

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
20 February 2003 (20.02.2003)

PCT

(10) International Publication Number
WO 03/014323 A2

(51) International Patent Classification⁷: **C12N**

(21) International Application Number: **PCT/US02/25563**

(22) International Filing Date: 9 August 2002 (09.08.2002)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
09/927,597 10 August 2001 (10.08.2001) US

(71) Applicant (for all designated States except US): **CYTOKINETICS, INC.** [US/US]; 280 East Grand Avenue, Suite 2, South San Francisco, CA 94080 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): **MALIK, Fady** [US/US]; 2884 Hillside Drive, Burlingame, CA 94010 (US). **BERAUD, Christophe** [FR/US]; 761 Tehama Street, San Francisco, CA 94103 (US). **FREEDMAN, Richard** [US/US]; 1012 Shoreline Drive, San Mateo, CA 94404 (US). **CRAVEN, Andrew** [US/US]; 1318 10th

Avenue, San Francisco, CA 94122 (US). **SAKOWICZ, Roman** [PL/US]; 1119 Nimitz Lane, Foster City, CA 94404 (US). **HARTMAN, James** [US/US]; 3 Gaiser Court, San Francisco, CA 94110 (US).

(74) Agents: **LIEBESCHUETZ, Joe** et al.; Townsend and Townsend and Crew LLP, Two Embarcadero Center, Eighth Floor, San Francisco, CA 94111 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: HUMAN SMOOTH MUSCLE MYOSIN HEAVY CHAIN

1 MAQKGQLSDD EKFLFVDKNF INSPVAQADW AAKRLVWVPS EKQGFEAASI
51 KEEKGDEVVV ELVENGKKVT VGKDDIQKMN PPKFSKVEDM AELTCLNEAS
101 VLHNLRERYF SGLIYTYSGL FCVVVNPYKH LPIYSEKIVD MYKGKKRHEM
151 PPHIYAIADT AYRSMLQDRE DQSILCTGES GAGKTENTKK VIQYLAUVAS
201 SHKGKKDTSI TQGPSFAYGE LEKQLLQANP ILEAFGNAKT VKNDNSSRFG
251 KFIRINFDVT GYIVGANIET YLLEKSRAIR QARDERTFHI FYYMIAGAKE
301 KMRSDLLEG FNNYTFLSNG FVPIPAAQDD EMFQETVEAM AIMGFSEEEQ
351 LSILKVSSV LQLGNIVFKK ERNTDQASMP DNTAAQKVCH LMGINVTDFT
401 RSILTPRIKV GRDVVQKAQT KEQADFAVEA LAKATYERLF RWILTRVNKA
451 LDKTHRQGAS FLGILDIAGF EIFEVNSFEO LCINYTNEKL QQLFNHTMFI
501 LEQEEYQREG IEWNFIDFGL DLQPCIELIE RPNNPPGVLA LLDEECWFPK
551 ATDKSFVKEKL CTEQGSHPKF QKPQLKDGT EFSIIHYAGK VDYNASAWLT
601 KNMDPLNDNV TSLLNASSDK FVADLWKDVD RIVGLDQMAK MTESSLPSAS
651 KTKKGMPRTV GQLYKEQLGK LMTTLRNTTP NFVRCIIPNH EKRSGKLDA

WO 03/014323 A2

(57) Abstract: The invention provides novel compositions, methods, and uses of hSMMHC polypeptides and polynucleotides.

Declaration under Rule 4.17:

— *of inventorship (Rule 4.17(iv)) for US only*

Published:

— *without international search report and to be republished
upon receipt of that report*

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

HUMAN SMOOTH MUSCLE MYOSIN HEAVY CHAIN**Cross-Reference to Related Application**

5 The present application is a continuation-in-part of USSN 09/927,597, filed
August 10, 2001 which is incorporated by reference in its entirety for all purposes.

FIELD OF THE INVENTION

The invention relates to the identification, purification, and isolation of a novel
polynucleotides encoding a human protein, termed hSMMHC, that is the human
10 smooth muscle myosin heavy chain. The invention relates to polynucleotides
encoding hSMMHC polypeptides, hSMMHC polynucleotides which specifically
hybridize to a naturally-occurring hSMMHC gene or mRNA sequence,
oligonucleotide primers for amplifying a naturally-occurring hSMMHC gene or
mRNA sequence, substantially purified hSMMHC polypeptides and
15 polynucleotides, methods and compositions for detecting hSMMHC polypeptides
and polynucleotides, methods and compositions for identifying agents which
modulate hSMMHC functional interactions and/or activities, and methods of treating
or preventing disease by modulating hSMMHC functional interactions or activities.

BACKGROUND OF THE INVENTION

20 Smooth muscle cells form the contractile element found in involuntary
contractile organs such as the gastrointestinal tract, the urogenital tract, the
vasculature, and the small airways of the lung. Smooth muscle is capable of slow,
sustained contractions that require less energy to maintain than other muscle types.

Smooth muscle cells are quite different from either skeletal or cardiac muscle
25 cells, beginning with their smaller size. Additionally, no striations are seen in smooth
muscle cells, and high-resolution microscopy reveals that smooth muscle cells lack
the sarcomeric organization of other muscle cell types. The thick (myosin) and thin
(actin) filaments are dispersed throughout the cytoplasm of smooth muscle cells, in
contrast to the well-organized parallel bundles seen in skeletal and cardiac
30 sarcomeres. This unique organization has the advantage of allowing smooth muscle
cells to contract to less than 1/5 of their resting lengths (L₀), compared with 1/2 L₀
for cardiac cells.

The contractile apparatus of smooth muscle cells consists of thick filaments of smooth muscle myosin and thin filaments of actin coated with the smooth muscle isoform of tropomyosin. As in other muscle types, the level of intracellular free calcium regulates force production in smooth muscle. The molecular mechanism by 5 which calcium controls force production is different in smooth muscle than in striated muscle.

Primary control of smooth muscle myosin activity is via calcium-dependent phosphorylation of myosin, changing inactive thick filaments into an active conformation that can interact with actin and produce force. This differs from skeletal 10 and cardiac muscle, where regulation occurs at the level of actin thin filaments. In these tissues, tropomyosin and the regulatory troponin complex decorate actin filaments and control access to myosin binding sites, and thus force production, in a calcium-sensitive manner. In smooth muscle, there is evidence suggesting that some degree of thin filament regulation occurs in smooth muscle cells, but the regulatory 15 proteins are different (caldesmon, calponin) and their role has been less well defined than for the troponin complex in skeletal and cardiac muscle.

Myosin is present in all muscle and non-muscle cells. Of the ten distinct classes of myosin in human cells, myosin-II is the form responsible for contraction of skeletal, cardiac, and smooth muscle. This form of myosin is significantly different in 20 amino acid composition and in overall structure from myosins in the other nine distinct classes (Goodson and Spudich, 1993). Myosin-II consists of two globular head domains, called Subfragment-1 or S1, linked together by a long α -helical coiled-coiled tail. Proteolysis of myosin generates either S1 or heavy meromyosin (HMM, a two-headed form with a truncated tail), depending on conditions. S1 contains the 25 ATPase and actin-binding properties of the molecule. S1 has been shown to be sufficient to move actin filaments in vitro, and is therefore clearly the motor domain of the molecule.

Although myosin II isoforms from various tissues differ in a number of biological properties, they all share the same basic molecular structure as a dimer of 30 two heavy chains (approximately 200 kDa) noncovalently associated with two pairs of light chains (approximately 20 and 17 kDa). The two globular amino-terminal heads are tethered together by the carboxyl-terminal alpha-helical coiled-coil that forms a tail. The tails are involved in the assembly of myosin molecules into filaments,

whereas the heads contain an actin-activated Mg²⁺-ATPase activity. Each myosin head can be divided by three protease-sensitive regions into peptides of approximately 25, 50, and 20 kDa. The more amino-terminal 25 kDa - 50 kDa junction is close to the ATP binding region, whereas the actin-binding domain is near the 50 kDa - 20 kDa junction.

The high-resolution crystal structure for skeletal S1 is known in both its putative pre-stroke and post-stroke states. The crystal structure of the recombinant chicken smooth muscle myosin motor domain has also been determined. S1 consists of a globular actin binding and nucleotide binding region known as the catalytic domain. This domain is attached at its carboxy-terminus to an alpha-helix that has two light chains of ~20 kDa each wrapped around it. This light-chain binding domain of S1 is known as the lever arm. Upon transitioning from the pre-stroke to the post-stroke state of the S1, the lever arm swings through an angle of ~90 degrees about a fulcrum point in the catalytic domain near the nucleotide-binding site. The “power stroke” is driven by the hydrolysis of ATP.

The other end of the myosin molecule is an alpha-helical coiled-coiled tail involved in self assembly of myosin molecules into bipolar thick filaments. These thick filaments interdigitate between thinner actin filaments, and the two filament systems slide past one another during contraction of the muscle. This filament sliding mechanism involves conformational changes in the myosin heads causing them to walk along the thin actin filaments at the expense of ATP hydrolysis.

Activation of smooth muscle myosin is via phosphorylation of the 20 kDa myosin light chain by myosin light chain kinase (MLCK). Calcium sensitivity is achieved by the absolute requirement for having a Ca²⁺-calmodulin complex bound to MLCK. An increase in intracellular calcium drives formation of a calcium-calmodulin complex, which is then competent to bind to MLCK and stimulate phosphorylation. When calcium levels fall, the intracellular concentration of the Ca²⁺-calmodulin complex drops and more Ca²⁺-calmodulin dissociates from MLCK, causing inactivation. Counterbalancing the action of MLCK is myosin phosphatase, which dephosphorylates the 20 kDa myosin light chain and inactivates myosin.

Myosin heavy chain (MyHC) has been studied at the molecular level in striated muscle, where each isoform is encoded by a different member of a multigene family. In contrast, smooth muscle myosin heavy chain isoforms are produced by

alternate splicing of a single gene. Of particular interest is the splice variant that occurs in the myosin head, at the 25/50 kDa junction. B-isoforms contain an extra seven amino acid insert at this junction; this insertion doubles the rate of ATP hydrolysis as well as the velocity of actin filaments in an in vitro motility assay over 5 that of A-isoforms lacking the insert. Interestingly, although A- and B-isoforms are co-expressed in several smooth muscle types, there appears to be preferential expression of particular isoforms in different tissues. For example, the slower A-isoform predominates in vascular tissue, while the faster B-isoform is the major species in visceral tissues like bladder and intestine. This correlates with the much 10 lower maximal speed of shortening seen for aortic versus intestinal smooth muscle.

In addition to this N-terminal diversity, there is also splice site variation in the C-terminal tail of the heavy chain, producing the SM-1 and SM-2 isoforms. The SM-2 isoform contains 9 unique amino acids, whereas the SM-1 isoform contains 43 unique amino acids at the C-terminus. The functional consequences of these C-15 terminal variations remain unclear, but expression studies indicate that there is differential expression in developing smooth muscle and cultured cells. SM-1 is expressed first in fetal rabbit development, followed by SM-2 expression in late fetal or early neonatal development. Studies of SM-1 and SM-2 isoform composition in different smooth muscle tissues have not established clear tissue expression patterns.

20 Although the art has provided some structural and functional data regarding certain non-primate homologs of SMMHC genes, mRNAs, and encoded proteins, there is a need in the art for primate, and particularly human, SMMHC isoform polynucleotide sequences, peptide sequences, isoform proteins, antibodies thereto, and the like, as well as methods employing the aforesaid. The present invention 25 provides those embodiments and others useful to those skilled in the art.

The references discussed herein are provided solely for their disclosure prior to the filing date of the present application and are each incorporated herein by reference. Nothing herein is to be construed as an admission that the inventors are not entitled to antedate such disclosure by virtue of prior invention.

30

SUMMARY OF THE INVENTION

The present invention relates to novel human smooth muscle myosin heavy chain (hSMMHC) proteins and encoding polynucleotides.

Accordingly, an embodiment of the invention involves the formation of a purified and/or isolated primate hSMMHC protein and fragments thereof.

In an embodiment, the hSMMHC polypeptides have the amino acid sequence of SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, or SEQ ID NO:12,

5 or a substantially identical mutein, homolog, fragment, analog, or fusion protein thereof.

In an aspect, the hSMMHC protein comprises the polypeptide encoded by SEQ ID NO:1; SEQ ID NO:3; SEQ ID NO:5; SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:11, or SEQ ID NO:13; or a substantially identical mutein, homolog, fragment, 10 analog, or fusion protein thereof.

The invention provides muteins comprising a hSMMHC S1 domain comprising an amino acid sequence having an amino acid substitution, addition, and/or deletion as compared to a naturally-occurring hSMMHC protein (e.g., a naturally-occurring hSMMHC protein obtained from a non-pathological mammalian 15 specimen). In a variation, the invention provides hSMMHC fragments comprising a S1 or RLC binding domain (or fragments thereof), preferably S1, wherein said fragments comprise a naturally-occurring hSMMHC amino acid sequence and exhibit binding to ATP and/or actin, or wherein such fragments comprise an amino acid substitution, addition, or deletion relative to the naturally-occurring hSMMHC 20 polypeptide sequence and which substantially lack binding to actin or ATP, and/or have activity as a hSMMHC competitive antagonist and/or enhance actin-myosin contractile activity or block actin-myosin contractile activity of endogenous hSMMHC protein.

In an aspect, the invention provides recombinant proteins comprising an 25 hSMMHC sequence and an additional linked amino acid sequence in the form of a fusion protein. In an aspect, the invention provides deletion variants of hSMMHC wherein up to 90 percent or more of the full-length hSMMHC sequence is deleted but the deletion variant retains a detectable biochemical property (e.g., ATPase function, actin binding, etc.) and is structurally distinguishable from a corresponding 30 fragment of a non-primate homolog of hSMMHC. In an aspect the invention provides sequence variants of hSMMHC wherein amino acid deletions, additions, and/or substitutions are present and wherein the sequence variant is not sequence identical to any known non-primate SMMHC sequence of comparable length. In

one aspect, the hSMMHC protein comprises the amino acid sequence -QGPSFAY- (SEQ ID NO:15) (i.e., the insertion in the motor domain derived from the splice variant as described below).

5 The present invention provides compositions comprising recombinant and/or substantially purified hSMMHC proteins and assay compositions comprising a hSMMHC protein or variant thereof and a candidate agent which may modulate function of the hSMMHC protein.

10 The invention also provides antibodies which bind to hSMMHC with an affinity of about at least $1 \times 10^7 \text{ M}^{-1}$ and which lack specific high affinity binding for non-primate SMMHC-related polypeptides.

15 Polynucleotide sequences encoding hSMMHC polypeptides are provided. The characteristics of the cloned sequences are given, including the nucleotide and predicted amino acid sequences. Polynucleotides comprising these sequences can serve as templates for the recombinant expression of quantities of hSMMHC polypeptides, such as full-length hSMMHC. Many polynucleotides comprising these sequences can also serve as probes for nucleic acid hybridization.

20 The invention also provides host cells expressing hSMMHC polypeptides encoded by a polynucleotide other than a naturally-occurring hSMMHC gene or homolog gene of the host cell (if present). Such a polynucleotide may be an expression vector.

25 The invention provides a method for identifying a candidate agent that modulates a detectable biochemical function of hSMMHC in vitro. The present invention provides several novel methods and compositions for modulating hSMMHC activities and for screening for modulators of such activities. The invention also provides methods for identifying agents which modulate hSMMHC activity in vivo.

30 The present invention also provides a method for diagnosing a disease in a human patient, wherein a diagnostic assay is used to determine if a predetermined pathogenomic concentration of hSMMHC polypeptide or its encoding mRNA is present in a biological sample from a human patient.

A further understanding of the nature and advantages of the invention will become apparent by reference to the remaining portions of the specification and drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1(A-D) shows a cDNA sequence (SEQ ID NO:1) of a hSMMyHC variant using all exons (exons 1-43).

5 Figure 2 (A-B) shows the amino acid sequence (SEQ ID NO:2) encoded by SEQ ID NO:1.

Figure 3 (A-D) shows a cDNA sequence (SEQ ID NO:3) of a hSMMyHC variant missing exon 42 (uses exons 1-41 and 43).

10 Figure 4 (A-B) shows the amino acid sequence (SEQ ID NO:4) encoded by SEQ ID NO:3.

Figure 5 (A-B) shows a cDNA sequence (SEQ ID NO:5) encoding a hSMMyHC variant having the sequence of amino acids 1-699 of SEQ ID NO:2.

15 Figure 6 shows the amino acid sequence (SEQ ID NO:6) of a hSMMyHC variant having the sequence of amino acids 1-699 of SEQ ID NO:2.

Figure 7 (A-B) shows a cDNA sequence (SEQ ID NO:7) encoding a hSMMyHC variant having the sequence of amino acids 1-772 of SEQ ID NO:2.

Figure 8 shows the amino acid sequence (SEQ ID NO:8) of a hSMMyHC variant having the sequence of amino acids 1-772 of SEQ ID NO:2.

20 Figure 9 (A-B) shows a cDNA sequence (SEQ ID NO:9) encoding a hSMMyHC variant having the sequence of amino acids 1-849 of SEQ ID NO:2.

Figure 10 shows the amino acid sequence (SEQ ID NO:10) of a hSMMyHC variant having the sequence of amino acids 1-849 of SEQ ID NO:2.

25 Figure 11 (A-B) shows a cDNA sequence (SEQ ID NO:11) encoding a hSMMyHC variant having the sequence of amino acids 1-852 of SEQ ID NO:2.

Figure 12 shows the amino acid sequence (SEQ ID NO:12) of a hSMMyHC variant having the sequence of amino acids 1-852 of SEQ ID NO:2.

Figure 13 (A-B) shows a cDNA sequence (SEQ ID NO:13) encoding a hSMMyHC variant having the sequence of amino acids 1-845 of SEQ ID NO:2.

30 Figure 14 shows the amino acid sequence (SEQ ID NO:14) of a hSMMyHC variant having the sequence of amino acids 1-845 of SEQ ID NO:2.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

I. General

Before the present proteins, nucleotide sequences, and methods are described, 5 it is understood that this invention is not limited to the particular methodology, protocols, cell lines, vectors, and reagents described, as these may vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only and is not intended to limit the scope of the present invention which will be limited only by the appended claims.

10 It must be noted that as used herein and in the appended claims, the singular forms "a", "an", and "the" include plural reference unless the context clearly dictates otherwise. Thus, for example, reference to "a host cell" includes a plurality of such host cells, reference to the "antibody" is a reference to one or more antibodies and equivalents thereof known to those skilled in the art, and so forth.

15 Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, the preferred methods, devices, and materials are now described.

20 All publications mentioned herein are incorporated herein by reference for the purpose of describing and disclosing the cell lines, vectors, and methodologies which are reported in the publications which might be used in connection with the invention. Nothing herein is to be construed as an admission that the invention is not entitled to antedate such disclosure by virtue of prior invention.

25

Definitions

As used herein, the twenty conventional amino acids and their abbreviations follow conventional usage (Immunology - A Synthesis, 2nd Edition, E.S. Golub and D.R. Gren, Eds., Sinauer Associates, Sunderland, Massachusetts (1991)).

30 Stereoisomers (e.g., D-amino acids) of the twenty conventional amino acids, unnatural amino acids such as alpha-disubstituted amino acids, N-alkyl amino acids, lactic acid, and other unconventional amino acids may also be suitable components for polypeptides of the present invention. Examples of unconventional amino acids

include: 4-hydroxyproline, gamma-carboxyglutamate, epsilon-N,N,N-trimethyllysine, epsilon-N-acetyllysine, O-phosphoserine, N-acetylserine, N-formylmethionine, 3-methylhistidine, 5-hydroxylysine, omega-N-methylarginine, and other similar amino acids and imino acids (e.g., 4-hydroxyproline). In the polypeptide notation used

5 herein, the lefthand direction is the amino terminal direction and the righthand direction is the carboxy-terminal direction, in accordance with standard usage and convention. Similarly, unless specified otherwise, the lefthand end of single-stranded polynucleotide sequences is the 5' end; the lefthand direction of double-stranded polynucleotide sequences is referred to as the 5' direction. The direction of 5' to 3' 10 addition of nascent RNA transcripts is referred to as the transcription direction; sequence regions on the DNA strand having the same sequence as the RNA and which are 5' to the 5' end of the RNA transcript are referred to as "upstream sequences"; sequence regions on the DNA strand having the same sequence as the RNA and which are 3' to the 3' end of the coding RNA transcript are referred to as "downstream 15 sequences".

"Actin polypeptide" is used herein as a generic term to refer to native protein, fragments, analogs, or fusions of actin, preferably mammal actin.

"Agent" or "candidate agent" is used herein to denote a chemical compound, a mixture of chemical compounds, an array of spatially localized compounds, a 20 biological macromolecule, a bacteriophage peptide display library, a bacteriophage antibody (e.g., scFv) display library, a polysome peptide display library, or an extract made from biological materials such as bacteria, plants, fungi, or animal (particularly mammalian) cells or tissues that modulates the activity of hSMMHC.. Agents are evaluated for potential activity by inclusion in screening assays described 25 hereinbelow. Agents are evaluated for potential activity as specific protein interaction modulators and/or as specific modulators of protein or protein derivative catalytic activity and/or as specific modulators of the interactions between the protein of interest and potential accessory molecules required for protein catalysis (e.g., modulation of the interaction of the protein and ATP, Mg⁺², etc.) by inclusion in 30 screening assays described hereinbelow. A preferred agent selectively modulates (i.e., inhibits or activates) a binding interaction between two predetermined polypeptides but does not substantially interfere with cell viability.

"Analog", "mutein" or "mutant" as used herein refers to polypeptides which

are comprised of a segment of at least 10 amino acids that has substantial identity to a portion of the naturally occurring protein. For example, a hSMMHC analog comprises a segment of at least 10 amino acids that has substantial identity to a hSMMHC protein, such as the hSMMHC protein of SEQ ID NO:2; preferably a 5 deduced amino acid sequence of a primate hSMMHC cDNA. Typically, analog polypeptides comprise a conservative amino acid substitution (or addition or deletion) with respect to the naturally-occurring sequence. Analogs typically are at least 20 amino acids long, preferably at least 50 amino acids long or longer, most usually being as long as full-length naturally-occurring protein. Some analogs may lack a 10 biological activity but may still be employed for various uses, such as for raising antibodies to hSMMHC epitopes, as an immunological reagent to detect and/or purify hSMMHC antibodies by affinity chromatography, or as a competitive or noncompetitive agonist, antagonist, or partial agonist of native hSMMHC protein function.

15 "Asthma" is art recognized and includes the state in which excessive smooth muscle contraction of the airways in the lungs of a subject occurs.

20 "Cognate" as used herein refers to a gene sequence that is evolutionarily and functionally related between species. For example but not limitation, in the human genome, the human CD4 gene is the cognate gene to the mouse CD4 gene, since the 20 sequences and structures of these two genes indicate that they are highly homologous and both genes encode a protein which functions in signaling T cell activation through MHC class II-restricted antigen recognition.

25 A "comparison window", as used herein, refers to a conceptual segment of at least 20 contiguous nucleotide positions wherein a polynucleotide sequence may be compared to a reference sequence of at least 20 contiguous nucleotides and wherein the portion of the polynucleotide sequence in the comparison window may comprise additions or deletions (i.e., gaps) of 20 percent or less as compared to the reference sequence (which does not comprise additions or deletions) for optimal alignment of the two sequences. Optimal alignment of sequences for aligning a comparison 30 window may be conducted by the local homology algorithm of Smith and Waterman (1981) Adv. Appl. Math. 2: 482, by the homology alignment algorithm of Needleman and Wunsch (1970) J. Mol. Biol. 48: 443, by the search for similarity method of Pearson and Lipman (1988) Proc. Natl. Acad. Sci. (U.S.A.) 85: 2444, by

computerized implementations of these algorithms (GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package Release 7.0, Genetics Computer Group, 575 Science Dr., Madison, WI), or by inspection, and the best alignment (i.e., resulting in the highest percentage of homology over the comparison window) generated by the various methods is selected.

For identifying whether a nucleic acid or polypeptide is within the scope of the invention, the default parameters of the BLAST programs are suitable. The BLASTN program (for nucleotide sequences) uses as defaults a word length (W) of 11, an expectation (E) of 10, M=5, N=-4, and a comparison of both strands. For amino acid sequences, the BLASTP program uses as defaults a word length (W) of 3, an expectation (E) of 10, and the BLOSUM62 scoring matrix. The TBLATN program (using protein sequence for nucleotide sequence) uses as defaults a word length (W) of 3, an expectation (E) of 10, and a BLOSUM 62 scoring matrix. (see Henikoff & Henikoff, Proc. Natl. Acad. Sci. USA 89:10915 (1989)).

The term "corresponds to" means that a polynucleotide sequence is homologous (i.e., is identical, not strictly evolutionarily related) to all or a portion of a reference polynucleotide sequence, or that a polypeptide sequence is identical to a reference polypeptide sequence. In contradistinction, the term "complementary to" is used herein to mean that the complementary sequence is homologous to all or a portion of a reference polynucleotide sequence. For illustration, the nucleotide sequence "TATAC" corresponds to a reference sequence "TATAC" and is complementary to a reference sequence "GTATA".

"Fragment" refers to a polypeptide that has an amino-terminal and/or carboxy-terminal deletion, but where the remaining amino acid sequence is identical to the corresponding positions in the sequence deduced from a full-length cDNA sequence (e.g., SEQ ID NO:2; SEQ ID NO:4; SEQ ID NO:6; SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, or SEQ ID NO:14). Fragments typically are at least 14 amino acids long, preferably at least 20 amino acids long, usually at least 50 amino acids long or longer, up to the length of a full-length naturally-occurring hSMMyHC polypeptide.

"hSMMyHC" refers to the human hSMMyHC gene and human hSMMyHC proteins, including isoforms thereof, unless otherwise identified; in its narrowest usage hSMMyHC refers to a hSMMyHC polynucleotide and polypeptide sequences having exact sequence identity with the coding sequences SEQ ID NO:1, SEQ ID

NO:3, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:11, or SEQ ID NO:13; or the encoded sequences SEQ ID NO:2; SEQ ID NO:4; SEQ ID NO:6; SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, or SEQ ID NO:14.

5 "hSMMHC antagonist" refers to agents which inhibit hSMMHC activity and can produce a cell phenotype characteristic of cells having reduced or undetectable expression or function of hSMMHC. Such antagonists typically will reduce contractility in a contractility assay employing hSMMHC. In contradistinction, hSMMHC agonists will enhance contractile activity and will usually increase actin-dependent and/or calcium-dependent ATP hydrolysis.

10 "hSMMHC native protein" or "full-length hSMMHC protein" refers to a full-length hSMMHC polypeptide as shown herein (SEQ ID NO:2) or as naturally occurs in a primate species (e.g., human, simian, etc.).

15 "hSMMHC polynucleotide" refers to a polynucleotide of at least 15 nucleotides wherein the polynucleotide comprises a segment of at least 15 nucleotides which: (1) are at least 55 percent identical to a naturally-occurring hSMMHC mRNA sequence or its complement or to a naturally-occurring hSMMHC genomic structural gene sequence (as described below), and/or (2) encode a hSMMHC polypeptide. Due to the degeneracy of the genetic code, some hSMMHC polynucleotides encoding a hSMMHC polypeptide will be less than 55 percent identical to a 20 naturally-occurring hSMMHC polynucleotide. The degeneracy of the genetic code gives a finite set of polynucleotide sequences encoding these amino acid sequences; this set of degenerate sequences may be readily generated by hand or by computer using commercially available software (Wisconsin Genetics Software Package Release 7.0). Similarly, some hSMMHC polynucleotides which are suitable as 25 hybridization probes, PCR primers, LCR amplimers, and the like will not encode a hSMMHC polypeptide.

30 "hSMMHC polypeptide" is a generic term referring to native protein, fragments, or analogs of hSMMHC, or such fused to a second polypeptide sequence (e.g., an epitope tag, -gal, or other fusion). Hence, native hSMMHC, fragments of hSMMHC, and analogs of hSMMHC, as well as hSMMHC fusion proteins are species of the hSMMHC polypeptide genus.

"Hypotension" is art recognized and includes the state in which insufficient smooth muscle contraction of a blood vessel occurs which results in hypotension in a

subject.

"Hypertension" is art recognized and includes the state in which excessive smooth muscle contraction of a blood vessel occurs which results in hypertension in a subject.

5 "Incontinence" is art recognized and includes the state in which excessive smooth muscle contraction of the urinary tract occurs.

"Indicator composition" is intended to include any composition that can be used to screen and identify modulating agents. The indicator composition can be, for example, a smooth muscle cell, a smooth muscle cell extract, or a detergent-skinned 10 smooth muscle fiber bundle system. The indicator composition can also be, for example, a biochemical preparations including actin filaments, enzyme systems, and the like. Methods for the preparation of intact smooth muscle cells or extracts from such cells are well known in the art and previously described (Glukhova et al. 1987. Tissue Cell 19:657-63; Childs et al. 1992. J. Biol. Chem. 267:22853-9, 1992; White et 15 al. 1996. J. Biol. Chem. 271:15008-17). Methods for preparing Triton-skinned smooth muscle fiber bundles are also known in the art (Strauss et al. 1992. Am. J. Physiol. 262:1437-45; Van Eyk, J. E. et al. 1998. Circ. Res. 82:261-271).

The terms "interacting polypeptide segment" and "interacting polypeptide sequence" refer to a portion of a hybrid protein which can form a specific binding 20 interaction with a portion of a second hybrid protein under suitable binding conditions. Generally, a portion of the first hybrid protein preferentially binds to a portion of the second hybrid protein forming a heterodimer or higher order heteromultimer comprising the first and second hybrid proteins; the binding portions of each hybrid protein are termed interacting polypeptide segments. Generally, 25 interacting polypeptides can form heterodimers with a dissociation constant (K_D) of at least about $1 \times 10^3 \text{ M}^{-1}$, usually at least $1 \times 10^4 \text{ M}^{-1}$, typically at least $1 \times 10^5 \text{ M}^{-1}$, preferably at least $1 \times 10^6 \text{ M}^{-1}$ to $1 \times 10^7 \text{ M}^{-1}$ or more, under suitable physiological conditions.

"Irritable bowel syndrome" is art recognized and includes the state in which 30 excessive smooth muscle contraction of the gastro-intestinal tract occurs.

"Label" or "labeled" refers to incorporation of a detectable marker, e.g., by incorporation of a radiolabeled amino acid or attachment to a polypeptide of biotinyl moieties that can be detected by marked avidin (e.g., streptavidin containing a

fluorescent marker or enzymatic activity that can be detected by optical or calorimetric methods). Various methods of labeling polypeptides and glycoproteins are known in the art and may be used. Examples of labels for polypeptides include, but are not limited to, the following: radioisotopes (e.g., ³H, ¹⁴C, ³⁵S, ¹²⁵I, ¹³¹I),
5 fluorescent labels (e.g., FITC, rhodamine, lanthanide phosphors), enzymatic labels (e.g., horseradish peroxidase, beta-galactosidase, luciferase, alkaline phosphatase), biotinyl groups, predetermined polypeptide epitopes recognized by a secondary reporter (e.g., leucine zipper pair sequences, binding sites for secondary antibodies, transcriptional activator polypeptide, metal binding domains, epitope tags). In some
10 embodiments, labels are attached by spacer arms of various lengths to reduce potential steric hindrance.

"Menstrual cramps" are art recognized and include the state in which excessive smooth muscle contraction of the uterus occurs.

"Modulating smooth muscle contraction" is intended to include the capacity to
15 inhibit or stimulate smooth muscle contraction to various levels, e.g., which allows for the treatment of targeted states. It is also intended to include the inducement of relaxation of smooth muscle, e.g., total relaxation, and the contraction of smooth muscle which is in relaxed state and it is desired to have the muscle in a more contracted state, e.g., the sphincter in esophageal reflux. The modulation can be
20 complete inhibitor or partial inhibition. The modulation includes, modulation to the extent necessary or sufficient to treat the states described herein.

The term "naturally-occurring" as applied to an object refers to the fact that an object can be found in nature. For example, a polypeptide or polynucleotide sequence that is present in an organism (including viruses) that can be isolated from a source in
25 nature and which has not been intentionally modified by man in the laboratory is naturally-occurring. Generally, the term naturally-occurring refers to an object as present in a non-pathological (undiseased) individual, such as would be typical for the species.

"Normal blood" or "normal human blood" refers to blood from a healthy
30 human individual who does not have an active disease or other disorder.

The terms "pathogenomic concentration", "pathogenomic amount", and "pathogenomic staining pattern" refer to a concentration, amount, or localization pattern, respectively, of a hSMMHC protein or mRNA in a sample, that indicates the

presence of a pathological (e.g., asthmatic, hypertensive, etc.) condition or a predisposition to developing a disease. A pathogenomic amount is an amount of a hSMMMyHC protein or hSMMMyHC mRNA in a cell or cellular sample that falls outside the range of normal clinical values that is established by prospective and/or retrospective statistical clinical studies. Generally, an individual having a disease will exhibit an amount of hSMMMyHC protein or mRNA in a cell or tissue sample that is outside the range of concentrations that characterize normal, undiseased individuals; typically the pathogenomic concentration is at least about one standard deviation outside the mean normal value, more usually it is at least about two standard deviations or more above the mean normal value. However, essentially all clinical diagnostic tests produce some percentage of false positives and false negatives. The sensitivity and selectivity of the diagnostic assay must be sufficient to satisfy the diagnostic objective and any relevant regulatory requirements. In general, the diagnostic methods of the invention are used to identify individuals as disease candidates, providing an additional parameter in a differential diagnosis of disease made by a competent health professional.

"Physiological conditions" refers to temperature, pH, ionic strength, viscosity, and like biochemical parameters which are compatible with a viable organism, and/or which typically exist intracellularly in a viable cultured yeast cell or mammalian cell. For example, the intracellular conditions in a yeast cell grown under typical laboratory culture conditions are physiological conditions. Suitable in vitro reaction conditions for in vitro transcription cocktails are generally physiological conditions. In general, in vitro physiological conditions comprise 50-200 mM NaCl or KCl, pH 6.5-8.5, 20-45 C and 0.001-10 mM divalent cation (e.g., Mg⁺⁺, Ca⁺⁺); preferably about 150 mM NaCl or KCl, pH 7.2-7.6, 5 mM divalent cation, and often include 0.01-1.0 percent nonspecific protein (e.g., BSA). A non-ionic detergent (Tween, NP-40, Triton X-100) can often be present, usually at about 0.001 to 2%, typically 0.05-0.2% (v/v). Particular aqueous conditions may be selected by the practitioner according to conventional methods. For general guidance, the following buffered aqueous conditions may be applicable: 10-250 mM NaCl, 5-50 mM Tris HCl, pH 5-8, with optional addition of divalent cation(s) and/or metal chelators and/or nonionic detergents and/or membrane fractions and/or antifoam agents and/or scintillants.

"Premature labor" is art recognized. Tocolytic agents inhibit labor, slow down or halt the contractions of the uterus. Tocolytic agents used to treat premature labor and permit pregnancy to proceed and so permit the fetus to gain in size and maturity before being born.

5 "Protein interaction inhibitor" refers to an agent which is identified by one or more screening method(s) of the invention as an agent which selectively inhibits protein-protein binding between a first interacting polypeptide and a second interacting polypeptide. Some protein interaction inhibitors may have therapeutic potential as drugs for human use and/or may serve as commercial reagents for
10 laboratory research or bioprocess control. Protein interaction inhibitors which are candidate drugs are then tested further for activity in assays which are routinely used to predict suitability for use as human and veterinary drugs, including in vivo administration to non-human animals and often including administration to human in approved clinical trials.

15 "Recombinant" refers to hSMMHC or other proteins produced by recombinant DNA techniques wherein the gene coding for protein is cloned by known recombinant DNA technology. For example, the human gene for hSMMHC may be inserted into a suitable DNA vector, such as a bacterial plasmid, and the plasmid used to transform a suitable host. The gene is then expressed in the host to produce the
20 recombinant protein. The transformed host may be prokaryotic or eukaryotic, including mammalian, yeast, Aspergillus and insect cells. One preferred embodiment employs bacterial cells as the host.

The following terms are used to describe the sequence relationships between two or more polynucleotides: "reference sequence", "comparison window", "sequence
25 identity", "percentage of sequence identity", and "substantial identity". A "reference sequence" is a defined sequence used as a basis for a sequence comparison; a reference sequence may be a subset of a larger sequence, for example, as a segment of a full-length cDNA or gene sequence given in a sequence listing, such as SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:11,
30 or SEQ ID NO:13, or may comprise a complete cDNA or gene sequence. A full-length cDNA or gene sequence is defined as a polynucleotide containing the sequence(s) necessary to encode a complete protein product, including a translation initiation codon and a translation termination codon, unless linked to another

encoding sequence in a format for production as a fusion protein. Generally, a reference sequence is at least 20 nucleotides in length, frequently at least 25 nucleotides in length, and often at least 50 nucleotides in length. Since two polynucleotides may each (1) comprise a sequence (i.e., a portion of the complete 5 polynucleotide sequence) that is similar between the two polynucleotides, and (2) may further comprise a sequence that is divergent between the two polynucleotides, sequence comparisons between two (or more) polynucleotides are typically performed by comparing sequences of the two polynucleotides over a "comparison window" to identify and compare local regions of sequence similarity.

10 The term "sequence identity" means that two polynucleotide sequences are identical (i.e., on a nucleotide-by-nucleotide basis) over the window of comparison. The term "percentage of sequence identity" is calculated by comparing two optimally aligned sequences over the window of comparison, determining the number of 15 positions at which the identical nucleic acid base (e.g., A, T, C, G, U, or I) occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the window of comparison (i.e., the window size), and multiplying the result by 100 to yield the percentage of sequence identity. The terms "substantial identity" as used herein denotes a characteristic of a polynucleotide sequence, wherein the polynucleotide comprises a 20 sequence that has at least 80 percent sequence identity, preferably at least 85 percent identity and often 90 to 95 percent sequence identity, more usually at least 99 percent sequence identity as compared to a reference sequence over a comparison window of at least 20 nucleotide positions, frequently over a window of at least 25-50 nucleotides, wherein the percentage of sequence identity is calculated by comparing 25 the reference sequence to the polynucleotide sequence which may include deletions or additions which total 20 percent or less of the reference sequence over the window of comparison. The reference sequence may be a subset of a larger sequence, for example, as a segment of SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:11, or SEQ ID NO:13.

30 "Smooth muscle" is intended to include smooth muscle sensitive to the agents of the present invention. Smooth muscle is sensitive to an agent if the agent modulates the contraction of the smooth muscle. Examples of smooth muscle include smooth muscle of a blood vessel, the airways of the lungs, the gastro-intestinal tract, the

uterus, and the urinary tract.

“Specific hybridization” is defined herein as the formation of hybrids between a probe polynucleotide (e.g., a polynucleotide of the invention which may include substitutions, deletion, and/or additions) and a specific target polynucleotide wherein 5 the probe preferentially hybridizes to the specific target such that, for example, a single band corresponding to one or more of the RNA species of hSMMHC (or alternatively spliced mRNA species) can be identified on a Northern blot of RNA prepared from a suitable cell source (e.g., a somatic cell expressing hSMMHC).

“Stringent” conditions are those that: (1) employ low ionic strength and high 10 temperature for washing, for example 0.015 M sodium chloride / 0.0015 M sodium citrate / 0.1% sodium dodecyl sulfate at 50°C; (2) employ during hybridization a denaturing agent such as formamide, for example, 50% (v/v) formamide with 0.1% bovine serum albumin / 0.1% Ficoll/0.1% polyvinylpyrrolidone / 50mM sodium phosphate buffer at pH 6.5 with 750 mM sodium chloride, 75 mM sodium citrate at 15 42°C; or (3) employ 50% formamide, 5 x SSC (0.75 M NaCl, 0.075 M sodium citrate), 50 mM sodium phosphate (pH 6.8), 0.1% sodium pyrophosphate, 5 x Denhardt’s solution, sonicated salmon sperm DNA (50 µg/ml), 0.1% SDS, and 10% dextran sulfate at 42°C, with washes at 42°C in 0.2 X SSC (sodium chloride / sodium citrate) and 50% formamide at 55°C, followed by a high-stringency wash consisting 20 of 0.1 x SSC containing EDTA at 55°C.

“Specifically (or selectively) binds” to an antibody or “specifically (or selectively) immunoreactive with,” when referring to a protein or peptide, refers to a binding reaction that is determinative of the presence of the protein in a heterogeneous population of proteins and other biologics. Thus, under designated immunoassay 25 conditions, the specified antibodies bind to a particular protein at least two times the background and do not substantially bind in a significant amount to other proteins present in the sample. Specific binding moieties typically have an affinity for one another of at least 10^6 M⁻¹. Preferred antibodies for use in diagnostics or therapeutics often have high affinities such as 10^7 , 10^8 , 10^9 or 10^{10} M⁻¹.

30 “State” is art recognized and includes a disorder, disease or state characterized by the contraction of smooth muscle.

As applied to polypeptides, the term “substantial identity” means that two peptide sequences, when optimally aligned, such as by the programs GAP or

BESTFIT using default gap weights, share at least 80 percent sequence identity, preferably at least 90 percent sequence identity, more preferably at least 95 percent sequence identity or more (e.g., 99 percent sequence identity). Preferably, residue positions which are not identical differ by conservative amino acid substitutions.

5 Conservative amino acid substitutions refer to the interchangeability of residues having similar side chains. For example, a group of amino acids having aliphatic side chains is glycine, alanine, valine, leucine, and isoleucine; a group of amino acids having aliphatic-hydroxyl side chains is serine and threonine; a group of amino acids having amide-containing side chains is asparagine and glutamine; a group of amino acids having aromatic side chains is phenylalanine, tyrosine, and tryptophan; a group of amino acids having basic side chains is lysine, arginine, and histidine; and a group of amino acids having sulfur-containing side chains is cysteine and methionine.

10 Preferred conservative amino acids substitution groups are: valine-leucine-isoleucine, phenylalanine-tyrosine, lysine-arginine, alanine-valine, and asparagine-glutamine.

15 "Substantially pure" means an object species is removed from its natural environment. Usually, the object species is the predominant species present (i.e., on a molar basis it is more abundant than any other individual macromolecular species in the composition), and preferably a substantially purified fraction is a composition wherein the object species comprises at least about 50 percent (on a molar basis) of all

20 macromolecular species present. Generally, a substantially pure composition will comprise more than about 80 to 90 percent of all macromolecular species present in the composition. Most preferably, the object species is purified to essential homogeneity (contaminant species cannot be detected in the composition by conventional detection methods) wherein the composition consists essentially of a

25 single macromolecular species. Solvent species, small molecules (<500 Daltons), and elemental ion species are not considered macromolecular species.

30 The nomenclature used hereafter and the laboratory procedures in cell culture, molecular genetics, and nucleic acid chemistry and hybridization described below may involve well known and commonly employed procedures in the art. Standard techniques are used for recombinant nucleic acid methods, polynucleotide synthesis, and microbial culture and transformation (e.g., electroporation, lipofection). The techniques and procedures are generally performed according to conventional methods in the art and various general references (see, generally, Sambrook et al.

Molecular Cloning: A Laboratory Manual, 2d ed. (1989) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

II. The Invention

5 Applicants are the first to provide new human smooth muscle myosins, the polynucleotide encoding them, and sequences thereof, for diagnosis, prevention, or treatment of vascular, pulmonary, reproductive, and immunological disorders.

A. Polypeptide

10 The present invention provides an isolated hSMMHC polypeptide. Preferably, the polypeptide will comprise at least 50 contiguous amino acids of SEQ ID NO:2; SEQ ID NO:4; SEQ ID NO:6; SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, or SEQ ID NO:14. More preferably, the polypeptide comprises SEQ ID NO:2; SEQ ID NO:4; SEQ ID NO:6; SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, 15 or SEQ ID NO:14; or a substantially identical mitein, fragment, homolog, analog, or fusion protein thereof. According to a preferred embodiment, the polypeptide comprises the sequence -QGPSFAY- (i.e., SEQ ID NO:16; the insertion in the motor domain derived from the splice variant as described below). The polypeptides of this invention can also be fused in polypeptide linkage to a heterologous polypeptide 20 sequence.

Another aspect of the invention provides a polypeptide comprising an amino acid sequence which has greater than 70% sequence identity with SEQ ID NO:2; SEQ ID NO:4; SEQ ID NO:6; SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, or SEQ ID NO:14; preferably, greater than 80%; more preferable, greater than 90%; more 25 preferable greater than 95%; and in another embodiment, has 98 to 100% sequence identity with SEQ ID NO:2; SEQ ID NO:4; SEQ ID NO:6; SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, or SEQ ID NO:14. Some polypeptides of the invention specifically bind to polyclonal antibodies raised against and specifically binding two 30 SEQ ID NO:2; SEQ ID NO:4; SEQ ID NO:6; SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, or SEQ ID NO:14.

The invention provides miteins comprising a hSMMHC S1 domain comprising an amino acid sequence having an amino acid substitution, addition, and/or deletion as compared to a naturally-occurring hSMMHC protein (e.g., a

naturally-occurring hSMMHC protein obtained from a non-pathological mammalian specimen). In a variation, the invention provides hSMMHC fragments comprising a S1 or RLC binding domain (or fragments thereof), preferably S1, wherein said fragments comprise a naturally-occurring hSMMHC amino acid sequence and 5 exhibit binding to ATP and/or actin, or wherein such fragments comprise an amino acid substitution, addition, or deletion relative to the naturally-occurring hSMMHC polypeptide sequence and which substantially lack binding to actin or ATP, and/or have activity as a hSMMHC competitive antagonist and/or enhance actin-myosin contractile activity or block actin-myosin contractile activity of endogenous 10 hSMMHC protein.

Preferably, these amino acid sequences occur in the given order (in the amino-terminal to carboxy-terminal orientation) and may comprise other intervening and/or terminal sequences; generally such polypeptides are less than 1000 amino acids in length, more usually less than about 500 amino acids in lengths, and frequently 15 approximately 849, 699, 772, 852, or 1979 amino acids in length.

The polypeptides of the present invention preferably will have a detectable biochemical property, including for example, ATPase function, the ability to bind actin, the ability to enhance actin-myosin contractile activity or the ability to block actin-myosin contractile activity of endogenous hSMMHC protein

20 The amino acid sequences of hSMMHC polypeptides identified herein will enable those of skill in the art to produce polypeptides corresponding to hSMMHC peptide sequences and sequence variants thereof. Such polypeptides may be produced in prokaryotic or eukaryotic host cells by expression of polynucleotides encoding a hSMMHC peptide sequence (as described below), frequently as part of a larger 25 polypeptide. Accordingly, the invention also provides host cells expressing hSMMHC polypeptides encoded by a polynucleotide other than a naturally-occurring hSMMHC gene or homolog gene of the host cell (if present). Such a polynucleotide may be an expression vector.

Alternatively, such peptides may be synthesized by chemical methods.

30 Methods for expression of heterologous proteins in recombinant hosts, chemical synthesis of polypeptides, and in vitro translation are well known in the art and are described further in Maniatis et al., Molecular Cloning: A Laboratory Manual (1989), 2nd Ed., Cold Spring Harbor, N.Y.; Berger and Kimmel, Methods in Enzymology,

Volume 152, Guide to Molecular Cloning Techniques (1987), Academic Press, Inc., San Diego, CA; Merrifield, J. (1969) J. Am. Chem. Soc. 91: 501; Chaiken I.M. (1981) CRC Crit. Rev. Biochem. 11: 255; Kaiser et al. (1989) Science 243: 187; Merrifield, B. (1986) Science 232: 342; Kent, S.B.H. (1988) Ann. Rev. Biochem. 57: 957; and 5 Offord, R.E. (1980) Semisynthetic Proteins, Wiley Publishing).

Another embodiment involves the formation of hSMMHC mutants wherein the native protein or fragment has at least one amino acid deleted or replaced by another amino acid and the mutants exhibits altered biological activity from the native protein or fragment. Moreover, in addition to hSMMHC polypeptides consisting 10 only of naturally-occurring amino acids, hSMMHC peptidomimetics are also provided. For example, peptidomimetics can be suitable as drugs for inhibition of hSMMHC function in contractility of smooth muscle tissues.

Peptide analogs are commonly used in the pharmaceutical industry as non-peptide drugs with properties analogous to those of the template peptide. These types 15 of non-peptide compound are termed "peptide mimetics" or "peptidomimetics" (Fauchere, J. (1986) Adv. Drug Res. 15: 29; Veber and Freidinger (1985) TINS p.392; and Evans et al. (1987) J. Med. Chem. 30: 1229) and are usually developed with the aid of computerized molecular modeling. Peptide mimetics that are 20 structurally similar to therapeutically useful peptides may be used to produce an equivalent therapeutic or prophylactic effect. Generally, peptidomimetics are structurally similar to a paradigm polypeptide (i.e., a polypeptide that has a biological or pharmacological activity), such as human hSMMHC, but have one or more peptide linkages optionally replaced by a linkage selected from the group consisting of: -CH₂NH-, -CH₂S-, -CH₂-CH₂-, -CH=CH- (cis and trans), -COCH₂-, -CH(OH)CH₂-, 25 and -CH₂SO-, by methods known in the art and further described in the following references: Spatola, A.F. in "Chemistry and Biochemistry of Amino Acids, Peptides, and Proteins," B. Weinstein, eds., Marcel Dekker, New York, p. 267 (1983); Spatola, A.F., Vega Data (March 1983), Vol. 1, Issue 3, "Peptide Backbone Modifications" (general review); Morley, J.S., Trends Pharm Sci (1980) pp. 463-468 (general 30 review); Hudson, D. et al., Int J Pept Prot Res (1979) 14:177-185 (-CH₂NH-, -CH₂CH₂-); Spatola, A.F. et al., Life Sci (1986) 38:1243-1249 (-CH₂-S); Hann, M.M., J Chem Soc Perkin Trans I (1982) 307-314 (-CH-CH-, cis and trans); Almquist, R.G. et al., J Med Chem (1980) 23:1392-1398 (-COCH₂-); Jennings-White, C. et al.,

Tetrahedron Lett (1982) 23:2533 (-COCH₂-); Szelke, M. et al., European Appln. EP 45665 (1982) CA: 97:39405 (1982) (-CH(OH)CH₂-); Holladay, M.W. et al., Tetrahedron Lett (1983) 24:4401-4404 (-C(OH)CH₂-); and Hruby, V.J., Life Sci (1982) 31:189-199 (-CH₂-S-). A particularly preferred non-peptide linkage is

5 -CH₂NH-. Such peptide mimetics may have significant advantages over polypeptide embodiments, including, for example: more economical production, greater chemical stability, enhanced pharmacological properties (half-life, absorption, potency, efficacy, etc.), altered specificity (e.g., a broad-spectrum of biological activities), reduced antigenicity, and others. Labeling of peptidomimetics usually involves

10 covalent attachment of one or more labels, directly or through a spacer (e.g., an amide group), to non-interfering position(s) on the peptidomimetic that are predicted by quantitative structure-activity data and/or molecular modeling. Such non-interfering positions generally are positions that do not form direct contacts with the

15 macromolecules(s) to which the peptidomimetic binds to produce the therapeutic effect. Derivitization (e.g., labelling) of peptidomimetics should not substantially interfere with the desired biological or pharmacological activity of the

peptidomimetic.

Systematic substitution of one or more amino acids of a consensus sequence with a D-amino acid of the same type (e.g., D-lysine in place of L-lysine) may be used

20 to generate more stable peptides. In addition, constrained peptides comprising a consensus sequence or a substantially identical consensus sequence variation may be generated by methods known in the art (Rizo and Giersch (1992) Ann. Rev. Biochem. 61: 387); for example, by adding internal cysteine residues capable of forming intramolecular disulfide bridges which cyclize the peptide. Cyclic peptides

25 comprising a sequence of BH1 and/or BH2 frequently are preferred.

Peptides and peptidomimetics can be produced as modified peptides, with nonpeptide moieties attached by covalent linkage to the N-terminus and/or C-terminus. In certain preferred embodiments, either the carboxy-terminus or the amino-terminus, or both, are chemically modified. The most common modifications

30 of the terminal amino and carboxyl groups are acetylation and amidation, respectively. Amino-terminal modifications such as acylation (e.g., acetylation) or alkylation (e.g., methylation) and carboxy-terminal modifications such as amidation, as well as other terminal modifications, including cyclization, may be incorporated

into various embodiments of the invention. Certain amino-terminal and/or carboxy-terminal modifications and/or peptide extensions to the core sequence can provide advantageous physical, chemical, biochemical, and pharmacological properties, such as: enhanced stability, increased potency and/or efficacy, resistance to serum 5 proteases, desirable pharmacokinetic properties, and others. Such peptides or peptidomimetics may be used therapeutically to treat disease.

Production and Applications of Antibodies

Native hSMMyHC proteins, fragments thereof, or analogs thereof, may be 10 used to immunize an animal for the production of specific antibodies. These antibodies may comprise a polyclonal antiserum or may comprise a monoclonal antibody produced by hybridoma cells. For general methods to prepare antibodies, see Antibodies: A Laboratory Manual, (1988) E. Harlow and D. Lane, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY. For making human-specific antibodies, 15 the resultant antibodies may be preadsorbed with non-primate SMMyHC species, which are typically immobilized on a support.

For example but not for limitation, a recombinantly produced fragment of hSMMyHC can be injected into a mouse along with an adjuvant following 20 immunization protocols known to those of skill in the art so as to generate an immune response. Typically, approximately at least 1-50 µg of a hSMMyHC fragment or analog is used for the initial immunization, depending upon the length of the polypeptide. Alternatively or in combination with a recombinantly produced *HSMMyHC* polypeptide, a chemically synthesized peptide having a hSMMyHC sequence may be used as an immunogen to raise antibodies which bind a hSMMyHC 25 protein, such as the native *HSMMyHC* polypeptide, a native human hSMMyHC polypeptide, a polypeptide comprising a hSMMyHC epitope, or a hSMMyHC fusion protein. Immunoglobulins which bind the recombinant fragment with a binding affinity of at least $1 \times 10^7 \text{ M}^{-1}$ can be harvested from the immunized animal as an 30 antiserum, and may be further purified by immunoaffinity chromatography or other means. Additionally, spleen cells are harvested from the immunized animal (typically rat or mouse) and fused to myeloma cells to produce a bank of antibody-secreting hybridoma cells. The bank of hybridomas can be screened for clones that secrete immunoglobulins which bind the recombinantly-produced hSMMyHC polypeptide

(or chemically synthesized *HSMMyHC* polypeptide) with an affinity of at least 1×10^6 M⁻¹. Animals other than mice and rats may be used to raise antibodies; for example, goats, rabbits, sheep, and chickens may also be employed to raise antibodies reactive with a hSMMyHC protein. Transgenic mice having the capacity to produce human 5 antibodies also may be immunized and used for a source of -hSMMyHC antiserum and/or for making monoclonal-secreting hybridomas (see, e.g., Lonberg et al., WO93/12227 (1993); Kucherlapati, WO 91/10741 (1991)).

Bacteriophage antibody display libraries may also be screened for binding to a hSMMyHC polypeptide, such as a full-length hSMMyHC protein, a hSMMyHC 10 fragment, or a fusion protein comprising a *hSMMyHC* polypeptide sequence comprising a hSMMyHC epitope (generally at least 5 contiguous amino acids). Generally such *hSMMyHC* peptides and the fusion protein portions consisting of hSMMyHC sequences for screening antibody libraries comprise about at least 3 to 5 15 contiguous amino acids of hSMMyHC, frequently at least 7 contiguous amino acids of hSMMyHC, usually comprise at least 10 contiguous amino acids of hSMMyHC, and most usually comprise a hSMMyHC sequence of at least 14 contiguous amino acids. Particularly preferred hSMMyHC epitopes are:

-QGPSFAY- (SEQ ID NO:16) and -CTEQGSHP- (SEQ ID NO:17).

Combinatorial libraries of antibodies have been generated in bacteriophage 20 lambda expression systems which may be screened as bacteriophage plaques or as colonies of lysogens (Huse et al. (1989) *Science* **246**: 1275; Caton and Koprowski (1990) *Proc. Natl. Acad. Sci. (U.S.A.)* **87**: 6450; Mullinax et al (1990) *Proc. Natl. Acad. Sci. (U.S.A.)* **87**: 8095; Persson et al. (1991) *Proc. Natl. Acad. Sci. (U.S.A.)* **88**: 2432). Various embodiments of bacteriophage antibody display libraries and lambda 25 phage expression libraries have been described (Kang et al. (1991) *Proc. Natl. Acad. Sci. (U.S.A.)* **88**: 4363; Clackson et al. (1991) *Nature* **352**: 624; McCafferty et al. (1990) *Nature* **348**: 552; Burton et al. (1991) *Proc. Natl. Acad. Sci. (U.S.A.)* **88**: 10134; Hoogenboom et al. (1991) *Nucleic Acids Res.* **19**: 4133; Chang et al. (1991) *J. Immunol.* **147**: 3610; Breitling et al. (1991) *Gene* **104**: 147; Marks et al. (1991) *J. Mol. Biol.* **222**: 581; Barbas et al. (1992) *Proc. Natl. Acad. Sci. (U.S.A.)* **89**: 4457; Hawkins and Winter (1992) *J. Immunol.* **22**: 867; Marks et al. (1992) *Biotechnology* **10**: 779; Marks et al. (1992) *J. Biol. Chem.* **267**: 16007; Lowman et al (1991) *Biochemistry* **30**: 10832; Lerner et al. (1992) *Science* **258**: 1313). Typically, a

bacteriophage antibody display library is screened with a hSMMHC polypeptide that is immobilized (e.g., by covalent linkage to a chromatography resin to enrich for reactive phage by affinity chromatography) and/or labeled (e.g., to screen plaque or colony lifts).

5 HSMMHC polypeptides which are useful as immunogens, for diagnostic detection of -hSMMHC antibodies in a sample, for diagnostic detection and quantitation of hSMMHC protein in a sample (e.g., by standardized competitive ELISA), or for screening a bacteriophage antibody display library, are suitably obtained in substantially pure form, that is, typically about 50 percent (w/w) or more 10 purity, substantially free of interfering proteins and contaminants. Preferably, these polypeptides are isolated or synthesized in a purity of at least 80 percent (w/w) and, more preferably, in at least about 95 percent (w/w) purity, being substantially free of other proteins of humans, mice, or other contaminants.

15 For some applications of these antibodies, such as identifying immunocrossreactive proteins, the desired antiserum or monoclonal antibody(ies) is/are not monospecific. In these instances, it may be preferable to use a synthetic or recombinant fragment of *HSMMHC* as an antigen rather than using the entire native protein. More specifically, where the object is to identify immunocrossreactive polypeptides that comprise a particular structural moiety, such as an actin-binding 20 domain, it is preferable to use as an antigen a fragment corresponding to part or all of a commensurate structural domain in the hSMMHC protein, often S1 domain.

25 If an antiserum is raised to a hSMMHC fusion polypeptide, such as a fusion protein comprising a hSMMHC immunogenic epitope fused to -galactosidase or glutathione S-transferase, the antiserum is preferably preadsorbed with the non-hSMMHC fusion partner (e.g., -galactosidase or glutathione S-transferase) to deplete the antiserum of antibodies that react (i.e., specifically bind to) the non-hSMMHC portion of the fusion protein that serves as the immunogen. Monoclonal or polyclonal antibodies which bind to the human and/or murine hSMMHC protein can be used to detect the presence of human or murine hSMMHC polypeptides in a sample, such as 30 a Western blot of denatured protein (e.g., a nitrocellulose blot of an SDS-PAGE) obtained from a lymphocyte sample of a patient. Preferably quantitative detection is performed, such as by densitometric scanning and signal integration of a Western blot. The monoclonal or polyclonal antibodies will bind to the denatured *HSMMHC*

epitopes and may be identified visually or by other optical means with a labeled second antibody or labeled Staphylococcus aureus protein A by methods known in the art.

One use of such antibodies is to screen cDNA expression libraries, preferably 5 containing cDNA derived from human or murine mRNA from various tissues, for identifying clones containing cDNA inserts which encode structurally-related, immunocrossreactive proteins, that are candidate novel *HSMMHC* binding factors or hSMMHC-related proteins. Such screening of cDNA expression libraries is well known in the art, and is further described in Young et al., Proc. Natl. Acad. Sci. 10 U.S.A. 80:1194-1198 (1983)) as well as other published sources. Another use of such antibodies is to identify and/or purify immunocrossreactive proteins that are structurally or evolutionarily related to the native hSMMHC protein or to the corresponding hSMMHC fragment (e.g., functional domain, ATP-binding site, actin-binding site domain) used to generate the antibody. The anti-hSMMHC antibodies 15 of the invention can be used to measure levels of hSMMHC protein in a cell or cell population, for example in a cell explant (e.g., lymphocyte sample) obtained from a patient.

Various other uses of such antibodies include therapeutic applications (e.g., as 20 cationized antibodies or by targeted liposomal delivery) to treat hypertension, hypotension, heart disease, asthma, and the like.

An antiserum which can be utilized for this purpose can be obtained by conventional procedures. One exemplary procedure involves the immunization of a mammal, such as rabbits, which induces the formation of polyclonal antibodies 25 against hSMMHC. Monoclonal antibodies are also being generated from already immunized hamsters. This antibody can be used to detect the presence and level of the hSMMHC protein.

It is also possible to use the proteins for the immunological detection of hSMMHC and associations thereof with standard assays as well as assays using markers, which are radioimmunoassays or enzyme immunoassays.

30 The detection and determination of hSMMHC has significant diagnostic importance. Thus these proteins and their antibodies can be employed as a marker to monitor, check or detect the course of disease.

Identification and Isolation of Proteins That Bind hSMMHC

Proteins that bind to hSMMHC are potentially important regulatory proteins. Such proteins may be targets for novel antihypertensive agents or anti-inflammatory agents, immunomodulatory agents, asthma medicaments, and the like. These proteins 5 are referred to herein as accessory proteins. Accessory proteins may be isolated by various methods known in the art.

Polypeptide Compositions

The present invention also provides compositions comprising recombinant 10 and/or substantially purified hSMMHC proteins. Such compositions typically comprise an aqueous buffer, a hSMMHC protein which is present at a concentration of at least 1 pM in substantially purified form free of primate proteins other than myosin, actin, troponin, tropomyosin, caldesmon, calmodulin, and calponin, which may themselves be either present or absent in the composition. In an aspect, the 15 composition further comprises ATP and optionally also comprises actin and/or myosin light chains; the optional actin and/or myosin light chain(s) may themselves be substantially purified and/or recombinant and are typically primate, preferably human, in origin.

20 B. Polynucleotides

In one aspect, the polynucleotides provided herein are defined by the 25 proteins encoded thereby. A preferred embodiment of the invention is drawn to a polynucleotide encoding a hSMMHC polypeptide, wherein the polypeptide has the following properties: (i) the polypeptide's activity includes ATPase function or the ability to bind actin; and (ii) the polypeptide has an amino acid sequence which has greater than 70% sequence identity with SEQ ID NO:2; SEQ ID NO:4; SEQ ID NO:6; SEQ ID NO:8; SEQ ID NO:10; SEQ ID NO:12, or SEQ ID NO:14; or a substantially identical mutein, fragment, homolog, analog, or fusion protein thereof; preferably, greater than 80%; more preferable, greater than 90%; more preferable 30 greater than 95%; and in another embodiment, has 98 to 100% sequence identity with SEQ ID NO:2; SEQ ID NO:4; SEQ ID NO:6; SEQ ID NO:8; SEQ ID NO:10; SEQ ID NO:12, or SEQ ID NO:14; or a substantially identical mutein, fragment, analog, or fusion protein thereof.

In one embodiment, the polynucleotide encodes a hSMMMyHC polypeptide having an amino acid sequence of SEQ ID NO:2; SEQ ID NO:4; SEQ ID NO:6; SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, or SEQ ID NO:14; or a substantially identical mutein, homolog, fragment, analog, or fusion protein thereof.

5 In one embodiment, the polynucleotide comprises a sequence which is greater than 55 or 60% sequence identity with SEQ ID NO:2; SEQ ID NO:4; SEQ ID NO:6; SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, or SEQ ID NO:14; preferably, greater than 70%; more preferably, greater than 80%; more preferably, greater than 90 or 95%; or, in another embodiment, has 98 or 100% sequence identity with SEQ ID 10 NO:2; SEQ ID NO:4; SEQ ID NO:6; SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, or SEQ ID NO:14.

In another embodiment provided herein, the polynucleotide hybridizes under stringent conditions to a polynucleotide having a sequence or complementary sequence of SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, SEQ ID 15 NO:9, SEQ ID NO:11, or SEQ ID NO:13. The invention also includes polynucleotides that result from PCR amplification using a pair of upstream and downstream primers designed to have the sequence of or be complementary to a terminal segment of at least 20 nucleotides of a polynucleotide selected from SEQ ID NO:2; SEQ ID NO:4; SEQ ID NO:6; SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, 20 or SEQ ID NO:14.

In another embodiment, the polynucleotide has the sequence of SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:11, or SEQ ID NO:13.

As described further herein, when describing the polynucleotide in terms of 25 SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:11, or SEQ ID NO:13, the sequence identity may be slightly lower due to the degeneracy in the genetic code. The degeneracy of the genetic code gives a finite set of polynucleotide sequences encoding these amino acid sequences; this set of degenerate sequences may be readily generated by hand or by computer using 30 commercially available software (Wisconsin Genetics Software Package Release 7.0).

Isolated hSMMMyHC polynucleotides typically are less than approximately 10,000 nucleotides in length. HSMMyHC polynucleotides may be short oligonucleotides (e.g., 20-100 bases long), such as for use as hybridization probes and

PCR (or LCR) primers. HSMMyHC polynucleotide sequences may also comprise part of a larger polynucleotide (e.g., a cloning vector comprising a *HSMMyHC* clone) and may be fused, by polynucleotide linkage, in frame with another polynucleotide sequence encoding a different protein (e.g., glutathione S-transferase or - 5 galactosidase) for encoding expression of a fusion protein. Typically, hSMMyHC polynucleotides comprise at least 25 consecutive nucleotides which are substantially identical to a naturally-occurring hSMMyHC sequence, more usually hSMMyHC polynucleotides comprise at least 50 to 100 consecutive nucleotides which are substantially identical to a naturally-occurring hSMMyHC sequence. However, it will 10 be recognized by those of skill that the minimum length of a hSMMyHC polynucleotide required for specific hybridization to a hSMMyHC target sequence will depend on several factors: G/C content, positioning of mismatched bases (if any), degree of uniqueness of the sequence as compared to the population of target 15 polynucleotides, and chemical nature of the polynucleotide (e.g., methylphosphonate backbone, polyamide nucleic acid, phosphorothiolate, etc.), among others.

The human SMMyHC gene has 43 exons of which are 2 exons (6 and 42) whose expression is variable and controlled by alternative splicing. Forms lacking exon 6, encoding 7 amino acids in the N-terminus, are largely found in the vasculature, forms containing exon 6 are visceral. Forms lacking exon 42 (SM1), are 20 absent in fetal tissues, forms containing exon 42 (SM2) are more constitutively expressed. The sequence of all 4 possible splice variants are found in the Drawings; Fig. 1 shows the hSMMyHC isoform with all 43 exons represented (SEQ ID NO:1); Fig. 3 shows the isoform which is missing exon 42 (SEQ ID NO:3).

The following numbering convention is employed herein:

	exon	pos in cDNA
25	1	1 to: 58
	2	59 to: 420
	3	421 to: 577
	4	578 to: 605
	5	606 to: 708
30	6	709 to: 729
	7	730 to: 822
	8	823 to: 886

9 887 to: 985
10 986 to: 1129
11 1130 to: 1225
12 1226 to: 1344
5 13 1345 to: 1497
14 1498 to: 1671
15 1672 to: 1845
16 1846 to: 1960
17 1961 to: 2154
10 18 2155 to: 2276
19 2277 to: 2346
20 2347 to: 2507
21 2508 to: 2616
22 2617 to: 2748
15 23 2749 to: 2955
24 2956 to: 3093
25 3094 to: 3217
26 3218 to: 3389
27 3390 to: 3602
20 28 3603 to: 3747
29 3748 to: 3954
30 3955 to: 4059
31 4060 to: 4212
32 4213 to: 4461
25 33 4462 to: 4674
34 4675 to: 4887
35 4888 to: 5049
36 5050 to: 5178
37 5179 to: 5267
30 38 5268 to: 5391
39 5392 to: 5600
40 5601 to: 5709
41 5710 to: 5882

42 5883 to: 5921

43 5922 to: 6908

The invention also provides a polynucleotide (e.g., a DNA isolate) consisting
5 essentially of a genomic DNA sequence encoding hSMMyHC and more particularly a
composition consisting of cDNA molecules which encode the hSMMyHC protein.

Synthetic polynucleotide sequences may be constructed by chemical synthesis
of oligonucleotides.

It is apparent to one of skill in the art that nucleotide substitutions, deletions,
10 and additions may be incorporated into the polynucleotides of the invention.

Nucleotide sequence variation may result from sequence polymorphisms of various
hSMMyHC alleles, minor sequencing errors, and the like. However, such nucleotide
substitutions, deletions, and additions should not substantially disrupt the ability of
the polynucleotide to hybridize to one of the polynucleotide sequences SEQ ID NO:1,
15 SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:11, or SEQ
ID NO:13 under hybridization conditions that are sufficiently stringent to result in
specific hybridization.

Polynucleotides encoding full-length hSMMyHC or fragments or analogs
thereof, may include sequences that facilitate transcription (expression sequences) and
20 translation of the coding sequences, such that the encoded polypeptide product is
produced. Construction of such polynucleotides is well known in the art and is
described further in Maniatis et al., Molecular Cloning: A Laboratory Manual, 2nd
Ed. (1989), Cold Spring Harbor, N.Y. For example, but not for limitation, such
polynucleotides can include a promoter, a transcription termination site
25 (polyadenylation site in eukaryotic expression hosts), a ribosome binding site, and,
optionally, an enhancer for use in eukaryotic expression hosts, and, optionally,
sequences necessary for replication of a vector. A typical eukaryotic expression
cassette will include a polynucleotide sequence encoding a hSMMyHC polypeptide
linked downstream (i.e., in translational reading frame orientation; polynucleotide
30 linkage) of a promoter such as the HSV *tk* promoter or the *pgk* (phosphoglycerate
kinase) promoter, optionally linked to an enhancer and a downstream polyadenylation
site (e.g., an SV40 large T Ag poly A addition site).

A variety of expression vector/host systems may be utilized to contain and express sequences encoding hSMMyHC. These include, but are not limited to, microorganisms such as bacteria transformed with recombinant bacteriophage, plasmid, or cosmid DNA expression vectors; yeast transformed with yeast expression vectors; insect cell systems infected with virus expression vectors (e.g., baculovirus); plant cell systems transformed with virus expression vectors (e.g., cauliflower mosaic virus, CaMV; tobacco mosaic virus, TMV) or with bacterial expression vectors (e.g., Ti or pBR322 plasmids); or animal cell systems. The invention is not limited by the host cell employed.

10 The "control elements" or "regulatory sequences" are those non-translated regions of the vector--enhancers, promoters, 5' and 3' untranslated regions--which interact with host cellular proteins to carry out transcription and translation. Such elements may vary in their strength and specificity. Depending on the vector system and host utilized, any number of suitable transcription and translation elements, 15 including constitutive and inducible promoters, may be used. For example, when cloning in bacterial systems, inducible promoters such as the hybrid lacZ promoter of the BLUESCRIPT phagemid (Stratagene, LaJolla, Calif.) or PSPORTI plasmid (Gibco BRL) and the like may be used. The baculovirus polyhedrin promoter may be used in insect cells. Promoters or enhancers derived from the genomes of plant cells 20 (e.g., heat shock, RUBISCO; and storage protein genes) or from plant viruses (e.g., viral promoters or leader sequences) may be cloned into the vector. In mammalian cell systems, promoters from mammalian genes or from mammalian viruses are preferable. If it is necessary to generate a cell line that contains multiple copies of the sequence encoding hSMMyHC, vectors based on SV40 or EBV may be used with an 25 appropriate selectable marker.

In bacterial systems, a number of expression vectors may be selected depending upon the use intended for hSMMyHC. For example, when large quantities of hSMMyHC are needed for the induction of antibodies, vectors which direct high level expression of fusion proteins that are readily purified may be used. Such vectors 30 include, but are not limited to, the multifunctional E. coli cloning and expression vectors such as BLUESCRIPT (Stratagene), in which the sequence encoding hSMMyHC may be ligated into the vector in frame with sequences for the amino-terminal Met and the subsequent 7 residues of .beta.-galactosidase so that a hybrid

protein is produced; pIN vectors (Van Heeke, G. and S. M. Schuster (1989) *J. Biol. Chem.* 264:5503-5509); and the like. pGEX vectors (Promega, Madison, Wis.) may also be used to express foreign polypeptides as fusion proteins with glutathione S-transferase (GST). In general, such fusion proteins are soluble and can easily be purified from lysed cells by adsorption to glutathione-agarose beads followed by elution in the presence of free glutathione. Proteins made in such systems may be designed to include heparin, thrombin, or factor XA protease cleavage sites so that the cloned polypeptide of interest can be released from the GST moiety at will. In the yeast, *Saccharomyces cerevisiae*, a number of vectors containing constitutive or inducible promoters such as alpha factor, alcohol oxidase, and PGH may be used. For reviews, see Ausubel et al., (supra) and Grant et al. (1987) *Methods Enzymol.* 153:516-544.

In cases where plant expression vectors are used, the expression of sequences encoding hSMMYHC may be driven by any of a number of promoters. For example, 15 viral promoters such as the 35S and 19S promoters of CaMV may be used alone or in combination with the omega leader sequence from TMV (Takamatsu, N. (1987) *EMBO J.* 6:307-311). Alternatively, plant promoters such as the small subunit of RUBISCO or heat shock promoters may be used (Coruzzi, G. et al. (1984) *EMBO J.* 3:1671-1680; Broglie, R. et al. (1984) *Science* 224:838-843; and Winter, J. et al. 20 (1991) *Results Probl. Cell Differ.* 17:85-105). These constructs can be introduced into plant cells by direct DNA transformation or pathogen-mediated transfection. Such techniques are described in a number of generally available reviews (see, for example, Hobbs, S., or Murry, L. E. in *McGraw Hill Yearbook of Science and Technology*(1992) McGraw Hill, New York, N.Y.; pp. 191-196.

25 An insect system may also be used to express hSMMYHC. For example, in one such system, *Autographa californica* nuclear polyhedrosis virus (AcNPV) is used as a vector to express foreign genes in *Spodoptera frugiperda* cells or in *Trichoplusia* larvae. The sequences encoding hSMMYHC may be cloned into a non-essential region 30 of the virus, such as the polyhedrin gene, and placed under control of the polyhedrin promoter. Successful insertion of hSMMYHC will render the polyhedrin gene inactive and produce recombinant virus lacking coat protein. The recombinant viruses may then be used to infect, for example, *S. frugiperda* cells or *Trichoplusia* larvae in which

hSMMyHC may be expressed (Engelhard, E. K. et al. (1994) Proc. Nat. Acad. Sci. 91:3224-3227).

In mammalian host cells, a number of viral-based expression systems may be utilized. In cases where an adenovirus is used as an expression vector, sequences 5 encoding hSMMyHC may be ligated into an adenovirus transcription/translation complex consisting of the late promoter and tripartite leader sequence. Insertion in a non-essential E1 and E3 region of the viral genome may be used to obtain a viable virus which is capable of expressing hSMMyHC in infected host cells (Logan, J. and Shenk, T. (1984) Proc. Natl. Acad. Sci. 81:3655-14 3659). In addition, transcription 10 enhancers, such as the Rous sarcoma virus (RSV) enhancer, may be used to increase expression in mammalian host cells. Human artificial chromosomes (HACs) may also be employed to deliver larger fragments of DNA than can be contained and expressed in a plasmid. HACs of 6 to 10 M are constructed and delivered via conventional delivery methods (liposomes, polycationic amino polymers, or vesicles) for 15 therapeutic purposes.

Specific initiation signals may also be used to achieve more efficient translation of sequences encoding hSMMyHC. Such signals include the ATG initiation codon and adjacent sequences. In cases where sequences encoding hSMMyHC, its initiation codon, and upstream sequences are inserted into the 20 appropriate expression vector, no additional transcriptional or translational control signals may be needed. However, in cases where only coding sequence, or a fragment thereof, is inserted, exogenous translational control signals including the ATG initiation codon should be provided. Furthermore, the initiation codon should be in the correct reading frame to ensure translation of the entire insert. Exogenous translational 25 elements and initiation codons may be of various origins, both natural and synthetic. The efficiency of expression may be enhanced by the inclusion of enhancers which are appropriate for the particular cell system which is used, such as those described in the literature (Scharf, D. et al. (1994) Results Probl. Cell Differ. 20:125-162).

In addition, a host cell strain may be chosen for its ability to modulate the 30 expression of the inserted sequences or to process the expressed protein in the desired fashion. Such modifications of the polypeptide include, but are not limited to, acetylation, carboxylation, glycosylation, phosphorylation, lipidation, and acylation. Post-translational processing which cleaves a "prepro" form of the protein may also be

used to facilitate correct insertion, folding and/or function. Different host cells which have specific cellular machinery and characteristic mechanisms for post-translational activities, (e.g. CHO, HeLa, MDCK, HEK293, and WI38), are available from the American Type Culture Collection (ATCC; Bethesda, Md.) and may be chosen to 5 ensure the correct modification and processing of the foreign protein.

For long-term, high-yield production of recombinant proteins, stable expression is preferred. For example, cell lines which stably express hSMMHC may be transformed using expression vectors which may contain viral origins of replication and/or endogenous expression elements and a selectable marker gene on 10 the same or on a separate vector. Following the introduction of the vector, cells may be allowed to grow for 1-2 days in an enriched media before they are switched to selective media. The purpose of the selectable marker is to confer resistance to selection, and its presence allows growth and recovery of cells which successfully express the introduced sequences. Resistant clones of stably transformed cells may be 15 proliferated using tissue culture techniques appropriate to the cell type.

Any number of selection systems may be used to recover transformed cell lines. These include, but are not limited to, the herpes simplex virus thymidine kinase (Wigler, M. et al. (1977) Cell 11:223-32) and adenine phosphoribosyltransferase (Lowry, I. et al. (1980) Cell 22:817-23) genes which can be employed in tk.sup.- or 20 aprt.sup.- cells, respectively. Also, antimetabolite, antibiotic or herbicide resistance can be used as the basis for selection; for example, dhfr which confers resistance to methotrexate (Wigler, M. et al. (1980) Proc. Natl. Acad. Sci. 77:3567-70); npt, which confers resistance to the aminoglycosides, neomycin and G-418 (Colbere-Garapin, F. et al (1981) J. Mol. Biol. 150:1-14); and als or pat, which confer resistance to 25 chlorsulfuron and phosphinotricin acetyltransferase, respectively (Murry, *supra*). Additional selectable genes have been described, for example, trpB, which allows cells to utilize indole in place of tryptophan, or hisD, which allows cells to utilize histinol in place of histidine (Hartman, S. C. and R. C. Mulligan (1988) Proc. Natl. Acad. Sci. 85:8047-51). Recently, the use of visible markers has gained popularity 30 with such markers as anthocyanins, .beta. glucuronidase and its substrate GUS, and luciferase and its substrate luciferin, being widely used not only to identify transformants, but also to quantify the amount of transient or stable protein expression attributable to a specific vector system (Rhodes, C. A. et al. (1995)

Methods Mol. Biol. 55:121-131).

Although the presence/absence of marker gene expression suggests that the gene of interest is also present, its presence and expression may need to be confirmed. For example, if the sequence encoding hSMMyHC is inserted within a marker gene sequence, transformed cells containing sequences encoding hSMMyHC can be identified by the absence of marker gene function. Alternatively, a marker gene can be placed in tandem with a sequence encoding hSMMyHC under the control of a single promoter. Expression of the marker gene in response to induction or selection usually indicates expression of the tandem gene as well.

10 Additionally, where expression of a polypeptide is not desired, polynucleotides of this invention need not encode a functional protein. Polynucleotides of this invention may serve as hybridization probes and/or PCR primers (amplimers) and/or LCR oligomers for detecting hSMMyHC RNA or DNA sequences.

15 Polynucleotides comprising sequences of approximately 15-50 nucleotides, preferably about 18-25 nucleotides, corresponding to or complementary to SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:11, or SEQ ID NO:13 can serve as PCR primers and/or hybridization probes for identifying and isolating germline genes corresponding to hSMMyHC. These 20 germline genes may be human or may be from a related mammalian species, preferably rodents or primates. Such germline genes may be isolated by various methods conventional in the art, including, but not limited to, by hybridization screening of genomic libraries in bacteriophage or cosmid libraries, or by PCR amplification of genomic sequences using primers derived from SEQ ID NO:1, SEQ 25 ID NO:3, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:11, or SEQ ID NO:13. Human genomic libraries are publicly available or may be constructed de novo from human DNA.

30 For such hybridization and PCR applications, the polynucleotides of the invention need not encode a functional polypeptide. Thus, polynucleotides of the invention may contain substantial deletions, additions, nucleotide substitutions and/or transpositions, so long as specific hybridization or specific amplification to a hSMMyHC sequence is retained.

More specifically, genomic or cDNA clones encoding hSMMyHC may be

isolated from clone libraries (e.g., available from Clontech, Palo Alto, CA) using hybridization probes designed on the basis of SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:11, or SEQ ID NO:13 using conventional hybridization screening methods (e.g., Benton WD and Davis RW 5 (1977) *Science* 196: 180; Goodspeed et al. (1989) *Gene* 76: 1). Where a cDNA clone is desired, clone libraries containing cDNA derived from somatic cell mRNA or other hSMMHC-expressing cell mRNA are preferred.

For illustration and not for limitation, SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:11, or SEQ ID NO:13 may be 10 labeled and used as a hybridization probe to isolate genomic clones from a human or murine genomic clone library in EMBL4 or GEM11 (Promega Corporation, Madison, Wisconsin).

Suitable hybridization conditions for specific hybridization of these labeled 15 probes to the human hSMMHC cDNA or gene can be established empirically by performing a series of hybridizations and/or washing steps at several temperatures and/or ionic strength conditions; for example and not limitation, hybridization conditions comprising 50% formamide, 5 x SSC or SSPE, 1-5 x Denhardt's solution, 0.1-1% SDS, 100-200 μ g sheared heterologous DNA or tRNA, 0-10% dextran sulfate, 20 1 \times 10⁵ to 1 \times 10⁷ cpm/ml of denatured probe with a specific activity of about 1 \times 10⁸ cpm/ μ g, and incubation at 42 C-37 C for about 6-36 hours is often a suitable initial point. Prehybridization conditions are essentially identical except that probe is not included and incubation time is typically reduced. Washing conditions are typically 25 1-3 x SSC, 0.1-1% SDS, 50-70 C with change of wash solution at about 5-30 minutes. For isolating human *hSMMHC* polynucleotides with a hSMMHC polynucleotide probe, it is often preferred to hybridize at approximately 39 C and to wash sequentially at the following step temperatures: room temperature, 37 C, 39 C, 42 C, 45 C, 50 C, 55 C, 60 C, 65 C, and 70 C, stopping after each step and monitoring the 30 background probe signal (and optionally detecting signal by autoradiogram and/or phosphor imaging, if radiolabeled probe is used) and terminating the washing steps when suitable signal/noise ratio is achieved, as determined empirically.

Human and other primate hSMMHC DNAs and genomic clones (i.e., cognate human and nonhuman genes) can be analogously isolated from various human or nonhuman cDNA and genomic clone libraries available in the art (e.g., Clontech, Palo

Alto, CA) by using probes based on the sequences shown in the Drawings, with hybridization and washing conditions as known in the art.

Additionally, polymerase chain reaction (PCR) using primers based on SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:11, or SEQ ID NO:13 may be used to amplify DNA fragments from genomic DNA, mRNA pools, or from cDNA clone libraries. U.S. Patents 4,683,195 and 4,683,202 describe the PCR method. Additionally, PCR methods employing one primer that is based on the sequence data disclosed in Fig. 1 and a second primer that is not based on that sequence data may be used. For example, a second primer that is 10 homologous to or complementary to a polyadenylation segment may be used.

Provided in the invention are polynucleotides comprising a segment encoding a hSMMHC epitope or a multiplicity of hSMMHC epitopes. A particularly preferred polynucleotide encoding a hSMMHC epitope of the invention is comprises the sequence -CAAGGCCATCTTGCCTAC- (SEQ ID NO:15)

15 Polynucleotides encoding epitopes having substantial identity to these preferred epitopes are often employed. Such polynucleotides have a variety of uses, including as hSMMHC probes, as templates for producing polypeptides comprising a hSMMHC epitope whereby such proteins are hSMMHC immunogens or commercial diagnostic reagents for standardizing a hSMMHC immunoassay, as 20 polynucleotide vaccines (immunogens) when fused to a secretory sequence for administering to an animal and making -hSMMHC antisera and hybridomas.

In one aspect, the invention provides a hSMMHC polynucleotide (e.g., as a primer or probe) affixed to a solid substrate, typically wherein the solid substrate has a plurality of polynucleotide species affixed thereto, in a spatially defined array 25 whereby each cell typically contains a single polynucleotide species, with the array often comprising in excess of 1000 distinct polynucleotide species. The hSMMHC polynucleotide is typically affixed by covalent linkage to the solid substrate. The solid substrate constitutes an array of polynucleotide probes and/or primers, aherein at least one member of the array is a hSMMHC polynucleotide. Generally, the solid 30 substrate will be less than 10 cm³ and comprise at least 1024 positionally distinct polynucleotide species, at least one of which is a hSMMHC polynucleotide. Such polynucleotides arrays on solid substrates (e.g., a polysilicon wafer) can be used for genotype determination, disease detection and diagnosis, therapeutic efficacy

monitoring, or for sequencing (e.g., of a pool containing unknown polynucleotides; for sequencing a mammalian genome or cDNA library), or other like uses.

The invention provides a diagnostic kit for detecting a pathological condition, such as cancer, wherein the kit contains at least one hSMMYHC polynucleotide.

5 The invention provides a gene therapy method and compositions therefor, comprising a hSMMYHC polynucleotide, which can often be operably linked to polynucleotide sequences to drive expression (e.g., promoter, enhancer, etc.) or other components of a gene therapy vector or homologous recombination construct, according to method and materials known in the art. One variation comprises a
10 hSMMYHC polynucleotide in a viral vector for gene therapy. A variation employs a hSMMYHC polynucleotide in a gene therapy delivery formulation (e.g., comprising cationic or neutral lipids, polylysine, polyarginine, or other delivery- enhancing vehicle); the hSMMYHC polynucleotide may be formulated with other polynucleotides for therapeutic benefit.

15 The invention also provides the use of a hSMMYHC polynucleotide to diagnose and/or treat disease, or to identify an individual based, in part, on their hSMMYHC genotype as defined by a allele-specific restriction site pattern or nucleotide sequence, or abundance of hSMMYHC mRNA transcripts or RNA splicing pattern variation.

20 Oligonucleotides can be synthesized on an Applied Bio Systems oligonucleotide synthesizer according to specifications provided by the manufacturer.

Methods for PCR amplification are described in the art (PCR Technology: Principles and Applications for DNA Amplification ed. HA Erlich, Freeman Press, New York, NY (1992); PCR Protocols: A Guide to Methods and Applications, eds. Innis, Gelfland, Snisky, and White, Academic Press, San Diego, CA (1990); Mattila et al. (1991) Nucleic Acids Res. 19: 4967; Eckert, K.A. and Kunkel, T.A. (1991) PCR Methods and Applications 1: 17; PCR, eds. McPherson, Quirk, and Taylor, IRL Press, Oxford; and U.S. Patent 4,683,202).

30 Automated Sequencing System

The invention, which includes disclosure of a hSMMYHC cDNA sequence, provides for the sequencing of a hSMMYHC polynucleotide, such as sequencing in an automated sequencing apparatus; such sequencing may comprise determination of

sequences of other cDNA or gene sequences, such as from sequencing a pool of polynucleotide species, and usually comprises determination of the sequence(s) of the polynucleotide species, including hSMMMyHC, if present, and generally involves analysis of the hSMMMyHC sequence(s) and/or their abundance in the polynucleotide pool. The present invention allows the identification of hSMMMyHC polynucleotide sequences in such automated sequencing methods, including sequence variants of hSMMMyHC and naturally-occurring and/or pathological hSMMMyHC alleles and sequences thereof.

10

C. Assays

Binding Assays

The polypeptides described herein, as well as fragments or analogs thereof can be used as reagents in binding assays to detect binding to actin, myosin light chain(s) and/or ATP for identifying agents that interfere with hSMMMyHC function, said agents are thereby identified as candidate drugs which may be used, for example, to block contractility in asthma or hypertension. Thus, the invention provides screening assays for identifying agents which modulate (e.g., inhibit) binding of a hSMMMyHC polypeptide to a human actin polypeptide and/or which modulate (e.g., inhibit) binding of a hSMMMyHC polypeptide to ATP or to modulate ATP hydrolysis.

Typically, in vitro binding assays that measure binding of hSMMMyHC employ native hSMMMyHC that contains S1 domain or a fragment thereof. The hSMMMyHC polypeptide may be linked to a solid substrate by any of various means known to those of skill in the art; such linkage may be noncovalent (e.g., binding to a highly charged surface such as Nylon 66) or may be by covalent bonding (e.g., typically by chemical linkage). HSMMyHC polypeptides can be labeled by incorporation of a radiolabeled amino acid or fluorescent label. The labeled hSMMMyHC polypeptide is contacted with the immobilized actin, myosin light chain(s) under aqueous conditions that permit specific binding in control binding reactions with a binding affinity of about $1 \times 10^5 \text{ M}^{-1}$ or greater (e.g., 10-250 mM NaCl or KCl and 5-100 mM Tris HCl pH 5-9, usually pH 6-8), generally including Zn^{+2} and/or Mn^{+2} and/or Mg^{+2} in the nanomolar to micromolar range (1 nM to 999 μM). Specificity of binding is typically established by adding unlabeled competitor at various concentrations selected at the

discretion of the practitioner. Examples of unlabeled protein competitors include, but are not limited to, the following: unlabeled hSMMHC polypeptide, bovine serum albumin, and cellular protein extracts. Binding reactions wherein one or more agents are added are performed in parallel with a control binding reaction that does not 5 include an agent. Agents which inhibit the specific binding of hSMMHC polypeptides as compared to a control reaction, are identified as candidate hSMMHC-modulating drugs.

Thus, the invention also provides assay compositions comprising a hSMMHC protein or variant thereof and a candidate agent which may bind to the 10 hSMMHC protein. In an aspect, the assay composition will further include an indicator composition, ATP, actin, myosin light chain(s), troponin, tropomyosin, caldesmon, calmodulin, and/or calponin, and the like, preferably of primate origin, typically of human origin.

15 Functional Assays

Candidate agents can be screened to identify those capable of modulating the activity of the target protein. Such an assay can comprise the steps of combining the candidate agent with the target protein, as above, and determining an alteration in the 20 biological activity of the target protein. Thus, in this embodiment, the candidate agent may both bind to the target protein or fragment thereof (although this may not be necessary), and alter its biological or biochemical activity as defined herein. The methods include both in vitro screening methods and in vivo screening of cells for alterations in cell cycle distribution, cell viability, or for the presence, morphology, activity, distribution, or amount of mitotic spindles, as are generally outlined above.

25 According to one embodiment, the invention provides a method for identifying a candidate agent that modulates a detectable biochemical function of hSMMHC in vitro. The method comprises measuring said detectable function in a first assay mixture comprising hSMMHC and a candidate agent to obtain a function measurement and comparing said function measurement to a second assay mixture 30 substantially identical to said first assay mixture but lacking said candidate agent and optionally including a second candidate agent, and determining whether the function measurements significantly differ by statistical measurement and identifying a candidate agent producing a statistically significant difference as a candidate drug.

In a preferred embodiment, activity is measured by the methods disclosed in Serial No. 09/314,464, filed May 18, 1999, entitled "Compositions and assay utilizing ADP or phosphate for detecting protein modulators", which is incorporated herein by reference in its entirety. More specifically, this assay detects modulators of any 5 aspect of a motor function ranging from interaction with actin to hydrolysis of ATP. ADP or phosphate is used as the readout for protein activity.

There are a number of enzymatic assays known in the art which use ADP as a substrate. For example, kinase reactions such as pyruvate kinases are known. See, Nature 78:632 (1956) and Mol. Pharmacol. 6:31 (1970). This is a preferred method in 10 that it allows the regeneration of ATP. In one embodiment, the level of activity of the enzymatic reaction is determined directly. In a preferred embodiment, the level of activity of the enzymatic reaction which uses ADP as a substrate is measured indirectly by being coupled to another reaction. For example, in one embodiment, the method further comprises a lactate dehydrogenase reaction under conditions which 15 normally allow the oxidation of NADH, wherein said lactate dehydrogenase reaction is dependent on the pyruvate kinase reaction. Measurement of enzymatic reactions by coupling is known in the art. Furthermore, there are a number of reactions which utilize phosphate. Examples of such reactions include a purine nucleoside phosphorylase reaction. This reaction can be measured directly or indirectly. A 20 particularly preferred embodiment utilizes the pyruvate kinase/lactate dehydrogenase system.

In one embodiment, the detection of the ADP or phosphate proceeds non-enzymatically, for example, by binding or reacting the ADP or phosphate with a detectable compound. For example, phosphomolybdate based assays may be used 25 which involve conversion of free phosphate to a phosphomolybdate complex. One method of quantifying the phosphomolybdate is with malachite green. Alternatively, a fluorescently labeled form of a phosphate binding protein, such as the *E. coli* phosphate binding protein, can be used to measure phosphate by a shift in its fluorescence.

30 In addition, target protein activity can be examined by determining modulation of target protein in vitro using cultured cells. The cells are treated with a candidate agent and the effect of such agent on the cells is then determined either directly or by examining relevant surrogate markers. For example, characteristics such as mitotic

spindle morphology and cell cycle distribution can be used to determine the effect.

Thus, in a preferred embodiment, the methods comprise combining a target protein and a candidate agent, and determining the effect of the candidate agent on the target protein. Generally a plurality of assay mixtures are run in parallel with 5 different agent concentrations to obtain a differential response to the various concentrations. Typically, one of these concentrations serves as a negative control, i.e., at zero concentration or below the level of detection.

As will be appreciated by those in the art, the components may be added in buffers and reagents to assay target protein activity and give optimal signals. Since 10 the methods allow kinetic measurements, the incubation periods can be optimized to give adequate detection signals over the background.

In a preferred embodiment, an antifoam or a surfactant is included in the assay mixture. Suitable antifoams include, but are not limited to, antifoam 289 (Sigma). Suitable surfactants include, but are not limited to, Tween, Tritons, including Triton 15 X-100, saponins, and polyoxyethylene ethers. Generally, the antifoams, detergents, or surfactants are added at a range from about 0.01 ppm to about 10 ppm.

A preferred assay design is also provided. In one aspect, the invention provides a multi-time-point (kinetic) assay, with at least two data points being preferred. In the case of multiple measurements, the absolute rate of the protein activity can be 20 determined.

The invention provides assay compositions comprising a hSMMHC protein or variant thereof and a candidate agent which may modulate function of the hSMMHC protein. In an aspect, the assay composition will further include ATP, actin, myosin light chain(s), troponin, tropomyosin, caldesmon, calmodulin, and 25 calponin, and the like, preferably of primate origin, typically of human origin.

Rational Drug Design

HSMMHC polypeptides, especially those portions which form direct contacts with actin, can be used for rational drug design of candidate hSMMHC-modulating agents. The substantially purified hSMMHC and the identification of 30 actin as a docking partner for hSMMHC as provided herein permits production of substantially pure hSMMHC/actin polypeptide complexes and substantially pure hSMMHC/ATP polypeptide complexes. The disclosed sequences and protein

sources provide data for computational models which can be used for protein X-ray crystallography or other structure analysis methods, such as the DOCK program (Kuntz et al (1982) *J. Mol. Biol.* **161**: 269; Kuntz ID (1992) *Science* **257**: 1078) and variants thereof. Potential therapeutic drugs may be designed rationally on the basis 5 of structural information thus provided. In one embodiment, such drugs are designed to prevent formation of a hSMMHC:actin complex and/or to prevent formation of a hSMMHC:ATP complex. Thus, the present invention may be used to design drugs, including drugs with a capacity to modulate the interaction of hSMMHC with actin or ATP.

10

Diagnostics

The polynucleotides of the invention can be employed for diagnosis of pathological conditions or genetic disease that involve medical conditions related to hSMMHC function, and more specifically conditions and diseases that involve 15 alterations in the structure or abundance of a hSMMHC polypeptide. For example, they can be employed as probes useful for the diagnosis of pathological conditions or genetic disease that involve asthma, hypertension, hypotension, pregnancy, pre-term labor, menstrual cramps, glaucoma, urinary incontinence, irritable bowel syndrome, bronchoconstriction, cardiac malfunction or other medical conditions related to 20 hSMMHC function.

More specifically, the polynucleotides can be used for diagnosis of disease states (e.g., smooth muscle dysfunction or atrophy) by detection of a hSMMHC mRNA or rearrangements or amplification of the hSMMHC gene in cells explanted from a patient, or detection of a pathogenomonic hSMMHC allele (e.g., by RFLP or 25 allele-specific PCR analysis). Typically, the detection will be by *in situ* hybridization using a labeled (e.g., ³²P, ³⁵S, ¹⁴C, ³H, fluorescent, biotinylated, digoxigeninylated) hSMMHC polynucleotide, although Northern blotting, dot blotting, or solution hybridization on bulk RNA or poly A⁺ RNA isolated from a cell sample may be used, as may PCR amplification using hSMMHC-specific primers. The detection of 30 pathogenomonic rearrangements, deletion, or amplification of the hSMMHC gene locus or closely linked loci in a cell sample will identify the presence of a pathological condition or a predisposition to developing a pathological condition (e.g., genetic disease).

The polynucleotides of the invention can be used to perform tissue typing (i.e., identify tissues characterized by the expression of hSMMHC mRNA or differential expression of splicing isoforms thereof), and the like. The sequences may also be used for detecting genomic hSMMHC gene sequences in a DNA sample, (e.g., by 5 RFLP analysis, PCR product length(s) distribution, etc.).

The present invention also provides a method for diagnosing a disease in a human patient, wherein a diagnostic assay (e.g., immunohistochemical staining of fixed cells by an antibody that specifically binds hSMMHC polypeptides) is used to determine if a predetermined pathogenomic concentration of hSMMHC 10 polypeptide or its encoding mRNA is present in a biological sample from a human patient; if the assay indicates the presence of hSMMHC polypeptide or its encoding mRNA outside of the normal range (e.g., outside the predetermined pathogenomic concentration range), the patient is diagnosed as having a disease condition or predisposition.

15 Thus, antibodies which bind to hSMMHC can be used as diagnostic reagents to identify cells exhibiting altered hSMMHC function in a cellular sample from a patient (e.g., a smooth muscle tissue sample, a solid tissue biopsy), as commercial reagents to identify, isolate, and/or quantitate hSMMHC polypeptides in samples and histological specimens, and the like. Frequently, anti-hSMMHC antibodies are 20 included as diagnostic reagents for immunohistopathology staining of cellular samples *in situ*. Additionally, anti-hSMMHC antibodies may be used therapeutically by targeted delivery to cells (e.g., by cationization or by liposome or immunoliposome delivery).

The invention also involves the use of the protein hSMMHC or mutein or 25 fragment thereof for performing immunochemical methods for the detection and determination of the protein or its associated proteins, in order to monitor cell contractility, differentiation, or motile function, or to detect or monitor the course of diseases.

30 Therapeutics

Another aspect of the invention pertains to a method of treating a subject having a state characterized by smooth muscle contraction. The method involves administering to a subject a therapeutically effective amount of a modulating agent,

e.g., a hSMMHC agonist or antagonist, such that treatment of the state characterized by smooth muscle contraction occurs. In one embodiment, the state is characterized by the contraction of smooth muscle having a high basal tone. In another embodiment, the state characterized by the contraction of smooth muscle involves a state 5 characterized by abnormal or inappropriate contraction of smooth muscle. In yet another embodiment, the state characterized by the contraction of smooth muscle involves abnormal or inappropriate relaxation of smooth muscle. In yet another embodiment, the treatment of the state involves the reduction or inhibition of inappropriate smooth muscle contraction. Examples of states include asthma, 10 hypertension, hypotension, pregnancy, pre-term labor, menstrual cramps, glaucoma, urinary incontinence, irritable bowel syndrome, bronchoconstriction, cardiac malfunction or other medical conditions related to hSMMHC function.

"Therapeutically effective amount" includes an amount effective, at dosages and for periods of time necessary, to achieve the desired level of smooth or cardiac 15 muscle contraction. A therapeutically effective amount of a modulating agent, e.g., a hSMMHC agonist or antagonist, may vary according to factors such as the disease state, age, and weight of the individual, and the ability of the modulating agent to elicit a desired level of muscle contraction or calcium sensitivity in the subject. Dosage regimens may be adjusted to provide the optimum therapeutic response. A 20 therapeutically effective amount is also one in which any toxic or detrimental effects of the modulating agent are outweighed by the therapeutically beneficial effects. It is to be noted that dosage values may vary with the severity of the state to be alleviated. It is to be further understood that for any particular subject, specific dosage regimens should be adjusted over time according to the individual need and the professional 25 judgment of the person administering or supervising the administration of the modulating agents.

A modulating agent can be administered to a subject by a variety of methods known in the art. The modulating agent can be provided in a manner such that it can be taken up by the cell or in a manner such that it can be converted to a form that can 30 be readily taken up by the cell. In various embodiments, the modulating agent is administered in a formulation suitable for intravenous, intraperitoneal, subcutaneous, intramuscular, intravaginal, topical, transdermal or oral administration. The modulating agent is administered in a time release formulation (also referred to as a

sustained-release formulation), for example in a composition which includes a slow release polymer, or a composition suitable for depot injection. The modulating agent can be prepared with carriers that will protect the inhibitor against rapid release, such as a controlled release formulation, including implants, transdermal patches, and 5 microencapsulated delivery systems. Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthocaters, polylactic acid and polylactic, polyglycolic copolymers (PLG). Many methods for the preparation of such formulations are patented or generally known to those skilled in the art. See, e.g., *Sustained and Controlled Release Drug Delivery* 10 *Systems*, J. R. Robinson, ed., Marcel Dekker, Inc., New York, 1978.

When appropriately formulated, a modulating agent may be orally administered, for example, with an inert diluent or an assimilable edible carrier. The modulating agent may also be enclosed in a hard or soft shell gelatin capsule, compressed into tablets, or incorporated directly into the subject's diet. For oral 15 therapeutic administration, the modulating agent may be incorporated with excipients and used in the form of ingestible tablets, buccal tablets, troches, capsules, elixirs, suspensions, syrups, wafers, and the like. The percentage of the modulating agent in the compositions and preparations may, of course, be varied. The amount of the modulating agent in such therapeutically useful compositions is such that a suitable 20 dosage will be obtained.

To administer a modulating agent by other than parenteral administration, it may be necessary to coat the compound with, or co-administer the compound with, a material to prevent its inactivation. For example, the modulating agent may be administered to a subject in an appropriate carrier, for example, liposomes, or a 25 diluent. Pharmaceutically acceptable diluents include saline and aqueous buffer solutions. Liposomes include water-in-oil-in-water CGF emulsions as well as conventional liposomes (Strejan et al. 1984. *J. Neuroinmunol.* 7:27). Pharmaceutically acceptable carriers include sterile aqueous solutions or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersion. The 30 use of such media and agents for pharmaceutically active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active compound, use thereof in the pharmaceutical compositions of the invention is contemplated.

Supplementary active compounds can also be incorporated into the compositions.

Therapeutic compositions typically must be sterile and stable under the conditions of manufacture and storage. The composition can be formulated as a solution, microemulsion, liposome, or other ordered structure suitable to high drug concentration. The carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol, and the like), and suitable mixtures thereof. The proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the 5 maintenance of the required particle size in the case of dispersion and by the use of surfactants. In many cases, it will be preferable to include isotonic agents, for example, sugars, polyalcohols such as mannitol, sorbitol, or sodium chloride in the composition. Prolonged absorption of the injectable compositions can be brought about by including in the composition an agent which delays absorption, for example, 10 monostearate salts and gelatin. Sterile injectable solutions can be prepared by incorporating the modulating agent in the required amount in an appropriate solvent with one or a combination of ingredients enumerated above, as required, followed by filtered sterilization. Generally, dispersions are prepared by incorporating the 15 modulating agent into a sterile vehicle which contains a basic dispersion medium and the required other ingredients from those enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, the preferred methods of 20 preparation are vacuum drying and freeze-drying which yields a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof.

Dosage regimens may be adjusted to provide the optimum therapeutic 25 response. For example, a single bolus may be administered, several divided doses may be administered over time or the dose may be proportionally reduced or increased as indicated by the exigencies of the therapeutic situation. It is especially advantageous to formulate parenteral compositions in dosage unit form for ease of administration 30 and uniformity of dosage. Dosage unit form as used herein refers to physically discrete units suited as unitary dosages for the mammalian subjects to be treated; each unit containing a predetermined quantity of active compound calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier.

The specification for the dosage unit forms of the invention are dictated by and directly dependent on (a) the unique characteristics of the modulating agent and the particular therapeutic effect to be achieved, and (b) the limitations inherent in the art of compounding such a modulating agent for the treatment of states described herein.

5

Other Uses

The proteins of the present invention and in particular their motor domains can be used for separation of a specific ligand from a heterologous mixtures in aqueous solution as described by Stewart (U.S. Patent No. 5,830,659. In the system 10 discussed by Stewart, a motor domain is linked to a ligand binding moiety, such as streptavidin. The chimeric proteins are placed into a loading chamber containing the heterogeneous mixtures which is coupled to a receiving chamber by a channel bearing immobilized, aligned microtubules. Addition of ATP to the loading chamber results in translocation of the motor domains, now attached non-covalently to the desired 15 ligand via their ligand binding moiety, from the loading chamber to the receiving chamber. Hence, the ATP-driven motility activity of the motor domain results in separation of the desired ligand from the heterogeneous mixture.

The proteins of the invention and in particular their motor domains can also be used in the field of nanotechnology. Molecular motors have widespread application 20 in the construction of nanoscale machines; for a review of the general utility of biomolecular motors in nanotechnology see <<http://clinton4.nara.gov/media/pdf/ch7.pdf>>. Biomolecular motors have real-world application in the emerging nanotechnological arts. For example, a 1999 NASA study identifies multiple applications for nanoscale motors in the aerospace field. See <<http://www.nas.nasa.gov/~globus/papers/NanoSpace1999/paper.html>>. Motor 25 domains can be used in the construction of rotors and other mechanical components (for review see Limberis and Stewart, *Nanotechnology* 11:47-51 (2000)) as well as light-operated molecular shuttles useful for nanoscale switches and pumps (see <<http://www.foresight.org/Conferences/MNT8/Abstracts/Vogel/>>).

30 Polynucleotides of the invention are also useful for inclusion on a GeneChip™ array or the like for use in expression monitoring (see US 6,040,138, . EP 853, 679 and WO97/27317). Such arrays typically contain oligonucleotide or cDNA probes to allow detection of large numbers of mRNAs within a mixture. Many of the nucleic

acids included in such arrays are from genes or ESTs that have not been well characterized. Such arrays are often used to compare expression profiles between different tissues or between different conditions of the same tissue (healthy vs. diseased or drug-treated vs. control) to identify differentially expressed transcripts.

5 The differentially expressed transcripts are then useful e.g., for diagnosis of disease states, or to characterize responses of drugs. The nucleic acids of the invention can be included on GeneChip™ arrays or the like together with probes containing a variety of other genes.

10

All publications cited herein are incorporated by reference as if they were copied verbatim into the specification.

The foregoing disclosure contain examples which are given to illustrate the invention, but are not to be limiting thereof. All percentages given throughout the specification are based upon weight unless otherwise indicated. All protein molecular weights are based on mean average molecular weights unless otherwise indicated.

20

25

30

WHAT IS CLAIMED IS:

1. An isolated nucleic acid sequence encoding a hSMMyHC polypeptide, wherein the polypeptide has the following properties: (i) the polypeptide's activity includes ATPase function or the ability to bind actin; and (ii) the polypeptide has an amino acid sequence which has greater than 70% sequence identity with SEQ ID NO:2; SEQ ID NO:4; SEQ ID NO:6; SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, or SEQ ID NO:14 as measured using a sequence comparison algorithm.
10 2. An isolated nucleic acid sequence of claim 1, wherein the protein specifically binds to polyclonal antibodies generated against a protein comprising SEQ ID NO:2; SEQ ID NO:4; SEQ ID NO:6; SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, or SEQ ID NO:14v
- 15 3. An isolated nucleic acid sequence of claim 1, wherein the nucleic acid encodes SEQ ID NO:2; SEQ ID NO:4; SEQ ID NO:6; SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, or SEQ ID NO:14.
- 20 4. An isolated nucleic acid sequence of claim 1, wherein the nucleic acid has a nucleotide sequence of SEQ ID NO1; SEQ ID NO:3; SEQ ID NO:5; SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:11, or SEQ ID NO:13.
- 25 5. An isolated nucleic acid sequence of claim 1, wherein the nucleic acid selectively hybridizes under stringent hybridization conditions to a nucleic acid having a sequence of or a complementary sequence to SEQ ID NO1; SEQ ID NO:3; SEQ ID NO:5; SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:11, or SEQ ID NO:13.
- 30 6. An expression vector comprising a nucleic acid encoding an hSMMyHC polypeptide, wherein the protein has the following properties: (i) the protein's activity includes ATPase function or the ability to bind actin; and (ii) the protein has a sequence that has greater than 90% amino acid sequence identity to SEQ ID NO:2; SEQ ID NO:4; SEQ ID NO:6; SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, or SEQ ID NO:14as measured using a sequence comparison algorithm.

7. A host cell transfected with the vector of claim 6.
8. An isolated hSMMMyHC polypeptide, wherein the protein has greater than 90% amino acid sequence identity to SEQ ID NO:2; SEQ ID NO:4; SEQ ID NO:6; SEQ ID NO:8; SEQ ID NO:10, SEQ ID NO:12, or SEQ ID NO:14 as measured using a sequence comparison algorithm.
9. An isolated protein of claim 8, wherein the protein specifically binds to polyclonal antibodies generated against a protein comprising SEQ ID NO:2; SEQ ID NO:4; SEQ ID NO:6; SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, or SEQ ID NO:14.
10. An isolated protein of claim 8, wherein the protein is SEQ ID NO:2; SEQ ID NO:4; SEQ ID NO:6; SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, or SEQ ID NO:14.
11. A method for screening for modulators of an hSMMMyHC polypeptide, the method comprising the steps of:
 - (i) providing biologically active hSMMMyHC polypeptide, wherein has the following properties: (i) activity including ATPase function or the ability to bind actin; and (ii) sequence that has greater than 90% amino acid sequence identity to SEQ ID NO:2; SEQ ID NO:4; SEQ ID NO:6; SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, or SEQ ID NO:14 as measured using a sequence comparison algorithm;
 - (ii) contacting biologically active hSMMMyHC polypeptide with a candidate agent in a test and control concentration; and
 - (iii) assaying for the level of hSMMMyHC polypeptide activity, wherein the hSMMMyHC polypeptide activity is selected from the group consisting of actin binding activity or ATPase activity, and wherein a change in activity between the test and control concentration indicates a modulator.
12. A method of claim 11, wherein the screening occurs in a multi-well plate as part of a high-throughput screen.
13. A method of claim 12, wherein the biologically active hSMMMyHC

polypeptide comprises an amino acid sequence of SEQ ID NO:2; SEQ ID NO:4; SEQ ID NO:6; SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, or SEQ ID NO:14.

14. An isolated nucleic acid comprising a sequence which has greater than
5 80% sequence identity with a nucleotide having a sequence of or a complementary
sequence of SEQ ID NO1; SEQ ID NO:3; SEQ ID NO:5; SEQ ID NO:7, SEQ ID
NO:9, SEQ ID NO:11, or SEQ ID NO:13.

15. The nucleic acid of claim 14 having a sequence of or a complementary
10 sequence of SEQ ID NO1; SEQ ID NO:3; SEQ ID NO:5; SEQ ID NO:7, SEQ ID
NO:9, SEQ ID NO:11, or SEQ ID NO:13.

1/27

1 ATGGCGCAGA AGGGCCAAGT CAGTGACGAT GAGAAGTTCC TCTTTGTGGA
51 CAAAAAACTTC ATCAAACAGCC CAGTGGCCCA GGCTGACTGG GCCGCCAAGA
101 GACTCGTCTG GGTCCCCTCG GAGAAGCAGG GCTTCGAGGC AGCCAGCATT
151 AAGGAGGAGA AGGGGGATGA GGTGGTTGTG GAGCTGGTGG AGAATGGCAA
201 GAAGGTCACG GTTGGGAAAG ATGACATCCA GAAGATGAAC CCACCCAAGT
251 TCTCCAAGGT GGAGGACATG GCGGAGCTGA CGTGCCTCAA CGAAGCCTCC
301 GTGCTACACA ACCTGAGGGA GCGGTACTTC TCAGGGCTAA TATATACTGA
351 CTCTGGCCTC TTCTGCGTGG TGGTCAACCC CTATAAACAC CTGCCCATCT
401 ACTCGGAGAA GATCGTCGAC ATGTACAAGG GCAAGAAAGAG GCACGAGATG
451 CCGCCTCACA TCTACGCCAT CGCAGACACG GCCTACCGGA GCATGCTTCA
501 AGATCGGGAG GACCAGTCCA TTCTATGCAC AGGCGAGTCT GGAGCCGGGA
551 AAACCGAAAA CACCAAGAAG GTCATTCACT ACCTGGCCGT GGTGGCCTCC
601 TCCCCACAAGG GCAAGAAAGA CACAAGTATC ACGCAAGGCC CATCTTTGC
651 CTACGGAGAG CTGGAAAAGC AGCTTCTACA AGCAAACCCG ATTCTGGAGG
701 CTTTCGGCAA CGCCAAAACA GTGAAGAACG ACAACTCCTC ACGATTGGC
751 AAATTCACTT GCATCAACTT CGACGTCACG GGTTACATCG TGGGAGCCAA
801 CATTGAGACC TATCTGCTAG AAAATCACG GGCAATTGCG CAAGCCAGAG
851 ACGAGAGGAC ATTCCACATC TTTTACTACA TGATTGCTGG AGCCAAGGAG
901 AAGATGAGAA GTGACTTGCT TTTGGAGGGC TTCAACAACT ACACCTTCCT
951 CTCCAATGGC TTTGTGCCA TCCCAGCAGC CCAGGATGAT GAGATGTTCC
1001 AGGAAACCGT GGAGGCCATG GCAATCATGG GTTTCAGCGA GGAGGAGCAG
1051 CTATCCATAT TGAAGGTGGT ATCATCGGTC CTGCAGCTTG GAAATATCGT
1101 CTTCAAGAAG GAAAGAAACA CAGACCAGGC GTCCATGCCA GATAACACAG
1151 CTGCTCAGAA AGTTTGCCAC CTCATGGAA TTAATGTGAC AGATTCACC
1201 AGATCCATCC TCACTCCTCG TATCAAGGTT GGGCGAGATG TGGTACAGAA
1251 AGCTCAGACA AAAGAACAGG CTGACTTTGC TGTAGAGGCT TTGGCCAAGG
1301 CAACATATGA GCGCCTTTTC CGCTGGATAC TCACCCGGCGT GAACAAAGCC
1351 CTGGACAAGA CCCATCGGCA AGGGGCTTCC TTCTGGGGA TCCTGGATAT
1401 AGCTGGATTG GAGATCTTG AGGTGAACTC CTTCGAGCAG CTGTGCATCA
1451 ACTACACCAA CGAGAACGCTG CAGCAGCTCT TCAACCACAC CATGTTCATC

FIG. 1A

2/27

1501 CTGGAGCAGG AGGAGTACCA GCGCGAGGGC ATCGAGTGGA ACTTCATCGA
1551 CTTTGGGCTG GACCTACAGC CCTGCATCGA GCTCATCGAG CGACCGAAC
1601 ACCCTCCAGG TGTGCTGGCC CTGCTGGACG AGGAATGCTG GTTCCCCAAA
1651 GCCACGGACA AGTCTTCGT GGAGAAGCTG TGCACGGAGC AGGGCAGCCA
1701 CCCCCAAGTTC CAGAAGCCCA AGCAGCTCAA GGACAAGACT GAGTTCTCCA
1751 TCATCCATTA TGCTGGGAAG GTGGACTATA ATGCGAGTGC CTGGCTGACC
1801 AAGAAATATGG ACCCGCTGAA TGACAACGTG ACTTCCCTGC TCAATGCCTC
1851 CTCCGACAAG TTTGTGGCCG ACCTGTGGAA GGACGTGGAC CGCATCGTGG
1901 GCCTGGACCA GATGGCCAAG ATGACGGAGA GCTCGCTGCC CAGCGCCTCC
1951 AAGACCAAGA AGGGCATGTT CCGCACAGTG GGGCAGCTGT ACAAGGAGCA
2001 GCTGGGCAAG CTGATGACCA CGCTACGCAA CACCACGCC AACTTCGTGC
2051 GCTGCATCAT CCCCAACCAC GAGAAGAGGT CCGGCAAGCT GGATGCGTTC
2101 CTGGTGCTGG AGCAGCTGCG GTGCAATGGG GTGCTGGAAG GCATTGCGAT
2151 CTGCCGGCAG GGCTTCCCCA ACCGGATCGT CTTCCAGGAG TTCCGCCAAC
2201 GCTACGAGAT CCTGGCGGCG AATGCCATCC CCAAAGGCTT CATGGACGGG
2251 AAGCAGGCCT GCATTCTCAT GATCAAAGCC CTGGAACTTG ACCCCAACTT
2301 ATACAGGATA GGGCAGAGCA AAATCTTCTT CCGAACTGGC GTCCTGGCCC
2351 ACCTAGAGGA GGAGCGAGAT TTGAAGATCA CCGATGTCAT CATGGCCTTC
2401 CAGGCGATGT GTCGTGGCTA CTTGGCCAGA AAGGTTTTG CCAAGAGGCA
2451 GCAGCAGCTG ACCGCCATGA AGGTGATTCA GAGGAACTGC GCCGCCTACC
2501 TCAAGCTGCG GAACTGGCAG TGGTGGAGGC TTTTCACCAA AGTGAAGCCA
2551 CTGCTGCAGG TGACACGGCA GGAGGAGGAG ATGCAGGCCA AGGAGGATGA
2601 ACTGCAGAAG ACCAAGGAGC GGCAGCAGAA GGCAGAGAAT GAGCTTAAGG
2651 AGCTGGAACA GAAGCACTCG CAGCTGACCG AGGAGAAGAA CCTGCTACAG
2701 GAACAGCTGC AGGCAGAGAC AGAGCTGTAT GCAGAGGCTG AGGAGATGCG
2751 GGTGCGGCTG GCGGCCAAGA AGCAGGAGCT GGAGGAGATA CTGCATGAGA
2801 TGGAGGCCCG CCTGGAGGAG GAGGAAGACA GGGGCCAGCA GCTACAGGCT
2851 GAAAGGAAGA AGATGGCCCA GCAGATGCTG GACCTTGAAG AACAGCTGGA
2901 GGAGGAGGAA GCTGCCAGGC AGAAGCTGCA ACTTGAGAAG GTCACGGCTG
2951 AGGCCAAGAT CAAGAAACTG GAGGATGAGA TCCTGGTCAT GGATGATCAG
3001 AACAAATAAAC TATCAAAAGA ACGAAAACTC CTTGAGGAGA GGATTAGTGA

FIG. 1B

3/27

3051 CTTAACGACA AATCTTGAG AAGAGGAAGA AAAGGCCAAG AATCTTACCA
3101 AGCTGAAAAA CAAGCATGAA TCTATGATTT CAGAACTGGA AGTGCAGGCTA
3151 AAGAAGGAAG AGAAGAGCCG ACAGGAGCTG GAGAAGCTGA AACGGAAAGCT
3201 GGAGGGTGAT GCCAGCGACT TCCACGAGCA GATCGCTGAC CTCCAGGCGC
3251 AGATCGCAGA GCTCAAGATG CAGCTGGCCA AGAAGGAGGA GGAGCTGCAG
3301 GCGGCCCTGG CCAGGCTTGA CGATGAAATC GCTCAGAAGA ACAATGCCCT
3351 GAAGAAGATC CGGGAGCTGG AGGGCCACAT CTCAGACCTC CAGGAGGACC
3401 TGGACTCAGA GCGGGCCGCC AGGAACAAGG CTGAAAAGCA GAAGCGAGAC
3451 CTCGGCGAGG AGCTGGAGGC CCTAAAGACA GAGCTGGAAG ACACACTGGA
3501 CAGCACAGCC ACTCAGCAGG AGCTCAGGGC CAAGAGGGAG CAGGAGGTGA
3551 CGGTGCTGAA GAAGGCCCTG GATGAAGAGA CGCGGTCCCA TGAGGCTCAG
3601 GTCCAGGAGA TGAGGCAGAA ACACGCACAG GCGGTGGAGG AGCTCACAGA
3651 GCAGCTTGAG CAGTTCAAGA GGGCCAAGGC GAACCTAGAC AAGAATAAGC
3701 AGACGCTGGA GAAAGAGAAC GCAGACCTGG CCGGGGAGCT GCGGGTCCTG
3751 GGCCAGGCCA AGCAGGAGGT GGAACATAAG AAGAAGAACG TGGAGGCGCA
3801 GGTGCAGGAG CTGCAGTCCA AGTGCAGCGA TGGGGAGCGG GCCCGGGCGG
3851 AGCTCAATGA CAAAGTCCAC AAGCTGCAGA ATGAAGTTGA GAGCGTCACA
3901 GGGATGCTTA ACGAGGCCGA GGGGAAGGCC ATTAAGCTGG CCAAGGACGT
3951 GGCCTCCCTC AGTTCCCAGC TCCAGGACAC CCAGGAGCTG CTTCAAGAAG
4001 AAACCCGGCA GAAGCTCAAC GTGTCTACGA AGCTGCGCCA GCTGGAGGAG
4051 GAGCGGAACA GCCTGCAAGA CCAGCTGGAC GAGGAGATGG AGGCCAAGCA
4101 GAACCTGGAG CGCCACATCT CCACTCTCAA CATCCAGCTC TCCGACTCGA
4151 AGAAGAAGCT GCAGGACTTT GCCAGCACCG TGGAAAGCTCT GGAAGAGGGG
4201 AAGAAGAGGT TCCAGAAGGA GATCGAGAAC CTCACCCAGC AGTACGAGGA
4251 GAAGGCAGGCC GCTTATGATA AACTGGAAAA GACCAAGAAC AGGCTTCAGC
4301 AGGAGCTGGA CGACCTGGTT GTTGATTGAG ACAACCAGCG GCAACTCGTG
4351 TCCAACCTGG AAAAGAAGCA GAGGAAATTG GATCAGTTGT TAGCCGAGGA
4401 GAAAAACATC TCTTCAAAT ACGCGGATGA GAGGGACAGA GCTGAGGCAG
4451 AAGCCAGGGA GAAGGAAACC AAGGCCCTGT CCCTGGCTCG GGCCCTTGAA
4501 GAGGCCTTGG AAGCCAAAGA GGAACCTCGAG CGGACCAACA AAATGCTCAA
4551 AGCCGAAATG GAAGACCTGG TCAGCTCCAA GGATGACGTG GGCAAGAACG

FIG. 1C

4/27

4601 TCCATGAGCT GGAGAAGTCC AAGCGGGCCC TGGAGACCCA GATGGAGGAG
4651 ATGAAGACGC AGCTGGAAGA GCTGGAGGAC GAGCTGCAAG CCACGGAGGA
4701 CGCCAAACTG CGGCTGGAAG TCAACATGCA GGCGCTCAAG GGCCAGTTCG
4751 AAAGGGATCT CCAAGCCGG GACGAGCAGA ATGAGGAGAA GAGGAGGCAA
4801 CTGCAGAGAC AGCTTCACGA GTATGAGACG GAACTGGAAG ACGAGCGAAA
4851 GCAACGTGCC CTGGCAGCTG CAGCAAAGAA GAAGCTGGAA GGGGACCTGA
4901 AAGACCTGGA GCTTCAGGCC GACTCTGCCA TCAAGGGAG GGAGGAAGCC
4951 ATCAAGCAGC TACGCAAACG GCAGGCTCAG ATGAAGGACT TTCAAAGAGA
5001 GCTGGAAGAT GCCCGTGCCT CCAGAGATGA GATCTTGCC ACAGCCAAAG
5051 AGAATGAGAA GAAAGCCAAG AGCTTGGAAAG CAGACCTCAT GCAGCTACAA
5101 GAGGACCTCG CCGCCGCTGA GAGGGCTCGC AAACAAGCGG ACCTCGAGAA
5151 GGAGGAACCTG GCAGAGGAGC TGGCCAGTAG CCTGTCGGGA AGGAACGCAC
5201 TCCAGGACGA GAAGCGCCGC CTGGAGGCC GGATGCCCA GCTGGAGGAG
5251 GAGCTGGAGG AGGAGCAGGG CAACATGGAG GCCATGAGCG ACCGGGTCCG
5301 CAAAGCCACA CAGCAGGCCG AGCAGCTCAG CAACGAGCTG GCCACAGAGC
5351 GCAGCACCGC CCAGAAGAAT GAGAGTGCC GGCAGCAGCT CGAGCGGCAG
5401 AACAAAGGAGC TCCGGAGCAA GCTCCACGAG ATGGAGGGGG CCGTCAAGTC
5451 CAAGTTCAAG TCCACCATCG CGGCGCTGGA GGCCAAGATT GCACAGCTGG
5501 AGGAGCAGGT CGAGCAGGAG CCCAGAGAGA AACAGGCCGC CACCAAGTCG
5551 CTGAAGCAGA AAGACAAGAA GCTGAAGGAA ATCTTGCTGC AGGTGGAGGA
5601 CGAGCGCAAG ATGGCCGAGC AGTACAAGGA GCAGGCAGAG AAAGGCAATG
5651 CCAGGGTCAA GCAGCTCAAG AGGCAGCTGG AGGAGGCAGA GGAGGAGTCC
5701 CAGCGCATCA ACGCCAACCG CAGGAAGCTG CAGCGGGAGC TGGATGAGGC
5751 CACGGAGAGC AACGAGGCCA TGGGCCGCGA GGTGAACGCA CTCAAGAGCA
5801 AGCTCAGAGG GCCCCCCCCC CAGGAAACCTT CGCAG

FIG. 1D

5/27

1 MAQKGQLSDD EKFLFVDKNF INSPVAQADW AAKRLVWVPS EKQGFEAASI
51 KEEKGDEVVV ELVENGKKVT VGKDDIQKMN PPKFSKVEDM AELTCLNEAS
101 VLHNLRERYF SGLIYTYSGL FCVVVNPYKH LPIYSEKIVD MYKGKKRHEM
151 PPHIYAIADT AYRSMLQDRE DQSILCTGES GAGKTENTKK VIQYLAVVAS
201 SHKGKKDTSI TQGPFAYGE LEKQLLQANP ILEAFGNAKT VKNDNSSRFG
251 KFIRINFDTV GYIVGANIET YLLEKSRAIR QARDERTFHI FYYMIAGAKE
301 KMRSDLLEG FNNYTFLSNG FVPIPAAQDD EMFQETVEAM AIMGFSEEEQ
351 LSILKVVSSV LQLGNIVFKK ERNTDQASMP DNTAAQKVCH LMGINVTDFT
401 RSILTPRIKV GRDVVQKAQT KEQADFAVEA LAKATYERLF RWILTRVNKA
451 LDKTHRQGAS FLGILDIAFG EIFEVNSFEQ LCINYTNEKL QQLFNHTMFI
501 LEQEYQREG IEWNFIDFGL DLQPCIELIE RPNNPPGVLA LLDEECWFPK
551 ATDKSFVKEKL CTEQGSHPKF QKPQLKDGT EFSIIHYAGK VDYNASAWLT
601 KNMDPLNDNV TSLLNASSDK FVADLWKDVD RIVGLDQMAK MTESSLPSAS
651 KTKKGMFRV GQLYKEQLGK LMDDLNTTP NFVRCIIPNH EKRSGKLDNF
701 LVLEQLRCNG VLEGIRICRQ GFPNRIVFQE FRQRYEILAA NAIPKGFMDG
751 KQACILMIKA LELEDPNLYRI GQSKIFFRTG VLAHLEEEERD LKITDVIMAF
801 QAMCRGYLAR KAFAKRQQQL TAMKVIQRNC AAYLKLRLNWQ WWRLFTKVKP
851 LLQVTRQEEE MQAKEDELQK TKERQQKAEN ELKELEQKHS QLTEEKNLLQ
901 EQLQAETELY AEAEEMRVRL AAKKQELEEI LHEMEARLEE EEDRGQQQLQA
951 ERKKMAQQML DLEEQLEEE AARQKLQLEK VTAEAKIKKL EDEILVMDDQ
1001 NNKLSKERKL LEERISDLTT NLAEEEEEKAK NLTKLKNKHE SMISELEVRL
1051 KKEEKSRSQEL EKLKRKLEGD ASDFHEQIAD LQAQIAELKM QLAKKEEELQ
1101 AALARLDDEI AQKNNAKKI RELEGHISDL QEDLDSERAA RNKAEKQKRD
1151 LGEELEALKT ELEDTLSTA TQQELRAKRE QEVTVLKKAL DEETRSHEAQ
1201 VQEMRQKHAQ AVEELTEQLE QFKRAKANLD KNKQTLKEN ADLAGELRVL
1251 GQAKQEVEHK KKKLEAQVQE LQSKCSDGER ARAELNDKVH KLQNEVESVT
1301 GMLNEAEGKA IKLAKDVASL SSQQLQDTQEL LQEETRQKLN VSTKLRQLEE
1351 ERNSLQDQLD EEMEAQONLE RHISTLNIQL SDSKKKLQDF ASTVEALEEG
1401 KKRFQKEIEN LTQQYEKAA AYDKLEKTKN RLQQELDDLV VDLDNQRQLV
1451 SNLEKKQRKF DQLLAEKNI SSKYADERDR AEAEARKEKET KALSLARALE
1501 EALEAKEELE RTNKMLKAEM EDLVSSKDDV GKNVHELEKS KRALETQMEE

FIG. 2A

6/27

1551 MKTQLEELED ELQATEDAKL RLEVNMQALK GQFERDLQAR DEQNEEKRRQ
1601 LQRQLHEYET ELEDERKQRA LAAAACKKLE GDLKDLELQA DSAIKGREGA
1651 IKQLRKLQAQ MKDFQRELED ARASRDEIFA TAKENEKKAK SLEADLMQLQ
1701 EDLAAAERAR KQADLEKEEL AEELASSLSG RNALQDEKRR LEARIAQLEE
1751 ELEEEQGNME AMSDRVVKAT QQAEQLSNEL ATERSTAQKN ESARQQLERQ
1801 NKELRSKLHE MEGAVKSFK STIAALEAKI AQLEEQVEQE AREKQAATKS
1851 LKQKDKKLKE ILLQVEDERK MAEQYKEQAE KGNARVKQLK RQLEEAEEES
1901 QRINANRRKL QRELDEATES NEAMGREVNA LKSCLRGPQQ QETSQ

FIG. 2B

7/27

1 ATGGCGCAGA AGGGCCAAGT CAGTGACGAT GAGAAGTTCC TCTTTGTGGA
51 CAAAAACTTC ATCAAACAGCC CAGTGGCCCA GGCTGACTGG GCCGCCAAGA
101 GACTCGTCTG GGTCCCCTCG GAGAAGCAGG GCTTCGAGGC AGCCAGCATT
151 AAGGAGGAGA AGGGGGATGA GGTGGTTGTG GAGCTGGTGG AGAATGGCAA
201 GAAGGTCACG GTTGGGAAAG ATGACATCCA GAAGATGAAC CCACCCAAGT
251 TCTCCAAGGT GGAGGACATG GCGGAGCTGA CGTGCCTCAA CGAAGCCTCC
301 GTGCTACACA ACCTGAGGGG GCGGTACTTC TCAGGGCTAA TATATACGTA
351 CTCTGGCCTC TTCTGCGTGG TGGTCAACCC CTATAAACAC CTGCCCATCT
401 ACTCGGGAGAA GATCGTCGAC ATGTACAAGG GCAAGAAGAG GCACGAGATG
451 CCGCCTCACA TCTACGCCAT CGCAGACACG GCCTACCGGA GCATGCTTCA
501 AGATCGGGAG GACCAGTCCA TTCTATGCAC AGGCGAGTCT GGAGCCGGGA
551 AAACCGAAAA CACCAAGAAG GTCATTCAAGT ACCTGGCCGT GGTGGCCTCC
601 TCCCACAAGG GCAAGAAAGA CACAAGTATC ACGCAAGGCC CATTTTGC
651 CTACGGAGAG CTGGAAAAGC AGCTTCTACA AGCAAACCCG ATTCTGGAGG
701 CTTTCGGCAA CGCCAAAACA GTGAAGAACG ACAACTCCTC ACGATTGGC
751 AAATTCACTCC GCATCAACTT CGACGTCACG GGTTACATCG TGGGAGCCAA
801 CATTGAGACC TATCTGCTAG AAAAATCACG GGCAATTGCG CAAGCCAGAG
851 ACGAGAGGAC ATTCCACATC TTTTACTACA TGATTGCTGG AGCCAAGGAG
901 AAGATGAGAA GTGACTTGCT TTTGGAGGGC TTCAACAACT ACACCTTCCT
951 CTCCAATGGC TTTGTGCCA TCCCAGCAGC CCAGGATGAT GAGATGTTCC
1001 AGGAAACCGT GGAGGCCATG GCAATCATGG GTTTCAGCGA GGAGGAGCAG
1051 CTATCCATAT TGAAGGTGGT ATCATCGGTC CTGCAGCTTG GAAATATCGT
1101 CTTCAAGAAG GAAAGAAACA CAGACCAGGC GTCCATGCCA GATAACACAG
1151 CTGCTCAGAA AGTTTGCCAC CTCATGGAA TTAATGTGAC AGATTCACC
1201 AGATCCATCC TCACTCCTCG TATCAAGGTT GGGCGAGATG TGGTACAGAA
1251 AGCTCAGACA AAAGAACAGG CTGACTTTGC TGTAGAGGCT TTGGCCAAGG
1301 CAACATATGA GCGCCTTTTC CGCTGGATAC TCACCCGCGT GAACAAAGCC
1351 CTGGACAAGA CCCATCGGCA AGGGGCTTCC TTCCTGGGGA TCCTGGATAT
1401 AGCTGGATTT GAGATCTTG AGGTGAACTC CTTCGAGCAG CTGTGCATCA
1451 ACTACACCAA CGAGAAGCTG CAGCAGCTCT TCAACCACAC CATGTTCATC
1501 CTGGAGCAGG AGGAGTACCA GCGCGAGGGC ATCGAGTGGA ACTTCATCGA

FIG. 3A

8/27

1551 CTTTGGGCTG GACCTACAGC CCTGCATCGA GCTCATCGAG CGACCGAAC
1601 ACCCTCCAGG TGTGCTGGCC CTGCTGGACG AGGAATGCTG GTTCCCCAAA
1651 GCCACGGACA AGTCTTCGT GGAGAAGCTG TGCACGGAGC AGGGCAGCCA
1701 CCCCAAGTTC CAGAAGCCCAGCAGCTCAA GGACAAGACT GAGTTCTCCA
1751 TCATCCATTA TGCTGGGAAG GTGGACTATA ATGCGAGTGC CTGGCTGACC
1801 AAGAATATGG ACCCGCTGAA TGACAAACGTG ACTTCCCTGC TCAATGCCTC
1851 CTCCGACAAG TTTGTGGCCG ACCTGTGGAA GGACGTGGAC CGCAGCTGG
1901 GCCTGGACCA GATGGCCAAG ATGACGGAGA GCTCGCTGCC CAGCGCCTCC
1951 AAGACCAAGA AGGGCATGTT CCGCACAGTG GGGCAGCTGT ACAAGGAGCA
2001 GCTGGGCAAG CTGATGACCA CGCTACGCAA CACCACGCC AACTTCGTGC
2051 GCTGCATCAT CCCCAACCAC GAGAAGAGGT CCGGCAAGCT GGATGCGTTC
2101 CTGGTGCTGG AGCAGCTGCG GTGCAATGGG GTGCTGGAAAG GCATTGCGCAT
2151 CTGCCGGCAG GGCTTCCCCA ACCGGATCGT CTTCCAGGAG TTCCGCCAAC
2201 GCTACGAGAT CCTGGCGGCG AATGCCATCC CCAAAGGCTT CATGGACGGG
2251 AAGCAGGCCT GCATTCTCAT GATCAAAGCC CTGGAACCTTG ACCCCAACTT
2301 ATACAGGATA GGGCAGAGCA AAATCTTCTT CCGAACTGGC GTCCTGGCCC
2351 ACCTAGAGGA GGAGCGAGAT TTGAAGATCA CCGATGTCAT CATGGCCTTC
2401 CAGGCGATGT GTCGTGGCTA CTTGGCCAGA AAGGCTTTG CCAAGAGGCA
2451 GCAGCAGCTG ACCGCCATGA AGGTGATTCA GAGGAACCTGC GCCGCCTACC
2501 TCAAGCTGCG GAACTGGCAG TGGTGGAGGC TTTTCACCAA AGTGAAGCCA
2551 CTGCTGCAGG TGACACGGCA GGAGGAGGAG ATGCAGGCCA AGGAGGATGA
2601 ACTGCAGAAG ACCAAGGAGC GGCAGCAGAA GGCAGAGAAT GAGCTTAAGG
2651 AGCTGGAACA GAAGCACTCG CAGCTGACCG AGGAGAAGAA CCTGCTACAG
2701 GAACAGCTGC AGGCAGAGAC AGAGCTGTAT GCAGAGGCTG AGGAGATGCG
2751 GGTGCGGCTG GCGGCCAAGA AGCAGGAGCT GGAGGAGATA CTGCATGAGA
2801 TGGAGGCCCG CCTGGAGGAG GAGGAAGACA GGGGCCAGCA GCTACAGGCT
2851 GAAAGGAAGA AGATGGCCCA GCAGATGCTG GACCTTGAAG AACAGCTGGA
2901 GGAGGAGGAA GCTGCCAGGC AGAAGCTGCA ACTTGAGAAG GTCACGGCTG
2951 AGGCCAAGAT CAAGAAACTG GAGGATGAGA TCCTGGTCAT GGATGATCAG
3001 AACAAATAAAC TATCAAAAGA ACGAAAACCTC CTTGAGGAGA GGATTAGTGA
3051 CTTAACGACA AATCTTGCAG AAGAGGAAGA AAAGGCCAAG AATCTTACCA

FIG. 3B

9/27

3101 AGCTGAAAAA CAAGCATGAA TCTATGATT CAGAACTGGA AGTGCAGGCTA
3151 AAGAAGGAAG AGAAGAGCCG ACAGGAGCTG GAGAAGCTGA AACGGAAGCT
3201 GGAGGGTGAT GCCAGCGACT TCCACGAGCA GATCGCTGAC CTCCAGGCGC
3251 AGATCGCAGA GCTCAAGATG CAGCTGGCCA AGAAGGAGGA GGAGCTGCAG
3301 GCAGGCCCTGG CCAGGCTTGA CGATGAAATC GCTCAGAAGA ACAATGCCCT
3351 GAAGAAGATC CGGGAGCTGG AGGGCCACAT CTCAGACCTC CAGGAGGACC
3401 TGGACTCAGA GCAGGCCCGCC AGGAACAAGG CTGAAAAGCA GAAGCGAGAC
3451 CTCGGCGAGG AGCTGGAGGC CCTAAAGACA GAGCTGGAAG ACACACTGGA
3501 CAGCACAGCC ACTCAGCAGG AGCTCAGGGC CAAGAGGGAG CAGGAGGTGA
3551 CGGTGCTGAA GAAGGCCCTG GATGAAGAGA CGCGGTCCCA TGAGGCTCAG
3601 GTCCAGGAGA TGAGGCAGAA ACACGCACAG GCGGTGGAGG AGCTCACAGA
3651 GCAGCTTGAG CAGTTCAAGA GGGCCAAGGC GAACCTAGAC AAGAATAAGC
3701 AGACGCTGGA GAAAGAGAAC GCAGACCTGG CCAGGGAGCT GCAGGGCTTG
3751 GGCCAGGCCA AGCAGGAGGT GGAACATAAG AAGAAGAAGC TGGAGGCCA
3801 GGTGCAGGAG CTGCAGTCCA AGTGCAGCGA TGGGGAGCGG GCGGGGGCGG
3851 AGCTCAATGA CAAAGTCCAC AAGCTGCAGA ATGAAGTTGA GAGCGTCACA
3901 GGGATGCTTA ACGAGGCCGA GGGGAAGGCC ATTAAGCTGG CCAAGGACGT
3951 GGCCTCCCTC AGTTCCCAGC TCCAGGACAC CCAGGAGCTG CTTCAAGAAG
4001 AAACCCGGCA GAAGCTAAC GTGTCTACGA AGCTGCGCCA GCTGGAGGAG
4051 GAGCGGAACA GCCTGCAAGA CCAGCTGGAC GAGGAGATGG AGGCCAAGCA
4101 GAACCTGGAG CGCCACATCT CCACTCTCAA CATCCAGCTC TCCGACTCGA
4151 AGAAGAAGCT GCAGGACTTT GCCAGCACCG TGGAAAGCTCT GGAAGAGGGG
4201 AAGAAGAGGT TCCAGAAGGA GATCGAGAAC CTCACCCAGC AGTACGAGGA
4251 GAAGGCGGCC GCTTATGATA AACTGGAAAA GACCAAGAAC AGGCTTCAGC
4301 AGGAGCTGGA CGACCTGGTT GTTGATTG ACAACCAGCG GCAACTCGTG
4351 TCCAACCTGG AAAAGAAGCA GAGGAATTT GATCAGTTGT TAGCCGAGGA
4401 GAAAAACATC TCTTCAAAT ACGCGGATGA GAGGGACAGA GCTGAGGCAG
4451 AAGCCAGGGA GAAGGAAACC AAGGCCCTGT CCCTGGCTCG GGCCCTTGAA
4501 GAGGCCTTGG AAGCCAAAGA GGAACTCGAG CGGACCAACA AAATGCTCAA
4551 AGCCGAAATG GAAGACCTGG TCAGCTCCAA GGATGACGTG GGCAAGAACG
4601 TCCATGAGCT GGAGAAGTCC AAGCGGGCCC TGGAGACCCA GATGGAGGAG

FIG. 3C

10/27

4651 ATGAAGACGC AGCTGGAAGA GCTGGAGGAC GAGCTGCAAG CCACGGAGGA
4701 CGCCAAACTG CGGCTGGAAG TCAACATGCA GGCGCTCAAG GGCCAGTTCG
4751 AAAGGGATCT CCAAGCCCGG GACGAGCAGA ATGAGGAGAA GAGGAGGCAA
4801 CTGCAGAGAC AGCTTCACGA GTATGAGACG GAACTGGAAG ACGAGCGAAA
4851 GCAACGTGCC CTGGCAGCTG CAGCAAAGAA GAAGCTGGAA GGGGACCTGA
4901 AAGACCTGGA GCTTCAGGCC GACTCTGCCA TCAAGGGGAG GGAGGAAGCC
4951 ATCAAGCAGC TACGCAAAC TGCAGCTCAG ATGAAGGACT TTCAAAGAGA
5001 GCTGGAAGAT GCCCGTGCCT CCAGAGATGA GATCTTGCC ACAGCCAAAG
5051 AGAATGAGAA GAAAGCCAAG AGCTTGGAAAG CAGACCTCAT GCAGCTACAA
5101 GAGGACCTCG CCGCCGCTGA GAGGGCTCGC AAACAAGCGG ACCTCGAGAA
5151 GGAGGAACCTG GCAGAGGAGC TGGCCAGTAG CCTGTCGGGA AGGAACGCAC
5201 TCCAGGACGA GAAGCGCCGC CTGGAGGCC GGATCGCCCA GCTGGAGGAG
5251 GAGCTGGAGG AGGAGCAGGG CAACATGGAG GCCATGAGCG ACCGGGTCCG
5301 CAAAGCCACA CAGCAGGCCG AGCAGCTCAG CAACGAGCTG GCCACAGAGC
5351 GCAGCACGGC CCAGAAGAAT GAGAGTGCCTT GGCAGCAGCT CGAGCGGCAG
5401 AACAAAGGAGC TCCGGAGCAA GCTCCACGAG ATGGAGGGGG CCGTCAAGTC
5451 CAAGTTCAAG TCCACCATCG CGGCGCTGGA GGCCAAGATT GCACAGCTGG
5501 AGGAGCAGGT CGAGCAGGAG GCCAGAGAGA AACAGGCGGC CACCAAGTCG
5551 CTGAAGCAGA AAGACAAGAA GCTGAAGGAA ATCTTGCTGC AGGTGGAGGA
5601 CGAGCGCAAG ATGGCCGAGC AGTACAAGGA GCAGGCAGAG AAAGGCAATG
5651 CCAGGGTCAA GCAGCTCAAG AGGCAGCTGG AGGAGGCAGA GGAGGAGTCC
5701 CAGCGCATCA ACGCCAACCG CAGGAAGCTG CAGCGGGAGC TGGATGAGGC
5751 CACGGAGAGC AACGAGGCCA TGGGCCGCGA GGTGAACGCA CTCAAGAGCA
5801 AGCTCAGGCG AGGAAACGAG ACCTCTTCG TTCCTTCTAG AAGGTCTGGA
5851 GGACGTAGAG TTATTGAAAA TGCAGATGGT TCTGAGGAGG AAACGGACAC
5901 TCGAGACGCA GACTTCAATG GAACCAAGGC CAGTGAA

FIG. 3D

11/27

1 MAQKGQLSDD EKFLFVDKNF INSPVAQADW AAKRLVWVPS EKQGFEAASI
51 KEEKGDEVVV ELVENGKKVT VGKDDIQKMN PPKFSKVEDM AELTCLNEAS
101 VLHNLRERYF SG LIYTYSGL FCVVVNPYKH LPIYSEKIVD MYKGKKRHEM
151 PPHIYAIADT AYRSMLQDRE DQSILCTGES GAGKTENTKK VIQYLA VV
201 SHKGKKDTSI TQGPFAYGE LEKQLLQANP ILEAFGNAKT VKNDNNSRFG
251 KFIRINF DVT GYIVGANIET YLLEKSRAIR QARDERTFHI FYYMIAGAKE
301 KMRSDLLLEG FN NYTFLSNG FVPIPAQDD EMFQETVEAM AIMGFSEEEQ
351 LSILKV VSSV LQLGNIVFKK ERNTDQASMP DNTAAQKVCH LMGINV DFT
401 RSILTPRIKV GRDVVQKAQT KEQADFAVEA LAKATYERLF RWILTRVNKA
451 LDKTHRQGAS FLGILDIAGF EIFEVNSFEQ LCINYTNEKL QQLFNHTMFI
501 LEQEEYQREG IEWNFIDFGL DLQPCIELIE RPNNPPGVLA LLDEECWF
551 ATDKSFVEKL CTEQGSHPKF QKPKQLKD KT EFSIIHYAGK VDYNASAWLT
601 KNMDPLNDNV TSLLNASSDK FVADLWKDVD RIVGLDQMAK MTESSLPSAS
651 KTKKGMFR TV GQLYKEQLGK LM TTLRNNTP NFVRCIIPNH EKRSGKLD
701 LVLEQLRCNG VLEGIRICRQ GFPNRIVFQE FRQR YEILAA NAIPKGFM
751 KQACILMIKA LE LDPNLYRI GQSKIFFRTG VLAHLEEERD LKITDVIMAF
801 QAMCRGYLAR KAFAKRQQQL TAMKVIQRNC AAYLKLRNWQ WWRLFTKV
851 LLQVTRQEEE MQAKEDELQK TKERQQKAEN ELKELEQKHS QLTEEKNL
901 EQLQAETELY AEAEEMRVRL AAKKQELEEI LHEMEARLEE EEDRGQQLQA
951 ERKKMAQQML DLEEQLEEE AARQKLQLEK VTAEAKIKKL EDEILVMDDQ
1001 NNKLSKERKL LEERISDLTT NLAEEEEEKAK NLTKLKNKHE SMISELEV
1051 KKEEKS RQEL EKLKRKLEG D ASDFH E QIAD LQAQIAELKM QLAKKEEELQ
1101 AALARLDDEI AQKNNA LKKI RELEGHISDL QEDLD SERAA RNKA EKQKRD
1151 LGEELEALKT ELED TLDSTA TQQELRAKRE QEVTVLKKAL DEETRSHEAQ
1201 VQEMRQKHAQ AVEELTEQLE QFKRAKANLD KNKQTLEKEN ADLAGELR
1251 GQAKQEVEHK KKKLEAQVQE LQSKCSDGER ARAELNDKVH KLQNEVESVT
1301 GMLNEAEGKA IKLAKDVASL SSQQLQDTQEL LQEETRQKLN VSTKLRQLEE
1351 ERNSLQDQLD EEMEAQKQNL RHISTLNQI L SDSKKLQDF ASTVEALEEG
1401 KKRFQKEIEN LTQQYEEKAA AYDKLEKTKN RLQQELDDLV VDLDNQRQLV
1451 SNLEKKQRKF DQLLA EEEKNI SSKYADERDR AEEAAREKET KALSLARALE
1501 EA LEAKEELE RTN KMLKAEM EDLVSSKDDV GKNVHELEKS KRA LETQMEE

FIG. 4A

12/27

1551 MKTQLEELLED ELQATEDAKL RLEVNMQALK GQFERDLQAR DEQNEEKRRQ
1601 LQRQLHEYET ELEDERKQRA LAAAACKKLE GDLKDLELQA DSAIKGREEA
1651 IKQLRKLQAQ MKDFQRELED ARASRDEIFA TAKENEKKAK SLEADLMQLQ
1701 EDLAAAERAR KQADLEKEEL AEELASSLSG RNALQDEKRR LEARIAQLEE
1751 ELEEEQGNME AMSDRVVKAT QQAEQLSNEL ATERSTAQKN ESARQQLERQ
1801 NKELRSKLHE MEGAVKSFK STIAALEAKI AQLEEQVEQE AREKQAATKS
1851 LKQKDKKLKE ILLQVEDERK MAEQYKEQAE KGNARVKQLK RQLEEAEEES
1901 QRINANRRKL QRELDEATES NEAMGREVNA LKSKLRRGNE TSFVPSRRSG
1951 GRRVIENADG SEEETDTRDA DFNGTKASE

FIG. 4B

13/27

1 ATGGCGCAGA AGGGCCAAGT CAGTGACGAT GAGAAGTTCC TCTTTGTGGA
51 CAAAAACTTC ATCAACAGCC CAGTGGCCA GGCTGACTGG GCCGCCAAGA
101 GACTCGTCTG GGTCCCCCTCG GAGAAGCAGG GCTTCGAGGC AGCCAGCATT
151 AAGGAGGAGA AGGGGGATGA GGTGGTTGTG GAGCTGGTGG AGAATGGCAA
201 GAAGGTCACG GTTGGGAAAG ATGACATCCA GAAGATGAAC CCACCCAAGT
251 TCTCCAAGGT GGAGGACATG GCGGAGCTGA CGTGCCCAA CGAAGCCTCC
301 GTGCTACACA ACCTGAGGGA GCGGTACTTC TCAGGGCTAA TATATACGTA
351 CTCTGGCCTC TTCTGCGTGG TGGTCAACCC CTATAAACAC CTGCCCATCT
401 ACTCGGAGAA GATCGTCGAC ATGTACAAGG GCAAGAAGAG GCACGAGATG
451 CCGCCTCACA TCTACGCCAT CGCAGACACG GCCTACCGGA GCATGCTTCA
501 AGATCGGGAG GACCAGTCCA TTCTATGCAC AGGCAGGTCT GGAGCCGGGA
551 AAACCGAAAA CACCAAGAAG GTCATTCAAGT ACCTGGCCGT GGTGGCCTCC
601 TCCCACAAAGG GCAAGAAAGA CACAAGTATC ACGCAAGGCC CATCTTTGC
651 CTACGGAGAG CTGGAAAAGC AGCTTCTACA AGCAAACCCG ATTCTGGAGG
701 CTTTCGGCAA CGCCAAAACA GTGAAGAACG ACAACTCCTC ACGATTGGC
751 AAATTCACTT GCATCAACTT CGACGTCACG GGTTACATCG TGGGAGCCAA
801 CATTGAGACC TATCTGCTAG AAAAATCACG GGCAATTGCG CAAGCCAGAG
851 ACGAGAGGAC ATTCCACATC TTTTACTACA TGATTGCTGG AGCCAAGGAG
901 AAGATGAGAA GTGACTTGCT TTTGGAGGGC TTCAACAACT ACACCTTCCT
951 CTCCAATGGC TTTGTGCCA TCCCAGCAGC CCAGGATGAT GAGATGTTCC
1001 AGGAAACCGT GGAGGCCATG GCAATCATGG GTTCAGCGA GGAGGAGCAG
1051 CTATCCATAT TGAAGGTGGT ATCATCGTC CTGCAGCTTG GAAATATCGT
1101 CTTCAAGAAG GAAAGAAACA CAGACCAGGC GTCCATGCCA GATAACACAG
1151 CTGCTCAGAA AGTTTGCCAC CTCATGGGAA TTAATGTGAC AGATTCACC
1201 AGATCCATCC TCACTCCTCG TATCAAGGTT GGGCGAGATG TGGTACAGAA
1251 AGCTCAGACA AAAGAACAGG CTGACTTTGC TGTAGAGGCT TTGGCCAAGG
1301 CAACATATGA GCGCCTTTTC CGCTGGATAC TCACCCGCGT GAACAAAGCC
1351 CTGGACAAGA CCCATCGGCA AGGGGCTTCC TTCCTGGGGA TCCTGGATAT
1401 AGCTGGATTT GAGATCTTG AGGTGAACTC CTTCGAGCAG CTGTGCATCA
1451 ACTACACCAA CGAGAAGCTG CAGCAGCTCT TCAACCACAC CATGTTCATC
1501 CTGGAGCAGG AGGAGTACCA GCGCGAGGGC ATCGAGTGGA ACTTCATCGA

FIG. 5A

14/27

1551 CTTTGGGCTG GACCTACAGC CCTGCATCGA GCTCATCGAG CGACCGAAC
1601 ACCCTCCAGG TGTGCTGGCC CTGCTGGACG AGGAATGCTG GTTCCCCAAA
1651 GCCACGGACA AGTCTTTCGT GGAGAAGCTG TGCACGGAGC AGGGCAGCCA
1701 CCCCAAGTTC CAGAAGCCCA AGCAGCTCAA GGACAAGACT GAGTTCTCCA
1751 TCATCCATTA TGCTGGGAAG GTGGACTATA ATGCGAGTGC CTGGCTGACC
1801 AAGAATATGG ACCCGCTGAA TGACAACGTG ACTTCCCTGC TCAATGCCTC
1851 CTCCGACAAG TTTGTGGCCG ACCTGTGGAA GGACGTGGAC CGCATCGTGG
1901 GCCTGGACCA GATGGCCAAG ATGACGGAGA GCTCGCTGCC CAGCGCCTCC
1951 AAGACCAAGA AGGGCATGTT CCGCACAGTG GGGCAGCTGT ACAAGGAGCA
2001 GCTGGGCAAG CTGATGACCA CGCTACGCAA CACCACGCC AACTTCGTGC
2051 GCTGCATCAT CCCCAACCAC GAGAAGAGGT CCGGCAAGCT GGATGCG

FIG. 5B

15/27

1 MAQKGQLSDD EKFLFVDKNF INSPVAQADW AAKRLVWVPS EKQGFEAASI
51 KEEKGDEVVV ELVENGKKVT VGKDDIQKMN PPKFSKVEDM AELTCLNEAS
101 VLHNLRERYF SGLIYTYSGL FCVVVNPYKH LPIYSEKIVD MYKGKKRHEM
151 PPHIYAIADT AYRSMLQDRE DQSILCTGES GAGKTENTKK VIQYLAVVAS
201 SHKGKKDTSI TQGPFAYGE LEKQLLQANP ILEAFGNAKT VKNDNSSRFG
251 KFIRINFDTVT GYIVGANIET YLLEKSRAIR QARDERTFHI FYYMIAGAKE
301 KMRSDLLLEG FNNYTFLSNG FVPIPAQDD EMFQETVEAM AIMGFSEEEQ
351 LSILKVVSSV LQLGNIVFKK ERNTDQASMP DNTAAQKVCH LMGINVTDFT
401 RSILTPRIKV GRDVVQKAQT KEQADFAVEA LAKATYERLF RWILTRVNKA
451 LDKTHRQGAS FLGILDIAGF EIFEVNSFEQ LCINYTNEKL QQLFNHTMFI
501 LEQEEYQREG IEWNFIDFGL DLQPCIELIE RPNNPPGVLA LLDEECWFPK
551 ATDKSFVEKL CTEQGSHPKF QKPQQLKDKT EFSIIHYAGK VDYNASAWLT
601 KNMDPLNDNV TSLLNASSDK FVADLWKDVD RIVGLDQMAK MTESSLPSAS
651 KTKKGMFRDV GQILYKEQLGK LM TTLRNTTP NFVRCIIPNH EKRSGKLDA

FIG. 6

16/27

1 ATGGCGCAGA AGGGCCAAGT CAGTGACGAT GAGAAGTTCC TCTTTGTGGA
51 CAAAAACTTC ATCAACAGCC CAGTGGCCCA GGCTGACTGG GCCGCCAAGA
101 GACTCGTCTG GGTCCCCCTCG GAGAAGCAGG GCTTCGAGGC AGCCAGCATT
151 AAGGAGGAGA AGGGGGATGA GGTGGGTTGTG GAGCTGGTGG AGAATGGCAA
201 GAAGGTACAG GTTGGGAAAG ATGACATCCA GAAGATGAAC CCACCCAAGT
251 TCTCCAAGGT GGAGGACATG GCGGAGCTGA CGTGCCTCAA CGAACGCCTCC
301 GTGCTACACA ACCTGAGGGA GCGGTACTTC TCAGGGCTAA TATATACGTA
351 CTCTGGCCTC TTCTGCGTGG TGGTCAACCC CTATAAACAC CTGCCCATCT
401 ACTCGGAGAA GATCGTCGAC ATGTACAAGG GCAAGAAGAG GCACGAGATG
451 CCGCCTCACA TCTACGCCAT CGCAGACACG GCCTACCGGA GCATGCTTCA
501 AGATCGGGAG GACCAGTCCA TTCTATGCAC AGGCGAGTCT GGAGCCGGGA
551 AAACCGAAAA CACCAAGAAG GTCATTCAAGT ACCTGGCCGT GGTGGCCTCC
601 TCCCACAAGG GCAAGAAAGA CACAAGTATC ACGCAAGGCC CATCTTTGCA
651 CTACGGAGAG CTGGAAAAGC AGCTTCTACA AGCAAACCCG ATTCTGGAGG
701 CTTTCGGCAA CGCCAAAACA GTGAAGAACG ACAACTCCTC ACGATTGGC
751 AAATTCACTCC GCATCAACTT CGACGTCACG GGTTACATCG TGGGAGCCAA
801 CATTGAGACC TATCTGCTAG AAAAATCACG GGCAATTGCG CAAGCCAGAG
851 ACGAGAGGAC ATTCCACATC TTTTACTACA TGATTGCTGG AGCCAAGGAG
901 AAGATGAGAA GTGACTTGCT TTTGGAGGGC TTCAACAACT ACACCTTCCT
951 CTCCAATGGC TTTGTGCCCA TCCCAGCAGC CCAGGATGAT GAGATGTTCC
1001 AGGAAACCGT GGAGGCCATG GCAATCATGG GTTTCAGCGA GGAGGAGCAG
1051 CTATCCATAT TGAAGGTGGT ATCATCGGTC CTGCAGCTTG GAAATATCGT
1101 CTTCAAGAAG GAAAGAAACA CAGACCAGGC GTCCATGCCA GATAACACAG
1151 CTGCTCAGAA AGTTGCCAC CTCATGGAA TTAATGTGAC AGATTCACC
1201 AGATCCATCC TCACTCCTCG TATCAAGGTT GGGCGAGATG TGGTACAGAA
1251 AGCTCAGACA AAAGAACAGG CTGACTTTGC TGTAGAGGCT TTGGCCAAGG
1301 CAACATATGA GCGCCTTTTC CGCTGGATAC TCACCCGCGT GAACAAAGCC
1351 CTGGACAAGA CCCATCGGCA AGGGGCTTCC TTCCTGGGGA TCCTGGATAT
1401 AGCTGGATTT GAGATCTTG AGGTGAACTC CTTCGAGCAG CTGTGCATCA
1451 ACTACACCAA CGAGAAGCTG CAGCAGCTCT TCAACCACAC CATGTTCATC
1501 CTGGAGCAGG AGGAGTACCA GCGCGAGGGC ATCGAGTGGA ACTTCATCGA

FIG. 7A

17/27

1551 CTTTGGGCTG GACCTACAGC CCTGCATCGA GCTCATCGAG CGACCGAAC
1601 ACCCTCCAGG TGTGCTGGCC CTGCTGGACG AGGAATGCTG GTTCCCCAAA
1651 GCCACGGACA AGTCTTTCGT GGAGAAGCTG TGCACGGAGC AGGGCAGCCA
1701 CCCCCAAGTTC CAGAAGCCCA AGCAGCTCAA GGACAAGACT GAGTTCTCCA
1751 TCATCCATTA TGCTGGGAAG GTGGACTATA ATGCGAGTGC CTGGCTGACC
1801 AAGAATATGG ACCCGCTGAA TGACAACGTG ACTTCCCTGC TCAATGCCTC
1851 CTCCGACAAG TTTGTGGCCG ACCTGTGGAA GGACGTGGAC CGCATCGTGG
1901 GCCTGGACCA GATGGCCAAG ATGACGGAGA GCTCGCTGCC CAGCGCCTCC
1951 AAGACCAAGA AGGGCATGTT CCGCACAGTG GGGCAGCTGT ACAAGGAGCA
2001 GCTGGGCAAG CTGATGACCA CGCTACGCAA CACCACGCCA AACTTCGTGC
2051 GCTGCATCAT CCCCCAACAC GAGAAGAGGT CCGGCAAGCT GGATGCGTTC
2101 CTGGTGCTGG AGCAGCTGCG GTGCAATGGG GTGCTGGAAG GCATTGCGAT
2151 CTGCCGGCAG GGCTTCCCCA ACCGGATCGT CTTCCAGGAG TTCCGCCAAC
2201 GCTACGGAGAT CCTGGCGGCG AATGCCATCC CCAAAGGCTT CATGGACGGG
2251 AAGCAGGCCT GCATTCTCAT GATCAAAGCC CTGGAACCTG ACCCCAACTT
2301 ATACAGGATA GGGCAG

FIG. 7B

18/27

1 MAQKGQLSDD EKFLFVDKNF INSPVAQADW AAKRLVWVPS EKQGFEAASI
51 KEEKGDEVVV ELVENGKKVT VGKDDIQKMN PPKFSKVEDM AELTCLNEAS
101 VLHNLRERYF SGLIYTYSGL FCVVVNPYKH LPIYSEKIVD MYKGKKRHEM
151 PPHIYAIADT AYRSMLQDRE DQSILCTGES GAGKTENTKK VIQYLAVVAS
201 SHKGKKDTSI TQGPFAYGE LEKQLLQANP ILEAFGNAKT VKNDNSSLFG
251 KFIRINFDTV GYIVGANIET YLLEKSRAIR QARDERTFHI FYYMIAGAKE
301 KMRSDLLLEG FNNYTFLSNG FVPIPAAQDD EMFQETVEAM AIMGFSEEEQ
351 LSILKVVSSV LQLGNIVFKK ERNTDQASMP DNTAAQKVCH LMGINVTDFT
401 RSILTPRIKV GRDVVQKAQT KEQADFAVEA LAKATYERLF RWILTRVNKA
451 LDKTHRQGAS FLGILDIAGF EIFEVNSFEQ LCINYTNEKL QQLFNHTMFI
501 LEQEEYQREG IEWNFIDFGL DLQPCIELIE RPNNPPGVLA LLDEECWFPK
551 ATDKSFVEKL CTEQGSHPKF QKPKQLKDGT EFSIIHYAGK VDYNASAWLT
601 KNMDPLNDNV TSLLNASSDK FVADLWKDVD RIVGLDQMAK MTESSLPSAS
651 KTKKGMFRTV GQLYKEQLGK LMDDLNTTP NFVRCIIPNH EKRSGKLDGF
701 LVLEQLRCNG VLEGIRICRQ GFPNRIVFQE FRQRYEILAA NAIPKGFMGD
751 KQACILMIKA LELEDPNLYRI GQ

FIG. 8

19/27

1 ATGGCGCAGA AGGGCCAAGT CAGTGACGAT GAGAAGTTCC TCTTTGTGGA
51 CAAAAAACTTC ATCAACAGCC CAGTGGCCCA GGCTGACTGG GCCGCCAAGA
101 GACTCGTCTG GGTCCCCCTCG GAGAAGCAGG GCTTCGAGGC AGCCAGCATT
151 AAGGAGGAGA AGGGGGATGA GGTGGTTGTG GAGCTGGTGG AGAATGGCAA
201 GAAGGTCACG GTTGGGAAAG ATGACATCCA GAAGATGAAC CCACCCAAGT
251 TCTCCAAGGT GGAGGCACATG GCGGAGCTGA CGTGCCTCAA CGAAGCCTCC
301 GTGCTACACA ACCTGAGGGA GCGGTACTTC TCAGGGCTAA TATATACGTA
351 CTCTGGCCTC TTCTGCGTGG TGGTCAACCC CTATAAACAC CTGCCCATCT
401 ACTCGGGAGAA GATCGTCGAC ATGTACAAGG GCAAGAAGAG GCACGAGATG
451 CCGCCTCACA TCTACGCCAT CGCAGACACG GCCTACCGGA GCATGCTTCA
501 AGATCGGGAG GACCAGTCCA TTCTATGCAC AGGCGAGTCT GGAGCCGGGA
551 AAACCGAAAA CACCAAGAAG GTCATTCAAGT ACCTGGCCGT GGTGGCCTCC
601 TCCCACAAGG GCAAGAAGA CACAAGTATC ACGCAAGGCC CATTTTGC
651 CTACGGAGAG CTGGAAAAGC AGCTTCTACA AGCAAACCCG ATTCTGGAGG
701 CTTTCGGCAA CGCCAAAACA GTGAAGAACG ACAACTCCTC ACGATTGGC
751 AAATTCACTCC GCATCAACTT CGACGTCAAG GGTACATCG TGGGAGCCAA
801 CATTGAGACC TATCTGCTAG AAAAATCAAG GGCAATTCGC CAAGCCAGAG
851 ACGAGAGGAC ATTCCACATC TTTTACTACA TGATTGCTGG AGCCAAGGAG
901 AAGATGAGAA GTGACTTGCT TTTGGAGGGC TTCAACAAGT ACACCTTCCT
951 CTCCAATGGC TTTGTGCCCA TCCCAGCAGC CCAGGATGAT GAGATGTTCC
1001 AGGAAACCGT GGAGGCCATG GCAATCATGG GTTTCAGCGA GGAGGAGCAG
1051 CTATCCATAT TGAAGGTGGT ATCATCGGTC CTGCAGCTTG GAAATATCGT
1101 CTTCAAGAAG GAAAGAAAACA CAGACCAGGC GTCCATGCCA GATAACACAG
1151 CTGCTCAGAA AGTTTGCCAC CTCATGGAA TTAATGTGAC AGATTCACC
1201 AGATCCATCC TCACTCCTCG TATCAAGGTT GGGCGAGATG TGGTACAGAA
1251 AGCTCAGACA AAAGAACAGG CTGACTTTGC TGTAGAGGCT TTGGCCAAGG
1301 CAACATATGA GCGCCTTTTC CGCTGGATAC TCACCCGCGT GAACAAAGCC
1351 CTGGACAAGA CCCATCGGCA AGGGGCTTCC TTCCTGGGAA TCCTGGATAT
1401 AGCTGGATTT GAGATCTTG AGGTGAACTC CTTCGAGCAG CTGTGCATCA
1451 ACTACACCAA CGAGAAGCTG CAGCAGCTCT TCAACCACAC CATGTTCATC
1501 CTGGAGCAGG AGGAGTACCA GCGCGAGGGC ATCGAGTGGA ACTTCATCGA

FIG. 9A

20/27

1551 CTTTGGGCTG GACCTACAGC CCTGCATCGA GCTCATCGAG CGACCGAAC
1601 ACCCTCCAGG TGTGCTGGCC CTGCTGGACG AGGAATGCTG GTTCCCCAAA
1651 GCCACGGACA AGTCTTCGT GGAGAAGCTG TGCACGGAGC AGGGCAGCCA
1701 CCCCCAAGTTC CAGAAGCCCA AGCAGCTCAA GGACAAGACT GAGTTCTCCA
1751 TCATCCATTA TGCTGGGAAG GTGGACTATA ATGCGAGTGC CTGGCTGACC
1801 AAGAAATATGG ACCCGCTGAA TGACAACGTG ACTTCCCTGC TCAATGCCTC
1851 CTCCGACAAG TTTGTGGCCG ACCTGTGGAA GGACGTGGAC CGCAGCTGG
1901 GCCTGGACCA GATGGCCAAG ATGACGGAGA GCTCGCTGCC CAGCGCCTCC
1951 AAGACCAAGA AGGGCATGTT CCGCACAGTG GGGCAGCTGT ACAAGGAGCA
2001 GCTGGGCAAG CTGATGACCA CGCTACGCAA CACCACGCC AACTTCGTGC
2051 GCTGCATCAT CCCCCAACAC GAGAAGAGGT CCGGCAAGCT GGATGCGTTC
2101 CTGGTGCTGG AGCAGCTGCG GTGCAATGGG GTGCTGGAAAG GCATTGCGCAT
2151 CTGCCGGCAG GGCTTCCCCA ACCGGATCGT CTTCCAGGAG TTCCGCCAAC
2201 GCTACGAGAT CCTGGCGGCG AATGCCATCC CCAAAGGCTT CATGGACGGG
2251 AAGCAGGCCT GCATTCTCAT GATCAAAGCC CTGGAACTTG ACCCCAACTT
2301 ATACAGGATA GGGCAGAGCA AAATCTTCTT CCGAACTGGC GTCCTGGCCC
2351 ACCTAGAGGA GGAGCGAGAT TTGAAGATCA CCGATGTCAT CATGGCCTTC
2401 CAGGCGATGT GTCGTGGCTA CTTGGCCAGA AAGGCTTTG CCAAGAGGCA
2451 GCAGCAGCTG ACCGCCATGA AGGTGATTCA GAGGAACCTGC GCCGCCTACC
2501 TCAAGCTGCG GAACTGGCAG TGGTGGAGGC TTTTCACCAA AGTGAAG

FIG. 9B

21/27

1 MAQKGQLSDD EKFLFVDKNF INSPVAQADW AAKRLVWVPS EKQGFEAASI
51 KEEKGDEVVV ELVENGKKVT VGKDDIQKMN PPKFSKVEDM AELTCLNEAS
101 VLHNLRERYF SG LIYTYSGL FCVVVN PYKH LPIYSEKIVD MYKGKKRHEM
151 PPHIYAIADT AYRSMQLQDRE DQSILCTGES GAGKTENTKK VIQYLA VVAS
201 SHKGKKDTSI TQGPFAYGE LEKQLLQANP ILEAFGNAKT VKNDNSSRFG
251 KFIRINF DVT GYIVGANIET YLLEKSRAIR QARDERTFHI FYYMIAGAKE
301 KMRSDLLLEG FN NYTFLSNG FVPIPAAQDD EMFQETVEAM AIMGFSEEEQ
351 LSILKVVSSV LQLGNIVFKK ERNTDQASMP DNTAAQKVCH LMGINVTDFT
401 RSILTPRIKV GRDVVQKAQT KEQADFAVEA LAKATYERLF RWILTRVNKA
451 LDKTHRQGAS FLGILDIA GF EIFEVNSFEQ LCINYTNEKL QQLFNHTMFI
501 LEQEEYQREG IEWNFIDFGL DLQPCIELIE RPNNPPGVLA LLDEECWF PK
551 ATDKSFVEKL CTEQGSHPKF QKPQQLKDKT EFSIIHYAGK VDYNASAWLT
601 KNMDPLNDNV TSLLNASSDK FVADLWKDVD RIVGLDQMAK MTESSLPSAS
651 KTKKGFMRTV GQLYKEQLGK LM TTLRNTTP NFVRCIIPNH EKRSGKLD A F
701 LVLEQLRCNG VLEGIRICRQ GFPNRIVFQE FRQRYEILAA NAIPKGFM DG
751 KQACILMIKA LE LDPNLYRI GQSKIFFRTG VLAHLEEERD LKITDVIMAF
801 QAMCRGYLAR KAFAKRQQQL TAMKVIQRNC AAYLKL RNWQ WWRLFTKV K

FIG. 10

22/27

1 ATGGCGCAGA AGGGCCAAGT CAGTGACGAT GAGAAGTTCC TCTTTGTGGA
51 CAAAAACTTC ATCAACAGCC CAGTGGCCA GGCTGACTGG GCCGCCAAGA
101 GACTCGTCTG GGTCCCCCTCG GAGAACAGG GCTTCGAGGC AGCCAGCATT
151 AAGGAGGAGA AGGGGGATGA GGTGGTTGTG GAGCTGGTGG AGAATGGCAA
201 GAAGGTCACG GTTGGGAAAG ATGACATCCA GAAGATGAAC CCACCCAAGT
251 TCTCCAAGGT GGAGGACATG CGGGAGCTGA CGTGCCTCAA CGAAGCCTCC
301 GTGCTACACA ACCTGAGGGGA CGGGTACTTC TCAGGGCTAA TATATACGTA
351 CTCTGGCCTC TTCTGCGTGG TGGTCAACCC CTATAAACAC CTGCCATCT
401 ACTCGGAGAA GATCGTCGAC ATGTACAAGG GCAAGAAGAG GCACGAGATG
451 CCGCCTCACA TCTACGCCAT CGCAGACACG GCCTACCGGA GCATGCTTCA
501 AGATCGGGAG GACCAGTCCA TTCTATGCAC AGGCGAGTCT GGAGCCGGGA
551 AAACCGAAAA CACCAAGAAG GTCATTCAAGT ACCTGGCCGT GGTGGCCTCC
601 TCCCACAAGG GCAAGAAAGA CACAAGTATC ACGCAAGGCC CATCTTTG
651 CTACGGAGAG CTGGAAAAGC AGCTTCTACA AGCAAACCCG ATTCTGGAGG
701 CTTTCGGCAA CGCCAAAACA GTGAAGAACG ACAACTCCTC ACGATTGGC
751 AAATTCAACT GCATCAACTT CGACGTCACG GGTTACATCG TGGGAGCCAA
801 CATTGAGACC TATCTGCTAG AAAATCACG GGCAATTGCG CAAGCCAGAG
851 ACGAGAGGAC ATTCCACATC TTTTACTACA TGATTGCTGG AGCCAAGGAG
901 AAGATGAGAA GTGACTTGCT TTTGGAGGGC TTCAACAACT ACACCTTCCT
951 CTCCAATGGC TTTGTGCCA TCCCAGCAGC CCAGGATGAT GAGATGTTCC
1001 AGGAAACCGT GGAGGCCATG GCAATCATGG GTTCAGCGA GGAGGAGCAG
1051 CTATCCATAT TGAAGGTGGT ATCATCGGTC CTGCAGCTTG GAAATATCGT
1101 CTTCAAGAAG GAAAGAAACA CAGACCAGGC GTCCATGCCA GATAACACAG
1151 CTGCTCAGAA AGTTTGCCAC CTCATGGAA TTAATGTGAC AGATTCACC
1201 AGATCCATCC TCACTCCTCG TATCAAGGTT GGGCGAGATG TGGTACAGAA
1251 AGCTCAGACA AAAGAACAGG CTGACTTTGC TGTAGAGGCT TTGGCCAAGG
1301 CAACATATGA GCCCCTTTTC CGCTGGATAC TCACCCGCGT GAACAAAGCC
1351 CTGGACAAGA CCCATCGGCA AGGGGCTTCC TTCCTGGGGA TCCTGGATAT
1401 AGCTGGATTT GAGATCTTG AGGTGAACTC CTTCGAGCAG CTGTGCATCA
1451 ACTACACCAA CGAGAACGCTG CAGCAGCTCT TCAACCACAC CATGTTCATC
1501 CTGGAGCAGG AGGAGTACCA GCGCGAGGGC ATCGAGTGGA ACTTCATCGA

FIG. 11A

23/27

1551 CTTTGGGCTG GACCTACAGC CCTGCATCGA GCTCATCGAG CGACCGAAC
1601 ACCCTCCAGG TGTGCTGGCC CTGCTGGACG AGGAATGCTG GTTCCCCAAA
1651 GCCACGGACA AGTCTTCGT GGAGAAGCTG TGCACGGAGC AGGGCAGCCA
1701 CCCCAAGTTC CAGAAGCCA AGCAGCTCAA GGACAAGACT GAGTTCTCCA
1751 TCATCCATTA TGCTGGGAAG GTGGACTATA ATGCGAGTGC CTGGCTGACC
1801 AAGAATATGG ACCCGCTGAA TGACAAACGTG ACTTCCCTGC TCAATGCCTC
1851 CTCCGACAAG TTTGTGGCCG ACCTGTGGAA GGACGTGGAC CGCATCGTGG
1901 GCCTGGACCA GATGGCCAAG ATGACGGAGA GCTCGCTGCC CAGCGCCTCC
1951 AAGACCAAGA AGGGCATGTT CCGCACAGTG GGGCAGCTGT ACAAGGAGCA
2001 GCTGGGCAAG CTGATGACCA CGCTACGCAA CACCAACGCC AACTTCGTGC
2051 GCTGCATCAT CCCCAACCAC GAGAAGAGGT CCGGCAAGCT GGATGCGTTC
2101 CTGGTGCTGG AGCAGCTGCG GTGCAATGGG GTGCTGGAAG GCATTCGCAT
2151 CTGCCGGCAG GGCTTCCCCA ACCGGATCGT CTTCCAGGAG TTCCGCCAAC
2201 GCTACGAGAT CCTGGCGGCG AATGCCATCC CCAAAGGCTT CATGGACGGG
2251 AAGCAGGCCT GCATTCTCAT GATCAAAGCC CTGGAACCTTG ACCCCAACCTT
2301 ATACAGGATA GGGCAGAGCA AAATCTTCTT CCGAACTGGC GTCCTGGCCC
2351 ACCTAGAGGA GGAGCGAGAT TTGAAGATCA CCGATGTCAT CATGGCCTTC
2401 CAGGCGATGT GTCGTGGCTA CTTGGCCAGA AAGGCTTTG CCAAGAGGCA
2451 GCAGCAGCTG ACCGCCATGA AGGTGATTCA GAGGAACCTGC GCCGCCTACC
2501 TCAAGCTGCG GAACTGGCAG TGGTGGAGGC TTTTCACCAA AGTGAAGCCA
2551 CTGCTG

FIG. 11B

24/27

1 MAQKGQLSDD EKFLFVDKNF INSPVAQADW AAKRLVWVPS EKQGFEAASI
51 KEEKGDEVVV ELVENGKKVT VGKDDIQKMN PPKFSKVEDM AELTCLNEAS
101 VLHNLRERYF SGLIYTYSGL FCVVVNPyKH LPIYSEKIVD MYKGKKRHEM
151 PPHIYAIADT AYRSMLQDRE DQSILCTGES GAGKTENTKK VIQYLAVVAS
201 SHKGKKDTSI TQGPFAYGE LEKQLLQANP ILEAFGNAKT VKNDNSSLRG
251 KFIRINFDT GYIVGANIET YLLEKSRAIR QARDERTFHI FYYMIAGAKE
301 KMRSDLLEG FNNYTFLSNG FVPIPAAQDD EMFQETVEAM AIMGFSEEEQ
351 LSILKVVSSV LQLGNIVFKK ERNTDQASMP DNTAAQKVCH LMGINVTDFT
401 RSILTPRIKV GRDVVQKAQT KEQADFAVEA LAKATYERLF RWILTRVNKA
451 LDKTHRQGAS FLGILDIAFG EIFEVNSFEQ LCINYTNEKL QQLFNHTMFI
501 LEQEEYQREG IEWNFIDFGL DLQPCIELIE RPNNPPGVLA LLDEECWFPK
551 ATDKSFVEKL CTEQGSHPKF QKPKQLKDGT EFSIIHYAGK VDYNASAWLT
601 KNMDPLNDNV TSLLNASSDK FVADLWKDVD RIVGLDQMAK MTESSLPSAS
651 KTKKGMFRV GQLYKEQLGK LMTRNNTTP NFVRCIIPNH EKRSGKLDGF
701 LVLEQLRCNG VLEGIRICRQ GFPNRIVFQE FRQRYEILAA NAIPKGFMGD
751 KQACILMIKA LEQPNLYRI QOSKIFFRTG VLAHLEERD LKITDVIMAF
801 QAMCRGYLAR KAFAKRQQQL TAMKVIQRNC AAYLKLRNWQ WWRLFTKVKP
851 LL

FIG. 12

25/27

1 ATGGCGCAGA AGGGCCAAGT CAGTGACGAT GAGAAGTTCC TCTTTGTGGA
51 CAAAAAACTTC ATCAACAGCC CAGTGGCCCA GGCTGACTGG GCCGCCAAGA
101 GACTCGTCTG GGTCCCCCTCG GAGAAGCAGG GCTTCGAGGC AGCCAGCATT
151 AAGGAGGAGA AGGGGGATGA GGTGGTTGTG GAGCTGGTGG AGAATGGCAA
201 GAAGGGTCACG GTTGGGAAAG ATGACATCCA GAAGATGAAC CCACCCAAGT
251 TCTCCAAGGT GGAGGACATG GCGGAGCTGA CGTGCCTCAA CGAACGCCTCC
301 GTGCTACACA ACCTGAGGGA GCGGTACTTC TCAGGGCTAA TATATACGTA
351 CTCTGGCCTC TTCTGCGTGG TGGTCAACCC CTATAAACAC CTGCCCATCT
401 ACTCGGAGAA GATCGTCGAC ATGTACAAGG GCAAGAAGAG GCACGAGATG
451 CCGCCTCACA TCTACGCCAT CGCAGACACG GCCTACCGGA GCATGCTTCA
501 AGATCGGGAG GACCAGTCCA TTCTATGCAC AGGCGAGTCT GGAGCCGGGA
551 AAACCGAAAA CACCAAGAAG GTCATTCACT ACCTGGCCGT GGTGGCCTCC
601 TCCCACAAGG GCAAGAAAGA CACAAGTATC ACAGGGAGAGC TGGAAAAGCA
651 GCTTCTACAA GCAAACCCGA TTCTGGAGGC TTTCGGCAAC GCCAAAACAG
701 TGAAGAACGA CAACTCCTCA CGATTGGCA AATTCACTCG CATCAACTTC
751 GACGTCACGG GTTACATCGT GGGAGCCAAC ATTGAGACCT ATCTGCTAGA
801 AAAATCACGG GCAATTGCC AAGCCAGAGA CGAGAGGACA TTCCACATCT
851 TTTACTACAT GATTGCTGGA GCCAAGGAGA AGATGAGAAG TGACTTGCTT
901 TTGGAGGGCT TCAACAACTA CACCTTCCTC TCCAATGGCT TTGTGCCCAT
951 CCCAGCAGCC CAGGATGATG AGATGTTCCA GGAAACCGTG GAGGCCATGG
1001 CAATCATGGG TTTCAGCGAG GAGGAGCAGC TATCCATATT GAAGGTGGTA
1051 TCATCGGTCC TGCAGCTTGG AAATATCGTC TTCAAGAAGG AAAGAAACAC
1101 AGACCAGGCG TCCATGCCAG ATAACACAGC TGCTCAGAAA GTTGCCACC
1151 TCATGGGAAT TAATGTGACA GATTCACCA GATCCATCCT CACTCCTCGT
1201 ATCAAGGTTG GGCAGAGATGT GGTACAGAAA GCTCAGACAA AAGAACAGGC
1251 TGACTTTGCT GTAGAGGCTT TGGCCAAGGC AACATATGAG CGCCTTTCC
1301 GCTGGATACT CACCCGCGTG AACAAAGCCC TGGACAAGAC CCATCGGCAA
1351 GGGGCTTCCT TCCTGGGGAT CCTGGATATA GCTGGATTTG AGATCTTGAA
1401 GGTGAACCTCC TTGAGCAGC TGTGCATCAA CTACACCAAC GAGAAGCTGC
1451 AGCAGCTCTT CAACCACACC ATGTTCATCC TGGAGCAGGA GGAGTACCAAG
1501 CGCGAGGGCA TCGAGTGGAA CTTCATCGAC TTTGGGCTGG ACCTACAGCC

FIG. 13A

26/27

1551 CTGCATCGAG CTCATCGAGC GACCGAACAA CCCTCCAGGT GTGCTGGCCC
1601 TGCTGGACGA GGAATGCTGG TTCCCCAAAG CCACGGACAA GTCTTCGTG
1651 GAGAAGCTGT GCACGGAGCA GGGCAGCCAC CCCAAGTTCC AGAAGCCAA
1701 GCAGCTCAAG GACAAGACTG AGTTCTCCAT CATCCATTAT GCTGGGAAGG
1751 TGGACTATAA TGCGAGTGCC TGGCTGACCA AGAATATGGA CCCGCTGAAT
1801 GACAACGTGA CTTCCCTGCT CAATGCCTCC TCCGACAAGT TTGTGGCCGA
1851 CCTGTGGAAG GACGTGGACC GCATCGTGGG CCTGGACCAG ATGGCCAAGA
1901 TGACGGAGAG CTCGCTGCC AGCGCCTCCA AGACCAAGAA GGGCATGTT
1951 CGCACAGTGG GGCAGCTGTA CAAGGAGCAG CTGGGCAAGC TGATGACCAC
2001 GCTACGCAAC ACCACGCCA ACTTCGTGCG CTGCATCATC CCCAACACG
2051 AGAAGAGGTC CGGCAAGCTG GATGCGTTCC TGGTGCTGGA GCAGCTGCGG
2101 TGCAATGGGG TGCTGGAAGG CATTGCAATC TGCCGGCAGG GCTTCCCCAA
2151 CCGGATCGTC TTCCAGGAGT TCCGCCAACG CTACGAGATC CTGGCGGCGA
2201 ATGCCATCCC CAAAGGCTTC ATGGACGGGA AGCAGGCCTG CATTCTCATG
2251 ATCAAAGCCC TGGAACCTGA CCCCAACTTA TACAGGATAG GGCAGAGCAA
2301 AATCTCTTC CGAACTGGCG TCCTGGCCA CCTAGAGGAG GAGCGAGATT
2351 TGAAGATCAC CGATGTCATC ATGGCCTTCC AGGCATGTG TCGTGGCTAC
2401 TTGGCCAGAA AGGCTTTGC CAAGAGGCAG CAGCAGCTGA CCGCCATGAA
2451 GGTGATTCAAG AGGAACCTGCG CCGCCTACCT CAAGCTGCGG AACTGGCAGT
2501 GGTGGAGGCT TTTCACCAAA GTGAAGCCAC TGCTG

FIG. 13B

27/27

1 MAQKGQLSDD EKFLFVDKNF INSPVAQADW AAKRLVWVPS EKQGFEAASI
51 KEKGDEVVV ELVENGKKVT VKGDDIQKMN PPKFSKVEDM AELTCLNEAS
101 VLHNLRERYF SGЛИTYSGL FCVVVNPYKH LPIYSEKIVD MYKGKKRHEM
151 PPHIYAIADT AYRSMQLQDRE DQSILCTGES GAGKTENTKK VIQYLAUVAS
201 SHKGKKDTSI TQGPFAYGE LEKQLLQANP ILEAFGNAKT VKNDNSSRFG
251 KFIRINFDT GYIVGANIET YLLEKSRAIR QARDERTFHI FYYMIAGAKE
301 KMRSDLLEG FNNYTFLSNG FVPIPAAQDD EMFQETVEAM AIMGFSEEEQ
351 LSILKVVSSV LQLGNIVFKK ERNTDQASMP DNTAAQKVCH LMGINVTDFT
401 RSILTPRIKV GRDVVQKAQT KEQADFAVEA LAKATYERLF RWILTRVNKA
451 LDKTHRQGAS FLGILDIAGF EIFEVNSFEQ LCINYTNEKL QQLFNHTMFI
501 LEQEEYQREG IEWNFIDFGL DLQPCIELIE RPNNPPGVLA LLDEECWFPK
551 ATDKSFVEKL CTEQGSHPKF QKPQQLKDKT EFSIIHYAGK VDYNASAWLT
601 KNMDPLNDNV TSLLNASSDK FVADLWKDVD RIVGLDQMAK MTESSLPSAS
651 KTKKGGMFRV GQLYKEQLGK LM TTLRNTTP NFVRCIIPNH EKRSGKLDA

FIG. 14