

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date

24 June 2010 (24.06.2010)

(10) International Publication Number

WO 2010/070416 A1

(51) International Patent Classification:

A61L 27/34 (2006.01) A61L 27/36 (2006.01)

(81) Designated States (unless otherwise indicated, for every

kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(21) International Application Number:

PCT/IB2009/007759

(84) Designated States (unless otherwise indicated, for every

kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(22) International Filing Date:

15 December 2009 (15.12.2009)

(25) Filing Language:

Italian

(26) Publication Language:

English

(30) Priority Data:

01997/08 19 December 2008 (19.12.2008) CH

(71) Applicant (for all designated States except US): INDUSTRIE BIOMEDICHE INSUBRI S/A [—/CH]; Via Cantonale, CH-6805 Mezzovico (CH).

Published:

— with international search report (Art. 21(3))

(72) Inventor; and

(75) Inventor/Applicant (for US only): PERTICI, Gianni [IT/CH]; CH-6953 Lugaggia (CH).

(74) Agents: POSTIGLIONE, Ferruccio et al.; Ufficio Internazionale Brevetti, Ing. C. Gregorj S.p.A., Via L. Murrator, 13/b, I-20135 Milano (IT).

WO 2010/070416 A1

(54) Title: BONE IMPLANT MATRIX AND METHOD OF PREPARING THE SAME

(57) Abstract: The present invention relates to a bone implant matrix, comprising a base matrix treated or to be treated with, a reinforcing mixture containing at least a polymer. The described bone implant matrix is particularly suitable in the field of bone reconstructive surgery in general, orthopaedics, and in particular in oral surgery, maxillo-facial and dental implantology. Furthermore, a method for preparing the bone implant matrix is described.

**"BONE IMPLANT MATRIX AND METHOD OF PREPARING THE
SAME"**

Technical field of the invention

The present invention relates to implant matrixes to be used generally in the bone reconstructive surgery field, in orthopaedics and in particular in oral surgery, in dental and maxillo-facial implantology.

State of the art

The weakness of bone structure is a well-known condition to all surgeons in the orthopaedic field, in particular in the maxillo-facial, oral and dental field. The causes are of several kinds, but quite well-known and understood. As regards means available to improve and reinforce the bones, it can be stated, that a wide variety of solutions have been proposed. Indeed, a number of techniques are currently available in the state of the art, which might be briefly distinguished in the following types: a) injections into target bone or cements or other mixtures; b) reinforcement with artificial supports to be added aside bone, being said supports metallic or polymeric o ceramic; c) use of autologous (autotransplant) human-derived, eterologous by human or animal corpse, often bovine, subject to demineralising treatments (also called Demineralized Bone Matrixes, DBM), or

subject to acellularization treatments (also called Bone Graft, as for example those produced by Geistlich SA, Switzerland and RTIBiologics, USA, etc.); d) tissue engineering, an approach wherein grafts are used that are made of osteoconductive and osteoinductive materials, such as e.g. some bioglasses; f) regenerative medicine, where artificial or semi-artificial matrixes are used in order to host and deliver living cells to target area and thus enhance the formation of new resistant bone.

The introduction of new implant materials has allowed a remarkable development in bone reparative and reconstructive surgery in the last decades.

Choosing an implant material is based on the osteogenesis, osteoinduction and osteoconduction properties of the material thereof.

The most efficient solution among those currently available is to use an autologous bone as implant material, which implies, however, some disadvantages and risks.

The quantity of material available to prepare the implant is limited and moreover the patient must undergo a dual intervention, the first for removing autologous bone and the second for the subsequent implant.

According to the currently available techniques, an alternative way is represented by the usage of homologous tissue, that is the usage of demineralised bone matrix (DBM).

The DBM is obtainable by a living donor, by a donor corpse or an animal. The human cortical derived DBM, however, has the same drawback of the autologous bone, i.e. the quantity of available material appears to be reduced. Further risks exist connected to possible infections, in particular viral and to potential compatibility problems, since the material to be implanted is of a heterologous nature. Moreover, the psychological aspect for the recipient, above all when the material is corpse-derived, represents an unnegligible critical element.

As it is known in the state of the art, as an alternative the DBM may be of animal origin, in particular bovine. In the latter case, however, a microscopic examination can show that the bovine DBM porosity is higher than the cortical-derived human DBM, with a resulting minor compatibility and a reduced predisposition to the cell rooting and the growth of new integrated functional tissue.

The Applicant has observed that the higher porosity and the chemical structure of the bovine DBM

result into a lower mechanical resistance, with a consequent higher weakness thereof. Such a weakness is particularly disadvantageous both in the pre-implant step, since shaping the matrix, according to the shape of the bone cavity which will host the matrix itself, with the desired accuracy is not easy, and in the implant *in situ* positioning step, because of the poor toughness of the matrix itself, which is often subject to a fragile fracture during the clamping steps.

Moreover, just because of the material weakness, the positioning and insertion of clamping elements (for example screws) in such a matrix, is difficult and not enough accurate and, as stated before, it often causes the matrix break.

Moreover, during the shaping step of the matrix currently available in the state of the art, such as, for example, demineralised bone matrixes (DBM), acellularised (bone grafts), bioglasses, bio-ceramics, etc., disadvantageously, undesirable powders are formed. For example, in dentistry, the shaping step takes place just before the implantation and the resulting powders creep up also on the matrix to be implanted.

Another proposed solution is a composite osteoimplant described in US2008/0063684. Such an osteoimplant includes a polymer and bone-derived particles. The composite is adapted and constructed to be formable during or immediately prior to implantation and to be set after final surgical placement.

US 7.270.813 describes a method for preparing bone-derived composites, wherein the mineral portion of the bone is treated with a coupling agent before being incorporated into a biocompatible polymeric matrix. The resulting composite may be used as such that or be further processed to form an osteoimplant.

Therefore, there is the need in the field of regenerative bone surgery to find new bone implant matrices, which have satisfactory characteristics of mechanical resistance and ductility to tri-dimensional processing.

Summary of the invention

Object of the present invention is a matrix for bone implant, comprising a base matrix either treated or to be treated with a mixture containing at least a polymer.

Preferred embodiments of the bone implant matrix are defined in claims from 2 to 16.

The bone implant matrix object of the present invention is suitable to be used in the bone reconstructive surgery field in general, in orthopaedics and in particular in the oral surgery, in the maxillo-facial and dental implantology.

It is a further object of the present invention the use of the bone implant matrix according to claim 17 and particular embodiments thereof according to claim 18-23.

It is a further object of the present invention a method for preparing a bone implant matrix according to claim 24 and its preferred embodiments according to claims 25 and 26.

List of figures

Particular embodiments of the invention are described in detail herein below, as a way of example and not limited to, with reference to the attached figures, wherein:

- Figure 1 is an optical microscopy image of the cortical layer of human bone,
- Figure 2 is an optical microscope image of a bovine-derived purified bone,
- Figure 3 is an optical microscope image of a bovine-derived bone reinforced according to a preferred embodiment of the invention,

- Figure 4 is a scanning electronic microscope (SEM) image of a section of a bone implant matrix made according to a preferred embodiment of the invention which subsequently underwent a cell seeding, with chondrocyte-type cells, though the micro-seeding technique. The image was obtained on the third day after the seeding;

- Figure 5 shows graphs of the monoaxial mechanical crushing strength of a bovine-derived acellularised matrix (untreated) and an analogous matrix, treated according to an example of the invention.

Detailed description of the invention

A bone implant matrix, according to an embodiment of the invention, comprises:

- a) a base matrix treated or to be treated with
- b) a reinforcing mixture containing at least a polymer.

By the expression "base matrix" a substantially solid tri-dimensional body is meant, intended, typically porous, after a treatment described herein below, to be implanted in bone cavities.

The base matrix may be synthetic or natural. The synthetic base matrixes may be, for example, polymeric, metallic, ceramic, bio-ceramic, bio-glass matrixes. Whereas, the natural base matrixes may be se-

lected, for example, from demineralised bone, non-demineralised bone, acellularised bone, natural polymeric, mineral matrixes. As it is known, the acellularised bone matrixes are non-demineralised matrixes completely (or substantially) devoid of the donor's cellular material.

Among the natural base matrixes which may be used for carrying out the present invention, the human corpse-derived bone matrixes are preferred and the animal-derived demineralised, non-demineralised, acellularised bone matrixes are particularly preferred, in particular, preferably, bovine.

Further, the polymeric type synthetic base matrix are preferred, in particular of bio-compatible polymers.

The bone implant matrixes may have different shapes and dimensions, such as to be adapted according to the shape and the dimensions of the bone cavities, where said matrixes can be implanted.

For example, such bone matrixes may be parallelepiped-shaped, in particular cube-shaped.

The dimensions of the bone implant matrixes, for example, can vary from a few mm till some dm of maximum length.

Basic matrixes are usually porous.

The base matrix and the polymer(s) of the reinforcing mixture are advantageously bio-compatible.

Furthermore, the base matrix and/or the polymer of the reinforcing mixture are preferably bio-integrable, in order to better assist the growth of the new bone integrated with the surrounding tissue.

Moreover by the expression "reinforcing mixture" it is meant a mixture comprising at least a polymer, i.e. which comprises only one polymer or, alternatively, it may be multi-polymeric, i.e. may comprise more than one polymer at the same time.

In particular, by the expression reinforcing mixture it is meant a mixture, wherein the synthetic or natural, and advantageously bio-compatible, polymer or polymers, are finely dispersed.

Particularly preferred is a reinforcing mixture obtained starting from two solutions, each of them made of a soluble polymer and an agent promoting the cell engraftment, growth and proliferation, and the tissue integration, respectively, immiscible to each other, but made partially miscible by adding an alcohol or another proper solvent in each of them; in order to obtain a fine and homogeneous molecular dispersion of the components, which, during the solvent evaporation step creates a homogeneous coating,

finely dispersed on the whole surface of the porous bone matrix, i.e. coating it also in the inner cavities, without closing them, though.

The polymer of the reinforcing mixture may be selected, for example, from the group comprising biodegradable polymers, non-biodegradable polymers, co-polymers of the biodegradable polymers, co-polymers of the non-biodegradable polymers, co-polymers of the biodegradable and non-biodegradable polymers.

In particular, the biodegradable polymers are selected from poly(arylates), poly(acrylates), poly(anhydrides), poly(hydroxyacids), polyesters, poly(orthoesters), polycarbonates, poly(propylene fumarates), poly(amide esters), poly(amide carbonates), polyamides, polyaminoacids, polyacetals, polylactides, polyglycolides, poly(dioxanones), polyhydroxybutyrate, polyhydroxyvalerate, polyvinyl pyrrolidone, polycyanoacrylates, polyurethanes, polyalkylene oxides, polyamino carbonates, polyester amides, polyester imides, aminoacid polyarylates, aminoacid polycarbonates, polysaccharides, poly-ethylene-glycole and tyrosine-based polymers, comprising polyarilates, polyacrylates and polycarbonates.

Among the biodegradable polymers, polyesters are preferred, in particular polylactic acid (PLA), poly-

glycolic acid (PGA), polycaprolactone (PCL) and co-polymers thereof, such as for example polycaprolactone-polylactic (PLA/PCL) co-polymers, poly(L-lactide-co- ϵ -caprolactone) co-polymers.

As regards the non-biodegradable polymers, these may be selected from polypyrrole, polyanilines, polythiophene and derivates thereof, polystyrene, polyurethanes, polyureas, poly(ethylenevinylacetate), polypropylene, polymethacrylate, polyethylene, poly(ethylene oxide). Moreover the polymer may be selected from the group comprising starch, poly(caprolactones), poly(L-lactide), poly(D,L-lactide-co-glycolide), poly(L-lactide-co-D,L-lactide), their enantiomers, their co-polymers and mixtures thereof.

According to another embodiment of the invention, the reinforcing mixture may comprise, beside the polymer or the polymers, at least an additional component selected from cell nutrients, cell-growth promoters, cell-adhesion promoters, osteoinductors, osteointegrators, "friendliness to cell".

By the expression "friendliness to cell" it is meant a substance, which is able to promote the cell-rooting and the cell growth, by stimulating cell proliferation and tissue integration.

According to a preferred embodiment of the invention the "friendliness to cell" may be selected from the group consisting of glycosaminoglycans; polysaccharides comprising agarose, dextrane, chitosane; fibrin, fibrinogen and derivates thereof; collagen of any kind and derivates thereof; hyaluronic acid and derivates thereof; vitamins, such as vitamin D; soya-isoflavons comprising genestein; drugs, which reduce the bone destruction and stimulate the bone reconstruction, for example drugs used in treating the osteoporosis comprising strontium ranelate and the use of gelatine, in particular hydrolysed, as "friendliness to cell" is particularly preferred. The presence of at least one "friendliness to cell" assists the cell rooting and growth, since the cell proliferation and the tissue integration are promoted and this is an important advantage in respect to the prior art.

The solvents used to prepare the reinforcing mixture are commonly known in the state of the art and may be, for instance, dichloromethane, tetrahydrofuran, isopropanol, etc., and their specific use results from the kind of polymer/s used, according to the well-known laws of chemistry.

A particularly preferred embodiment of the bone implant matrix comprises a base matrix, which is a

bovine demineralised bone matrix treated with a reinforcing mixture comprising a biodegradable polyester-based co-polymer, such as, for example, a poly-caprolactone-polylactide co-polymer (PLA/PCL) and, preferably hydrolysed, gelatine.

According to a further particularly preferred embodiment, the bone implant matrix comprises a base matrix, which is a bovine non-demineralised acellularised bone matrix, treated with a reinforcing mixture comprising a biodegradable polyester-based co-polymer, such as, for example, a poly(L-lactide-co- ϵ -caprolactone), and preferably hydrolysed, gelatine.

In another preferred embodiment, the reinforcing mixture comprises at least a biodegradable polyester and at least a "friendliness to cell".

According to a particular embodiment, further a kit may be realized, comprising the reinforcing mixture in a proper separate container and the base matrix to be treated.

The bone implant matrixes described above may be used in the orthopedic, oral surgery, the bone reconstructive surgery and implantology.

Said bone implant matrixes are particularly suitable to be used in oral surgery, in maxillo-facial and dental bone reconstructive surgery, in particular

to reconstruct and consolidate the bone structures before carrying out the insertion of dental implants.

According to a preferred usage, said bone implant matrixes are particularly suitable in the bone reconstructive surgery, following the decrease in the bone mass in patients affected by osteoporosis.

Additionally, said bone implant matrixes may be used also in oral and dental applications, dentistry, as bone "chips", as support matrixes for cell housing and in cellular therapies.

The bone implant matrixes may be used for both human and veterinary use.

A method for preparing the bone implant matrixes is be described herein below, which comprises the following steps:

- a) preparing a solution of a reinforcing mixture containing at least a polymer,
- b) immersing a base matrix into the reinforcing mixture made according to step a),
- c) drying and degassing the matrix made according to step b), preferably in a vacuum furnace at 37°C ($\pm 2^\circ\text{C}$) for 24 hours, for removing possible solvent residues (for example in air or preferably in a vacuum furnace).

Drying and degassing the bone implant matrix usually take place contemporarily.

Such a method may optionally be followed by a post-treatment step, which comprises for example heating, conditioning in a inert atmosphere the bone implant matrixes and degassing to remove completely the possible residues of solvents used in the preparation process.

Moreover, the bone implant matrix preparation process may be followed by a packaging method which comprises the steps of:

- d) packaging in a sterile and inert atmosphere,
- e) sterilization (preferably through either gamma-ray or beta-ray irradiation).

The matrixes known in the state of the art and commonly used in the orthopaedic surgery have poor mechanical resistance, poor fixing resistance, fragility and little ductility characteristics.

The Applicant has surprisingly found that, by treating a base matrix with a reinforcing mixture containing at least a polymer, as described above, it is possible to obtain bone implant matrixes, which have such ductility characteristics as to make easier shaping, in the pre-implant step, the bone implant matrix, with the desired accuracy, in relation to the

bone cavity, which will host the matrix itself. Moreover, the mechanical resistance of the bone implant matrixes, obtainable according to the described embodiments, determines a reduced trend to the fragile fracture of the matrixes themselves, this is particularly advantageous both in the implant *in situ* positioning step and in the positioning and insertion of clamping elements (for example screws), of such a matrix.

Figure 5 depicts two graphs of monoaxial mechanical crushing strength: the curve "untreated" refers to a bovine-derived acellularised matrix and the curve "treated" refers to an analogue acellularised matrix, treated with a reinforcing mixture, containing at least one polymer, as previously disclosed. The clear comparison indicates how the previously disclosed treatment allows the matrix to be stiffer (increased modulus of elasticity, or Young's modulus) and have a higher load resistance (maximum effort, in MPa).

The bone implant matrixes may be subject, during the pre-implant step, to a possible cell-seeding process.

The cells can be seeded by using seeding techniques known in the state of the art, preferably with

micro-seeding technique after the matrix has been brought to a temperature of 37°C (preferably in an incubator). The seeded bone implant matrix is then covered with a proper culturing medium and kept inside the incubator according to the techniques commonly required by the cell type used.

For each centimetre of the bone implant matrix, the cell optimal load is about 300000-500000 cell/cm³.

Figure 4 shows how the bone implant matrix according to an embodiment of the invention allows the cell rooting, due to the porosity characteristics, in terms of both dimensions and available spaces.

The presence of a lattice formed by the chondrocytes inside the porous spaces of the matrix is, indeed, pointed out.

The following, not limitative, examples describe embodiments of the invention.

EMBODIMENT EXAMPLE 1. Method for preparing a bone implant matrix

Bring into solution 1 g of polymer in 20 ml of dichloromethane.

Prepare 20 ml of 1.5% solution of hydrolysed porcine gelatine.

Add 10 ml of isopropanol to the polymeric solution previously prepared.

Keep the obtained polymeric solution under stirring for 15 minutes.

Add the porcine gelatine, previously prepared, to the polymeric solution.

Keep the polymeric solution so obtained well stirred for at least 5 minutes.

Immerse the base matrix into the polymeric solution and keep immersed for at least 30 minutes.

At the end, dry the product in the air for at least 24 hours.

Optionally, treat subsequently in a furnace, to remove the remaining solvent from the bone implant matrix ($T < 40^{\circ}\text{C}$).

EMBODIMENT EXAMPLE 2A. Method for preparing a bone implant matrix

Bring into solution 1 g PLA/PCL co-polymer in 20 ml of dichloromethane. Keep under stirring with a magnetic stirrer for at least 45 minutes at room temperature, under stirring at about 100 rpm.

Prepare 20 ml of 1.5% solution of hydrolysed porcine gelatine. Pour water, preferably by injection, and gently stirring, add the hydrolysed porcine gelatine. Keep under stirring for at least 1 hour at 37°C ($\pm 2^{\circ}\text{C}$), under stirring at about 100 rpm.

Add 10 ml of isopropanol to the PLA/PCL co-polymeric solution in dichloromethane previously prepared.

Keep the so obtained polymeric solution under stirring for 20 minutes.

Add the gelatine solution, previously prepared, to the co-polymeric solution.

Keep the polymeric solution so obtained well stirred for 10 minutes at room temperature, under stirring at about 180 rpm.

Immerse the demineralised bone matrix into the polymeric solution and keep immersed for at least 30 minutes under stirring (about 200 rpm).

At the end, insert the product in the vacuum furnace for at least 24 hours at 37°C (± 2°C).

EMBODIMENT EXAMPLE 2B. Method for preparing a bone implant matrix.

Bring into solution 1 g PLA/PCL co-polymer in 20 ml of dichloromethane. Keep under stirring for at least 45 minutes at room temperature in order to obtain a solution having a very homogeneous dispersion.

Prepare 20 ml of 1.5% solution of hydrolysed porcine gelatine. Pour water, preferably by injection, and gently stirring, add the hydrolysed porcine gelatine. Keep under stirring for at least 1 hour at 37°C

($\pm 2^\circ\text{C}$), in order to obtain a solution characterized by a very homogeneous dispersion.

Add 10 ml of isopropanol to the PLA/PCL co-polymeric solution in dichloromethane previously prepared.

Keep the so obtained co-polymeric solution under stirring for 20 minutes.

Add the gelatine solution, previously prepared, to the co-polymeric solution.

Keep the polymeric solution so obtained well stirred for 10 minutes at room temperature, in order to obtain a stable, well homogeneous and nano-dispersed solution of all the compounds used.

Immerse the bovine non-demineralised, acellularized bone matrix into the polymeric solution and keep immersed for at least 30 minutes under stirring.

At the end, insert the product in the vacuum furnace for 24 hours at 37°C ($\pm 2^\circ\text{C}$) in order to remove the solvents.

EMBODIMENT EXAMPLE 2C. Method for preparing a bone implant matrix.

Bring into solution 1 g P(L,DL)LA co-polymer in 20 ml of dichloromethane. Keep under stirring for at least 45 minutes at room temperature in order to obtain a solution having a very homogeneous dispersion.

Immerse the bovine bone matrix into the polymeric solution and keep immersed for at least 30 minutes under stirring.

Insert the product in the vacuum furnace for 24 hours at 37°C (± 2°C) in order to remove the solvents.

Immerse again the matrix, previously treated in the polymeric solution and keep immersed for at least 30 minutes under stirring.

Insert the product in the vacuum furnace for 24 hours at 37°C (± 2°C) in order to remove the solvents.

Prepare 20 ml of 1.5% solution of hydrolysed porcine gelatine. Pour water, preferably by injection, and, gently stirring, add the hydrolysed porcine gelatine. Keep under stirring for at least 1 hour at 37°C (± 2°C), in order to obtain a solution characterized by a very homogeneous dispersion.

Add 10 ml of isopropanol to the P(L,DL)LA co-polymeric solution in dichloromethane, previously prepared.

Keep the so obtained co-polymeric solution under stirring for 20 minutes.

Add the gelatine solution, previously prepared, to the co-polymeric solution.

Keep the polymeric solution so obtained well stirred for 10 minutes at room temperature, in order

to obtain a stable, well homogeneous and nano-dispersed solution of all the compounds used.

Immerse the already twice treated-bovine non-demineralised, acellularized bone matrix into the last polymeric solution and keep immersed for at least 30 minutes under stirring.

At the end, insert the product in the vacuum furnace for 24 hours at 37°C (± 2°C) in order to remove the solvents.

EXAMPLE 3. Experimental tests

The optical microscope scanning of several substrates was carried out, using the ESEM system Evo 50 EP by Zeiss-Cambridge Instruments (Germany).

All the images were obtained with the same magnitude: 30X.

Moreover, all the images were normalised at the same proportions.

Figure 1 shows an image obtained by the optical microscope of a human bone cortical layer, which presents the desirable porosity and mechanical resistance characteristics.

Figure 2 shows an image obtained by an optical microscope of a bovine demineralised bone matrix. In the microscopic structure, remarkable differences may be highlighted in respect to the human bone cortical

layer (figure 1), in particular concerning the porosity. The latter appears much higher and poorly compatible with the cell rooting.

The bovine demineralised bone matrix in figure 2, which represents a "base matrix" according to an embodiment of the invention, underwent a treatment with a reinforcing mixture containing at least a polymer, in particular containing a polycaprolactone-polylactic co-polymer (PLA/PCL) and hydrolysed gelatine.

The image of the reinforced bovine demineralised bone matrix obtained by the optical microscope is shown in figure 3.

As it can be seen by comparing figure 1 and figure 3, the microscopic structure of the bone implant matrix in figure 3 obtained according to an embodiment of the invention shows strong similarity to the human bone cortical layer. In particular, concerning the porosity, which appears completely comparable in terms of both dimensions and available spaces for the cell rooting.

The preliminary mechanical (Fig. 5) and pre-implant tests have confirmed an adequacy of the matrix shown in figure 3 in implantology for human use, the behaviour of such a matrix is particularly satis-

factory, if compared to the behaviour of the human bone cortical layer.

CLAIMS

1. A bone implant matrix comprising:
 - a) a base matrix treated or to be treated with
 - b) a reinforcing mixture containing at least a polymer.
2. A bone implant matrix according to claim 1, wherein the base matrix is synthetic, selected from the group consisting of polymeric, metallic, ceramic, bio-ceramic and bio-glass, or natural selected from the group consisting of demineralised bone matrixes, non-demineralised bone matrixes, acellularised bone matrixes, natural polymeric matrixes, mineral matrixes.
3. A bone implant matrix according to claim 1, wherein the base matrix and/or the polymer of the reinforcing mixture is bio-integrable.
4. A bone implant matrix according to claim 2, wherein the base matrix is a bone demineralised or non-demineralised or bone acellularized, bovine or human corpse-derived matrix.
5. A bone implant matrix according to claim 2, wherein the base matrix is polymeric of biocompatible polymers.
6. A bone implant matrix according to claim 1, wherein the polymer of the reinforcing mixture is se-

lected from the group consisting of biodegradable polymers, non-biodegradable polymers, co-polymers of biodegradable polymers, co-polymers of non-biodegradable polymers, co-polymers of biodegradable and non-biodegradable polymers.

7. A bone implant matrix according to claim 6, wherein the biodegradable polymer is selected from the group consisting of poly(arylates), poly(acrylates), poly(anhydrides), poly(hydroxyacids), polyesters, poly(orthoesters), polycarbonates, poly(propylene fumarates), poly(amide esters), poly(amide carbonates), polyamides, polyaminoacids, polyacetals, polylactides, polyglycolides, poly(dioxanones), polyhydroxybutyrate, polyhydroxyvalerate, poly vinyl pyrrolidone, polycyanoacrylates, polyurethanes, polyalkylene oxides, polyamino carbonates, polyester amides, polyester imides, polyarylate aminoacids, polycarbonate aminoacids, polysaccharides, poly-ethylene-glycole and tyrosine-based polymers comprising polyarilates, polyacrylates and polycarbonates.

8. A bone implant matrix according to claim 7, wherein the bio-degradable polyester is selected from the group consisting of polylactic acid (PLA), poliglycolic acid (PGA), polycaprolactone (PCL) and

co-polymers thereof comprising polycaprolactone-polylactic (PLA/PCL) co-polymers, poly(L-lactide- ϵ -caprolactone) co-polymers.

9. A bone implant matrix according to claim 6, wherein the non-biodegradable polymer is selected from the group consisting of polypyrrole, polyaniline, polythiophene and derivates thereof, polystyrene, polyurethanes, polyureas, poly(ethylenevinylacetate), polypropylene, polymethacrylate, polyethylene, poly(ethylene oxide).

10. A bone implant matrix according to claim 6, wherein the polymer is selected from the group consisting of starch, poly(caprolactones), poly(L-lactide), poly(D,L-lactide-co-glycolide), poly(L-lactide-co-D,L-lactide), their enantiomers, their co-polymers and mixtures thereof.

11. A bone implant matrix according to claim 1, wherein the reinforcing mixture comprises an additive selected from the group consisting of cell-nutrients, cell-growth promoters, cell-adhesion promoters, osteo-inductors, osteo-integrators, "friendliness to cell".

12. A bone implant matrix according to claim 11, wherein the "friendliness to cell" is selected from the group consisting of gelatine, hydrolysed gela-

tine; glycosaminoglycans; polysaccharides, agarose, dextrane, chitosane; fibrin, fibrinogen and derivates thereof; collagen of any kind and derivates thereof; hyaluronic acid and derivates thereof; vitamins, comprising vitamin D; soya-isoflavons comprising genestein; drugs, which reduce the bone destruction and stimulate the bone reconstruction comprising strontium ranelate.

13. A bone implant matrix according to claim 1, wherein the reinforcing mixture comprises at least a biodegradable polyester and at least a "friendliness to cell".

14. A bone implant matrix according to claim 1, comprising:

a bovine demineralised bone matrix treated with a reinforcing mixture comprising a biodegradable polyester-based co-polymer and hydrolysed gelatine

or

a bovine acellularised bone matrix, treated with a reinforcing mixture comprising a biodegradable polyester-based copolymer and hydrolyzed gelatine.

15. A bone implant matrix according to claim 14, wherein the biodegradable polyester-based co-polymer is a polycaprolactone-polylactic copolymer (PLA/PCL).

16. A bone implant matrix according to claim 14, wherein the biodegradable polyester-based co-polymer is a poly(L-lactide-co- ϵ -caprolactone) co-polymer.

17. A bone implant matrix according to claim 1, for use in bone reconstructive surgery.

18. A bone implant matrix according to claim 17, for use in maxillo-facial bone reconstructive surgery.

19. A bone implant matrix according to claim 1, for use in the oral surgery.

20. A bone implant matrix according to claim 1, for human or veterinary use.

21. Use of a bone implant matrix according to claim 1, in bone reconstructive surgery.

22. Use of a bone implant matrix according to claim 21, in maxillo-facial bone reconstructive surgery.

23. Use of a bone implant matrix according to claim 1, in oral surgery.

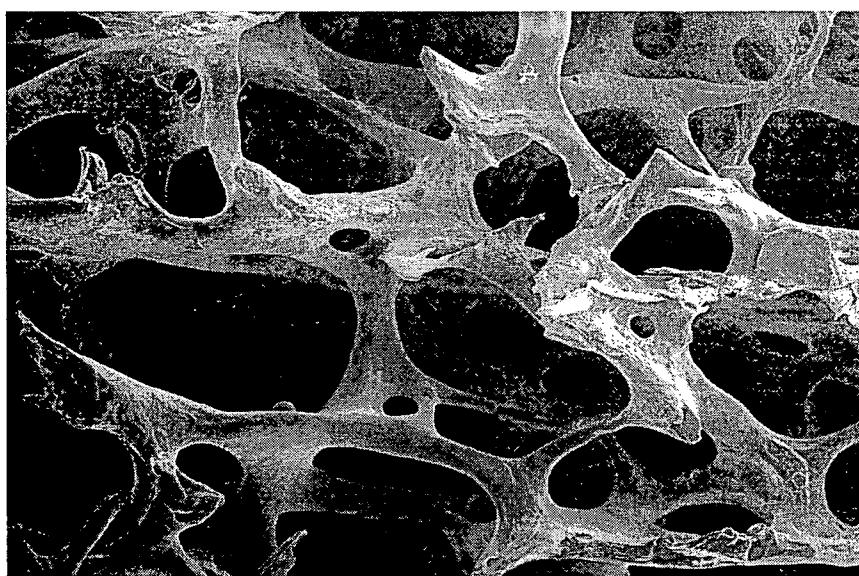
24. A method for preparing a bone implant matrix, comprising the steps of:

a) preparing a solution of a reinforcing mixture containing at least a polymer,

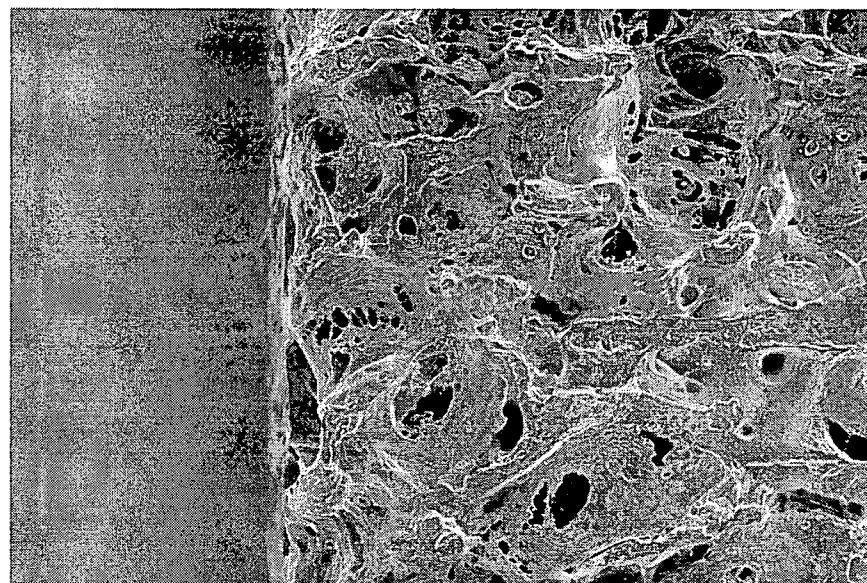
b) immersing a base matrix into said reinforcing mixture solution,

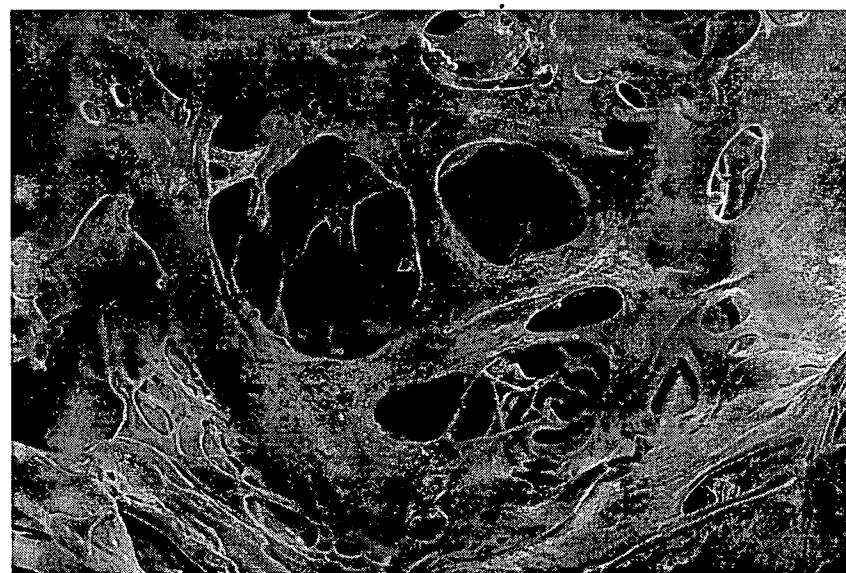
- c) drying and optionally degassing the matrix for removing possible solvent residues;
- d) optionally immerse the dried and optionally degassed, again, in said solution of reinforcing matrix.

25. A method for preparing a bone implant matrix according to claim 24, further comprising the post-treatment step selected from heating, conditioning in a inert atmosphere, vacuum degassing.


26. A method for preparing a bone implant matrix according to claim 24, further comprising the steps of:

- d) packaging in sterile and inert atmosphere,
- e) sterilization.


Si dichiara che la presente è una traduzione fedele del testo del brevetto europeo n°


Fig. 1

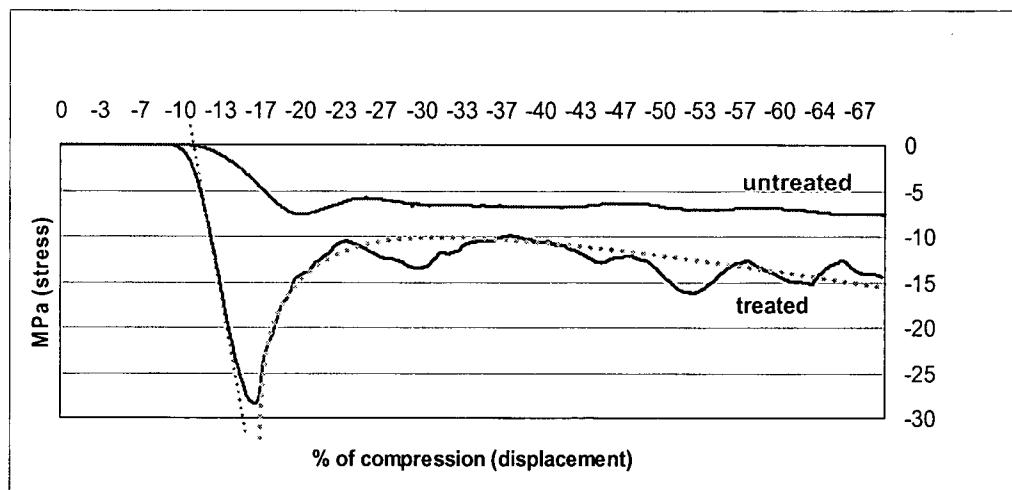

Fig. 2

Fig. 3

Fig. 4

Fig. 5

INTERNATIONAL SEARCH REPORT

International application No

PCT/IB2009/007759

A. CLASSIFICATION OF SUBJECT MATTER
INV. A61L27/34 A61L27/36

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
A61L A61F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 97/46178 A (INTERPORE INTERNATIONAL [US]) 11 December 1997 (1997-12-11) claims 7-16; examples 1-6 -----	1-3, 6-8, 10, 17-24
X	WO 2004/098456 A (THERICS INC [US]; WEST THOMAS GEORGE [US]) 18 November 2004 (2004-11-18) claims 1,13,18,23,24,31 -----	1-26
X	WO 2008/088117 A (HANS BIOMED COR [KR]; KIM JIN-YOUNG [KR]; AHN JAE-HYOUNG [KR]; SONG SE) 24 July 2008 (2008-07-24) paragraphs [0011] - [0020], [0026] - [0029]; claims 1-7 -----	1-13, 17-23

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

18 February 2010

26/02/2010

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040,
Fax: (+31-70) 340-3016

Authorized officer

Messemanne, Jasmine

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/IB2009/007759

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
WO 9746178	A 11-12-1997	AU 3152197	A 05-01-1998	
		CA 2271884	A1 11-12-1997	
		EP 0955957	A1 17-11-1999	
		KR 20000016418	A 25-03-2000	
		ZA 9705027	A 01-09-1998	
WO 2004098456	A 18-11-2004	NONE		
WO 2008088117	A 24-07-2008	CN 101610791	A 23-12-2009	
		EP 2114457	A1 11-11-2009	
		KR 100846836	B1 17-07-2008	