发明名称
电压控制电路

摘要
本发明提供一种电压控制电路，其对于输入电压和负荷电流的变动，可以用简单的电路结构输出恒定的直流电压。相对于由串联连接在节点 N(1)和接地电位 GND 之间的电阻(5)、NPN(6)、(7)以及电阻(8)构成的串联电路并联连接有 PMOS(13)，并根据节点 N(2)的电位来控制该 PMOS(13)的导通状态。由于节点 N(2)的电位由串联电路中流过的电流 Io 决定，所以进行以下控制，以在电流 Io 增加时减小 PMOS(13)的导通电阻、在电流 Io 减小时增大该 PMOS(13)的导通电阻。由此，可以抑制串联电路中流过的电流 Io 的变动，不管输入电压 VI 的如何变动，都能将串联电路的电流 Io 的值基本保持恒定，输出恒定的输出电压 VO。
1. 一种电压控制电路，其特征在于，具有：
 第 1 晶体管，其集电极与提供输入电压的输入端子连接，发射极与输出被控制电压的输出端子连接，基极与第 1 节点连接；
 第 1 电阻，其被连接在上述输入端子和上述第 1 节点之间；
 第 2 电阻，其被连接在上述第 1 节点和第 2 节点之间；
 第 2 晶体管，其集电极与上述第 2 节点连接，发射极与第 3 节点连接；
 第 3 晶体管，其被正向二极管连接在上述第 3 节点和第 4 节点之间；
 第 3 电阻，其被连接在上述第 4 节点和接地电位之间；
 第 4 电阻，其被连接在上述输出端子和上述第 2 晶体管的基极之间；
 第 5 电阻，其被连接在上述第 2 晶体管的基极和接地电位之间；以及
 第 4 晶体管，其被连接在上述第 1 节点和接地电位之间，根据上述第 2 节点的电位来控制其导通状态。

2. 根据权利要求 1 所述的电压控制电路，其特征在于，
 上述第 4 晶体管为 MOS 晶体管，其源极与上述第 1 节点连接，栅极与上述第 2 节点连接，漏极与接地电位连接。

3. 根据权利要求 1 所述的电压控制电路，其特征在于，
 上述第 4 晶体管为双极晶体管，其发射极与上述第 1 节点连接，基极与上述第 2 节点连接，集电极与接地电位连接。

4. 根据权利要求 1、2 和 3 中任一项所述的电压控制电路，其特征在于，
 上述第 3 晶体管，是将正向二极管连接的双极晶体管多个串联连接而构成的。
电压控制电路

技术领域

本发明涉及根据直流输入电压生成并输出直流恒定电压的电压控制电路。

背景技术

图 2 (a), (b) 为以往的电压控制电路的结构图。

图 2（a）为后述专利文献 2 所记载的结构图，具有 NPN 型晶体管（以下称为 “NPN”）23，其集电极（collector）与输入端子 21 连接，其发射极与输出端子 22 连接，在该 NPN23 的集电极和基极之间连接有电阻 24。NPN23 的基极，通过串联连接的 NPN25 和齐纳二极管 26 与接地电位 GND 连接。此外，NPN25 的基极与输出端子 22 连接，该 NPN25 的发射极通过电阻 27 与输出端子 22 连接。

在该电压控制电路中，向输入端子 21 提供输入电压 VI，电流流过电阻 24，NPN23 导通，从输出端子 22 输出有输出电压 VO。由此，齐纳电流通过电阻 27 流入齐纳二极管 26。此时，由于 NPN25 的基极/集电极间的电压 VBE 大约为 0.6V 的恒定电压，所以，流过电阻 27 的电流为与该电阻 27 的电阻值对应的恒定电流。因此，NPN25 的发射极电位，为由恒定的齐纳电流在齐纳二极管 26 中产生的齐纳电压。由此，输出电压 VO，为齐纳二极管 26 的齐纳电压和 NPN25 的基极/发射极间的电压 VBE 的合计电压，与连接到输出端子 22 的负荷的大小无关，都能得到恒定的输出电压 VO。

此外，图 2 (b) 为后述专利文献 1 所记载的结构图，具有 PNP 型晶体管（以下称为 “PNP”）33，其发射极与输入端子 31 连接，其集电极与输出端子 32 连接，该 PNP33 的基极通过电阻 34 与 NPN35 的集电极连接。NPN35 的发射极通过齐纳二极管 36 与限流器 37 连接。在输出端子 32 和接地电位 GND 之间，连接由电阻 38、39 构成的分压器，利用该分压器对输出电压 VO 进行分压并提供给误差放大器 40。然后，在
误差放大器 40 中，输出与输出电压 VO 的分压电压和基准电压 REF 之差对应的电压，并通过电阻 41 反馈到 NPN35 的基极。

在该电压控制电路中，由误差放大器 40 对由分压器分压后的输出电压 VO 和基准电压 REF 进行比较，并根据该比较结果来控制驱动用的 NPN35 的集电极电流。NPN35 的集电极电流控制电压控制用的 PNP33 的基极电流，并被输出电压 VO 与基准电压 REF 成为比例电压的方式进行反馈控制。由此，输出电压 VO 相对于与输出端子 32 连接的负荷的变动及输入电压 VI 的变动能够保持恒定的电压。

专利文献 1：日本特开平 5-250048 号公报
专利文献 2：日本特开 2006-127093 号公报
专利文献 3：日本特开 2006-202146 号公报

但是，在图 2（a）的电压控制电路中，流入齐纳二极管 26 的齐纳电流，并不是从输出端口 22 侧通过电阻 27 而流过的电流，而是与从输入端子 21 侧通过电阻 24 及 NPN25 流过的电流的合计值。因此，只要输入电压 VI 恒定，齐纳电流也基本恒定，从而能得到稳定的输出电压。但是，一旦该输入电压 VI 发生变动，则齐纳电流也变动，从而齐纳电压发生变动。因此，存在输出电压 VO 受到输入电压 VI 的变动的影响的问题。

另一方面，在图 2（b）的电压控制电路中，与输入电压 VI 和负荷电流的变动无关，都能得到稳定的输出电压 VO，但是需要误差放大器 40 和用于生成基准电压 REF 的电路，因而存在电路规模大之类的问题。此外，误差放大器 40 的电源，由于是从输入电压 VI 提供的，所以当使用高输入电压 VI（例如，24V）时，存在需要高压的误差放大器 40 的问题。

发明内容

本发明目的在于，提供一种针对输入电压和负荷电流的变动能够利用简单的电路结构输出恒定的直流电压的电压控制电路。

本发明的电压控制电路，其特征在于，具有：第 1 晶体管，其集电
极与提供输入电压的输入端子连接，发射极与输出被控制电压的输出端子连接，基极与第 1 节点连接；第 1 电阻，其被连接在上述输入端子和上述第 1 节点之间；第 2 电阻，其被连接在上述第 1 节点和第 2 节点之间；第 2 晶体管，其集电极与上述第 2 节点连接，发射极与第 3 节点连接；第 3 晶体管，其被正向二极管连接在上述第 3 节点和第 4 节点之间；第 3 电阻，其被连接在上述第 4 节点和接地电位之间；第 4 电阻，其被连接在上述第 4 节点和接地电位之间；第 5 电阻，其被连接在上述第 2 晶体管的基极和接地电位之间；第 6 电阻，其被连接在上述第 1 节点和接地电位之间，根据上述第 2 节点的电位来控制其导通状态。

在本发明中，相对于由串联连接在第 1 节点和接地电位之间的第 2 电阻、第 2 晶体管、第 3 晶体管以及第 3 电阻构成的串联电路，串联连接有第 4 晶体管，并利用第 2 节点的电位来控制该第 4 晶体管的导通状态。第 2 节点的电位，由于由该串联电路中流过的电流决定，当串联电路中流过的电流增加时，减小第 4 晶体管的导通电阻；当该串联电路中流过的电流减小时，增大第 4 晶体管的导通电阻，以此进行控制，从而可以抑制串联电路中所流过的电流的变动。由此，不管输入电压的变动如何，在串联电路中流过的电流值基本保持恒定，从而收到可以用简单的电路结构输出恒定的输出电压的效果。

附图说明

图 1 是表示本发明的实施例 1 的电压控制电路的结构图。

图 2 为以往的电压控制电路的结构图。

图 3 是表示本发明的实施例 2 的电压控制电路的结构图。

图中符号说明：

1：输入端子；2：输出端子；3、6、7：NPN；4、5、8~10、12：电阻；11：电容器；13：PMOS；14：PNP。

具体实施方式

本发明的上述以及其他的目的和新特征，通过对照附图并阅读以下
优选实施例的说明，更全面地加以明确。其中，附图专用于解释说明，不限定本发明范围。

图 1 是表示本发明的实施例 1 的电压控制电路的结构图。

该电压控制电路，例如是在利用 24V 等比较高的主电源进行动作的电子装置中，向利用 5V 等电源进行动作的逻辑电路等提供稳定的低电压的电源电路。

该电压控制电路，具有 NPN3，其集电极与提供主电源即输入电压 VI 的输入端子 1 连接，发射极与输出稳定的低电压即输出电压 VO 的输出端子 2 连接。NPN3 的基极与节点 N1 连接，电阻 4 被连接在该节点 N1 和输入端子 1 之间。节点 N1 还连接有电阻 5 的一端，该电阻 5 的另一端与节点 N2 连接。此外，节点 N2 连接有 NPN6 的集电极，该 NPN6 的发射极与节点 N3 连接。再有，节点 N3 连接有被正向二极管连接的 NPN7 的集电极和基极，该 NPN7 的发射极与节点 N4 连接。而且，节点 N4 通过电阻 8 与接地电位 GND 连接。

在输出端子 2 和接地电位 GND 之间，连接由电阻 9、10 构成的分压器，该分压器分压后的电压 VD 提供给 NPN6 的基极。此外，在节点 N1 和 NPN6 的基极之间，连接防止振荡用的由电容器 11 和电阻 12 构成的相位补偿电路。

此外，在节点 N1 还连接有 P 沟道 MOS 晶体管（以下称为“PMOS”）13 的源极，该 PMOS13 的漏极与接地电位 GND 连接，栅极与节点 N2 连接。

接下来对电压控制电路的动作进行说明。

在该电压控制电路中，设输入到输入端子 1 的电压为 VI，从输出端子 2 输出的电压为 VO，电阻 4 的电阻值为 R4。在该电阻 4 中流过的电流为 Ic，则电流 Ic 用下式（1）表示。

\[I_c = \frac{VI - (VO + Vf)}{R4} \quad \cdots (1) \]

在这里，Vf 为 NPN3 的基极/发射极间的电压。
此外，若设在电阻 5 中流过的电流为 Io、PMOS13 中流过的电流为 Ip、忽略 NPN3、6 的基极电流，则 Ic、Io、Ip 之间有下式 (2) 的关系成立。

\[I_c = I_0 + I_p \quad \cdots (2) \]

在 PMOS13 中流过的电流 Ip，一般用下式 (3) 表示。

\[I_p = K (V_{gs} - V_t)^2 \quad \cdots (3) \]

在这里，k 为常数，Vgs 为 PMOS13 的栅极/源极之间的电压，Vt 为阈值电压。由于 Vgs 为电阻 5 的端子间电压，所以若设该电阻 5 的电阻值为 R5，则 Vgs = R5 × Io。因此，(3) 式变成以下的式 (4)。

\[I_p = K (R_5 \times I_0 - V_t)^2 \quad \cdots (4) \]

另一方面，提供给 NPN6 的基极的电压 VD，由于是利用电阻 9、10 对输出电压 VO 进行分压而得到的电压，所以若设该电阻 9、10 的电阻值为 R9、R10，则变为下式 (5)。

\[V_D = V_O \times R_{10} / (R_9 + R_{10}) \quad \cdots (5) \]

此外，该电压 VD，由于与 NPN6、7 的基极/发射极之间的电压与电阻 8 所产生的电压之和相等，所以若设该电阻 8 的电阻值为 R8，则变为下式 (6)。

\[V_D = 2 \times V_f + R_8 \times I_0 \quad \cdots (6) \]

因此，通过基于式 (1) ~ (6) 适当地设定电阻值 R4、R5、R8 ~ R10，能够构成为按照输入电压 VI 输出所希望的输出电压 VO。

接下来，对在该电压控制电路中，在负载电流、输入电压以及温度发生变动时的输出电压 VO 的变化进行说明。

(A) 负荷电流的变动

在该电压控制电路中，例如，若输出电压 VO 随负荷电流的增加而下降，则如式 (5) 所示，对该输出电压 VO 进行分压所得到的电压 VD
也下降。由此，NPN6 的源极电位下降，在该 NPN6 中流过的电流 Io 减小。与此同时，电阻 4 中流过的电流 Ic 也减少，NPN3 的基极电位上升。根据上述情况，NPN3 的发射极电流增加，输出电压 VO 上升，从而控制为规定的输出电压 VO。

另一方面，若随负载电流的减少，输出电压 VO 上升，则电压 VD 也上升，NPN6 的基极电位上升，该 NPN6 中流过的电流 Io 增加。与此同时，电阻 4 中流过的电流 Ic 也增加，NPN3 的基极电位下降，该 NPN3 的发射极电流减少。因此，输出电压 VO 下降，从而控制为规定的输出电压 VO。

(B) 输入电压的变动

在按照规定的输入电压 VI 获得希望的输出电压 VO 的状态下，若输入电压 VI 上升，则如以式 (1) 表示的那样，在电阻 4 中流过的电流 Ic 增加。电流 Ic 被分流为在电阻 5 中流过的电流 Io 和在 PMOS13 中流过的电流 Ic。在这里，由于输入电压 VI 的上升，在电阻 5 中流过的电流 Io 增加，则 PMOS13 的栅极/源极之间的电压 Vgs 增加，PMOS13 的导通电阻减小。由此，PMOS13 中流过的电流 Ip 增加，从而抑制了电流 Io 的变动 (增加)。

另一方面，当输入电压 VI 下降时，在电阻 4 中流过的电流 Ic 减小。因电流 Ic 的减小，在电阻 5 中流过的电流 Io 减小，于是，PMOS13 的栅极/源极之间的电压 Vgs 减小，PMOS13 的导通电阻增加。由此，在 PMOS13 中流过的电流 Ip 减小，从而抑制了电流 Io 的变动 (减小)。

这样，通过与电流 Io 的路径 (电阻 5、NPN6、7、以及电阻 8) 并联连接的 PMOS13 吸收电流 I 随输入电压 VI 的变动 c 而变动的量，因而抑制了电流 Io 的变动，也抑制了输出电压 VO 的变动。

(C) 温度的变动

一般情况下，双极晶体管在温度上升时逆饱和电流增加，基极/发射极间的电压 Vf 减少。另一方面，电阻器在温度上升时电阻值增加。

在该电压控制电路的周围温度上升时，NPN6、7 的基极/发射极之
间电压 V_f 减小，同时，电阻 8 的电阻值 R_8 增加，从而由该电阻 8 所引起的压降也增加。另一方面，在周围温度降低时，NPN6、7 的基极/发射极之间的电压 V_f 增加，同时，电阻 8 的电阻值 R_8 减小，从而由该电阻 8 所引起的压降下降。

因此，基极/发射极之间的电压 V_f 的负温度系数与电阻 8 所引起的压降的正温度特性相抵消，从而抑制了电压 V_D 的温度变动，抑制了电流 I_o 的变动，还抑制了输出电压 V_O 的变动。特别是，按照使温度系数为 0 的方式，来设定二极管连接的 NPN7 的串联连接个数和电阻 8 的电阻值 R_8，从而能够得到不受温度变动影响的输出电压 V_O。

如以上所述，在该实施例 1 的电压控制电路中，与电流 I_o 的路径（电阻 5、NPN6、7，以及电阻 8）并联地连接有 PMOS13，根据电流 I_o 的大小来控制在该 PMOS13 中流过的电流 I_p。根据这样的结构，能够在电流 I_o 增加时，将其增加量的一半作为电流 I_p 分流到 PMOS13 中，在电流 I_o 减小时，电流 I_p 向电流 I_o 回流其减少量。因此，有下述优点，即不管输入电压 V_I 的变动如何，都能将输入电流 I_o 值维持基本恒定，并能以简单的电路结构，输出恒定的输出电压 V_O。

此外，由于将具有互补温度特性的 NPN6，7 与电阻 8 串联连接并生成控制用的电压 V_D，所以，有下述优点，即能得到不受周围温度影响的恒定的输出电压 V_O。

（实施例 2）

图 3 是表示本发明的实施例 2 的电压控制电路的结构图，对和图 1 中的要素相同的要素，标记相同的符号。

在该电压控制电路中，使用 PNP 型晶体管（以下称为“PNP”）14 来代替图 1 中的 PMOS13，该 PNP14 的发射极与节点 N1 连接，集电极与接地电位 GND 连接，基极与节点 N2 连接。其他的结构和图 1 相同。

该电压控制电路的动作与图 1 基本相同。其中，在该实施例 2 中，由于使用双极晶体管的 PNP14 来代替图 1 中的 PMOS13，所以与实施例 1 的电路相比，有下述优点，即提高相对于输出电压 V_O 的变动抑制的灵敏度，并且，能提高温度特性。
此外，本发明不限定于上述实施例，可以进行各种变形。作为该变形例，例如如下。

(a) 虽然表示的是输入电压 VI 和输出电压 VO 为正极性时的电路结构，但是当输入电压 VI 和输出电压 VO 为负极性时，可以通过颠倒晶体管的导电类型（例如，使用 PNP 来代替 NPN）来构成相同结构。

(b) 二极管连接的 NPN7 不限定于 1 个，也可以根据所希望的输出电压 VO 而串联连接多个。

(c) 也可以根据需要而连接由电容器 11 和电阻 12 构成的、用于防止振荡的相位补偿电路。
图1
图2
图3