WO 02/03237 Al

(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(10) International Publication Number

10 January 2002 (10.01.2002) PCT WO 02/03237 Al
(51) International Patent Classification’: GO6F 17/00 (81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
(21) International Application Number: PCT/US01/41217 CZ, DE, DK, DM, DZ, EE, ES, F1, GB, GD, GE, GH, GM,
HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK,
. . LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX,
(22) International Filing Date: 29 June 2001 (29.06.2001) MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL,
TJ, ™™, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.
(25) Filing Language: English
(84) Designated States (regional): ARIPO patent (GH, GM,
(26) Publication Language: English KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
(30) Priority Data: patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
60/214,892 29 June 2000 (29.06.2000) US IT, LU, MC, NL, PT, SE, TR), OAPI patent (BE, BJ, CF,
09/681,936 28 June 2001 (28.06.2001) US CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).
(71) Applicant: INFOGLIDE CORPORATION [US/US]; Published: _
11100 Metric Blvd., Suite 750, Austin, TX 78758 (US). ~ —— With international search report
(72) Inventors: WOTRING, Steven, C.; 2817 Lariat Trail, For two-letter codes and other abbreviations, refer to the "Guid-
Austin, TX 78734 (US). RIPLEY, John, R.; 1415 Baffin ance Notes on Codes and Abbreviations" appearing at the begin-
Cove, Round Rock, TX 78664 (US). ning of each regular issue of the PCT Gazette.
(74) Agent: RUSSELL, Douglas, D.; Taylor Russell & Rus-

sell, P.C., 4807 Spicewood Springs Road, Building One,
Suite 1200, Austin, TX 78759 (US).

(54) Title: SYSTEM AND METHOD FOR SHARING DATA BETWEEN RELATIONAL AND HIERARCHICAL DATABASES

100
Person

101
Date of Birth

SSN

102

First

Middie

i

Last
105

Physical Description

Hauwr Color

Eye Color

Height

Weight

103
10

4

=3

it

6

(57) Abstract: The present invention provides
a computer-implemented system and method for
transforming relational database information into a
hierarchical data representation (100). It provides for
data sharing between relational and hierarchical data
structures without requiring the data to be remodeled to
fit a common format or convention. While maintaining
the relational data in original format, user may transform
and associate the data with a structure compatible with
another format definition. The present invention may use
XML, HTML and SGML to structure a hierarchical data
representation (100). Object-oriented formats may also
be used to structure the data in an intermediary format for
transformation into a hierarchical data structure (100).

10

15

20

25

WO 02/03237

System and Method for Sharing Data Between Relational and Hierarchical Databases

This application claims the benefit of U.S. Provisional Application

60/214,892, filed on June 29,2000.

BACKGROUND

The present invention relates generally to database systems. More
particularly, the invention is a computer-implemented method that allows data in
different databases, which may have different formats and structures, to be shared
without remodeling the data to fit an existing data convention. The system and
method provide for transforming relational database information into a hierarchical
data representation format.

Modern information resources often comprise huge databases that must be
searched, in order to extract useful information. One example of this includes data
found on global information networks. With the wealth of information available
today, and its value to businesses, managing information effectively has become
essential. However, existing database technologies, including recent advances in
database integration, are often constrained when interacting with multiple,
voluminous data sources.

As a growing number of companies establish Business-to-Business (B2B) and
Business-to-Consumer (B2C) relationships using a global communications network,

such as the Internet, traditional data sharing among multiple large data sources has

PCT/US01/41217

10

15

20

25

WO 02/03237 PCT/US01/41217

become increasingly problematic. Data required by businesses is often stored in
multiple databases, or supplied by third party companies. Additionally, data sharing
difficulties are often magnified as companies attempt to integrate internal and external
databases that are always increasing in number and kind. As a result, combining data
from separate sources typically creates an expensive and time-consuming systems
integration task.

In order to exchange data between entities, data standardization has been used
in an attempt to achieve data integration and interoperability. Standards bodies like
RosettaNet, BizTalk, OASIS, and ACORD, are available to standardize data so that it
can be exchanged more easily. However, there are many problems presented by these
solutions. In order to participate in a consortium, all participants' data has to be
modeled in the same manner. Additionally, various consortia and standards bodies
that have been established to handle similar types of data often have different
standards that correspond to specific industries. Also, the adoption of standards is
slow, because businesses within each industry still modify data to fit their own
company requirements. Hence, given the number of different consortia, standards,
and industries, there is still a need for a standard means to exchange data and data
structure between different data structures and databases, among companies of the
same and different industries, and even among departments of single companies.

One current approach to filling this need is to painstakingly map one field of
data to another, in order to exchange the data with a "non-conformant” entity; that is,
one that uses different data structure standards. This process must be repeated not
only for every field but also for'every different exchange. These solutions to the
exchange problem are generally custom “hard-coded" solutions. An efficient, user-

configurable method for sharing data between different data structures is still lacking.

10

15

20

25

WO 02/03237 PCT/US01/41217

Database technologies, such as Structured Query language (SQL), Open
Database Connectivity (ODBC), Extensible Markup Language (XML), and other
tools, have been developed to facilitate database integration. As beneficial as these
technologies may be, however, they have failed to address inherent differences in the
structure and organization of databases, in addition to the contents. These differences
are important, because the richness of the original structure often contributes to the
value of its underlying data.

For example, when attempting to store the same type of data or object, such as
a customer description, database designers may use different field names, formats,
and structures. Fields contained in one database may not be used in another. If
understood and logically integrated, these disparities can provide valuable
information, such as how a company gains competitive advantage based on its dat~a
structuring. Unfortunately, today’s database technologies often cleanse the disparities
out of data to make it conform to standards of form and structure. Examples include
databases that are converted from one representation to another representation and
expressed in XML, using its corresponding hierarchical structure.

Integrating data from multiple environments and formats into a single
interoperable structure is particularly necessary to seamless B2B electronic commerce
(e-Commerce), and XML enables data to look much more alike than any previous
format. However, there are still problems with using XML to represent data. These
problems fall into two major categories: 1.) dirty and naturally occurring data perplex
XML searching and storage and 2.) data formats or data schemas in the original
databases that offer competitive advantage or better reflect the true model of the
business and its data, are sacrificed to standards consortia. This means that the

database formats or schemas have to be fit into the consortia data standards, which

10

15

20

25

WO 02/03237

PCT/US01/41217

requires a highly skilled technical staff to spend a large amount of time comparing
one database schema to another. Moreover, the standards being used and developed
to overcome these data exchange barriers sacrifice competitive advantage for
interoperability. Today, businesses require both.

Conforming to industry standards may also raise other issues, such as
intellectual property issues; the ability for data modeled to a specific consortium
standard to communicate with other consortia that use a different model or standard;

and the handling of legacy data in multiple formats.

SUMMARY

The present invention, which is a system and method for allowing data to be
shared without requiring that the data be remodeled to fit a common format or
convention, solves the aforeméntioned needs. The users of the data, which may be
within a company or different entities that need to share data, may keep the their own
data formats and may dynamically transform the data contained in their structure into
a structure compatible with another definition without having to physically change
their data or its structure.

Transforming data from a Relational Database Management System
(RDBMS) to a hierarchical format relates to numerous information processing and
computer programming disciplines. First, the method relates to the field of data
management, including database command expressions, dataset storage and retrieval
techniques, database connection methods, and keyed-index traversal between datasets.
Second, the structural transformation elements incorporate the use of object-oriented
programming techniques where trees are used for the hierarchical representation of

de-normalized relational database information, henceforth known as logical records.

10

15

20

25

WO 02/03237 PCT/US01/41217

Third, the invention incorporates the discipline of using markup languages for the
representation and presentation of information to a user through a graphical user
interface. Fourth, the invention uses Relational Database Management Sjrstems
(RDBMS) and the grouping of concepts that belong to the subject, such as Structured
Query Language (SQL), tables, datasets, rows, columns, indices, primary keys, and
foreign keys. Finally, the invention relates to the discipline of hierarchical data
management, including temporary and permanent storage, and retrieval techniques
including, but not limited to markup language format.

When sharing data between a Relational Database Management System
(RDBMS) and a hierarchical information presentation format, there is an inherent
need to transform the original tabular structure of the information into a tree-like,
hierarchical representation. Since RDBMS information is stored in separate tables
joined through a specified key structure, information needs to be repackaged as a
whole for use in data communication across a local area network (LAN), or a wide
area network (WAN). Information in a RDBMS is often stored in a n(;nnal form,
where information is broken down into the smallest logical units. When extracting
information from a database where information is stored in normal form, it is
necessary to develop a transformation method to rebuild a logical grouping of
information from the normalized information format that is stored in the RDBMS.

The current invention discloses a system and method for transforming data
stored in relational format into a hierarchical format such as a markup language, not
limited to Extensible Markup Language (XML), Hyper Text Markup Language
(HTML), and Standard Generalized Markup Language (SGML). In addition, a
method where a hierarchical format can be represented in tree structures using, but not

limited to, an object-oriented programming format. These object-oriented formats can

10

15

20

25

WO 02/03237 PCT/US01/41217

be used as an intermediary format for which to temporarily store information in a
computational processing device in the systems random access memory or any
permutation of hard disk drives, or media storage devices. As information is
transformed into the hierarchical structure from a RDBMS, the information then
assumes the hierarchical representation of the logical records contained in the
database. The present invention solves the aforementioned needs, by providing a
system and method for data sharing, without requiring that the data be remodeled to
fit a common format or convention.

An embodiment of the present invention is directed to a method for sharing
data between a relational database and a hierarchical database that comprises defining
a hierarchical data entity including a plurality of elements, mapping each of the
plurality of elements in the hierarchical data entity to information in a relational
dataset contained in a relational database, transforming the relational dataset
information into corresbonding mapped elements in the hierarchical data entity to
form a hierarchical data structure, and accessing data from the hierarchical data
structure corresponding to the relational dataset information in the relational database.
The step of defining a hierarchical data entity may comprise defining a hierarchical
data entity including a plurality of elements containing a data entity structure and
mapping information. The method may further comprise identifying each of the
plurality of elements by an element name without reference to an entity path. The step
of defining a hierarchical data entity may comprise defining a hierarchical data entity
including a plurality of elements containing a data entity structure and defining a
hierarchical map structure corresponding to the hierarchical data entity containing
mapping information. The method may further comprise identifying each of the

plurality of elements by an entity path referencing all parent elements in the entity

10

15

20

25

WO 02/03237 PCT/US01/41217

path. The step of defining a hierarchical data entity may comprise defining simple
elements and compound elements. The step of defining a simple element may
comprise defining an element name and mapped fields. The step of defining a simple
element may comprise defining an entity path and mapped fields. The step of defining
a compound element may comprise defining an element name, a database name, a
database command, and database fields. The step of defining a compound element
may comprise defining an entity path, a database name, a database command, and
database fields. The step of mapping each of the plurality of elements may comprise
reading the hierarchical data entity, determining if a root element is present, ending
the mapping process if no root element is present, mapping each compound element
of the plurality of elements if a root element is present, and mapping each simple
element of the plurality of elements if a root element is present. The step of mapping
each compound element may comprise selecting a compound element, specifying a
data source for the compound element, specifying a database command expression for
the compound element, executing the database command expression, receiving a
dataset containing fieldnames from the data source, adding the dataset fieldnames to a
dataset field list in the compound element for enabling simple elements to map to the
information in the dataset, and repeating the above steps for each compound element.
The step of mapping eéch simple element may comprise selecting a simple element,
selecting a source dataset fieldname corresponding to the simple element in a dataset
field list of a parent element, specifying data transformation algorithms associated
with the simple element, and repeating the above steps for each simple element. The
step of transforming the relational dataset information may comprise receiving the
mapped plurality of elements, creating a dataset for each compound element of the

plurality of elements that contains a database command expression, opening the

10

15

20

25

WO 02/03237 PCT/US01/41217

dataset for each compound element, transforming each compound element in the
mapped elements starting with the root element of the mapped elements, and
transforming each simple element of the plurality of elements in the mapped
elements. The step of transforming each compound element may comprise selecting a
compound element, locating a dataset that is nearest to a compound element, creating
an instance of the compound element for every record in the dataset, and repeating the
above steps for each compound element. The step of transforming each simple
element may comprise selecting a simple element, extracting values from each dataset
field that map to the simple element, creating a simple element in the hierarchical data
structure that corresponds to the simple map element, transforming data values
contained in the dataset fields by transformation algorithms, adding the transformed
values to other values corresponding to the simple map element, and repeating the
above steps for all simple elements. A computer program embodied on a computer-
readable medium may incorporate the method described above.

Another embodiment of the present invention may be a system for sharing
data between a relational and a hierarchical database, comprising means for defining a
hierarchical data entity including a plurality of elements, means for mappin;g each of
the plurality of elements in the hierarchical data entity to information in a relational
dataset contained in a relational database, means for transforming the relational
dataset information into corresponding mapped elements in the hierarchical data
entity to form a hierarchical data structure, and means for accessing data from the
hierarchical data structure corresponding to the relational dataset information in the
relational database. The means for defining a hierarchical data entity may comprise
means for defining a hierarchical data entity including a plurality of elements

containing a data entity structure and mapping information. The system may further

10

15

20

WO 02/03237 PCT/US01/41217

comprise means for identifying each of the plurality of elements by an element r\1ame
without reference to an entity path. The means for defining a hierarchical data entity
may comprise means for defining a hierarchical data entity including a plurality of
elements containing a data entity structure and means for defining a hierarchical map
structure corresponding to the hierarchical data entity containing mapping
information. The system may further comprise means for identifying each of the
plurality of elements by an entity path referencing all parent elements in the entity
path. The means for defining a hierarchical data entity may comprise means for
defining simple elements and compound elements.

A further embodiment of the present invention may be a system for sharing
data between a relational and a hierarchical database, comprising a hierarchical data
entity having a plurality of elements, a mapping of each of the plurality of elements in
the hierarchical data entity to information in a relational dataset contained in a
relational database, a transformation of the relational dataset information into
corresponding mapped c;,lements in the hierarchical data entity for forming a
hierarchical data structure, and a memory containing data from the hierarchical data
structure corresponding to the relational dataset information in the relational database.
The hierarchical data entity may comprise a plurality of eleinents containing a data
entity structure and mapping information. The hierarchical data entity may comprise a
plurality of elements containing a data entity structure and a hierarchical map
structure. The hierarchical data entity may comprise simple elements and compound
elements. Each simple clement may comprise an element name and mapped fields.
Each simple element may comprise an entity path and mapped fields. Each compound

element may comprise an element name, a database name, a database command, and

10

15

20

25

WO 02/03237 PCT/US01/41217

database fields. Each compound element may comprise an entity path, a database
name, a database command, and database fields.

Another embodiment of the present invention includes a memory for storing
data for access by an application program being executed on a computer system,
comprising a hierarchical data structure having a plurality of simple and compound
elements stored in the memory, database commands embedded in the compound
elements for accessing information in a relational database, tabular datasets created in
the memory for storing the accessed information from the relational database, and a
relationship between the elements of the hierarchical data structure and the tabular
datasets. The compound elements may comprise an element name property, a
database name property, a database command expression, and a database fields
property. The simple elements may comprise an element name property and a mapped

fields property.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other features, aspects and advantages of the present invention will
become better understood with regard to the following description, appended claims
and accompanying drawings where:

FIG. 1 shows an example of a hierarchical data entity;

FIG. 2 shows an example of a hierarchical map structure, which corresponds
to

the example hierarchical data entity shown in FIG. 1;

FIG. 3 shows an example of a hierarchical data entity containing mapping

10

WO 02/03237 PCT/US01/41217

information;
'FIG. 4A shows a formal specification of a hierarchical data entity containing
mapping information;
FIG. 4B shows an example of a hierarchical data entity containing mapping
S Information;
FIG. 5 shows a flow diagram of a relational to hierarchical mapping process;
FIG. 6 shows a diagram of the relational to hierarchical mapping process;
FIG. 7 shows a diagram of the relationship between a hierarchical data entity
segment and a database dataset;
10 FIG. 8A shows a first portion of a flow diagram 0fa relational to hierarchical
transformation process;
FIG. 8B shows a second portion of a flow diagram of a relational to
hierarchical
transformation process, wherein a current element has children;
15 FIG. 8C shows a third portion of a flow diagram of a relational to hierarchical
transformation process, wherein a current element does not have children;
and

FIG. 9A and FIG. 9B show an example of a creation of a logical record.

20 DETAILED DESCRIPTION
FIG. 1 shows an example of a hierarchical data entity. A hierarchical data
entity presents related information in categorized groupings, and it can be used to
store, render, and map information from one data source to another. The hierarchical
data entity 100 shown in FIG. 1 represents a person. The hierarchical data entity

25 contains attributes that correspond to the person represented. These attributes might

11

10

15

20

25

WO 02/03237 PCT/US01/41217

be simple in nature where they contain only one value to answer a specific attribute.
The attributes Date of Birth 101 and Social Security Number (SSN) 102 are simple
attribute because there is only one value to describe each of them. Other attributes
can be complex in nature where they contain child attributes that together describe the
parent attribute. Name 103 is a compound attribute, which contains child attributes,
such as First 104. Likewise, Physical Description 105 is a compound attribute, which
contains child attributes, such as Hair Color 106. The children of compound
attributes may comprise simple attributes, other compound attributes, or a
combination of both ;imple and compound attributes.

FIG. 2 shows an example of a hierarchical map structure 200, which
corresponds to the example hierarchical data structure shown in FIG. 1. The
hierarchical data entity acts as a template, according to which data is to be
transformed into a hierarchical structure. The hierarchical map structure uses the
same hierarchical structure as the hierarchical data entity, but it provides properties
that facilitate the mapping of a non-hierarchical data entity to a hierarchical data
entity. The hierarchical map structure stores information from the relational structure
at logically appropriate positions in the hierarchical data entity.

In the hierarchical map structure, elements are structural features that are
analogous to the attributes in the hierarchical data entity. The hierarchical map
structure contains a core property that allows an individual element to identify the
attribute in the hierarchical data entity, to which the element relates. This property
may be called, for example, an “Entity Path” or “Entity Context Path” 201. Both
simple and compound data elements contain the Entity Path property 201, 205. The
Entity Path 201 can display either the element name, or the full path of the

hierarchical data entity attribute to which the hierarchical map element directly

12

10

15

20

WO 02/03237 PCT/US01/41217

relates. For example, an Entity Path 205 corresponding to Date of Birth may display
only the element name, such as

Entity Path = ‘Date of Birth’.

Or, the Entity Path 205 may display the full path of the hierarchical data entity
attribute to which it relates, including reference to all parent elements in the path, such
as

Entity Path = ‘Person\Date of Birth’.

In addition to the Entity l?ath 205, compound data elements contain other
properties that allow for a relation of a compound element to a dataset in a database
from which information is being converted to the hierarchical data structure. The
Database Name property 202 allows the hierarchical map structure 200 to identify the
name, or file system path, with which the database can be located. The Database
Command 203 is an expression that can be interpreted by the individual database, to
which the Database Name property 202 refers. The Database Command 203 can be
any expressi;)n suitable for calling a database and extracting information. In one
embodiment, the Database Command 203 is a low-level database application
programmer interface (API) call. In another embodiment, the Database Command
203 is a Structured Query Language (SQL) command. Once a Database Command
expression 203 is identified by the database that is referred to in the Database Name
property 202, the Dataset Fields property 204 stores all of the fieldnames in the
resulting dataset that is returned by the Database Command expression 203. The
Dataset Field property 204 is subsequently used to map child elements of the current
compound element to the fields that are returned by the Database Command

expression 203.

13

10

15

20

25

WO 02/03237 PCT/US01/41217

Simple data elements contain a property in addition to an Entity Path 205,
which facilitates the direct mapping between a hierarchical database field and a
relational database field. The Mapped Fields property 206 allows a simple element to
access its parent’s Dataset Fields property 204. In this way, a valid dataset fieldname
can be used to transfer data from the relational database to appropriate child locations
in the hierarchical data entity. The Mapped Fields are described as arrays, but may be
a single field that corresponds to one of the Database Fields in the parent.

The Hierarchical Map Structure of the current invention may be used in two
ways. In one embodiment of the current invention, the Hierarchical Map Structure
extracts data from a RDBMS, using the proﬁerties of the various elements. The
hierarchical data entity, as described with reference to FIG. 1, is then traversed, and
the Hierarchical Map Structure inserts the data into a hierarchical data entity at
logically appropriate locations. Because both a hierarchical data entity and a
Hierarchical Map Structure are used, this embodiment may be referred to as a dual-
tree traversal method.

In a second embodiment of the current invention, the hierarchical data entity
may itself contain mapping information. In this embodiment, only one hierarchical
data representation is used to store both the data entity structure and the mapping
information. Hence, this embodiment may be referred to as a single-tree traversal
method. FIG. 3 illustrates a hierarchical data entity containing mapping information
300. The single-tree mapping properties are similar té those of the dual-tree
Hierarchical Map Structure described with reference to FIG. 2. However, rather than
using an Entity Path, the single-tree embodiment uses an Element Name property 301.
When creating a new element in a hierarchical data entity, the Element Name property

301 allows the element to be filled with a direct copy of data from the RDBMS, rather

14

10

15

20

WO 02/03237 PCT/US01/41217

than receiving an indirect copy via an intermediate map structure. Both simple and
compound elements contain the Element Name property 301, 305.

Unlike the Entity Path described with reference to FIG. 2, the Element Name
301 does not contain the entire path of an element. Rather, it only contains the
element name. For example, an Element Name property 305 corresponding to Date
of Birth displays only the element name, such as

Element Name = ‘Date of Birth’,
but not referencing all parent elements in the path, such as

Entity Path = ‘Person\Date of Birth’.

In addition to the Element Name property 305, compound data elements
contain other properties that allow for the relation of a compound element to a dataset
in the database, from which information is being converted to the hierarchical data
structure. The Database Name property 302 allows the hierarchical data entity 300 to
identify the name, or fite system path, with which the database can be located. The
Database Command 303 is an expression that can be interpreted by the individual
database, to which the Database Name property 302 refers. The Database Command
303 can be any expression suitable for calling a database and extracting information.
In one embodiment, the Database Command 303 is a low-level database application
programmer interface (API) call. In another embodiment, the Database Command
303 is a Structured Query Language (SQL) command. Once a Database Command
expression 303 is identified by the database that is referred to in the Database Name
property 302, the Dataset Fields property 304 stores all of the fieldnames in the
resulting dataset that is returned by the Database Command expression 303. The

Dataset Field property 304 is subsequently used to map child elements of the current

15

10

15

20

25

WO 02/03237 PCT/US01/41217

compound element to the fields that are returned by the Database Command
expression 303.

Simple data elements contain a property in addition to an Element Name
property 305, which facilitates the direct mapping between a hierarchical database
field and a relational database field. The Mapped Fields property 306 allows a simple
element to access its parent’s Dataset Fields property 304. In this way, a valid dataset
fieldname can be used to transfer data from the relational database to appropriate
child locations in the hierarchical data entity.

For the current method, a hierarchical single-tree traversal method is used to
create the transformed data entity. Using the map information provided, datasets are
created from the compound elements so that simple elements can then receive the data
that pertains to the mapped fields property. Using the hierarchical single-tree
traversal method, data is then transformed from the relational database for to the
hierarchical database form.

FIG. 4A shows a formal specification of a hierarchical data entity containing
map information, in accordance with the single-tree transformation method described
with reference to FIG. 3. Element names are embedded into the hierarchical structure
using a markup language, where user-defined elements are allowed. The named map
hierar;:hical data entity results in a single data entity that can transform external data
into the format specified by the named map structure.

A named map is comprised of both simple and compound elements. Each
element type has specific properties that relate to their function in the transformation
process. Since the named map methodology uses built in context identification of
elements, there is no need to specify a separate entity path. Instead, both simple and

compound elements use an element tag 400. The element tag 400 allows for

16

10

15

20

25

WO 02/03237 PCT/US01/41217

compound or simple elements to be created, using the contextual name of the
information that will be stored in each location of the entity.

Attributes can be inserted into an element tag 400 to specify meta-data
pertaining to the element. For a compound element, a number of different element
attributes are used to relate the compound element to a dataset. Depending on the
selection of individual element attribute types, the compound element is interpreted
differently during the transformation process. For example, the attributes 401 of an
element can contain information such as a data source, a type tag, and a transform tag.

The Elementtype attribute 402 describes the type of information that is to be
extracted and inserted at that location in the hierarchy. This type of information may
include a statement, a dataset field, or a static value as the source information to be
transformed into the hierarchical entity. A URL attribute 403 is used to specify a
name, path, or external network location of the database from which a dataset is to be
created. An Expression attribute 404 is used to specify a database command
expression that is used to extract data from the specified database. The Expression
attribute 404 may comprise any suitable command for extracting information from a
data source. The type of Expression attribute 404 that is used depends on the
Elementtype 402. For example, if the Elementtype 402 is a statement, then the
element can contain a Structured Query Language (SQL) statement as its Expression
attribute 404. If the Elementtype 402 is a dataset field, then the element can contain,
for example, a fieldname as its Expression attribute 404. If the Elementtype 402 is a
static value, then the element can contain a static value as its Expression attribute 404.

For a simple element, other attributes are used, which allow a specific data
value to be altered from its original state, and So that many fields can be mapped to an

individual simple element, where necessary. The TransformObject attribute 405

17

10

15

20

25

WO 02/03237 PCT/US01/41217

specifies a program or program class that is used to alter or convert data that is to be
inserted into the element tag during the transformation process. The fieldname
attribute 406 allows multiple dataset fields to be mapped to a single simple element,
using the pipe symbol ‘|’ as a delimiter between fieldnames.

FIG. 4B shows an example of map element attributes and value specifications.
A ‘Person’ compound element 407 has a data source attribute that specifies that the
data source is located in jdbc:odbc:MyDatabase. A type attribute is also specified,
which allows a map interpreter to understand that information contained within the
‘Person’ element tags will be of a statement type, or a database command expression.
The ‘Date of Birth’ and ‘SSN” simple elements 408 contain type attributes that inform
the map interpreter that the information contained within the element tags will be a
fieldname from a dataset. In the example, these are ‘DOB’ and ‘Social Security
Number’. The ‘Name’ compound element 409 is nearly identical to the ‘Person’
element, but it contains a Structured Query Language (SQL) expression that facilitates
a hierarchical retrieval of information within a dataset, such that a first, middle, and
last name can be properly retrieved to fill the simple attributes of the ‘Name” element.

The ‘Height’ simple element 410 contains a type attribute to describe that the |
element contains dataset fields. In addition, the transform attribute specifies a specific
computer program to call after extracting the data from the dataset, in order to insert a
transformed value between the ‘Height’ tags. The fieldname specification is identified
by the pipe symbol ‘|’ placed between the names of the two fields that are mapped to

the element. For this example, the computer program will take two separate values

that represent a height, and display them as one value with the proper unit values of

feet and inches. In the “Weight’ simple element, the computer program called

converts a weight value in pounds to an equal weight value in kilograms.

18

10

15

20

25

WO 02/03237 PCT/US01/41217

FIG. 5 illustrates the flow of a relational to hierarchical mapping process, in
accordance with the present invention. The Relational to Hierarchical Mapping
process entails traversing a map structure to specify the mapping information for each
element in a hierarchy. The mapping process is performed in order to create a map
from a hierarchical data entity to a series of datasets that represent a hierarchical
grouping of information. During the mapping process, all of the information
pertaining to datasets, database command expressions, dataset fields, mapped fields,
and data transformation algorithm are specified.

The process begins by passing a hierarchical data entity 500 into a database
map specification process 501. The structure of the hierarchical data entity is
traversed until all of its elements are mapped. The hierarchical data entity can come
in a number of different formats, not limited to the previously described examples,
‘Separate Hierarchical Data Entity and Map Structure’, ‘Hierarchical Data Entity
Containing Map Information’, and ‘Named Map Hierarchical Data Entity’. When the
hierarchical data entity has been established, the map specification process 501 is
begun.

In accordance with step 502 in the map specification process, it is determined
whether there is a root element present in the hierarchy. If there is no root element
present, the mapping process terminates, in accordance with step 503, due to non-
existence of a map hierarchy. If a root element is present, then compound element
data attributes can be specified, as described with reference to FIG. 4A. First, a data
source is specified for the compound element, in accordance with step 504. In
accordance with step 505, a database command expression is specified that can be
interpreted by the data source specified in step 504. The database command

expression is then executed, in accordance with step 506. This execution first

19

10

15

20

25

WO 02/03237 PCT/US01/41217

involves submitting the database command expression to the data source. The
database command is then interpreted by the data source, and a dataset is returned.
The fieldnames that are contained in the dataset are then added to a dataset field list,
in accordance with step 507, so that simple elements can map to the information
provided in the dataset.

After a compound element has been mapped, its first child element is located,
in accordance with step 508. It is then determined whether the element has children,
in accordance with step 509. If the element has children, the compound element
mapping properties are specified, resulting in another iteration of steps 504-509. If
the element does not have children, the mapping process follows a series of steps for
mapping a simple element.

In accordance with step 510, mapping a simple element first involves selecting
a suitable dataset field located in the dataset field list of the parent element. If
applicable, data transformation algorithms can then be specified for the simple map
element, in accordance with step 511. These transformation algorithms can be, but
are not limited to, references to computer program function libraries, scripting
language functions, dynamic link libraries, and precompiled computer functions.
Once a field has been mapped and the data transformation algorithms are specified,
one or more additional fields may be specified that may be mapped to the simple
element, in accordance with step 512. If additional fields need to Be mapped, the
simple element mapping process is repeated, resulting in at least one additional
iteration of steps 510-512.

If there are no more fields to be mapped to the simple eiement, it is first
determined whether such a peer element exists, in accordance with step 514. If a peer

element is located, it is determined whether the peer element has children, in

20

10

15

20

25

WO 02/03237 PCT/US01/41217

accordance with step 509. If the peer element has children, then at least one
additional iteration of steps 504-509 is performed, to reach the next simple element to
be mapped. If the peer element has no children, then the peer element is mapped, in
accordance with steps 510-512.

If a peer element could not be located in step 514, an attempt is made to go up
one level in the hierarchical entity and locate the next suitable element to be
processed, in accordance with step 515. At the level above the element for which the
last mapping was completed, an attempt is made to locate an acceptable peer element.
For each traversal up the hierarchical entity, a check is made for each new element
encountered to see if it is a root element, in accordance with step 516. If a peer
element is located at a higher level in the hierarchical entity, and it is not a root
element, then the mapping process falls back to determining whether the current
element has children, in accordance with step 509. If the root node of the hierarchical
entity is located, the mapping process is then considered complete, and the process
ends, in accordance with step 517.

FIG. 6 is a diagram of the relational to hierarchical mapping process. It
represents how database command expressions interact between a hierarchical data
entity and a dataset. Database Command Expressions 600 are used to create tabular
datasets 601 containing rows and columns of information provided by a RbBMS 603.
A Database Command Expression is a method for communicating with a database
management system in order to read, write, and update information in the RDBMS
603. Database Command Expressions may be expressed, for example, in Structured
Query Language (SQL) for interaction with a relational database management system.

The datasets created from information in the RDBMS are joined by primary

keys 602. By using specific database command expressions 600 in conjunction with a

21

10

15

20

25

WO 02/03237) PCT/US01/41217

hierarchical data entity, data that is stored in non-hierarchical format can be
transformed into the hierarchical data entity structure. Through submitting a series of
database command expressions where the datasets returned have applicable key
structures, data can then be extracted from a RDBMS 603 into a temporary dataset
hierarchy, which can then be traversed and transformed into a hierarchical data entity.
Using this methodology, user addressable fields in each dataset 601, such as column
field names or numeric column identifiers, are joined to individual hierarchical data
entity elements.

FIG. 7 depicts the relationship between a database dataset and a level, or
segment, in a hierarchical entity. A hierarchical data entity segment is a portion of
hierarchical data entity comprising a compound element 700 that contains a plurality
of either simple or compound child elements 704. A database dataset 702, as
described with reference to FIG. 6, is an entity that contains a plurality of fields 703
used to store data. The compound element 700 stores a database command expression
701 that is used to extract information from a relational database 603. Once the
database command expression 701 returns a dataset 601 from the database 603,
individual elements 704 that belong to the compound element 700 are associated with
the fields 703 returned in the dataset 702. The information in each field 703 is then
applied to the associated element 7 0|4 in the hierarchical data entity segment.

FIGS. 8A-8C illustrate portions of a flow diagram for a process of
transforming a relational database to a hierarchical structure, in accordance with the
present invention. These figures represent the workflow that is used to render dataset
information into a hierarchical data entity. The transformation process interprets a
hierarchicallmapping structure and facilitates the interchange of information from

relational database format to a hierarchical entity representation. The transformation

22

10

15

20

WO 02/03237 PCT/US01/41217

process recursively traverses through each element in the map entity finds associated
datasets and dataset fields for each map element, and creates corresponding elements
in a hierarchical data structure. After building the structure, the process fills the
elements in the structure with corresponding data values. Hence, the transformation
process bridges the gap between a hierarphical data map and the proper hierarchical
representation of the source data. The transformation process is designed to facilitate
creating hierarchical entities one at a time, in a batch mode, or on demand.

To begin the process, a hierarchical database map entity 800 is passed into a
transformation facility 801. Upon receiving the map, the transformation facility 801
prepares the map for the transformation process. In accordance with step 802,
datasets are created for each map element that contains a database command
expression. Once the datasets are created, they are opened to await data extraction, in
accordance with step 803. In one embodiment, data caching and database command
expression optimizations may be performed at this point to minimize the number of
commands submitted to update datasets from a database. |

Starting at the root element of the map, in accordance with step 804, each map
element is recursively traversed so that a hierarchical data entity can be built from the
map. After all elements have been transformed 808, the process ends 807. Thus, the
next map element in the logical order of the map entity is found, in accordance with
step 805. A determination is made as to whether or not the element has children, in
accordance with step 806. If the element has children, it will be processed as a
compound element, as described with reference to FIG. 8B. If the element does not

have children it will be processed as a simple element, as described with reference to

FIG. 8C.

23

10

15

20

25

WO 02/03237 PCT/US01/41217

FIG. 8B shows the steps for compound element processing. In accordance
with step 810, compound element processing begins with traversing up the map to
locate the dataset that is referenced nearest to the compound map element. It is
determined whether such a dataset can be located, in accordance with step 811. Ifa
dataset cannot be located, then the next map element is retrieved, in accordance with
step 805 in FIG. 8A. If a dataset can be located, then the dataset is traversed for all of
the records it contains, in accordance with step 812. For every record in the dataset,
an instance of the compound map element is created in the hierarchical data structure,
in accordance with step 813. Once the dataset has beeg processed for the current level
of the hierarchical structure, the transformation method moves onto the next element
in the map, in accordance with step 805 in FIG. 8A. Subsequently, another
determination will be made as to the correct element type, in accordance with step
806, and the portions of the transformation process that are shown in either FIG. 8B
or FIG. 8C are followed.

If it is determined in step 806 of FIG. 8A that the current map element does
not have children, then it will be processed as a simple element, in the manner shown
by FIG. 8C. In accordance with step 820, values are sequentially extracted from each
dataset field that map to the simple element, as specified in the hierarchical map
entity. Thus, in accordance with step 821, a determination is made as to whether each
field contains data. If a dataset field does not contain data, then a simple element is
not created in the hierarchical data structure, and the empty field is discarded, in
accordance with step 822. If the field contains data, in accordance with step 823, a
simple element is created in the hierarchical data structure that corresponds to the
simple map element being processed. At this time, any transformation algorithms that

are specified in the map file are instantiated and used on the values contained in the

24

10

15

20

25

WO 02/03237 PCT/US01/41217

fields, in accordance with step 824. In accordance with step 825, the values are added
to any other values that correspond to the simple map element. In accordance with
step 826, it is determined whether more values exist for the map element. If so, then
these values are extracted, resulting in at least one additional iteration of steps 820-
826. If there are no more values, then the values that correspond to the simple map
element are formed into a complete data value, in accordance with step 827. This
final data value is then inserted into the simple element created in the hierarchical data
structure. In accordance with step 828, the simple element is then added to the
hierarchical data structure as a child of its parent compound element, as specified in
the map. Once this is complete, the next map element in the hierarchy is located, in
accordance with step 805 in FIG. 8A, and the map element is processed.

FIG. 9A and FIG. 9B show an example of the creation of a logical record.
Two relational datasets 905, 910 contained in a RDBMS 900 are shown transformed
into three hierarchical data structures 920, 925, 930. A logical record is a hierarchical
representation of associated information that is contained across many datasets. The
following example illustrates how a series of datasets may be transformed into
hierarchical data entity objects. A RDBMS contains information pertaining to people
900. Several datasets of related information are accessed from the RDBMS by a
database command. One dataset is referred to as a ‘Person’ dataset 905 and contains
information about people. Another dataset is known as the ‘Physical Description’
dataset 910 and contains information that is related to the ‘Person’ dataset 905. The
hierarchical relationship that exists between the two datasets is a primary key field
named ‘person #’ 915. A hierarchical relationship exists between the two datasets
where a person can have many physical descriptions. Through following the key

structure between the two datasets, three hierarchical data entities emerge. ‘Person 1°

25

WO 02/03237 PCT/US01/41217

920 is a small hierarchical data entity having just one physical description for a
person. ‘Person 2’ 925 is more complex than ‘Person 1’ 920, having three physical
descriptions. Finally, ‘Person 3’ 930 contains a simple hierarchical entity identical in
structure to ‘Person 1° 920.

Although the present invention has been described in detail with reference to
certain embodiments, it should be apparent that modifications and adaptations to those
embodiments may occur to persons skilled in the art without departing from the spirit

and scope of the present invention as set forth in the following claims.

26

WO 02/03237 PCT/US01/41217

What is claimed is:

1. A method for sharing data between a relational database and a hierarchical
détabase, comprising:
5 defining a hierarchical data entity including a plurality of elements;
mapping each of the plurality of elements in the hierarchical data entity to
information in a relational dataset contained in a relational database;
transforming the relational dataset information into corresponding mapped
elements in the hierarchical data entity to form a hierarchical data
10 structure; and
accessing data from the hierarchical data structure corresponding to the

relational dataset information in the relational database.

2. The method of claim 1, wherein the step of defining a hierarchical data entity
15 comprises defining a hierarchical data entity including a plurality of elements

containing a data entity structure and mapping information.

3. The method of claim 2, further comprising identifying each of the plurality of

elements by an element name without reference to an entity path.

20
4. The method of claim 1, wherein the step of defining a hierarchical data entity
comprises defining a hierarchical dat'a entity including a plurality of elements
containing a data entity structure and defining a hierarchical map structure
corresponding to the hierarchical data entity containing mapping information.
25

27

WO 02/03237 PCT/US01/41217

5. The method of claim 4, further comprising identifying each of the plurality of

elements by an entity path referencing all parent elements in the entity path.

6. The method of claim 1, wherein the step of defining a hierarchical data entity

5 comprises defining simple elements and compound elements.

7. The method of claim 6, wherein the step of defining a simple element comprises

defining an element name and mapped fields.

10 8. The method of claim 6, wherein the step of defining a simple element comprises

defining an entity path and mapped fields.

9. The method of claim 6, wherein the step of defining a compound element
comprises defining an element name, a database name, a database command, and

15 database fields.

10. The method of claim 6, wherein the step of defining a compound element
comprises defining an entity path, a database name, a database command, and
database fields.

20

11. The method of claim 1, wherein the step of mapping each of the plurality of

elements comprises:
reading the hierarchical data entity;
determining if a root element is present;

25 ending the mapping process if no root element is present;

28

10

15

20

25

WO 02/03237 PCT/US01/41217

mapping each compound element of the plurality of elements if a root element
is present; and
mapping each simple element of the plurality of elements if a root element is

present.

12. The method of claim 11, wherein the step of mapping each compound element
comprises:
selecting a compound element;
specifying a data source for the compound element;
specifying a database command expression for the compound element;
executing the database command expression;
receiving a dataset containing fieldnames from the data source;
adding the dataset fieldnames to a dataset field list in the compound element
for enabling simple elements to map to the information in the dataset; and

repeating the above steps for each compound element.

13. The method of claim 11, wherein the step of mapping each simple element
comprises:
selecting a simple element;
selecting a source dataset fieldname corresponding to the simple element in a
dataset field list of a parent element;
specifying data transformation algorithms associated with the simple element;
and

repeating the above steps for each simple element.

29

WO 02/03237 PCT/US01/41217

14. The method of claim 1, wherein the step of transforming the relational dataset
information comprises:
receiving the mapped plurality of elementsA;
creating a dataset for each compound element of the plurality of elements that
5 contains a database command expression;
opening the dataset for each compound element;
transforming each compound element in the mapped elements starting with the
root element of the mapped elements; and
transforming each simple element of the plurality of elements in the mapped

10 elements.

15. The method of claim 14, wherein the step of transforming each compound
element comprises:
selecting a compound element;
15 locating a dataset that is nearest to a compound element;
creating an instance of the compound element for every record in the dataset;
and

repeating the above steps for each compound element.

20 16. The method of claim 14, wherein the step of transforming each simple element
comprises:
selecting a simple element;
extraéting values from each dataset field that map to the simple element;
creating a simple element in the hierarchical data structure that corresponds to

25 the simple map element;

30

WO 02/03237 PCT/US01/41217

transforming data values contained in the dataset fields by transformation
algorithms;

adding the transformed values to other values corresponding to the simple map
element; and

5 repeating the above steps for all simple elements.

17. A computer program embodied on a computer-readable medium incorporating the

method of claim 1.

10 18. A system for sharing data between a relational and a hierarchical database,
comprising:
means for defining a hierarchical data entity including a plurality of elements;
means for mapping each of the plurality of elements in the hierarchical data
entity to information in a relational dataset contained in a relational
15 database;
means for transforming the relational dataset information into corresponding
mapped elements in the hierarchical data entity to form a hierarchical data
structure; and
means for accessing data from the hierarchical data structure corresponding to

20 the relational dataset information in the relational database.

19. The system of claim 18, wherein the means for defining a hierarchical data entity
comprises means for defining a hierarchical data entity including a plurality of
elements containing a data entity structure and mapping information.

25

31

WO 02/03237 PCT/US01/41217

20. The system of claim 19, further comprising means for identifying each of the

plurality of elements by an element name without reference to an entity path.

21. The system of claim 18, wherein the means for defining a hierarchical data entity
5 comprises means for defining a hierarchical data entity including a plurality of
elements containing a data entity structure and means for defining a hierarchical
map structure corresponding to the hierarchical data entity containing mapping

information.

10 22. The system of claim 21, further comprising means for identifying each of the
plurality of elements by an entity path referencing all parent elements in the entity

path.

23. The system of claim 18, wherein the means for defining a hierarchical data entity

15 comprises means for defining simple elements and compound elements.

24. A system for sharing data between a relational and a hierarchical database,
comprising:
a hierarchical data entity having a plurality of elements;
20 a mapping of each of the plurality of elements in the hierarchical data entity to
information in a relational dataset contained in a relational database;
a transformation of the relational dataset information into corresponding
mapped elements in the hierarchical data entity for forming a hierarchical

data structure; and

32

10

15

20

WO 02/03237 PCT/US01/41217

a memory containing data from the hierarchical data structure corresponding

to the relational dataset information in the relational database.

25. The system of claim 24, wherein the hierarchical data entity comprises a plurality

of elements containing a data entity structure and mapping information.

26. The system of claim 24, wherein the hierarchical data entity comprises a plurality

of elements containing a data entity structure and a hierarchical map structure.

27. The system of claim 24, wherein the hierarchical data entity comprises simple

elements and compound elements.

28. The system of claim 27, wherein each simple element comprises an element name

and mapped fields.

29. The system of claim 27, wherein each simple element comprises an entity path

and mapped fields.

30. The system of claim 27, wherein each compound element comprises an element

name, a database name, a database command, and database fields.

31. The system of claim 27, wherein each compound element comprises an entity

path, a database name, a database command, and database fields.

33

WO 02/03237 PCT/US01/41217

32. A computer-readable medium containing a data structure for sharing data between
relational and hierarchical databases, comprising:

a hierarchical data structure having a plurality of simple and compound

elements stored in the memory;
5 database commands embedded in the compound elements for accessing

information in a relational database;

tabular datasets created in the mem§ry for storing the accessed information
from the relational database; and

a relationship between the elements of the hierarchical data structure and the

10 tabular datasets.

33. The computer-readable medium of claim 32, wherein the compound elements
comprise:
an element name property;
15 | a database name property;
a database command expression; and

a database fields property.

34. The computer-readable medium of claim 32, wherein the simple elements

20 comprise an element name property and a mapped fields property.

34

WO 02/03237 PCT/US01/41217
1/12

100

(Person)
101

Date of Birth

D
—
D

102

103

Name

N (Y ()

104
(First)
(Middle)

Last

105

/ . . .
u’hyswal Description
106

Hair Color

[

Eye Color

Height

Weight

e

FIG. 1

WO 02/03237

2/12

200

201 Entity Path = ‘\Person’
202 Database Name = <Database

Name>

203 Database Command = <Expression™>

204 Database Fields = <Array of
Fieldnames generated from Datab:
Command>

ase

PCT/US01/41217

L 206 Mapped Fields = <Array of

Fieldnames from Parent’s Dataset>

(205 Entity Path = “\Person\Date of Birth’

~

—
Entity Path = “\Person\SSN’

from Parent’s Dataset>

Mapped Fields = <Array of Fieldnames

)

Database Name = <Database Name>
Database Command = <Expression™>
Database Fields = <Array of Fieldnames

J
r
Entity Path = “\Person\Name’
Database Name = <Database Name>
Database Command = <Expression>
Database Fields = <Array of Fieldnames
generated from Database Command>
L J
N
(Entity Path = “\Person\Name\First’
Mapped Fields = <Array of Fieldnames
from Parent’s Dataset>)
—~
(Entity Path = ‘\Person\Name\Middle’
Mapped Fields = <Array of Fieldnames
1 from Parent’s Dataset>)
—
Gntity Path = ‘\Person\Name\Last’
Mapped Fields = <Array of Fieldnames
L from Parent’s Dataset>)
Entity Path = “\Person\Physical Description’
generated from Database Command>
—
(Entity Path = ‘\Person\Physical Description\Hair Color’
Mapped Fields = <Array of Fieldnames
from Parent’s Dataset>)
N
Entity Path = ‘\Person\Physical Description\Eye Color’
Mapped Fields = <Array of Fieldnames
from Parent’s Dataset>
7
(Y
Entity Path = ‘\Person\Physical Description\Height’
Mapped Fields = <Array of Fieldnames
from Parent’s Dataset>)
. . i .)
Entity Path = “\Person\Physical Description\Weight’
Mapped Fields = <Array of Fieldnames.
from Parent’s Dataset>)

FIG. 2

WO 02/03237

301 Element Name = “\Person’

302 Database Name = <Database Name>
303 Database Command = <Expression>
304 Database Fields = <Array of
Fieldnames generated from Database
Command>

3/12

300

PCT/US01/41217

305 Element Name = ‘Date of Birth’

306 Mapped Fields = <Array of
Fieldnames from Parent’s Dataset>

IR

-

Element Name = ‘SSN’

Mapped Fields = <Array of Fieldnames
from Parent’s Dataset>

Element Name = ‘Name’
Database Name = <Database Name>

Database Command = <Expression>
Database Fields = <Array of Fieldnames
generated from Database Command>

-

P
Element Name = ‘First’

Mapped Fields = <Array of Fieldnames
from Parent’s Dataset>

-
Element Name = ‘Middle’

Mapped Fields = <Array of Fieldnames
from Parent’s Dataset>

—
Element Name = ‘Last’

Element Name = ‘Description’
Database Name = <Database Name>
Database Command = <Expression>
Database Fields = <Array of Fieldnames
generated from Database Command>

Mapped Fields = <Array of Fieldnames
from Parent’s Dataset>

Element Name = Hair Color’
Mapped Fields = <Array of Fieldnames
from Parent’s Dataset>

Element Name = ‘Eye Color’
Mapped Fields = <Array of Fieldnames
from Parent’s Dataset>

-

Element Name = ‘Height’
Mapped Fields = <Array of Fieldnames
from Parent’s Dataset>

r

FIG. 3

Element Name = ‘ Weight’
Mapped Fields = <Array of Fieldnames
from Parent’s Dataset>

WO 02/03237 PCT/US01/41217
4/12

400 element = <elementname][(attribute)*]>expressionl[(element)*]</elementname>
401 attribute = type=“elementtype” ;datasource="url”;transform="transformobject” -
402 elementtype = statement or field or static

403 url = datasource location identifier

404 expression = SQL statement or fieldname or static value

405 transformobject = classname of object responsible for transforming text of
this node

406 fieldname = dataset fieldname [(|dataset fieldname)*}]

FIG. 4A

407 <Person datasource="jdbc:odbc:MyDatabase” type="statement”sselect * from
person where ID=?

408 <Date of Birth type="field”>DOB</Date of Birth>
<SSN type="field”s>Social Security Number</SSN>

409 <Name datasource="7jdbc:odbc:MyDatabase” type="statement”>select * from
Name where Person_ ID=:ID

<First type=“field”>First</First>
<Middle type=”field”>Middle</Middle>
<Last type="field”s>Last</Last>

</Name>

<Physical Description datasource="jdbc:odbc:MyDatabase” type=”statement”s>
select Hair Color,Eye Color,Height,Weight from Physical Description where
Person_ ID=:ID

<Hair Color type="field”sHair Color<Hair Colors>
<Eye Color type=”field”>Eye Color<Eye Colors>

410 <Height type="field” transform="com.infoglide.transform.ProperHeight”>
Feet | Inches<Height>

<Weight type="field” transform="com.infoglide.transform.PoundstoKilos”>
Weight<Weights

</Physical Descriptions>

</Person>

FIG. 4B

WO 02/03237

500

Hierarchical

Data Entity

l 501

Database Map
Specification Process

Root Element
Present?

503

End

504

5/12

17

Root Element
Present?

Get Next Peer Element One
Level Up Tree

?

No

Peer Element

PCT/US01/41217

Present?

Specify Data Source <<

¢ - 505

Specify Database
Command Expression

¢ /506

Execute Database
Command Expression

¢ 507

Fields Returned in
Dataset are Added to
Dataset Field List

i /508

Get First Child

09
Element has
Yes children? No
510
—P Select Source Field from
Parent’s Dataset Field List
11
v /3
Specify Data Transformation
" Yes Algorithm

Element

FIG. 5

More Dataset Fields
Map to Element?

WO 02/03237 PCT/US01/41217
©6/12

600 601

< \ /7 /
Person . Database Command Expression [y
-/

Date of Birth
SSN
Primary Key 602
600 601
/ - /
Name Database Command Expression
-
Last Primary Key 602
600 . 601
_ /
Physical atabase Command Expression 1y,
Description

Relational
Database

FIG. 6

e e e e — o ———

WO 02/03237

701

7/12

Dataset Command Expression

702
DATASET A
/703
Field 1
e
Field 2
03
<
Field 3
/703
Field 4
/ 601
603
Relational
Database

FIG. 7

PCT/US01/41217

700

(Compound Elementj

704

704

Simple Element B

(Simple ElementC)

704

<_ _______________________
Simple Element 1

WO 02/03237

800

Map
Entity

/807

8/12

1
/80

Transformation Facility

l / 802

Datasets created for each compound
element that contains a command
expression

y 803

Datasets opened and awaiting extraction

of data.
l 804

Each element in hierarchical map entity
is recursively traversed.

Yes

/808

All elements

transformed?

No

A 4

Get next map element.

806

Element has
children?

FIG. 8A

PCT/US01/41217

WO 02/03237

PCT/US01/41217
9/12

810
/

Traverse up tree to find nearest
available dataset.

Dataset Located?

oD

Yes
I 812

Dataset is traversed for all records
present.

/813

For every record in the dataset, an
instance of the compound map
element is created in the hierarchical
data structure.

FIG. 8B

WO 02/03237

Yes

10/12

. 820

Values extracted for each field in
RDBMS dataset associated to the
map element,

Next field has
data?

Yes
v 823

For current field, new instance of data
element is created.

824

Data value passed through necessary
transformation algorithms.

l 825

Value added to any existing values
for map element.

More values?

—— Element appended to parent element.

FIG. 8C

PCT/US01/41217

822

Empty field is
No —P discarded and no

element is created

No
l 827

Complete value is then inserted into
hierarchy as the element’s data value.

l 828

WO 02/03237 PCT/US01/41217
11/12

‘PERSON’ DATASET
PERSON#| DOB SSN FIRST | MIDDLE | LAST
1 9/23/73 | 444-55-6666 | Steve C Smith
2 10/12/63 | 555-44-6666 | John J Jones
900 \ 3 5/7/48 | 222-55-4444 | Mike L Brown
AN
v
RDBMS
910
~_ 915 \
/ ‘PHYSICAL DESCRIPTION’ DATASET
PERSON # | HAIR COLOR | EYE COLOR | HEIGHT | WEIGHT
. 1 Blonde Blue 57117 150
Join by 2 Blonde Brown 6 07 200
Person # 2 Blue Brown 6’1” 205
\ 2 Red Brown 6’27 210
3 Brown Green 4117 120

FIG. 9A

WO 02/03237
12/12

L Person - 1]

_[DOB - 9/23/73]
“—[SSN-444-55-66667
—F Name j

_‘(First - Steve J
—‘[Middle - C]
_[Last - Smith J

_{ Physical Description]

_‘[Hair Color - Blonde

]
/ _(Eye Color - Blue]
920 []

)

L Height - 5° 117

‘—“[Weight - 150

(Person - 3]

930

—[DOB - 5/7/48]

—[SSN-222-55-4444]

—{ Name]

‘_(First - Mike]
—{ Midde-L |
‘_‘{ Last - Brown]

‘—‘[Physical Description]

—__Hair Color - Brown
—{_ Eye Color-Green |
—{ Heignt-4117 |
—{ Weight-120 |

PCT/US01/41217

L Person-z']

_[DOB - 10/12/63]
—‘[SSN-555-44-6666]
_‘L Name]

i
—(Middle-7]
—{ Last-Jomes |
—{ Physical Description |

—{ Hair Color - Blonde |
—{ Eye Color- Brown |
— Height-6°0" |
—{ Weight-200 |

_[Physical Description]

—{ Hair Color-Blue |
—{ Eye Color- Brown |
]
]

—{ Height-6° 17
——{ Weight-205

_[Physical Description]

—{ HairColor-Red |
=gy
925 —L Height - 6° 27 J
—{ Weignt-210 |

FIG. 9B

INTERNATIONAL SEARCH REPORT International application No.
PCT/US01/41217

A. CLASSIFICATION OF SUBJECT MATTER

IPC(7) :GO6F 17/00
USCL :707/4
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
UsS. . 707/1-513

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

WEST search terms: relational database, hiearchical data, xml, html, sgml

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A US 5,907,843 A (CLERON ET AL.) 25 MAY 1999, Abstract, [1-34

Figure 9
A US 6,061,697 A (NAKAO) 09 MAY 2000, Abstract 1-34

D Further documents are listed in the continuation of Box C. D See patent family annex.

* . Special categories of cited documents: T later document published after the international filing date or priority
date and not in conflict with the application but cited to understand the

"A" document defining the general state of the art which is not considered principle or theory underlying the invention
to be of particular relevance
g ; . f . . "X document of particular relevance; the claimed invention cannot be
E earlier document published on or after the international filing date considered novel or cannot be cons"»i dered 1o involve an inventive step
"L" document which may throw doubts on priority claim(s) or which is when the document is taken alone
cited to establish the publication date of another citation or other , X . .
special reason (as speci "y document of particular relevance; the claimed invention cannot be
P ason (as specified) ! ! vance;,]
considered to involve an inventive step when the document is
"o document referring to an oral disclosure, use, exhibition or other combined with one or more other such dc such combinati
means being obvious to a person skilled in the art
"p" document published prior to the international filing date but later than ~ ng« document member of the same patent family
the priority date claimed
Date of the actual completion of the international search Date of mailing of the international search report
1 9 SEP 2001
27 AUGUST 2001 4
Name and mailing address of the ISA/US Authorized officer
Comméssmner of Patents and Trademarks
Box PCT R NMottizas
Washington, D.C. 20231 DAVID JUNG -
Facsimile No. (703) 305-3230 Telephone No. (703) 308-5262

Form PCT/ISA/210 (second sheet) (July 1998)%

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

