My Invention relates generally to holders for curtain rods and more particularly to holders which are adjustable to compensate for variations in curtain lengths.

In the decoration of interiors where great attention is given to details, it has long been a problem to hang curtains so that they extend the proper distance. While it might seem that it would be a simple matter to measure the window and cut the material to the proper length, this cannot be done in practice if evenly-hanging curtains are to be had. The reason for this difficulty arises from the fact that the weight of the material will cause the curtain to stretch, and the amount of stretching will be dependent, to a certain degree, upon the weave of the material. Thus, if six drapery materials of varying textures and qualities are cut to exactly the same measurement and hung from the same fixed rod, the result will be curtains having six different lengths. In addition, when curtains are cleaned, they will be shrunk or stretched varying amounts, and hence again variations in length will arise.

In a similar manner, after curtains have been properly hung, they are likely to sag or stretch from their own weight, and hence a curtain which at one time was the proper length, may need shortening after it has been hanging for a month or so.

Any attempt to compensate for these variations by moving the curtain rod holder requires new holes in the woodwork to hold the screws supporting the brackets, and aside from the cost of the labor involved, the damage to the woodwork is considerable. The alternative to removing and resetting the brackets has meant the taking down of the curtains, changing their length, and then rehanging them, entailing a great amount of extra labor and expense.

It is, therefore, the major object of my invention to provide a curtain rod holder which may be adjusted to compensate for variations in lengths of curtains without removing the curtains or relocating the brackets or curtain rod holder.

It is another object of my invention to provide such a holder which will support a single rod or a plurality of rods, and which may be adjusted without the use of special tools or equipment.

It is a further object of my invention to provide a simple and economical holder of the class described which is adapted to use standard fittings now on the market, so that the cost of the complete assembly is kept to a minimum.

These and other objects of my invention will become apparent from the following description of a preferred and modified forms thereof, and from the drawings illustrating those forms, in which:

Fig. 1 is a perspective utility view of my new curtain rod holder as it appears attached to a wall by means of an adjustable bracket.

Fig. 2 is a side elevational view of the form shown in Fig. 1.

Fig. 3 is a top plan view showing the various fittings in exploded relationship.

Fig. 4 is a front elevational view of an optional form of holder.

Fig. 5 is a side elevational view taken at 5—5 in Fig. 4.

Fig. 6 is a bottom view taken at 5—5 in Fig. 5.

Fig. 7 is a front elevational view of another optional form of my invention, and

Fig. 8 is a side elevational view taken at 8—8 in Fig. 7.

Referring now to the drawings, and particularly to Figs. 1—3 thereof, the numeral 18 indicates a portion of the wall or molding from which curtains 11 and 12 are to be suspended. The curtain 14 will normally be of a lighter material, and is generally called a gauze or glass curtain, while the curtain 12 is usually of a heavier material forming a drape or valance, but it is to be understood throughout this specification and its claims that this nomenclature is illustrative only and is not to be construed as limiting these curtains to such materials or such relative positions. The curtains 14 and 12 are suspended from rods 13 and 14 respectively, which are in turn supported by my adjustable curtain rod holder designated generally by the numeral 15.

In my preferred form, the rod holder 15 consists of a clevis member 16 provided with a threaded rod 11 extending between the ends of the arms of the clevis. The threaded rod 11 is provided with threads extending substantially its entire length, and upper and lower end portions 18 and 19, respectively, of reduced diameter are the only portions of the rod not provided with threads. The clevis 16 is formed of a relatively springy material with aligned holes near the outer ends of the arms, so that the smaller ends 18 and 19 of the rod 11 may be snapped into the holes and held thereby.

By reducing the diameter of the lower end of the rod 17, a shoulder 22 is formed which bears against the lower arm of clevis 16, and it is this shoulder which supports substantially the entire weight of the rod 11 and all devices attached to it. By providing a slot 23 on the end of the lower
portion of reduced diameter, the threaded rod 17 may readily be turned with a screw-driver by a person standing below it.

As previously mentioned, the clevis 16 is preferably formed of a relatively springy material, but since it must support a considerable weight, I have found it desirable to provide strengthening flanges 24 and 25, extending forwardly from the vertical edges of the clevis and perpendicular to the base or vertical portion thereof. As shown in Fig. 2, I prefer to widen the lower ends of the flanges 24 and 25 so that they approach the outer end of the lower arm of the clevis, but under certain conditions, this may not be necessary or even desirable.

Mounted on the threaded rod 17 is a carrier 30 having a central, vertical hole passing through, tapped to engage the threads of the rod 17. To prevent the carrier 30 from idly turning when the rod 17 is turned, I provide a slide member 31 which is firmly attached to the carrier 30 and extends to the base of the clevis 16 so as to be slidable between the flanges 24 and 25. Since the carrier 30 is thus prevented from turning, it will be moved up or down when the threaded rod 17 is rotated, the slide 31 moving with the carrier at all times.

As will be seen, I have shown the carrier 30 as having a generally cubic shape, but it will be apparent that other forms may be used as desired. However, I have found the cubic form to be very convenient, since this permits the threaded rod 17 to pass through the upper and lower faces thereof, and the slide 31 may be attached to the rear face, leaving the front face and the two side faces available to receive nipples 32, 33, and 34. Each of these nipples is relatively short and is provided with external threads which permit standard curtain rod sockets 35 to be attached thereto. However, if it is desired to use a larger-sized rod, it is a simple matter to apply a threaded bushing 36 to which a larger rod socket 37 may be attached. By way of example only, the most commonly used size of curtain rod is nominally 3/8" in diameter and hence I prefer to make the nipples 32, 33, and 34 approximately this size, but where a larger rod is needed, it is a simple matter to install a bushing and socket adapted to receive a 1/2" rod, the next standard size.

By providing nipples on both sides of the carrier 30, the same curtain rod holder 15 may be used as a right-hand end, left-hand end, or center support for the rod, and hence installation is simplified and inventory problems are kept to a minimum.

The side nipples 32 and 34, however, provide means for supporting only one set of rods, such for example as those from which the gauze curtains 11 are hung, and where additional draperies are used, means must be provided for supporting additional rods. To this end, I provide the additional nipple 33 on the forward face of the carrier 30, so that I may attach the extension member 40 thereto. As seen in Figs. 2 and 3, the extension member 40 is provided with a coupling member 41 adapted to engage the nipple 33 and be held thereby. To prevent the extension block 40 from turning about a horizontal axis when it is used as an end support, a small set-screw 42 may be provided in the coupling member 41 to bear against the nipple 33, and for convenience in installation, I prefer to place the set-screw so that its head will be down when the rod holder is installed. While I have shown the extension member 40 as provided with two nipples 43 and 44, one on either side face of the member, it will be apparent that a third nipple may be provided on the forward face of the member so that a third set of curtain rods may be supported.

Where circumstances permit, the clevis 16 may be attached directly to the wall 10, and to permit this to be done, I have provided holes 50 and 51 in the base of the clevis through which screws or other suitable holding means may be placed. Since the heads of the screws often will project from the surface of the base, I have provided a recess 52 in the adjacent face of the slide member 31 so as to permit the latter to travel the entire distance between the two arms of the clevis without being stopped by the screw heads. It often happens, however, that for one reason or another the rods 13 and 14 must be spaced outwardly from the wall, and to provide for this contingency, I have developed the extension bracket 54 shown in Figs. 4–3. The extension bracket 54 comprises a channel-like member 55 having a central portion adapted to be bolted or otherwise securely held to the clevis 16, and with angle members 56 and 57 slidably attached to the upper and lower flanges of the channel member, respectively. Holding the channel member, such as bolts 58, permit the angle members 56 and 57 to be adjusted with respect to the channel flanges so that the clevis 16 will be the proper distance from the wall. By making the angle members 56 and 57 independently adjustable, a cornice, molding, or similar architectural element may be compensated for by adjusting one angle member to a position different from that of the other so that the threaded rod 17 may remain substantially vertical.

To use my improved curtain holder, the clevis 16 is attached to the wall 10, either directly or by means of the adjustable bracket member 54, in a position so that the curtain will be at substantially the proper height when the carrier 30 is approximately midway between the upper and lower arms of the clevis. The proper number of holders for end and, if necessary, center supports are installed, the curtain rods 13 and 14 are attached, and the curtains 11 and 12 are hung on the rods. To adjust the curtains to exactly the proper height, it is then a simple matter to insert a screwdriver in the slot 23 of the threaded rod 17 and turn the rod, moving the carrier 30 up or down until the proper position is reached. In some instances where various sections of the window are set at an angle to each other, as in bay windows, it may be necessary to make use of a swivel socket 60, and in this way, a single center type support may be used where otherwise two end supports would be necessary.

Thus it will be seen that by using the swivel socket 60, the simple socket 35, and the bushing 36 and enlarged end socket 37, I have provided a truly universal curtain rod holder. However, it is to be understood that I do not claim any invention in any of the sockets per se, since these are standard articles well-known to the trade and readily obtainable therefrom.

While the form just described constitutes my preferred form because of the accuracy and ease with which it may be adjusted, other forms may be used which are cheaper to construct, and in Figs. 4–8 I have shown two of these optional forms.

In Figs. 4, 5, and 6, I have shown a form which may be adjusted to any position, but which, as
will become apparent, is not so easily adjusted as is my preferred form. As seen in the drawings, this form includes a channel-like member 70 provided with ears 71 and 72 which are located at the ends of the flanges of the channel and parallel to the web thereof, and which are provided with screw holes 73 and 74 for attaching the channel to the wall. To strengthen the channel member 70, and to provide means for attaching it to the bracket 54 if desired, I prefer to provide a stiffening member 75 extending between the flanges of the channel 70, and having holes 75a adapted to align with similar holes in the extension bracket. If the channel member 70 were attached directly to the wall, the stiffening member 75 would seldom be needed; but since not all channel members are thus directly attached, I prefer to simplify inventories by furnishing the stiffening member on all holders.

Extending through the web of the channel member 70, I provide a slot 76 extending from a point near the upper flange to a point near the lower flange of the channel member and of a size sufficient to receive the shank of a bolt 77. The bolt 77 holds a slidable plate 80 against the web of the channel 70 and parallel to it, the plate preferably being slightly narrower than the horizontal width of the web of the channel and having a vertical dimension substantially the same as that of the web. At the lower end of the channel web member 70, I prefer to provide a projection 81 parallel to the lower flange of the channel member and having a slot 82 therein, adapted to receive the plate 80, so that the latter may slide therethrough. In this way, the plate 80 may be set at any desired height and held there by tightening the bolt 77, and the slot 82 will hold the plate so that the latter may not turn about the bolt 77 as a center.

On the forward surface and near the top of the plate 80, I provide a carrier block 83 similar in all respects to the carrier block 30 of my preferred form, save that instead of being provided with a sliding member 31, as in my preferred form, the carrier 83 is rigidly attached to the plate 80, and hence no tapped hole for the threaded rod 17 is necessary.

To use my optional form of curtain rod holder, the channel member 70 is attached to the wall or bracket member as in my preferred form, the curtain rod and curtains are attached thereto, and the proper adjustment as to height is made by loosening the bolt 77 and sliding the member 80 up and down until the proper position is had and the bolt 77 is then tightened. It will be seen that while there may be certain constructional advantages in this optional form, it is more difficult to adjust to the proper position and to retain it there, since the screws used to adjust this optional form must be in a substantially horizontal position, and this requires the operator to stand higher. In addition, if any downward force is placed on the plate 80 before the bolt 77 is securely tightened, the adjustment may be changed and the entire measuring process may have to be repeated. However, these disadvantages are very minor compared to the difficulties of the present system of installation.

The danger of having the carrier 83 slip after the proper setting has been found has been overcome in another form of my invention, shown in Figs. 7 and 8, which is similar in many respects to the form just described. This optional form, which might be called the quick-adjustment form to distinguish it from the form just described, has a channel member 90 provided with screw holes 91 and 92 at the end of the flanges which are provided with screw holes 93 and 94. A stiffening member 95, extending from the lower flange to the upper flange and having holes 96 therein, similar to the member 70 of my other optional form, is provided to permit the attachment of the channel member 90 to a bracket 54. Along the web of the channel member 90, I provide a slot 98 which receives a rivet 97, and held to the web by the rivet is a slidable plate 100 whose lower end passes through a slot 102 in a projection 101 extending forwardly from the lower edge of the web. Attached to the plate 100 is a carrier 103 similar to the carrier 83 and performing the same functions as the latter and the carrier 30.

To support the plate 100 at any desired position, I provide serrations forming ratchet-like portions 104 and 105 along each side of the web of the channel-shaped member 90. These tooth-like members are shaped so that their upper surfaces are substantially horizontal while their lower surfaces are angled and positioned with respect thereto. Attached to the plate 100 and adapted to cooperate with the ratchet portions 104 and 105 are two fingers 106 and 107, preferably pivotedly mounted on the plate and provided with a spring urging their ratchet-engaging ends together. For convenience, I prefer to provide handles 108 and 109 for the fingers so that they may be readily separated when it is desired to lower the carrier 103, but these handles are not necessary though they are very convenient.

To adjust my quick-adjustment form of curtain rod support, the channel member is attached to the wall or bracket 54, and the curtain rods are mounted as previously described, with the carrier 103 preferably in its lowest position. The carriers and rod are then moved upwardly until the proper hanging of the curtain is achieved, and as the carrier is moved, the fingers 106 and 107 successively engage the teeth of the ratchet portions 104 and 105. Hence, when the proper setting of the carrier 103 is had, there is nothing more to be done, since the fingers 106 and 107 have engaged the proper teeth. This form does have the disadvantage that there is a possibility that the proper position will lie between two adjacent teeth, but by making the teeth relatively small, the disparity between the proper and actual curtain height may be made unnoticeable.

While I have described all of my forms of curtain rod holder as being attached directly to a wall, it will be apparent that where a cornice or board valance is used, it is a simple matter to attach the clevis or channel member directly to the front vertical portion or drop apron, and in this event the use of the extension bracket is not required. This form of curtain rod holder is very suitable for use with the customary pulley attachment for traversing curtains held to the rod by means of braided rings, and hence it will be seen that I have provided a truly universal adjustable curtain rod support.

While I have shown preferred and modified forms of my invention, it will be apparent that changes may be made without departing from the spirit thereof, as delineated by my appended claims.

I claim as my invention:

1. A curtain rod holder which includes: a
4. A clevis member provided with a threaded rod extending between the ends of the arms of the clevis, and a tapped carrier mounted on said threaded rod and provided with a slide member extending rearwardly from said carrier to the base of said clevis and slidably therein, said carrier being adapted to support a curtain rod.

2. A curtain rod holder which includes: a clevis member comprising a vertical base portion and upper and lower horizontal extending arms; a pair of longitudinal flanges on said base portion extending perpendicular thereto; a threaded rod rotatably mounted between the horizontal arms of said clevis and adjacent their outer ends; a threaded carrier mounted on said rod and engaging the threads thereof and adapted to support the end of a curtain rod; and a slide member extending rearwardly from said carrier to the base of said clevis and having its rear end slidably disposed between said flanges whereby rotation of said rod will cause said carrier to move vertically without rotating about said rod.

3. A curtain rod holder which includes: a clevis; a threaded rod rotatably mounted between the outer ends of the arms of said clevis; means on the base portion of said clevis forming a guide; a carrier mounted on said rod and having threads engaging the same; and a member extending rearwardly from said carrier and having a portion adapted to slide in said guide on the base of said clevis.

JOHN B. HOLTZCLAW.