
 C12N 1/21 (2006.01)
 C12N 15/74 (2006.01)

U.S. Cl. 435/69.1; 435/197; 435/252.33; 435/488; 536/23.2; 435/135

ABSTRACT
Purification of recombinant proteins is performed by expressing in a host cell a fusion protein comprising: (a) a product protein domain, (b) an intein, and (c) at least one aggregator protein domain, wherein the aggregator protein domain comprises a protein that is capable of specific association with granules of polyhydroxyalkanoate (PHA).
Phasin - intein-product protein plasmid PHB synthesis genes PHB in E.coli: transmission Electron Micrograph (TEM) image (Maehara et al. 1999)

FIGURE 1
FIGURE 3

pET21(+) / PPIM

(8253 bp)
pET21(+) / PPPIM

FIGURE 4
FIGURE 5

Scanning electron micrographs (SEM) images showing PHB granule synthesis in BLR (DE3) and XL1-Blue strains.
FIGURE 6
FIGURE 8

A

B

C

FIGURE 8
INTEIN-MEDIATED PROTEIN PURIFICATION USING IN VIVO EXPRESSION OF AN AGGREGATOR PROTEIN

CROSS REFERENCE TO RELATED APPLICATIONS

[0001] This application asserts priority to U.S. Provisional Application Nos. 60/628,443 filed Nov. 16, 2004, 60/647, 339 filed Jan. 26, 2005, and 60/661,559 filed Mar. 14, 2005, each of which is incorporated herein by reference in its entirety.

GOVERNMENT LICENSE RIGHTS

[0002] The U.S. Government may have certain rights in this invention as provided for by the terms of grant W911NF-04-1-0056 awarded by the Army Research Office, grant 2000-DT-CX-K001(S-1) awarded by the Department of Justice, grant 60NANB 1 D0064 awarded by the National Institute of Standards and Technology, and grant DAAD 19-00 awarded by the Army Research Office.

FIELD OF THE INVENTION

[0003] The invention is directed generally to methods and compositions for purification of recombinant proteins. More particularly the invention is directed to a method for bio-separation using a fusion protein comprising the desired protein, a self-cleaving intein, and a tag. The fusion protein is associated with a non-soluble cell component through the tag. The non-soluble components are then separated from the soluble components of the cell culture system and optionally washed. The fusion protein is then cleaved by activating the self-cleaving intein. This releases the desired product protein into solution where it can be recovered independent of the intein and tag.

[0004] In a preferred method of the invention, the host cell produces the desired protein and the proteins needed to purify it.

BACKGROUND OF THE INVENTION

[0005] Advances in protein expression systems have made possible the production of virtually any oligopeptide or polypeptide product. After expression, however, these products must often be purified for further use. Thus the rapid and economical purification of recombinant proteins represents a persistent challenge in the field of biotechnology. Protein purification typically involves several chromographic steps, each optimized for each product protein. Each step can be costly and time-consuming, and inevitably decreases the final yield of the product. In the large-scale manufacture of recombinant proteins for industrial and therapeutic use, downstream purification is very costly and can account for up to 80% of the total production cost. The development of simple and reliable methods for protein purification, which can be applied to many products at laboratory to manufacturing scales, is therefore an important goal in bioseparations technology development.

[0006] The purification of protein may be obtained by the addition of an affinity tag nucleic acid sequence to a nucleic acid sequence which encodes a target protein. LaVillie et al., Biotechnology 6:501-506 (1995). This process results in the expression of an affinity-tagged target protein that can be purified by exploiting the highly selective binding characteristics of the tag. Once the affinity-tagged target protein is purified, the tag can be enzymatically removed by hydrolysis with an appropriate protease enzyme. Recovery of a native target protein, which is often necessary for many applications, requires the proteolytic removal of the affinity tag. The potential of this technique for use in large scale production is limited in part by complications arising from the addition of protease to the purified fusion protein solution. The protease may cause nonspecific cleavage within the target protein, leading to the destruction of the target protein. A second disadvantage is cost, as protease is expensive. Particularly for industrial applications, protease cost may be a determining factor in selecting a separation system. Also, the addition of protease necessitates an additional purification step for protease removal, which increases costs.

[0007] Another method for protein purification involves the creation of a fusion protein in which an intein is inserted between the desired product protein and an affinity binding protein, effectively generating a self-cleaving tag. Discovere in 1990, inteins are naturally occurring internal interruptions in a variety of host proteins. Hirata et al., J. Biol. Chem. 265:6726-6733 (1990); Kan et al., Science 250:651-657 (1990); Perler et al., Nucl. Acids Res. 22:1125-1127 (1994); and Noren et al., Angew. Chem. Int. Ed. 39:450-466 (2000). Inteins are a widely-distributed class of self-splicing protein elements. Protein splicing is a form of posttranslational processing that involves the excision of an intervening protein sequence from a host protein. Concomitantly the flanking polypeptides are joined. The intervening protein sequence is known as an intein, while the flanking sequences are called exteins.

[0008] Structural analysis suggests that inteins are generally composed of an endonuclease protein domain and a self-splicing mini-intein domain. The endonuclease domain is not necessary for splicing. Indeed, the endonuclease domain can be deleted to yield a functional splicing mini-intein. One example of a mini-intein is the deletion of the entire endonuclease component from the Mycobacterium tuberculosis recA gene, which reduces the 440 amino acid intein to a functional mini-intein of 168 amino acids.

[0009] The genetic elements that encode inteins must be in-frame insertions in a gene with the mature protein product being the same size as the homologs lacking the intein insertion. In addition, the presence of specific splice junctions is necessary. The requisite splice junctions for inteins are serine (Ser, S), threonine (Thr, T) or cysteine (Cys, C) at the intein N-terminus and the dipeptide histidine-asparagine (His-Asn, H—N) or histidine-glutamine (His-Gln, H-Q) at the C-terminus. Ser, Thr, Cys and Asn are necessary residues in the splicing mechanism, and act as nucleophiles to create an N—S or N—O acyl rearrangement, depending on the residue. This forms a linear thioester or ester intermediate. Extein ligation follows, mediated by the highly conserved cysteine, serine or threonine immediately following the intein. Acting as a nucleophile, the sidechain of this residue attacks the ester bond formed in the first step, resulting in transesterification. A branched intermediate is formed. Next, the intein is released when the asparagines at the end of the intein cyclize to form a succinimide. Lastly, an O—N or S—N acyl rearrangement converts the ester linking the exteins to a peptide bond.

[0010] Intein function can be modified. For example, a modified intein cleaves instead of splices. Specifically, when
an inteins’ N-terminal Cys is replaced with an Ala, N-terminal cleaving and splicing is eliminated with C-terminal cleavage observed. Replacing the Asn in the C-terminal with Ala stops C-terminal cleavage and splicing and results in N-terminal cleavage. Other conditions result in cleavages at both the N- and C-terminals, in place of splicing. In the case of C-terminus cleaving, the requirement for a cysteine, serine or threonine immediately following the intein is eliminated.

[0011] Thus blocking certain splicing steps permitted the development of self-cleaving affinity tags. Wood and coworkers used the Mycobacterium tuberculosis (Mtu) RecA intein for protein purification with C-terminal cleavage of the target protein. *Biotechnol Prog* 16(6): 1055-63 (2000). Wood and colleagues also characterized Mtu inteins with the endonuclease domain deleted, creating mini inteins. Furthermore, they were able to create mutated rapid-splicing and cleaving varieties. Characterization showed that the mini-cleaving intein ΔI—CM was very useful for protein purification. Wood et al., *Nature Biotechnol.* 17(9):889-92 (1999).

[0012] Chong and colleagues developed a single-column purification system using the vacuum ATPase intein subunit of *Saccharomyces cerevisiae* (See VMA intein). *Nucleic Acids Res* 26(22): 5109-15 (1998). In each case, the intein was inserted in between the affinity binding protein and the product gene. Cells were induced to overexpress precursor protein followed by conventional purification with affinity binding domains. In both cases, the product protein can then be cleaved from the intein affinity tag while on the column, allowing the recovery of the product protein without addition of protease. With the Mtu intein system, the intein cleaving is induced by shifting pH and temperatures. With the Sce intein system, intein cleaving is induced by mass action by the addition of thiol-containing compounds. Additional systems have now been reported that use similar strategies to both systems for inducing intein cleaving. Southworth et al., *Biotechniques* 27:110-20 (1999).

[0013] A remaining practical limitation to the use of self-cleaving affinity tags is the high cost of the affinity resins that are typically used in these separations. Also, the affinity resins often used with inteins have low binding capacity for the tagged fusion proteins, resulting in yield loss.

[0014] Applicants have discovered a protein separation system that involves the use of polyhydroxylalkanoates (PHA). PHAs form granular inclusion bodies in many bacteria and may be intracellular aliphatic carbon storage reserves. The PHA polymer consists of repeating units with the general form —[O—CH(R)(CH₂)₃]—CO₂—, the most common of which is polyhydroxybutyrate (PHB) —[O—CH(CH₃)₂]—CO₂—. PHB polymer granules have been produced in a wide variety of protein expression systems through simple genetic modification. These systems include many bacterial and yeast systems, including *Escherichtia coli* (Fidler et al., *FEMS Microbiol. Rev* 9: 231-235 (1992)) and *Saccharomyces cerevisiae* (Leaf et al., *Microbiology* 142(pt5): 1169-1180 (1996)), as well as transgenic plant cells (John et al., *Proc. Natl. Acad. Sci. U.S.A.* 93: 12768-12773 (1996); Hahn et al., *Biotechnol. Prog.* 15: 1053-1057 (1999)). The macroscopic size and relatively high density of the granules allows them to be easily recovered by a variety of mechanical means following cell lysis.

SUMMARY OF THE INVENTION

[0015] The invention is directed generally to a rapid and highly effective method for preparing substantially purified recombinant protein. The method is highly scalable and relatively inexpensive. The invention is also directed to fusion proteins, plasmids, cells and compositions useful in the method.

[0016] The invention avoids the disadvantages of prior art affinity purification because no separate proteases need be used. Furthermore, the present technology avoids harsh chemical environments. The present invention further eliminates the requirement for conventional affinity tags as well as associated resins and apparatus. The present technology is useful for the expression and extraction of a wide range of proteins. The present invention will permit high quality, low cost preparations of isolated and purified proteins for laboratory and industrial use, such as for purification of industrial enzymes, veterinary products and pharmaceutical products.

[0017] In one aspect the invention is directed to a fusion protein comprising a product protein domain, a self-cleaving intein, and at least one aggregator protein domain, wherein the aggregator protein domain comprises a protein that is capable of specific association with granules of polyhydroxylalkanoate (PHA). The intein is located between the product protein domain and the aggregator protein domain. The aggregator protein domain may be one or more phasins that associate with PHA. If it is more than one phasin, the phasins may be linked by an amino acid linker.

[0018] In one embodiment, the product protein domain, the intein, and the aggregator protein domain are encoded by a single open reading frame in a nucleotide. In another embodiment, a linker peptide is linked to at least one aggregator protein domain.

[0019] The invention also is directed to nucleic acids encoding the fusion proteins of the invention, plasmids comprising the nucleic acids, cells stably transfected with the nucleic acids, and methods of producing the fusion proteins by culturing the cells.

[0020] In another embodiment, the invention is directed to methods of purifying a product protein from a recombinant cell culture comprising:

[0021] (a) recombinantly producing the fusion protein comprising an aggregator domain comprising at least one phasin and endogenously or through recombinant transfection of phasin genes producing polyhydroxylalkanoates in the same host cell;

[0022] (b) allowing the fusion protein and the polyhydroxylalkanoate to leave the host cell either by cell secretion or cell lysis, independently of one another;

[0023] (c) allowing the fusion protein to aggregate with the polyhydroxylalkanoate to form a first precipitate;

[0024] (d) separating the first precipitate from unprecipitated components of the cell culture medium;

[0025] (e) adding water to the first precipitate to form an aqueous precipitate mixture and adjusting one or more conditions of pH, temperature, salt concentration and/or sulfhydryl content of the aqueous precipitate mixture such that the intein self-cleaves from the product protein.
tein to form a phasin-intein fusion that remains aggregated with the polyhydroxylalkanoate precipitate and a separated product protein that goes into solution; and

[0026] (f) separating the solution of separated product protein from the phasin-intein precipitate to yield a substantially purified protein.

[0027] The invention also comprises the protein product isolated by the method of the invention.

BRIEF DESCRIPTION OF THE FIGURES

[0028] FIG. 1 illustrates conventional affinity-based protein purification (A) and protein purification using an intein sequence and a PHB affinity tag (B).

[0029] FIG. 2 illustrates the purification of Green Fluorescent Protein expressed in _R. eutropha_ using a PHB affinity based purification method.

[0030] FIG. 3 is a vector map of pET21(+)/PPPM. The DNA construct for the phasin-phasin-intein-maltose binding domain is shown. Key restriction enzymes which can be used for cloning are also shown. This is an expression vector under a T7 promoter.

[0031] FIG. 4 is a vector map for pET21(+)/PPPM. The DNA construct for the phasin-phasin-intein-maltose binding domain is shown. Key restriction enzymes which can be used for cloning are also shown. This is an expression vector under a T7 promoter.

[0032] FIG. 5 illustrates scanning electron micrographs of PHB granule formation in _E. coli_; (A) BLR strain carrying pJM9131, (B) BLR strain carrying a control plasmid, (C) BLR strain carrying pJM9131 plasmid in lactate-supplemented medium, and (D) XL-1-Blue strain carrying pJM9131 plasmid in lactate-supplemented medium.

[0033] FIG. 6 illustrates SDS-PAGE results for phasin affinity to PHB.

[0034] FIG. 7 illustrates SDS-PAGE showing the purification of maltose-binding protein (denoted as M in FIG. 7).

[0035] FIG. 8 illustrates the purification of (a) _β_-galactosidase (β-gal), (b) chloramphenicol acetyltransferase (CAT), and (c) Nus A protein.

DETAILED DESCRIPTION OF THE INVENTION

[0036] The present invention is envisioned to be used to purify any full size protein, polypeptide or oligo-peptide. As used herein “protein” and “polypeptide” are synonymous. More specifically, the product proteins include, but are not limited to, regulatory factors such as hormones and cytokines; therapeutic polypeptides such as blood products (including coagulation factors), vaccines, and growth hormones; enzymes useful for industrial application such as proteases; remediation enzymes such as organo phosphohydrolases; nucleic acid restriction enzymes; starch hydrolases for mono- and oligo-saccharide manufacture; and antibodies for diagnostic and therapeutic applications. Further, the system can be used in high throughput screening for the parallel purification of large libraries for research purposes. These might include proteomic studies as well as directed evolution and novel enzyme identification studies.

[0037] The fusion proteins of the present invention are proteins encoded by multiple in-frame nucleic acid sequences each directed to different protein domains or other copies of the same protein.

[0038] In the invention, an intein is used between the product protein domain and the aggregator protein domain as a readily cleavable element that can be used to release the product protein from the fusion protein after purification steps are performed. The inteins used in the present invention are self-cleaving elements in which cleavage can be controlled by pH, temperature, salt concentration, free sulfhydryl concentration and other means that do not involve contact of the intein with an external protease. Intein self-cleavage can be induced by a trigger specific to the intein.

Common triggers include addition of a reducing agent such as a thiol and a decrease in pH, for example, from pH 8.5 to 6.0. In one embodiment of the invention, the fusion protein has an intein bound to the product protein at the C-terminus of the intein. In such a fusion protein, intein self-cleavage is desired at the C-terminus, which can be accomplished by change in pH and/or temperature typically. In another embodiment of the invention, the fusion protein has the intein bound to the product protein at the N-terminus of the intein. In this instance, intein self-cleavage is desired at the N-terminus, which may be accomplished by altering the free sulfhydryl concentration.

[0039] Preferred are so-called “mini-inteins” in which the endonuclease domain has been deleted, rendering the intein smaller yet still capable of self-cleavage. Examples of such inteins are the pH-sensitive mutant inteins described in Wood et al. _Nature Biotechnology_ 17: 889-892 (1999). Particularly useful is Δ—I—CM intein disclosed therein. The Δ—I—CM intein is encoded by the sequence found at SEQ ID NO: 1. A key feature of the Δ—I—CM mutant is its extreme pHI sensitivity, which allows purification of intact precursor followed by rapid C-terminal cleavage. Other useful inteins are found in U.S. Pat. No. 6,933,362 (Belfort et al.). Examples of a useful intein is an intein derived from _Mycobacterium tuberculosis_ (Mtu) recA intein that has only the first 110 amino acids and the last 58 amino acids of that 441-amino acid protein and mutants derived therefrom using methods known in the art. Such an intein is a truncated Mtu recA intein with the endonuclease domain deleted.

[0040] Preferred inteins for the present invention display rapid cleavage isolated at either the C-terminal or the N-terminal, more preferably at the C-terminal, and are highly controllable. The cleavage preferably is completed (about 90-95%) in four hours or less at 4° C. or in only minutes at higher temperatures, which allows for easy scaleup. In one embodiment, the inteins used in the invention display a strong dependence on temperature, allowing uncleaved precursor to be expressed in host cells for purification as long as the temperature is below the cleavage temperature of the intein. Preferably, the self-cleaving intein yields optimized controllable cleavage rather than splicing. Furthermore, the intein should be as small as possible for this strategy to be attractive for scaleup. Preferred inteins exhibit a 20- to 40-fold increase in activity between pH 8.5 and 6.0. These pH values are relatively mild, decreasing the potential for damage to the product protein due to pH-induced denaturation, and thus allowing the recovery of pure protein with minimal damage. This small
pH change also decreases the possibility that the binding domain will lose affinity during cleavage.

[0041] Preferably, the intein used allows for self-cleavage that releases the product protein in its native form. An example of such an intein is the C-terminal cleaving ΔI—CM. Other fusion proteins may be used in which self-cleavage of the intein results in modifications to the product protein requiring additional processing to obtain the product protein in native form. For example, in the configuration where the product protein is released by N-terminal cleavage, the cleavage reaction may require the addition of thiol containing compounds that modify the C-terminus of the product protein. Native protein is recovered only after subsequent hydrolysis of the cleavage-inducing reagent. Chong et al., J. Biol. Chem. 272:15587-15590 (1997).

[0042] Most preferred inteins are mini-inteins that display rapid, isolated C-terminal cleavage and are pH-sensitive. Such inteins obviate the need for reducing reagents and additional purification steps required for other inteins, such as the N-terminal cleaving inteins discussed supra, and have advantageous size and stability characteristics.

[0043] Useful inteins for the present invention include those that have a C-terminal histidine-asparagine. The fusion protein of the invention includes a product protein and an intein, wherein the C-terminal histidine or asparagine histidine-asparagine of the intein is immediately followed by the second amino acid of the desired product protein. The second amino acid of the desired product protein can be lysine. The presence of the penultimate C-terminal histidine residue may confer pH sensitivity. Thus, it may be advantageous that the C-terminal histidine be present. Preferably the C-terminal asparagine is present for cleavage activity. More particularly, without necessarily wishing to be bound by any one particular theory, it is believed that the mechanism of intein cleavage requires that the final residue of the intein be asparagine (not histidine). The C-terminal histidine referred to herein can be the highly conserved histidine that immediately precedes the final asparagine. If the C-terminal histidine of the intein is immediately followed by the desired product protein and there is no asparagine residue at the final intein residue, then cleavage may not always be possible. The mention herein of a dipeptide at the end of the intein sequence can be interpreted as “Z-asparagine,” to show that the final asparagine residue of the intein is advantageously present for any cleavage, while the histidine residue that precedes it is thought to be responsible for the pH sensitivity of the intein, i.e., “Z” can be histidine. However, “Z” can be any suitable amino acid, such as an amino acid that confers pH sensitivity, e.g., pH sensitivity outside of the range of when “Z” is histidine; for instance, to shift the range of pH sensitivity of the intein.

[0044] In the present invention, the aggregator protein domain provides a protein region that is capable of or associating with an insoluble PHA granule to form a complex having low solubility. In this manner, the aggregator protein domain provides a mechanism to separate the fusion protein from the cell lysate or cell culture medium by phase. Chromatography is not required for purification, although it is envisioned that when very high purity is required, the purification method of the present invention may be followed by additional downstream purification steps.

[0045] In one embodiment, the aggregator protein domain comprises one or more phasins. In this embodiment of the invention, the phasins are capable of binding to a PHA. The many different PHAs that have been identified to date are primarily linear, head-to-tail polyesters that are composed of 3-hydroxy fatty acid monomers. Preferred PHAs for the present invention are PHB or the copolymer poly(3-hydroxy-butyrate-co-3-hydroxyvalerate) (PHB-co-V), preferably PHB. The method of the invention then involves the presence of a PHA, such as PHB, in the purification system such that the phasin element of the fusion protein can bind to the PHA granules and thereby remove the fusion protein from solution. The fusion protein binds to PHA granules through the phasin domain and is then separated from the cell lysate by centrifugation and separation of the supernatant, by diafiltration using ultrafiltration membranes, by flocculation, gas bubbling, or other methods known to those skilled in the art for separating solid and liquid phases.

[0046] The PHA may be produced recombinantly by transfection of the host cell that expresses the fusion protein of the invention with one or more nucleic acids encoding for the proteins involved in cellular biosynthesis of PHA. For example, the genes involved in the biosynthesis of PHB by A. eutrophus have been cloned and expressed in E. coli. Anderson et al., Microbial Reviews 54:450-472, 459 (December 1990). Such a system can be used in the host cells of the present invention. Alternatively, the PHA may be endogenously produced by the host cell. In another embodiment, PHA produced by a different cell or chemically produced is added to the host cell or the cell lysate after fusion protein expression. Sufficient PHA preferably is present to provide for association with all of the phasins in the fusion protein present in the solution.

[0047] The PHA granules are structures having low aqueous solubility formed by the aggregation of the polyester product formed from acetyl CoA by the action of Pha A protein (α-ketoisovaleralase, phaA), Pha B protein (a sterosepecific reductase, phaB), and Pha C protein (PHA synthase, phaC).

[0048] Linkers may be present in the fusion proteins. Preferred linkers are short, flexible polypeptide domains that allow for the aggregator protein domain or domains to have some conformational flexibility from the product protein domain and thereby encourage aggregation by allowing for the necessary physical conformation to be obtained. The linkers are also found within the aggregator protein domain connecting multiple phasins. Two preferred linkers have the amino acid sequences identified as SEQ ID Nos: 2 and 3. One particular example of a fusion protein is phasin-phasin-phasin-interin-maltose binding domain, in which three phasin protein domains are linked by polypeptide linkers, in which the C terminus of one phasin is linked to the N terminus of an intein and in which the C terminus of the intein is linked to a maltose binding domain. In each case, the various domains of the fusion protein are separated by flexible linkers allowing them to function independently. The exception is that very preferably the C-terminus of the intein is joined directly to the N-terminus of the target protein to allow a native target protein to be recovered following intein cleaving. If the C-terminus of the intein is attached to a linker polypeptide that is then attached to the product protein, additional purification steps may be required after intein cleavage to obtain substantially purified product protein. Although linkers may be used, the invention is not limited to fusion proteins containing linkers. For example,
the intein can be contiguous with an aggregator protein domain and the product protein domain.

[0049] One advantage of the invention is that it can be used with many different types of host cells. For instance, it is envisioned that the purification system can be used with a prokaryotic cell or a eukaryotic cell. Preferably, the host cell is a bacterial cell, a fungal cell, a mammalian cell, an insect cell, a yeast cell, or a plant cell.

[0050] When the fusion protein comprises one or more phasins, then it is preferred that the host cell comprises both the nucleic acid encoding the phasins and also further comprises nucleic acid encoding the three enzymes needed for PHA synthesis: phaA, phaB, and phaC. These enzymes may be endogenously present, or the host cell may be transfected stably or transiently with a plasmid containing the genes for these enzymes. The host cell may be transformed into its chromosomal DNA with the genes encoding phaA, phaB and phaC. In another aspect, the invention comprises a protein expression system comprising a host cell comprising: (a) a nucleic acid plasmid encoding the fusion product of a product protein, an intein and a phasin domain; and (b) a second nucleic acid plasmid encoding a protein useful in the biosynthetic pathway for polyhydroxyalkanoate, preferably for polyhydroxybutyrate.

[0051] The plasmid of the invention comprises a nucleotide sequence encoding the fusion protein of the invention. The plasmid can further comprise a promoter sequence, an antibiotic resistance sequence, restriction sites and other elements known in the art that improve the functionality of the plasmid. Preferred is the use of the leaky promoter 17 RNA polymerase such as is described in U.S. Pat. No. 4,952,496.

[0052] The invention also relates to a method of purifying a protein comprising isolating the fusion product of the invention from other components of the cell lysate. When the aggregator protein domain comprises a phasin, the fusion protein can be separated from the cell lysate by allowing the fusion protein to associate with a PHA and then isolating the fusion protein/PHA by centrifugation, filtration such as cross-flow-diafiltration, or other means known in the art. In a particular embodiment, the diafiltration uses nanoporous membranes.

[0053] In another aspect the invention comprises using the method in a robotic system to purify protein libraries for screening. The purification system of the present invention can be highly automated and thus is suitable for high through-put screening.

EXAMPLES

Example 1

A General Purification Scheme Using PHBs

Introduction

[0054] We describe here a protein purification scheme in which the cell produces its own “biological affinity matrix,” thereby eliminating the need for external chromatographic protein purification. This approach is based on the specific interaction of phasin proteins with granules of PHB.

[0055] An embodiment of the method of the invention can be compared to conventional means of affinity-based protein purification. See FIG. 1. FIG. 1A illustrates conventional affinity-based protein purification: Cells containing a plasmid for expression of the affinity tag-product protein fusion are induced and harvested. The cell pellet is resuspended, lysed and passed over an affinity resin (1A). The column is then washed to rinse away impurities (2A). The fusion protein is retrieved from the column by addition of excess affinity tag or a displacing substitute. Furthermore, a protease is typically added to cleave off the product protein from the affinity tag (3A). A separation step (4A) salvages the proteases and separates the product protein.

[0056] FIG. 1B illustrates the PHB-intein method of affinity-based protein purification: Cells containing two plasmids, one for biosynthesis of PHB granules and another for expression of the phasin-intein tagged product protein, are grown to produce PHB and express the fusion protein. Harvested cells are lysed and centrifuged to separate soluble components (1B). The insoluble PHB granules with the PHB-bound fusion protein fusion are washed and resuspended in a cleavage-inducing buffer for release of the product protein (2B). A final centrifugation separates the PHB granules and associated proteins from the cleaved product protein, leaving only the product protein in the soluble fraction (3B). The cleavage-inducing conditions are tailored to the intein used. Typical conditions are selected from pH shift, a thiol-containing solution, a temperature shift, or combinations of such conditions.

Example 2

PHB Purification of GFP

Introduction

[0057] By creating in-frame fusions of phasins and green fluorescent protein (GFP) as a model protein, we discovered that GFP can be efficiently sequestered to the surface of PHB granules. In a second step, we generated a phasin-intein-GFP fusion in which the self-cleaving intein was activated by the addition of thiol. This construct allowed for the controlled expression, binding and release of essentially pure GFP in a single separation step.

[0058] A protein expression platform based on the Gram-negative bacterium, Ralstonia eutropha is a useful alternative to recombinant protein expression in Escherichia coli.

[0059] This example uses the natural ability of R. eutropha to produce PHB, which accumulates as insoluble granules within the cell.

[0060] Phasins encoded by the phaP gene (SEQ ID NO:4) accumulate during PHB synthesis, bind to PHB granules and promote further PHB synthesis. Some deletion mutants of phaP form only one large PHB granule. Moreover, up regulating the phaP gene increases the number of PHB granules while reducing their size. Phasins accumulate at high levels in cells that naturally produce PHB, and as much as 5% of total cellular protein can be phasin. Phasins have high affinity for PHB granules, and are the predominant protein present on the granule surface.

[0061] The Mxe GyrA intein is a 198 a.a. polypeptide, which has been modified for N-terminal cleavage activity in
the presence of thiols. (SEQ ID NO:5) This intein was incorporated into a PhaP-linker-intein-GFP fusion. (SEQ ID NO:6) We were able to show (1) the expression of a PhaP-intein-GFP fusion protein, (2) its sequestration to PHB granules, and (3) the subsequent release of GFP from the PHB granule by treating the cell debris with diithiothreitol (DTT). R. eutropha recombinant strains were generated according to known methods. Srinivasan et al., Appl. Environ. Microbiol. 68: 5925-5932 (2002); Srinivasan et al., Biotech Bioeng. 84: 114-120 (2003).

Methods of Expression in R. eutropha

[0062] Plasmid construction. All PCR products were subcloned into pCR 2.1 -TOPO (Invitrogen) and sequence verified. pKnock-Cm is a suicide plasmid, conferring chloramphenicol resistance, used for introducing genes into the R. eutropha chromosome. The phaP promoter from pUCPcm was cloned into pKnock-Cm, yielding pGB27. The gfpmt2 gene, a mutant form of a gene that encodes GFP, was PCR amplified from pGY14+ and cloned into pKnock-Cm, yielding plasmid G. A phaP ORF-gfpmt2 ORF translational fusion was constructed by overlap PCR and cloned into pCR 2.1 -TOPO. A peptide linker was introduced between the phaP ORF and gfpmt2 ORF during the overlap PCR. The phaP-gfpmt2 translational fusion was cloned into pKnock-Cm and the resulting plasmid designated PG. The Mxe Gyra intein was PCR amplified from pTWIN1 (NEB) and cloned into pCR 2.1 TOPO. The intein was cloned into PG, yielding pIG. The exact amino acid sequence can be verified by the peptide linker between the phaP ORF and the intein in plasmid pIG is (GGGGS)5GGSAPM.

[0063] R. eutropha strain generation. Methods for introducing plasmids into the R. eutropha chromosome are known. Srinivasan et al., supra. In brief, all pKnock-Cm derived plasmids are introduced into E. coli S17 before being transferred into the R. eutropha chromosome by simple biparental mating.

[0064] Fluorescence microscopy. To prepare cells for fluorescence microscopy, cells were transferred from LB agar plates into 200 μL of buffer (PBS) and resuspended thoroughly. This cell suspension (10 μL) was transferred to a single well in a 15-well slide pretreated with 1% poly-L-lysine. Microscopy was carried out using a Leica epifluorescence light microscope. An ORCA-ER-CCD camera (Hamamatsu) and OPENLAB software (Improvision) were used for all image acquisition and processing.

[0065] Sucrose gradient fractionation. Strains were cultured in 50 mL of Lec medium (20 g l sucrose, 3 g/L Na₂HPO₄·7H₂O, 1 g/L KH₂PO₄, 2 g/L NH₄Cl, 0.2 g/L MgSO₄·7H₂O, 2.4 mL trace element solution, 1 g/L corn steep liquor) to an approximate OD₆₅₀ of 10. The cultures were centrifuged and the cells resuspended in 2 mL of buffer B1 (20 mM Tris, 500 mM NaCl, 1 mM EDTA, pH 8.5). Cells were sonicated in a Fisher Scientific Sonic Dismembrator 550 in ten pulsed cycles (2 seconds ON, 0.5 second OFF, 30 second duration, 5 minute cooling on ice between cycles). 1 mL of the lysate was loaded onto a sucrose density gradient. The sucrose density gradient consists of nine layered 1 mL fractions of buffer B1 containing 0 to 2M sucrose (0.25M increments). The 10 mL solutions were spun at 15000g for 3 hours. Ten 1 mL fractions were collected with a syringe needle.

Fluorometry. Fluorescence was measured using the Spectra Max Gemini spectrophotometer (Molecular Devices). Excitation and emission wavelengths of 360 nm and 509 nm respectively, were used.

[0066] Intein mediated cleavage. 300 μL of the lysate generated from the sonication was centrifuged, the supernatant discarded and the insoluble pellet retained. The pellet was washed three times by resuspension in 1 mL of buffer B1 followed by centrifugation. The pellet was then resuspended in 500 μL of buffer B2 (buffer B1 containing 40 mM DTT). The pellet was incubated overnight at 37°C. After incubation, the solution was centrifuged and supernatant and pellet retained. The pellet was again washed as described above and resuspended in the original in the original volume (500 μL). Samples were subjected to fluorometry and SDS-PAGE (12% Tris HCl polyacrylamide gel (BioRad), stained with SimplyBlue™ SafeStain (Invitrogen)). R. eutropha G, was generated using plasmid pG, which carries a transcriptional fission between the phaP promoter and the gfpmt2 ORF (phaP::gfp). Plasmid pG is a suicide plasmid and is integrated at the phaP promoter locus of the R. eutropha chromosome. Since integration occurs within the promoter region, the wild type phaP gene remains intact. R. eutropha PG and R. eutropha PIG were generated using plasmids pPG and pPIG respectively. See Table 1. Plasmid pPG contains an in-frame translational fusion between the phaP ORF and gfpmt2 ORF (phaP::gfp). Plasmid pPIG is isogenic to pPG, with the exception of the in-frame insertion of the Mxe Gyra intein between the two genes (phaP::Mxe Gyra intein::gfp). Plasmids pPG and pPIG do not contain the phaP promoter and the phaP ORF serves as the homologous recombination locus. Therefore in R. eutropha PG and R. eutropha PIG, the wild type phaP gene has been replaced by a translational fusion encoding phaP::gfp and phaP::intein::gfp respectively.

<table>
<thead>
<tr>
<th>TABLE 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plasmids used in Example 2</td>
</tr>
<tr>
<td>pKnock-Cm</td>
</tr>
<tr>
<td>pCR2.1-TOPO</td>
</tr>
<tr>
<td>pUCPcm</td>
</tr>
<tr>
<td>pGB27</td>
</tr>
<tr>
<td>pGY14+</td>
</tr>
<tr>
<td>pTWIN1</td>
</tr>
<tr>
<td>pG</td>
</tr>
<tr>
<td>pPG</td>
</tr>
<tr>
<td>pPIG</td>
</tr>
</tbody>
</table>

*Invitrogen
*NEB (Beverly, MA)

[0067] Both fluorescence microscopy and sucrose density gradient fractionation of cell lysates were used to examine localization of GFP in R. eutropha strains. Fluorescence microscopy images show that wild type exhibited no autof-
fluorescence and that GFP is evenly distributed throughout the cell in *R. eutropha* G. Moreover, fluorescent foci are present throughout the cells in *R. eutropha* PG and *R. eutropha* PIG, presumably where GFP is localized on the surface of PHB granules.

[0068] Sucrose density gradient fractionation of cell lysates was performed to further examine GFP localization. *R. eutropha* strains were cultivated in Lee medium, a phosphate limited growth medium that induces both PHB formation and transcription of genes under the control of the phaP promoter. Cells were recovered, washed, resuspended in buffer B1 and sonicated. Cell lysates were loaded onto a sucrose gradient (density from 1.02 g/ml to 1.29 g/ml) and equilibrated by centrifugation. PHB granules have a density of approximately 1.20 g/ml and accumulate near the bottom of the sucrose density gradient. In contrast, soluble proteins accumulate in the low density fractions at the top of the sucrose density gradient. A fluorescence spectrophotometer was used to measure the fluorescence of each individual fraction of the sucrose gradient. *R. eutropha* G showed fluorescence predominantly in the top fractions, consistent with fluorescence micrographs that suggest that GFP is present as a soluble protein in the cytoplasm and not localized to PHB granules.

[0069] *R. eutropha* PG and *R. eutropha* PIG showed a strong fluorescent signal in a fraction which coincides with the fraction containing PHB. These results strongly suggest that in *R. eutropha* PG and *R. eutropha* PIG, the GFP is localized to the PHB granules. Some fluorescent signal also appeared in the upper fractions of the *R. eutropha* PG and *R. eutropha* PIG density gradients. Thus PhaP-GFP and PhaP-intein-GFP fusions are localized in vivo to PHB granules. The following demonstrated the release of pure GFP from whole cell debris. Briefly, *R. eutropha* strains were cultivated in Lee medium, harvested, resuspended in buffer B1 and sonicated. The lysate was centrifuged and the supernatant fraction, containing the soluble protein fraction, was discarded. The pellet was washed in buffer B1. To induce intein cleavage, the pellet was resuspended in buffer B2, and incubated overnight at 37°C. The mixture was then centrifuged and the pellet and supernatant fraction both retained. The pellet was again washed with buffer B1.

[0070] FIG. 2 shows intein mediated cleavage of GFP from whole cell debris. *R. eutropha* strains were lysed by sonication, the supernatant discarded and the insoluble pellet containing PHB granules retained. Intein mediated cleavage was activated by incubating the washed pellet overnight in buffer B2 at 37°C. After incubation, the pellet and supernatant fractions were isolated. Panel A) shows the results of Fluorometry. Open bars show the fluorescence of the supernatant fractions. Solid bars denote the fluorescence of the resulting pellet fraction. Panel B) shows sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS PAGE) of fractions. Lane 1 is molecular weight markers. Lanes 2 and 3 are *R. eutropha* wt pellet and supernatant. Lanes 4 and 5 are *R. eutropha* G pellet and supernatant. Lanes 6 and 7 are *R. eutropha* PG pellet and supernatant. Lanes 8 and 9 are *R. eutropha* PIG pellet and supernatant.

[0071] Neither the *R. eutropha* wt pellet nor the corresponding supernatant showed appreciable fluorescence. Similarly, the pellet and supernatant fractions of *R. eutropha* G showed no appreciable fluorescence as expected. As expected, *R. eutropha* PG showed strong fluorescence on the pellet with no appreciable fluorescence present in the supernatant. In contrast, *R. eutropha* PIG showed very strong fluorescence in the supernatant fraction, indicating that GFP had been released from the pellet into the supernatant fraction. Although the bulk of the total fluorescence was present in the supernatant, a small amount of fluorescence remained on the PHB granule.

[0072] The SDS PAGE showed that the whole cell debris for each strain contains numerous proteins. No protein is visible on the gel for the supernatant fractions of *R. eutropha* wt, *R. eutropha* G and *R. eutropha* PG. The PhaP-intein-GFP fusion protein is expected to be 70 kDa in size. If intein mediated cleavage occurs, a protein of 49 kDa, corresponding to an intein-GFP (IG) fusion, should be released. FIG. 2B, lane 9, shows that IG was the only protein present in the supernatant fraction. This observation confirms that intein mediated cleavage, activated by thiol addition, released GFP from the granule in the cell debris of *R. eutropha* PIG.

[0073] Thus, the development an integrated protein expression and purification approach, obviates the need for external chromatography. By replacing the wild type phaP gene with a triple translational fusion (phaP-ORF, MxeGyrA intein and gfpmaf2), we were able to show that the fusion protein can be localized to the PHB granule and separated from the remaining cytosolic protein fraction by centrifugation. In a subsequent step, we were able to release pure GFP by resuspending whole cell debris (insoluble fraction of cell lysate, containing PHB granules) in a buffer containing DTT.

[0074] The single step purification eliminates the need for elaborate and costly protein purification schemes and the undesirable affinity tag (PhaP) remains on the granule. Moreover, adapting the use of inteins eliminates the need for specific endopeptidases, which are routinely used to release recombinant protein from affinity matrices.

[0075] By integrating high-level recombinant protein expression with a simple protein purification step, this system improves upon current technologies for the large-scale production of commodity polypeptides such as enzymes, therapeutic proteins including vaccines, and peptides such as peptide hormones for animal feed.

Example 3

Materials and Methods for E. coli-Based Expression

Bacterial Strains, Constructs, and Standard Genetic Manipulations

[0076] *E. coli* strains XL1-Blue (recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1 lac [F' proAB lacIqZΔM15 Tn10(oriT')]) from Stratagene (La Jolla, Calif.), ER2566 (F' lacIq215-216 F' lacY16lacZΔM15 Tn10(oriT') lacY16) from New England Biolabs (Beverly, Mass.), BL21 (DE3) (F' ompT hsdS (rB mB sB) dcm (DE3)) and BLR (DE3) (F' ompT hsdS (rB mB sB) dcm (DE3)) (A(srt-51)3067::Tn10 (oriT') from Novagen (Madison, Wis.) were used for cloning and expression using standard techniques Sambrook and Russell, *Molecular cloning: a laboratory manual*, 3rd ed., Cold Spring Harbor
Laboratory Press, Cold Spring Harbor, N.Y., 2001. Plasmids pJM9131 (Kan[®]) containing the phaCAB operon for PHB biosynthesis and phaK (Cam[®]) containing the phasin phaP gene were kindly provided by Professor Douglas Dennis (Arizona State University, the West Campus) and are described elsewhere. (Kidwell et al., Appl. Environ. Microbiol., 61: 1391-1398 (1995). Plasmid pET-21l+ (Anp[®]) from Novagen (Madison, Wis.) featuring the T7lac promoter was used for expression and modified by adding a PCR amplified product to include a ribosome binding site and the maltose binding domain (from the pMAL plasmid, New England Biolabs, Beverly, Mass.) between the BamHI and EcoRI sites. After sequence and expression verification for the maltose binding domain (MBD), MBD was replaced by a phasin sequence of SEQ ID NO:4 using Ndel (introduced by the MBD PCR) and EcoRI. The phasin was flanked by this linker sequence: AACAATACAACAACCTCGGGAGTCGGGAAGAGTTACGATC (SEQ ID NO:2). An additional phasin with two flanking Ndel sites was PCR amplified and inserted upstream of the initial phasin. FIG. 3 shows the plasmid vector map for this step. The sequence of the phasin is identified in SEQ ID NO:7. In the case of the triple phasin constructs PCR amplification was again used to generate a third phasin with two flanking EcoRI sites for insertion downstream of the first phasin as shown in the plasmid vector map at FIG. 4 and at SEQ ID NO:8. PCR amplifications were carried out such that the linker sequence mentioned above followed each inserted phasin in the final construct. The mutated and evolved mini-intein from Mycobacterium tuberculosis (Mt) recA was digested out of a previous plasmid pMA1-6-CM (Wood et al., 1999, supra) using EcoRI and BsrGI and was inserted downstream of the phasin sequences (SEQ ID NO:1). The maltose binding domain or other target protein domains, NusA, β-gal, and CAT (SEQ ID NOs:9-12), were PCR amplified flanked by BsrGI and HindIII or NotI and inserted downstream from the intein. The NusA gene came from the pET-43.1 vector available from Novagen (Madison, Wis.). β-gal was PCR amplified from the E. coli chromosome and CAT from the phaK plasmid carrying the Cam[®] gene.

Media, Expression and PHB Generation

[0077] Strains carrying pJM9131 and producing PHB were diluted 100:1 from overnight cultures and grown for 30-hours at 37[°]C (unless otherwise noted) in Luria-Bertani medium (1% Bacto tryptone, 0.5% yeast extract, and 1% NaCl) supplemented with 2% sodium lactate and 50 μg/ml kanamycin. In case of double transformants carrying a modified pET-21 vector expressing a fusion protein (such as pET/PPPP1|M) the media was additionally supplemented with ampicillin (100 μg/ml). All growth steps were carried out in shake flasks or 5 ml-test tubes in a Labline orbital shaker at 300 rpm. Isopropyl-β-D-thiogalactopyranoside (IPTG) was added for inductions and cultures grown for an additional 4 to 8 hours at 37[°]C or 20[°]C as indicated, at which point the cells were harvested by centrifugation (5,000 g, 10 min., 4[°]C.).

Scanning Electron Micrographs

[0078] A previously described method (Doi, *Microbial polymers*, VCH, New York, N.Y., pp. ix, 156 p., 1990) was modified, to the effect that 1 ml samples grown as described above (in LB+2% lactate for 50 hours) were resuspended in 100 μl lysozyme-containing lysis buffer (10 mM Tris-Cl, 10 mM CaCl₂, 0.5 mg/ml lysozyme) before adding 100 μl of an alkaline-SDS solution (0.4M NaOH, 2% SDS). Four 15-second sonications were carried out on ice allowing the samples to cool between sonications. Samples were dried on a carbon tab specimen mounts (Ted Pella) and sputtered with a 2 nm layer of iridium before being examined using a Philips XL30 FEG-SEM under 5 KeV beam.

Purification and SDS-PAGE Analysis

[0079] Harvested cell pellets from 1 ml samples were resuspended in 300 μl modified lysis buffer (20 mM Tris, 20 mM Bis, 50 mM NaCl, 1 mM DTT, 2 mM EDTA, 0.25 mg/100 ml lysozyme, at pH 8.5) and disrupted by ultrasonic disruption at 4[°]C. Lysed cells were spun in a bench-top centrifuge at 14,000 g for 10-30 minutes at 4[°]C. Supernatant was then discarded and the cells resuspended in a wash buffer (20 mM Tris, 20 mM Bis, 50 mM NaCl, 1 mM DTT, 2 mM EDTA, at pH 8.5). Resuspended pellet was centrifuged at 14,000 g for 10-30 minutes at 4[°]C and the wash discarded. This wash step was repeated as necessary. In the last wash cycle, the pellet was resuspended in a cleavage buffer (20 mM Tris, 20 mM Bis, 50 mM NaCl, 1 mM DTT, 2 mM EDTA, pH 6.5 or pH 6.0) and centrifuged at 14,000 g for 10-30 minutes at 4[°]C and the supernatant discarded. This was to ensure homogeneous pH throughout the pellet and the tube. The pellet was resuspended again in the cleavage buffer and left to rest at room temperature (18-23[°]C) for cleavage. At each time point a total solution fraction was taken and the sample centrifuged at 14,000 g for 10-30 minutes at 4[°]C to take a supernatant (soluble) fraction. Samples were resuspended after taking the supernatant time point and left to rest at 20-25[°]C for the cleavage to continue to completion. Samples were analyzed by 12% SDS-PAGE followed by staining with Coomassie Brilliant Blue G-250.

Protein Content Quantification & β-gal Activity Assay

[0080] Protein concentrations were measured using the Bradford method (Aububel, *Current protocols in molecular biology*, John Wiley & Sons, NY, pp. 3v, 1998), β-galactosidase activity assay based on activity with o-Nitrophenyl-β-D-galactopyranoside (ONPG) was measured by the β-gal Activity Assay kit by Stratagene (La Jolla, Calif.).

Example 4

Results for E. coli-Based Expression

Production of PHB Granules with Associating Phasin in Expression Strains

[0081] Three enzymes, α-ketothiolase (encoded by the PhaA gene), a stereo-specific reductase (PhaB), and PHA synthase (PhaC), are necessary for transforming metabolic acetyl CoA to PHB and are encoded on plasmid pJM9131. Following published procedures for producing PHB in E. coli XL1-Blue (Pieper-Furst et al., J. Bacteriol. 177, 2513-2523 (1995); Wieczorek et al., J. Bacteriol. 177, 2425-2435 (1995); Maehara et al., FEMS Microbiol. Lett. 200, 9-15 (1999), several E. coli laboratory strains were transformed with pJM9131 and grown for 30 hours in LB medium supplemented with 2% sodium lactate as a carbon source for PHB synthesis. Scanning electron microscopy images were prepared of iridium-coated dried cell lysates. FIG. 5 illustrates: (A) BLR strain carrying pJM9131 (PHB biosynthesis plasmid) grown in LB media. (B) BLR strain carrying a
control ampicillin resistant plasmid grown in lactate-supplemented LB media. (C) BLR strain carrying pJM9131 grown in lactate-supplemented LB media. (D) XL1-Blue strain carrying pJM9131 grown in lactate-supplemented LB media. The SEM indicated the presence of granules of the expected size (~100-700 nm) and characteristic shape absent in controls. This result was similar to the SEM images published previously for \textit{A. eutrophus} (Doi 1990, supra), and is in agreement with transmission electron micrographs previously published for PHB production in \textit{E. coli} XL1-Blue. The \textit{E. coli} strains XL1-Blue, ER2566, BL21 (DE3), and BLR (DE3) all successfully produced PHB granules when transformed with pJM9131. See, in part, FIG. 5. To assure strong expression of tagged product proteins from the pET21 vector, BLR (DE3) carrying the T7 RNA polymerase gene was chosen as the host strain for subsequent expression and purification experiments.

Affinity of the phaP-encoded phasin protein to intracellular PHB granules was examined by expression of the phasin in the presence and absence of co-expressed PHB granules in \textit{E. coli} cells. The proteins were resolved and identified by SDS-PAGE analysis. See FIG. 6. Panel (A) shows BLR strain carrying phaP gene (plasmid pET/phaP) induced for 0.5 and 2 hours at 37°C. Lane 1 is molecular weight markers. Lane 2 is pre-induction whole-cell lysate. Lanes 3 and 4 are soluble fractions of cell lysates at 0.5 and 2 hour inductions respectively. Lanes 5 and 6 are insoluble fractions corresponding to lanes 3 and 4. The results indicate that phasin expression for 2 hours at 37°C produced a highly soluble protein in the absence of pJM9131. Panel (B) shows BLR strain carrying the phaP gene (plasmid pET/phaP) and PBB biosynthesis genes (plasmid pJM9131) grown and induced for 8 and 30 hours. Lane 1 is pre-induction whole-cell lysate. Lanes 2 and 3 are soluble fractions after 8 and 30 hours respectively. Lanes 4 and 5 are insoluble fractions corresponding to lanes 2 and 3. Note the displacement of phasin from the soluble fraction (panel B, lane 2) to the insoluble fraction (panel B, lane 5) in the presence of PBB (after 30 hours of growth). Thus, in strains transformed with pJM9131 and grown for 30 hours to produce PBB granules in addition to phasin, the phasin was displaced from the soluble fraction of the lysate to the insoluble pellet. An earlier time point of these double transformants shows that the phasin remains in the soluble fraction prior to PBB production regardless of the presence of pJM9131. This result demonstrates phasin affinity to PBB.

Example 5

Purification of Maltoose Binding Protein

The maltose-binding protein (M or MBP) (SEQ ID NO:9) was prepared as follows. Expression tests indicated that although the phasin alone has high affinity for PBB, fusion proteins of the phasin with the intein and various product proteins had noticeably lower affinity. This led to leakage of the phasin-tagged precursors during the purification procedure, resulting in unacceptable losses in yield. Therefore multiple phasin, separated by flexible linker peptides, were included in the binding tag to enhance fusion affinity to PBB and improve recovery. In particular, three phasins were combined with an engineered mini-intein and the maltoose binding domain (MBD) to form PPP:M (Phasin-Phasin-Phasin-Intein:MBD). A linker peptide joins the phasin domains. The intein is Al-CM mini-intein, engineered from the splicing domain of the Mycobacterium tuberculosis (Mtu) recA intein to self-cleave upon application of a pH or temperature shift (Wood et al. 1999, supra). BLR strain was double transformed with pJM9131 and pET/PPP:M, grown for 24 hours at 37°C in lactate-supplemented medium and then IPTG-induced for an additional 4 hours at the same temperature. In FIG. 7: Lane 1 is the supernatant fraction of the cell lysate. Lane 2 is the insoluble fraction of the cell lysate. Lanes 3 and 5 are decanted wash. Lane 4 is molecular weight markers. Lane 6 is post-wash pellet. Lanes 7-10 are insoluble fractions for the cleavage time course after 1, 3, 20, and 25 hours respectively. Lanes 11-14 are soluble fractions corresponding to lanes 7-10, respectively. Lane 15 is supernatant from lane 14 after addition of maltose resin and centrifugation. The results show C-terminal cleavage of the intein after expression of PPP:M released the maltose binding protein (M) from the triple-phasin-intein (PPP) complex. The PPP:M fusion-protein gene was inserted into the T7 expression vector pET 21 (+) to form pET/PPP:M.

Double transformants carrying PBB biosynthesis genes (pJM9131) and the PPP:M expression plasmid (pET/PPP:M) were grown for 30 hours in lactate-supplemented medium to produce PBB granules, at which point overexpression of the PPP:M fusion protein was induced by IPTG addition. After four more hours of incubation the cells were recovered by centrifugation and lysed by sonication into a pH 8.5 buffer. The intein cleaving reaction is suppressed at this pH, allowing the precursor to be stabilized in an uncleaved form during subsequent granule wash steps. The soluble and insoluble fractions of the resulting cell lysates were separated by centrifugation and analyzed by SDS-PAGE (FIG. 7, lanes 1 and 2). The insoluble pellet, containing the PBB granules and any bound proteins, was washed several times by repeated centrifugation and resuspension in fresh pH 8.5 buffer. The pH was then shifted to 6.0 in the final wash to initiate the intein self-cleavage reaction (FIG. 7, lanes 3 and 5). Unclarified supernatant (including both soluble and insoluble material) were collected during the cleavage reaction and analyzed for cleavage product formation (FIG. 7, lanes 7-10). Each of these samples was then clarified by centrifugation and the corresponding supernatant was analyzed to detect cleaved soluble product proteins (FIG. 7, lanes 11-14). The results indicate that during incubation over 25 hours at 20°C the PPP:M fusion protein cleaves to yield PPP and M. PPP was retained in the insoluble phase with the PBB granules, while M (MBP) was released into the soluble fraction. Activity of the purified MBP was subsequently confirmed by its affinity for maltose resin (FIG. 7, lane 15). Similar results were obtained for the double phasin construct of PPP:M. The total MBP yield from this shake-flask experiment was 36.2 mg of MBP per liter of culture (approximately 3.35 mg per gram of dry cell weight). Yields from similar experiments using PPP:M also fell within in the range of 35-40 mg per liter of culture.

Example 6

Purification of Other Proteins Using a PBB System

Several additional product proteins were tested using two-phasin tag. The results are shown in FIG. 8. These proteins included the \textit{E. coli} \textit{u} galactosidase enzyme (PPI:gal; FIG. 8A), the chloramphenicol acetyltransferase (CAT) enzyme (PPI:CAT; FIG. 8B), and the large and highly soluble NusA protein (PPI:NusA; FIG. 8C). The fermentation, induction, and granule washing steps were similar to those described for maltose binding protein. The
corresponding lanes in each gel are similar, as follows. Lane M is molecular weight markers. Lane 1 is a supernatant fraction of cell lysate. Lane 2 is an insoluble fraction of cell lysate. Lanes 3 and 4 are decanted wash supernatants. Lane 5 is a post-wash pellet. Lanes 6 and 7 are insoluble fractions for the cleavage time course after 2 and 30 hours respectively. Lanes 8 and 9 are soluble fraction for the cleavage time course after 2 and 30 hours respectively. Samples taken during the cleaving reaction indicated that each product protein was successfully purified at reasonable yield. Lane 9 of each gel in FIG. 8 represents the corresponding purified protein (β-gal, CAT, and NusA) with typical yields of 30 to 40 mg per liter of culture (Table 2). Furthermore, an ONPG assay on the purified β-gal fraction (FIG. 8A, lane 9) verified high yield and activity levels after purification (Table 2).

TABLE 2

<table>
<thead>
<tr>
<th>Target Protein</th>
<th>mg/liter culture</th>
<th>mg/g dry cell weight *</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>MBP</td>
<td>36.3 ± 2.2</td>
<td>3.35 ± 0.2</td>
<td>Affinity to Maltose resin</td>
</tr>
<tr>
<td>β-galactosidase</td>
<td>39.6</td>
<td>3.67</td>
<td>91.0 units/mg purified lysate **</td>
</tr>
<tr>
<td>CAT</td>
<td>86.0 ***</td>
<td>7.96</td>
<td>N/A</td>
</tr>
<tr>
<td>NusA</td>
<td>34.3 ± 2.8</td>
<td>3.17 ± 0.26</td>
<td>N/A</td>
</tr>
</tbody>
</table>

* Approximate cell pellet weight for 1 ml culture: 27.0 mg. Approximate dry cell weight: 10.8 mg.
** Unit definition: One unit will hydrolyze 1.0 pmole of o-nitrophenyl β-D-galactoside (ONPG) to o-nitrophenol and D-galactose per minute.
*** This protein content includes the impurities (PPI) shown in lane 9 of FIG. 6B.

[0086] The purified CAT protein included significant impurities arising from cleaved PPI leaching from the granules into the soluble fraction (FIG. 8B, lane 9). This may arise from the high levels of overexpression of the PPI-CAT fusion relative to the other proteins tested, resulting in saturation of the available PHB granule surface area. This result suggests an upper limit of approximately 5 to 10 milligrams of purified protein per gram dry cell weight for this method. However, as granule size and morphology can be modified by expression levels of phasin protein, significant improvements in yield might be achieved by varying the fusion protein expression levels relative to PHB production.

Example 7

[0087] Isolation of Proteins by Exogenous Addition of Polyhydroxyalkanoic Acid Granules

[0088] The method of the invention also encompasses purification of a product protein by binding the fusion protein of the invention to exogenously added PHA (or PHB) granules. In this method a host cell is transfected with a plasmid comprising a nucleic acid encoding a product protein-tein-phasin fusion protein. In the alternative, a plasmid encoding a fusion protein having multiple phasins, each pair optionally linked by an amino acid linker can be used. After host cell growth sufficient to produce the desired amount of product protein, the cells are harvested and lysed. Cell debris is removed by centrifugation or filtration. The clarified supernatant is incubated with PHA granules that have been independently prepared.

[0089] PHA granules are prepared from cells producing PHA granules by lysis of the cells followed by centrifugation, filtration, or both. PHA granules can be further purified by mild treatment with detergent and/or density centrifugation. Preferably, host cells that produce PHA granules but that make little or no phasins are used.

[0090] After incubation sufficient to permit binding of the fusion proteins to the PHA granules, the complex is collected by centrifugation or filtration. After activation of the intein, and cleavage to release the product protein, the PHA granules, complexed with the remnant fragment of the fusion proteins, are removed. An advantage of this method is that cell debris is effectively removed from the fusion protein.

[0091] Advantages of the invention. A strength of this purification method is that the conditions over which it is effective are quite broad, thus providing great flexibility in its implementation. Some optimization will be required for new, uncharacterized products on a case-by-case basis, as is true of any purification method. One of ordinary skill in the art would, however, be able to apply the methods and techniques of the invention to the expression and purification of any desired product protein, based on the extensive guidance provided herein. The presentation of prototypes here aims to exemplify simple means for protein purification that eliminate the high cost and complexity associated with column operation. Although the reduction in cost is somewhat offset by the long induction time and large tags in the fusion proteins, these issues are minor when taken in the context of conventional protein expression and purification. In most of the cases we have shown, the intein cleaving reaction is essentially complete in 4-10 h, making it competitive with any conventional chromatography process. Moreover, the yields we report are reasonable. Furthermore, in one aspect the invention comprises the simple mechanical recovery of precipitated fusion protein by tangential-flow microfiltration or continuous centrifugation.

[0092] All references cited herein are incorporated herein by reference in their entirety.

SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOS: 12

<210> SEQ ID NO 1
<211> LENGTH: 504
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: delta-I-CM intein mutant
<400> SEQUENCE: 1

gcctctcgag aagggcacctg gatotgcgat cggtgcacgc gcgaaacgca tggatcag 60
gatgtgttcg gtgggctgac gcgtactcat gtcgacgccg ctggcgaagga ccgaaacgcc 120
catcgcgcccg cggctgtgct ctcgcttgcac ccggaaacgc gggatgtggt gcggttcggc 180
atcgccgctg gcgcactctg gtggcagaca ccgcattcaag aggtgtcaga agagtaagcc 240
tgctgtcgcgc ccgggaaact ccgcaaggggc gacaggtgag gcgacaccgc acgcttctat 300
ggatcctgtg acegctgcgc gatcctgcggc gcggtgcaggg gcgtcgcgga tggttcggtg 360
gcattatacc tgcagccattc gctgggctag gacacctcgtc atccgtgat gcggagacgtg 420
cgctcacaagcg gaggacgacct gcagctcgcg ctcagactgag aggaactgca caccctgcgg 480
gcaggaaggg ttcggtgcaac cacc 504

<210> SEQ ID NO 2
<211> LENGTH: 45
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Phasin Linker1 DNA sequence

<400> SEQUENCE: 2

acacataac acacactgcgg gatogagggga aggtatttcag aatcc 45

<210> SEQ ID NO 3
<211> LENGTH: 45
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Phasin-linker2 DNA Sequence

<400> SEQUENCE: 3

acacataac acacactgcgg gatogagggga aggtattctg agtct 45

<210> SEQ ID NO 4
<211> LENGTH: 576
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Phasin DNA Sequence

<400> SEQUENCE: 4

agtacatcga cccggaaaca agttgcaacga gcgcaaaaggg ccacactgga aacgtgttc 60
ggctctacca ccagggcgtt tgaaggcgct caaagctctc tggatctgaa cctcgaggtc 120
gtcaagactt cgttcgacga agcgggtgac aacgcacaga aggctgtgct gcggacaagga 180
gcacaggcccc actgcgcgac gcgctgcagc cggctgacgcccc aagacgctgac 240
gctcaaccc gacacctgta gtagctcttg ctggacacacgg aagcgcattc cacaggaagtta 300
gccagcggct aactgcgcaga aggctcagagc gctctgtgca gaacacgctgg 360
agacgagggc ccgggctgct gcgatcggct gtcgcctctg ctagtgcagc gtcgctctgct 420
gccttacac ccgctgcttc gcgtgccagc aagctcgcga aacgctcggc aatgctgcgaa 480
acacatcctcc aggcgcgcag ctcgcggtcc acaacgctgct ccagcagcagc caggcgcagc 540
ggctgtacgg ccacgcggaa gaagacagcg gtgcc 576
-continued

<210> SEQ ID NO 5
<211> LENGTH: 198
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Mxe Gyra intein obtain from NEB pTWIN1 vector

<400> SEQUENCE: 5

Cys Ile Thr Gly Asp Ala Leu Val Ala Leu Pro Glu Gly Glu Ser Val
1 5 10 15

Arg Ile Ala Asp Ile Val Pro Gly Ala Arg Pro Asn Ser Asp Asn Ala
20 25 30

Ile Asp Leu Lys Val Leu Asp Arg His Gly Asn Pro Val Leu Ala Asp
35 40 45

Arg Leu Phe His Ser Gly Glu His Pro Val Tyr Thr Val Arg Thr Val
50 55 60

Glu Gly Leu Arg Val Thr Gly Thr Ala Asn His Pro Leu Leu Cys Leu
65 70 75 80

Val Asp Val Ala Gly Val Pro Thr Leu Trp Lys Leu Ile Asp Glu
85 90 95

Ile Lys Pro Gly Asp Tyr Ala Val Ile Gin Arg Ser Ala Phe Ser Val
100 105 110

Asp Cys Ala Gly Phe Ala Arg Gly Lys Pro Glu Phe Ala Pro Thr Thr
115 120 125

Tyr Thr Val Gly Val Pro Gly Leu Val Arg Phe Leu Glu Ala His His
130 135 140

Arg Asp Pro Asp Ala Gin Ala Ile Ala Asp Gin Leu Thr Asp Gly Arg
145 150 155 160

Phe Tyr Tyr Ala Lys Val Ala Ser Val Thr Asp Ala Gly Val Gin Pro
170 175 175

Val Tyr Ser Leu Arg Val Asp Thr Ala Asp His Ala Phe Ile Thr Asn
180 185 190

Gly Phe Val Ser His His
195

<210> SEQ ID NO 6
<211> LENGTH: 654
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Sequence of PhaP-Polylinker-intein-GFP fusion protein

<400> SEQUENCE: 6

Met Ile Leu Thr Pro Glu Gin Val Ala Ala Ala Gin Lys Ala Asn Leu
1 5 10 15

Glu Thr Leu Phe Gly Leu Thr Thr Lys Ala Phe Glu Gly Val Glu Lys
20 25 30

Leu Val Glu Leu Asn Leu Gin Val Val Lys Thr Ser Phe Ala Glu Gly
35 40 45

Val Asp Asn Ala Lys Leu Ala Ser Ala Lys Asp Ala Gin Glu Leu
50 55 60

Leu Ala Ile Gin Ala Ala Val Gin Pro Val Ala Glu Lys Thr Leu
65 70 75 80

 Ala Tyr Thr Arg His Leu Tyr Glu Ile Ala Ser Glu Thr Gin Ser Glu
85 90 95
<table>
<thead>
<tr>
<th>Residue</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phe Thr Lys Val Ala Glu Ala Gln Leu Ala Glu Gly Ser Lys Asn Val</td>
<td>100 105 110</td>
</tr>
<tr>
<td>Gln Ala Leu Val Glu Asn Leu Ala Lys Asn Ala Pro Ala Gly Ser Glu</td>
<td>115 120 125</td>
</tr>
<tr>
<td>Ser Thr Val Ala Ile Val Lys Ser Ala Ile Ser Ala Ala Asn Asn Ala</td>
<td>130 135 140</td>
</tr>
<tr>
<td>Tyr Glu Ser Val Gln Lys Ala Thr Lys Gln Ala Val Gln Ile Ala Glu</td>
<td>145 150 155 160</td>
</tr>
<tr>
<td>Thr Asn Phe Gln Ala Ala Ala Thr Ala Ala Thr Lys Ala Ala Gln Gln</td>
<td>165 170 175</td>
</tr>
<tr>
<td>Ala Ser Ala Thr Ala Arg Thr Ala Thr Ala Lys Thr Thr Ala Ala</td>
<td>180 185 190</td>
</tr>
<tr>
<td>Ser Gly Ala Pro Met Cys Ile Thr Gly Asp Ala Leu Val Ala Leu Pro</td>
<td>210 215 220</td>
</tr>
<tr>
<td>Glu Gly Glu Ser Val Arg Ile Ala Asp Ile Val Pro Gly Ala Arg Pro</td>
<td>225 230 235 240</td>
</tr>
<tr>
<td>Asn Ser Asp Asn Ala Ile Asp Leu Lys Val Leu Asp Arg His Gly Asn</td>
<td>245 250 255</td>
</tr>
<tr>
<td>Pro Val Leu Ala Asp Arg Leu Phe His Ser Gly Glu His Pro Val Tyr</td>
<td>260 265 270</td>
</tr>
<tr>
<td>Thr Val Arg Thr Val Glu Gly Leu Arg Val Thr Gly Thr Ala Asn His</td>
<td>275 280 285</td>
</tr>
<tr>
<td>Pro Leu Leu Cys Leu Val Asp Val Ala Gly Val Pro Thr Leu Leu Trp</td>
<td>290 295 300</td>
</tr>
<tr>
<td>Lys Leu Ile Asp Glu Ile Lys Pro Gly Asp Tyr Ala Val Ile Gln Arg</td>
<td>305 310 315 320</td>
</tr>
<tr>
<td>Ser Ala Phe Ser Val Asp Cys Ala Gly Phe Ala Arg Gly Lys Pro Glu</td>
<td>325 330 335</td>
</tr>
<tr>
<td>Phe Ala Pro Thr Thr Tyr Thr Val Gln Val Pro Gly Leu Val Arg Phe</td>
<td>340 345 350</td>
</tr>
<tr>
<td>Leu Glu Ala His His Arg Asp Pro Asp Ala Gln Ala Ile Ala Asp Glu</td>
<td>355 360 365</td>
</tr>
<tr>
<td>Leu Thr Asp Gly Arg Phe Tyr Tyr Ala Lys Val Ala Ser Val Thr Asp</td>
<td>370 375 380</td>
</tr>
<tr>
<td>Ala Gly Val Gln Pro Val Tyr Ser Leu Arg Val Asp Thr Ala Asp His</td>
<td>385 390 395 400</td>
</tr>
<tr>
<td>Ala Phe Ile Thr Asn Gly Phe Val Ser His Ala Ser Arg Gly Ser Ile</td>
<td>405 410 415</td>
</tr>
<tr>
<td>Met Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu Val</td>
<td>420 425 430</td>
</tr>
<tr>
<td>Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly Glu</td>
<td>435 440 445</td>
</tr>
<tr>
<td>Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile Cys</td>
<td>450 455 460</td>
</tr>
<tr>
<td>Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr Phe</td>
<td>465 470 475 480</td>
</tr>
<tr>
<td>Ala Tyr Gly Leu Gln Cys Phe Ala Arg Tyr Pro Asp His Met Lys Gln</td>
<td>485 490 495</td>
</tr>
<tr>
<td>His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Glu Glu Arg</td>
<td>500</td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
</tr>
<tr>
<td>Thr Ile Phe Phe Lys Asp Gly Lys Tyr Arg Ala Glu Val</td>
<td>515</td>
</tr>
<tr>
<td>Lys Phe Glu Gly Asp Thr Leu Val Arg Ile Glu Leu Lys Gly Ile</td>
<td>530</td>
</tr>
<tr>
<td>Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr Asn</td>
<td>545</td>
</tr>
<tr>
<td>Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp Lys Gln Lys Asn Gly</td>
<td>565</td>
</tr>
<tr>
<td>Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly Ser Val</td>
<td>580</td>
</tr>
<tr>
<td>Gln Leu Ala Asp His Tyr Gln Glu Asn Thr Pro Ile Gly Asp Gly Pro</td>
<td>595</td>
</tr>
<tr>
<td>Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser Ala Leu Ser</td>
<td>610</td>
</tr>
<tr>
<td>Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Glu Phe Val</td>
<td>625</td>
</tr>
</tbody>
</table>

Thr Ala Ala Gly Ile Thr His Gly Met Asp Glu Leu Tyr Lys
645 650

<210> SEQ ID NO: 7
<211> LENGTH: 8253
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: pET21(+)PPIM plasmid vector DNA sequence
<400> SEQUENCE: 7

tggc-gatggt gaacggccc tgcggggggc attaagcggc gcgggtgtgg tggttcgccc 60
cagcgtgac gtcacactc ccgacgctgc acgccccctg cttctgccttt ttcctctctc 120
ctccctggg cagcgtgggc ggtcttcgct tcagcgtttt ctcgggttctg ggcggattgct 180
gttcttggtt agtcctcttg gcgcgcagc ccccccccttc accacgcagct ctctctctct 240
acgtgaggg cgcaacggcg ttcggcgctcg gcggctgttc ggctggcgctcg cacacctgtg 300
tttttaggt ttgagtcttgtag ttcggcagcc caacgcagct gcgtgctctct ggcggtggttc 360
ttcgggggaa cggccagcc tcgggctggtg ggcgggtggtgg cacaggggtg ggcgggtggtgg 420
acccacaccgc attcacactc ccgacatgg ctgctggttg ggcgggtggtgg ggcgggtggtgg 480
tccggagaa ggcggccggtt ggtggtggtgg ggcgggtggtgg ggcgggtggtgg ggcgggtggtgg 540
ttcctccca ggctgtgcag gcggtgttctt ttcgggcttcg tgggctgtgtg ggcgggtggtgg 600

| gagctgtcgc gaggtatcgg catcgcctcgt ctctccccctct ccggggttggg ccgggttggg 720 |
| agtcggtgat acgcctggtg ggcggtggtgg ggcgggtggtgg ggcgggtggtgg ggcgggtggtgg 780 |
| agtcggtgat ccgctgtgcag gcggtgttctt ttcgggcttcg tgggctgtgtg ggcgggtggtgg 840 |
| tattagtgtc gcggtggttctt ggcgggtggtgg ggcgggtggtgg ggcgggtggtgg ggcgggtggtgg 900 |
| tygcgtctc gcggtggttctt ggcgggtggtgg ggcgggtggtgg ggcgggtggtgg ggcgggtggtgg 960 |
| cgtcgtcgtc gcggtggttctt ggcgggtggtgg ggcgggtggtgg ggcgggtggtgg ggcgggtggtgg 1020 |
| agtcggtgat ccgctgtgcag gcggtgttctt ttcgggcttcg tgggctgtgtg ggcgggtggtgg 1080 |
-continued

tcgggcgcc gcggagcttg atgaagcatt accaaaacgc gacgctgaca caacgatgcc
1140
tcgggactg gcaccaactg tcggcaaatc ataaactggc gaacactcta ctctagcttc
1200
cggcgaacaa ttaataagct gatggaggg gctaaacggt gcaggaccac ttcggcgctc
1260
ggcctttccg ggtgggtggt ttatttctga taatttctggc gcgggtgagc gttggctctg
1320
cgattccct ggcacagctgg ggcacagcttg taaaoccttc ccgatacgtt ttcttacaco
1380
gcggggcagt cagccacact cgagttgacg caataagcac ctgggttgaga tagggctcct
1440
agtatttac agtggtaaac ttgctagacca aggttacttca tatatacttt aaattgattt
1500
aaiacttccat ttttaactttta aaagatctaa ggtgaagact tttttagata atctaaagtac
1560
cacacttccct taacgtaagtt ttctggctca acagcctgca gaccccgtag caaaagctcctaa
1620
agtctcttc ttagcactctt ttcttcgctg ctaactctct ctyctctgcaaa caaaaaacc
1680
aagccgaac gcgggtagttt gtttgccgga tcaagagcata caaactcttt ttctagaagtt
1740
aacctgattc aggccagcgcc cagatacaccg ttctgtccct ctaggtaagcg ctagttgaca
1800
ccacacttcc aagaactctg ctagacggcc ttaataacttc gttctgtctaa ttcgttgtaoc
1860
agtctgctgc cagccctgctcc ttaatacggt tttctcgggg ttgccattaaa gcgtatggttt
1920
aagcctggaa gcgcagcggcc gccggcggag gggggtgagc tcgacacagc ccgagctggaga
1980
gcgaagcaco tagacgacac ccagattctcc acagcctgag ctaaagaaaa ggcacagctgt
2040
tcggagaaggg agaaagaaggg acaggcttac ccgaacgagc aggctcggga caggagagcg
2100
cagagaggct ctcctccgag ggaccccttgag ctctctttcct ctgctctgtcg gttgccca
2160
cctcctgctgg ggtgcgggcc ttcttctgggt cttctcgggg gggccagagc taaagctttaa
2220
cgcaggctcg ggcggcctgct tcaagcttcc ggtggcttttg ctcatcctgt
2280
ccttattgcgc ttttctgcgg tcttcgggc gggcggagcc tattgaaaaa
2340
tacgctgcg ccgagccgaa gcagcagctga ccgctgagcc aggcgggagc gggcggagcc
2400
gccggccgct ggctcttcctcc ctcctgcgct ccgctgagcc aggcgggagc gggcggagcc
2460
tggacaaac ttccttactacg aagctgagcc tcaaaacgagc gggcggagcc gggcggagcc
2520
gcggcttcgt ctcctgagcc gcctgctgctc ctcctgagcc gcctgctgctc ctcctgagcc
2580
ggcggggtttc gggccgctggt gcctggcgtt ccagacagcc tggctggcgc tggcggggtt
2640
gcatcgtgag ctgtctcgtt gcctggcgtt ccagacagcc tggctggcgc tggcggggtt
2700
ctaccgttga ggtcccgggt gcctggcgtt gcctggcgtt gcctggcgtt gcctggcgtt
2760
tgggggattt ctcctggcgtt gcctggcgtt gcctggcgtt gcctggcgtt gcctggcgtt
2820
cttcctgtgg gcctggcgtt gcctggcgtt gcctggcgtt gcctggcgtt gcctggcgtt
2880	tgtagactgg cgttgctgcag gcctggcgtt gcctggcgtt gcctggcgtt gcctggcgtt
2940
gggctccttg ggcggcggcc gcggcggcc gcggcggcc gcggcggcc gcggcggcc
3000
aaacagcttc gcagcccttc ccagcccttc gcagcccttc ccagcccttc ccagcccttc
3060
gcggagccct ggtgcgggcc tcccttccttc gcctggcgtt gcctggcgtt gcctggcgtt
3120
ttttccagcct gaaaacacgca ggacacagtc ccatgctgct cagtctccag gcgtcttcct
3180
acagtttcgc gcggcctgct gcctggcgtt gcctggcgtt gcctggcgtt gcctggcgtt
3240
cagatggcc caaccccgcc cctggcggcc gcctggcgtt gcctggcgtt gcctggcgtt
3300
cggttgctgg ccgcggcggcc gcgtgctgctc gcgtgctgctc gcgtgctgctc gcgtgctgctc
3360
gaccagtgcc gaggtctgga gcaagggcgt gcaagattcc gcattacgca acgcagaggc 3420
cgatcaotcg ctggggcaca gtaacagctg gctggggtc tgaagcagctg 3480
gcactctgcc tacaggttcc atgataaaga agacagctct gaaagcgctg acagatacct 3540
tggcggcgg ccgaggggga gtagctgctt ggtagcaag gcctcagagg atcgcagtag 3600
atcgaggtcg ctaataagtt agtcaatctt attaatgct gtttgctct caaacgcctt 3660
ttcagctcgg aacagctcgg tcgagctgct acattaggat ggcacacgct gcggggaag 3720
gcgcttgcg atggggtgcg caggtcttgt tttccttcc ccaagtgacac cgggcaagcg 3780
tgatctgccc tccggcctc gacgtgaggg atgtctgagc acgcagcacc cgctggttgc 3840
ccgagagcc gcacatatct ttgctgggtc gttaggcagcg gtcattacct tggctgctc 3900
tcgctatcg gtgctccacc taccagagta cccgcaaccc cggcgcagtc ggatctgctg 3960
atggggggc gctggcgcac gctgcctcgt cggctggcc caaagcagtag aagacagtga 4020
atgcctcct tccgctctcc ctaggttgc tgtaaagccg aacctgacct ccaagtgcct 4080
tccgcttcg ctaagctgtg aatctgattc gagacagtag atatagcctc gcagcagcag 4140
cgagagccg cggcgcagac actaataggg cccgctaccc cggcagatgc ctgctgaacc 4200
aatggacacc gatgctgcacc gcagcagctg gtacagctttc catgagagaa aatatactgc 4260	tctttggtg tctggccg gacacacag aataagccgc ggcactattg gcacagcagc 4320
tccgctcgg gctgagcctg tcatcagcg cgcagccgcc ctgatattct cattacaacc 4380
tgggctgcag gataggtcgc cggcgttctg cagctggcct gctggcctcg tttcctcct 4440
gacagccca cagctggcgc cagtttggag gcagcagctgc tttgctgcag cacaatttgc 4500
gagcgctcg gctgggagct agaggaattgc gcagagccac tcgcagctag cttgctgccc 4560
gcgagcttg gctggggacct gtttgagact tttcctcttg cccgagctgc cggcgcgtct 4620
ttttcccggg ttttccgaga aacggtcttg gcctgtggct ccagcaaggg aacagctgtg 4680
taagacacc gcagagcctg tcgctcagcg tataagcttg ctgggctctc attcaaccoc 4740
tgctaatgcgt tctttcccct ggcagttcct gcattacgca gaaagtttgc ggcacattgc 4800
atggctgctg gcgcggttcc gcttctctgt cggctagctg cgcagaattgg agcagcagcag 4860
tagttggctg agggctctgc gcaacgcgag cggagatatg ggtgcaagca gagagattgc 4920
gccacagctt ccaccgcggc gggggcctgc cccttcaccc cggcgcacac aaggtcctgtg 4980
gagcgcgatagt gcggcgcctg gctagctgct gcctgttggc cggcttgtag cggctgtatg 5040
aacgccacct gcctggcctg tcatgcgagc ccagctcgcct cggcggttgac gcagctgtatg 5100
cctgcagctgc gacattttac agacatctct ctgggaaact gttgctagta ttagcacttc 5160
cctctggagg gcaatactctt gttgctactt gaaagcagag tatcttaccc cggcggtgttc 5220
cggcagcag ggctgcgccc ccagaagccc aacgcagaaa cggctgcggc cggctggagg 5280
aagcggttttt cagggctggc aacgctcgtgc gcgcggccac cggctgcttg cccagctgcg 5340
tggcagcagc ggcgtggaga cgcagggaaa ggctgagcgc cggagctcaggc 5400
ctggccagcc gcctcgacgg gcacgctgc gctccgagcc cggagccagt cccgctgccg 5460
cacggtatat gacagcggcc gcggagccag acgggtgtcc gcacagcgcag ccggggtcag 5520
cctggcagag gctggaaaccgt cggagcagcg ctggagcagc acctcgccca cggagcagcg 5580
gccggtttcg aacagcgtct ggccagctgc tggctgtctg caaagcagct 5640
-continued

tacgagtctgg tgcgaaaggg gaccaagcga gctgctggaga tcgctggagc caaattccag 5700
gttggtgtga gggcggaccc cggcggttg acggagagcc gccgagcggc cgtgtccgcc 5760
acggcacaagc agacgacagc tgcgacactg aacaacacac tccggactcga gggaagaggatt 5820
tcagaatgtc tttcctcccc gacagagagc gaaagagagc aaaaacgcaaa ctgagaaacc 5880
ttgctggtgc tgcgacacaa ggcgcggtgg ggcgctggag gcgtcagctg cgtgagcttg 5940
cagtgtatcan cagattaagtt cgcgagacgc gttgagcagg ccaaagacgc ccaggtgggc 6000
aacggcagcc aggaatgtgt ggcctagccag gcgcgaagcc tgcgacagcttg cgcgcagaaag 6060
aaacctgtaaacc cccgccagc ccggcttgaa acgtctggag aaaaacagag cgaatccacc 6120
aacggtacgcag acggcagctg tgcgacagctgc ggtgcgagac ctcgctggtgc 6180
tcggcagcag cagccgctgc ccgggtgagc tcgagctgtg ccagctgtgg gtcgggctac 6240
tcggtgcca aacggggtg ccgctggtgc cgcagcggca gacgataaag ccgcagcagc 6300
gcgaagacca ttcctggccc gcggctggcc ggcggcaggc ccaaggtccac 6360
gcgcacgctc gtcgagcagc ggcgaagaga acgacaggtg cagaagaaat caaaacagctc 6420
gggatggaag gaagattctc gaaaacacgg ctcggatgcttc aagtgcagag 6480
gttccgatgcc aacaacacgg ctcggatgcttc aagtgcagag 6540
tttggctggct ccagggagcg aacggcagaa ggtgcggtgt gcgttcttgt gggtgcgagag 6600
ggacagggcg aggtgctgct gggcgggtgc acaagctgag ggcggagcgg 6660
ctggcagctgc tgcgagcagc ggcgcagctg cgcagcggca gacgataaag ccgcagcagc 6720
aggggaggcc aacggcagcc aggtgcagag ccggagcaagcg ggcgggagaa 6780
tctgggagtc cgcagctgct ccagggagcg aacggcagaa ggtgcggtgt gcgttcttgt gggtgcgagag 6840
ttggctggct ccagggagcg aacggcagaa ggtgcggtgt gcgttcttgt gggtgcgagag 6900
ggagccagcc cggctggtgg ctacccggcc ttcgctggct gcgttcttgt gggtgcgagag 6960
ggacagggcg aggtgctgct gggcgggtgc acaagctgag ggcggagcgg 6900
ctggcagctgc tgcgagcagc ggcgcagctg cgcagcggca gacgataaag ccgcagcagc 7020
cggcagctgc tgcgagcagc ggcgcagctg cgcagcggca gacgataaag ccgcagcagc 7080
gcggcagctgc tgcgagcagc ggcgcagctg cgcagcggca gacgataaag ccgcagcagc 7140
gcggcagctgc tgcgagcagc ggcgcagctg cgcagcggca gacgataaag ccgcagcagc 7200
ncggcagctgc tgcgagcagc ggcgcagctg cgcagcggca gacgataaag ccgcagcagc 7260
tttggctggct gcggctggtgc acggagcagc ttcgctggct gcgttcttgt gggtgcgagag 7320
cggcagctgc tgcgagcagc ggcgcagctg cgcagcggca gacgataaag ccgcagcagc 7380
ggagccagcc cggctggtgg ctacccggcc ttcgctggct gcgttcttgt gggtgcgagag 7440
ggacagggcg aggtgctgct gggcgggtgc acaagctgag ggcggagcgg 7500
ggacagggcg aggtgctgct gggcgggtgc acaagctgag ggcggagcgg 7560
cggcagctgc tgcgagcagc ggcgcagctg cgcagcggca gacgataaag ccgcagcagc 7620
gccagcagcc cggctggtgg ctacccggcc ttcgctggct gcgttcttgt gggtgcgagag 7680
ggacagggcg aggtgctgct gggcgggtgc acaagctgag ggcggagcgg 7740
gcggcagctgc tgcgagcagc ggcgcagctg cgcagcggca gacgataaag ccgcagcagc 7800
tttggctggct gcggctggtgc acggagcagc ttcgctggct gcgttcttgt gggtgcgagag 7860
ggacagggcg aggtgctgct gggcgggtgc acaagctgag ggcggagcgg 7920
<SEQ ID NO 8
<LENGTH: 8074
<TYPE: DNA
<ORGANISM: Artificial Sequence
<FEATURES:
<OTHER INFORMATION: pET21(+) PPPIM plasmid expression vector DNA sequence

<SEQUENCE: 8

tgccgagatgg aggccgacccc aatagcgac acggttggat gttatcgggt tttcctccct

<FEATURES:
<OTHER INFORMATION: pET21(+) PPPIM plasmid expression vector DNA sequence

<SEQUENCE: 8

tggtggagtt gccaccccag aagcttgcag gataagcagtt gtttttgccc tttccccttt

<FEATURES:
<OTHER INFORMATION: pET21(+) PPPIM plasmid expression vector DNA sequence

<SEQUENCE: 8

ttatcaggttg tttataaggc tcttcgagtt gatttttgttt tttttttttt

<FEATURES:
<OTHER INFORMATION: pET21(+) PPPIM plasmid expression vector DNA sequence

<SEQUENCE: 8

ttgacggttgg gtaagcagtt gtttttgccc tttccccttt
-continued

aggaattttc tgagatcttt ttccccgcg cgaattctgc cgagttgcana caaaaaaacc 1680
acccgcttaa gaggctgttt gttgagccga tcagagtata ccaactcttt ttcgagatttt 1740
aatgggccc gcagacgcgc agataacccaa tactgtctcc ctatgtgtagc cgagttaagg 1800
cccacacttc acataacgcgc tccataactc gctctgtgat acattcgataa 1860
agttggctgt gacagtggcg aatagttgct tttccgccgg tggacotoac gcagatagtt 1920
acacgacact ggcgagcggt cgagctgaa aaggggttcg tcgacacagc cgagtttggg 1980
gcgaagcaco tacacgccag tggatagct acacggtgag ctaacagaaaa gcagcagctt 2040
tccccagggg aagaaagcgcc aagctgttac ggcacagcgc aggagttggg aaggagggc 2100
cagcagggag cttcaggaag gaaaggcctcgt gatcrttttcactagttcagg gttcctccga 2160
cccagtctgtt gatcagcagtt tttgttcagt ctcgctcgggg gggcagacgc atggaaaaad 2220
cgcagcagga gttccctagtc tttgcctttgac ttgtctctttg ctaacagtag 2280
ccttcctcgg ttacatcttc ttcttctgtaa aacccctttt aacgctcgtt agggtactgta 2340
ttcgcagcgc ccagccagcag ccacccagtt gtaacgagct cagagggagc aagcggaacc 2400
gcgccttgag ctagtttcctt cccttacaccc ttctgtcggg ctaacacacc gcagattag 2460
tgcacacacaa tcagacggttt tttcagccca ccaaggagggtaa ccaagtttacactgtgta 2520
cgcagcagtcga ccaggggttc gtcgccccc tcacccccgc acacacacca gacgtcctcctg 2580
cagcaggggt gtcgctccgg gccctcgttc acacacacca gacgtcctcctg ccgctcctcctg 2640
goatgctgtag ccaggggttc cggcagctga cccctctctcgcg aacacgagc cgcagagos 2700
cacagcagcc gcgccctttc gatcagacac ctttaggagtt gatgctcctgtaa cagagggagc 2760
tgcgtcttttt cccgcggttt aatcgagcag ggcttggcaggtcagagcgcgctcagagc tttgagtgac 2820
tttttctcttg tttgctccag gcagttgcttt caccgaggttc atgggggttaa ctacgcggt 2880
tgataacgtt gcaaccggag aagaggtctga cgatactgg aatggtgagat caaacatacc 2940
gtgacctgga acygggtttag gtttaacacc gacgtggtagt gacgtggagc gacagaaaag 3000
aataacctga ggcgccctgc cagaggtttaa ccacccaggt tttctggtctt ccacccaggt 3060
ggccacacgc ccaggtctct gatcagacac cttagagagtt gccggtcgctt gacctgccgg 3120
tttccagact ttggcagaca cggacacca aacacacttc ccaggttcgtt cagagtcagc 3180
acgttttttc gcacgtcctgc tttactctcc gcagctctat gcgagttact ctttgagct 3240
cagtcagcga cccccccagg cttgagccgg ttcttacagc cagggcacag ctccttgcag 3300
cgcggtgcag gcagattacgc ctttaggtttct gcgagcagat tgggtggcgg 3360
gcagagttcc gcaggtcttaa gcagggcgt cggagagcccc gataacagca agcgacagc 3420
cgatagttcc gcagacgcag gcagaggtctgc cttcgcacga aatgcagcagc agcgacagc 3480
gccaggccc ccctctgtcc gcagtgctgag gagaattgcg tttctcagcct aacagctgcc 3540
tggcctcgcgg ccacagcggag cgttctgcttg attggtgcgg tttctcagcct aacagctgcc 3600
acccggctgc ccctagttgcg aacagctgcc ccctcgcggg tggagtagtt gtaacgctgcg 3660
ccacggtgc ccctagttgcg aacagctgcc ccctcgcggg tggagtagtt gtaacgctgcg 3720
gcctttccgg caggggttcg tttcttcttc cccgtctcag cgcagcagcc gcagccgggtttc 3780
tgcgctctg ccctagttgcg aacagctgcc ccctcgcggg tggagtagtt gtaacgctgcg 3840
ccaagagcag gcacacgctg tttctgtggt gttaagcggc ggtataacca tggagtgtctt 3900
-continued

tcggtagct ctgacccac tacagaga taacgacacc gacgacacc ggactcggtg 3960
atggcgcga tcggcgcag cggactctga tcgtggcag gacagatcgc agtggagaag 4020
atgacctgaattct attggattt tgaacaacgg actacgacat caagtgcct 4080
tcctgtctgc atctctgtgg cagagatttg cagctgatgg atattgacc ggggagccga 4140
cgccgactcg cggagcaaga acttaaggg gcggatatgct cggggtgcacc 4200
aatgcggacct atgctgctac ggcgagtcgg gtagatcttt atcggtgagga aataaacttg 4260
tgttatgttg tgtgtgctca gacatccaga anataccgcc gacatttagt gcggcgctt 4320
tcggcgcag tcggcgcag gctctacgg cggactctga tcgtggcag gacagatcgc 4380
tcggcgcag cggagcctc cagagatttg cagctgatgg atattgacc ggggagccga 4440
gacagatct ctgtgctgctc gcggagctgc agtgacgcc gtaaaccaga tcggtgccatcttg 4500
gcggagctgc agtgacgcc gtaaaccaga tcggtgccatcttg 4560
gcggagctgc agtgacgcc gtaaaccaga tcggtgccatcttg 4620
ttcctgtcgg tctctctcgc gcctgctgtc ccacgccgga aacgctcttg 4680
taaagaccc cggcatactc tgcgacactg tattactgta ttctgcttc acatccacc 4740
tcgaattgct ccctctctgc gcctgtacgt gcctgcacgg gcggagtttt gcggagtttt 4800
atcggtgatc gcggagctgc agtgacgcc gtaaaccaga tcggtgccatcttg 4860
ttctctctg ttcctgtcgg tctctctcgc gcctgctgtc ccacgccgga aacgctcttg 4920
gcggagctgc agtgacgcc gtaaaccaga tcggtgccatcttg 4980
gcggagctgc agtgacgcc gtaaaccaga tcggtgccatcttg 5040
acacccacat ccacgccgga cggggtgctgc aaacatcacc acacgacaaa acagacatc 5100
tcggcgcag tcggcgcag gctctctcgc gcctgctgtc ccacgccgga aacgctcttg 5160
cctcagatg ccataatact tgaagaggg gcctgctgc acatccacc 5220
cggcgcacaactgcgctgctgc actgtgattt cgggagctgc agtgacgcc gtaaaccaga 5280
aacggttttg aacggttttg aacggttttg aacggttttg aacggttttg 5340
ttctctctg ttcctgtcgg tctctctcgc gcctgctgtc ccacgccgga aacgctcttg 5400
ctggccatac gcggagctgc agtgacgcc gtaaaccaga tcggtgccatcttg 5460
cacctgtctgc ggaacacccag gcggagctgc acatccacc 5520
tcggcgcag gcggacccag cggagctgc acatccacc 5580
cggggttgt aggctgctgc gcggagctgc acatccacc 5640
taagaggg gcctgctgc acatccacc 5700
gcggagctgc agtgacgcc gtaaaccaga tcggtgccatcttg 5760
acacccacat ccacgccgga cggggtgctgc aaacatcacc acatccacc 5820
acacccacat ccacgccgga cggggtgctgc aaacatcacc acatccacc 5880
acacccacat ccacgccgga cggggtgctgc aaacatcacc acatccacc 5940
ctttctctctg ttcctgtcgg tctctctcgc gcctgctgtc ccacgccgga aacgctcttg 6000
gcggagctgc gcggacccag cggagctgc acatccacc 6060
aacgctgtct gcctgctgc acatccacc 6120
aacgctgtct gcctgctgc acatccacc 6180
aactcgcaca agaagccc ggcgcggtgcg gaatgaccgg tgcocatcgt gaagtcggcg 6240
atctctcctg ccaacacgcc ctacagctgtcg tytagaaggg cggcaacactg agcggcgaga 6300
atgtctgaaa cacacacacca ggtctggcgt acggctgcca caaagctgca caaagcaacctg 6360
agggcgcggct ccctgccacc acagnccagg aagcgacgct gcggcaccac caaacaacac 6420
ctggtgatct aggggaagaggt ttgagatctt atctacaccc cgggaacaggt tcagcagcag 6480
caaaagcgcac atcgctggcgc ccagggccta aggcaacttg aggcttgatg 6540
aagctctgct agtgcgacct gcagctgctc aagatctctgt tcccagagaag cctgygcaaco 6600
gccagggcag cagctgtcgccc caagggcgct cagacatctgc tgcctcatcgc cggcgcgcggc 6660
gtcgacggg tggccagaaa gaccctggcct caccacccc gacatctgat gaatgcgctgc 6720
gaaaccgcgag cggagttcgca ccagcttacag ggtgctccag cagcggcaggt ttgcaagacac 6780
gtcgacgggc tggctgaaag cctgccaaag aacgccctgg cggctgctg gacgggctgggg 6840
gccatcgctg agctcggcct ctcctgctgcc acacgctgct gcagcgtggtc gccagagcgc 6900
acacggcacc cgtctgctgct ccctgcaacc agcttcggct ccctgcgcacc 6960
aaggtgcgccc agcagacgcc gcctgagcgcct cgtgagggcacc cagcaaaacc gcagcaggtt 7020
gcccagaca atacacaccc cggagcccgag gcagagattc cagaattgcttg cctgcgcaag 7080
gggactccgg tttttcgtgcc gtcacagcct acataatccct catattgcttct gcgctgcaag 7140
gggagcggcc atcatctggt gcctgtgctggt acgcggctgca gcagcgggacc gtcagctgca 7200
gtgtgtctgt gtgctgacca ggagggcgggt gattgtatcg ctttgctgaccc ctgctgctggg 7260
gcctctgctg gcgtcgcgcacc cgacacccagctgcgtgct gcgtgtgcttg cgtctgcgca 7320
ggggactcgg gcctggtgca caggtgtgcag ccaagccggc gctctggatg ctctggtgctg 7380
agcgctggga ttcgctggtgcg cgtgtcgaca ctcctgtgtcgc cccagcttca caaatccctg 7440
cagcgatgctg tcggcgggaca atctgctgat ccctgctggac gagaatgtgt gcgcaacggg 7500
cgggaggccag ccgttcgggcgc ccggtggctgga acgtcgcgacc ctgcctgctg cgaaggggtt 7560
ggtgtacaca acetgaaaat cgcagaaggt aacgtgttac tccgtgattc cggctgataaa 7620
ggcttacagc gttccgggtggctt tgcaggggtc aatctggtcgg aagtagctgg attaagaagc 7680
acgctggagc atccggatac atccgagaaag ctcaccccag gcctggcgcgc ggctgggctg 7740
ggctgctgca ttcctccttg gcgccagcgc ccgcttgggttg gcgtctgcta aatctgtgctt 7800
tgtgctgaa tttcggcggcc ccaagctgct gcgccagcgc tggcttgggttg aatctggtgctt 7860
gcgtgtctgt atcaagccgca acgtggctggt gcgcgcgttg gcgtctgcta aagtttagcgt 7920
attataac aagatctggt gcgcagaccgg ccaaaaaacc ggagagacag cggcgctgtgc 7980
gatagaaa gctgaagggc agttaggtgc gcggcttggt ctaatccgca gagaagagtc 8040
tctacctgc cctgtatggcc gtaaagcgggg gttgtatcgt tccagatgtg aaaagcgaag 8100
tacgctatca aagatctggcg cgttattagt gcgtctgcta aatctgtgctt gcgcgcgtgcg 8160
gtgcctgtga tttacaacac acacatgaaat cgcagaccccag atctacctg gcggcagac 8220
acggctggac cccctgagctc tgcggcgtgt gcgtctgctg ctcctgacac ctcctggtgctt 8280
gaacggcagc aagtgatatt tggttggcgc gtcgctgctg ctaataatcacc 8340
aagcctgggt tggggtgttc ggcggcgcgttg atcctgcggt ccagcggcccc 8400
goaaagagaat ctctcgtgct gcagtgatag gcgttggacgcc ggttatataaa 8460
<210> SEQ ID NO: 9
<211> LENGTH: 1116
<212> TYPE: DNA
<213> ORGANISM: Unknown
<220> FEATURE:
<223> OTHER INFORMATION: Coding Sequence for a Maltose Binding Protein

<400> SEQUENCE: 9

atggatctg aagaggtta aaagctaacc ttcaggttac cccttgtctg 60
ctctgt tgtctgaa tatgctgaa gttcagttt tataaggtc acgtggttat 120
cggtgaaac tcagtttttt gttgatgtg tatagttgc tttaaatag 180
atgtggtg gatggtggt ttgcttgaa tcagttgtg aggattgtt 240
agctggttct gattctgta gataaggtt aatgttttttt 300
aaggtgattg ctattgtta ccagtttttt gtacctgctt 360
agtgctgtc gataaggtt aatgttttttt 420
aaggtgattg ctattgtta ccagtttttt gtacctgctt 480
ctattgtta ccagtttttt gtacctgctt 540
agctggttct gattctgta gataaggtt aatgttttttt 600
aaggtgattg ctattgtta ccagtttttt gtacctgctt 660
agctggttct gattctgta gataaggtt aatgttttttt 720
agctggttct gattctgta gataaggtt aatgttttttt 780
agctggttct gattctgta gataaggtt aatgttttttt 840
agctggttct gattctgta gataaggtt aatgttttttt 900
agctggttct gattctgta gataaggtt aatgttttttt 960
agctggttct gattctgta gataaggtt aatgttttttt 1020
agctggttct gattctgta gataaggtt aatgttttttt 1080
agctggttct gattctgta gataaggtt aatgttttttt 1140

<210> SEQ ID NO: 10
<211> LENGTH: 1488
<212> TYPE: DNA
<213> ORGANISM: Unknown
<220> FEATURE:
<223> OTHER INFORMATION: Coding Sequence for NusA

<400> SEQUENCE: 10

atggatctg aagaggtta aaagctaacc ttcaggttac cccttgtctg 60
gagaagtttt tgtactgat gaaaggtta aaagctaacc ttcaggttac cccttgtctg 120
-continued

cacagacatc aagtcgacgt atcagatcat gacaaacgac ggtatttga cacatctcgt 180
cgcttcttag cggcttgtag aagcaccag gaccttcgac agcttcctt cggctttgaa 240
cgttatagag atggaaagc gagacggcgg gacatattg ggattaatag cagatcgtt 300
acctttacgt gctagctac ccagagcgcg accaaggttc tctgtcgcag agttgcgcgt 360
gcgcagccg ccggttcagtc gcctggagct ccgacaccgg ccaggtcaatt cctgtaaccggc 420
gtggagtaaa gtggaaaccg cggacacttc tccctggagt ctcgacacag cggacacccg 480
gtgttctgc gagctaccac ggtctggcgg ctaaaaccc gcgacgctcgc ggtctggcgt 540
ggctgctct ctttctggct ccttgcgcct gcgcttgccg cttgctccgt gcggcgcgt 600
aagccggagaa ggtctgctgc acgtctttcg attgagatgc cagaaatcgg cgaagatgcgg 660
attgtcattc aaggagagtg cctggtctcg gttctctggc ccgaatcgcg cggtaaaccg 720
aaccytaacag gttctgtttcc ggttggttgc attgtggttgc tggcagcagc tcgcgcggcgt 780
gggcggtcag ccggggtcgag tgcgagatgc tcccgcgctg ggtcactc ctgagacgagc 840
gggcggcttc ggtttcagcc atcggcacc gcgcgatcgc ctctctgcag ggttggagtaa 900
gataaacacg cctgccagac gcggctggag gcggctggag gcggctggag gcggctggag 960
aaccgctgca agtctgctcg gcgtgtccag cgcgtgctct gcggctgcac gcggctgcac 1020
ggcggtcagc cgggtcagcc gcgcgacgcgc gcgcgacgcgc gcgcgacgcgc gcgcgacgcgc 1080
aaatctctcc aacggctacg aacgtctcctcg aacgtctcctcg aacgtctcctcg aacgtctcctcg 1140
ctcgagaat gcggatactag gcggatactag gcggatactag gcggatactag gcggatactag 1200
ccggtggctt ggcggtttcc ggcggtttcc ggcggtttcc ggcggtttcc ggcggtttcc 1260
cagggagagcg ctgcggctcc ggcggtttcc ggcggtttcc ggcggtttcc ggcggtttcc 1320
ggaggttttg ggggggtgag ggggggtgag ggggggtgag ggggggtgag ggggggtgag 1380
gacgggtacac cggcgcggcg ggtggcggcg ggtggcggcg ggtggcggcg ggtggcggcg 1440
cctttttgct ttttttttct tttttttttc tttttttttc tttttttttc tttttttttc 1488

<210> SEQ ID NO: 11
<211> LENGTH: 3075
<212> TYPE: DNA
<213> ORGANISM: Unknown
<220> FEATURE:
<222> OTHER INFORMATION: Coding Sequence for a beta-galactosidase
<400> SEQUENCE: 11

atggacacatg ttaacggtacg acgttacgcct gttttacacg gtgtgacgtg gaaaaaccct 60
ggctgacccc aacttaatct cttgacaagc aactctccctt tggcagacg tcctgtcttcg 120
gaagagcggc gcgacgtcag ccctctcccc caagtggaca ggcgtggttg gcgaaagtgc 180
tttgctgtgt tccgagccct aagagctgtg cgccagagct gcggattcgct ctttgtctttc 240
gggcggcatg ctgctttctc ccctctcccc cctctctcct ctgcagatgc cggctggcctg 300
tacccacag cgcgtattc ccctctctcg aacgtatcgc tttgcgccac gcgaagagcg 360
aacgttggtgt aactctccct attttatttt tttgacttac gcggatagcc gggccagacgc 420
cgactatttt ttgtgtgcttg tcaacctctt gtttctttct ggttcacagc ccggttcagc 480
gttgcagcc gcgacgtcag ccctctcccc cttgtcttct gcattttggtc ctgcagatgc 540
ggagaacgc gcgacgtcag cttggttggt gcggatagcc cggctgctt ccgacagatc 600
cagggatatgt ggccgattag ccgcatatttc cgtgacgctct cgtgtgcgca taacccgact 660
acacaataca ccgattttca tgttgccact cggcttactg atgatttcag cgccgtctga 720
cgtggagttg aatgctcgat gtggccgag tgtggctgac actccacggt acaagttctct 780
ttaggacag gttagacgcc ggtgccgccc gtcgagcgcg tttctgcccgg tggacattac 840
gattgagcgc gttgctgact gctgacggtc acacatcgttc tgacgctgca aaacccccaa 900
cgtgggcagcg cgaacacact gaaatcttat cgtgcggcttg tggaaactca caccgccgac 960
ggaccgcgta ttgacagcga aggctgagat gtgcggcttccc gcggagtgcc gcattgaaat 1020
ggctcgtgac ttgatccaggg caacgcgtcttg cgtgctagag ggccttacgg tcaagaagct 1080
catcctctgg atgcgacgct cagggatagc ccaagacagg tgcagcattc ctgtgctgtg 1140
aacagaaatgt accctcagtgc ccgtgcgctg ccgattttact cgaacacattcc gctgtgcgtac 1200
acgccgtagt cccggtctgg cttgatcagg ccaataatattt gaaaccccggt 1260
atggctgcaag tggaaactct gcagagctag cccggtcctcc caccgctgag 1320
gtaacgcgatt tggagacgcc gcagcggattg tattacttcg gcggagcgat 1380
aatgaatcag gcgccgcgac taactcaagc gcgcgttactgc gcggagattc atctgtcagat 1440
cocctcctgg ccgcttcatg tgctgctttg cctgggtccatt ccgatattat 1500
tgcggcgagt acgcggcggt ggtgacagag cggacccctc cggctggcgc ggactttgc 1560
atggctgcaag tggaaactct gcagagctag cccggtcctcc caccgctgag 1620
cagggatagc ccaagacagg tgcagcattc ctgtgctgtg 1680
ccccttaccc aggccgctcct cggctgtgac gcgtgctgctt gtaactattc 1740
ggaaagccg aacgccggttc ggacttcttg ggataacgga ggagcatcgg 1800
cgtgctcag cggccgcttg cttgtgtggca gcggccgtaa ccgcgtggtgc ggctgtgcgtg 1860
gcggagcggt actccgagtttt cttcgcagtc gcggggctcg gcggccgcttg 1920
acgccgattc tattgcgcttt accgtgcgtgc accgtgcgtgt gcggccgcttg 1980
ggtagccagtg gggaaagcggg gggaaagcggg gggaaagcggg gggaaagcggg 2040
attgagcag tcggtgctcgc gcggccgcttg gcggccgcttg gcggccgcttg 2100
gttaagcgc cggccgcttg gcggccgcttg gcggccgcttg gcggccgcttg 2160
tggcttgtcc gcggccgcttg gcggccgcttg gcggccgcttg gcggccgcttg 2220
cggccgcttg gcggccgcttg gcggccgcttg gcggccgcttg gcggccgcttg 2280
cgcggccgcttg gcggccgcttg gcggccgcttg gcggccgcttg gcggccgcttg 2340
tccgctgacgc gcggccgcttg gcggccgcttg gcggccgcttg gcggccgcttg 2400
cgcggccgcttg gcggccgcttg gcggccgcttg gcggccgcttg gcggccgcttg 2460
gggccgcttg gcggccgcttg gcggccgcttg gcggccgcttg gcggccgcttg 2520
cgcggccgcttg gcggccgcttg gcggccgcttg gcggccgcttg gcggccgcttg 2580
gttgggctcgc gcggccgcttg gcggccgcttg gcggccgcttg gcggccgcttg 2640
gcggccgcttg gcggccgcttg gcggccgcttg gcggccgcttg gcggccgcttg 2700
tccggccgcttg gcggccgcttg gcggccgcttg gcggccgcttg gcggccgcttg 2760
tccggccgcttg gcggccgcttg gcggccgcttg gcggccgcttg gcggccgcttg 2820
gggccgcttg gcggccgcttg gcggccgcttg gcggccgcttg gcggccgcttg 2880
We claim:
1. A fusion protein comprising:
 (a) a product protein domain,
 (b) a self-cleaving intein, and
 (c) at least one aggregator protein domain capable of specific association with granules of polyhydroxyalkanoate (PHA);

 wherein the intein is located between the product protein domain and the aggregator protein domain.

2. The fusion protein of claim 1 wherein the intein is Δ1–CM.

3. The fusion protein of claim 1 wherein the at least one aggregator protein domain comprises one or more phasins.

4. The fusion protein of claim 1 wherein the at least one aggregator protein domain comprises one to five phasins that are linked to each other by flexible amino acid linker(s).

5. The fusion protein of claim 3 wherein said one or more phasins are capable of binding to granules of polyhydroxybutyrate.

6. The fusion protein of claim 1 in which the at least one aggregator protein domain is covalently attached to the intein by a flexible amino acid linker.

7. A nucleic acid encoding the fusion protein of claim 1.

8. The nucleic acid of claim 7 wherein the product protein domain, the intein, and the aggregator protein domain form a single open reading frame.

9. A plasmid comprising the nucleic acid of claim 7.

10. A cell stably transfected with the nucleic acid of claim 7.

11. A nucleic acid encoding the fusion protein of claim 3.

12. A plasmid comprising the nucleic acid of claim 11.

13. A cell stably transfected with the nucleic acid of claim 11.

14. The cell of claim 13 that is further stably transfected with nucleic acid encoding phaA, phaB, and phaC.

15. The cell of claim 13 that endogenously produces phaA, phaB, and phaC.

16. The cell of claim 15 wherein said cell is a strain from *E. coli*.

17. A host cell comprising:
 (a) a first plasmid encoding the fusion protein of claim 3; and
 (b) a second plasmid encoding at least one protein involved in the biosynthesis of a polyhydroxyalkanoate.

18. A method of expressing a fusion protein comprising cultivating the cell of claim 10.

20. A method of purifying a product protein from a recombinant cell culture medium comprising:

(a) recombinantly producing the fusion protein of claim 3 and endogenously or through recombinant transfection of phaP genes producing polyhydroxyalkanoates in the same host cell;

(b) allowing the fusion protein and the polyhydroxyalkanoate to leave the host cell either by cell secretion or cell lysis, independently of one another;

(c) allowing the fusion protein to aggregate with the polyhydroxyalkanoate to form a first precipitate;

(d) separating the first precipitate from unprecipitated components of the cell culture medium;

(e) adding water to the first precipitate to form an aqueous precipitate mixture and adjusting one or more conditions of pH, temperature, salt concentration and/or thiol/thiol redox potential content of the aqueous precipitate mixture such that the intein self-cleaves from the product protein to form a phasin-intein fusion that remains aggregated with the polyhydroxyalkanoate precipitate and a separated product protein that goes into solution; and

(f) separating the solution of separated product protein from the phasin-intein precipitate to yield a substantially purified protein.

21. The method of claim 20 wherein the first precipitate is separated from the unprecipitated components of the cell culture medium by centrifugation, filtration, flocculation or by settling.

22. The method of claim 20 wherein the at least one aggregator protein domain comprises one to five phasins that are linked to each other by flexible amino acid linkers.

23. The method of claim 20 wherein the polyhydroxyalkanoate is polyhydroxybutyrate.

24. The method of claim 20 wherein the fusion protein and the polyhydroxyalkanoate leave the host cell as a result of cell lysis.

25. The method of claim 20 wherein the intein is ΔI—CM.

26. The method of claim 25 wherein the temperature of the second suspension is adjusted to 18-22°C, and the suspension is incubated such that the intein self-cleaves from the product protein.

27. The method of claim 20 wherein the first precipitate is washed prior to allowing the intein to self-cleave.

* * * * *