wo 2016/199166 A1 |1 I} NN OT OO0 LA AR AR

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2016/199166 A1

15 December 2016 (15.12.2016) WIPO | PCT
(51) International Patent Classification: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
GOG6F 21/14 (2013.01) DO, DZ, EC, EE, EG, ES, F1, GB, GD, GE, GH, GM, GT,
. . HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
(21) International Application Number: KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
PCT/IN2016/050169 MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
(22) International Filing Date: PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
6 June 2016 (06.06.2016) SD, SE, 8@, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(25) Filing Language: English
) (84) Designated States (uniess otherwise indicated, for every
(26) Publication Language: English kind of regional protection available). ARIPO (BW, GH,
(30) Priority Data: GM, KE, LR, LS, MW, MZ NA, RW, SD, SL, ST, SZ,
1753/DEL/2015 11 June 2015 (11.06.2015) IN TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
(72) Inventor; and DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
(71) Applicant : VARMA, Pradeep [IN/IN]; 634, Sector-21, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
Gurgaon 122016 (IN). SM, TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ,
(74) Agents: KOUL, Sunaina et al.; RCY House, C-235, De- GW, KM, ML, MR, NE, SN, TD, TG).
fence Colony, New Delhi 110024 (IN). Declarations under Rule 4.17:
(81) Designated States (unless otherwise indicated, for every as to applicant’s entitlement to apply for and be granted a

kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,

patent (Rule 4.17(i1))
of inventorship (Rule 4.17(iv))

[Continued on next page]

(54) Title: POTENTATE: A CRYPTOGRAPHY-OBFUSCATING, SELF-POLICING, PERVASIVE DISTRIBUTION SYSTEM
FOR DIGITAL CONTENT

Receive Semi-Functional
Cryprography Hiding Asset Copy

a‘"f \“‘\ﬁ““*\,w
AT o
o : Authenticate
- . _—
{f‘f ‘ | LOQy
e o 1
“ N Buy Copy
Demonstrate i UYL opy
Copy | | Securely
N N !
N H
N P install fully-
\\\ j : functional copy
\\ e *)_,«ﬂ““
\,&&Aj,.w
LoopBegin |5
I
= | | . | — _
Runlicensed || Enforce D Send Semi-
Copy i 1| Copyright || Functional
— ! Copy
\»M‘\&E e
Locp End
Fig. 1

(57) Abstract: Using commonplace networking or browser
software, commonplace hardware (e.g. laptops, servers, mo-
biles, multimedia players) and content provision over a se-
cure website (https standard), we disclose a system for self-
policed, authenticated, offline/online, viral marketing and dis-
tribution of content such as software, text, and multimedia
with effective copyright and license enforcement and secure
selling. The system is based on key, and cryptography hiding
techniques, using source-to-source transformation for effi-
cient, holistic steganography that systematically inflates and
hides critical code by: computation interleaving; flattening
procedure calls and obfuscating stack by de-stacking argu-
ments; obfuscating memory management; and encoding scal-
ars as pointers to managed structures that may be distributed
and migrated all over the heap using garbage collection. Mul-
timedia/text content may be partitioned and sold with expiry
dates for protection and updates for long life. Authenticity of
software installed on a machine may be monitored and en-
sured, supporting even authentic software deployment in an
unknown environment.

WO 2016/199166 A1 |IIWAT 00T 0 O AR

Published: — before the expiration of the time limit for amending the
— with international search report (Art. 21(3)) claims and to be republished in the event of receipt of
amendments (Rule 48.2(h))

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

POTENTATE: A CRYPTOGRAPHY-OBFUSCATING, SELF-POLICING,
PERVASIVE DISTRIBUTION SYSTEM FOR DIGITAL CONTENT

FIELD OF THE INVENTION

[0001] This disclosure is about propagation and copyright enforcement of software-
based assets such as software, software appliances, devices with embedded software,
text, books, music, games, and videos in general and the obfuscation of the required
cryptography support in particular. Furthermore, this disclosure is about software
capabilities comprising hidden cryptography, auto copyright and license enforcement,
self authentication, authenticity enforcement, self duplication, self demonstration, self
marketing including incentives, and self selling securely with multiple payment or free

schemes.

BACKGROUND OF THE INVENTION

[0002] US6266654 and related patents (US7065508, US7085743, US7089212,
US7092908, US7158954, US 7209901, US7249103, US7330837) discuss software
sales where lineages are tracked, a copy can be used for sale or propagation and
marketing incentives provided for such sales. Kirovski et al. in US 7818811 B2 discuss
multimedia sales similarly and provide a public-key scheme for authenticating
transactions, involving keys per party including buyer, seller, and service provider along
with specialised hardware as an elaborate means for preventing fraud. Left unfulfilled is
a need for authenticated, software sales of freely copied and marketed software,
whereby no keys or key infrastructure are required of the retail participants - buyers,
sellers - and commonplace hardware is used. Left unfulfilled is a need for protection
against masqueradors who subsitute genuine software with fake or fraudulent software.
Left unfulfilled is a need to protect the working of genuine software from masqueradors

who supply a fake computing environment for a genuine software to work in, in an

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

effort to capture or break the cryptographic underpinnings of the distributed software

and to discover any keys distributed with the software.

[0003] Much work has transpired to design software that hides cryptogaphy
implementation including keys and data from the scrutiny of hostile parties running and
testing the software on untrusted systems. Listed below is the prominent prior art and

literature on the subject.

[0004] Collberg et al. in US6668325 and other literature (Christian Collberg, Clark
Thomborson, and Douglas Low, ”Manufacturing cheap, resilient, and stealthy opaque
constructs”, In Proceedings of the 25th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages (POPL '98), ACM, New York, NY, USA, pages
184-196.

DOI=10.1145/268946.268962, http://doi.acm.org/10.1145/268946.268962; C. Collberg,
C. Thomborson, and D. Low,” Breaking Abstractions and Unstructuring Data
Structures”, In Proceedings of IEEE International Conference on Computer Languages
(ICCL °98), May 1998, pages 28-38. DOI= 10.1109/ICCL.1998.674154
http://dx.doi.org/10.1109/ICCL.1998.674154; and Christian S. Collberg and Clark
Thomborson,”Watermarking, tamper-proofing, and obfuscation: tools for software
protection”, IEEE Transactions on Software Engineering Volume 28, Issue 8 (August
2002), 735-746. DOI=10.1109/TSE.2002.1027797
bt/ doiorg/ 10 1109/TSE 2002 1027797) disclose methods to obfuscate (Java)

programs comprising (a) opaque predicates that serve to hide control flow behind
irrelevant (conditional) statements that do not contribute to the actual computations (b)
splitting and encoding of Boolean variables as integers with Boolean operators
implemented over the resulting integers, (c) Java class obfuscation by adding classes
and refactoring the class inheritance graph, (d) obfuscate arrays by splitting them into

subarrays, or merging them into superarrays, or increasing/decreasing the number of

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

array dimensions (e) obfuscating procedures by inlining calls, outlining code into new
procedures, using application-specific bytecode interpreters, and cloning procedures (f)
constructing strings dynamically (g) merging scalars such as two 32-bit integers into
larger scalars (a 64-bit integer), encoding integers (e.g. represent i as c;i + c2) and
promoting scalars to objects (e.g. an integer to the Integer class in Java). Pointer aliases
are identified as particularly useful for constructing opaque predicates due to the
intractability of pointer analysis. Building bogus pointer data structures for application
obfuscation is recommended so that opaque predicates can be constructed using the
pointers such as based on some hidden invariant that two pointer variables are or are not
aliases of each other. One cost of such bogus structures that is noted is heap space

exhaustion due to data bloat in the obfuscated code compared to the original code.

[0005] Horning et al. in US7430670 disclose methods including obfuscation methods
with a binary modification tool comprising: rearranging/splitting/duplicating basic
blocks, rearranging code within a basic block and inserting null instructions, obstruct
binary code analysis, string encryption, obstruct decompilation to source constructs
using code replication, code fusion etc. to introduce irreducible flow graphs, using
overlays to make address tracing difficult, protecting jumps, obfuscation using
concurrency, and program optimization as obfuscation. They point out that pointer
analysis and similarly array subscript analysis is intractable and hence opaque predicates
can be constructed using them. Variables can be allocated out of a contiguous array
space, replacing individual variable access with an index into the array. A variable stored
thus can be an array itself, with its contiguous elements stored contiguously or otherwise

in the space.

[0006] Farrugia et al. in US8434061 present an approach to specifically, shuffle, split
and expand an array into a set of arrays so that individual data items are spread in

memory. Access to an array element occurs using simple accessor functions such as

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

de_obfuscate_array(number, 5), which can be used to access the Sth element of the
directly identified, original array number from its distributed set of bits in memory. The
method however, spreads bits as-is in memory, using a one-to-one mapping, as encoded
in the accessor function, for looking up each bit in it new memory position in place of
the original one. Thus the obfuscation is limited, with an obfuscated memory image

being only a permutation of an un-obfuscated memory image.

[0007] Lattner et al. in US8645930 present a clubbed, single recursive function
implementation of multiple functions to present one obfuscated, common function in
place of the individual ones. Within the common function body, a goto-based dispatch is
implemented for the specific sub-function indicated by an argument. The argument
identifies the original unclubbed function call that in turn identifies the subpart of the
common function body to be run through. The common function mechanism is then
implemented without using system stack, by implementing the stack explicitly in heap
with push and pop operations carried out on the heap stack explicitly in the source code.
This technique thus still implements the stack functionality. Also it adds run-time costs
in clubbing multiple functions in one common recursive function for the obfusction it

attains.

[0008] Farrugia et al. in US8707053 disclose a method of carrying out a Boolean
operation such as XOR on masked versions of data and then unmasking the result for
further computation, as and when necessary. The masking is carried out using a mapping
function that maps a datum to its masked equivalent. Improvement over prior art is
mentioned, where masking, by an XOR bit/datum is noted to be easily broken by the
knowledge of the bit, with masking by function being mentioned as harder to break with
a single bit/datum leak. Unfulfilled in this mathematical transformation approach

however, is invulnerability to recognition of the algebraic transformations involved on

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

the stored data and inversion of the same. Also unfulfilled, is a need to not allow an

unmasked result, post unmasking, to be read from the memory image by an adversary.

[0009] Zhou et al. in US7634091 disclose a method of obfuscating a part of the private
key in public key crypt systems such as RSA (Rivest Shamir Adleman) and El Gamal so
that the key can still be used in deciphering data. Muir et al. in WO 2011120125 Al
disclose a digital signature method against white-box attacks that does not store a
private key in the clear, unlike a public key and uses a transformed generator to carry
out the digital signature generation process without using the private key in the clear.
Left unfulfilled in these specific cryptographic methods is a need for a uniform
software-transforming technique to hide the keys and encryption/decryption process in
not only these crypt systems, but also in other crypt systems, such as symmetric

encryption systems.

[0010] Cappaert et al. in Jan Cappaert and Bart Preneel,”A general model for hiding
control flow”, in Proceedings of the tenth annual ACM workshop on Digital rights
management (DRM "10), ACM, New York, NY, USA, 35-42,
DOI=10.1145/1866870.1866877, http://doi.acm.org/10.1145/1866870.1866877, discuss
a flattened control flow graph wherein each transfer to a basic block is mediated by a
dispatcher that can jump to any basic block, with the label for the jump being stored as a
runtime value accessed by a one-way transition function and branch functions such that
minimum information (e.g. a secret value) for hiding from the program can be specified
such that control flow information is not leaked. The secret value needs to be kept and
passed separately to the program at run-time, which in effect makes the secret value a

key, which then leaves the key-hiding problem unsolved.

[0011] A memory management technique by Ruwase et al. (O. Ruwase and M. S. Lam,

“A practical dynamic buffer overflow detector”, In Proceedings of the 11th Annual

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

Network and Distributed System Security(NDSS) Symposium, pages 159-169, February
2004) represents an out-of-bounds pointer value with an address of an out-of-bounds
object that is created and managed by the memory management system in a dedicated
hash table. The out-of-bounds object stores the out-of-bounds pointer value in itself,
along with a pointer to a referent object. Since no garbage collection is used, all out-of-
bounds objects for a referent object are deleted when the referent object is deleted, to
prevent memory leaks from occuring. The hash table is kept, specifically for this
purpose — when a referent object is reclaimed, the hash table is traversed, deleting all
out-of-bounds objects pointing to that referent object. This technique is inapplicable for
an obfuscatory purpose for two reasons. One, the hash table is a giveaway; all objects
contained in it are known to be encodings of out-of-bounds pointer values. Two, an out-
of-bounds pointer value may survive the deletion of its referent object, for example as a
dangling pointer. The pointer may participate in normal computation thereafter, e.g.
pointer arithmetic and comparisons, so its obfuscated encoding needs to survive the
deletion of the referent object. This the Ruwase et al. scheme is unable to provide, given
that preventing memory leaks while not relying on garbage collection is motivational.
Hence Ruwase et al. although useful for designing bounds checkers in memory safety

systems, is not useful for a cryptography obfuscation purpose.

[0012] The Ruwase et al. scheme above is not capable of handling pointers beyond out-
of-bounds pointers. Similarly, smart pointer schemes proposed for C++ only handle a
subset of pointers (base pointers to whole objects) ignoring pointers such as interior
pointers, out-of-bounds pointers, dangling pointers and so on. The coverage of scalars,
by object casts, e.g. int to Integer in Java, or int to object in C# does not extend to
pointer types (a pointer is not a valid type in Java). Thus no scheme in prior art is
capable of a pointer encoding of all scalars. Further the schemes in prior art suffer from

a need to re-use an encoding, e.g. Integer(1) for all instances of 1, which compromises

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

the obfuscation value of the scheme by offering the re-use mechanism or table of

encodings as a direct giveaway.

[0013] Each one of these prior art or literature references suffers from one or more of
the following disadvantages: incomplete program obfuscation, and unnecessary
obfuscation cost. Glaring in particular is the omission of techniques for heap-efficient
pointer and memory management, procedure and stack obfuscation by optimisation
avoiding unnecessary computation, and steganography, using which extreme

obfuscation can be obtained at an extremely low cost.

[0014] For the foregoing reasons, there is a need for improvement in cryptography
hiding or obfuscating techniques relevant to the strict requirements of software
comprising a distribution system. The strict requirements include hiding of keys and
data circulated with a distribution system to run under hostile scrutiny on an untrusted
system. For wide reach, a distribution system has to run with a small resource footprint
on stock hardware with no extra capabilities. The two needs, for extreme obfuscation,
and extremely low budget or high efficiency, are simultaneously sought to be met for a
desired advancement in distribution systems comprising self-policing capabilities of
self-authentication, effective copyright and license enforcement, and secure selling

while supporting both online and offline (viral) modes of asset distribution.

SUMMARY OF THE INVENTION

[0015] In this disclosure, using commonplace browser software and stock hardware like
mobiles, PCs, laptops, desktops, and servers, and content provision over a secure
website (https standard), we disclose a system for self-policed, authenticated, offline and
online, viral marketing and distribution of content such as software and multimedia with
effective copyright and license enforcement and secure selling capabilities. The system,

in particular, does not require any public key infrastructure, with inexpensive symmetric

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

encryption sufficing for all its needs (beyond the https standard). The system protects
against masqueraders who try to substitute the software with fake or fradulent entities,
and also against masqueradors who try to subsitute the environment a genuine software

tries to run in.

[0016] The system is based on novel key, data, and cryptography hiding techniques for
software. The system uses source-to-source transformation for efficient, holistic
steganography that systematically inflates critical code computation, thereby hiding it,

by:

[0017] 1. Interleaving in varying depth, the key, secret data and cryptography

code with standard application code, with or without concurrent primitives.

[0018] 2. Flattening classes into a class-less program.

[0019] 3. Flattening procedure calls and obfuscating stack by de-stacking
arguments.

[0020] 4. Obfuscating memory management by replacing scalars by scalarised

fat scalars, comprising encoding as pointers providing an invariant that critical data
fields or keys are never exposed in any memory image during computation and data may
be distributed all over the heap. The memory manager works with or without garbage

collection capabilities, supporting data migration.

[0021] S. Untyping the run-time image by obfuscating symbol table and type and

object metadata information, and further destabilising fields and control flow.

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

[0022] A distribution system for binary-encoded digital assets is disclosed. The system
comprises a hiding means for hiding one or more keys or cryptography implementation
in a digital asset. The system further comprises a copying means for asset distribution
wherein a functionally-restricted asset copy is received for use or further distribution,
directly or as a further copy, with or without access to a computer network. The system
further comprises a self-policing means for enforcing asset safety, comprising an
authentication means for an un-authenticated, digital asset wherein encrypted credentials
data using one or more keys or cryptography implementation hidden in the asset are
constructed for authentication by an authenticated digital asset or website. The self-
policing means further comprises a secure selling means for an authenticated digital
asset wherein either a sale transaction is carried out directly, securely, or the sale is
delegated to a separate secure means, identifying the delegation by an encrypted
identifier constructed using one or more keys or cryptography implementation hidden in
the asset. The response from the secure means is decrypted using the one or more keys
or cryptography implementation hidden in the asset to determine the success of the sale.
The self-policing means further comprises a copyright and license enforcement means
for an asset wherein encryption and decryption of computing context and other data
using one or more keys or cryptography implementation hidden in the asset are carried
out. Functionally-unrestricted asset use is permitted only after the asset has been sold

and licensed to run in a recognisable computing context.

[0023] According to an embodiment, a digital asset comprises software.

[0024] According to another embodiment, the asset further comprises a combination of

encrypted video, audio, or text data bundled with the software. The software is a

software player to decrypt and play the data or encrypt and add data.

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

[0025] According to yet another embodiment, the bundled software thwarts simple data
capture mechanisms comprising one or more of screen bitmap capture, screen text clip

capture, screen text clipboard capture, or audio clip capture.

[0026] According to an embodiment, the hidden keys or cryptography implementation
of the software comprises an expiry date or mechanism so that the software does not

work after the date or mechanism disallows it.

[0027] According to another embodiment, the software enables a free or priced update
with a continuing digital asset of different hidden keys or cryptography implementation,

upon expiry of the software.

[0028] According to an embodiment, the update recurs with a well-announced expiry

date for planning convenience.

[0029] According to an embodiment, the bundled data decrypted or encrypted by the
hidden keys or cryptography implementation of the software player is reduced to a small
partition so that the remaining one or more partitions may be bundled with one or more
other software players, each distributed with its own distinct hidden keys or

cryptography implementation.

[0030] According to an embodiment, the distribution system instals an authenticated

digital asset on a machine where installed software consists of authenticated assets only.

[0031] According to another embodiment, the asset installation is mediated by a

monitoring system on the machine.

10

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

[0032] According to yet another embodiment, the asset installation updates an expired
or expiring asset with a successor asset of different hidden keys or cryptography

implementation.

[0033] According to yet another embodiment, the update recurs with a well-announced

expiry date for planning convenience.

[0034] According to an embodiment, the asset installation instals and periodically

updates an authenticated browser.

[0035] According to an embodiment, the monitoring system disallows unmediated asset
installation by resetting execution permission or disallowing a file with execute

permission to run, or stopping a running software.

[0036] According to an embodiment, secure selling is carried out even on a machine

with un-authenticated software.
[0037] According to an embodiment, no plaintext fragment of encrypted data is exposed
to a user, other than possibly only sale-related input such as buyer details or payment

details.

[0038] According to yet another embodiment, the computing context and other data are

stored with the digital asset after sale and installation.

[0039] According to yet another embodiment, the credentials data constructed by a

digital asset are passed to a browser to authenticate.

11

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

[0040] According to yet another embodiment, a key is stored in a digital asset by
distribution into a subset of a large number of candidate data fields in the asset, the
reconstruction of the key from the fields not being apparent from a reverse engineered
control flow of the asset, forcing a combinatorially large number of key reconstructions

to be considered in a key search making key discovery infeasible.

[0041] A cryptography hiding system for hiding one or more keys or cryptography
implementation in a binary-encoded digital asset using holistic, efficient steganography
is disclosed. The system comprises an interleaving means for sequentially or
concurrently interleaving the computation of non-cryptography, useful code with
cryptography code. The system further comprises an obfuscating memory management
means for creating an encoded pointer representation of a scalar, comprising one or
more encoding pointers pointing to one or more objects created and managed by the
memory management means for maintaining the scalar in an obfuscated state
throughout the lifetime of the scalar. The system further comprises a class obfuscation
means for translating a class to one or more data structures or procedures. The system
further comprises a procedure obfuscation means for de-stacking one or more
parameters of a procedure or translating a procedure call to jumps to and from an inlined

procedure body.

[0042] A cryptography hiding system for hiding one or more keys or cryptography
implementation in a binary-encoded digital asset using holistic, efficient steganography
is disclosed. The system comprises an interleaving loop or recursive procedure
instantiating one or more re-entrant calls to one or more procedures or macros in
cryptography code, such that one or more re-entrant calls to one or more procedures or
macros in useful, non-cryptography code are interspersed in-between any two
cryptography code calls. A cryptography call typically comprises a smaller stateful

computation than a larger stateful computation comprised by a non-cryptography call.

12

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

[0043] According to an embodiment, the interleaving loop or recursive procedure is
parallelised to execute a cryptography call largely in parallel with non-cryptography

computation.

[0044] An obfuscating memory management system for creating an encoded pointer
representation of a scalar is disclosed. The system comprises one or more encoding
pointers pointing to one or more objects created and managed by the memory
management system for maintaining the scalar in an obfuscated state throughout the

lifetime of the scalar.

[0045] According to an embodiment, the objects are laid out randomly over the heap

memory.

[0046] According to another embodiment, an encoding pointer is used only once in

encoding a scalar part.

[0047] According to yet another embodiment, an object comprises one or more fields
containing one or more pointers to one or more allocated objects. The value denoted by
an encoding pointer can be obtained by dynamic computation comprising the use of a
combination of the object, one or more of the pointers, one or more of other pointers,

and the allocated objects.

[0048] According to yet another embodiment, the one or more pointers to allocated
objects contained in fields of the object further denote a value of a reference count for
an encoding pointer. The value can be obtained by dynamic computation comprising the
use of a combination of the object, one or more of the pointers, one or more of other

pointers, and the allocated objects.

13

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

[0049] According to yet another embodiment, the memory management system
increments the reference count upon dynamically finding a scalar part’s encoding

pointer using a filter function.

[0050] According to yet another embodiment, the memory management system reclaims

the object upon reference count elimination.

[0051] According to yet another embodiment, the memory management system reclaims

or migrates one or more of the object or allocated objects using garbage collection.

[0052] According to yet another embodiment, the memory management system never

stores a scalar or scalar part directly in memory.

[0053] According to yet another embodiment, the memory management system

scalarises the scalar into independent encoding pointers.

[0054] According to yet another embodiment, the memory management system

distributes an aggregate object’s scalars’ encoding pointers all over the object.

[0055] According to yet another embodiment, the memory management system

distributes a set of aggregate objects’ scalars’ encoding pointers all over the objects.
[0056] According to yet another embodiment, the memory management system further

redistributes the encoding pointers in the set of aggregate objects, upon increase or

decrease of objects in the set due to allocation or de-allocation.

14

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

[0057] According to yet another embodiment, the memory management system defers
an object de-allocation till a further re-distribution vacates the de-allocated object prior

to the de-allocation.

[0058] According to yet another embodiment, the memory management system
initialises the scalar using dynamic computation comprising the use of a set of literals

excluding the literal initialising the scalar in an un-obfuscated program code.

[0059] According to yet another embodiment, an object comprises one or more fields
denoting a value for an encoding pointer or reference count. The value can be obtained

by dynamic computation comprising the use of the object.

[0060] According to yet another embodiment, the encoding pointer representation of the
scalar is changed when one or more objects pointed to by one or more encoding pointers

are migrated by garbage collection. The scalar’s value denotation remains unchanged.

[0061] An obfuscating memory management system is disclosed. The system allocates
or de-allocates an object with meta-data comprising object size or layout. The contents
of the object may be obfuscated by distribution or re-distribution, part by part, anywhere

over the object or one or more other objects.

[0062] According to an embodiment, the memory management system defers an object’s
deallocation till occupants of the object in lieu of parts distributed or re-distributed to

other objects have been vacated.
[0063] According to another embodiment, an object is allocated with larger storage than

its meta-data size, so that false scalars or duplicated parts may be used to fill the extra

space for further obfuscation.

15

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

[0064] According to an embodiment the memory management system comprises a

garbage collector.

[0065] According to another embodiment, the garbage collector uses the layout

metadata to identify or de-obfuscate pointer scalars in the object.

[0066] According to an embodiment, the memory management system scalarizes the
object’s parts in substitution for object allocation on the stack. The object’s encoding

pointers are independently stored.

[0067] According to another embodiment, the memory management system enables
part-by-part scalarisation of all stack-allocated variables of a procedure. The variables

are shifted to heap allocation only if the variables comprise a pointer scalar.

[0068] According to an embodiment, the object meta-data itself is obfuscated.

[0069] A procedure obfuscation system for de-stacking one or more procedure
parameters is disclosed. The system comprises a static analyser means capable of
guidance by one or more user annotations and a source-to-source transformer means

capable of replacing a reference to a procedure parameter with a non-stack reference.
[0070] According to an embodiment, the user annotations comprise sharpening a
symbolic value of a variable, location or expression to a subset of a symbolic value

generated by a static analyser.

[0071] According to another embodiment, the non-stack reference comprises a global

variable.

16

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

[0072] According to yet another embodiment, the static analyser means comprises a

means for determining that a procedure call has no nested calls to the procedure.

[0073] According to yet another embodiment, the static analyser means further
comprises a means for determining that the number of nested procedure calls to a
procedure contained within a call to the same procedure is less than a statically-known
constant. The non-stack reference further comprises a global array variable indexed at a

nesting depth of a procedure call.

[0074] According to yet another embodiment, the static analyser means further
comprises a means for determining that barring procedure return values, all
dependencies within a procedure are intra-procedural. The source-to-source transformer
means comprises a means for replacing a procedure with a parameter memoising

procedure.

[0075] According to yet another embodiment, the static analyser means further
comprises a means for computing a schedule of calls for a recursive computation
involving a procedure. The source-to-source transformer means comprises invoking the

procedure according to the schedule in a loop or recursion.

[0076] A computing context storing system is disclosed. A computing context comprises
a narrow time window within which the computing context is stored in the computing

environment.
[0077] According to an embodiment, narrow time windows or exact times of creation or

modification of one or more files or folders along with their locations in a computing

environment further comprise the computing context.

17

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

[0078] According to another embodiment, the partial content of one or more files or
folders along with their locations in a computing environment further comprise the

computing context.

[0079] According to yet another embodiment, the names of one or more files or folders
along with their locations in a computing environment further comprise the computing

context.

[0080] According to yet another embodiment, functional data related to the accurate

working of the computing environment further comprises the computing context.

[0081] A computing context recognition system for handling and recognising a changing
computing context is disclosed. The system stores a computing context to re-construct
the computing context from the stored data later. The later context is recognised to be
that of the same computing environment for which the context was stored, if the
reconstructed context matches a freshly computed context for more than a preset,

passing number of stored context entities.

[0082] According to an embodiment, after a computing context is recognised, a revised
computing context is stored in place of the earlier stored computing context, for more

accurate recognition of a computing context later.

[0083] According to another embodiment, functional data related to the accurate

working of the computing environment further comprises the computing context.
[0084] A distribution system for a multimedia and text combination asset is disclosed.

The asset comprises a software player that hides one or more keys or cryptography

implementation within itself and is bundled with a combination of video, audio, or text

18

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

data in encrypted form. The software player can decrypt and play the data or encrypt and
add data, without requring any customer-specific symmetric or assymetric key or

password to be input or made available during installing or running the player.

[0085] According to an embodiment, the software player thwarts simple data capture
mechanisms comprising one or more of screen bitmap capture, screen text clip capture,

screen text clipboard capture, or audio clip capture.

[0086] According to another embodiment, the hidden keys or cryptography
implementation of the software player comprises an expiry date or mechanism so that

the player does not work after the date or mechanism disallows it.

[0087] According to yet another embodiment, the software player enables a free or
priced update with a continuing player of a different hidden keys or cryptography

implementation, upon expiry of the player.

[0088] According to an embodiment, the update recurs with a well-announced expiry

date for planning convenience.

[0089] According to another embodiment, data bundled with the software player is
reduced to a small partition. The remaining one or more data partitions may be bundled
and distributed with one or more other software players, each comprising distinct hidden

keys or cryptography implementation.
[0090] According to an embodiment, no plaintext fragment of encrypted data is exposed

by the distribution system to a user, other than possibly only sale-related input such as

buyer details or payment details.

19

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

[0091] A software authentication and installation monitoring system is disclosed. The
system comprises a means for hiding one or more keys or cryptography implementation.
The system further comprises a means for tracking authentic software or certified
software or user-built software installed on a machine by storing the information in
encrypted form on the machine using the hidden keys or cryptography implementation.
The system further comprises a means for mediating in a software installation, ensuring
that authentication steps are carried out that ensure the authenticity of the installed
software. The system further comprises a means for disallowing a user setting the
permission of a file to execute, unless the file is known to be built or certified by the
user or known to be authentically installed as per the tracked information. The system
further comprises a means for disallowing an executable file to run, unless the file is
built or certified by the user or known to be authentically installed as per the tracked
information. The system further comprises a means for stopping a running program, if
the running program is found to not be user built or certified, or authentically installed
as per the tracked information. The system further comprises a means for scanning the

machine periodically, resetting the the execute permissions of any unknown files.

[0092] According to an embodiment, the system updates an expired or expiring software

with a successor software having different hidden keys or cryptography implementation.

[0093] According to another embodiment, the update recurs with a well-announced

expiry date for planning convenience.

[0094] According to an embodiment, the system instals and periodically updates an

authenticated browser.

[0095] According to an embodiment, no plaintext fragment of encrypted data is exposed

by the system to a user.

20

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

[0096] A distribution method for binary-encoded digital assets is disclosed. The method
comprises a hiding step for hiding one or more keys or cryptography implementation in
a digital asset. The method further comprises a copying step wherein a functionally-
restricted asset copy is received for use or further distribution, directly or as a further
copy, with or without access to a computer network. The method further comprises a
self-policing step for enforcing asset safety, comprising an authentication step for an un-
authenticated, digital asset wherein encrypted credentials data using one or more keys or
cryptography implementation hidden in the asset are constructed for authentication by
an authenticated digital asset or website. The self-policing step further comprises a
secure selling step for an authenticated digital asset wherein either a sale transaction is
carried out directly, securely, or the sale is delegated to a separate secure means,
identifying the delegation by an encrypted identifier constructed using one or more keys
or cryptography implementation hidden in the asset. The response from the secure
means is decrypted using the one or more keys or cryptography implementation hidden
in the asset to determine the success of the sale. The self-policing step further comprises
a copyright and license enforcement step for an asset wherein encryption and decryption
of computing context and other data using one or more keys or cryptography
implementation hidden in the asset are carried out. Functionally-unrestricted asset use is
permitted only after the asset has been sold and licensed to run in a recognisable

computing context.

[0097] A cryptography hiding method for hiding one or more keys or cryptography
implementation in a binary-encoded digital asset using holistic, efficient steganography
is disclosed. The method comprises an interleaving step for interleaving sequentially or
concurrently, the computation of non-cryptography, useful code with cryptography code.
The method further comprises an obfuscating memory management step for creating an
encoded pointer representation of a scalar, comprising the use of one or more encoding

pointers pointing to one or more objects created and managed for maintaining the scalar

21

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

in an obfuscated state throughout the lifetime of the scalar. The method further
comprises a class obfuscation step for translating a class to one or more data structures
or procedures. The method further comprises a procedure obfuscation step for de-
stacking one or more parameters of a procedure or translating a procedure call to jumps

to and from an inlined procedure body.

[0098] A cryptography hiding method for hiding one or more keys or cryptography
implementation in a binary-encoded digital asset using holistic, efficient steganography
is disclosed. The method comprises the step of using an interleaving loop or recursive
procedure for instantiating one or more re-entrant calls to one or more procedures or
macros in cryptography code, such that one or more re-entrant calls to one or more
procedures or macros in useful, non-cryptography code are interspersed in-between any
two cryptography code calls. A cryptography call typically comprises a smaller stateful

computation than a larger stateful computation comprised by a non-cryptography call.

[0099] An obfuscating memory management method for creating an encoded pointer
representation of a scalar is disclosed. The method comprises the step of using one or
more encoding pointers pointing to one or more objects created and managed for

maintaining the scalar in an obfuscated state throughout the lifetime of the scalar.

[0100] An obfuscating memory management method is disclosed. The method
comprising the step of allocating or de-allocating an object with meta-data comprising
object size or layout such that the contents of the object may be obfuscated by
distribution or re-distribution, part by part, anywhere over the object or one or more

other objects.

[0101] A procedure obfuscation method for de-stacking one or more procedure

parameters is disclosed. The method comprises a static analysis step guided by one or

22

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

more user annotations, and a source-to-source transformation step replacing a reference

to a procedure parameter with a non-stack reference.

[0102] A computing context storing method is disclosed. The method comprises a step
of storing a computing context within a narrow time window part of the computing

context.

[0103] A computing context recognition method is disclosed. The method comprises a
step of storing a computing context. The method further comprises a step of re-
constructing the computing context from the stored data later, recognising the later
context to be that of the same computing environment for which the context was stored,
if the reconstructed context matches a freshly computed context for more than a preset,

passing number of stored context entities.

[0104] A distribution method for a multimedia and text combination asset is disclosed.
The method comprises a step of encrypting or decrypting a combination of video, audio
or text data bundled with a software player, using the hidden keys or cryptography
implementation of the software player such that no customer-specific symmetric or
assymetric key or password is required to be input or made available during the

installing or running of the player.

[0105] A software authentication and installation monitoring method is disclosed. The
method comprises the steps of (a) hiding one or more keys or cryptography
implementation; (b) tracking authentic software or certified software or user-built
software installed on a machine by storing the information in encrypted form on the
machine using the hidden keys or cryptography implementation; (c) mediating in a
software installation, ensuring that authentication steps are carried out that ensure the

authenticity of the installed software; (d) disallowing a user setting the permission of a

23

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

file to execute, unless the file is known to be built or certified by the user or known to
be authentically installed as per the tracked information; (e) disallowing an executable
file to run, unless the file is built or certified by the user or known to be authentically
installed as per the tracked information; (f) stopping a running program, if the running
program is found to not be user built or certified, or authentically installed as per the
tracked information; and (g) scanning the machine periodically, resetting the the execute

permissions of any unknown files.

[0106] The systems and methods disclosed herein are all operable in a computing

environment.

BRIEF DESCRIPTION OF ACCOMPANYING DRAWINGS

[0107] To further clarify the above and other advantages and features of the disclosure, a
more particular description will be rendered by references to specific embodiments
thereof, which are illustrated in the appended drawings. It is appreciated that the given
drawings depict only some embodiments of the method, system, computer program and
computer program product and are therefore not to be considered limiting of its scope.
The embodiments will be described and explained with additional specificity and detail

with the accompanying drawings in which:

[0108] Figure 1 shows a flowchart depicting the process of asset distribution and

licensing.

[0109] Figure 2 illustrates the process of authenticating a potent or potentate.

[0110] Figure 3 illustrates the process of saving and evolving a stored context.

24

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

[0111] Figure 4 illustrates the copyright protection and distribution of assets comprising

multimedia and text data.

[0112] Figure 5 gives an overview of obfuscation techniques.

[0113] Figure 6 illustrates the means of procedure obfuscation by de-stacking

parameters.

[0114] Figure 7 illustrates the obfuscating memory manager.

[0115] Figure 8 illustrates the structure of multimedia/text potents.

[0116] Figure 9 illustrates the structure of an authentic client monitor.

[0117] Figure 10 illustrates a computer system in which the asset distribution system

may be implemented.

DETAILED DESCRIPTION OF THE INVENTION

[0118] In the Summary of the Invention above and in the Detailed Description of the
Invention, and the claims below, and in the accompanying drawings, reference is made
to particular features (including method steps) of the invention. It is to be understood
that the disclosure of the invention in this specification includes all possible
combinations of such particular features. For example, where a particular feature is
disclosed in the context of a particular aspect or embodiment of the invention, or a
particular claim, that feature can also be used, to the extent possible, in combination
with and/or in the context of other particular aspects and embodiments of the invention,

and in the invention generally.

25

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

[0119] The term “comprises” and grammatical equivalents thereof are used herein to
mean that other components, ingredients, steps, etc. are optionally present. For example,
an article “comprising” (or ”which comprises’”) components A, B, and C can consist of
(i.e. contain only) components A, B, and C, or can contain not only components A, B,

and C but also one or more other components.

[0120] Where reference is made herein to a method comprising two or more defined
steps, the defined steps can be carried out in any order or simultaneously (except where
the context excludes that possibility), and the method can include one or more other
steps which are carried out before any of the defined steps, between two of the defined

steps, or after all the defined steps (except where the context excludes that possibility).

[0121] For the purpose of promoting an understanding of the principles of the invention,
reference will now be made to the embodiment illustrated in the drawings and specific
language will be used to describe the same. It will nevertheless be understood that no
limitation of the scope of the invention is thereby intended, such alterations and further
modifications in the illustrated system, and such further applications of the principles of
the invention as illustrated therein being contemplated as would normally occur to one

skilled in the art to which the invention relates.

[0122] It will be understood by those skilled in the art that the foregoing general
description and the following detailed description are exemplary and explanatory of the
invention and are not intended to be restrictive thereof. Throughout the patent
specification, a convention employed is that in the appended drawings, like numerals

denote like components.

26

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

[0123] Reference throughout this specification to “an embodiment”, “another
embodiment” or similar language means that a particular feature, structure, or
characteristic described in connection with the embodiment is included in at least one
embodiment of the present invention. Thus, appearances of the phrase “in an
embodiment”, “in another embodiment” and similar language throughout this

specification may, but do not necessarily, all refer to the same embodiment.

[0124] Disclosed herein are embodiments of a system, methods and algorithms for asset

distribution. A glossary defining common terms is first provided.

Glossary

[0125] potentate: A sold software copy, licensed to a buyer, the software having
cryptographic capabilities that are hidden with careful obfuscation, the software having
policing capabilities including copyright and license enforcement, secure selling and
authentication, and pervasive distribution capabilities including self duplication, self
demonstration, self marketing with incentives, and self selling securely with multiple

payment or free schemes.

[0126] potent: A copy of a potentate that hasn’t been validated as a potentate yet by a

sale.

[0127] scalar: As conventional in standard C, a scalar is a value of arithmetic or pointer

type.

[0128] aggregate value: As conventional in standard C, an aggregate value is

comprised of one or more scalars such as in an array, or struct.

27

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

[0129] digital asset: Software and/or digital data make up a digital asset. This includes
software comprising potentates, potents, or authentication software therefor, inclusive of

any data clubbed therewith.

[0130] object: As in standard C, an object comprises a storage area wherein data
representing a scalar or aggregate value may be stored. An object storing an aggregate
value may furthermore have the structure of an object as described in object-oriented

programming, such as in C++.

Asset Distribution

[0131] Digital or binary content providers such as software makers and distributers,
music providers, video providers, and document providers face two common problems.
How to enforce copyright protection over their assets and how to profit and spread their
assets far and wide throughout the globle. In this disclosure, we present a method of
obtaining both simultaneously, harnessing the power of asset duplication (by anyone and
everyone) to the benefit of legitimate content providers. The method, which endows a
software asset with unmatched potency, to germinate legitimate assets for the content
provider, briefly put loves repeated (duplication) encounters, each of which yields a new
potent, dispersed asset that serves the content provider either as an immdiate sale
(thereafter named a potentate asset, or potentate in brief) or as a seed asset for a future
sale (named a potent asset or potent in brief). Each encounter resulting in a potentate is
screened by the content provider, to legitimise as a sale (generating a potentate) or not.
An unlegitimised encounter (i.e. a duplication without sale), though not yielding a
potentate, serves as a spare tyre, as it can later generate sales for the content provider by
its own legitimisation (i.e. a purchase that is eventually carried out) or that of its copies,

each of which counts as a potent till legitimised, if at all.

28

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

[0132] A distribution system for binary-encoded digital assets is disclosed. The system
comprises a hiding means for hiding one or more keys or cryptography implementation
in a digital asset. The system further comprises a copying means for asset distribution
wherein a functionally-restricted asset copy is received for use or further distribution,
directly or as a further copy, with or without access to a computer network. The system
further comprises a self-policing means for enforcing asset safety, comprising an
authentication means for an un-authenticated, digital asset wherein encrypted credentials
data using one or more keys or cryptography implementation hidden in the asset are
constructed for authentication by an authenticated digital asset or website. The self-
policing means further comprises a secure selling means for an authenticated digital
asset wherein either a sale transaction is carried out directly, securely, or the sale is
delegated to a separate secure means, identifying the delegation by an encrypted
identifier constructed using one or more keys or cryptography implementation hidden in
the asset. The response from the secure means is decrypted using the one or more keys
or cryptography implementation hidden in the asset to determine the success of the sale.
The self-policing means further comprises a copyright and license enforcement means
for an asset wherein encryption and decryption of computing context and other data
using one or more keys or cryptography implementation hidden in the asset are carried
out. Functionally-unrestricted asset use is permitted only after the asset has been sold

and licensed to run in a recognisable computing context.

[0133] According to an embodiment, a digital asset comprises software.

[0134] According to another embodiment, the asset further comprises a combination of

encrypted video, audio, or text data bundled with the software. The software is a

software player to decrypt and play the data or encrypt and add data.

29

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

[0135] According to yet another embodiment, the bundled software thwarts simple data
capture mechanisms comprising one or more of screen bitmap capture, screen text clip

capture, screen text clipboard capture, or audio clip capture.

[0136] According to an embodiment, the hidden keys or cryptography implementation
of the software comprises an expiry date or mechanism so that the software does not

work after the date or mechanism disallows it.

[0137] According to another embodiment, the software enables a free or priced update
with a continuing digital asset of different hidden keys or cryptography implementation,

upon expiry of the software.

[0137] According to an embodiment, the update recurs with a well-announced expiry

date for planning convenience.

[0139] According to an embodiment, the bundled data decrypted or encrypted by the
hidden keys or cryptography implementation of the software player is reduced to a small
partition so that the remaining one or more partitions may be bundled with one or more
other software players, each distributed with its own distinct hidden keys or

cryptography implementation.

[0140] According to an embodiment, the distribution system instals an authenticated

digital asset on a machine where installed software consists of authenticated assets only.

[0141] According to another embodiment, the asset installation is mediated by a

monitoring system on the machine.

30

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

[0142] According to yet another embodiment, the asset installation updates an expired
or expiring asset with a successor asset of different hidden keys or cryptography

implementation.

[0143] According to yet another embodiment, the update recurs with a well-announced

expiry date for planning convenience.

[0144] According to an embodiment, the asset installation instals and periodically

updates an authenticated browser.

[0145] According to an embodiment, the monitoring system disallows unmediated asset
installation by resetting execution permission or disallowing a file with execute

permission to run, or stopping a running software.

[0146] According to an embodiment, secure selling is carried out even on a machine

with un-authenticated software.
[0147] According to an embodiment, no plaintext fragment of encrypted data is exposed
to a user, other than possibly only sale-related input such as buyer details or payment

details.

[0148] According to yet another embodiment, the computing context and other data are

stored with the digital asset after sale and installation.

[0149] According to yet another embodiment, the credentials data constructed by a

digital asset are passed to a browser to authenticate.

31

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

[0150] According to yet another embodiment, a key is stored in a digital asset by
distribution into a subset of a large number of candidate data fields in the asset, the
reconstruction of the key from the fields not being apparent from a reverse engineered
control flow of the asset, forcing a combinatorially large number of key reconstructions

to be considered in a key search making key discovery infeasible.

[0151] A distribution method for binary-encoded digital assets is disclosed. The method
comprises a hiding step for hiding one or more keys or cryptography implementation in
a digital asset. The method further comprises a copying step wherein a functionally-
restricted asset copy is received for use or further distribution, directly or as a further
copy, with or without access to a computer network. The method further comprises a
self-policing step for enforcing asset safety, comprising an authentication step for an un-
authenticated, digital asset wherein encrypted credentials data using one or more keys or
cryptography implementation hidden in the asset are constructed for authentication by
an authenticated digital asset or website. The self-policing step further comprises a
secure selling step for an authenticated digital asset wherein either a sale transaction is
carried out directly, securely, or the sale is delegated to a separate secure means,
identifying the delegation by an encrypted identifier constructed using one or more keys
or cryptography implementation hidden in the asset. The response from the secure
means is decrypted using the one or more keys or cryptography implementation hidden
in the asset to determine the success of the sale. The self-policing step further comprises
a copyright and license enforcement step for an asset wherein encryption and decryption
of computing context and other data using one or more keys or cryptography
implementation hidden in the asset are carried out. Functionally-unrestricted asset use is
permitted only after the asset has been sold and licensed to run in a recognisable

computing context.

32

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

[0152] Since potent/potentate software can be duplicated and sold without an official
distribution channel, the authenticity of a software being purchased need not always be
known. It is important for a software to be able to present its credentials, to authenticate
itself, for purposes such as ruling out fakes or trademark violators. By authenticating, a
buyer is assured of immediate trademark compliance, that the software is genuine and
not a fake. From a security perspective, another reason for software to be vetted as
genuine potent/potentate is to rule out financial information sponging by a masquerader.
An example of such sponging is masquerader software that indulges in credit card

information grabbing without delivering the ”sold” software.

[0153] Authentication, or the thwarting of masqueraders, can happily can be left to word
of mouth often, on antecedent checking, as purchase should only be attempted when the
entity is a duplicate of a known, working, potentate or stored spare only, or picked from
a certified site, e.g. https://www.buffnstaff.com/downloads. In this approach, no extra
baggage for security is required beyond the https protocol that is commonly available in
browsers. The degree of freedom in this approach is maximum, but the burden placed

on the buyer is enormous as he has to know the software being bought.

[0154] One security-protocol independent way to approximately authenticate an
unknown software is to allow it to demonstrate some difficult, but marketwise narrow
functionality that is beyond the reach of masqueraders and leaves the buyer enticed for
the purchase. For example, a compiler product can say compile programs of size 199
characters exactly and show the working output to a user. This functionality is hard for a
masquerador to implement without duplicating the provider’s effort and does not turn
the product into a free giveaway. The working demonstration is likely to be a selling

advertisement for the product that a buyer can test to his comfort.

33

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

[0155] Another security-protocol independent authentication mechanism that can be
offered is the provision of hash codes for a legitimate duplicate that can be
independently verified by a user. The ability to carry this out without being networked
maximises the degree of freedom of the buyer. The hash function has to be widely
available, e.g. compute file size, compute compressed file size, and the answer for the
software has to be widely published and stable so that the user can be expected to have
cached or online access to it. Examples of generic software that can be used to compute
the hash code are Is -1 (in Unix), that yields the code size. Another code is a compressed
code size, that may be obtained using common, specific packages like zip. Other hash
codes are tests for a specific pattern in the code binary or a checksum etc. To cross
check, the published hash codes have to be available widely. The source of the wide
availability has to be secure, coming from an https website or a verified asset or an
advertisement slogan so that masquerading is either not possible or is catchable. The
advertisement slogan can well be the version name for the product, which can comprise
the hash code itself. Hash codes can be computed as a part of a formal authentication

function for an asset.

[0156] Figure 1 contains a flowchart illustrating the working of the potentate asset
distribution system. Using techniques discussed later, a potentate is constructed with a
hidden cryptography function, hiding keys, data and implementation details from the
prying eyes of an adversary who may wish to reverse engineer or discover these details
by scrutinizing the object code or binaries comprising the potentate or running them.
The sub system or method comprising these techniques is used once during potentate
construction, after which, the distribution system only executes the steps shown in
Figure 1. In a first step, a potentate is received as a potent, which is a semi-functional
cryptography hiding asset copy, for further processing. The potent is then run in a
demonstration mode, showcasing marketing features of the asset, to convince the user of

the purchase value of the asset. The user is shown only the functionality of interest to

34

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

the user. Enough computation is packed in the demonstration mode to obfuscate the
cryptography function of the potent, by interleaving the two computations, as required
by the cryptography hiding system. The cryptography function is used by the
authentication, purchase, and installation steps, which are carried out logically in
parallel with the interleaved demonstration code. As much of the cryptography function
for these steps is carried out in advance, in parallel with the demonstration code, as
possible, to maximise the interleaved overlap and obfuscation. The parallelism may be
only logical, using single-threaded interleaving of the demonstration and

cryptography code, but it can also be physically parallel, with the cryptography code
pieces running in parallel with the larger demonstration code, at random triggering

points in the demonstration code.

[0157] In the authentication function, the potent computes an encrypted credentials file
for the potent, for authentication by a trusted party (software asset and/or secure
website). In a buying step, a user may purchase an authenticated asset, by either carrying
out the encoded e-commerce sales steps contained in the potent directly (e.g. transact
using credit card information), or the purchase may be delegated to some other secure
means for purchase, e.g. a physical cheque mailed to the potent manufacturer, with an
encrypted transaction identifier generated for the delegated transaction. The secure
means is expected to return its answer (successful sale or not) by a return, encrypted
identifier, which when fed back to the potent results in acceptance of the fact. In case of
the delegated means, the potent running blocks till the sale answer is obtained from the
secure means. Such a potent stores this state in an encrypted file called a paint file, for
continuation later. The potent can be run in demonstration mode till the sale transaction

completes.

[0158] Since the sale delegation step above does not ask for or put a buyer’s confidential

financial information at risk, the sale delegation step does not require a formally

35

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

authenticated potent to be carried out. So for instance, a buyer convinced by the
demonstration mode, or knowledgeable of the potent’s antecedents, or its hash codes

etc. may purchase the potent using the delegated sales mechanism securely.

[0159] Upon a successful completion of a sale transaction, the potent saves a snapshot
of the computing environment that the potent has been licensed to run in. The snapshot
or context comprises some identfying information pertaining to the computing
environment so that in later runs, the environment can be verified to be the same so that
copyright on the potent can be enforced and the potent allowed to run only on the
recognised machine. The sale and context details are saved in encrypted state in the
paint file, as a part of installation of the potent as a potentate (i.e. a sold and licensed
software). Till installation as a potentate, the potent is a functionally restricted software,
capable only of running in demonstration mode and not full function mode. The full
function mode becomes available only after sale and installation. The details saved in
the paint file are also communicated in encrypted state to the content provider (potent
manufacturer), so that the provider has complete knowledge of the sale and license

context.

[0160] Up till this step, the potent runs in logically parallel mode, with a restricted
demonstration mode running in parallel with the other steps. The parallel mode is shown
by the dotted parallel lines in-between the demonstration and authentication/buy/install
steps in the flowchart of Figure 1. After installation, the potentate runs in another
logically parallel mode, as shown in the loop of Figure 1. The loop illustrates the
sequence of fully functional potentate runs that may be made in the licensed computing
environment, by a user. Each run of the potentate, transpires in parallel with the other
steps shown in the loop using parallel dotted lines. One step, with cryptography function
is the enforce copyright step, wherein the encrypted context in a paint file is decrypted

and compared with the actual entities in the computing environment for a match. The

36

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

copyright check is made dispersed over each potentate run, blocking the potentate in the
unexpected case that it fails. This case is not illustrated in the figure. In this case, after a
dialog with the user, the potentate either resumes running with copyright verified and
paint modified, or the potentate relapses to the semi-functional potent mode and jumps
back to the first step in the flowchart. Details of the dialog are discussed later in this

disclosure.

[0161] In concurrence with the copyright enforcement step, the user can ask the
potentate to make its own copy for further distribution to other buyers with the user
playing the role of a seller intermediary. In this step, a copy of the potentate is made
along with a stripped down paint file, identifying the user’s potentate as the parent of the
new potent. This identification helps the user get reward credits for a sale from the
content provider. The potent software bundle is made available at the file location
provided by the user. The user is of course free to make a copy of the potentate,
manually, himself, outside of the loop shown in Figure 1, but then he may not get the
stripped down paint file, unless he is able to put together the same from some other

copying transaction.

[0162] If the antecedents of a software are unknown and the approximate methods
above do not satisfy a buyer, then the buyer can formally authenticate the software using
the method taught herein. In this method, the buyer runs the software by providing
arguments that induce the software to present its credentials. The credentials file is an
encrypted file that is passed as is to an authentication software that after a dialogue with
the potent, either passes the file (verifying the software as genuine), or rejects it (the
software is a fake), or states the software is out-of-date. An out-of-date software is
recommended to not be used, unless the buyer is sure for some other reason. The out-of-
date software finding also arranges for a computer update that deletes the dated software

and replaces it with an up-to-date software from the content provider. The authentication

37

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

software is lightweight software that can be downloaded from the secure, https, content
provider website and freely duplicated itself. It also presents its own credentials for
authentication by authentication software like itself. Authentication software, when
downloaded, comes with an expiry date so that it is updated automatically with a fresh
version when the expiry occurs. Softwares (authentication, potents, and potentates) are
tied to expiry dates so that the cryptographic protocols followed by them are time bound
and changed regularly, bounding the time window within which an adversary has to try
to break them in case of an attack. In the rare case of a successful attack, the content
provider at its discretion can also push or notify fresh

updates to all known buyers and software keepers so that the software in use is safe.

[0163] Figure 2 illustrates the steps taken in authenticating a potent or potentate. The
floppy disk icon with legs in the figure represents a running program (e.g. potent or
potentate). The program creates a credentials file that is passed to either another running
program that is already pre-authenticated (hence shown in a haloed, grey circle) or
passed to a secure website (shown in a network cloud) to authenticate. The contents of
the credentials file are encrypted for security. Figure 2 shows the decrypted fields of the
file for convenience. One field is the version number of the encrypting program. A
second field is the parent identification of the program (the software from which the
program was copied), so the origin of the program can be traced. A secret is passed
between a potent and an authenticator also, but not in the initial credentials file. There
may be other optional fields in the credentials file, which are indicated by the ellipsis

(...) and left unspecified in Figure 2.

[0164] After a credentials file has been decrypted by the authenticator, the authenticator
inserts a secret in the file, re-encrypts it and sends the file back to the potent/potentate.
The encryption process may well permute the field bytes, so the encrypted file may not

look like a (secret) suffix appended to the original credentials file. Upon decrypting the

38

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

returned credentials file, the potent computes a hash function on the received input and
sends this hash value in place of the secret, in a re-encrypted credentials file back to the
authenticator. The authenticator decrypts the file, checks the hash value and declares the
potent authenticated, if the results match the authenticator’s own computation of the
hash value. Figure 2 shows the two-way communication between the potent/potentate

and authenticator using the credentials format.

[0165] Authentication software, since it is content provider (and therefore content)
specific, can also compute focused hash codes that routine software like 1s -1 discussed
previously cannot. At the content provider’s discretion, hash code checking can also be
provided by authentication software as a part of its offering. Indeed, the hash code
computation provides the non-cyrptography code (analogous to demonstration code in
Figure 1), that is interleaved with the cryptography computation of the authenticator for

obfuscation.

[0166] Note that authentication software may be treated exactly as another digital asset
to be sold. The pricing is of course the seller’s prerogative. The authentication software
may be functionally restricted by not giving the user all hash results unless it has been

purchased and installed.

[0167] Only after a potent has been authenticated formally by an authenticator, may a
buyer attempt a purchase through the potent’s own sale mechanism. A purchase attempt,
without authentication, is totally the buyer’s own prerogative and risk. The financial
information provided by a buyer to an unauthenticated, potent masquerador may result
in theft of the buyer’s data by the masquerador. Hence, direct purchases without

authentication are highly disparaged.

39

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

[0168] An alternative that reduces the need for software authentication somewhat is to
separate the payment from the sale. In this case, a transaction id is generated by the
software to carry out a sale, to be used in making the payment separately from the rest of
the sale. The software begins to run in a limited manner after the sale is intitiated (e.g.
for a week), awaiting the sale transaction to be completed. To complete the sale
transaction, the buyer can log in to a https payment gateway website and provide the
transaction id and pay for the sale obtaining a sale id that can be fed back to the software
enabling it completely. Otherwise, the user can pay by offline methods such as sending a
cheque with the transaction id to the content provider physical address, or make a cash
payment to a content provider counter for the purpose, etc. Each of these methods
returns the sale id to be fed back to the software. The authentication and/or redressal in
these methods is by direct contact with the channel chosen for payment, with https being
certified and the others being physically available. Although the need for authentication
is ameliorated by such an approach, it is not fully eliminated as a masquerador can well
indulge in credit card information sponging under false pretexts to hoodwink a buyer,
who in good intention is likely to be keen enough to part with the information. Hence

reliance on authenticated software is highly desirable from all perspectives.

[0169] A combination of the above methods for authentication/antecedent checking
reduces the degree of freedom of a masquerador to beat the security checks that he
might be able to do in isolation. The combination then suffices to establish the

antecedents of all products.

[0170] With key and cryptography hiding described as above, antecedent checking can
be promoted with incentives as follows: a sale that can track its source (e.g. the parent
asset’s purchaser or the content provider’s website) informs the content provider of the
parent so that the parent’s purchaser is paid an incentive for promoting the sale. If the

parent cannot be tracked, or the parent is the content provider’s website, then the

40

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

incentive returns to the provider. Tracking a source is possible if all the user-visible
asset files in the parent’s environment are copied in the preceding duplication(s) so that
they are available for the sale process. Like Amway’s seller incentivisation, the entire
chain of parents can be paid incentives for a sale. In contrast to the the Amway model,

the characteristics of the sale here differ as follows:

[0171] 1. No inventory and no intermediary need be present in the sale. The
purchaser has to have or make a copy of the parent’s visible files. Whether this occurs
by direct access to the parent’s computer, or by asynchronous communication like e-
mail, or through intermediaries e.g. the parent purchaser’s friend, is immaterial. If the
non-executable visible files are lost in the process, at most the incentive to the parent
chain is lost, not the legitimacy of the sale itself, recording an overall win for the content
provider. Thus the path of the sale including any intermediary people or computers is
neither tracked nor auditable. The end result is whether the user has the goods or not. In
this scenario, it is possible for the goods to be altered en-route (e.g. executables from
one parent, other visible files from another), but this at most directs the incentive credit
away from one parent to another. Whether or why this happens is immaterial to the
content provider, who pays the incentive solely to chain of parents found in the files

with which the sale is carried out.
[0172] 2. Regardless of the path of sales, at most one chain of parents has to be
paid the incentive money, keeping the reimbursement process straightforward. This is

established by the theorem below.

[0173] Theorem 1. The ancestors identified in a sale consist of a chain of potentates,

linked to each other in a line by the parent relation

41

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

[0174] Proof. By Induction over the set of parent chains available with the content

provider for sales.

[0175] Base Case. First sale. Clearly this occurs from the content provider, through its
web site or parent identification as the content provider. Thus this sale adds one empty

chain for this sale to the empty set of parent chains available with the content provider.

[0176] N™ sale. Assume that with this sale, all the parents information available with the

content provider consists of linear potentate chains alone.

[0177] N + 1" sale. With this sale, if a parent is not identified, then an empty chain gets
added for the sale with the content provider. If a parent is identified, then, that parent’s
chain available with the content provider gets increased by the parent itself linearly as
the parent chain for the sale. Thus after the sale, the parent information available with
the content provider comprises linear parent chains alone and the chain identified for the

sale is a linear chain in itself. QED.

[0178] The theorem provided above is for the purpose of explaining the working of the

mechanism taught by the present disclosure.

[0179] As mentioned above, the path of a sale from a parent is not tracked. Hence it is
possible for the parenting credit to be shifted around, changing the parent chain for a
sale. It is imperative therefore that the incentives passed from the content provider to a
parent chain be impervious to such changes, else the content provider can end up paying
extra in incentives. For example, suppose the incentive is a fixed payment per chain
member. It is then in the interest of the sale intermediaries to mis-identify a long chain
with the sale to maximise payment from the content provider. One easy mechanism to

fix such liability is to have say fixed payment per chain, so that a longer chain is not in

42

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

the interest of the intermediaries. This still does not guarantee that the chain will not be
swapped, but it contains the financial liability of the content provider. It is up to the
content provider to decide what ratios to use in dividing the fixed incentive within the
parent chain. It is also up to the content provider whether to make the incentive scheme
time or season dependant, to reduce the net outflow of money for the incentives. For
example, the content provider can choose to payout only for sales made during holidays,
or an academic term (defined

appropriately).

[0180] Once a buyer concludes a payment interaction with a running potent, the potent
becomes a potentate and vulnerable to sale repudiation by the buyer (e.g. buyer claims
purchase was spurious and wants money back from say a credit card company while
holding on to the running potentate). To counter such a scenario, a potentate logs the
usage of the buyer after purchase. Once a minimum threshold of use is logged, the
potentate disallows further use of itself till it can communicate the above threshold use
to the provider over a network. A provider then handles a sale repudiation as follows:
for the buyer, if the provider finds minimum threshold use communication from the
potentate, then the repudiation is contested with the evidence. If the communication has
not reached the provider, then the provider accepts the repudiation and flags the same in
its database. If and when a minimum threshold communication for the buyer reaches the
provider, the flag in the database leads to a communication back to the potentate that no
further use of the software is to be permitted to the buyer. The potentate then acquires

the state of a potent.

[0181] Once a buyer concludes a payment interaction resulting in a potentate, the
potentate tries to communicate the sale and installation information to the provider at
the earliest opportunity that the network is available to it. If the network does not

become available till the repudiation threshold is crossed, then the potentate blocks

43

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

running till the threshold, sale and installation information have been communicated

back to the provider using the network.

Licensing capability
[0182] According to yet another embodiment, the computing context and other data are

stored with the digital asset after sale and installation.

[0183] A computing context storing system is disclosed. A computing context comprises
a narrow time window within which the computing context is stored in the computing

environment.

[0184] According to an embodiment, narrow time windows or exact times of creation or
modification of one or more files or folders along with their locations in a computing

environment further comprise the computing context.

[0185] According to another embodiment, the partial content of one or more files or
folders along with their locations in a computing environment further comprise the

computing context.
[0186] According to yet another embodiment, the names of one or more files or folders
along with their locations in a computing environment further comprise the computing

context.

[0187] According to yet another embodiment, functional data related to the accurate

working of the computing environment further comprises the computing context.

[0188] A computing context recognition system for handling and recognising a changing

computing context is disclosed. The system stores a computing context to re-construct

44

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

the computing context from the stored data later. The later context is recognised to be
that of the same computing environment for which the context was stored, if the
reconstructed context matches a freshly computed context for more than a preset,

passing number of stored context entities.

[0189] According to an embodiment, after a computing context is recognised, a revised
computing context is stored in place of the earlier stored computing context, for more

accurate recognition of a computing context later.

[0190] A computing context storing method is disclosed. The method comprises a step
of storing a computing context within a narrow time window part of the computing

context.

[0191] A computing context recognition method is disclosed. The method comprises a
step of storing a computing context. The method further comprises a step of re-
constructing the computing context from the stored data later, recognising the later
context to be that of the same computing environment for which the context was stored,
if the reconstructed context matches a freshly computed context for more than a preset,

passing number of stored context entities.

[0192] Prevalent licensing mechanisms query a user computer for information like serial
number to manage licensing. Such licensing can be undermined if the user environment
is altered to return false answers for the questions such as another computer’s serial
number. In order to overcome such masquerading attacks, the mechanism we propose
here additionally alters the user machine minimally (e.g. by saving the machine’s unique
characteristics, a fingerprint, in an encrypted file), so that the modification made marks
or paints the machine in a manner that only the licensing mechanism can recognise. This

scheme by itself is vulnerable if the machine’s characteristics change, so that the

45

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

licensing system is tempted to consider itself in a foreign machine environment and
disallow the software to run. The mechanism proposed here overcomes this weakness
by incorporating a multitude of expendable modifications within its encrypted paint file
so that the loss of a few does not compromise recognition, so long as a threshold of
recognisable modifications survive. Further, the modifications or paint marks are made
to evolve and grow over time to overcome inadvertent losses, so the licensing repairs
temporary losses when they occur. Finally, the paint evolution also migrates the paint
file from its initial content (at sale time) so that the paint file becomes variable and
distant from the configuration at sale time which is what is typically the target of a
piracy attack. Key to the robustness against masquerade attacks is the identification of
machine characteristics to create paint marks using base, most common operating
system primitives that are unlikely to be substituted by masquerade functions without
crippling the machine. A library call to obtain the machine serial number may be
masqueraded, without affecting overall system functionality. Basic file operations, on

the other hand may not, as their substitution is likely to cripple the machine.

[0193] In a first step, the computer of the user is queried to determine stable information
specific to itself, that is unlikely to be the same in a different computer. This information
may be considered as random answer data for a question, that is likely to differ from
computer to computer if the question is so posed to a multitude. Examples of such
information are: computer name, computer serial number, computer model number, the
value of the PATH variable defined in the software environment, details of the processor
used by the computer, details of the random access memory (RAM) used by the
computer, details of the internal hard disk used by the computer etc. This step is well
discussed in prior art and any of the prevalent techniques may be used to carry out the

step in software.

46

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

[0194] In a generalization of the first step, multiple independent questions are asked of
the user computer so that the likelihood of the combined sequence of answers for the
first step being identical for a different computer decreases as a product of the individual
probabilities. In other words, if the probability of identical answers for k questions for
two computers is pi, p2, ... px for the k questions, then the combined probability of the k

independent questions is p; *p> * ... *p; for the k questions.

[0195] Note that any of the combined or single answers to the questions of the first step
are of relatively stable information, which a pirate may be familiar with. So long as
substituting an actual answer to a question does not functionally affect the machine or
cripple it, a pirate may try to substitute the answer with a masqueraded one in an attempt
to hijack the installation process. If changing an answer requires tinkering with a
machine and changing its functionality, a pirate may not attempt it in order to avoid
detection or to avoid crippling the machine. The machine serial number is an example of
a non-functional question that can be masqueraded easily. It is important that at least
some questions asked of the computer environment exercise its functional aspects so as

to avoid being vulnerable to a masquerade attack.

[0196] For licensing, each time potentate runs, it queries the computer with the question
set described above, and running the software only if the answers match the answers
obtained at the time of sale and installation. If some of the answers have changed, such
as name of computer, or installed RAM, then the system goes into an updation mode,
where it asks guarded questions for acquiring stable answers. For example, it presents a
standard, exemplary menu of possibly changed items and asks the user to identify any
changed entities and their earlier values. The user is asked to go beyond the example
values to seek coverage. The changed set can be entered cumulatively in more than one

identification session.

47

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

[0197] Figure 3 illustrates the saving of a context file by a potent/potentate
(potentate/potent shown as a floppy disk icon with legs). The context file stores
encrypted data, which is shown un-encrypted in the figure for convenience. The running
software both reads and writes the context file, keeping it evolving as the computer
environment itself evolves over time. This allows the context file to more closely track
the environment for accurate recognition through the life of the software. The loop
below the potentate icon reflects this constant evolution in the content of the context

file.

[0198] An example of functional questions that may be asked of a computer are narrow
time windows in which specific, stable files have been installed on the computer. The
paint file itself is an example of a file installed on the computer. When the paint file is
created in the installation process, the creating program, using time functions can
estimate the creation time of the install file and enter the window, encrypted properly in
the paint file itself prior to closing the final file. If the paint file is copied and installed
on another machine in a piracy attempt, the file creation time on that machine is unlikely
to match the encrypted window time. Further, the creation and modification times of
other stable files on the filesystem can be saved in the paint window, making it highly
unlikely that another computer will have the same files, file locations and file times
matching this computer. File creation and modification time windows, specialized to
zero-width windows often, reflecting exact times, are thus a difficult functional,
computer identifying question for a pirate to masquerade. Even if the clock is altered in
a piracy attempt of copying a file at a desired time, it is hard to manage to copy distinct
creation time and modification time, as no modification of the encrypted file can be
entertained as it will break on decryption. So the modification has to be a forward and
backward modification with a total null effect and timed to fit the modification window
after creation window, which is hard to do, even with a controlled clock. In the limit, it

can be assumed that the time attributes of file inodes in an adverserial system can be

48

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

subverted in a copying attempt. By storing time windows of multiple, unknown files, the
information being stored in an encrypted state in the paint file, an adversary cannot be
expected to duplicate the exact combination of windows stored for the original

computer, thereby disabling any piracy attempt.

[0199] The context file in Figure 3 shows the storing of a subset of the directory
hierarchy on disk into the context file. The disk memory drum shows subdirectories D1,
D2 and so on for the directory D of which only D1 and D4 are reflected in the context
snapshot. The context contains the window of its own creation time in the [after, before]
range. The times for files F1 and F3 are saved under directory D1, leaving aside file F2
for example. Further context data for the files e.g. their partial contents, is stored as CF1

and CF3.

[0200] Another example of a functional question is the content of specific files on the
computer. It is preferable to query long-lived (e.g. old) files, which given their history or
knowledge are unlikely to change much. The starting line, or some line at some specific
offset in the files can be queried and the content encrypted in the paint file. Such a paint

mark is unlikely to repeated in other computers at the same location in the filesystems.

[0201] Another example of a functional question is a partial snapshot of a stable part of
the file hierarchy in the filesystem on a computer. Again, a computer’s filesystem is

unlikely to be repeated identically elsewhere.
[0202] While such functional questions may be stable, they may evolve gradually over

time, sometimes even rapidly. Such changes have to be handled by the licensing system

which is described next.

49

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

[0203] For gradual changes, the paint file can be updated and a new window saved for
the paint file itself, when a change is detected. So long as only a minor change occurs,
the licensing system remains capable of recognizing the computer environment and the
minor change only triggers an evolutionary change in the paint file to track the computer
evolution. If the change is drastic, the licensing system has to enter into a dialogue with
the user to ascertain the reason for the substantantive change in its stable information as
discussed previously. The dialogue, for a file system drastic change, can reach a
resolution like, hard disk failure, resulting in a new hard disk. Such a failure can be
corroborated further by non-functional queries such as hard disk identity, or a
combination of functional queries that corroborate each other like file hierarchy has
changed, along with time windows, along with file contents. In conjunction with server
updates, discussed later, such tracking can allow the licensing system to continue with

drastic changes in its stable set also.

[0204] The evolutionary nature of the paint file can lead to continual narrowing of the
time windows for specific files, to the betterment of the overall information. This can be
carried out in each evolutionary step, by predicting a tight window to modify the paint
file within, and storing the window in the file. The evolutionary nature of the paint file
additionally makes it hard for an adversary to discover the exact set of time windows

stored for specific files in the paint file, hardening any attempt of software piracy.

[0205] During sale and installation, communication with a content provider server is
carried out to inform it of the sale and paint details. The server is kept informed of paint
evolution so that even if the user inadvertantly un-installs the software, he can re-synch
with the server to re-install it and continue as is. The communication with the server
serves another purpose. If an adversary carries out a piracy attempt successfully, then the
adversary still has to keep the server informed of its paint details. In synchronising

paint, the server also checks its sale credentials and if it finds more than one track of

50

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

paint evolution reporting the same sale details, it can shut one or both tracks down as a

reduntant failure containment mechanism.

[0206] The server interaction as described above can also be skipped for specific sales at
a calculated risk for the content provider. This risk may be taken for fast, un-tracked
software propagation. The sale part of the interaction may then be comprised of the

following:

[0207] An onsite sale, carried out by a sales person with no server connection.
The sales person is responsible for the receipt generation if any, money collection
if any, and later server updation if any. The sales person has to feed an encrypted
authorisation to the potent during sale interaction allowing the sale to succeed. The
authorisation also tells the potentate whether it will carry out server interaction

post the sale or not.

[0208] Sale by coupons, wherein a coupon is an encrypted authorisation for a
granted sale during a specific time window, e.g. a day of sale. To be doubly sure,
the potent has to verify the time from the local clock with a global network time

before allowing the sale to succeed. Examples of such sales include:

[0209] Free giveaways: The giveaway may be an authorization for life of the
potentate, or for a specific period or number of uses, whereafter the potentate
becomes a potent again. The giveaway period, e.g. for needy students, may

promote sales indirectly by building up a user base.
[0210] Deferred sales: A deferred sale allows a potentate to be generated, with

money collection, either discounted or complete, occuring later after a certain

period or number of uses.

51

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

Multimedia and Text Sales
[0211] According to another embodiment, the asset further comprises a combination of
encrypted video, audio, or text data bundled with the software. The software is a

software player to decrypt and play the data or encrypt and add data.

[0212] According to yet another embodiment, the bundled software thwarts simple data
capture mechanisms comprising one or more of screen bitmap capture, screen text clip

capture, screen text clipboard capture, or audio clip capture.

[0213] Figure 4 illustrates potents and potentates for selling copyright protected
multimedia and text data. As the figure shows, the data can comprise any combination
of audio, video, still image (e.g. photographs) and text data that can be rendered by a
software player. As shown in the figure, the screen to display the data and the speakers
to play the data are carefully pre-empted (discussed below) to prevent data capture by
the rendering devices. The data itself is encrypted and either bundled with the software
player or delivered to an installed player. The player itself is a potent or potentate. The
player is capable of decrypting the data to play it. It can also add new data to the bundle
by accepting contributions from the user and saving them after encryption. The
contribution may optionally also be forwarded to the content provider, depending on the

service provided.

[0214] Multimedia sales may be routed through the software selling mechanism
discussed thus far. This comprises encrypted provision of the multimedia data and a soft
player optionally, in case the encrypted data cannot be played on the client side without
the soft player. The soft player preferably has the following characteristics: for video or
visual data, it disables bitmap capture so the copyrighted data cannot be conveniently

copied by anyone. This may be carried out as follows: An event listener is registered for

52

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

the display window, that (a) resets the clipboard so any prior event’s capture is
overwritten (b) repaints the screen with the window region whitened so that a future
event capture is overruled. Further, the listener can create an artificial event so that the
sequence above is repeated overwriting any bitmap saved by a process prior to the

overwriting of the clipboard above.

[0215] Text sales can be carried out similarly. In the case of text, a text displayer may be
provided that besides disabling bitmap captures, also disables the text clipboard for the

window. Thus edit events over the window are disallowed.

[0216] Analogous to bitmap capture, audio capture by the hardware player (speakers)

can be disabled to prevent copyright violation.

[0217] Once a data/text player has been installed, additional data can be streamed to the
player as and when needed in the encrypted format. Hardware for the soft players can

well comprise embedded software players.

Notes
[0218] The mechanism provided thus far can support computer upgrades as follows. A
user is allowed to un-install the software from a machine obtaining a free credit for a

fresh purchase. The free credit is used then to install for free on a new machine.

[0219] Portability of a software on multiple machines and platforms is an unknown
often, with the buyer unsure if the purchased software will run fully on the platform he
buys it for. This difficulty can be addressed as follows. The demonstration capability of
a potent can be designed to exercise all core functionality of the software, such as file

opening/closing, display etc. and the demo itself turned into a verification of portability

53

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

of the potent. After a free demo, a user can confidently make a purchase, knowing that

the software will spring no surprises thereafter.

[0220] Instead of providing authentication software for downloads on the content
provider website, the website can alternatively upload the credentials file provided by a
potent/potentate to the content provider website for verification online. This mechanism
bypasses the need for authentication software upgrades, but requires online access for

any authentication.

[0221] According to yet another embodiment, the credentials data constructed by a

digital asset are passed to a browser to authenticate.

[0222] As an alternate to providing authentication software to users, a potentate or
potent can instead support security-protocol-based authentication measures as found in
website authentication. So for instance, the potent when run in authentication mode on a
client machine can communicate with the client’s browser instead to return validation
information associated with a https page reserved by the content provider for the
purpose. This mode has to be run with networking disabled with the potentate/potent
software verifying that, and the security protocol and communication being carried out
locally on the client machine itself, allowing the browser to authenticate the software,
just as a website is authenticated. The key advantage of this approach is that it allows
widespread browser software with https support to be leveraged for authenticating
potent/potentate software without distributing any new authentication software for the
purpose. This mechanism however requires cooperation from browser vendors and can

work only if the straightforward functionality is provided in available browsers.

[0223] Since the potent/potentate software is likely to undergo examination in binary

form by pirates in an effort to decipher the public key and private keys embedded in it

54

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

(to break the authentication protocol), it is imperative that the software hide the keys
and key handling mechanisms well to resist such investigations. These methods are

discussed in the teaching provided herein.

[0224] For browser-supported authentication, the page pointed to in authentication is
changed (along with its public and private keys) if a potent’s keys are compromised. The
current page of authentication is well advertised. A potent with compromised keys
remains stuck on the old page and can be detected. Potents are periodically required to
synchronise and upgrade themselves with the content provider server to be up to date
with the current keys. If a potent is unable to authenticate using the latest page, the
potent is not considered authentic by this mechanism. The user can persist if he has
other knowledge of the particular potent, such as specific antecedent knowledge. The
change of pages in this scheme is expected to be infrequent, so the scheme can work
well with infrequent synchronizations. The content provider needs to broadcast changes
if they occur widely, to prevent fraud, which can well be done by e-mailing the current
user base, especially those who are known to be affected and sending them an update of
the software with un-compromised keys. The public key change does not need to be
broadcast specifically by the content provider. The new key is obtained normally by the

browser by its own standard mechanism.

[0225] For potents authenticated by non-browser, normal authentication software if the
authentication agent is coded with the public key of the content provider, the agent still
goes out of date if the key expires or its private counterpart (key) is busted. The agent
has to periodically update its public keys or itself — both are equivalent. Public keys in
authentication software do not require special hiding, since they are pubic data. Only
private keys require special handling and hiding, since they are the target that

adversaries try to discover.

55

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

[0226] According to yet another embodiment, a key is stored in a digital asset by
distribution into a subset of a large number of candidate data fields in the asset, the
reconstruction of the key from the fields not being apparent from a reverse engineered
control flow of the asset, forcing a combinatorially large number of key reconstructions

to be considered in a key search making key discovery infeasible.

[0227] The private keys, or symmetric encryption keys embedded in potent/potentates
and authentication softwares have to be hidden very carefully. A data structure for key
hiding in a binary software image, distributed freely is as follows. This comprises a K-
nested encryption: There are K keys in arbitrary positions in the binary image. Using the
first key, the second key is decrypted, using the second, the third, and so on till the last
and the last one is used to decrypt the private key. In a binary image with N key
candidates, N > K, this gives NK permutations to try out for finding the private key,
which, for large N and K is infeasible to discover. The permutation is now the real key,
and is hidden by designating up some bits of each of the keys as the next key offset
(modulo N). The bits can well point to the same key repeatedly and hence no
consistency check can be carried out by the adversary in ruling out infeasible key
sequences. The N candidates are themselves random bits. Now the pointer to the first
key and the choice of the bitmap defining the next key field is the real key. The bit map
has 2™-1 alternatives, where M is the key size in bits. For a large M, this key is
infeasible to break. The way to get a large M is to permit appended/overlapped readings
of the N key fields. The bitmap can be generated dynamically and not be available in the

control flow of the program to reverse engineer.

Cryptography Obfuscation
[0228] For authenticating and for other purposes discussed above, the system encrypts
and decrypts data, for which it works with a key hidden within the system. The key need

not be hidden, in case it is a public key of asymmetric cryptography, but then, the private

56

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

key with its partner, say the authentication software, still has to be hidden. As discussed
later, the system needs to both encrypt and decrypt data that has to be kept secret from
the client running the system. Hence the use of a public key for both these purposes is
not sufficient as the client will also be able to decrypt the secret data then. The system is
thus faced with a need to hide a private key, while running in a client environment. With
key hiding a need, the system can as well work with symmetric encryption and hide the
relevant key. Symmetric encryption is faster and far simpler than public-key
infrastructure, so the option to work solely with symmetric encryption is a valuable

advantage the system then offers.

[0229] A cryptography hiding system for hiding one or more keys or cryptography
implementation in a binary-encoded digital asset using holistic, efficient steganography
is disclosed. The system comprises an interleaving means for sequentially or
concurrently interleaving the computation of non-cryptography, useful code with
cryptography code. The system further comprises an obfuscating memory management
means for creating an encoded pointer representation of a scalar, comprising one or
more encoded pointers pointing to one or more objects created and managed by the
memory management means for maintaining the scalar in an obfuscated state
throughout the lifetime of the scalar. The system further comprises a class obfuscation
means for translating a class to one or more data structures or procedures. The system
further comprises a procedure obfuscation means for de-stacking one or more
parameters of a procedure or translating a procedure call to jumps to and from an inlined

procedure body.

[0230] A cryptography hiding system for hiding one or more keys or cryptography
implementation in a binary-encoded digital asset using holistic, efficient steganography
is disclosed. The system comprises an interleaving loop or recursive procedure

instantiating one or more re-entrant calls to one or more procedures or macros in

57

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

cryptography code, such that one or more re-entrant calls to one or more procedures or
macros in useful, non-cryptography code are interspersed in-between any two
cryptography code calls. A cryptography call typically comprises a smaller stateful

computation than a larger stateful computation comprised by a non-cryptography call.

[0231] According to an embodiment, the interleaving loop or recursive procedure is
parallelised to execute a cryptography call largely in parallel with non-cryptography

computation.

[0232] A cryptography hiding method for hiding one or more keys or cryptography
implementation in a binary-encoded digital asset using holistic, efficient steganography
is disclosed. The method comprises an interleaving step for interleaving sequentially or
concurrently, the computation of non-cryptography, useful code with cryptography code.
The method further comprises an obfuscating memory management step for creating an
encoded pointer representation of a scalar, comprising the use of one or more encoded
pointers pointing to one or more objects created and managed for maintaining the scalar
in an obfuscated state. The method further comprises a class obfuscation step for
translating a class to one or more data structures or procedures. The method further
comprises a procedure obfuscation step for de-stacking one or more parameters of a
procedure or translating a procedure call to jumps to and from an inlined procedure

body.

[0233] A cryptography hiding method for hiding one or more keys or cryptography
implementation in a binary-encoded digital asset using holistic, efficient steganography
is disclosed. The method comprises the step of using an interleaving loop or recursive
procedure for instantiating one or more re-entrant calls to one or more procedures or
macros in cryptography code, such that one or more re-entrant calls to one or more

procedures or macros in useful, non-cryptography code are interspersed in-between any

58

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

two cryptography code calls. A cryptography call typically comprises a smaller stateful

computation than a larger stateful computation comprised by a non-cryptography call.

[0234] To hide a key and related cryptographic mechanism, the system implements a
source-to-source transformation. The transformation carries out efficient, holistic
steganography that systematically inflates cryptographic code computation with regular
application computation, thereby hiding the cryptographic computation by burying it in
non cryptographic, regular application computation. The cryptographic computation and
also parts of the application computation are systematically obfuscated to make the
hiding all the more effective. The cryptographic code is automatically generated (post
transformation) and inserted as a part of the application code, so it cannot be discerned

separately from the application code, as say a separate dynamically linked library (DLL).

[0235] Figure 5 illustrates a potent icon running in a loop or recursion, shown as a circle
that the icon runs around in. The loop/recursion repeatedly executes cryptography code
followed by non cryptography or application code, such as demonstration code, so that
the work graph of the potent shows continuous toggling between the two kinds of work
as shown on the right side of the icon. Typically, larger amount of non cryptography
code is executed at a time compared to cryptography code, so that a steganography is
obtained wherein the cryptography computation is hidden by burial in the non
cryptography computation. The work graph is like that of a digital clock, generally

asymmetric, context switching stealthily between the two kinds of code.

[0236] Within the cryptography code, and to some extent in the non cryptography code,
deliberate obfuscation is carried out to hide the cryptography implementation and to do
it stealthily, so that an adversary cannot figure out where obfuscation begins and ends.
Programs have two major abstraction mechanisms, namely data and algorithms, both of

which are obfuscated effectively and efficiently, as shown in the figure. Data comprises

59

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

both scalar and aggregate types and both are obfuscated using a novel memory manager
dedicated to the purpose. The memory manager encodes all data using pointers, which
are known to make up intractable obfuscation, in a pluggable manner, so that an
adversary has no means to model or reverse engineer the obfuscation. Static analysis is
intractable, and observation of dynamic running is so tediously difficult and hidden with
markers erased that figuring out the structure of the cryptography manually or semi-
automatically is impractical. The memory manager uses pointers to allocated memory
objects, with garbage collection optionally aiding the memory manager, so that
migration of the objects changes data encodings transparently, making the obfuscation a
moving target. Similarly, data is distributed all over the allocated objects randomly, and
objects themselves are randomly placed over the heap, so that high entropy of

obfuscation is attained.

[0237] For algorithm obfuscation the primary target is the procedure abstraction of
programming languages. Since procedures are underpinned by stacks, the stack
mechanism is obfuscated by optimisation, attaining high efficiency. Targeting the stack
undermines stack based run-time observation and debugging tools, hardening the task of
an adversary. Furthermore, static analysis is undermined, leaving an adversary little or
no room to manouver in. Parameter passing over the stack is flattened by the use of
global variables, arrays, and procedure calls rescheduled and streamlined to enable this
effort. The class abstraction is flattened away into procedures and (aggregate) objects as

a part of compilation to de-structure the program.

[0238] The cryptographic computation is interleaved in application computation as

follows:

[0239] First, the cryptographic computation is invoked as a sequence of re-entrant

procedure or macro calls, wherein a macro call comprises running a statically expanded

60

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

macro code. These calls are interspersed in regular application code computation. A
main loop in the application code can call the call the cryptographic invocations, using a
random number generator to decide the intervening application computation size
between two cryptographic calls. The first call to the cryptographic code itself may
happen after some relatively long period of application computation to hide the start.
Thereafter, the interspersed cryptographic sequence runs. The last call informs the main
loop that no further cryptographic calls are to be made and the application runs un-

interrupted thereafter.

[0240] The notion of re-entrant code here is not stateless. The code is stateful and makes
progress from call to call. It is not stateless as in re-entrant libraries in prior art. Our
prior work on compiler frontends, Indian patent application 1025/DEL/2014, provides
an example of parallel stage codes that make progress from call to call. The stages make
progress, interleaved with each other, either as a sequential interleaving, or as explicitly
parallel code, with the progress occuring from call to call over the input text being lexed
and parsed. Similarly, the progress in the interleaving of application code and
cryptographic code comprises progress of the cryptographic code over the data being
encrypted or decrypted. The application makes its own independent progress over its
own input. The two progresses are made interleaved with each other, either as a
sequential interleaving, or as explicitly parallel stages. For explicitly parallel stages, the
(short) stage calls to the cryptographic code may complete well ahead of their spacing in
the main loop, resulting in well-spaced parallel computations of the cryptographic code.
If the application code computes speculatively, the spaced cryptographic calls may be

well hidden as routine parallel computation.
[0241] The cryptographic code is preferrable callable with multiple entry points, with

any schedule among the entry points being followed by the main loop in the application

code. So for example, with cryptography entry points, A(), B(), and C(), and application

61

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

entry point, X(), a round robin sequential schedule in the main loop calls the entries in
the order: A(), X(), BO, X(), CO), X0, A(), X(), B0, X0, CO, X(), AQ), X(), ... Preferably,
there would be multiple entry points for the application code also, which themselves

would be scheduled similarly, statically, or dynamically.

[0242] The cryptographic code is best obfuscated as discussed below. Preferably, the
code preceding and succeeding the cryptography code and random portions of the

application code are also obfuscated code for the purpose of steganography.

[0243] For a source language like C++, a first step in obfuscation is to flatten its classes
away. In other words, the C++ program is translated to a program within its C subset,
with classes replaced by structs, arrays, unions and procedures. This step is well known
in prior art and is one of the standard paths of compiling C++ programs. For example,
the EDG frontend (www.edg.com) supports an IL-lowering step in which such source-

to-source transformation is carried out.

[0244] The major program abstraction in programming languages comprises procedures
and procedure calls, which if obfuscated, lead to a very difficult to understand program.
Provided here are several novel methods of optimizing a program such that the resulting

program may perform better and also be harder to understand.

[0245] A procedure obfuscation system for de-stacking one or more procedure
parameters is disclosed. The system comprises a static analyser means capable of
guidance by one or more user annotations and a source-to-source transformer means

capable of replacing a reference to a procedure parameter with a non-stack reference.

62

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

[0246] According to an embodiment, the user annotations comprise sharpening a
symbolic value of a variable, location or expression to a subset of a symbolic value

generated by a static analyser.

[0247] According to another embodiment, the non-stack reference comprises a global

variable.

[0248] According to yet another embodiment, the static analyser means comprises a

means for determining that a procedure call has no nested calls to the procedure.

[0249] According to yet another embodiment, the static analyser means further
comprises a means for determining that the number of nested procedure calls to a
procedure contained within a call to the same procedure is less than a statically-known
constant. The non-stack reference further comprises a global array variable indexed at a

nesting depth of a procedure call.

[0250] According to yet another embodiment, the static analyser means further
comprises a means for determining that barring procedure return values, all
dependencies within a procedure are intra-procedural. The source-to-source transformer
means comprises a means for replacing a procedure with a parameter memoising

procedure.

[0251] A procedure obfuscation method for de-stacking one or more procedure
parameters is disclosed. The method comprises a static analysis step guided by one or
more user annotations, and a source-to-source transformation step replacing a reference

to a procedure parameter with a non-stack reference.

63

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

[0252] Figure 6 illustrates the means of procedure obfuscation by de-stacking
parameters. It comprises a static analyser that takes user input in its work by annotations
or equivalently, interactively. Furthermore, the method comprises a source-to-source
transformer for transforming the input program. The transformer is oriented towards
destacking parameters and is capable of transforming a parameter reference in a
procedure with a non parameter reference such as a global variable. Since a parameter is

carried on the stack, this comprises replacing a stack reference to a non stack reference.

[0253] The static analyser analyses procedures as to whether a procedure call can
generate nested calls to the same procedure. A procedure may be found to generate no
nested calls, or nested calls that are a constant K bounded, i.e. the depth of nesting of
calls to the same procedure may not exceed the static constant K. Procedures are also
analysed for conversion into cached or memoised functions and whether the memoised
computation of a procedure can be rescheduled to reduce the extent of use of stack
whereby the stack can be bypassed completely. The annotations or user input taken by
the analyser may comprise assertions in the program, for example narrowing the
symbolic values for variables and expressions constructed by the static analyser. For
example, a predicate in a conditional may be narrowed to true or false, allowing the
conditional to be treated as one branch only. The unfolding of a loop may be narrowed
to exactly n unfoldings, where n may be a constant or a symbol. Besides symbol
narrowings, the user may provide information such as an assertion that a procedure is

non nesting, etc.

[0254] Using the conclusions drawn by the static analyser, the transformer replaces
parameter references in a procedure with other references. Besides global variables, the
references may comprise array indexes, e.g. X[i], or array of frames references, where
the array element is a struct or frame and after indexing the array for a frame, a

particular member of the frame is dereferenced. Memoising procedures may be

64

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

scheduled as desired by an iterative loop, wherein the order of iteration dictates the

order in which the memoised procedure is called over its parameter space or domain.

[0255] Consider first a procedure for which a simple static analysis establishes that the
procedure does not have nested calls to itself, viz. in no execution path of the procedure,
a call to the same procedure occurs. In such a case, it is clear that the arguments to the
procedure can be de-stacked, viz. they need not be stored on the stack and can be stored
in global variables instead. This is because at any time, there is at most only one live
instantiation of the procedure. The global variables holding the arguments are in effect

registers storing the procedure parameters.

[0256] Consider next a procedure, for which a static analysis establishes that the
procedure is constant nested, viz., nested calls to the procedure are at most a constant k
deep. In this case, the procedure parameters can again be de-stacked and stored in a
global frame[k] array, wherein each frame stores the parameters for one particular call.
Each call can track its frame position by a global depth counter, that is incremented each
time the procedure body for a call is entered and decremented each time the body is
exited. The counter in effect tracks the dynamic schedule of nested procedure calls. The
reference to an individual parameter, X, is replaced by frame[c]->X in the procedure

body, with ¢ being the counter value.

[0257] The static analysis to discover the above cases is a straightforward path analysis
informed by the reachability of procedures to the call points encountered. The Pundit, a
symbolic execution analyser in Pradeep Varma, "Compile-time analyses and run-time
support for a higher-order, distributed data structures-based parallel language”, PhD
Thesis, Yale University, Department of Computer Science, University Microfilms
International, Ann Arbor, Michigan, 1995, is suitable for such a path analysis. Since the

problem in general is undecidable, the static analysis may be sharpened with annotations

65

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

as follows. The static analysis only proceeds over annotated code (e.g. annotated
function bodies), looking for procedure calls. Such annotation may be carried out as
command line arguments, e.g. identifying the procedures to be analysed, or such details
in a compilation-profile file provided as a command-line argument. Annotation is a
useful method because not all the application program needs to be analysed and the
cryptographic code may be small enough for a focused annotated analysis to be carried
out. For procedures not found to have de-stackable arguments, the analyser can point out
the reasons for not de-stacking, such as a nested call with a function pointer that may
alias to the procedure being de-stacked. The user can then assert to the analyser whether
the function pointer indeed aliases as such or not and the analyser proceed with the

sharpened information.

[0258] For determining k-depth-bounded nested calls, it is necessary to prune the
recursing path from the function entry to the function call. An annotation to the effect
that the nested call is k-bounded is sufficient to bound such a path. Further annotations
can then specify the boolean values the conditionals along the path can acquire
symbolically, allowing the analyser to have complete knowledge of the nested
computation for the procedure. This is sufficient to optimise the procedure call by de-

stacking its arguments.

[0259] A third method for de-stacking parameters covers the last case, of recursive
procedure calls as follows: The unbounded loop between a procedure entry and its
nested, recursive call is pruned and the boolean predicates along the path specified
symbolically so that the recursive invocations of the one or more procedures along the
path are labelled symbolically. Such specification occurs by annotation or interactive
dialog between the user and the analyser so that symbolic values in individual variable
bindings are sharpened. Sharpening may comprise pruning a symbolic value to a more

specified range or reducing the symbolic values that may bind to a particular variable.

66

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

For example, as discussed above, a boolean predicate may be specified to evaluate to
only true for k instantiations, which is an assertion or annotation to the effect that the
predicate value falls in the range {true} alone and not {true, false}. An assignment using
a conditional expression that yields a NULL pointer along one path and a data structure
pointer along another may ordinarily set a variable to either of the two symbolic values.

On specific annotation, one of the settings may be pruned, as specified by the user.

[0260] With recursive unfoldings of a function or set of mutually recursive functions
explained by annotation and/or static analysis as above, the analyser can further analyse
whether all the data dependencies within a procedure invocation are intra-procedural or
not (barring answers returned by calls). If they are intra-procedural, then the procedure
invocations may be re-ordered vis-a-vis each other so long as the return value of an
invocation is made available to a dependent procedure body for its computation. Thus a
schedule of procedure unfoldings (viz. a procedure invocation, minus a recursive call
contained within it) may be followed that sequentially computes the recursive
computation, while following an order that is not necessarily the same as defined in the

recursive computation. For example consider the fibonacci function:

[0261] fib(0) = 0;
fib(1) =1,
fib(n) = fib(n-1) + fib(n-2);

[0262] A recursive computation of fib(10) yields a tree of recursive fibonacci calls that
can instead be re-scheduled as fib(0), fib(1), fib(2), fib(3) ... unfoldings that compute
fib(10) in a bottom-up schedule. This is because the unfoldings have intra-procedural
dependencies only. With the result of fib(m) cached and made available to a fib(m+1)
and fib(m+2) unfolding, the recursive computation can be computed in a sequence. By

using cached implementation of fib(n) and specifying a schedule of computation,

67

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

namely the order n, for fib(n) calls, the entire fib(n) computation can be replaced by n
fib unfoldings exactly. As discussed in John Hughes, "Lazy memo-functions”, in
Proceedings of a conference on Functional Programming Languages and Computer
Architecture, Jean-Pierre Jouannaud (Ed.), Springer-Verlag New York, Incorporated,
New York, NY, USA, isbn: 3-387-15975-4, pages 129-146, and its successor work,
Pradeep Varma and Paul Hudak, "Memo-functions in ALFL”, YALEU/DCS/RR759,
Research Report, Department of Computer Science, Yale University, December 1989, a
cached function is computed on a set of arguments only once; later calls on the same
arguments reuse the result of the first call, which is cached in some memoising cache for
the purpose. In the context of fib(n), the parameters for the fib unfoldings need not be
carried on stack, since only one fib unfolding is active at one time. Hence the parameter
n can be a global variable with the stack completely bypassed. To specify a schedule for
computing cached recursive calls, an iterative loop is sufficient, e.g. for (i = 0; i<=n;
i++) global parameter = i; fib();. The later computations of fib use the cached answers of
earlier fib calls. This scheme differs from cached or memo functions in prior art in that
de-stacking or obfuscating parameters is not a subject of the prior scheme; hence the
necessary static analysis and re-ordered scheduling of procedures are not discussed

either.

[0263] Thus recursive procedure calls can have their parameters de-stacked as discussed
above. Given that both recursive and non-recursive procedure calls may have their
parameters de-stacked, the use of the stack to understand program behaviour is highly
curtailed by the optimised and efficient methods discussed here. The methods presented
here are likely to be highly effective and efficient, as they eliminate waste computation
(e.g. unstacking operations, redundant recursive calls) while obfuscating the procedural

abstraction.

68

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

[0264] Additional obfuscation of the procedural abstraction, that composes well with the
obfuscation methods discussed above comprises replacing a call with a goto in a source-
to-source transformed program. First, from prior art, it is known that a procedure call
can well be inlined, by replacing the call with the body of the procedure after
appropriate variable renaming. Inlining code has the problem of code bloat, so for
efficiency reasons, the method preferred herein uses a novel method of instantiating the
procedure body only once per calling procedure body at most. If the body of a procedure
Y has N calls to procedure X, the body of X is inlined only once in the body of Y with
gotos reusing the one inlined body as follows. The entry to X’s inlined body in Y has a
jump label for its entry. At the end of the inlined body, a switch is used to jump from the
exit to the continuations of its calling points. Each calling point jumps to the inlined
body after setting the switching variable, so that the exit switch will jump back to the
continuation of the calling point after computing the inlined call to X. While the gotos
manage the proper control flow of the procedure calls, the parameter passing can be
done using the de-stacking techniques discussed above so that no stack operations or jsr
(jump to subroutine) operations need to be invoked at the binary compiled version of the
code. This makes the procedure calls invisible to an adversary having access only to the

object code.

[0265] One call to X in the body of Y can be the position at which X’s body is inlined.
The other calls re-use this inlined body by the use of jumps. Alternatively, the inlined
body of X can be positioned at a place in Y’s body that is not visited by any path from
the entry of Y. For example, it can be after a return statement. All uses of such an X

body occur by the use of gotos.
[0266] A major obfuscation step comprises replacing scalar quantities in a program by

encoded equivalents. The encoding is novel in utilizing a set of pointers to encode any

scalar type. The encoding is highly general, as the pointers can point to and use any data

69

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

or table in the machine or be amenable to pointer arithmetic to translate themselves into
the ordinary value for a scalar type. So for example, a long type, of 32 bits may be
represented by 4 pointers, one per byte, with the encoded value, being not amenable to
algebraic manipulation and being amenable only to a machine-dependent interpretation,
wherein the pointers are used to possibly read the machine memory to resolve to the
long value that is encoded by them. In other words, the novel encoding for scalars is

highly obfuscated and difficult to analyse for an adversary.

[0267] An obfuscating memory management system for creating an encoded pointer
representation of a scalar is disclosed. The system comprises one or more encoding
pointers pointing to one or more objects created and managed by the memory
management system for maintaining the scalar in an obfuscated state throughout the

lifetime of the scalar.

[0268] According to an embodiment, the objects are laid out randomly over the heap

memory.

[0269] According to another embodiment, an encoding pointer is used only once in

encoding a scalar part.

[0270] According to yet another embodiment, an object comprises one or more fields
containing one or more pointers to one or more allocated objects. The value denoted by
an encoding pointer can be obtained by dynamic computation comprising the use of a
combination of the object, one or more of the pointers, one or more of other pointers to

the allocated objects, and the allocated objects.

[0271] According to yet another embodiment, the one or more pointers to allocated

objects contained in fields of the object further denote a value of a reference count for

70

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

an encoding pointer. The value can be obtained by dynamic computation comprising the
use of a combination of the object, one or more of the pointers, one or more of other

pointers to the allocated objects, and the allocated objects.
[0272] According to yet another embodiment, the memory management system
increments the reference count upon dynamically finding a scalar part’s encoding

pointer using a filter function.

[0273] According to yet another embodiment, the memory management system reclaims

the object upon reference count elimination.

[0274] According to yet another embodiment, the memory management system reclaims

or migrates one or more of the object or allocated objects using garbage collection.

[0275] According to yet another embodiment, the memory management system never

stores a scalar or scalar part directly in memory.

[0276] According to yet another embodiment, the memory management system

scalarises the scalar into independent encoding pointers.

[0277] According to yet another embodiment, the memory management system

distributes an aggregate object’s scalars’ encoding pointers all over the object.

[0278] According to yet another embodiment, the memory management system

distributes a set of aggregate objects’ scalars’ encoding pointers all over the objects.

71

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

[0279] According to yet another embodiment, the memory management system further
re-distributes the encoding pointers in the set of aggregate objects, upon increase or

decrease of objects in the set due to allocation or de-allocation.

[0280] According to yet another embodiment, the memory management system defers
an object de-allocation till a further re-distribution vacates the de-allocated object prior

to the de-allocation.

[0281] According to yet another embodiment, the memory management system
initialises the scalar using dynamic computation comprising the use of a set of literals

excluding the literal initialising the scalar in un-obfuscated program code.

[0282] According to yet another embodiment, an object comprises one or more fields
denoting a value for an encoding pointer or reference count. The value can be obtained

by dynamic computation comprising the use of the object.

[0283] According to yet another embodiment, the encoded pointer representation of the
scalar is changed when one or more objects pointed to by one or more encoding pointers

are migrated by garbage collection. The scalar’s value denotation remains unchanged.

[0284] An obfuscating memory management method for creating an encoded pointer
representation of a scalar is disclosed. The method comprises the step of using one or
more encoding pointers pointing to one or more objects created and managed for

maintaining the scalar in an obfuscated state throughout the lifetime of the scalar.

[0285] An obfuscating memory management system is disclosed. The system allocates

or de-allocates an object with meta-data comprising object size or layout. The contents

72

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

of the object may be obfuscated by distribution or re-distribution, part by part, anywhere

over the object or one or more other objects.

[0286] According to an embodiment, the memory management system defers an object’s
deallocation till occupants of the object in lieu of parts distributed or re-distributed to

other objects have been vacated.

[0287] According to another embodiment, an object is allocated with larger storage than
its meta-data size, so that false scalars or duplicated parts may be used to fill the extra

space for further obfuscation.

[0288] According to an embodiment the memory management system comprises a

garbage collector.

[0289] According to another embodiment, the garbage collector uses the layout

metadata to identify or de-obfuscate pointer scalars in the object.

[0290] According to an embodiment, the memory management system scalarizes the
object’s parts in substitution for object allocation on the stack. The object’s encoding
pointers are independently stored.

[0291] According to another embodiment, the memory management system enables
part-by-part scalarisation of all stack-allocated variables of a procedure. The variables

are shifted to heap allocation only if the variables comprise a pointer scalar.

[0292] According to an embodiment, the object meta-data itself is obfuscated.

73

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

[0293] An obfuscating memory management method is disclosed. The method
comprising the step of allocating or de-allocating an object with meta-data comprising
object size or layout such that the contents of the object may be obfuscated by
distribution or re-distribution, part by part, anywhere over the object or one or more

other objects.

[0294] Figure 7 illustrates the novel memory manager contributed by our work for
obfuscating program data. The manager uses pointers to encode a scalar or aggregate
object. A scalar, comprising one or more bytes is divided into parts each of which is
substituted by an encoding pointer. So a character scalar, for instance, comprising one
byte, may become two parts, both of which are substituted by a pointer apiece. An
ordinary scalar ends up becoming a fat scalar, of a different size, as a result of the
transformation. An aggregate object, comprising one or more scalar or other aggregate
objects is transformed similarly, byte by byte or part by part, into a fat aggregate object.
The figure illustrates a fat scalar as a sequence of slots, each of which is filled by an
encoding pointer. A fat aggregate object is shown as a vertical sequence of horizontally
slotted fat scalars, each slot in a fat scalar being filled by the encoding pointer for the
slot. The memory manager is capable of creating encoding pointers pointing to objects
created by the memory manager. The memory manager may distribute or scalarise the
encoding pointers of a scalar or aggregate object randomly over the storage space for the
object, in an order that differs from any ordinary storage sequence of the parts. Using
garbage collection, for example a recently disclosed, novel, pathbreaking true garbage
collector for C/C++ and other languages in

1013/DEL/2013 (PCT/IB2014/060291), and 2713/DEL/2012 (PCT/IB2013/056856),
the memory manager may migrate or relocate the allocated objects repeatedly, updating
the pointers accordingly thereby making the pointer encodings dynamic and a difficult,

moving target for an adversary.

74

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

[0295] Two options are shown in Figure 7 for the encoding pointers of a fat scalar.
Three encoding pointers are shown to point to the same object, reusing the same pointer
encoding for the three parts of the scalar. The object pointed to is a box highlighting the
features of such pointer reuse — that reference counts may be used to track the extent of
reuse, the shared pointer may be positioned randomly over the heap, and migrated
variously e.g. upon GC. The pointers for a fat scalar may be scalarised into a set of
encoding pointers, each located independently or separately of the others. For
scalarisation done on a stack frame, for local variables, the independent or separated
encoding pointers for all the stack scalars are placed randomly on the frame’s stack
storage. For scalarisation done by shifting a stack frame to the heap, the independent or
separated encoding pointers are distributed randomly on the heap storage for the frame.
One slot of the fat scalar is shown pointing to a box highlighting a one-time use of a
pointer, analogous to the one-time pad encryption. The pointer is not reused and may be
reclaimed upon GC or modified if the pointed object is migrated. The pointer may also
be randomly positioned over the heap, like reused pointers, and may undergo

scalarisation along with its peers for a fat scalar.

[0296] The fat aggregate object in Figure 7 illustrates one of its encoding pointers,
according to its part’s storage location, re-mapped to a different storage location in a
different fat aggregate object. This re-mapping occurs by a random re-distribution of the
encoding pointers all over the storage space for the (one or more) aggregate objects.
Two fat aggregate objects are shown out of a sequence, with the remapping shown for
one pointer in the left object remapped to a different slot in the right object. The pointer
itself may be one-use or a reusable pointer, details of which are not shown. The re-
distribution of encoding pointers, all over the storage of an aggregate object(s), may be
repeatedly changed, periodically. The re-distribution may involve storage space of just
one aggregate object, or more than one aggregate object, all considered together. The set

of aggregate objects may change dynamically, upon allocation and de-allocation. A de-

75

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

allocation may have to be deferred, in order to vacate its storage of encoding pointers of

other objects, prior to de-allocating the object.

[0297] In the technique to represent scalars presented herein, a scalar type, represented
as a fat scalar, comprising a set of pointers that encode the scalar type, is preferably
scalarised and distributed over the machine memory so that its component pointers are
not even localised in the neighbourhood of each other. Further, by encoding every scalar
in such pointer encoding, it is never the case that the machine memory (run-time
program image) contains a snapshot of any data field as is within itself. So no data field
can be read off the machine memory directly, or by permutation, in the present scheme.

This is a major invariant provided by the present system.

[0298] The representation of data (scalars), thus, is provided by a novel obfuscating
memory manager provided by the present system. The memory manager is capable of
working with an existing garbage collection system, e.g. as disclosed in Indian patent
numbers 1013/DEL/2013 (PCT/1IB2014/060291), and 2713/DEL/2012
(PCT/IB2013/056856), whose one or two-word encoded pointers can substitute for the

ordinary pointers discussed herein straightforwardly.

[0299] In a first step for turning ordinary scalars into fat scalars, the scalar types are first
identified in the program. This may be done by annotation, as only the cryptographic
code and an application subset is to be obfuscated thus. The cryptographic code may be
kept in a dedicated set of file(s) for the purpose and identification of the file(s) suffices

for annotation.
[0300] Next, each scalar type is replaced by a struct comprising the fat scalar. Although

this description is provided in the context of C, similar operations may be carried out in

the context of other languages. Following the struct conversion, assignments of scalar

76

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

values are changed to assignments of pointer members of the struct, the pointers
representing encoding of the scalar value. Note that by this conversion, each scalar type
requires the storage that is pointer aligned and sized a multiple of a pointer type. Since a
pointer type is typically a word (double word also, in 1013/DEL/2013
(PCT/IB2014/060291), and 2713/DEL/2012 (PCT/IB2013/056856)), mostly, padding

space in objects disappears and most or all memory stores useful data.

[0301] Similarly, scalar type reads are replaced by struct copying operations from a
source to destination variable, unless the scalar type is to be used, in which case, in
which case, the pointers may be read and decoded to regenerate the scalar value, which
is used immediately, so that the reconstructed value is not stored in memory at all. At
most, temporary variables may store the value in the compiled code, which generally are

register allocated.

[0302] Initialisation of a scalar field may be done using arithmetic generation of the
parts encoded by individual pointers that encode the scalar. The arithmetically generated
parts are encoded into the encoding pointers using macros or functions for the same. By
using arithmetic to generate the parts, none of the used literals correspond to literals in
the original program, so the symbol table does not contain literals that give away the
initialisation values of individual fields. For example, suppose an integer field has to be
initialised with 513 and is encoded as four pointers, one for each byte. Then the parts to
be encoded are 0, 0, 2, 1 for the four pointers, representing the 0 for the most significant
byte and 1 for the least significant. These parts can be generated by arithmetic such as
25-(13 + 12), 13 + 13 - 26, 32/16, 13-12. None of the literals stored in the symbol table
have any correspondence with the actual numbers. The choice of the literals to be stored
in the symbol table can be randomly generated to maximise entropy or obfuscation. The
arithmetic can be hidden within a long path of computation, involving say function

calls, for the same obfuscator purpose.

77

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

[0303] Cryptography key, string and character data/literals can be initialised as above,
character by character, or byte by byte. In this case, a byte can be broken into two

quartets apiece, of 4 bits each, to obfuscate individual character data.

[0304] The details of the run-time system to support pointer encodings are as follows.
First, the encoding from a scalar to its parts is specified. This may be as simple as
partitioning the bits/bytes as in the example above. Next, the one-to-many or one-to-one
mapping from a part to an encoding pointer is NON EXPLICITLY specified. Using the
example above and a one-to-one mapping, this maps each byte value to a specific
pointer. A reverse mapping function, from a pointer back to a part also has to be
specified, for which many options are possible. A first option is to have the reverse
mapping available by dereferencing the pointer, in which case, the storage pointed to by
the pointers make up a lookup table for the reverse mapping. The storage can well
comprise one struct per pointer, for which each struct can be allocated dynamically
(malloc-ed) upon need. Indeed, the table can be populated apriori, randomising the order
in which the structs are allocated from the heap. This randomises the table layout also.
The memory manager can allocate the structs with intervening jumps, distributing the
random table over the heap. The space in-between the structs can be managed by the
memory manager automatically. For example, in the context of the garbage collecting
memory manager of 1013/DEL/2013 (PCT/IB2014/060291), and 2713/DEL/2012
(PCT/1IB2013/056856), the extended gaps can be updated, after each struct allocation to
free up a (smaller) extended gap up to the next struct to be allocated, so that the space
in-between is not wasted and captured in the extended gaps of 1013/DEL/2013
(PCT/1B2014/060291), and 2713/DEL/2012 (PCT/IB2013/056856). Further, another
datum can be stored adjacent to the part value in each struct comprising the number of
references to the struct using an encoding pointer. This can be used to implement a
reference counting mechanism for the encoding pointer, so that after a threshold of use,

the struct can be abandoned, so that the encoding mechanism is not overused enough to

78

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

become recognisable by an adversary. The reference counting mechanism easily
increments a count whenever a scalar part is translated to an encoding value. The count
is harder to decrement though, without the services of a garbage collector, but it can be
done occasionally, for example when a local variable exits its scope, so long as the

encoding pointer has not escaped.

[0305] This option of pointer dereferencing for reverse encoding, described above, is
quite capable, but suffers from storing parts as is in memory for inspection by an
adversary. This may suffice, since a scalar is not stored as a whole but rather in parts.
Another mechanism carries out pointer arithmetic on the dereferenced value for the
purpose of the reverse mapping. For example, the a base pointer can be stored, the
difference of which versus a dereferenced pointer value decides the part value. If the
base pointer is the NULL pointer, then the absolute value of the dereferenced pointer
decides the part value. Specific bits of the pointer may be used to decide the part value,
for example the lowest byte, or the second byte. Combined with a non-NULL base
pointer, this yields a part value that is not directly stored in the memory reached through

an encoding pointer.

[0306] The reference counting mechanism can be encoded in the remaining bits of an
dereferenced pointer above. So for instance, if the second lowest byte stores the pointer
part, the lowest byte can store the reference count. This scheme has the advantage that
an encoding dereferenced value, a pointer, constantly changes, making the encoding
dereferenced value itself a moving target, with the encoding pointer becoming a stateful

entity.
[0307] It is desirable to keep the dereferenced pointers live, viz. pointing to allocated

memory, in order to add stealth or disguise to the scheme. The memory manager is

aware of the allocated memory and can choose a specific base pointer and dereferenced

79

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

pointer implementation that keeps all pointers in an allocated region. For example, if 64
kilobytes of contiguous space has been allocated, the region can be traversed using 16
bits or 2 bytes total. If such space has not been allocated, it can be allocated in
anticipation by the memory manager for use later. Since the starting address may not fall
on a 16-bit boundary, the addressing of the region may spill over to an adjacent 16-bit
region, requiring at most one more bit to address into the region. Using these 2 bytes + 1
bit, all pointers to the region may be used as dereferenced pointers. Alternatively, and
preferably, although not aligned on a 16-bit boundary, the region will occupy half or a
majority of one 16-bit aligned space and the pointers in a that subset alone may be used
to decode a part. This subset may be addressed using 16 bits alone. Of this subset, only
half of a 16-bit region needs to be addressed, requiring a total of 15 bits. Since these 15-
bits represent a 15-bit aligned region, the bits have free rein and may acquire any value.
Of these 15 bits, a byte is needed to encode a byte part, leaving the rest free for
reference count. Given that small reference counts are desirable to hide the encoding

mechanism, the bits are more than enough for the counting purpose.

[0308] If the memory manager is implemented in a context with garbage collection (e.g.
1013/DEL/2013 (PCT/IB2014/060291), and 2713/DEL/2012 (PCT/IB2013/056856)),
the reference counting mechanism may be eschewed in favour of the garbage collector.
Otherwise, the reference counting mechanism provides a means for reclaiming the

storage space for encoding pointers, once the pointers have disappeared.

[0309] In the continuing example of a 4-byte integer scalar, any scalar may be encoded
with 4 encoding pointers, each pointer decoding to one of 256 values for a byte part.
These encoding pointers all share the storage for encoding pointers, comprising the
structs discussed above. The base pointer may also be shared and made available using a
shared global variable for the scheme. Similarly, any scalar of k bytes, can be encoded

using k shared-storage encoding pointers with a total storage bill of 256 * sizeof(struct)

80

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

bytes. If reference counts are ignored, then all the scalars in a program can be encoded
using these shared storage pointers for the nominal storage bill. This however, is not
desirable since it may lead to the recognition of the scheme by an adversary. So
reference counting upto the maximum count representable in a struct (7 bits in the
example above), can be used to share a pointer, after which, a new struct can be created
with a new pointer encoding for the part value being encoded. In this one-to-many
scheme, multiple structs, with corresponding pointers represent the encoding for one

part value.

[0310] The dereferenced pointers are used above to compute a part’s value based on
pointer arithmetic. From an obfuscation perspective, these pointers can be dereferenced
periodically to collect statistics about the data stored in an allocated region so that some
useful work is done on the side to obfuscate the purpose of the encoding pointers. This
statistics collection (e.g. how many fields have odd values and how many even), can be
done by the memory manager itself or by code generated in the source-to-source

transformation.

[0311] In a one-to-many scheme, as discussed above, the base pointer can be made
different for different struct sets as follows. For the 256 values represented by one set of
structs, one base pointer can be used. For new structs generated beyond these, e.g. due
to running out of reference count, another base pointer can be used. Once this struct set
is exhausted, another base pointer can be used for the next set and so on. Thus the
pointer arithmetic scheme can be varied for each of the many representations used for
encoding a part in a one-to-many scheme. In order to be self-contained, the allocation
region has to be changed per struct set, so that an encoding pointer’s decoding method

can be identified by the allocation region it falls in.

81

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

[0312] The specific encoding/decoding scheme (from scalar part to pointer and vice
versa) used in a one-to-one or one-many scheme is best implemented as a macro taken
from a pluggable set of macro options. The allocation region identification may be used

to drive the specific macro code to be invoked.

[0313] Further, more bits can be used to encode a part than the minimum necessary to
entertain more complex pointer arithmetic. For example, if 10 bits are used to encode a
byte part, then a stride of 3 can be used in the decoding dereferenced pointers, utilizing
total of 256 * 3 values which are representable in 10 bits. For a larger prime number,
e.g. Sor7, 8 + 3 =11 bits suffice for encoding a byte. For prime numbers up to 16, e.g.
11, 13, 8 + 4 = 12 suffice. The number of bits left for reference counting go down in this

case, e.g. to 4 or 3 respectively, which may be enough for good obfuscation.

[0314] From an obfuscation purpose, it is best if reference counts are not implemented
at all, and a scheme analogous to one-time pad is used. In this case, the structs are not
shared, an encoding of a scalar part leads to leads to the creation of a struct afresh for
itself and the struct is not used for anywhere else in the program. So as encodings are
generated, new structs and pointers are generated. The de-allocation of the structs can be
done explicitly, if the position where a scalar is freed (i.e. its encoding pointer is freed)
is identifiable, e.g. a local variable upon exiting its scope, so long as the value does not
escape. Else, the de-allocation can be left to a garbage collector, e.g. 1013/DEL/2013
(PCT/IB2014/060291), and 2713/DEL/2012 (PCT/IB2013/056856). Once a struct has
been de-allocated, the storage can be returned to the memory manager or the struct used
to code another same or different scalar part value according to the same or totally
different encoding scheme. It is to be noted that with the reference count field
abandoned, the minimum size of an allocated region for a byte-sized scalar part comes

down to less than one kilobyte of memory. This allows a large number of allocated

82

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

regions to be extant and used in conjunction with the one-time pad/pointer scheme

discussed here.

[0315] In an optional additional technique for obfuscation, using techniques, as in
1013/DEL/2013 (PCT/IB2014/060291), and 2713/DEL/2012 (PCT/IB2013/056856),
the memory manager can track an aggregate object’s size in the metadata kept for the
object. The size can reflect the un-fattened size of the unobfuscated aggregate object.
The size of the fattened object can be stored alongside, or computed straightforwardly
from the (unfattened) layout information also stored with the object (as in
1013/DEL/2013 (PCT/IB2014/060291), and 2713/DEL/2012 (PCT/IB2013/056856)).
Accessing an object for a scalar read or write maps straightforwardly to the read/write of
a set of encoding pointers for a fattened version of the scalar. The offset of each such
encoding pointer, into the fattened version of the object is known from the position of
the scalar in the unfattened object. To allow obfuscation and redistribution of an object’s
data, the set of encoding pointer offsets can be re-mapped to a set of actual offsets into
the fattened object that the pointers are stored at. For example, the positional offsets of
encoding pointers may be re-mapped to actual offsets by adding or substracting a
constant, modulo the size of the fattened object. In another example, only the pointers at
even offsets may be re-mapped within themselves, and in yet another example, the odd
ones may be re-mapped differently, and so on. The actual offsets make up the storing
positions for the pointers in the fattened object. Thus the operations of reading/writing a
scalar acquires an additional step of computing and using the actual offsets for encoding
pointers using the fattened object size. In this manner, all bytes representing fields,
bitfields, and padding in the original, unobfuscated object can be accessed as the
encoding pointers for their parts at actual offsets computed for them in the fattened

object.

83

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

[0316] Since the re-distributed objects comprise a subset of the program objects (not all
the application is obfuscated), such objects may be marked distinctly as such. This may
be done my flagging an object in its metadata, alongside the size information for the

object.

[0317] In a further variation of the above optional technique, object re-distribution may
be carried out in an inter-object manner over the flagged objects. For this a participating
list of flagged objects is tracked, sorted by memory address, within the combined
storage of which, re-mapping is done as exemplified earlier (e.g. all pointers are shifted
a constant offset up in address, round robin, in the sorted address space, which
corresponds to a constant addition, modulo total size; and so on). Periodically, the
participating list of flagged objects is revised, to account for further allocations and de-
allocations, with de-allocations prior to a revision being deferred till the revision point
itself (as per the deferred de-allocations discussed 1013/DEL/2013
(PCT/1B2014/060291), and 2713/DEL/2012 (PCT/IB2013/056856)), so that a de-
allocation prior to revision does not destroy the pointers for other objects stored due to
re-distribution in that object. A revision may be carried out straightforwardly as follows:
using temporary space equal to the sum of the total size of the present participating
objects list and the allocations to be added to the objects list, the data in the present
objects is copied contiguously to the temporary space, followed by the data of the
additional allocations. Next, minus the data for the de-allocations to the present list, the
data is copied back, along with the data for the additional allocations, all re-mapped to
the new participating objects list. The de-allocations, deferred till this point, are now
carried out by the memory manager as usual, in accordance with 1013/DEL/2013

(PCT/1IB2014/060291), and 2713/DEL/2012 (PCT/IB2013/056856).

84

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

[0318] Analogous to object re-distribution is fat scalar scalarisation for local variables
allocated on the stack. Each encoding pointer for a fat scalar gets a distinct local
variable name or accessor. The encoding pointers for the various local variables in a
function are shuffled among themselves as in the re-distributed objects above by
shuffling their order of declaration. The stack frame representing storage for the local
variables is fattened like the heap object above. For accessing a scalar, its scalarised
individual encoding pointers are accessed using their accessors from their shuffled
locations on the stack frame. This scheme suffices so long as there is no garbage
collection in the obfuscation system. If garbage collection (GC) is sought, the garbage
collector has no way of figuring out which encoding pointers in the shuffled locations

make up a pointer scalar and hence cannot collect such pointers from the stack.

[0319] To allow scalarisation supportive of garbage collection, stack frames containing
pointer scalars are shifted to the heap. This allows the frame to become an ordinary heap
object, supportive of re-distribution of encoding pointers. The heap object, as in
1013/DEL/2013 (PCT/1B2014/060291), and 2713/DEL/2012 (PCT/IB2013/056856) has
access to object layout that identifies the locations of pointer scalars. Using this, the
garbage collector can calculate a pointer scalar from its encoding pointers and thus
collect the pointer. Garbage collection for heap objects alone is straightforward, given
the object layouts available for them in 1013/DEL/2013 (PCT/1IB2014/060291), and
2713/DEL/2012 (PCT/IB2013/056856).

[0320] The scalarisation scheme for local variables becomes as follows: A call to a
function f with a pointer scalar containing stack frame is transformed to the sequence:

frame_ptr = create_frame(fat arguments); f’(frame_ptr); reclaim(frame_ptr);

[0321] In this sequence, create_frame() creates a heap object containing the

redistributed fat scalar arguments. The function f’() is a transformed version of f()

85

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

wherein local variable accesses are replaced with field accesses over the frame pointer.
Reclaim() returns the frame pointer, for reuse later or deallocation. In this pseudocode
sequence, frame_ptr itself is an obfuscated fat scalar. It is scalarised as described above

for the non garbage collector case.

[0322] When a frame is created, it is doubly linked to presently live heap frames that
have already been created. The list of presently live heap frames is a stack in itself,
representing the order of creation of the frames. The doubly linked structure, is made up
of obfuscated pointer scalars (fat scalars). Create_frame() and reclaim() push and pop
the frame on this stack. With this, the call f’(frame_ptr), wherein the scalarised
frame_ptr is carried on the normal function stack does not require the frame_ptr to be
collected from the normal stack by the garbage collector. The garbage collector can
ignore this pointer. The pointer is available from the doubly-linked stack of frame
pointers constructed by create_frame(). Hence, frame_ptr can undergo scalarisation as in

the non-GC case and yet work with GC.

[0323] For efficiency, create_frame() and reclaim() can minimize object allocation and
deallocation by saving a returned frame on an unused frames list and reusing from the
list first in creating a new frame. Reclaim() scrubs each returned frame of all pointers in
this endeavour so that the garbage collector does not end up chasing pointers from an

unused frame.

[0324] In the above, preferably, create_frame() is implemented as a macro or inlined

code, to obfuscate its functioning.
[0325] A further optimisation in the above GC-supportive scalarisation scheme is to lay

out the heap frames on the normal stack itself. In other words, to inline a heap frame on

the stack and to somehow insert a layout also in the stack frame. This requires close

86

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

integration with the specific compiler used for compiling the program, since the stack

implementation is tied to it.

[0326] The re-distribution or scalarisation scheme described so far can be further
enhanced to include false scalars interspersed in-between pointer encoded scalars. To do
this, a fat aggregate object is magnified in size, e.g. multiplied by a prime number, with
encoding pointers accessed by appropriate striding through the object. The storage left
unused in-between encoding pointers can be filled with false scalars, whose only
purpose is to obfuscate the data structure. The false scalars can be accessed as normal
scalars, with say statistical computation and assignments etc. carried out over them for

obfuscation reasons.

[0327] If the user decides not to obfuscate all scalars in a procedure or file, the
obfuscation mechanism can carry this out as follows. The unobfuscated scalar is
fattened, just like an obfuscated counterpart, but the enhanced storage carries the plain
scalar directly. It is accessed and used directly from say the lower bytes in the larger
storage. No encoding via pointers of its parts is carried out. Such an unobfuscated scalar
looks like the false scalar described above, in a data structure. However, it is not false

and actually serves a useful purpose.

[0328] In the reference counting mechanism discussed above (which is not used in the
one-time pad/pointer scheme), incrementing a reference count occurs when an encoding
pointer is reused to represent a scalar part. For this, the memory manager needs to be
able to locate the encoding pointer, which may be carried out as follows: Using object
metadata as in 1013/DEL/2013 (PCT/IB2014/060291), and 2713/DEL/2012
(PCT/1IB2013/056856), where allocated objects are partitioned by size, a struct pointed
by an encoding pointer may be isolated from other program objects that have a different

size. For the objects of the same size as encoding pointer structs, generated by the

87

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

application, a filter function or macro is to be provided as a part of the application, that
identifies an object as an application object or not. Using this filter, the partition of
objects the size of encoding pointer structs is traversed, doing a reverse mapping for
each non application object to identify its scalar part. Once a struct with encoding
pointer has been located with the sought value for scalar part, the encoding pointer is
reused in encoding that scalar part and the reference count incremented. Note that in this
method, no forward mapping table is used, which can aid an adversary, inadvertantly.
The search through structs may be sped up by organising them in the memory manager
according to the allocation regions they correspond to (e.g. a later allocated region has
its encoding pointer structs allocated later). Also, the use of smaller allocation regions

and fewer structs per region speeds up the search.

[0329] Note that when a larger number of bits are used to encode dereferenced pointers
pointing to a region, for example for striding by primes, a large number of pointers are
left unused, which can be used to record reference count information. For example,
when striding by a prime number k, the k-1 pointers are left unused in each stride. All
the k pointers passed in one stride may be considered as encoding the same part
information, with the k distinct values defining k different reference counts. By this
mechanism, the reference counting mechanism can recover some of its representation

space, ceded to the part encoding mechanism.

[0330] The obfuscation mechanism is best implemented in an untyped program image,
where the lack of type information makes it harder for an adversary to understand the
data. So for example, a flattened C/C++ image, with lack of information on what
comprises pointer and non-pointer data aids obfuscation. The obfuscation mechanism
straightforwardly can randomise or strip the lexical symbols like variable names in a
program, using a source-to-source transformation, so that the binary code and associated

tables become harder to read or reverse engineer. A Java source can be translated to C++

88

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

enroute to class flattening and C compilation to strengthen the obfuscation via

compilation to native code.

[0331] The invulnerability guarantee for pointers for GC (as in 1013/DEL/2013
(PCT/1B2014/060291), and 2713/DEL/2012 (PCT/IB2013/056856)) can be
straightforwardly kept by allowing the GC system to carry out the further encoding to
obfuscated fat pointers. The obfuscation and GC systems can be combined into an

integrated system for this purpose.

[0332] The reachability of fat scalars, including fat pointers needs to be traced through
the program, just like singleword pointers are propagated in prior art. This is to permit
the appropriate handling of fat scalars, including insertion of encode and decode
operations at appropriate locations. Cast operations, like the decode() operation of
1013/DEL/2013 (PCT/IB2014/060291), from fat scalar to scalar or vice versa may
further be allowed. The propagation can either be done by user annotation and/or static
analysis, such as the static analysis 1013/DEL/2013 (PCT/IB2014/060291). The system
may provide the property that all objects reached by an operation such as read/write are
either fat objects or normal objects. This allows doing away with carrying run-time tags
with objects stating whether they are fat or thin, since fat objects are always treated by
fat operations and thin objects are always treated by thin operations (refer singleword
and doubleword pointers of 1013/DEL/2013 (PCT/IB2014/060291). Such a bifurcation
is also convenient for obfuscating object metadata also, in case of fat objects, since the
fat operations accessing them can process the metadata accordingly. Obfuscation of
object metadata brings the run-time program closer to the untyped program image ideal,

discussed above.

[0333] It is desirable for the obfuscation system to generate code in its source to source

transformation wherein fields are destablised additionally to being encoded. So for

89

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

instance, a read-only field is periodically side effected back and forth to make it appear
non read-only, while the non-spurious uses all end up with the safe read-only value. The
control flow graph can be de-stabilised to compute extraneously, e.g. allocation region
statistics discussed earlier, to hide the valuable computation. The continuation for a
computation can be recorded in a program counter” structure, for example, the index of
an iterative loop being such a structure, and diversions from the main computation
carried out extraneously while tracking the real continuation (index) carefully in hiding
the program flow. Computation of substeps comprising different steps can be re-ordered
to merge and diffuse the steps into each other, obfuscating control flow. Fields can be
duplicated, additionally to being encoded, with the duplicated fields being mirror
images only upon non-spurious use and not otherwise. Migration of field storage can be
supported, for example, as done in the inter-object re-distribution mechanism discussed
above, to make fields hard to discern. Garbage collection with object relocation aids this
endeavour, e.g. as in 1013/DEL/2013 (PCT/IB2014/060291), and 2713/DEL/2012
(PCT/1IB2013/056856), that can be provided by the obfuscating memory manager.

[0334] The cryptography code is preferably generated in a source-to-source transformed
common set of files for both application and cryptography code so that the codes are
undistinguishable from each other. This is preferable over say linking as a dynamically

linked library (DLL) that is straightforward to identify.

[0335] Finally, it is to be re-emphasized that 1013/DEL/2013 (PCT/IB2014/060291),
and 2713/DEL/2012 (PCT/IB2013/056856)) entertain both singleword and doubleword
encoded pointers, both of which can be catered to by the obfuscation system presented
here. The user’s indication of singleword or doubleword preference may be incorporated

in the compilation process for the system.

90

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

Attack Scenarios, Bounded by Time and Partitioning

[0336] A distribution system for a multimedia and text combination asset is disclosed.
The asset comprises a software player that hides one or more keys or cryptography
implementation within itself and is bundled with a combination of video, audio, or text
data in encrypted form. The software player can decrypt and play the data or encrypt and
add data, without requring any customer-specific symmetric or assymetric key or

password to be input or made available during installing or running the player.

[0337] According to an embodiment, the software player thwarts simple data capture
mechanisms comprising one or more of screen bitmap capture, screen text clip capture,

screen text clipboard capture, or audio clip capture.

[0338] According to another embodiment, the hidden keys or cryptography
implementation of the software player comprises an expiry date or mechanism so that

the player does not work after the date or mechanism disallows it.

[0339] According to yet another embodiment, the software player enables a free or
priced update with a continuing player of a different hidden keys or cryptography

implementation, upon expiry of the player.

[0340] According to an embodiment, the update recurs with a well-announced expiry

date for planning convenience.

[0341] According to another embodiment, data bundled with the software player is
reduced to a small partition. The remaining one or more data partitions may be bundled
and distributed with one or more other software players, each comprising distinct hidden

keys or cryptography implementation.

91

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

[0342] According to an embodiment, no plaintext fragment of encrypted data is exposed
by the distribution system to a user, other than possibly only sale-related input such as

buyer details or payment details.

[0343] A distribution method for a multimedia and text combination asset is disclosed.
The method comprises a step of encrypting or decrypting a combination of video, audio
or text data bundled with a software player, using the hidden keys or cryptography
implementation of the software player such that no customer-specific symmetric or
assymetric key or password is required to be input or made available during the

installing or running of the player.

[0344] An authenticator (downloaded software asset, or the code invoked for a
particular potent) is identified by the potent version it handles. This comprises a specific

cryptography implementation within the potent, including hidden keys and data.

[0345] The scheme presented herein is strong in that none of its cryptographic workings
display the plaintext version of encrypted data to a user at any stage. The authentication
dialogue and the copyright enforcement all deal with internally generated and encrypted
data by potents or authenticators. The plaintext is never made available. Secure selling
has an element of user input (e.g. buyer name, credit card information) that is plaintext
input, but such input is small and can easily be diluted with other data to be encrypted.
Some of this information, e.g. buyer name, may also be carried in the clear (un-
encrypted or semi-encrypted) to hide the encryption process. Sometimes the sale
information is simply not there e.g. when giving away software freely in a sale or
promotion, or when the software is not sold by itself (e.g. the monitor software

discussed later, that’s likely bundled with an operating system transaction).

92

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

[0346] For an attacker to break secure selling, he is likely to make multiple purchase
attempts to get sale-related plaintext to work with. The attempts can be forced to be
staggered, if too many attempts are clustered, or denied altogether after a threshold. In a
more restrictive scenario, an alternative is to not let the potent collect sale data. The
selling can be done by the delegated sales means, wherein the delegation identifier does
not directly represent plaintext user data (it might compute and represent a hash of the
plaintext and/or machine context, thereby not exposing plaintext encryption to an

adversary).

[0347] As discussed above, the strong cryptography system presented herein can be
made stronger still. We discuss next, further safeguards and safety strategies for the

system, against attacks.

[0348] If a potent is compromised in an attack, then all its cryptography functions as

well as the corresponding authenticator’s functions become unreliable as follows:

[0349] Authentication With cryptography compromised, a potent masquerador
can fool the cryptographic check of an authenticator. However, the non-
cryptographic hash checks of the authenticator continue to remain in force. The
demonstration of functionality and informal knowledge of antecedents add depth
to the level of authentication. Hence authentication, generally albeit informally
continues to hold even if cryptography fails. Detailed hash tests are important in
such authentication, so authentication by website also (like a downloaded

authenticator) has to compute enough hash data in its checking.
[0350] Sales Secure, sales, directly from a potent may be carried out, but the

information can be intercepted and stolen on the way since the data can be

decrypted. A masquerador can be distributed that mimics the potent only to capture

93

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

sales information from duped customers. Both these scenarios face logistical
problems, since an interception can only occur at the location of a buyer, which is
unknown at any time. As regards a masquerador, it is likely to continue failing

authentication as discussed above.

[0351] Copyright The context of an environment can be decrypted to recognise
the information. Thereafter, the context can be re-created on any machine to freely
run the software on that machine without any sales. In other words, a potent can

become freeware after it has been compromised.

[0352] If a potent version is distributed with an expiry date, e.g. an expiry flag that the
potent must occasionally read from the content provider’s website, then the potent can
stop running soon after the expiry occurs. Such a choice bounds the time within which a
successful cryptographic attack needs to be carried out, making it harder to do. Beating
authentication, with its additional checks is a strictly more harder problem to carry out
within the time window. So organized data theft, using say a masquerador, in the context
of a potent with an expiry date is an unlikely problem, for reasonably sized time
windows. Further, a time window also limits the loss through copyright subversion as
all copies expire. Upgraded potents with new version numbers replace only the
potentates as potentates, free of charge, while others have to make a purchase of an

upgraded potent to reach potentate status.

[0353] For multimedia data bundled with potentates, broken cryptography is a serious
problem, since the data once decrypted can be freely circulated independently of
potentates. The time window helps, as it reduces the chances of breaking cryptography.
Further benefit can be obtained by partitioning multimedia data among a set of potents,
each with a unique cryptography version, distinct from others. In order to play the data,

all the potents have to be downloaded and played in the sequence of played data, viz. a

94

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

potent is played when it is needed to decode the played data. The partitioning of data
among potents can be done to make each partition un-interesting to an adversary. For
example, no partition should contain a complete album by an artist, as that might be
worthwhile to a pirate to mount an attack. No partition should contain the best hits of an

artist, since again, that might be worth attacking to compile the greatest hits by the artist.

[0354] To contain the number of potent versions to circulate, they can be re-used to play
other multimedia data. So for instance, a set of hundred potents can be standardized
upon. Supposing that the total number of albums in the market number fifty, the fifty
albums of say twenty songs apiece can be distributed at will among the potents, with
each potent getting ten songs on average. The partition of each potent can be selected to
not be of commercial interest to anyone (random songs, not generating a theme or
album of interest to a pirate). The hundred potents can be sold free at the outset to any
buyer and copied/downloaded once to reside in his hardware player/computer. The data
then streamed or downloaded in, partition by partition, can be paid for and tracked
separately on a potent by-potent basis. Each potent would be organised with expiry
dates, so that it would upgrade automatically, free of charge upon expiry, deleting its

expired data partition and acquiring (or generating) a new substitute in its place.

[0355] Figure 8 summarizes the structure of multimedia/text potents. An original potent
(shown as a diskette with legs icon) at the bottom of the figure and all bundled data is
replaced by a set of N potents at the top, each potent being responsible for a partition of
the bundled data. Installation now comprises installation of the N potents and data
partitions on a machine. Each potent and data partition evolves according to its shown
timeline, with well known update schedules, allowing data to be kept encrypted safely
for a long duration. Piracy is minimized, made harder, and un-interesting on a potent-by-

potent basis.

95

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

Authentic client software including browser and updates

[0356] A software authentication and installation monitoring system is disclosed. The
system comprises a means for hiding one or more keys or cryptography implementation.
The system further comprises a means for tracking authentic software or certified
software or user-built software installed on a machine by storing the information in
encrypted form on the machine using the hidden keys or cryptography implementation.
The system further comprises a means for mediating in a software installation, ensuring
that authentication steps are carried out that ensure the authenticity of the installed
software. The system further comprises a means for disallowing a user setting the
permission of a file to execute, unless the file is known to be built or certified by the
user or known to be authentically installed as per the tracked information. The system
further comprises a means for disallowing an executable file to run, unless the file is
built or certified by the user or known to be authentically installed as per the tracked
information. The system further comprises a means for stopping a running program, if
the running program is found to not be user built or certified, or authentically installed
as per the tracked information. The system further comprises a means for scanning the

machine periodically, resetting the the execute permissions of any unknown files.
[0357] According to an embodiment, the system updates an expired or expiring soft
ware with a successor software having different hidden keys or cryptography

implementation.

[0358] According to another embodiment, the update recurs with a well-announced

expiry date for planning convenience.

[0359] According to an embodiment, the system instals and periodically updates an

authenticated browser.

96

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

[0360] According to an embodiment, no plaintext fragment of encrypted data is exposed

by the system to a user.

[00361] According to an embodiment, the distribution system instals an authenticated

digital asset on a machine where installed software consists of authenticated assets only.

[00362] According to another embodiment, the asset installation is mediated by a

monitoring system on the machine.

[00363] According to an embodiment, the asset installation instals and periodically

updates an authenticated browser.

[00364] According to an embodiment, the monitoring system disallows unmediated
asset installation by resetting execution permission or disallowing a file with execute

permission to run, or stopping a running software.

[00365] According to an embodiment, secure selling is carried out even on a machine

with un-authenticated software.

[0366] A software authentication and installation monitoring method is disclosed. The
method comprises the steps of (a) hiding one or more keys or cryptography
implementation; (b) tracking authentic software or certified software or user-built
software installed on a machine by storing the information in encrypted form on the
machine using the hidden keys or cryptography implementation; (c) mediating in a
software installation, ensuring that authentication steps are carried out that ensure the
authenticity of the installed software; (d) disallowing a user setting the permission of a
file to execute, unless the file is known to be built or certified by the user or known to

be authentically installed as per the tracked information; (e) disallowing an executable

97

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

file to run, unless the file is built or certified by the user or known to be authentically
installed as per the tracked information; (f) stopping a running program, if the running
program is found to not be user built or certified, or authentically installed as per the
tracked information; and (g) scanning the machine periodically, resetting the the execute

permissions of any unknown files.

[0367] What is trustworthy? An https website represents a company, so that may be
considered as trustworthy as the company and can be held as authentic as such. Now
how about the access to the website? In accessing the https website, is the browser
authentic? Is any software on the client computer authentic? Unless a customer has a
guarantee, an ambush can be launched from any unproven client resource. After all, how
does a customer know whether the browser he uses from a cyber cafe or hotel lounge is

giving it a secure transaction using say, a credit card?

[0368] On any client machine, before accepting a networked delivery of authentic
software, the receiving software on the client side, that interacts with the customer, has
to be proven authentic. This, frankly is a chicken and egg problem in the software
industry (secure software is not delivered because it cannot be received securely, secure
software is not received securely because it has not been delivered), that only accepts
one physical solution — the machine has to come with a warranty as such from the
original seller of the machine. Further, the warranty has to ensure that the updates the
machine accepts in its life are not going to break the warranty. In this section, we show

how our method allows the provision of such a warranty by software sellers.

[0369] First, the original machine can be loaded with a physically authenticated original
software by the machine manufacturer according to our method, straightforwardly. All
software necessary for the safe functioning of the machine can be preloaded thus,

making the machine secure at the original sale time by the manufacturer. Next, an

98

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

authenticated update to software, to the authentic client machine thus, in the life of the

machine later can be carried out as follows:

[0370] Step 1 In this step, the current paint file, inclusive of the context of the
machine is transmitted in the encrypted form to the content provider. The content
provider after decrypting the context, re-encrypts it according to the cryptography
implementation of the version of the software that will replace the present
software. The present software inclusive of the paint file is deleted from the client

machine.

[0371] Step 2 The new software copy is sent to the client machine using a secure
protocol such as https, preferably, simplifying the authentication step. The sale
step is carried out free of charge or for the seller determined fee, by a recognition
of the client context as follows. The under-sale new potent computes and sends the
machine context to the content provider (e.g. as a part of the delegation id or direct
sale data) and the content provider after recognising it applies the relevant free or
cost charge to the buyer. After the sale, the installation proceeds as usual and the

new software completes its replacement of the earlier software.

[0372] In this scenario, the content provider receives many update requests from clients.
Not all the clients need be authentic. The content provider can safely ignore this fact and
treat the clients uniformly, as a subverted machine can at most only corrupt the sale
price of the new software and not affect the replacing software (version) in any manner.
If the next software version survives subversion, then the sale corruption does not last

beyond one update and the newer softwares can continue working safely thereafter.

[0373] In an authentic client, all softwares pertinent to the safe functioning of the client

are allowed only authenticated updates as described above. Monitoring software to

99

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

ensure this can be provided as a part of the operating system or system software for the
machine. The monitoring software straightforwardly mediates between the user and the
content provider, to ensure all needed authentication steps are carried out correctly in
any update supervised by the monitor. The monitoring software itself may undergo
regular updates to keep its cryptography implementation out of reach of subversion.
Regardless, since authentication itself is unlikely to be subverted, as discussed earlier,

the periodicity of such updates may be low.

[0374] The monitoring software can allow fresh installations of new software by a user.
This would allow any version of an authenticated software to be installed as new
software on the machine. As before, all authentication steps would be confirmed by the
monitoring software for a content provider with an https website for downloading the
software or authenticator. An update attempt, disguised as an installation of software in
addition to an already installed software for a content provider may be disallowed by the

monitoring software by recognising its https page identity.

[0375] Software installation unsupervised by the monitor can be prevented by the
monitor periodically scanning the file system for executable files and resetting their
execute permissions to a non execute status, if the files are not known to be installed
authentically. As discussed later, the monitor would keep with itself, in encrypted form,
the knowledge of all authentic installations on the machine. If a user tries to set a file
back to execute permission, the monitor would enter into a dialog with the user
demanding that the user certify the safety of the file. By certifying an unknown file thus,
the user in effect takes responsibility for the file, just as he does for executable files built
by himself. Furthermore, the monitor would intercept any executable run attempt and
check its authentic installations status (or user certification/build) prior to letting the
executable run. For an executable on a removable medium where the permission cannot

be reset, e.g. a compact disc, the monitor may simply disallow the executable to run,

100

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

forcing a supervised installation of the executable prior to running. For boot-time
running of an executable off removable media (e.g. using BIOS or Basic Input/Output
System), when the monitor may not be running yet, the monitor can do a checking of
installed files after booting to choose resetting permissions of any newly installed files.
Similarly, the any executables loaded and left runnning after booting can be chosen and
shut down by the monitor to contain the running processes to only authenticated ones.
The monitor may do this prior to general network access by the client machine so that

only the authenticated executables are exposed to the network by the client machine.

[0376] For software development environments, the monitor may allow software builds
the exception of execute permissions straightforwardly (e.g. by tracking the location at
which the executable is built and optionally copied under supervision), disallowing only
unsupervised copied software the capability of execute permissions. Tracking
installations and user built/certified executable locations is carried out by storing the
information locally on the machine, in encrypted form so that the information cannot be
subverted. Cryptography hiding for this purpose may be carried out by our method, with
occasional periodic updates ensuring that the system survives all subversion attempts.
Note that even if the cryptography of a monitor is subverted, an executable taking
advantage of the information cannot be run on the machine without proper installation,
which would be denied to an adversary. Thus the monitor is a safe mechanism for

implementing authentic clients.
[0377] Software installation by piece and part, e.g. dyanmically-linked libraries, may be
straightforwardly folded in by wupdating piece by piece while running the

potent/potentate as a whole to carry out the steps.

[0378] Browser software in particular may be warranteed authentic by the mechanism

above. Since https protcol is assumed by the mechanism above, the step of deleting

101

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

existing browser software may be carried out after the newer version has been fully

installed and has taken over the charge of all https communication.

[0379] Figure 9 summarizes the structure of an authentic client monitor, whereby
installation of only authentic software or user built/certified software is carried out on a
machine. The monitor is built with our hidden keys or cryptography mechanism so that
it can encrypt or decrypt data privately. This is used to track the present set of authentic
software installations on the machine. Included in this set are also user built or certified
executables so that the user is responsible for ensuring the safety of this part. The
monitor intercepts file execution permission changes, so that a file is not allowed to
have execute permissions unless it falls in the tracked set of authentic softwares or is
user built/certified. The interception may involve a dialog with the user for this purpose.
The monitor can stop a running program, if it finds that the program does not fall in the
allowed tracked set. The monitor periodically scans the machine for files with execute
permissions, resetting the same, if the file is not in the allowed tracked set. Such
scanning can be carried out as a background activity occasionally, so that the load on the
machine is reduced and the various interceptions carried out by the monitor are
lightweight (the interception work is reduced by this scanning). The monitor mediates in
program installation and update so that only

authentic program installations or updates occur. Whenever a program is run, the
monitor intercepts the step, so that only a tracked, allowed program is allowed to run.
The monitor may initiate a dialog with the user prior to acting on its decisions, in case
its tracked data is likely to be informed by the dialog (e.g. about user build/certification

status).
[0380] A public key cryptography mechanism may be argued as a more capable method,

since the public key does not need to be hidden. It is to be noted however, that a client

with a public key can decrypt only public information broadcast by a content provider,

102

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

since the communication can be intercepted and decrypted using the public key. The
public key allows a client to encrypt data that can only be decrypted by the content
provider, without interception and decryption by an adversary. No further capability is
available to a public key carrying client and larger capability, such as both encrypting
and decrypting local data or offline operation requires the client to carry secret

data/keys, for which our method provides the most effective solution.

[0381] Besides offering the capability to deliver authentic software to authentic clients,
our method is capable of authentic software delivery and secure sales to non-
authenticated clients also. For example, physical delivery of authentic software to such a
client may be carried out with secure sale either directly or by delegation. Secure sale
here is underpinned by the fact that encryption/decryption is carried out at the
application level (hidden of course) so reliance of security on lower layers of
communication is not needed. This is a novel contribution of our work. Further, once
such software has been spread to authentic clients and others, copies of the same may be
propagated further to other clients accompanied by secure sales. The larger the spread of
such authentic software, the larger is the set of sources from which software copies can
be distributed further. Thus authentic software delivery is maximised by our work, a

further addition to the contribution above made by our work.

[0382] Since authentication is unlikely to be undermined by an adversary in our work,
the calendar of software upgrades can be advertised. So the profusion of offline
authenticators in the network can be planned and used more capably by the users,
monitors and content provider, all parties to the software distribution. Again, this is a

unique contribution of our work.

[0383] Our work, and its physical delivery opportunity, maximises the spread of

authentic software, whether authentic clients are present or not. When secure network is

103

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

warranteed, then network delivery can be maximised. When such warranties are not
present, then physical delivery from a large spread of sources can be maximised.

Regardless, the authentic software spread is maximised.

[0384] Expanding the pie: Each time a buyer takes a risk with an unsure asset
(antecedents partially known), and makes a successful purchase using a secure payment
channel, the number of known authentic seats for authentic software increase — it is
known that the purchased software talks to the provider correctly. Even if the
cryptography of the software is undermined, the adversary has no gain in such
purchases. Such a software purchase increases the informal authentication confidence,
but not formal authentication count. Such sales can proceed in concurrence with the
formally authenticated sales. The analog of such risk taking just does not exist in other

authentication mechanisms, that are secure website/receiving client software driven.

Remarks

[0385] Distributed potents and potentates can be shut down variously as follows. (a)
Stop sales: E.g. shut down keys and rest. (b) Make it free thereafter: Make public a
freeing coupon. Make it year by year, so that renewals are needed to continue endlessly.
(c) Put expiry dates or lifetimes: potents potentates shut thereafter. Renewals can be by

updates at each expiry.

[0386] Pointer based encoding poses formidable challenges to an adversary. First,
pointer analysis is known to be intractable, so the system is not amenable to static
analysis. Dynamic interpretation of the binary code using tools of capability similar to
valgrind may be the only resort and these are hampered by the steganography and

abstraction/representation obfuscation carried out herein.

104

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

[0387] The steps of the illustrated method described above herein may be implemented
or performed with a general-purpose processor, a digital signal processor (DSP), an
application specific integrated circuit (ASIC), a field programmable gate array (FPGA)
or other programmable logic device, discrete gate or transistor logic, discrete hardware
components, or any combination thereof designed to perform the functions described
herein. A general-purpose processor may be a microprocessor, but in the alternative, the
processor may be any conventional processor, controller, micro controller, or state
machine. A processor may also be implemented as a combination of computing devices,
e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one
or more microprocessors in conjunction with a DSP core, or any other such

configuration.

[0388] Figure 8 illustrates a computer system 1000 in which the asset distribution
system may be implemented in accordance with an embodiment of the invention. The
computer system 1000 may include a processor 1002, e.g., a central processing unit
(CPU), a graphics processing unit (GPU), or both. The processor 1002 may be a
component in a variety of systems. For example, the processor 1002 may be part of a
standard personal computer or a workstation. The processor 1002 may be one or more
general processors, digital signal processors, application specific integrated circuits,
field programmable gate arrays, servers, networks, digital circuits, analog circuits,
combinations thereof, or other now known or later developed devices for analyzing and
processing data The processor 1002 may implement a software program, such as code

generated manually (i.e., programmed).

[0389] The term “module” may be defined to include a plurality of executable modules.
As described herein, the modules are defined to include software, hardware or some
combination thereof executable by a processor, such as processor 1002. Software

modules may include instructions stored in memory, such as memory 1004, or another

105

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

memory device, that are executable by the processor 1002 or other processor. Hardware
modules may include various devices, components, circuits, gates, circuit boards, and
the like that are executable, directed, or otherwise controlled for performance by the

processor 1002.

[0390] The computer system 1000 may include a memory 1004, such as a memory 1004
that can communicate via a bus 1008. The memory 1004 may be a main memory, a
static memory, or a dynamic memory. The memory 1004 may include, but is not limited
to computer readable storage media such as various types of volatile and non-volatile
storage media, including but not limited to random access memory, read-only memory,
programmable read-only memory, electrically programmable read-only memory,
electrically erasable read-only memory, flash memory, magnetic tape or disk, optical
media and the like. In one example, the memory 1004 includes a cache or random
access memory for the processor 1002. In alternative examples, the memory 1004 is
separate from the processor 1002, such as a cache memory of a processor, the system
memory, or other memory. The memory 1004 may be an external storage device or
database for storing data. Examples include a hard drive, compact disc ("CD”), digital
video disc ("DVD”), memory card, memory stick, floppy disc, universal serial bus
("USB”) memory device, or any other device operative to store data. The memory 1004
is operable to store instructions executable by the processor 1002. The functions, acts or
tasks illustrated in the figures or described may be performed by the programmed
processor 1002 executing the instructions stored in the memory 1004. The functions,
acts or tasks are independent of the particular type of instructions set, storage media,
processor or processing strategy and may be performed by software, hardware,
integrated circuits, firm-ware, micro-code and the like, operating alone or in
combination. Likewise, processing strategies may include multiprocessing,

multitasking, parallel processing and the like.

106

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

[0391] As shown, the computer system 1000 may or may not further include a display
unit 1010, such as a liquid crystal display (LCD), an organic light emitting diode
(OLED), a flat panel display, a solid state display, a cathode ray tube (CRT), a projector,
a printer or other now known or later developed display device for outputting
determined information. The display 1010 may act as an interface for the user to see the
functioning of the processor 1002, or specifically as an interface with the software

stored in the memory 1004 or in the drive unit 1016.

[0392] Additionally, the computer system 1000 may include an input device 1012
configured to allow a user to interact with any of the components of system 1000. The
input device 1012 may be a number pad, a keyboard, or a cursor control device, such as
a mouse, or a joystick, touch screen display, remote control or any other device

operative to interact with the computer system 1000.

[0393] The computer system 1000 may also include a disk or optical drive unit 1016.
The disk drive unit 1016 may include a computer-readable medium 1022 in which one
or more sets of instructions 1024, e.g. software, can be embedded. Further, the
instructions 1024 may embody one or more of the methods or logic as described. In a
particular example, the instructions 1024 may reside completely, or at least partially,
within the memory 1004 or within the processor 1002 during execution by the computer
system 1000. The memory 1004 and the processor 1002 also may include computer-

readable media as discussed above.

[0394] The present invention contemplates a computer-readable medium that includes
instructions 1024 or receives and executes instructions 1024 responsive to a propagated
signal so that a device connected to a network 1026 can communicate voice, video,
audio, images or any other data over the network 1026. Further, the instructions 1024

may be transmitted or received over the network 1026 via a communication port or

107

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

interface 1020 or using a bus 1008. The communication port or interface 1020 may be a
part of the processor 1002 or may be a separate component. The communication port
1020 may be created in software or may be a physical connection in hardware. The
communication port 1020 may be configured to connect with a network 1026, external
media, the display 1010, or any other components in system 1000, or combinations
thereof. The connection with the network 1026 may be a physical connection, such as a
wired Ethernet connection or may be established wirelessly. Likewise, the additional
connections with other components of the system 1000 may be physical connections or
may be established wirelessly. The network 1026 may alternatively be directly

connected to the bus 1008.

[0395] The network 1026 may include wired networks, wireless networks, Ethernet
AVB networks, or combinations thereof. The wireless network may be a cellular
telephone network, an 802.11, 802.16, 802.20, 802.1Q or WiMax network. Further, the
network 1026 may be a public network, such as the Internet, a private network, such as
an intranet, or combinations thereof, and may utilize a variety of networking protocols
now available or later developed including, but not limited to TCP/IP based networking

protocols.

[0396] While the computer-readable medium is shown to be a single medium, the term
“computer-readable medium” may include a single medium or multiple media, such as a
centralized or distributed database, and associated caches and servers that store one or
more sets of instructions. The term “computer-readable medium” may also include any
medium that is capable of storing, encoding or carrying a set of instructions for
execution by a processor or that cause a computer system to perform any one or more of
the methods or operations disclosed. The “computer-readable medium” may be non-

transitory, and may be tangible.

108

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

[0397] In an example, the computer-readable medium can include a solid-state memory
such as a memory card or other package that houses one or more nonvolatile read-only
memories. Further, the computer-readable medium can be a random access memory or
other volatile re-writable memory. Additionally, the computer-readable medium can
include a magneto-optical or optical medium, such as a disk or tapes or other storage
device to capture carrier wave signals such as a signal communicated over a
transmission medium. A digital file attachment to an e-mail or other self-contained
information archive or set of archives may be considered a distribution medium that is a
tangible storage medium. Accordingly, the disclosure is considered to include any one or
more of a computer-readable medium or a distribution medium and other equivalents

and successor media, in which data or instructions may be stored.

[0398] In an alternative example, dedicated hardware implementations, such as
application specific integrated circuits, programmable logic arrays and other hardware

devices, can be constructed to implement various parts of the system 1000.

[0399] Applications that may include the systems can broadly include a variety of
electronic and computer systems. One or more examples described may implement
functions using two or more specific interconnected hardware modules or devices with
related control and data signals that can be communicated between and through the
modules, or as portions of an application-specific integrated circuit. Accordingly, the

present system encompasses software, firmware, and hardware implementations.

[0400] The system described may be implemented by software programs executable by
a computer system. Further, in a non-limited example, implementations can include
distributed processing, component/object distributed processing, and parallel
processing. Alternatively, virtual computer system processing can be constructed to

implement various parts of the system.

109

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

[0401] The system is not limited to operation with any particular standards and
protocols. For example, standards for Internet and other packet switched network
transmission (e.g., TCP/IP, UDP/IP, HTML, HTTP) may be used. Such standards are
periodically superseded by faster or more efficient equivalents having essentially the
same functions. Accordingly, replacement standards and protocols having the same or

similar functions as those disclosed are considered equivalents thereof.

[0402] Benefits, other advantages, and solutions to problems have been described above
with regard to specific embodiments. However, the benefits, advantages, solutions to
problems, and any component(s) that may cause any benefit, advantage, or solution to
occur or become more pronounced are not to be construed as a critical, required, or

essential feature or component of any or all the claims.

[0403] While specific language has been used to describe the disclosure, any limitations
arising on account of the same are not intended. As would be apparent to a person in the
art, various working modifications may be made to the process in order to implement

the inventive concept as taught herein.

110

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

We claim:

1. A distribution system operable in a computing environment for binary-

encoded digital

assets, comprising:

(a) a hiding means for hiding one or more keys or cryptography implementation
in a digital asset;

(b) a copying means for asset distribution for receiving a functionally-restricted
asset copy for use or further distribution, directly or as a further copy, with or
without access to a computer network; and

(c) a self-policing means for enforcing asset safety, comprising:

i. an authentication means for an un-authenticated, digital asset for
constructing encrypted credentials data using one or more keys or cryptography
implementation hidden in the asset by the hiding means, for authentication by an
authenticated digital asset or website;

ii. a secure selling means for an authenticated digital asset for either
carrying out a sale transaction directly, securely, or delegating the sale to a
separate secure means, identifying the delegation by an encrypted identifier
constructed using one or more keys or cryptography implementation hidden in
the asset by the hiding means and decrypting the response from the secure means
using the one or more keys or cryptography implementation hidden in the asset
to determine the success of the sale; and

iii. a copyright and license enforcement means for an asset for carrying
out encryption and decryption of computing context and other data using one or
more keys or cryptography implementation hidden in the asset by the hiding
means, with functionally-unrestricted asset use permitted only after the asset has

been sold and licensed to run in a recognisable computing context.

2. The digital assets of claim 1, wherein an asset comprises software.

111

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

The asset of claim 2, wherein the asset further comprises a combination of
encrypted video, audio, or text data bundled with the software, and the
software is a software player to decrypt and play the data or encrypt and add

data.

The bundled software of claim 3, wherein the software player thwarts simple
data capture mechanisms comprising one or more of screen bitmap capture,

screen text clip capture, screen text clipboard capture, or audio clip capture.

The software of claim 2, wherein the hidden keys or cryptography
implementation of the software comprises an expiry date or mechanism so

that the software does not work after the date or mechanism disallows it.

The software of claim 5, enabling a free or priced update with a continuing
digital asset of different hidden keys or cryptography implementation, upon

expiry of the software.

The update of claim 6, recurring with a well-announced expiry date for

planning convenience.

The bundled data of claim 3, wherein the data decrypted or encrypted by the
hidden keys or cryptography implementation of the software player is
reduced to a small partition so that the remaining one or more partitions may
be bundled with one or more other software players, each distributed with its

own distinct hidden keys or cryptography implementation.

112

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

10.

I1.

12.

13.

14.

15.

16.

The distribution system of claim 1, installing an authenticated digital asset

on a machine with installed software consisting of authenticated assets only.

The asset installation of claim 9, mediated by a monitoring system on the

machine.

The asset installation of claim 10, updating an expired or expiring asset with

a successor asset of different hidden keys or cryptography implementation.

The update of claim 11, recurring with a well-announced expiry date for

planning convenience.

The asset installation of claim 12, installing and periodically updating an

authenticated browser.

The monitoring system of claim 10, disallowing unmediated asset
installation by resetting execution permission or disallowing a file with

execute permission to run, or stopping a running software.

The secure selling means of claim 1, for carrying out a sale securely, even on

a machine with un-authenticated software.
The distribution system of claim 1, such that no plaintext fragment of

encrypted data is exposed to a user, other than possibly only sale-related

input such as buyer details or payment details.

113

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

17.

18.

19.

20.

The copyright and license enforcement means of claim 1, wherein the
computing context and other data are stored with the digital asset after sale

and installation.

The authentication means of claim 1, wherein the credentials data

constructed by a digital asset are passed to a browser to authenticate.

The hiding means according to claim 1, wherein a key is stored in a digital
asset by distribution into a subset of a large number of candidate data fields
in the asset, the reconstruction of the key from the fields not being apparent
from a reverse engineered control flow of the asset, forcing a combinatorially
large number of key reconstructions to be considered in a key search making

key discovery infeasible.

A cryptography hiding system operable in a computing environment for
hiding one or more keys or cryptography implementation in a binary-

encoded digital asset using holistic, efficient steganography, comprising:

(a) an interleaving means for sequentially or concurrently interleaving the

computation of non-cryptography, useful code with cryptography code;

(b) an obfuscating memory management means for creating an encoded pointer

representation of any scalar, comprising one or more encoding pointers pointing

to one or more objects created and managed by the memory management means

for maintaining the scalar in an obfuscated state throughout the lifetime of the

scalar;

(c) a class obfuscation means for translating a class to one or more data

structures or procedures; and

114

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

(d) a procedure obfuscation means for de-stacking one or more parameters of a

procedure or translating a procedure call to jumps to and from an inlined

procedure body.

21.

22.

23.

24.

A cryptography hiding system operable in a computing environment for
hiding one or more keys or cryptography implementation in a binary-
encoded digital asset using holistic, efficient steganography, comprising an
interleaving loop or recursive procedure instantiating one or more re-entrant
calls to one or more procedures or macros in cryptography code, such that
one or more re-entrant calls to one or more procedures or macros in useful,
non-cryptography code are interspersed in-between any two cryptography
code calls, and that a cryptography call typically comprises a smaller stateful
computation than a larger stateful computation comprised by a non-

cryptography call.

The interleaving loop or recursive procedure of claim 21, parallelised to
execute a cryptography call largely in parallel with non-cryptography

computation.

An obfuscating memory management system operable in a computing
environment for creating an encoded pointer representation of any scalar,
comprising one or more encoding pointers pointing to one or more objects
created and managed by the memory management system for maintaining the

scalar in an obfuscated state throughout the lifetime of the scalar.

The objects of claim 23, laid out randomly over the heap memory.

115

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

25.

26.

27.

28.

29.

30.

31.

An encoding pointer of claim 23, such that the pointer is used only once in

encoding a scalar part.

An object of claim 23, comprising one or more fields containing one or more
pointers to one or more allocated objects, such that the value denoted by an
encoding pointer can be obtained by dynamic computation comprising the
use of a combination of the object, one or more of the pointers, one or more

of other pointers, and the allocate objects.

The one or more pointers to allocated objects contained in fields of the
object in claim 26, further denoting a value of a reference count for an
encoding pointer such that the value can be obtained by dynamic
computation comprising the use of a combination of the object, one or more

of the pointers, one or more of other pointers, and the allocated objects.
The memory management system of claim 27, incrementing the reference
count upon dynamically finding a scalar part’s encoding pointer using a filter

function.

The memory management system of claim 27, reclaiming the object upon

reference count elimination.

The memory management system of claim 26, reclaiming or migrating one

or more of the object or allocated objects using garbage collection.

The memory management system of claim 26, never storing a scalar or scalar

part directly in memory.

116

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

32.

33.

34.

35.

36.

37.

38.

39.

The memory management system of claim 23, scalarising the scalar into

independent encoding pointers.

The memory management system of claim 23, distributing an aggregate

object’s scalars’ encoding pointers all over the object.

The memory management system of claim 23, distributing a set of aggregate

objects’ scalars’ encoding pointers all over the objects.

The memory management system of claim 34, further re-distributing the
encoding pointers in the set of aggregate objects, upon increase or decrease

in objects due to allocation or de-allocation.

The memory management system of claim 35, deferring an object de-
allocation till a further re-distribution for vacating the de-allocated object

prior to the de-allocation.

The memory management system of claim 23, initialising the scalar using
dynamic computation comprising the use of a set of literals disjoint from the

literal initializing the scalar in an un-obfuscated program.
An object of claim 23, comprising one or more fields denoting a value for an
encoding pointer or a reference count such that the value or count can be

obtained by dynamic computation comprising the use of the object.

An encoding pointer representation of the scalar according to claim 23,

changed when one or more objects pointed to by one or more encoding

117

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

40.

41.

42.

43.

44.

45.

pointers are migrated by garbage collection, without changing the scalar’s

value denotation itself.

An obfuscating memory management system operable in a computing
environment for allocating or de-allocating an object with meta-data
comprising object size or layout such that the contents of the object may be
obfuscated by distribution or redistribution, part by part, anywhere over the

object or one or more other objects.

The memory management system of claim 40, deferring the object’s
deallocation till occupants of the object in lieu of parts distributed or re-

distributed to other objects have been vacated.

The object of claim 40, allocated with larger storage than its meta-data size,
so that false scalars or duplicated parts may be used to fill the extra space for

further obfuscation.

The memory management system of claim 40, comprising a garbage

collector.

The garbage collector of claim 42, using the layout meta-data to identify or

de-obfuscate pointer scalars in the object.
The memory management system of claim 40, scalarizing the object’s parts

in substitution for object allocation on the stack such that object’s encoding

pointers are scalarised and independently stored.

118

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

46. The memory management system of claim 45, enabling part-by-part
scalarisation of all stack-allocated variables of a procedure, such that the
variables are shifted to heap allocation only if the variables comprise a

pointer scalar.

47. The memory management system of claim 40, such that the object meta-data

itself 1s obfuscated.

48. A procedure obfuscation system operable in a computing environment for
de-stacking one or more procedure parameters, comprising:

(a) a static analyser means capable of guidance by one or more user annotations;

and

(b) a source-to-source transformer means capable of replacing a reference to a

procedure parameter with a non-stack reference.

49. The user annotations of claim 48, comprising sharpening a symbolic value of
a variable, location or expression to a subset of a symbolic value generated
by a static analyser.

50. The non-stack reference of claim 48, comprising a global variable.

51. The static analyser means of claim 48, comprising a means for determining

that a procedure call has no nested calls to the procedure.
52. The system of claim 48, wherein the static analyser means further comprises

a means for determining that the number of nested procedure calls to a

procedure contained within a call to the same procedure is less than a

119

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

53.

54.

55.

56.

57.

statically-known constant, and the non-stack reference further comprises a

global array variable indexed at a nesting depth of a procedure call.

The system of claim 48, wherein the static analyser means further comprises
a means for determining that barring procedure return values, all
dependencies within a procedure are intra-procedural, and the source-to-
source transformer means comprises a means for replacing a procedure with

a parameter memoising procedure.

The system of claim 53, wherein the static analyser means further comprises
a means for computing a schedule of calls for a recursive computation
involving a procedure and the source-to-source transformer means comprises

invoking the procedure according to the schedule in a loop or recursion.

A computing context storing system operable in a computing environment
for storing a computing context, wherein a computing context comprises a
narrow time window within which the computing context is stored in the

computing environment.

The system of claim 55, wherein narrow time windows or exact times of
creation or modification of one or more files or folders along with their
locations in a computing environment further comprise the computing

context.
The system of claim 55, wherein the partial content of one or more files or

folders along with their locations in a computing environment further

comprise the computing context.

120

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

38.

59.

60.

61.

62.

63.

The system of claim 55, wherein the names of one or more files or folders
along with their locations in a computing environment further comprise the

computing context.

The system of claim 55, wherein functional data related to the accurate
working of the computing environment further comprises the computing

context.

A computing context recognition system operable in a computing
environment for handling and recognising a changing computing context,
that stores a computing context to re-construct the computing context from
the stored data later, recognising the later context to be that of the same
computing environment for which the context was stored, if the
reconstructed context matches a freshly computed context for more than a

preset, passing number of stored context entities.

The system of claim 60, wherein after a computing context is recognised, a
revised computing context is stored in place of the earlier stored computing

context, for more accurate recognition of a computing context later.

The system of claim 60, wherein functional data related to the accurate
working of the computing environment further comprises the computing

context.

A distribution system operable in a computing environment for a multimedia
and text combination asset comprising a software player that hides one or
more keys or cryptography implementation within itself and is bundled with

a combination of video, audio, or text data in encrypted form such that the

121

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

64.

65.

66.

67.

68.

software player can decrypt and play the data or encrypt and add data,
without requring any customer-specific symmetric or assymetric key or
password to be input or made available during installing or running the

player.

The software player of claim 63, wherein the player thwarts simple data
capture mechanisms comprising one or more of screen bitmap capture,

screen text clip capture, screen text clipboard capture, or audio clip capture.

The software player of claim 63, wherein the hidden keys or cryptography
implementation of the player comprises an expiry date or mechanism so that

the player does not work after the date or mechanism disallows it.

The software player of claim 65, enabling a free or priced update with a
continuing player of a different hidden keys or cryptography implementation,

upon expiry of the player.

The update of claim 66, recurring with a well-announced expiry date for

planning convenience.

The bundled data of claim 63, wherein the data decrypted or encrypted by the
hidden keys or cryptography implementation of the software player is
reduced to a small partition so that the remaining one or more data partitions
may be bundled and distributed with one or more other software players,

each comprising distinct hidden keys or cryptography implementation.

122

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

69. The distribution system of claim 63, such that no plaintext fragment of
encrypted data is exposed to a user, other than possibly only sale-related

input such as buyer details or payment details.

70. A software authentication and installation monitoring system operable in a
computing environment for installing authenticated software only on a
machine, comprising:

(a) a means for hiding one or more keys or cryptography implementation;

(b) a means for tracking authentic software or certified software or user-built

software installed on a machine by storing the information in encrypted form on

the machine using the keys or cryptography implementation hidden by the hiding
means;

(c) a means for mediating in a software installation, ensuring that authentication

steps are carried out that ensure the authenticity of the installed software;

(d) a means for disallowing a user setting the permission of a file to execute,

unless the file is known to be built or certified by the user or known to be

authentically installed as per the encrypted information kept by the tracking
means;

(e) a means for disallowing an executable file to run, unless the file is built or

certified by the user or known to be authentically installed as per the encrypted

information kept by the tracking means;

(f) a means for stopping a running program, if the running program is found to

not be user built or certified, or authentically installed as per the encrypted

information kept by the tracking means; and

(g) a means for scanning the machine periodically, resetting the the execute

permissions of any unknown files.

123

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

71. The system of claim 70, updating an expired or expiring software with a
successor software having different hidden keys or cryptography
implementation.

72. The update of claim 71, recurring with a well-announced expiry date for

planning convenience.

73. The system of claim 72, installing and periodically updating an authenticated

browser.

74. The system of claim 70, such that no plaintext fragment of encrypted data is

exposed to a user.

75. A distribution method operable in a computing environment for binary-
encoded digital assets, comprising:

(a) a hiding step for hiding one or more keys or cryptography implementation in

a digital asset;

(b) a copying step for receiving a functionally-restricted asset copy for use or

further distribution, directly or as a further copy, with or without access to a

computer network; and

(c) a self-policing step for enforcing asset safety comprising:

i. an authentication step for an un-authenticated, digital asset for
constructing encrypted credentials data using one or more keys or cryptography
implementation hidden in the asset, for authentication by an authenticated digital
asset or website;

ii. a secure selling step for an authenticated digital asset for
either carrying out a sale transaction directly, securely, or delegating the sale to a
separate secure means, identifying the delegation by an encrypted identifier

constructed using one or more keys or cryptography implementation hidden in

124

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

the asset and decrypting the response from the secure means using the one or
more keys or cryptography implementation hidden in the asset to determine the
success of the sale; and

ili. a copyright and license enforcement step for an asset for
carrying out encryption and decryption of computing context and other data
using one or more keys or cryptography implementation hidden in the asset, with
functionally-unrestricted asset use permitted only after the asset has been sold

and licensed to run in a recognisable computing context.

76. A cryptography hiding method operable in a computing environment for
hiding one or more keys or cryptography implementation in a binary-
encoded digital asset using holistic, efficient steganography, comprising:

(a) an interleaving step for interleaving sequentially or concurrently, the

computation of non-cryptography, useful code with cryptography code;

(b) an obfuscating memory management step for creating an encoded pointer

representation of any scalar, comprising the use of one or more encoding

pointers pointing to one or more objects created and managed for maintaining
the scalar in an obfuscated state throughout the lifetime of the scalar;

(c) a class obfuscation step for translating a class to one or more data structures

or procedures; and

(d) a procedure obfuscation step for de-stacking one or more parameters of a

procedure or translating a procedure call to jumps to and from an inlined

procedure body.

77. A cryptography hiding method operable in a computing environment for
hiding one or more keys or cryptography implementation in a binary-
encoded digital asset using holistic, efficient steganography, comprising the

step of using an interleaving loop or recursive procedure for instantiating one

125

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

78.

79.

80.

81.

or more re-entrant calls to one or more procedures or macros in cryptography
code, such that one or more re-entrant calls to one or more procedures or
macros in useful, non-cryptography code are interspersed in-between any
two cryptography code calls, and that a cryptography call typically comprises
a smaller stateful computation than a larger stateful computation comprised

by a non-cryptography call.

An obfuscating memory management method operable in a computing
environment for creating an encoded pointer representation of any scalar,
comprising the step of using one or more encoding pointers pointing to one
or more objects created and managed for maintaining the scalar in an

obfuscated state throughout the lifetime of the scalar.

An obfuscating memory management method operable in a computing
environment comprising the step of allocating or de-allocating an object with
meta-data comprising object size or layout such that the contents of the
object may be obfuscated by distribution or re-distribution, part by part,

anywhere over the object or one or more other objects.

A procedure obfuscation method operable in a computing environment for
de-stacking one or more procedure parameters, comprising a static analysis
step guided by one or more user annotations, and a source-to-source
transformation step replacing a reference to a procedure parameter with a

non-stack reference.
A computing context storing method operable in a computing environment

for storing a computing context, comprising a step of storing a computing

context within a narrow time window part of the computing context.

126

10

15

20

25

WO 2016/199166 PCT/IN2016/050169

82. A computing context recognition method operable in a computing
environment for handling and recognising a changing computing context,
comprising the steps of:

(a) Storing a computing context; and

(b) Re-constructing the computing context from the stored data later, recognising

the later context to be that of the same computing environment for which the

context was stored, if the reconstructed context matches a freshly computed

context for more than a preset, passing number of stored context entities.

83. A distribution method operable in a computing environment for a
multimedia and text combination asset comprising a step of encrypting or
decrypting a combination of video, audio or text data bundled with a
software player, using the hidden keys or cryptography implementation of
the software player such that no customer-specific symmetric or assymetric
key or password is required to be input or made available during the

installing or running of the player.

84. A software authentication and installation monitoring method operable in a
computing environment for installing authenticated software only on a
machine, comprising the steps of:

(a) hiding one or more keys or cryptography implementation;

(b) tracking authentic software or certified software or user-built software

installed on a machine by storing the information in encrypted form on the

machine using the hidden keys or cryptography implementation;

(c) mediating in a software installation, ensuring that authentication steps are

carried out that ensure the authenticity of the installed software;

127

10

WO 2016/199166 PCT/IN2016/050169

(d) disallowing a user setting the permission of a file to execute, unless the file is
known to be built or certified by the user or known to be authentically installed
as per the encrypted information kept in the tracking step;

(e) disallowing an executable file to run, unless the file is built or certified by the
user or known to be authentically installed as per the encrypted information kept
in the tracking step;

(f) stopping a running program, if the running program is found to not be user
built or certified, or authentically installed as per the encrypted information kept
in the tracking step; and

(g) scanning the machine periodically, resetting the the execute permissions of

any unknown files.

128

WO 2016/199166

PCT/IN2016/050169

1/10

Receive Semi-Functional
Cryptography Hiding Asset Copy

o,
e,

o —
- Ty
S ok .
- - Sutnenticate
‘,.,-"‘J : .
o I Lopy
S“- .

-
i

Demaonstrate
Copy

N

Buy Copy
Securely

W

install fully-
functional copy

e

- e
i

e
il

i
e,
et

I
e - H ‘.\W“'ﬂ-\'«\
e, e | I ’I.-iﬁ | i T, :\
Run Licensed : Enforce o Send Semi-

Copy

Copyright

e T 7 ST
S . Copy
Nﬂ“‘m“*\« A - ,.,...—.w-'w-—'-\'»"""’_“"_-'“-.-\w‘

Loop End

Fig. 1

WO 2016/199166

1))
2.

.-"f«
§

¥

{Credentials File
{shown
decrypted}
Version,
Parent,

Secret, ..

g

2/10

Fig. 2

PCT/IN2016/050169

WO 2016/199166

"
P e
& f ;
S\ &
2 - y

N e

3/10

Context File
{shown
decryptead)
fafter, beforeg]
D
D1
TF1, CF1,
TF3, CF3
B4

Fig. 3

PCT/IN2016/050169

JERRVSEN R
e o

- \“\1\
o)
(__,* i

N\

;@M‘________\‘_‘_‘N‘_ﬂ»
D1
D2

WO 2016/199166 PCT/IN2016/050169

4/10

Fig. 4

WO 2016/199166 PCT/IN2016/050169

5/10

Cryptography

N A

Nm‘ cryprography T

4 Encoding,)

Scalars e el s
-~ distributing,
Data :;N\ migrating,
| Memory
? | Aggregates | 4
i _ Mmanager J
| Classes | |
¥ Flatten,
Algorithm | De-stack,
« e , v s
Abstraction ‘ Optimise
Procedures _\ y

Fig. 5

WO 2016/199166 PCT/IN2016/050169

6/10

Marrow P - Non-nested calls,
. Interactive . :
Symbolic ‘ K-nested calls,
: Static : . e
values, , Re-orderability
. Analyser
\ assertions , for memao calls
De-stacking
Procedure
Obfuscation
s
e
-
¢"¢jf
f"’f
> N,
S_-__‘.-“ 'fr : x 3 § \
. i . Global variables and K-
Transformer for | boundedstoragefor
de-stacking parameters,
| Memoising procedures

" vy

Fig. 6

WO 2016/199166

PCT/IN2016/050169

7/10

Reuse, e.g.

Reference count,
Modify encoding

Use once {reclaim or

migrate on G}
&
S - — {migrate on G}
] P ::__‘_‘..*«-‘-“"" Eraie)
. Random heap
T~ pasition, scalarise

Fat scalar encod mtg‘\\\\
4 Encoding, N
distributing,
migrating,
memaory
\ manager)

Fataggregate "
object
o Ao
i P /‘“. o
\.\ E
\%‘“\\x ’ _/’}
g
Pointers remapped over tracked storage,

periodically re-distributed, deferred deallocations

Fig. 7

WO 2016/199166

F 3
g — Update
Fartfion | Update
install

PCT/IN2016/050169
8/10
' ’ &
: — Updats
Partition N
a N Update
-
N L
®_ 11-,-\ install
\\\"«.\ sis ;,.-v""\ -7
1\(\"‘\ K ‘Fe‘"xf
Software
Player and
Multimedia

Distribution

1

T T,

Fig. 8

WO 2016/199166 PCT/IN2016/050169

9/10
Track Authentic intercept File |
Instaliations Execute Permission
F‘a\ 7
x\\ @ff"
L
i‘“g“ 1
Client . .
Hide Koys . . . Stop Runnin
4c ": ;;" Authentication o P 8
and Cryptograph : rogram
YRLOBraphy Monitor &
«\"f.xﬁt?kﬁ.\\\x
f“"f?*ﬁa 1\ N\&NA"\-.
& \ T
Intercept Program ¥ Scan File
Running] Permissions
Mediateto
Authenticate

Irnstallation

Fig. 9

WO 2016/199166

1000
e

10/10

L~ 1008

£Y

b

Processor

Ei3

PCT/IN2016/050169

£ 1010

£

Display

S

st

£

ructions

Memaory

i

Instructions

1016~ §
i

s

{

t

Dirive Unit

Computer

Communication

Readable

Medium

Instructions

|

Fig. 10

Interface

[
R {l\
\i& R

B e W
(,»“““"’(Y \

&

(
)

S g ;
%, ; I
S
e ¥

A ‘\:
Network *

o

	Abstract
	Description
	Claims
	Drawings

