
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization

International Bureau
(10) International Publication Number

(43) International Publication Date W O 2016/199166 Al
15 December 2016 (15.12.2016) W I PO I P C T

(51) International Patent Classification: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
G06F 21/14 (2013.01) DO, DZ, EC, EE, EG, ES, Fl, GB, GD, GE, GH, GM, GT,

HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
(21) International Application Number: KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,

PCT/IN2016/050169 MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
(22) International Filing Date: PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,

6 June 2016 (06.06.2016) SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(25) Filing Language: English
(84) Designated States (unless otherwise indicated, for every

(26) Publication Language: English kind of regional protection available): ARIPO (BW, GH,

(30) Priority Data: GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,

1753/DEL/2015 11 June 2015 (11.06.2015) IN TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,

(72) Inventor; and DK, EE, ES, Fl, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
(71) Applicant : VARMA, Pradeep [IN/IN]; 634, Sector-21, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,

Gurgaon 122016 (IN). SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,

(74) Agents: KOUL, Sunaina et al.; RCY House, C-235, De- GW, KM, ML, MR, NE, SN, TD, TG).

fence Colony, New Delhi 110024 (IN). Declarations under Rule 4.17:

(81) Designated States (unless otherwise indicated, for every - as to applicant's entitlement to apply for and be granted a
kind of national protection available): AE, AG, AL, AM, patent (Rule 4.17(ii))
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, ofinventorship (Rule 4.17(iv)

[Continued on next page]

(54) Title: POTENTATE: A CRYPTOGRAPHY-OBFUSCATING, SELF-POLICING, PERVASIVE DISTRIBUTION SYSTEM
FOR DIGITAL CONTENT

(57) Abstract: Using commonplace networking or browser

Receive Semi-Functional software, commonplace hardware (e.g. laptops, servers, mo
Cryptography Hiding Asset Copy biles, multimedia players) and content provision over a se

cure website (https standard), we disclose a system for self

policed, authenticated, offline/online, viral marketing and dis
Authenticate tribution of content such as software, text, and multimedia

Copy with effective copyright and license enforcement and secure
selling. The system is based on key, and cryptography hiding
techniques, using source-to-source transformation for effi

Demonstrate BuyCopy cient, holistic steganography that systematically inflates and
'opy Securely hides critical code by: computation interleaving; flattening

procedure calls and obfuscating stack by de-stacking argu

Install fuly- ments; obfuscating memory management; and encoding scal
unctional co~py ars as pointers to managed structures that may be distributed

and migrated all over the heap using garbage collection. Mul
timedia/text content may be partitioned and sold with expiry
dates for protection and updates for long life. Authenticity of

Loop Begin software installed on a machine may be monitored and en
sured, supporting even authentic software deployment in an
unknown environment.

Run Licensed Enforce Send Semi
Copy copyright Functional

Copy

LoopEnd

Fig.1

W O 2 0 16/19 9 16 6 A 1|l l l| |lll l| | || | |||||||| |||||||||||||||||||||||||||||||||||||I|||||||||||||

Published: - before the expiration of the time limit for amending the
with international search report (Art. 21(3)) claims and to be republished in the event of receipt of

amendments (Rule 48.2(h))

WO 2016/199166 PCT/IN2016/050169

POTENTATE: A CRYPTOGRAPHY-OBFUSCATING, SELF-POLICING,

PERVASIVE DISTRIBUTION SYSTEM FOR DIGITAL CONTENT

FIELD OF THE INVENTION

5 [0001] This disclosure is about propagation and copyright enforcement of software

based assets such as software, software appliances, devices with embedded software,

text, books, music, games, and videos in general and the obfuscation of the required

cryptography support in particular. Furthermore, this disclosure is about software

capabilities comprising hidden cryptography, auto copyright and license enforcement,

10 self authentication, authenticity enforcement, self duplication, self demonstration, self

marketing including incentives, and self selling securely with multiple payment or free

schemes.

BACKGROUND OF THE INVENTION

15 [0002] US6266654 and related patents (US7065508, US7085743, US7089212,

US7092908, US7158954, US 7209901, US7249103, US7330837) discuss software

sales where lineages are tracked, a copy can be used for sale or propagation and

marketing incentives provided for such sales. Kirovski et al. in US 7818811 B2 discuss

multimedia sales similarly and provide a public-key scheme for authenticating

20 transactions, involving keys per party including buyer, seller, and service provider along

with specialised hardware as an elaborate means for preventing fraud. Left unfulfilled is

a need for authenticated, software sales of freely copied and marketed software,

whereby no keys or key infrastructure are required of the retail participants - buyers,

sellers - and commonplace hardware is used. Left unfulfilled is a need for protection

25 against masqueradors who subsitute genuine software with fake or fraudulent software.

Left unfulfilled is a need to protect the working of genuine software from masqueradors

who supply a fake computing environment for a genuine software to work in, in an

1

WO 2016/199166 PCT/IN2016/050169

effort to capture or break the cryptographic underpinnings of the distributed software

and to discover any keys distributed with the software.

[0003] Much work has transpired to design software that hides cryptogaphy

5 implementation including keys and data from the scrutiny of hostile parties running and

testing the software on untrusted systems. Listed below is the prominent prior art and

literature on the subject.

[0004] Collberg et al. in US6668325 and other literature (Christian Collberg, Clark

10 Thomborson, and Douglas Low, "Manufacturing cheap, resilient, and stealthy opaque

constructs", In Proceedings of the 25th ACM SIGPLAN-SIGACT symposium on

Principles of programming languages (POPL '98), ACM, New York, NY, USA, pages

184-196.

DOI=10.1145/268946.268962, http://doi.acm.org/10.1145/268946.268962; C. Collberg,

15 C. Thomborson, and D. Low," Breaking Abstractions and Unstructuring Data

Structures", In Proceedings of IEEE International Conference on Computer Languages

(ICCL '98), May 1998, pages 28-38. DOI= 10.1109/ICCL.1998.674154

http://dx.doi.org/10.1109/ICCL.1998.674154; and Christian S. Collberg and Clark

Thomborson,"Watermarking, tamper-proofing, and obfuscation: tools for software

20 protection", IEEE Transactions on Software Engineering Volume 28, Issue 8 (August

2002), 735-746. DOI=10. 1 109/TSE.2002.1027797

http://dx.doi.org/10.1109/TSE.2002,1027797) disclose methods to obfuscate (Java)

programs comprising (a) opaque predicates that serve to hide control flow behind

irrelevant (conditional) statements that do not contribute to the actual computations (b)

25 splitting and encoding of Boolean variables as integers with Boolean operators

implemented over the resulting integers, (c) Java class obfuscation by adding classes

and refactoring the class inheritance graph, (d) obfuscate arrays by splitting them into

subarrays, or merging them into superarrays, or increasing/decreasing the number of

2

WO 2016/199166 PCT/IN2016/050169

array dimensions (e) obfuscating procedures by inlining calls, outlining code into new

procedures, using application-specific bytecode interpreters, and cloning procedures (f)

constructing strings dynamically (g) merging scalars such as two 32-bit integers into

larger scalars (a 64-bit integer), encoding integers (e.g. represent i as cli + c2) and

5 promoting scalars to objects (e.g. an integer to the Integer class in Java). Pointer aliases

are identified as particularly useful for constructing opaque predicates due to the

intractability of pointer analysis. Building bogus pointer data structures for application

obfuscation is recommended so that opaque predicates can be constructed using the

pointers such as based on some hidden invariant that two pointer variables are or are not

10 aliases of each other. One cost of such bogus structures that is noted is heap space

exhaustion due to data bloat in the obfuscated code compared to the original code.

[0005] Horning et al. in US7430670 disclose methods including obfuscation methods

with a binary modification tool comprising: rearranging/splitting/duplicating basic

15 blocks, rearranging code within a basic block and inserting null instructions, obstruct

binary code analysis, string encryption, obstruct decompilation to source constructs

using code replication, code fusion etc. to introduce irreducible flow graphs, using

overlays to make address tracing difficult, protecting jumps, obfuscation using

concurrency, and program optimization as obfuscation. They point out that pointer

20 analysis and similarly array subscript analysis is intractable and hence opaque predicates

can be constructed using them. Variables can be allocated out of a contiguous array

space, replacing individual variable access with an index into the array. A variable stored

thus can be an array itself, with its contiguous elements stored contiguously or otherwise

in the space.

25

[0006] Farrugia et al. in US8434061 present an approach to specifically, shuffle, split

and expand an array into a set of arrays so that individual data items are spread in

memory. Access to an array element occurs using simple accessor functions such as

3

WO 2016/199166 PCT/IN2016/050169

deobfuscate-array(number, 5), which can be used to access the 5th element of the

directly identified, original array number from its distributed set of bits in memory. The

method however, spreads bits as-is in memory, using a one-to-one mapping, as encoded

in the accessor function, for looking up each bit in it new memory position in place of

5 the original one. Thus the obfuscation is limited, with an obfuscated memory image

being only a permutation of an un-obfuscated memory image.

[0007] Lattner et al. in US8645930 present a clubbed, single recursive function

implementation of multiple functions to present one obfuscated, common function in

10 place of the individual ones. Within the common function body, a goto-based dispatch is

implemented for the specific sub-function indicated by an argument. The argument

identifies the original unclubbed function call that in turn identifies the subpart of the

common function body to be run through. The common function mechanism is then

implemented without using system stack, by implementing the stack explicitly in heap

15 with push and pop operations carried out on the heap stack explicitly in the source code.

This technique thus still implements the stack functionality. Also it adds run-time costs

in clubbing multiple functions in one common recursive function for the obfusction it

attains.

20 [0008] Farrugia et al. in US8707053 disclose a method of carrying out a Boolean

operation such as XOR on masked versions of data and then unmasking the result for

further computation, as and when necessary. The masking is carried out using a mapping

function that maps a datum to its masked equivalent. Improvement over prior art is

mentioned, where masking, by an XOR bit/datum is noted to be easily broken by the

25 knowledge of the bit, with masking by function being mentioned as harder to break with

a single bit/datum leak. Unfulfilled in this mathematical transformation approach

however, is invulnerability to recognition of the algebraic transformations involved on

4

WO 2016/199166 PCT/IN2016/050169

the stored data and inversion of the same. Also unfulfilled, is a need to not allow an

unmasked result, post unmasking, to be read from the memory image by an adversary.

[0009] Zhou et al. in US7634091 disclose a method of obfuscating a part of the private

5 key in public key crypt systems such as RSA (Rivest Shamir Adleman) and El Gamal so

that the key can still be used in deciphering data. Muir et al. in WO 2011120125 Al

disclose a digital signature method against white-box attacks that does not store a

private key in the clear, unlike a public key and uses a transformed generator to carry

out the digital signature generation process without using the private key in the clear.

10 Left unfulfilled in these specific cryptographic methods is a need for a uniform

software-transforming technique to hide the keys and encryption/decryption process in

not only these crypt systems, but also in other crypt systems, such as symmetric

encryption systems.

15 [0010] Cappaert et al. in Jan Cappaert and Bart Preneel,"A general model for hiding

control flow", in Proceedings of the tenth annual ACM workshop on Digital rights

management (DRM '10), ACM, New York, NY, USA, 35-42,

DOI= 10.1145/1866870.1866877, http://doi.acm.org/10.1145/1866870.1866877, discuss

a flattened control flow graph wherein each transfer to a basic block is mediated by a

20 dispatcher that can jump to any basic block, with the label for the jump being stored as a

runtime value accessed by a one-way transition function and branch functions such that

minimum information (e.g. a secret value) for hiding from the program can be specified

such that control flow information is not leaked. The secret value needs to be kept and

passed separately to the program at run-time, which in effect makes the secret value a

25 key, which then leaves the key-hiding problem unsolved.

[0011] A memory management technique by Ruwase et al. (0. Ruwase and M. S. Lam,

"A practical dynamic buffer overflow detector", In Proceedings of the 11th Annual

5

WO 2016/199166 PCT/IN2016/050169

Network and Distributed System Security(NDSS) Symposium, pages 159-169, February

2004) represents an out-of-bounds pointer value with an address of an out-of-bounds

object that is created and managed by the memory management system in a dedicated

hash table. The out-of-bounds object stores the out-of-bounds pointer value in itself,

5 along with a pointer to a referent object. Since no garbage collection is used, all out-of

bounds objects for a referent object are deleted when the referent object is deleted, to

prevent memory leaks from occuring. The hash table is kept, specifically for this

purpose - when a referent object is reclaimed, the hash table is traversed, deleting all

out-of-bounds objects pointing to that referent object. This technique is inapplicable for

10 an obfuscatory purpose for two reasons. One, the hash table is a giveaway; all objects

contained in it are known to be encodings of out-of-bounds pointer values. Two, an out

of-bounds pointer value may survive the deletion of its referent object, for example as a

dangling pointer. The pointer may participate in normal computation thereafter, e.g.

pointer arithmetic and comparisons, so its obfuscated encoding needs to survive the

15 deletion of the referent object. This the Ruwase et al. scheme is unable to provide, given

that preventing memory leaks while not relying on garbage collection is motivational.

Hence Ruwase et al. although useful for designing bounds checkers in memory safety

systems, is not useful for a cryptography obfuscation purpose.

20 [0012] The Ruwase et al. scheme above is not capable of handling pointers beyond out

of-bounds pointers. Similarly, smart pointer schemes proposed for C++ only handle a

subset of pointers (base pointers to whole objects) ignoring pointers such as interior

pointers, out-of-bounds pointers, dangling pointers and so on. The coverage of scalars,

by object casts, e.g. int to Integer in Java, or int to object in C# does not extend to

25 pointer types (a pointer is not a valid type in Java). Thus no scheme in prior art is

capable of a pointer encoding of all scalars. Further the schemes in prior art suffer from

a need to re-use an encoding, e.g. Integer(1) for all instances of 1, which compromises

6

WO 2016/199166 PCT/IN2016/050169

the obfuscation value of the scheme by offering the re-use mechanism or table of

encodings as a direct giveaway.

[0013] Each one of these prior art or literature references suffers from one or more of

5 the following disadvantages: incomplete program obfuscation, and unnecessary

obfuscation cost. Glaring in particular is the omission of techniques for heap-efficient

pointer and memory management, procedure and stack obfuscation by optimisation

avoiding unnecessary computation, and steganography, using which extreme

obfuscation can be obtained at an extremely low cost.

10

[0014] For the foregoing reasons, there is a need for improvement in cryptography

hiding or obfuscating techniques relevant to the strict requirements of software

comprising a distribution system. The strict requirements include hiding of keys and

data circulated with a distribution system to run under hostile scrutiny on an untrusted

15 system. For wide reach, a distribution system has to run with a small resource footprint

on stock hardware with no extra capabilities. The two needs, for extreme obfuscation,

and extremely low budget or high efficiency, are simultaneously sought to be met for a

desired advancement in distribution systems comprising self-policing capabilities of

self-authentication, effective copyright and license enforcement, and secure selling

20 while supporting both online and offline (viral) modes of asset distribution.

SUMMARY OF THE INVENTION

[0015] In this disclosure, using commonplace browser software and stock hardware like

mobiles, PCs, laptops, desktops, and servers, and content provision over a secure

25 website (https standard), we disclose a system for self-policed, authenticated, offline and

online, viral marketing and distribution of content such as software and multimedia with

effective copyright and license enforcement and secure selling capabilities. The system,

in particular, does not require any public key infrastructure, with inexpensive symmetric

7

WO 2016/199166 PCT/IN2016/050169

encryption sufficing for all its needs (beyond the https standard). The system protects

against masqueraders who try to substitute the software with fake or fradulent entities,

and also against masqueradors who try to subsitute the environment a genuine software

tries to run in.

5

[0016] The system is based on novel key, data, and cryptography hiding techniques for

software. The system uses source-to-source transformation for efficient, holistic

steganography that systematically inflates critical code computation, thereby hiding it,

by:

10

[0017] 1. Interleaving in varying depth, the key, secret data and cryptography

code with standard application code, with or without concurrent primitives.

[0018] 2. Flattening classes into a class-less program.

15

[0019] 3. Flattening procedure calls and obfuscating stack by de-stacking

arguments.

[0020] 4. Obfuscating memory management by replacing scalars by scalarised

20 fat scalars, comprising encoding as pointers providing an invariant that critical data

fields or keys are never exposed in any memory image during computation and data may

be distributed all over the heap. The memory manager works with or without garbage

collection capabilities, supporting data migration.

25 [0021] 5. Untyping the run-time image by obfuscating symbol table and type and

object metadata information, and further destabilising fields and control flow.

8

WO 2016/199166 PCT/IN2016/050169

[0022] A distribution system for binary-encoded digital assets is disclosed. The system

comprises a hiding means for hiding one or more keys or cryptography implementation

in a digital asset. The system further comprises a copying means for asset distribution

wherein a functionally-restricted asset copy is received for use or further distribution,

5 directly or as a further copy, with or without access to a computer network. The system

further comprises a self-policing means for enforcing asset safety, comprising an

authentication means for an un-authenticated, digital asset wherein encrypted credentials

data using one or more keys or cryptography implementation hidden in the asset are

constructed for authentication by an authenticated digital asset or website. The self

10 policing means further comprises a secure selling means for an authenticated digital

asset wherein either a sale transaction is carried out directly, securely, or the sale is

delegated to a separate secure means, identifying the delegation by an encrypted

identifier constructed using one or more keys or cryptography implementation hidden in

the asset. The response from the secure means is decrypted using the one or more keys

15 or cryptography implementation hidden in the asset to determine the success of the sale.

The self-policing means further comprises a copyright and license enforcement means

for an asset wherein encryption and decryption of computing context and other data

using one or more keys or cryptography implementation hidden in the asset are carried

out. Functionally-unrestricted asset use is permitted only after the asset has been sold

20 and licensed to run in a recognisable computing context.

[0023] According to an embodiment, a digital asset comprises software.

[0024] According to another embodiment, the asset further comprises a combination of

25 encrypted video, audio, or text data bundled with the software. The software is a

software player to decrypt and play the data or encrypt and add data.

9

WO 2016/199166 PCT/IN2016/050169

[0025] According to yet another embodiment, the bundled software thwarts simple data

capture mechanisms comprising one or more of screen bitmap capture, screen text clip

capture, screen text clipboard capture, or audio clip capture.

5 [0026] According to an embodiment, the hidden keys or cryptography implementation

of the software comprises an expiry date or mechanism so that the software does not

work after the date or mechanism disallows it.

[0027] According to another embodiment, the software enables a free or priced update

10 with a continuing digital asset of different hidden keys or cryptography implementation,

upon expiry of the software.

[0028] According to an embodiment, the update recurs with a well-announced expiry

date for planning convenience.

15

[0029] According to an embodiment, the bundled data decrypted or encrypted by the

hidden keys or cryptography implementation of the software player is reduced to a small

partition so that the remaining one or more partitions may be bundled with one or more

other software players, each distributed with its own distinct hidden keys or

20 cryptography implementation.

[0030] According to an embodiment, the distribution system instals an authenticated

digital asset on a machine where installed software consists of authenticated assets only.

25 [0031] According to another embodiment, the asset installation is mediated by a

monitoring system on the machine.

10

WO 2016/199166 PCT/IN2016/050169

[0032] According to yet another embodiment, the asset installation updates an expired

or expiring asset with a successor asset of different hidden keys or cryptography

implementation.

5 [0033] According to yet another embodiment, the update recurs with a well-announced

expiry date for planning convenience.

[0034] According to an embodiment, the asset installation instals and periodically

updates an authenticated browser.

10

[0035] According to an embodiment, the monitoring system disallows unmediated asset

installation by resetting execution permission or disallowing a file with execute

permission to run, or stopping a running software.

15 [0036] According to an embodiment, secure selling is carried out even on a machine

with un-authenticated software.

[0037] According to an embodiment, no plaintext fragment of encrypted data is exposed

to a user, other than possibly only sale-related input such as buyer details or payment

20 details.

[0038] According to yet another embodiment, the computing context and other data are

stored with the digital asset after sale and installation.

25 [0039] According to yet another embodiment, the credentials data constructed by a

digital asset are passed to a browser to authenticate.

11

WO 2016/199166 PCT/IN2016/050169

[0040] According to yet another embodiment, a key is stored in a digital asset by

distribution into a subset of a large number of candidate data fields in the asset, the

reconstruction of the key from the fields not being apparent from a reverse engineered

control flow of the asset, forcing a combinatorially large number of key reconstructions

5 to be considered in a key search making key discovery infeasible.

[0041] A cryptography hiding system for hiding one or more keys or cryptography

implementation in a binary-encoded digital asset using holistic, efficient steganography

is disclosed. The system comprises an interleaving means for sequentially or

10 concurrently interleaving the computation of non-cryptography, useful code with

cryptography code. The system further comprises an obfuscating memory management

means for creating an encoded pointer representation of a scalar, comprising one or

more encoding pointers pointing to one or more objects created and managed by the

memory management means for maintaining the scalar in an obfuscated state

15 throughout the lifetime of the scalar. The system further comprises a class obfuscation

means for translating a class to one or more data structures or procedures. The system

further comprises a procedure obfuscation means for de-stacking one or more

parameters of a procedure or translating a procedure call to jumps to and from an inlined

procedure body.

20

[0042] A cryptography hiding system for hiding one or more keys or cryptography

implementation in a binary-encoded digital asset using holistic, efficient steganography

is disclosed. The system comprises an interleaving loop or recursive procedure

instantiating one or more re-entrant calls to one or more procedures or macros in

25 cryptography code, such that one or more re-entrant calls to one or more procedures or

macros in useful, non-cryptography code are interspersed in-between any two

cryptography code calls. A cryptography call typically comprises a smaller stateful

computation than a larger stateful computation comprised by a non-cryptography call.

12

WO 2016/199166 PCT/IN2016/050169

[0043] According to an embodiment, the interleaving loop or recursive procedure is

parallelised to execute a cryptography call largely in parallel with non-cryptography

computation.

5

[0044] An obfuscating memory management system for creating an encoded pointer

representation of a scalar is disclosed. The system comprises one or more encoding

pointers pointing to one or more objects created and managed by the memory

management system for maintaining the scalar in an obfuscated state throughout the

10 lifetime of the scalar.

[0045] According to an embodiment, the objects are laid out randomly over the heap

memory.

15 [0046] According to another embodiment, an encoding pointer is used only once in

encoding a scalar part.

[0047] According to yet another embodiment, an object comprises one or more fields

containing one or more pointers to one or more allocated objects. The value denoted by

20 an encoding pointer can be obtained by dynamic computation comprising the use of a

combination of the object, one or more of the pointers, one or more of other pointers,

and the allocated objects.

[0048] According to yet another embodiment, the one or more pointers to allocated

25 objects contained in fields of the object further denote a value of a reference count for

an encoding pointer. The value can be obtained by dynamic computation comprising the

use of a combination of the object, one or more of the pointers, one or more of other

pointers, and the allocated objects.

13

WO 2016/199166 PCT/IN2016/050169

[0049] According to yet another embodiment, the memory management system

increments the reference count upon dynamically finding a scalar part's encoding

pointer using a filter function.

5 [0050] According to yet another embodiment, the memory management system reclaims

the object upon reference count elimination.

[0051] According to yet another embodiment, the memory management system reclaims

or migrates one or more of the object or allocated objects using garbage collection.

10

[0052] According to yet another embodiment, the memory management system never

stores a scalar or scalar part directly in memory.

[0053] According to yet another embodiment, the memory management system

15 scalarises the scalar into independent encoding pointers.

[0054] According to yet another embodiment, the memory management system

distributes an aggregate object's scalars' encoding pointers all over the object.

20 [0055] According to yet another embodiment, the memory management system

distributes a set of aggregate objects' scalars' encoding pointers all over the objects.

[0056] According to yet another embodiment, the memory management system further

redistributes the encoding pointers in the set of aggregate objects, upon increase or

25 decrease of objects in the set due to allocation or de-allocation.

14

WO 2016/199166 PCT/IN2016/050169

[0057] According to yet another embodiment, the memory management system defers

an object de-allocation till a further re-distribution vacates the de-allocated object prior

to the de-allocation.

5 [0058] According to yet another embodiment, the memory management system

initialises the scalar using dynamic computation comprising the use of a set of literals

excluding the literal initialising the scalar in an un-obfuscated program code.

[0059] According to yet another embodiment, an object comprises one or more fields

10 denoting a value for an encoding pointer or reference count. The value can be obtained

by dynamic computation comprising the use of the object.

[0060] According to yet another embodiment, the encoding pointer representation of the

scalar is changed when one or more objects pointed to by one or more encoding pointers

15 are migrated by garbage collection. The scalar's value denotation remains unchanged.

[0061] An obfuscating memory management system is disclosed. The system allocates

or de-allocates an object with meta-data comprising object size or layout. The contents

of the object may be obfuscated by distribution or re-distribution, part by part, anywhere

20 over the object or one or more other objects.

[0062] According to an embodiment, the memory management system defers an object's

deallocation till occupants of the object in lieu of parts distributed or re-distributed to

other objects have been vacated.

25

[0063] According to another embodiment, an object is allocated with larger storage than

its meta-data size, so that false scalars or duplicated parts may be used to fill the extra

space for further obfuscation.

15

WO 2016/199166 PCT/IN2016/050169

[0064] According to an embodiment the memory management system comprises a

garbage collector.

[0065] According to another embodiment, the garbage collector uses the layout

5 metadata to identify or de-obfuscate pointer scalars in the object.

[0066] According to an embodiment, the memory management system scalarizes the

object's parts in substitution for object allocation on the stack. The object's encoding

pointers are independently stored.

10

[0067] According to another embodiment, the memory management system enables

part-by-part scalarisation of all stack-allocated variables of a procedure. The variables

are shifted to heap allocation only if the variables comprise a pointer scalar.

15 [0068] According to an embodiment, the object meta-data itself is obfuscated.

[0069] A procedure obfuscation system for de-stacking one or more procedure

parameters is disclosed. The system comprises a static analyser means capable of

guidance by one or more user annotations and a source-to-source transformer means

20 capable of replacing a reference to a procedure parameter with a non-stack reference.

[0070] According to an embodiment, the user annotations comprise sharpening a

symbolic value of a variable, location or expression to a subset of a symbolic value

generated by a static analyser.

25

[0071] According to another embodiment, the non-stack reference comprises a global

variable.

16

WO 2016/199166 PCT/IN2016/050169

[0072] According to yet another embodiment, the static analyser means comprises a

means for determining that a procedure call has no nested calls to the procedure.

[0073] According to yet another embodiment, the static analyser means further

5 comprises a means for determining that the number of nested procedure calls to a

procedure contained within a call to the same procedure is less than a statically-known

constant. The non-stack reference further comprises a global array variable indexed at a

nesting depth of a procedure call.

10 [0074] According to yet another embodiment, the static analyser means further

comprises a means for determining that barring procedure return values, all

dependencies within a procedure are intra-procedural. The source-to-source transformer

means comprises a means for replacing a procedure with a parameter memoising

procedure.

15

[0075] According to yet another embodiment, the static analyser means further

comprises a means for computing a schedule of calls for a recursive computation

involving a procedure. The source-to-source transformer means comprises invoking the

procedure according to the schedule in a loop or recursion.

20

[0076] A computing context storing system is disclosed. A computing context comprises

a narrow time window within which the computing context is stored in the computing

environment.

25 [0077] According to an embodiment, narrow time windows or exact times of creation or

modification of one or more files or folders along with their locations in a computing

environment further comprise the computing context.

17

WO 2016/199166 PCT/IN2016/050169

[0078] According to another embodiment, the partial content of one or more files or

folders along with their locations in a computing environment further comprise the

computing context.

5 [0079] According to yet another embodiment, the names of one or more files or folders

along with their locations in a computing environment further comprise the computing

context.

[0080] According to yet another embodiment, functional data related to the accurate

10 working of the computing environment further comprises the computing context.

[0081] A computing context recognition system for handling and recognising a changing

computing context is disclosed. The system stores a computing context to re-construct

the computing context from the stored data later. The later context is recognised to be

15 that of the same computing environment for which the context was stored, if the

reconstructed context matches a freshly computed context for more than a preset,

passing number of stored context entities.

[0082] According to an embodiment, after a computing context is recognised, a revised

20 computing context is stored in place of the earlier stored computing context, for more

accurate recognition of a computing context later.

[0083] According to another embodiment, functional data related to the accurate

working of the computing environment further comprises the computing context.

25

[0084] A distribution system for a multimedia and text combination asset is disclosed.

The asset comprises a software player that hides one or more keys or cryptography

implementation within itself and is bundled with a combination of video, audio, or text

18

WO 2016/199166 PCT/IN2016/050169

data in encrypted form. The software player can decrypt and play the data or encrypt and

add data, without requring any customer-specific symmetric or assymetric key or

password to be input or made available during installing or running the player.

5 [0085] According to an embodiment, the software player thwarts simple data capture

mechanisms comprising one or more of screen bitmap capture, screen text clip capture,

screen text clipboard capture, or audio clip capture.

[0086] According to another embodiment, the hidden keys or cryptography

10 implementation of the software player comprises an expiry date or mechanism so that

the player does not work after the date or mechanism disallows it.

[0087] According to yet another embodiment, the software player enables a free or

priced update with a continuing player of a different hidden keys or cryptography

15 implementation, upon expiry of the player.

[0088] According to an embodiment, the update recurs with a well-announced expiry

date for planning convenience.

20 [0089] According to another embodiment, data bundled with the software player is

reduced to a small partition. The remaining one or more data partitions may be bundled

and distributed with one or more other software players, each comprising distinct hidden

keys or cryptography implementation.

25 [0090] According to an embodiment, no plaintext fragment of encrypted data is exposed

by the distribution system to a user, other than possibly only sale-related input such as

buyer details or payment details.

19

WO 2016/199166 PCT/IN2016/050169

[0091] A software authentication and installation monitoring system is disclosed. The

system comprises a means for hiding one or more keys or cryptography implementation.

The system further comprises a means for tracking authentic software or certified

software or user-built software installed on a machine by storing the information in

5 encrypted form on the machine using the hidden keys or cryptography implementation.

The system further comprises a means for mediating in a software installation, ensuring

that authentication steps are carried out that ensure the authenticity of the installed

software. The system further comprises a means for disallowing a user setting the

permission of a file to execute, unless the file is known to be built or certified by the

10 user or known to be authentically installed as per the tracked information. The system

further comprises a means for disallowing an executable file to run, unless the file is

built or certified by the user or known to be authentically installed as per the tracked

information. The system further comprises a means for stopping a running program, if

the running program is found to not be user built or certified, or authentically installed

15 as per the tracked information. The system further comprises a means for scanning the

machine periodically, resetting the the execute permissions of any unknown files.

[0092] According to an embodiment, the system updates an expired or expiring software

with a successor software having different hidden keys or cryptography implementation.

20

[0093] According to another embodiment, the update recurs with a well-announced

expiry date for planning convenience.

[0094] According to an embodiment, the system instals and periodically updates an

25 authenticated browser.

[0095] According to an embodiment, no plaintext fragment of encrypted data is exposed

by the system to a user.

20

WO 2016/199166 PCT/IN2016/050169

[0096] A distribution method for binary-encoded digital assets is disclosed. The method

comprises a hiding step for hiding one or more keys or cryptography implementation in

a digital asset. The method further comprises a copying step wherein a functionally

restricted asset copy is received for use or further distribution, directly or as a further

5 copy, with or without access to a computer network. The method further comprises a

self-policing step for enforcing asset safety, comprising an authentication step for an un

authenticated, digital asset wherein encrypted credentials data using one or more keys or

cryptography implementation hidden in the asset are constructed for authentication by

an authenticated digital asset or website. The self-policing step further comprises a

10 secure selling step for an authenticated digital asset wherein either a sale transaction is

carried out directly, securely, or the sale is delegated to a separate secure means,

identifying the delegation by an encrypted identifier constructed using one or more keys

or cryptography implementation hidden in the asset. The response from the secure

means is decrypted using the one or more keys or cryptography implementation hidden

15 in the asset to determine the success of the sale. The self-policing step further comprises

a copyright and license enforcement step for an asset wherein encryption and decryption

of computing context and other data using one or more keys or cryptography

implementation hidden in the asset are carried out. Functionally-unrestricted asset use is

permitted only after the asset has been sold and licensed to run in a recognisable

20 computing context.

[0097] A cryptography hiding method for hiding one or more keys or cryptography

implementation in a binary-encoded digital asset using holistic, efficient steganography

is disclosed. The method comprises an interleaving step for interleaving sequentially or

25 concurrently, the computation of non-cryptography, useful code with cryptography code.

The method further comprises an obfuscating memory management step for creating an

encoded pointer representation of a scalar, comprising the use of one or more encoding

pointers pointing to one or more objects created and managed for maintaining the scalar

21

WO 2016/199166 PCT/IN2016/050169

in an obfuscated state throughout the lifetime of the scalar. The method further

comprises a class obfuscation step for translating a class to one or more data structures

or procedures. The method further comprises a procedure obfuscation step for de

stacking one or more parameters of a procedure or translating a procedure call to jumps

5 to and from an inlined procedure body.

[0098] A cryptography hiding method for hiding one or more keys or cryptography

implementation in a binary-encoded digital asset using holistic, efficient steganography

is disclosed. The method comprises the step of using an interleaving loop or recursive

10 procedure for instantiating one or more re-entrant calls to one or more procedures or

macros in cryptography code, such that one or more re-entrant calls to one or more

procedures or macros in useful, non-cryptography code are interspersed in-between any

two cryptography code calls. A cryptography call typically comprises a smaller stateful

computation than a larger stateful computation comprised by a non-cryptography call.

15

[0099] An obfuscating memory management method for creating an encoded pointer

representation of a scalar is disclosed. The method comprises the step of using one or

more encoding pointers pointing to one or more objects created and managed for

maintaining the scalar in an obfuscated state throughout the lifetime of the scalar.

20

[0100] An obfuscating memory management method is disclosed. The method

comprising the step of allocating or de-allocating an object with meta-data comprising

object size or layout such that the contents of the object may be obfuscated by

distribution or re-distribution, part by part, anywhere over the object or one or more

25 other objects.

[0101] A procedure obfuscation method for de-stacking one or more procedure

parameters is disclosed. The method comprises a static analysis step guided by one or

22

WO 2016/199166 PCT/IN2016/050169

more user annotations, and a source-to-source transformation step replacing a reference

to a procedure parameter with a non-stack reference.

[0102] A computing context storing method is disclosed. The method comprises a step

5 of storing a computing context within a narrow time window part of the computing

context.

[0103] A computing context recognition method is disclosed. The method comprises a

step of storing a computing context. The method further comprises a step of re

10 constructing the computing context from the stored data later, recognising the later

context to be that of the same computing environment for which the context was stored,

if the reconstructed context matches a freshly computed context for more than a preset,

passing number of stored context entities.

15 [0104] A distribution method for a multimedia and text combination asset is disclosed.

The method comprises a step of encrypting or decrypting a combination of video, audio

or text data bundled with a software player, using the hidden keys or cryptography

implementation of the software player such that no customer-specific symmetric or

assymetric key or password is required to be input or made available during the

20 installing or running of the player.

[0105] A software authentication and installation monitoring method is disclosed. The

method comprises the steps of (a) hiding one or more keys or cryptography

implementation; (b) tracking authentic software or certified software or user-built

25 software installed on a machine by storing the information in encrypted form on the

machine using the hidden keys or cryptography implementation; (c) mediating in a

software installation, ensuring that authentication steps are carried out that ensure the

authenticity of the installed software; (d) disallowing a user setting the permission of a

23

WO 2016/199166 PCT/IN2016/050169

file to execute, unless the file is known to be built or certified by the user or known to

be authentically installed as per the tracked information; (e) disallowing an executable

file to run, unless the file is built or certified by the user or known to be authentically

installed as per the tracked information; (f) stopping a running program, if the running

5 program is found to not be user built or certified, or authentically installed as per the

tracked information; and (g) scanning the machine periodically, resetting the the execute

permissions of any unknown files.

[0106] The systems and methods disclosed herein are all operable in a computing

10 environment.

BRIEF DESCRIPTION OF ACCOMPANYING DRAWINGS

[0107] To further clarify the above and other advantages and features of the disclosure, a

15 more particular description will be rendered by references to specific embodiments

thereof, which are illustrated in the appended drawings. It is appreciated that the given

drawings depict only some embodiments of the method, system, computer program and

computer program product and are therefore not to be considered limiting of its scope.

The embodiments will be described and explained with additional specificity and detail

20 with the accompanying drawings in which:

[0108] Figure 1 shows a flowchart depicting the process of asset distribution and

licensing.

25 [0109] Figure 2 illustrates the process of authenticating a potent or potentate.

[0110] Figure 3 illustrates the process of saving and evolving a stored context.

24

WO 2016/199166 PCT/IN2016/050169

[0111] Figure 4 illustrates the copyright protection and distribution of assets comprising

multimedia and text data.

[0112] Figure 5 gives an overview of obfuscation techniques.

5

[0113] Figure 6 illustrates the means of procedure obfuscation by de-stacking

parameters.

[0114] Figure 7 illustrates the obfuscating memory manager.

10

[0115] Figure 8 illustrates the structure of multimedia/text potents.

[0116] Figure 9 illustrates the structure of an authentic client monitor.

15 [0117] Figure 10 illustrates a computer system in which the asset distribution system

may be implemented.

DETAILED DESCRIPTION OF THE INVENTION

20 [0118] In the Summary of the Invention above and in the Detailed Description of the

Invention, and the claims below, and in the accompanying drawings, reference is made

to particular features (including method steps) of the invention. It is to be understood

that the disclosure of the invention in this specification includes all possible

combinations of such particular features. For example, where a particular feature is

25 disclosed in the context of a particular aspect or embodiment of the invention, or a

particular claim, that feature can also be used, to the extent possible, in combination

with and/or in the context of other particular aspects and embodiments of the invention,

and in the invention generally.

25

WO 2016/199166 PCT/IN2016/050169

[0119] The term "comprises" and grammatical equivalents thereof are used herein to

mean that other components, ingredients, steps, etc. are optionally present. For example,

an article "comprising" (or "which comprises") components A, B, and C can consist of

5 (i.e. contain only) components A, B, and C, or can contain not only components A, B,

and C but also one or more other components.

[0120] Where reference is made herein to a method comprising two or more defined

steps, the defined steps can be carried out in any order or simultaneously (except where

10 the context excludes that possibility), and the method can include one or more other

steps which are carried out before any of the defined steps, between two of the defined

steps, or after all the defined steps (except where the context excludes that possibility).

[0121] For the purpose of promoting an understanding of the principles of the invention,

15 reference will now be made to the embodiment illustrated in the drawings and specific

language will be used to describe the same. It will nevertheless be understood that no

limitation of the scope of the invention is thereby intended, such alterations and further

modifications in the illustrated system, and such further applications of the principles of

the invention as illustrated therein being contemplated as would normally occur to one

20 skilled in the art to which the invention relates.

[0122] It will be understood by those skilled in the art that the foregoing general

description and the following detailed description are exemplary and explanatory of the

invention and are not intended to be restrictive thereof. Throughout the patent

25 specification, a convention employed is that in the appended drawings, like numerals

denote like components.

26

WO 2016/199166 PCT/IN2016/050169

[0123] Reference throughout this specification to "an embodiment", "another

embodiment" or similar language means that a particular feature, structure, or

characteristic described in connection with the embodiment is included in at least one

embodiment of the present invention. Thus, appearances of the phrase "in an

5 embodiment", "in another embodiment" and similar language throughout this

specification may, but do not necessarily, all refer to the same embodiment.

[0124] Disclosed herein are embodiments of a system, methods and algorithms for asset

distribution. A glossary defining common terms is first provided.

10

Glossary

[0125] potentate: A sold software copy, licensed to a buyer, the software having

cryptographic capabilities that are hidden with careful obfuscation, the software having

policing capabilities including copyright and license enforcement, secure selling and

15 authentication, and pervasive distribution capabilities including self duplication, self

demonstration, self marketing with incentives, and self selling securely with multiple

payment or free schemes.

[0126] potent: A copy of a potentate that hasn't been validated as a potentate yet by a

20 sale.

[0127] scalar: As conventional in standard C, a scalar is a value of arithmetic or pointer

type.

25 [0128] aggregate value: As conventional in standard C, an aggregate value is

comprised of one or more scalars such as in an array, or struct.

27

WO 2016/199166 PCT/IN2016/050169

[0129] digital asset: Software and/or digital data make up a digital asset. This includes

software comprising potentates, potents, or authentication software therefor, inclusive of

any data clubbed therewith.

5 [0130] object: As in standard C, an object comprises a storage area wherein data

representing a scalar or aggregate value may be stored. An object storing an aggregate

value may furthermore have the structure of an object as described in object-oriented

programming, such as in C++.

10 Asset Distribution

[0131] Digital or binary content providers such as software makers and distributers,

music providers, video providers, and document providers face two common problems.

How to enforce copyright protection over their assets and how to profit and spread their

assets far and wide throughout the globle. In this disclosure, we present a method of

15 obtaining both simultaneously, harnessing the power of asset duplication (by anyone and

everyone) to the benefit of legitimate content providers. The method, which endows a

software asset with unmatched potency, to germinate legitimate assets for the content

provider, briefly put loves repeated (duplication) encounters, each of which yields a new

potent, dispersed asset that serves the content provider either as an immdiate sale

20 (thereafter named a potentate asset, or potentate in brief) or as a seed asset for a future

sale (named a potent asset or potent in brief). Each encounter resulting in a potentate is

screened by the content provider, to legitimise as a sale (generating a potentate) or not.

An unlegitimised encounter (i.e. a duplication without sale), though not yielding a

potentate, serves as a spare tyre, as it can later generate sales for the content provider by

25 its own legitimisation (i.e. a purchase that is eventually carried out) or that of its copies,

each of which counts as a potent till legitimised, if at all.

28

WO 2016/199166 PCT/IN2016/050169

[0132] A distribution system for binary-encoded digital assets is disclosed. The system

comprises a hiding means for hiding one or more keys or cryptography implementation

in a digital asset. The system further comprises a copying means for asset distribution

wherein a functionally-restricted asset copy is received for use or further distribution,

5 directly or as a further copy, with or without access to a computer network. The system

further comprises a self-policing means for enforcing asset safety, comprising an

authentication means for an un-authenticated, digital asset wherein encrypted credentials

data using one or more keys or cryptography implementation hidden in the asset are

constructed for authentication by an authenticated digital asset or website. The self

10 policing means further comprises a secure selling means for an authenticated digital

asset wherein either a sale transaction is carried out directly, securely, or the sale is

delegated to a separate secure means, identifying the delegation by an encrypted

identifier constructed using one or more keys or cryptography implementation hidden in

the asset. The response from the secure means is decrypted using the one or more keys

15 or cryptography implementation hidden in the asset to determine the success of the sale.

The self-policing means further comprises a copyright and license enforcement means

for an asset wherein encryption and decryption of computing context and other data

using one or more keys or cryptography implementation hidden in the asset are carried

out. Functionally-unrestricted asset use is permitted only after the asset has been sold

20 and licensed to run in a recognisable computing context.

[0133] According to an embodiment, a digital asset comprises software.

[0134] According to another embodiment, the asset further comprises a combination of

25 encrypted video, audio, or text data bundled with the software. The software is a

software player to decrypt and play the data or encrypt and add data.

29

WO 2016/199166 PCT/IN2016/050169

[0135] According to yet another embodiment, the bundled software thwarts simple data

capture mechanisms comprising one or more of screen bitmap capture, screen text clip

capture, screen text clipboard capture, or audio clip capture.

5 [0136] According to an embodiment, the hidden keys or cryptography implementation

of the software comprises an expiry date or mechanism so that the software does not

work after the date or mechanism disallows it.

[0137] According to another embodiment, the software enables a free or priced update

10 with a continuing digital asset of different hidden keys or cryptography implementation,

upon expiry of the software.

[0137] According to an embodiment, the update recurs with a well-announced expiry

date for planning convenience.

15

[0139] According to an embodiment, the bundled data decrypted or encrypted by the

hidden keys or cryptography implementation of the software player is reduced to a small

partition so that the remaining one or more partitions may be bundled with one or more

other software players, each distributed with its own distinct hidden keys or

20 cryptography implementation.

[0140] According to an embodiment, the distribution system instals an authenticated

digital asset on a machine where installed software consists of authenticated assets only.

25 [0141] According to another embodiment, the asset installation is mediated by a

monitoring system on the machine.

30

WO 2016/199166 PCT/IN2016/050169

[0142] According to yet another embodiment, the asset installation updates an expired

or expiring asset with a successor asset of different hidden keys or cryptography

implementation.

5 [0143] According to yet another embodiment, the update recurs with a well-announced

expiry date for planning convenience.

[0144] According to an embodiment, the asset installation instals and periodically

updates an authenticated browser.

10

[0145] According to an embodiment, the monitoring system disallows unmediated asset

installation by resetting execution permission or disallowing a file with execute

permission to run, or stopping a running software.

15 [0146] According to an embodiment, secure selling is carried out even on a machine

with un-authenticated software.

[0147] According to an embodiment, no plaintext fragment of encrypted data is exposed

to a user, other than possibly only sale-related input such as buyer details or payment

20 details.

[0148] According to yet another embodiment, the computing context and other data are

stored with the digital asset after sale and installation.

25 [0149] According to yet another embodiment, the credentials data constructed by a

digital asset are passed to a browser to authenticate.

31

WO 2016/199166 PCT/IN2016/050169

[0150] According to yet another embodiment, a key is stored in a digital asset by

distribution into a subset of a large number of candidate data fields in the asset, the

reconstruction of the key from the fields not being apparent from a reverse engineered

control flow of the asset, forcing a combinatorially large number of key reconstructions

5 to be considered in a key search making key discovery infeasible.

[0151] A distribution method for binary-encoded digital assets is disclosed. The method

comprises a hiding step for hiding one or more keys or cryptography implementation in

a digital asset. The method further comprises a copying step wherein a functionally

10 restricted asset copy is received for use or further distribution, directly or as a further

copy, with or without access to a computer network. The method further comprises a

self-policing step for enforcing asset safety, comprising an authentication step for an un

authenticated, digital asset wherein encrypted credentials data using one or more keys or

cryptography implementation hidden in the asset are constructed for authentication by

15 an authenticated digital asset or website. The self-policing step further comprises a

secure selling step for an authenticated digital asset wherein either a sale transaction is

carried out directly, securely, or the sale is delegated to a separate secure means,

identifying the delegation by an encrypted identifier constructed using one or more keys

or cryptography implementation hidden in the asset. The response from the secure

20 means is decrypted using the one or more keys or cryptography implementation hidden

in the asset to determine the success of the sale. The self-policing step further comprises

a copyright and license enforcement step for an asset wherein encryption and decryption

of computing context and other data using one or more keys or cryptography

implementation hidden in the asset are carried out. Functionally-unrestricted asset use is

25 permitted only after the asset has been sold and licensed to run in a recognisable

computing context.

32

WO 2016/199166 PCT/IN2016/050169

[0152] Since potent/potentate software can be duplicated and sold without an official

distribution channel, the authenticity of a software being purchased need not always be

known. It is important for a software to be able to present its credentials, to authenticate

itself, for purposes such as ruling out fakes or trademark violators. By authenticating, a

5 buyer is assured of immediate trademark compliance, that the software is genuine and

not a fake. From a security perspective, another reason for software to be vetted as

genuine potent/potentate is to rule out financial information sponging by a masquerader.

An example of such sponging is masquerader software that indulges in credit card

information grabbing without delivering the "sold" software.

10

[0153] Authentication, or the thwarting of masqueraders, can happily can be left to word

of mouth often, on antecedent checking, as purchase should only be attempted when the

entity is a duplicate of a known, working, potentate or stored spare only, or picked from

a certified site, e.g. https://www.buffnstaff.com/downloads. In this approach, no extra

15 baggage for security is required beyond the https protocol that is commonly available in

browsers. The degree of freedom in this approach is maximum, but the burden placed

on the buyer is enormous as he has to know the software being bought.

[0154] One security-protocol independent way to approximately authenticate an

20 unknown software is to allow it to demonstrate some difficult, but marketwise narrow

functionality that is beyond the reach of masqueraders and leaves the buyer enticed for

the purchase. For example, a compiler product can say compile programs of size 199

characters exactly and show the working output to a user. This functionality is hard for a

masquerador to implement without duplicating the provider's effort and does not turn

25 the product into a free giveaway. The working demonstration is likely to be a selling

advertisement for the product that a buyer can test to his comfort.

33

WO 2016/199166 PCT/IN2016/050169

[0155] Another security-protocol independent authentication mechanism that can be

offered is the provision of hash codes for a legitimate duplicate that can be

independently verified by a user. The ability to carry this out without being networked

maximises the degree of freedom of the buyer. The hash function has to be widely

5 available, e.g. compute file size, compute compressed file size, and the answer for the

software has to be widely published and stable so that the user can be expected to have

cached or online access to it. Examples of generic software that can be used to compute

the hash code are ls -1 (in Unix), that yields the code size. Another code is a compressed

code size, that may be obtained using common, specific packages like zip. Other hash

10 codes are tests for a specific pattern in the code binary or a checksum etc. To cross

check, the published hash codes have to be available widely. The source of the wide

availability has to be secure, coming from an https website or a verified asset or an

advertisement slogan so that masquerading is either not possible or is catchable. The

advertisement slogan can well be the version name for the product, which can comprise

15 the hash code itself. Hash codes can be computed as a part of a formal authentication

function for an asset.

[0156] Figure 1 contains a flowchart illustrating the working of the potentate asset

distribution system. Using techniques discussed later, a potentate is constructed with a

20 hidden cryptography function, hiding keys, data and implementation details from the

prying eyes of an adversary who may wish to reverse engineer or discover these details

by scrutinizing the object code or binaries comprising the potentate or running them.

The sub system or method comprising these techniques is used once during potentate

construction, after which, the distribution system only executes the steps shown in

25 Figure 1. In a first step, a potentate is received as a potent, which is a semi-functional

cryptography hiding asset copy, for further processing. The potent is then run in a

demonstration mode, showcasing marketing features of the asset, to convince the user of

the purchase value of the asset. The user is shown only the functionality of interest to

34

WO 2016/199166 PCT/IN2016/050169

the user. Enough computation is packed in the demonstration mode to obfuscate the

cryptography function of the potent, by interleaving the two computations, as required

by the cryptography hiding system. The cryptography function is used by the

authentication, purchase, and installation steps, which are carried out logically in

5 parallel with the interleaved demonstration code. As much of the cryptography function

for these steps is carried out in advance, in parallel with the demonstration code, as

possible, to maximise the interleaved overlap and obfuscation. The parallelism may be

only logical, using single-threaded interleaving of the demonstration and

cryptography code, but it can also be physically parallel, with the cryptography code

10 pieces running in parallel with the larger demonstration code, at random triggering

points in the demonstration code.

[0157] In the authentication function, the potent computes an encrypted credentials file

for the potent, for authentication by a trusted party (software asset and/or secure

15 website). In a buying step, a user may purchase an authenticated asset, by either carrying

out the encoded e-commerce sales steps contained in the potent directly (e.g. transact

using credit card information), or the purchase may be delegated to some other secure

means for purchase, e.g. a physical cheque mailed to the potent manufacturer, with an

encrypted transaction identifier generated for the delegated transaction. The secure

20 means is expected to return its answer (successful sale or not) by a return, encrypted

identifier, which when fed back to the potent results in acceptance of the fact. In case of

the delegated means, the potent running blocks till the sale answer is obtained from the

secure means. Such a potent stores this state in an encrypted file called a paint file, for

continuation later. The potent can be run in demonstration mode till the sale transaction

25 completes.

[0158] Since the sale delegation step above does not ask for or put a buyer's confidential

financial information at risk, the sale delegation step does not require a formally

35

WO 2016/199166 PCT/IN2016/050169

authenticated potent to be carried out. So for instance, a buyer convinced by the

demonstration mode, or knowledgeable of the potent's antecedents, or its hash codes

etc. may purchase the potent using the delegated sales mechanism securely.

5 [0159] Upon a successful completion of a sale transaction, the potent saves a snapshot

of the computing environment that the potent has been licensed to run in. The snapshot

or context comprises some identfying information pertaining to the computing

environment so that in later runs, the environment can be verified to be the same so that

copyright on the potent can be enforced and the potent allowed to run only on the

10 recognised machine. The sale and context details are saved in encrypted state in the

paint file, as a part of installation of the potent as a potentate (i.e. a sold and licensed

software). Till installation as a potentate, the potent is a functionally restricted software,

capable only of running in demonstration mode and not full function mode. The full

function mode becomes available only after sale and installation. The details saved in

15 the paint file are also communicated in encrypted state to the content provider (potent

manufacturer), so that the provider has complete knowledge of the sale and license

context.

[0160] Up till this step, the potent runs in logically parallel mode, with a restricted

20 demonstration mode running in parallel with the other steps. The parallel mode is shown

by the dotted parallel lines in-between the demonstration and authentication/buy/install

steps in the flowchart of Figure 1. After installation, the potentate runs in another

logically parallel mode, as shown in the loop of Figure 1. The loop illustrates the

sequence of fully functional potentate runs that may be made in the licensed computing

25 environment, by a user. Each run of the potentate, transpires in parallel with the other

steps shown in the loop using parallel dotted lines. One step, with cryptography function

is the enforce copyright step, wherein the encrypted context in a paint file is decrypted

and compared with the actual entities in the computing environment for a match. The

36

WO 2016/199166 PCT/IN2016/050169

copyright check is made dispersed over each potentate run, blocking the potentate in the

unexpected case that it fails. This case is not illustrated in the figure. In this case, after a

dialog with the user, the potentate either resumes running with copyright verified and

paint modified, or the potentate relapses to the semi-functional potent mode and jumps

5 back to the first step in the flowchart. Details of the dialog are discussed later in this

disclosure.

[0161] In concurrence with the copyright enforcement step, the user can ask the

potentate to make its own copy for further distribution to other buyers with the user

10 playing the role of a seller intermediary. In this step, a copy of the potentate is made

along with a stripped down paint file, identifying the user's potentate as the parent of the

new potent. This identification helps the user get reward credits for a sale from the

content provider. The potent software bundle is made available at the file location

provided by the user. The user is of course free to make a copy of the potentate,

15 manually, himself, outside of the loop shown in Figure 1, but then he may not get the

stripped down paint file, unless he is able to put together the same from some other

copying transaction.

[0162] If the antecedents of a software are unknown and the approximate methods

20 above do not satisfy a buyer, then the buyer can formally authenticate the software using

the method taught herein. In this method, the buyer runs the software by providing

arguments that induce the software to present its credentials. The credentials file is an

encrypted file that is passed as is to an authentication software that after a dialogue with

the potent, either passes the file (verifying the software as genuine), or rejects it (the

25 software is a fake), or states the software is out-of-date. An out-of-date software is

recommended to not be used, unless the buyer is sure for some other reason. The out-of

date software finding also arranges for a computer update that deletes the dated software

and replaces it with an up-to-date software from the content provider. The authentication

37

WO 2016/199166 PCT/IN2016/050169

software is lightweight software that can be downloaded from the secure, https, content

provider website and freely duplicated itself. It also presents its own credentials for

authentication by authentication software like itself. Authentication software, when

downloaded, comes with an expiry date so that it is updated automatically with a fresh

5 version when the expiry occurs. Softwares (authentication, potents, and potentates) are

tied to expiry dates so that the cryptographic protocols followed by them are time bound

and changed regularly, bounding the time window within which an adversary has to try

to break them in case of an attack. In the rare case of a successful attack, the content

provider at its discretion can also push or notify fresh

10 updates to all known buyers and software keepers so that the software in use is safe.

[0163] Figure 2 illustrates the steps taken in authenticating a potent or potentate. The

floppy disk icon with legs in the figure represents a running program (e.g. potent or

potentate). The program creates a credentials file that is passed to either another running

15 program that is already pre-authenticated (hence shown in a haloed, grey circle) or

passed to a secure website (shown in a network cloud) to authenticate. The contents of

the credentials file are encrypted for security. Figure 2 shows the decrypted fields of the

file for convenience. One field is the version number of the encrypting program. A

second field is the parent identification of the program (the software from which the

20 program was copied), so the origin of the program can be traced. A secret is passed

between a potent and an authenticator also, but not in the initial credentials file. There

may be other optional fields in the credentials file, which are indicated by the ellipsis

(...) and left unspecified in Figure 2.

25 [0164] After a credentials file has been decrypted by the authenticator, the authenticator

inserts a secret in the file, re-encrypts it and sends the file back to the potent/potentate.

The encryption process may well permute the field bytes, so the encrypted file may not

look like a (secret) suffix appended to the original credentials file. Upon decrypting the

38

WO 2016/199166 PCT/IN2016/050169

returned credentials file, the potent computes a hash function on the received input and

sends this hash value in place of the secret, in a re-encrypted credentials file back to the

authenticator. The authenticator decrypts the file, checks the hash value and declares the

potent authenticated, if the results match the authenticator's own computation of the

5 hash value. Figure 2 shows the two-way communication between the potent/potentate

and authenticator using the credentials format.

[0165] Authentication software, since it is content provider (and therefore content)

specific, can also compute focused hash codes that routine software like ls -1 discussed

10 previously cannot. At the content provider's discretion, hash code checking can also be

provided by authentication software as a part of its offering. Indeed, the hash code

computation provides the non-cyrptography code (analogous to demonstration code in

Figure 1), that is interleaved with the cryptography computation of the authenticator for

obfuscation.

15

[0166] Note that authentication software may be treated exactly as another digital asset

to be sold. The pricing is of course the seller's prerogative. The authentication software

may be functionally restricted by not giving the user all hash results unless it has been

purchased and installed.

20

[0167] Only after a potent has been authenticated formally by an authenticator, may a

buyer attempt a purchase through the potent's own sale mechanism. A purchase attempt,

without authentication, is totally the buyer's own prerogative and risk. The financial

information provided by a buyer to an unauthenticated, potent masquerador may result

25 in theft of the buyer's data by the masquerador. Hence, direct purchases without

authentication are highly disparaged.

39

WO 2016/199166 PCT/IN2016/050169

[0168] An alternative that reduces the need for software authentication somewhat is to

separate the payment from the sale. In this case, a transaction id is generated by the

software to carry out a sale, to be used in making the payment separately from the rest of

the sale. The software begins to run in a limited manner after the sale is intitiated (e.g.

5 for a week), awaiting the sale transaction to be completed. To complete the sale

transaction, the buyer can log in to a https payment gateway website and provide the

transaction id and pay for the sale obtaining a sale id that can be fed back to the software

enabling it completely. Otherwise, the user can pay by offline methods such as sending a

cheque with the transaction id to the content provider physical address, or make a cash

10 payment to a content provider counter for the purpose, etc. Each of these methods

returns the sale id to be fed back to the software. The authentication and/or redressal in

these methods is by direct contact with the channel chosen for payment, with https being

certified and the others being physically available. Although the need for authentication

is ameliorated by such an approach, it is not fully eliminated as a masquerador can well

15 indulge in credit card information sponging under false pretexts to hoodwink a buyer,

who in good intention is likely to be keen enough to part with the information. Hence

reliance on authenticated software is highly desirable from all perspectives.

[0169] A combination of the above methods for authentication/antecedent checking

20 reduces the degree of freedom of a masquerador to beat the security checks that he

might be able to do in isolation. The combination then suffices to establish the

antecedents of all products.

[0170] With key and cryptography hiding described as above, antecedent checking can

25 be promoted with incentives as follows: a sale that can track its source (e.g. the parent

asset's purchaser or the content provider's website) informs the content provider of the

parent so that the parent's purchaser is paid an incentive for promoting the sale. If the

parent cannot be tracked, or the parent is the content provider's website, then the

40

WO 2016/199166 PCT/IN2016/050169

incentive returns to the provider. Tracking a source is possible if all the user-visible

asset files in the parent's environment are copied in the preceding duplication(s) so that

they are available for the sale process. Like Amway's seller incentivisation, the entire

chain of parents can be paid incentives for a sale. In contrast to the the Amway model,

5 the characteristics of the sale here differ as follows:

[0171] 1. No inventory and no intermediary need be present in the sale. The

purchaser has to have or make a copy of the parent's visible files. Whether this occurs

by direct access to the parent's computer, or by asynchronous communication like e

10 mail, or through intermediaries e.g. the parent purchaser's friend, is immaterial. If the

non-executable visible files are lost in the process, at most the incentive to the parent

chain is lost, not the legitimacy of the sale itself, recording an overall win for the content

provider. Thus the path of the sale including any intermediary people or computers is

neither tracked nor auditable. The end result is whether the user has the goods or not. In

15 this scenario, it is possible for the goods to be altered en-route (e.g. executables from

one parent, other visible files from another), but this at most directs the incentive credit

away from one parent to another. Whether or why this happens is immaterial to the

content provider, who pays the incentive solely to chain of parents found in the files

with which the sale is carried out.

20

[0172] 2. Regardless of the path of sales, at most one chain of parents has to be

paid the incentive money, keeping the reimbursement process straightforward. This is

established by the theorem below.

25 [0173] Theorem 1. The ancestors identified in a sale consist of a chain of potentates,

linked to each other in a line by the parent relation

41

WO 2016/199166 PCT/IN2016/050169

[0174] Proof. By Induction over the set of parent chains available with the content

provider for sales.

[0175] Base Case. First sale. Clearly this occurs from the content provider, through its

5 web site or parent identification as the content provider. Thus this sale adds one empty

chain for this sale to the empty set of parent chains available with the content provider.

[0176] N sale. Assume that with this sale, all the parents information available with the

content provider consists of linear potentate chains alone.

10

[0177] N + l1 sale. With this sale, if a parent is not identified, then an empty chain gets

added for the sale with the content provider. If a parent is identified, then, that parent's

chain available with the content provider gets increased by the parent itself linearly as

the parent chain for the sale. Thus after the sale, the parent information available with

15 the content provider comprises linear parent chains alone and the chain identified for the

sale is a linear chain in itself. QED.

[0178] The theorem provided above is for the purpose of explaining the working of the

mechanism taught by the present disclosure.

20

[0179] As mentioned above, the path of a sale from a parent is not tracked. Hence it is

possible for the parenting credit to be shifted around, changing the parent chain for a

sale. It is imperative therefore that the incentives passed from the content provider to a

parent chain be impervious to such changes, else the content provider can end up paying

25 extra in incentives. For example, suppose the incentive is a fixed payment per chain

member. It is then in the interest of the sale intermediaries to mis-identify a long chain

with the sale to maximise payment from the content provider. One easy mechanism to

fix such liability is to have say fixed payment per chain, so that a longer chain is not in

42

WO 2016/199166 PCT/IN2016/050169

the interest of the intermediaries. This still does not guarantee that the chain will not be

swapped, but it contains the financial liability of the content provider. It is up to the

content provider to decide what ratios to use in dividing the fixed incentive within the

parent chain. It is also up to the content provider whether to make the incentive scheme

5 time or season dependant, to reduce the net outflow of money for the incentives. For

example, the content provider can choose to payout only for sales made during holidays,

or an academic term (defined

appropriately).

10 [0180] Once a buyer concludes a payment interaction with a running potent, the potent

becomes a potentate and vulnerable to sale repudiation by the buyer (e.g. buyer claims

purchase was spurious and wants money back from say a credit card company while

holding on to the running potentate). To counter such a scenario, a potentate logs the

usage of the buyer after purchase. Once a minimum threshold of use is logged, the

15 potentate disallows further use of itself till it can communicate the above threshold use

to the provider over a network. A provider then handles a sale repudiation as follows:

for the buyer, if the provider finds minimum threshold use communication from the

potentate, then the repudiation is contested with the evidence. If the communication has

not reached the provider, then the provider accepts the repudiation and flags the same in

20 its database. If and when a minimum threshold communication for the buyer reaches the

provider, the flag in the database leads to a communication back to the potentate that no

further use of the software is to be permitted to the buyer. The potentate then acquires

the state of a potent.

25 [0181] Once a buyer concludes a payment interaction resulting in a potentate, the

potentate tries to communicate the sale and installation information to the provider at

the earliest opportunity that the network is available to it. If the network does not

become available till the repudiation threshold is crossed, then the potentate blocks

43

WO 2016/199166 PCT/IN2016/050169

running till the threshold, sale and installation information have been communicated

back to the provider using the network.

Licensing capability

5 [0182] According to yet another embodiment, the computing context and other data are

stored with the digital asset after sale and installation.

[0183] A computing context storing system is disclosed. A computing context comprises

a narrow time window within which the computing context is stored in the computing

10 environment.

[0184] According to an embodiment, narrow time windows or exact times of creation or

modification of one or more files or folders along with their locations in a computing

environment further comprise the computing context.

15

[0185] According to another embodiment, the partial content of one or more files or

folders along with their locations in a computing environment further comprise the

computing context.

20 [0186] According to yet another embodiment, the names of one or more files or folders

along with their locations in a computing environment further comprise the computing

context.

[0187] According to yet another embodiment, functional data related to the accurate

25 working of the computing environment further comprises the computing context.

[0188] A computing context recognition system for handling and recognising a changing

computing context is disclosed. The system stores a computing context to re-construct

44

WO 2016/199166 PCT/IN2016/050169

the computing context from the stored data later. The later context is recognised to be

that of the same computing environment for which the context was stored, if the

reconstructed context matches a freshly computed context for more than a preset,

passing number of stored context entities.

5

[0189] According to an embodiment, after a computing context is recognised, a revised

computing context is stored in place of the earlier stored computing context, for more

accurate recognition of a computing context later.

10 [0190] A computing context storing method is disclosed. The method comprises a step

of storing a computing context within a narrow time window part of the computing

context.

[0191] A computing context recognition method is disclosed. The method comprises a

15 step of storing a computing context. The method further comprises a step of re

constructing the computing context from the stored data later, recognising the later

context to be that of the same computing environment for which the context was stored,

if the reconstructed context matches a freshly computed context for more than a preset,

passing number of stored context entities.

20

[0192] Prevalent licensing mechanisms query a user computer for information like serial

number to manage licensing. Such licensing can be undermined if the user environment

is altered to return false answers for the questions such as another computer's serial

number. In order to overcome such masquerading attacks, the mechanism we propose

25 here additionally alters the user machine minimally (e.g. by saving the machine's unique

characteristics, a fingerprint, in an encrypted file), so that the modification made marks

or paints the machine in a manner that only the licensing mechanism can recognise. This

scheme by itself is vulnerable if the machine's characteristics change, so that the

45

WO 2016/199166 PCT/IN2016/050169

licensing system is tempted to consider itself in a foreign machine environment and

disallow the software to run. The mechanism proposed here overcomes this weakness

by incorporating a multitude of expendable modifications within its encrypted paint file

so that the loss of a few does not compromise recognition, so long as a threshold of

5 recognisable modifications survive. Further, the modifications or paint marks are made

to evolve and grow over time to overcome inadvertent losses, so the licensing repairs

temporary losses when they occur. Finally, the paint evolution also migrates the paint

file from its initial content (at sale time) so that the paint file becomes variable and

distant from the configuration at sale time which is what is typically the target of a

10 piracy attack. Key to the robustness against masquerade attacks is the identification of

machine characteristics to create paint marks using base, most common operating

system primitives that are unlikely to be substituted by masquerade functions without

crippling the machine. A library call to obtain the machine serial number may be

masqueraded, without affecting overall system functionality. Basic file operations, on

15 the other hand may not, as their substitution is likely to cripple the machine.

[0193] In a first step, the computer of the user is queried to determine stable information

specific to itself, that is unlikely to be the same in a different computer. This information

may be considered as random answer data for a question, that is likely to differ from

20 computer to computer if the question is so posed to a multitude. Examples of such

information are: computer name, computer serial number, computer model number, the

value of the PATH variable defined in the software environment, details of the processor

used by the computer, details of the random access memory (RAM) used by the

computer, details of the internal hard disk used by the computer etc. This step is well

25 discussed in prior art and any of the prevalent techniques may be used to carry out the

step in software.

46

WO 2016/199166 PCT/IN2016/050169

[0194] In a generalization of the first step, multiple independent questions are asked of

the user computer so that the likelihood of the combined sequence of answers for the

first step being identical for a different computer decreases as a product of the individual

probabilities. In other words, if the probability of identical answers for k questions for

5 two computers is P1, P2, ... Pk for the k questions, then the combined probability of the k

independent questions is pi *p2 * ... *pk for the k questions.

[0195] Note that any of the combined or single answers to the questions of the first step

10 are of relatively stable information, which a pirate may be familiar with. So long as

substituting an actual answer to a question does not functionally affect the machine or

cripple it, a pirate may try to substitute the answer with a masqueraded one in an attempt

to hijack the installation process. If changing an answer requires tinkering with a

machine and changing its functionality, a pirate may not attempt it in order to avoid

15 detection or to avoid crippling the machine. The machine serial number is an example of

a non-functional question that can be masqueraded easily. It is important that at least

some questions asked of the computer environment exercise its functional aspects so as

to avoid being vulnerable to a masquerade attack.

20 [0196] For licensing, each time potentate runs, it queries the computer with the question

set described above, and running the software only if the answers match the answers

obtained at the time of sale and installation. If some of the answers have changed, such

as name of computer, or installed RAM, then the system goes into an updation mode,

where it asks guarded questions for acquiring stable answers. For example, it presents a

25 standard, exemplary menu of possibly changed items and asks the user to identify any

changed entities and their earlier values. The user is asked to go beyond the example

values to seek coverage. The changed set can be entered cumulatively in more than one

identification session.

47

WO 2016/199166 PCT/IN2016/050169

[0197] Figure 3 illustrates the saving of a context file by a potent/potentate

(potentate/potent shown as a floppy disk icon with legs). The context file stores

encrypted data, which is shown un-encrypted in the figure for convenience. The running

software both reads and writes the context file, keeping it evolving as the computer

5 environment itself evolves over time. This allows the context file to more closely track

the environment for accurate recognition through the life of the software. The loop

below the potentate icon reflects this constant evolution in the content of the context

file.

10 [0198] An example of functional questions that may be asked of a computer are narrow

time windows in which specific, stable files have been installed on the computer. The

paint file itself is an example of a file installed on the computer. When the paint file is

created in the installation process, the creating program, using time functions can

estimate the creation time of the install file and enter the window, encrypted properly in

15 the paint file itself prior to closing the final file. If the paint file is copied and installed

on another machine in a piracy attempt, the file creation time on that machine is unlikely

to match the encrypted window time. Further, the creation and modification times of

other stable files on the filesystem can be saved in the paint window, making it highly

unlikely that another computer will have the same files, file locations and file times

20 matching this computer. File creation and modification time windows, specialized to

zero-width windows often, reflecting exact times, are thus a difficult functional,

computer identifying question for a pirate to masquerade. Even if the clock is altered in

a piracy attempt of copying a file at a desired time, it is hard to manage to copy distinct

creation time and modification time, as no modification of the encrypted file can be

25 entertained as it will break on decryption. So the modification has to be a forward and

backward modification with a total null effect and timed to fit the modification window

after creation window, which is hard to do, even with a controlled clock. In the limit, it

can be assumed that the time attributes of file inodes in an adverserial system can be

48

WO 2016/199166 PCT/IN2016/050169

subverted in a copying attempt. By storing time windows of multiple, unknown files, the

information being stored in an encrypted state in the paint file, an adversary cannot be

expected to duplicate the exact combination of windows stored for the original

computer, thereby disabling any piracy attempt.

5

[0199] The context file in Figure 3 shows the storing of a subset of the directory

hierarchy on disk into the context file. The disk memory drum shows subdirectories D1,

D2 and so on for the directory D of which only D1 and D4 are reflected in the context

snapshot. The context contains the window of its own creation time in the [after, before]

10 range. The times for files F 1 and F3 are saved under directory D1, leaving aside file F2

for example. Further context data for the files e.g. their partial contents, is stored as CFJ

and CF3.

[0200] Another example of a functional question is the content of specific files on the

15 computer. It is preferable to query long-lived (e.g. old) files, which given their history or

knowledge are unlikely to change much. The starting line, or some line at some specific

offset in the files can be queried and the content encrypted in the paint file. Such a paint

mark is unlikely to repeated in other computers at the same location in the filesystems.

20 [0201] Another example of a functional question is a partial snapshot of a stable part of

the file hierarchy in the filesystem on a computer. Again, a computer's filesystem is

unlikely to be repeated identically elsewhere.

[0202] While such functional questions may be stable, they may evolve gradually over

25 time, sometimes even rapidly. Such changes have to be handled by the licensing system

which is described next.

49

WO 2016/199166 PCT/IN2016/050169

[0203] For gradual changes, the paint file can be updated and a new window saved for

the paint file itself, when a change is detected. So long as only a minor change occurs,

the licensing system remains capable of recognizing the computer environment and the

minor change only triggers an evolutionary change in the paint file to track the computer

5 evolution. If the change is drastic, the licensing system has to enter into a dialogue with

the user to ascertain the reason for the substantantive change in its stable information as

discussed previously. The dialogue, for a file system drastic change, can reach a

resolution like, hard disk failure, resulting in a new hard disk. Such a failure can be

corroborated further by non-functional queries such as hard disk identity, or a

10 combination of functional queries that corroborate each other like file hierarchy has

changed, along with time windows, along with file contents. In conjunction with server

updates, discussed later, such tracking can allow the licensing system to continue with

drastic changes in its stable set also.

15 [0204] The evolutionary nature of the paint file can lead to continual narrowing of the

time windows for specific files, to the betterment of the overall information. This can be

carried out in each evolutionary step, by predicting a tight window to modify the paint

file within, and storing the window in the file. The evolutionary nature of the paint file

additionally makes it hard for an adversary to discover the exact set of time windows

20 stored for specific files in the paint file, hardening any attempt of software piracy.

[0205] During sale and installation, communication with a content provider server is

carried out to inform it of the sale and paint details. The server is kept informed of paint

evolution so that even if the user inadvertantly un-installs the software, he can re-synch

25 with the server to re-install it and continue as is. The communication with the server

serves another purpose. If an adversary carries out a piracy attempt successfully, then the

adversary still has to keep the server informed of its paint details. In synchronising

paint, the server also checks its sale credentials and if it finds more than one track of

50

WO 2016/199166 PCT/IN2016/050169

paint evolution reporting the same sale details, it can shut one or both tracks down as a

reduntant failure containment mechanism.

[0206] The server interaction as described above can also be skipped for specific sales at

5 a calculated risk for the content provider. This risk may be taken for fast, un-tracked

software propagation. The sale part of the interaction may then be comprised of the

following:

[0207] An onsite sale, carried out by a sales person with no server connection.

10 The sales person is responsible for the receipt generation if any, money collection

if any, and later server updation if any. The sales person has to feed an encrypted

authorisation to the potent during sale interaction allowing the sale to succeed. The

authorisation also tells the potentate whether it will carry out server interaction

post the sale or not.

15

[0208] Sale by coupons, wherein a coupon is an encrypted authorisation for a

granted sale during a specific time window, e.g. a day of sale. To be doubly sure,

the potent has to verify the time from the local clock with a global network time

before allowing the sale to succeed. Examples of such sales include:

20

[0209] Free giveaways: The giveaway may be an authorization for life of the

potentate, or for a specific period or number of uses, whereafter the potentate

becomes a potent again. The giveaway period, e.g. for needy students, may

promote sales indirectly by building up a user base.

25

[0210] Deferred sales: A deferred sale allows a potentate to be generated, with

money collection, either discounted or complete, occuring later after a certain

period or number of uses.

51

WO 2016/199166 PCT/IN2016/050169

Multimedia and Text Sales

[0211] According to another embodiment, the asset further comprises a combination of

encrypted video, audio, or text data bundled with the software. The software is a

5 software player to decrypt and play the data or encrypt and add data.

[0212] According to yet another embodiment, the bundled software thwarts simple data

capture mechanisms comprising one or more of screen bitmap capture, screen text clip

capture, screen text clipboard capture, or audio clip capture.

10

[0213] Figure 4 illustrates potents and potentates for selling copyright protected

multimedia and text data. As the figure shows, the data can comprise any combination

of audio, video, still image (e.g. photographs) and text data that can be rendered by a

software player. As shown in the figure, the screen to display the data and the speakers

15 to play the data are carefully pre-empted (discussed below) to prevent data capture by

the rendering devices. The data itself is encrypted and either bundled with the software

player or delivered to an installed player. The player itself is a potent or potentate. The

player is capable of decrypting the data to play it. It can also add new data to the bundle

by accepting contributions from the user and saving them after encryption. The

20 contribution may optionally also be forwarded to the content provider, depending on the

service provided.

[0214] Multimedia sales may be routed through the software selling mechanism

discussed thus far. This comprises encrypted provision of the multimedia data and a soft

25 player optionally, in case the encrypted data cannot be played on the client side without

the soft player. The soft player preferably has the following characteristics: for video or

visual data, it disables bitmap capture so the copyrighted data cannot be conveniently

copied by anyone. This may be carried out as follows: An event listener is registered for

52

WO 2016/199166 PCT/IN2016/050169

the display window, that (a) resets the clipboard so any prior event's capture is

overwritten (b) repaints the screen with the window region whitened so that a future

event capture is overruled. Further, the listener can create an artificial event so that the

sequence above is repeated overwriting any bitmap saved by a process prior to the

5 overwriting of the clipboard above.

[0215] Text sales can be carried out similarly. In the case of text, a text displayer may be

provided that besides disabling bitmap captures, also disables the text clipboard for the

window. Thus edit events over the window are disallowed.

10

[0216] Analogous to bitmap capture, audio capture by the hardware player (speakers)

can be disabled to prevent copyright violation.

[0217] Once a data/text player has been installed, additional data can be streamed to the

15 player as and when needed in the encrypted format. Hardware for the soft players can

well comprise embedded software players.

Notes

[0218] The mechanism provided thus far can support computer upgrades as follows. A

20 user is allowed to un-install the software from a machine obtaining a free credit for a

fresh purchase. The free credit is used then to install for free on a new machine.

[0219] Portability of a software on multiple machines and platforms is an unknown

often, with the buyer unsure if the purchased software will run fully on the platform he

25 buys it for. This difficulty can be addressed as follows. The demonstration capability of

a potent can be designed to exercise all core functionality of the software, such as file

opening/closing, display etc. and the demo itself turned into a verification of portability

53

WO 2016/199166 PCT/IN2016/050169

of the potent. After a free demo, a user can confidently make a purchase, knowing that

the software will spring no surprises thereafter.

[0220] Instead of providing authentication software for downloads on the content

5 provider website, the website can alternatively upload the credentials file provided by a

potent/potentate to the content provider website for verification online. This mechanism

bypasses the need for authentication software upgrades, but requires online access for

any authentication.

10 [0221] According to yet another embodiment, the credentials data constructed by a

digital asset are passed to a browser to authenticate.

[0222] As an alternate to providing authentication software to users, a potentate or

potent can instead support security-protocol-based authentication measures as found in

15 website authentication. So for instance, the potent when run in authentication mode on a

client machine can communicate with the client's browser instead to return validation

information associated with a https page reserved by the content provider for the

purpose. This mode has to be run with networking disabled with the potentate/potent

software verifying that, and the security protocol and communication being carried out

20 locally on the client machine itself, allowing the browser to authenticate the software,

just as a website is authenticated. The key advantage of this approach is that it allows

widespread browser software with https support to be leveraged for authenticating

potent/potentate software without distributing any new authentication software for the

purpose. This mechanism however requires cooperation from browser vendors and can

25 work only if the straightforward functionality is provided in available browsers.

[0223] Since the potent/potentate software is likely to undergo examination in binary

form by pirates in an effort to decipher the public key and private keys embedded in it

54

WO 2016/199166 PCT/IN2016/050169

(to break the authentication protocol), it is imperative that the software hide the keys

and key handling mechanisms well to resist such investigations. These methods are

discussed in the teaching provided herein.

5 [0224] For browser-supported authentication, the page pointed to in authentication is

changed (along with its public and private keys) if a potent's keys are compromised. The

current page of authentication is well advertised. A potent with compromised keys

remains stuck on the old page and can be detected. Potents are periodically required to

synchronise and upgrade themselves with the content provider server to be up to date

10 with the current keys. If a potent is unable to authenticate using the latest page, the

potent is not considered authentic by this mechanism. The user can persist if he has

other knowledge of the particular potent, such as specific antecedent knowledge. The

change of pages in this scheme is expected to be infrequent, so the scheme can work

well with infrequent synchronizations. The content provider needs to broadcast changes

15 if they occur widely, to prevent fraud, which can well be done by e-mailing the current

user base, especially those who are known to be affected and sending them an update of

the software with un-compromised keys. The public key change does not need to be

broadcast specifically by the content provider. The new key is obtained normally by the

browser by its own standard mechanism.

20

[0225] For potents authenticated by non-browser, normal authentication software if the

authentication agent is coded with the public key of the content provider, the agent still

goes out of date if the key expires or its private counterpart (key) is busted. The agent

has to periodically update its public keys or itself - both are equivalent. Public keys in

25 authentication software do not require special hiding, since they are pubic data. Only

private keys require special handling and hiding, since they are the target that

adversaries try to discover.

55

WO 2016/199166 PCT/IN2016/050169

[0226] According to yet another embodiment, a key is stored in a digital asset by

distribution into a subset of a large number of candidate data fields in the asset, the

reconstruction of the key from the fields not being apparent from a reverse engineered

control flow of the asset, forcing a combinatorially large number of key reconstructions

5 to be considered in a key search making key discovery infeasible.

[0227] The private keys, or symmetric encryption keys embedded in potent/potentates

and authentication software have to be hidden very carefully. A data structure for key

hiding in a binary software image, distributed freely is as follows. This comprises a K

10 nested encryption: There are K keys in arbitrary positions in the binary image. Using the

first key, the second key is decrypted, using the second, the third, and so on till the last

and the last one is used to decrypt the private key. In a binary image with N key

candidates, N > K, this gives NK permutations to try out for finding the private key,

which, for large N and K is infeasible to discover. The permutation is now the real key,

15 and is hidden by designating up some bits of each of the keys as the next key offset

(modulo N). The bits can well point to the same key repeatedly and hence no

consistency check can be carried out by the adversary in ruling out infeasible key

sequences. The N candidates are themselves random bits. Now the pointer to the first

key and the choice of the bitmap defining the next key field is the real key. The bit map

20 has 2M-1 alternatives, where M is the key size in bits. For a large M, this key is

infeasible to break. The way to get a large M is to permit appended/overlapped readings

of the N key fields. The bitmap can be generated dynamically and not be available in the

control flow of the program to reverse engineer.

25 Cryptography Obfuscation

[0228] For authenticating and for other purposes discussed above, the system encrypts

and decrypts data, for which it works with a key hidden within the system. The key need

not be hidden, in case it is a public key of asymmetric cryptography, but then, the private

56

WO 2016/199166 PCT/IN2016/050169

key with its partner, say the authentication software, still has to be hidden. As discussed

later, the system needs to both encrypt and decrypt data that has to be kept secret from

the client running the system. Hence the use of a public key for both these purposes is

not sufficient as the client will also be able to decrypt the secret data then. The system is

5 thus faced with a need to hide a private key, while running in a client environment. With

key hiding a need, the system can as well work with symmetric encryption and hide the

relevant key. Symmetric encryption is faster and far simpler than public-key

infrastructure, so the option to work solely with symmetric encryption is a valuable

advantage the system then offers.

10

[0229] A cryptography hiding system for hiding one or more keys or cryptography

implementation in a binary-encoded digital asset using holistic, efficient steganography

is disclosed. The system comprises an interleaving means for sequentially or

concurrently interleaving the computation of non-cryptography, useful code with

15 cryptography code. The system further comprises an obfuscating memory management

means for creating an encoded pointer representation of a scalar, comprising one or

more encoded pointers pointing to one or more objects created and managed by the

memory management means for maintaining the scalar in an obfuscated state

throughout the lifetime of the scalar. The system further comprises a class obfuscation

20 means for translating a class to one or more data structures or procedures. The system

further comprises a procedure obfuscation means for de-stacking one or more

parameters of a procedure or translating a procedure call to jumps to and from an inlined

procedure body.

25 [0230] A cryptography hiding system for hiding one or more keys or cryptography

implementation in a binary-encoded digital asset using holistic, efficient steganography

is disclosed. The system comprises an interleaving loop or recursive procedure

instantiating one or more re-entrant calls to one or more procedures or macros in

57

WO 2016/199166 PCT/IN2016/050169

cryptography code, such that one or more re-entrant calls to one or more procedures or

macros in useful, non-cryptography code are interspersed in-between any two

cryptography code calls. A cryptography call typically comprises a smaller stateful

computation than a larger stateful computation comprised by a non-cryptography call.

5

[0231] According to an embodiment, the interleaving loop or recursive procedure is

parallelised to execute a cryptography call largely in parallel with non-cryptography

computation.

10 [0232] A cryptography hiding method for hiding one or more keys or cryptography

implementation in a binary-encoded digital asset using holistic, efficient steganography

is disclosed. The method comprises an interleaving step for interleaving sequentially or

concurrently, the computation of non-cryptography, useful code with cryptography code.

The method further comprises an obfuscating memory management step for creating an

15 encoded pointer representation of a scalar, comprising the use of one or more encoded

pointers pointing to one or more objects created and managed for maintaining the scalar

in an obfuscated state. The method further comprises a class obfuscation step for

translating a class to one or more data structures or procedures. The method further

comprises a procedure obfuscation step for de-stacking one or more parameters of a

20 procedure or translating a procedure call to jumps to and from an inlined procedure

body.

[0233] A cryptography hiding method for hiding one or more keys or cryptography

implementation in a binary-encoded digital asset using holistic, efficient steganography

25 is disclosed. The method comprises the step of using an interleaving loop or recursive

procedure for instantiating one or more re-entrant calls to one or more procedures or

macros in cryptography code, such that one or more re-entrant calls to one or more

procedures or macros in useful, non-cryptography code are interspersed in-between any

58

WO 2016/199166 PCT/IN2016/050169

two cryptography code calls. A cryptography call typically comprises a smaller stateful

computation than a larger stateful computation comprised by a non-cryptography call.

[0234] To hide a key and related cryptographic mechanism, the system implements a

5 source-to-source transformation. The transformation carries out efficient, holistic

steganography that systematically inflates cryptographic code computation with regular

application computation, thereby hiding the cryptographic computation by burying it in

non cryptographic, regular application computation. The cryptographic computation and

also parts of the application computation are systematically obfuscated to make the

10 hiding all the more effective. The cryptographic code is automatically generated (post

transformation) and inserted as a part of the application code, so it cannot be discerned

separately from the application code, as say a separate dynamically linked library (DLL).

[0235] Figure 5 illustrates a potent icon running in a loop or recursion, shown as a circle

15 that the icon runs around in. The loop/recursion repeatedly executes cryptography code

followed by non cryptography or application code, such as demonstration code, so that

the work graph of the potent shows continuous toggling between the two kinds of work

as shown on the right side of the icon. Typically, larger amount of non cryptography

code is executed at a time compared to cryptography code, so that a steganography is

20 obtained wherein the cryptography computation is hidden by burial in the non

cryptography computation. The work graph is like that of a digital clock, generally

asymmetric, context switching stealthily between the two kinds of code.

[0236] Within the cryptography code, and to some extent in the non cryptography code,

25 deliberate obfuscation is carried out to hide the cryptography implementation and to do

it stealthily, so that an adversary cannot figure out where obfuscation begins and ends.

Programs have two major abstraction mechanisms, namely data and algorithms, both of

which are obfuscated effectively and efficiently, as shown in the figure. Data comprises

59

WO 2016/199166 PCT/IN2016/050169

both scalar and aggregate types and both are obfuscated using a novel memory manager

dedicated to the purpose. The memory manager encodes all data using pointers, which

are known to make up intractable obfuscation, in a pluggable manner, so that an

adversary has no means to model or reverse engineer the obfuscation. Static analysis is

5 intractable, and observation of dynamic running is so tediously difficult and hidden with

markers erased that figuring out the structure of the cryptography manually or semi

automatically is impractical. The memory manager uses pointers to allocated memory

objects, with garbage collection optionally aiding the memory manager, so that

migration of the objects changes data encodings transparently, making the obfuscation a

10 moving target. Similarly, data is distributed all over the allocated objects randomly, and

objects themselves are randomly placed over the heap, so that high entropy of

obfuscation is attained.

[0237] For algorithm obfuscation the primary target is the procedure abstraction of

15 programming languages. Since procedures are underpinned by stacks, the stack

mechanism is obfuscated by optimisation, attaining high efficiency. Targeting the stack

undermines stack based run-time observation and debugging tools, hardening the task of

an adversary. Furthermore, static analysis is undermined, leaving an adversary little or

no room to manouver in. Parameter passing over the stack is flattened by the use of

20 global variables, arrays, and procedure calls rescheduled and streamlined to enable this

effort. The class abstraction is flattened away into procedures and (aggregate) objects as

a part of compilation to de-structure the program.

[0238] The cryptographic computation is interleaved in application computation as

25 follows:

[0239] First, the cryptographic computation is invoked as a sequence of re-entrant

procedure or macro calls, wherein a macro call comprises running a statically expanded

60

WO 2016/199166 PCT/IN2016/050169

macro code. These calls are interspersed in regular application code computation. A

main loop in the application code can call the call the cryptographic invocations, using a

random number generator to decide the intervening application computation size

between two cryptographic calls. The first call to the cryptographic code itself may

5 happen after some relatively long period of application computation to hide the start.

Thereafter, the interspersed cryptographic sequence runs. The last call informs the main

loop that no further cryptographic calls are to be made and the application runs un

interrupted thereafter.

10 [0240] The notion of re-entrant code here is not stateless. The code is stateful and makes

progress from call to call. It is not stateless as in re-entrant libraries in prior art. Our

prior work on compiler frontends, Indian patent application 1025/DEL/2014, provides

an example of parallel stage codes that make progress from call to call. The stages make

progress, interleaved with each other, either as a sequential interleaving, or as explicitly

15 parallel code, with the progress occuring from call to call over the input text being lexed

and parsed. Similarly, the progress in the interleaving of application code and

cryptographic code comprises progress of the cryptographic code over the data being

encrypted or decrypted. The application makes its own independent progress over its

own input. The two progresses are made interleaved with each other, either as a

20 sequential interleaving, or as explicitly parallel stages. For explicitly parallel stages, the

(short) stage calls to the cryptographic code may complete well ahead of their spacing in

the main loop, resulting in well-spaced parallel computations of the cryptographic code.

If the application code computes speculatively, the spaced cryptographic calls may be

well hidden as routine parallel computation.

25

[0241] The cryptographic code is preferrable callable with multiple entry points, with

any schedule among the entry points being followed by the main loop in the application

code. So for example, with cryptography entry points, AO, B(), and CO, and application

61

WO 2016/199166 PCT/IN2016/050169

entry point, X(, a round robin sequential schedule in the main loop calls the entries in

the order: AO, X(, BO, X(), CO, X(), AO, X(, BO, X(, CO, X(, AO, X(, ... Preferably,

there would be multiple entry points for the application code also, which themselves

would be scheduled similarly, statically, or dynamically.

5

[0242] The cryptographic code is best obfuscated as discussed below. Preferably, the

code preceding and succeeding the cryptography code and random portions of the

application code are also obfuscated code for the purpose of steganography.

10 [0243] For a source language like C++, a first step in obfuscation is to flatten its classes

away. In other words, the C++ program is translated to a program within its C subset,

with classes replaced by structs, arrays, unions and procedures. This step is well known

in prior art and is one of the standard paths of compiling C++ programs. For example,

the EDG frontend (www.edg.com) supports an IL-lowering step in which such source

15 to-source transformation is carried out.

[0244] The major program abstraction in programming languages comprises procedures

and procedure calls, which if obfuscated, lead to a very difficult to understand program.

Provided here are several novel methods of optimizing a program such that the resulting

20 program may perform better and also be harder to understand.

[0245] A procedure obfuscation system for de-stacking one or more procedure

parameters is disclosed. The system comprises a static analyser means capable of

guidance by one or more user annotations and a source-to-source transformer means

25 capable of replacing a reference to a procedure parameter with a non-stack reference.

62

WO 2016/199166 PCT/IN2016/050169

[0246] According to an embodiment, the user annotations comprise sharpening a

symbolic value of a variable, location or expression to a subset of a symbolic value

generated by a static analyser.

5 [0247] According to another embodiment, the non-stack reference comprises a global

variable.

[0248] According to yet another embodiment, the static analyser means comprises a

means for determining that a procedure call has no nested calls to the procedure.

10

[0249] According to yet another embodiment, the static analyser means further

comprises a means for determining that the number of nested procedure calls to a

procedure contained within a call to the same procedure is less than a statically-known

constant. The non-stack reference further comprises a global array variable indexed at a

15 nesting depth of a procedure call.

[0250] According to yet another embodiment, the static analyser means further

comprises a means for determining that barring procedure return values, all

dependencies within a procedure are intra-procedural. The source-to-source transformer

20 means comprises a means for replacing a procedure with a parameter memoising

procedure.

[0251] A procedure obfuscation method for de-stacking one or more procedure

parameters is disclosed. The method comprises a static analysis step guided by one or

25 more user annotations, and a source-to-source transformation step replacing a reference

to a procedure parameter with a non-stack reference.

63

WO 2016/199166 PCT/IN2016/050169

[0252] Figure 6 illustrates the means of procedure obfuscation by de-stacking

parameters. It comprises a static analyser that takes user input in its work by annotations

or equivalently, interactively. Furthermore, the method comprises a source-to-source

transformer for transforming the input program. The transformer is oriented towards

5 destacking parameters and is capable of transforming a parameter reference in a

procedure with a non parameter reference such as a global variable. Since a parameter is

carried on the stack, this comprises replacing a stack reference to a non stack reference.

[0253] The static analyser analyses procedures as to whether a procedure call can

10 generate nested calls to the same procedure. A procedure may be found to generate no

nested calls, or nested calls that are a constant K bounded, i.e. the depth of nesting of

calls to the same procedure may not exceed the static constant K. Procedures are also

analysed for conversion into cached or memoised functions and whether the memoised

computation of a procedure can be rescheduled to reduce the extent of use of stack

15 whereby the stack can be bypassed completely. The annotations or user input taken by

the analyser may comprise assertions in the program, for example narrowing the

symbolic values for variables and expressions constructed by the static analyser. For

example, a predicate in a conditional may be narrowed to true or false, allowing the

conditional to be treated as one branch only. The unfolding of a loop may be narrowed

20 to exactly n unfoldings, where n may be a constant or a symbol. Besides symbol

narrowings, the user may provide information such as an assertion that a procedure is

non nesting, etc.

[0254] Using the conclusions drawn by the static analyser, the transformer replaces

25 parameter references in a procedure with other references. Besides global variables, the

references may comprise array indexes, e.g. X[i], or array of frames references, where

the array element is a struct or frame and after indexing the array for a frame, a

particular member of the frame is dereferenced. Memoising procedures may be

64

WO 2016/199166 PCT/IN2016/050169

scheduled as desired by an iterative loop, wherein the order of iteration dictates the

order in which the memoised procedure is called over its parameter space or domain.

[0255] Consider first a procedure for which a simple static analysis establishes that the

5 procedure does not have nested calls to itself, viz. in no execution path of the procedure,

a call to the same procedure occurs. In such a case, it is clear that the arguments to the

procedure can be de-stacked, viz. they need not be stored on the stack and can be stored

in global variables instead. This is because at any time, there is at most only one live

instantiation of the procedure. The global variables holding the arguments are in effect

10 registers storing the procedure parameters.

[0256] Consider next a procedure, for which a static analysis establishes that the

procedure is constant nested, viz., nested calls to the procedure are at most a constant k

deep. In this case, the procedure parameters can again be de-stacked and stored in a

15 global frame[k] array, wherein each frame stores the parameters for one particular call.

Each call can track its frame position by a global depth counter, that is incremented each

time the procedure body for a call is entered and decremented each time the body is

exited. The counter in effect tracks the dynamic schedule of nested procedure calls. The

reference to an individual parameter, X, is replaced by frame[c]->X in the procedure

20 body, with c being the counter value.

[0257] The static analysis to discover the above cases is a straightforward path analysis

informed by the reachability of procedures to the call points encountered. The Pundit, a

symbolic execution analyser in Pradeep Varma, "Compile-time analyses and run-time

25 support for a higher-order, distributed data structures-based parallel language", PhD

Thesis, Yale University, Department of Computer Science, University Microfilms

International, Ann Arbor, Michigan, 1995, is suitable for such a path analysis. Since the

problem in general is undecidable, the static analysis may be sharpened with annotations

65

WO 2016/199166 PCT/IN2016/050169

as follows. The static analysis only proceeds over annotated code (e.g. annotated

function bodies), looking for procedure calls. Such annotation may be carried out as

command line arguments, e.g. identifying the procedures to be analysed, or such details

in a compilation-profile file provided as a command-line argument. Annotation is a

5 useful method because not all the application program needs to be analysed and the

cryptographic code may be small enough for a focused annotated analysis to be carried

out. For procedures not found to have de-stackable arguments, the analyser can point out

the reasons for not de-stacking, such as a nested call with a function pointer that may

alias to the procedure being de-stacked. The user can then assert to the analyser whether

10 the function pointer indeed aliases as such or not and the analyser proceed with the

sharpened information.

[0258] For determining k-depth-bounded nested calls, it is necessary to prune the

recursing path from the function entry to the function call. An annotation to the effect

15 that the nested call is k-bounded is sufficient to bound such a path. Further annotations

can then specify the boolean values the conditionals along the path can acquire

symbolically, allowing the analyser to have complete knowledge of the nested

computation for the procedure. This is sufficient to optimise the procedure call by de

stacking its arguments.

20

[0259] A third method for de-stacking parameters covers the last case, of recursive

procedure calls as follows: The unbounded loop between a procedure entry and its

nested, recursive call is pruned and the boolean predicates along the path specified

symbolically so that the recursive invocations of the one or more procedures along the

25 path are labelled symbolically. Such specification occurs by annotation or interactive

dialog between the user and the analyser so that symbolic values in individual variable

bindings are sharpened. Sharpening may comprise pruning a symbolic value to a more

specified range or reducing the symbolic values that may bind to a particular variable.

66

WO 2016/199166 PCT/IN2016/050169

For example, as discussed above, a boolean predicate may be specified to evaluate to

only true for k instantiations, which is an assertion or annotation to the effect that the

predicate value falls in the range {true} alone and not {true, false}. An assignment using

a conditional expression that yields a NULL pointer along one path and a data structure

5 pointer along another may ordinarily set a variable to either of the two symbolic values.

On specific annotation, one of the settings may be pruned, as specified by the user.

[0260] With recursive unfoldings of a function or set of mutually recursive functions

explained by annotation and/or static analysis as above, the analyser can further analyse

10 whether all the data dependencies within a procedure invocation are intra-procedural or

not (barring answers returned by calls). If they are intra-procedural, then the procedure

invocations may be re-ordered vis-a-vis each other so long as the return value of an

invocation is made available to a dependent procedure body for its computation. Thus a

schedule of procedure unfoldings (viz. a procedure invocation, minus a recursive call

15 contained within it) may be followed that sequentially computes the recursive

computation, while following an order that is not necessarily the same as defined in the

recursive computation. For example consider the fibonacci function:

[0261] fib(0)= 0;

20 fib(1) = 1;

fib(n) = fib(n-1) + fib(n-2);

[0262] A recursive computation of fib(10) yields a tree of recursive fibonacci calls that

can instead be re-scheduled as fib(O), fib(1), fib(2), fib(3) ... unfoldings that compute

25 fib(10) in a bottom-up schedule. This is because the unfoldings have intra-procedural

dependencies only. With the result of fib(m) cached and made available to a fib(m+1)

and fib(m+2) unfolding, the recursive computation can be computed in a sequence. By

using cached implementation of fib(n) and specifying a schedule of computation,

67

WO 2016/199166 PCT/IN2016/050169

namely the order n, for fib(n) calls, the entire fib(n) computation can be replaced by n

fib unfoldings exactly. As discussed in John Hughes, "Lazy memo-functions", in

Proceedings of a conference on Functional Programming Languages and Computer

Architecture, Jean-Pierre Jouannaud (Ed.), Springer-Verlag New York, Incorporated,

5 New York, NY, USA, isbn: 3-387-15975-4, pages 129-146, and its successor work,

Pradeep Varma and Paul Hudak, "Memo-functions in ALFL", YALEU/DCS/RR759,

Research Report, Department of Computer Science, Yale University, December 1989, a

cached function is computed on a set of arguments only once; later calls on the same

arguments reuse the result of the first call, which is cached in some memoising cache for

10 the purpose. In the context of fib(n), the parameters for the fib unfoldings need not be

carried on stack, since only one fib unfolding is active at one time. Hence the parameter

n can be a global variable with the stack completely bypassed. To specify a schedule for

computing cached recursive calls, an iterative loop is sufficient, e.g. for (i = 0; i<=n;

i++) global parameter = i; fibO;. The later computations of fib use the cached answers of

15 earlier fib calls. This scheme differs from cached or memo functions in prior art in that

de-stacking or obfuscating parameters is not a subject of the prior scheme; hence the

necessary static analysis and re-ordered scheduling of procedures are not discussed

either.

20 [0263] Thus recursive procedure calls can have their parameters de-stacked as discussed

above. Given that both recursive and non-recursive procedure calls may have their

parameters de-stacked, the use of the stack to understand program behaviour is highly

curtailed by the optimised and efficient methods discussed here. The methods presented

here are likely to be highly effective and efficient, as they eliminate waste computation

25 (e.g. unstacking operations, redundant recursive calls) while obfuscating the procedural

abstraction.

68

WO 2016/199166 PCT/IN2016/050169

[0264] Additional obfuscation of the procedural abstraction, that composes well with the

obfuscation methods discussed above comprises replacing a call with a goto in a source

to-source transformed program. First, from prior art, it is known that a procedure call

can well be inlined, by replacing the call with the body of the procedure after

5 appropriate variable renaming. Inlining code has the problem of code bloat, so for

efficiency reasons, the method preferred herein uses a novel method of instantiating the

procedure body only once per calling procedure body at most. If the body of a procedure

Y has N calls to procedure X, the body of X is inlined only once in the body of Y with

gotos reusing the one inlined body as follows. The entry to X's inlined body in Y has a

10 jump label for its entry. At the end of the inlined body, a switch is used to jump from the

exit to the continuations of its calling points. Each calling point jumps to the inlined

body after setting the switching variable, so that the exit switch will jump back to the

continuation of the calling point after computing the inlined call to X. While the gotos

manage the proper control flow of the procedure calls, the parameter passing can be

15 done using the de-stacking techniques discussed above so that no stack operations or jsr

(jump to subroutine) operations need to be invoked at the binary compiled version of the

code. This makes the procedure calls invisible to an adversary having access only to the

object code.

20 [0265] One call to X in the body of Y can be the position at which X's body is inlined.

The other calls re-use this inlined body by the use of jumps. Alternatively, the inlined

body of X can be positioned at a place in Y's body that is not visited by any path from

the entry of Y. For example, it can be after a return statement. All uses of such an X

body occur by the use of gotos.

25

[0266] A major obfuscation step comprises replacing scalar quantities in a program by

encoded equivalents. The encoding is novel in utilizing a set of pointers to encode any

scalar type. The encoding is highly general, as the pointers can point to and use any data

69

WO 2016/199166 PCT/IN2016/050169

or table in the machine or be amenable to pointer arithmetic to translate themselves into

the ordinary value for a scalar type. So for example, a long type, of 32 bits may be

represented by 4 pointers, one per byte, with the encoded value, being not amenable to

algebraic manipulation and being amenable only to a machine-dependent interpretation,

5 wherein the pointers are used to possibly read the machine memory to resolve to the

long value that is encoded by them. In other words, the novel encoding for scalars is

highly obfuscated and difficult to analyse for an adversary.

[0267] An obfuscating memory management system for creating an encoded pointer

10 representation of a scalar is disclosed. The system comprises one or more encoding

pointers pointing to one or more objects created and managed by the memory

management system for maintaining the scalar in an obfuscated state throughout the

lifetime of the scalar.

15 [0268] According to an embodiment, the objects are laid out randomly over the heap

memory.

[0269] According to another embodiment, an encoding pointer is used only once in

encoding a scalar part.

20

[0270] According to yet another embodiment, an object comprises one or more fields

containing one or more pointers to one or more allocated objects. The value denoted by

an encoding pointer can be obtained by dynamic computation comprising the use of a

combination of the object, one or more of the pointers, one or more of other pointers to

25 the allocated objects, and the allocated objects.

[0271] According to yet another embodiment, the one or more pointers to allocated

objects contained in fields of the object further denote a value of a reference count for

70

WO 2016/199166 PCT/IN2016/050169

an encoding pointer. The value can be obtained by dynamic computation comprising the

use of a combination of the object, one or more of the pointers, one or more of other

pointers to the allocated objects, and the allocated objects.

5 [0272] According to yet another embodiment, the memory management system

increments the reference count upon dynamically finding a scalar part's encoding

pointer using a filter function.

[0273] According to yet another embodiment, the memory management system reclaims

10 the object upon reference count elimination.

[0274] According to yet another embodiment, the memory management system reclaims

or migrates one or more of the object or allocated objects using garbage collection.

15 [0275] According to yet another embodiment, the memory management system never

stores a scalar or scalar part directly in memory.

[0276] According to yet another embodiment, the memory management system

scalarises the scalar into independent encoding pointers.

20

[0277] According to yet another embodiment, the memory management system

distributes an aggregate object's scalars' encoding pointers all over the object.

[0278] According to yet another embodiment, the memory management system

25 distributes a set of aggregate objects' scalars' encoding pointers all over the objects.

71

WO 2016/199166 PCT/IN2016/050169

[0279] According to yet another embodiment, the memory management system further

re-distributes the encoding pointers in the set of aggregate objects, upon increase or

decrease of objects in the set due to allocation or de-allocation.

5 [0280] According to yet another embodiment, the memory management system defers

an object de-allocation till a further re-distribution vacates the de-allocated object prior

to the de-allocation.

[0281] According to yet another embodiment, the memory management system

10 initialises the scalar using dynamic computation comprising the use of a set of literals

excluding the literal initialising the scalar in un-obfuscated program code.

[0282] According to yet another embodiment, an object comprises one or more fields

denoting a value for an encoding pointer or reference count. The value can be obtained

15 by dynamic computation comprising the use of the object.

[0283] According to yet another embodiment, the encoded pointer representation of the

scalar is changed when one or more objects pointed to by one or more encoding pointers

are migrated by garbage collection. The scalar's value denotation remains unchanged.

20

[0284] An obfuscating memory management method for creating an encoded pointer

representation of a scalar is disclosed. The method comprises the step of using one or

more encoding pointers pointing to one or more objects created and managed for

maintaining the scalar in an obfuscated state throughout the lifetime of the scalar.

25

[0285] An obfuscating memory management system is disclosed. The system allocates

or de-allocates an object with meta-data comprising object size or layout. The contents

72

WO 2016/199166 PCT/IN2016/050169

of the object may be obfuscated by distribution or re-distribution, part by part, anywhere

over the object or one or more other objects.

[0286] According to an embodiment, the memory management system defers an object's

5 deallocation till occupants of the object in lieu of parts distributed or re-distributed to

other objects have been vacated.

[0287] According to another embodiment, an object is allocated with larger storage than

its meta-data size, so that false scalars or duplicated parts may be used to fill the extra

10 space for further obfuscation.

[0288] According to an embodiment the memory management system comprises a

garbage collector.

15 [0289] According to another embodiment, the garbage collector uses the layout

metadata to identify or de-obfuscate pointer scalars in the object.

[0290] According to an embodiment, the memory management system scalarizes the

object's parts in substitution for object allocation on the stack. The object's encoding

20 pointers are independently stored.

[0291] According to another embodiment, the memory management system enables

part-by-part scalarisation of all stack-allocated variables of a procedure. The variables

are shifted to heap allocation only if the variables comprise a pointer scalar.

25

[0292] According to an embodiment, the object meta-data itself is obfuscated.

73

WO 2016/199166 PCT/IN2016/050169

[0293] An obfuscating memory management method is disclosed. The method

comprising the step of allocating or de-allocating an object with meta-data comprising

object size or layout such that the contents of the object may be obfuscated by

distribution or re-distribution, part by part, anywhere over the object or one or more

5 other objects.

[0294] Figure 7 illustrates the novel memory manager contributed by our work for

obfuscating program data. The manager uses pointers to encode a scalar or aggregate

object. A scalar, comprising one or more bytes is divided into parts each of which is

10 substituted by an encoding pointer. So a character scalar, for instance, comprising one

byte, may become two parts, both of which are substituted by a pointer apiece. An

ordinary scalar ends up becoming a fat scalar, of a different size, as a result of the

transformation. An aggregate object, comprising one or more scalar or other aggregate

objects is transformed similarly, byte by byte or part by part, into a fat aggregate object.

15 The figure illustrates a fat scalar as a sequence of slots, each of which is filled by an

encoding pointer. A fat aggregate object is shown as a vertical sequence of horizontally

slotted fat scalars, each slot in a fat scalar being filled by the encoding pointer for the

slot. The memory manager is capable of creating encoding pointers pointing to objects

created by the memory manager. The memory manager may distribute or scalarise the

20 encoding pointers of a scalar or aggregate object randomly over the storage space for the

object, in an order that differs from any ordinary storage sequence of the parts. Using

garbage collection, for example a recently disclosed, novel, pathbreaking true garbage

collector for C/C++ and other languages in

1013/DEL/2013 (PCT/IB2014/060291), and 2713/DEL/2012 (PCT/IB2013/056856),

25 the memory manager may migrate or relocate the allocated objects repeatedly, updating

the pointers accordingly thereby making the pointer encodings dynamic and a difficult,

moving target for an adversary.

74

WO 2016/199166 PCT/IN2016/050169

[0295] Two options are shown in Figure 7 for the encoding pointers of a fat scalar.

Three encoding pointers are shown to point to the same object, reusing the same pointer

encoding for the three parts of the scalar. The object pointed to is a box highlighting the

features of such pointer reuse - that reference counts may be used to track the extent of

5 reuse, the shared pointer may be positioned randomly over the heap, and migrated

variously e.g. upon GC. The pointers for a fat scalar may be scalarised into a set of

encoding pointers, each located independently or separately of the others. For

scalarisation done on a stack frame, for local variables, the independent or separated

encoding pointers for all the stack scalars are placed randomly on the frame's stack

10 storage. For scalarisation done by shifting a stack frame to the heap, the independent or

separated encoding pointers are distributed randomly on the heap storage for the frame.

One slot of the fat scalar is shown pointing to a box highlighting a one-time use of a

pointer, analogous to the one-time pad encryption. The pointer is not reused and may be

reclaimed upon GC or modified if the pointed object is migrated. The pointer may also

15 be randomly positioned over the heap, like reused pointers, and may undergo

scalarisation along with its peers for a fat scalar.

[0296] The fat aggregate object in Figure 7 illustrates one of its encoding pointers,

according to its part's storage location, re-mapped to a different storage location in a

20 different fat aggregate object. This re-mapping occurs by a random re-distribution of the

encoding pointers all over the storage space for the (one or more) aggregate objects.

Two fat aggregate objects are shown out of a sequence, with the remapping shown for

one pointer in the left object remapped to a different slot in the right object. The pointer

itself may be one-use or a reusable pointer, details of which are not shown. The re

25 distribution of encoding pointers, all over the storage of an aggregate object(s), may be

repeatedly changed, periodically. The re-distribution may involve storage space of just

one aggregate object, or more than one aggregate object, all considered together. The set

of aggregate objects may change dynamically, upon allocation and de-allocation. A de

75

WO 2016/199166 PCT/IN2016/050169

allocation may have to be deferred, in order to vacate its storage of encoding pointers of

other objects, prior to de-allocating the object.

[0297] In the technique to represent scalars presented herein, a scalar type, represented

5 as a fat scalar, comprising a set of pointers that encode the scalar type, is preferably

scalarised and distributed over the machine memory so that its component pointers are

not even localised in the neighbourhood of each other. Further, by encoding every scalar

in such pointer encoding, it is never the case that the machine memory (run-time

program image) contains a snapshot of any data field as is within itself. So no data field

10 can be read off the machine memory directly, or by permutation, in the present scheme.

This is a major invariant provided by the present system.

[0298] The representation of data (scalars), thus, is provided by a novel obfuscating

memory manager provided by the present system. The memory manager is capable of

15 working with an existing garbage collection system, e.g. as disclosed in Indian patent

numbers 1013/DEL/2013 (PCT/IB2014/060291), and 2713/DEL/2012

(PCT/IB2013/056856), whose one or two-word encoded pointers can substitute for the

ordinary pointers discussed herein straightforwardly.

20 [0299] In a first step for turning ordinary scalars into fat scalars, the scalar types are first

identified in the program. This may be done by annotation, as only the cryptographic

code and an application subset is to be obfuscated thus. The cryptographic code may be

kept in a dedicated set of file(s) for the purpose and identification of the file(s) suffices

for annotation.

25

[0300] Next, each scalar type is replaced by a struct comprising the fat scalar. Although

this description is provided in the context of C, similar operations may be carried out in

the context of other languages. Following the struct conversion, assignments of scalar

76

WO 2016/199166 PCT/IN2016/050169

values are changed to assignments of pointer members of the struct, the pointers

representing encoding of the scalar value. Note that by this conversion, each scalar type

requires the storage that is pointer aligned and sized a multiple of a pointer type. Since a

pointer type is typically a word (double word also, in 1013/DEL/2013

5 (PCT/IB2014/060291), and 2713/DEL/2012 (PCT/IB2013/056856)), mostly, padding

space in objects disappears and most or all memory stores useful data.

[0301] Similarly, scalar type reads are replaced by struct copying operations from a

source to destination variable, unless the scalar type is to be used, in which case, in

10 which case, the pointers may be read and decoded to regenerate the scalar value, which

is used immediately, so that the reconstructed value is not stored in memory at all. At

most, temporary variables may store the value in the compiled code, which generally are

register allocated.

15 [0302] Initialisation of a scalar field may be done using arithmetic generation of the

parts encoded by individual pointers that encode the scalar. The arithmetically generated

parts are encoded into the encoding pointers using macros or functions for the same. By

using arithmetic to generate the parts, none of the used literals correspond to literals in

the original program, so the symbol table does not contain literals that give away the

20 initialisation values of individual fields. For example, suppose an integer field has to be

initialised with 513 and is encoded as four pointers, one for each byte. Then the parts to

be encoded are 0, 0, 2, 1 for the four pointers, representing the 0 for the most significant

byte and 1 for the least significant. These parts can be generated by arithmetic such as

25-(13 + 12), 13 + 13 - 26, 32/16, 13-12. None of the literals stored in the symbol table

25 have any correspondence with the actual numbers. The choice of the literals to be stored

in the symbol table can be randomly generated to maximise entropy or obfuscation. The

arithmetic can be hidden within a long path of computation, involving say function

calls, for the same obfuscator purpose.

77

WO 2016/199166 PCT/IN2016/050169

[0303] Cryptography key, string and character data/literals can be initialised as above,

character by character, or byte by byte. In this case, a byte can be broken into two

quartets apiece, of 4 bits each, to obfuscate individual character data.

5 [0304] The details of the run-time system to support pointer encodings are as follows.

First, the encoding from a scalar to its parts is specified. This may be as simple as

partitioning the bits/bytes as in the example above. Next, the one-to-many or one-to-one

mapping from a part to an encoding pointer is NON EXPLICITLY specified. Using the

example above and a one-to-one mapping, this maps each byte value to a specific

10 pointer. A reverse mapping function, from a pointer back to a part also has to be

specified, for which many options are possible. A first option is to have the reverse

mapping available by dereferencing the pointer, in which case, the storage pointed to by

the pointers make up a lookup table for the reverse mapping. The storage can well

comprise one struct per pointer, for which each struct can be allocated dynamically

15 (malloc-ed) upon need. Indeed, the table can be populated apriori, randomising the order

in which the structs are allocated from the heap. This randomises the table layout also.

The memory manager can allocate the structs with intervening jumps, distributing the

random table over the heap. The space in-between the structs can be managed by the

memory manager automatically. For example, in the context of the garbage collecting

20 memory manager of 1013/DEL/2013 (PCT/IB2014/060291), and 2713/DEL/2012

(PCT/IB2013/056856), the extended gaps can be updated, after each struct allocation to

free up a (smaller) extended gap up to the next struct to be allocated, so that the space

in-between is not wasted and captured in the extended gaps of 1013/DEL/2013

(PCT/IB2014/060291), and 2713/DEL/2012 (PCT/IB2013/056856). Further, another

25 datum can be stored adjacent to the part value in each struct comprising the number of

references to the struct using an encoding pointer. This can be used to implement a

reference counting mechanism for the encoding pointer, so that after a threshold of use,

the struct can be abandoned, so that the encoding mechanism is not overused enough to

78

WO 2016/199166 PCT/IN2016/050169

become recognisable by an adversary. The reference counting mechanism easily

increments a count whenever a scalar part is translated to an encoding value. The count

is harder to decrement though, without the services of a garbage collector, but it can be

done occasionally, for example when a local variable exits its scope, so long as the

5 encoding pointer has not escaped.

[0305] This option of pointer dereferencing for reverse encoding, described above, is

quite capable, but suffers from storing parts as is in memory for inspection by an

adversary. This may suffice, since a scalar is not stored as a whole but rather in parts.

10 Another mechanism carries out pointer arithmetic on the dereferenced value for the

purpose of the reverse mapping. For example, the a base pointer can be stored, the

difference of which versus a dereferenced pointer value decides the part value. If the

base pointer is the NULL pointer, then the absolute value of the dereferenced pointer

decides the part value. Specific bits of the pointer may be used to decide the part value,

15 for example the lowest byte, or the second byte. Combined with a non-NULL base

pointer, this yields a part value that is not directly stored in the memory reached through

an encoding pointer.

[0306] The reference counting mechanism can be encoded in the remaining bits of an

20 dereferenced pointer above. So for instance, if the second lowest byte stores the pointer

part, the lowest byte can store the reference count. This scheme has the advantage that

an encoding dereferenced value, a pointer, constantly changes, making the encoding

dereferenced value itself a moving target, with the encoding pointer becoming a stateful

entity.

25

[0307] It is desirable to keep the dereferenced pointers live, viz. pointing to allocated

memory, in order to add stealth or disguise to the scheme. The memory manager is

aware of the allocated memory and can choose a specific base pointer and dereferenced

79

WO 2016/199166 PCT/IN2016/050169

pointer implementation that keeps all pointers in an allocated region. For example, if 64

kilobytes of contiguous space has been allocated, the region can be traversed using 16

bits or 2 bytes total. If such space has not been allocated, it can be allocated in

anticipation by the memory manager for use later. Since the starting address may not fall

5 on a 16-bit boundary, the addressing of the region may spill over to an adjacent 16-bit

region, requiring at most one more bit to address into the region. Using these 2 bytes + 1

bit, all pointers to the region may be used as dereferenced pointers. Alternatively, and

preferably, although not aligned on a 16-bit boundary, the region will occupy half or a

majority of one 16-bit aligned space and the pointers in a that subset alone may be used

10 to decode a part. This subset may be addressed using 16 bits alone. Of this subset, only

half of a 16-bit region needs to be addressed, requiring a total of 15 bits. Since these 15

bits represent a 15-bit aligned region, the bits have free rein and may acquire any value.

Of these 15 bits, a byte is needed to encode a byte part, leaving the rest free for

reference count. Given that small reference counts are desirable to hide the encoding

15 mechanism, the bits are more than enough for the counting purpose.

[0308] If the memory manager is implemented in a context with garbage collection (e.g.

1013/DEL/2013 (PCT/IB2014/060291), and 2713/DEL/2012 (PCT/IB2013/056856)),

the reference counting mechanism may be eschewed in favour of the garbage collector.

20 Otherwise, the reference counting mechanism provides a means for reclaiming the

storage space for encoding pointers, once the pointers have disappeared.

[0309] In the continuing example of a 4-byte integer scalar, any scalar may be encoded

with 4 encoding pointers, each pointer decoding to one of 256 values for a byte part.

25 These encoding pointers all share the storage for encoding pointers, comprising the

structs discussed above. The base pointer may also be shared and made available using a

shared global variable for the scheme. Similarly, any scalar of k bytes, can be encoded

using k shared-storage encoding pointers with a total storage bill of 256 * sizeof(struct)

80

WO 2016/199166 PCT/IN2016/050169

bytes. If reference counts are ignored, then all the scalars in a program can be encoded

using these shared storage pointers for the nominal storage bill. This however, is not

desirable since it may lead to the recognition of the scheme by an adversary. So

reference counting upto the maximum count representable in a struct (7 bits in the

5 example above), can be used to share a pointer, after which, a new struct can be created

with a new pointer encoding for the part value being encoded. In this one-to-many

scheme, multiple structs, with corresponding pointers represent the encoding for one

part value.

10 [0310] The dereferenced pointers are used above to compute a part's value based on

pointer arithmetic. From an obfuscation perspective, these pointers can be dereferenced

periodically to collect statistics about the data stored in an allocated region so that some

useful work is done on the side to obfuscate the purpose of the encoding pointers. This

statistics collection (e.g. how many fields have odd values and how many even), can be

15 done by the memory manager itself or by code generated in the source-to-source

transformation.

[0311] In a one-to-many scheme, as discussed above, the base pointer can be made

different for different struct sets as follows. For the 256 values represented by one set of

20 structs, one base pointer can be used. For new structs generated beyond these, e.g. due

to running out of reference count, another base pointer can be used. Once this struct set

is exhausted, another base pointer can be used for the next set and so on. Thus the

pointer arithmetic scheme can be varied for each of the many representations used for

encoding a part in a one-to-many scheme. In order to be self-contained, the allocation

25 region has to be changed per struct set, so that an encoding pointer's decoding method

can be identified by the allocation region it falls in.

81

WO 2016/199166 PCT/IN2016/050169

[0312] The specific encoding/decoding scheme (from scalar part to pointer and vice

versa) used in a one-to-one or one-many scheme is best implemented as a macro taken

from a pluggable set of macro options. The allocation region identification may be used

to drive the specific macro code to be invoked.

5

[0313] Further, more bits can be used to encode a part than the minimum necessary to

entertain more complex pointer arithmetic. For example, if 10 bits are used to encode a

byte part, then a stride of 3 can be used in the decoding dereferenced pointers, utilizing

total of 256 * 3 values which are representable in 10 bits. For a larger prime number,

10 e.g. 5 or 7, 8 + 3 = 11 bits suffice for encoding a byte. For prime numbers up to 16, e.g.

11, 13, 8 + 4 = 12 suffice. The number of bits left for reference counting go down in this

case, e.g. to 4 or 3 respectively, which may be enough for good obfuscation.

[0314] From an obfuscation purpose, it is best if reference counts are not implemented

15 at all, and a scheme analogous to one-time pad is used. In this case, the structs are not

shared, an encoding of a scalar part leads to leads to the creation of a struct afresh for

itself and the struct is not used for anywhere else in the program. So as encodings are

generated, new structs and pointers are generated. The de-allocation of the structs can be

done explicitly, if the position where a scalar is freed (i.e. its encoding pointer is freed)

20 is identifiable, e.g. a local variable upon exiting its scope, so long as the value does not

escape. Else, the de-allocation can be left to a garbage collector, e.g. 1013/DEL/2013

(PCT/IB2014/060291), and 2713/DEL/2012 (PCT/IB2013/056856). Once a struct has

been de-allocated, the storage can be returned to the memory manager or the struct used

to code another same or different scalar part value according to the same or totally

25 different encoding scheme. It is to be noted that with the reference count field

abandoned, the minimum size of an allocated region for a byte-sized scalar part comes

down to less than one kilobyte of memory. This allows a large number of allocated

82

WO 2016/199166 PCT/IN2016/050169

regions to be extant and used in conjunction with the one-time pad/pointer scheme

discussed here.

[0315] In an optional additional technique for obfuscation, using techniques, as in

5 1013/DEL/2013 (PCT/IB2014/060291), and 2713/DEL/2012 (PCT/IB2013/056856),

the memory manager can track an aggregate object's size in the metadata kept for the

object. The size can reflect the un-fattened size of the unobfuscated aggregate object.

The size of the fattened object can be stored alongside, or computed straightforwardly

from the (unfattened) layout information also stored with the object (as in

10 1013/DEL/2013 (PCT/IB2014/060291), and 2713/DEL/2012 (PCT/IB2013/056856)).

Accessing an object for a scalar read or write maps straightforwardly to the read/write of

a set of encoding pointers for a fattened version of the scalar. The offset of each such

encoding pointer, into the fattened version of the object is known from the position of

the scalar in the unfattened object. To allow obfuscation and redistribution of an object's

15 data, the set of encoding pointer offsets can be re-mapped to a set of actual offsets into

the fattened object that the pointers are stored at. For example, the positional offsets of

encoding pointers may be re-mapped to actual offsets by adding or substracting a

constant, modulo the size of the fattened object. In another example, only the pointers at

even offsets may be re-mapped within themselves, and in yet another example, the odd

20 ones may be re-mapped differently, and so on. The actual offsets make up the storing

positions for the pointers in the fattened object. Thus the operations of reading/writing a

scalar acquires an additional step of computing and using the actual offsets for encoding

pointers using the fattened object size. In this manner, all bytes representing fields,

bitfields, and padding in the original, unobfuscated object can be accessed as the

25 encoding pointers for their parts at actual offsets computed for them in the fattened

object.

83

WO 2016/199166 PCT/IN2016/050169

[0316] Since the re-distributed objects comprise a subset of the program objects (not all

the application is obfuscated), such objects may be marked distinctly as such. This may

be done my flagging an object in its metadata, alongside the size information for the

object.

5

[0317] In a further variation of the above optional technique, object re-distribution may

be carried out in an inter-object manner over the flagged objects. For this a participating

list of flagged objects is tracked, sorted by memory address, within the combined

storage of which, re-mapping is done as exemplified earlier (e.g. all pointers are shifted

10 a constant offset up in address, round robin, in the sorted address space, which

corresponds to a constant addition, modulo total size; and so on). Periodically, the

participating list of flagged objects is revised, to account for further allocations and de

allocations, with de-allocations prior to a revision being deferred till the revision point

itself (as per the deferred de-allocations discussed 1013/DEL/2013

15 (PCT/IB2014/060291), and 2713/DEL/2012 (PCT/IB2013/056856)), so that a de

allocation prior to revision does not destroy the pointers for other objects stored due to

re-distribution in that object. A revision may be carried out straightforwardly as follows:

using temporary space equal to the sum of the total size of the present participating

objects list and the allocations to be added to the objects list, the data in the present

20 objects is copied contiguously to the temporary space, followed by the data of the

additional allocations. Next, minus the data for the de-allocations to the present list, the

data is copied back, along with the data for the additional allocations, all re-mapped to

the new participating objects list. The de-allocations, deferred till this point, are now

carried out by the memory manager as usual, in accordance with 1013/DEL/2013

25 (PCT/IB2014/060291), and 2713/DEL/2012 (PCT/IB2013/056856).

84

WO 2016/199166 PCT/IN2016/050169

[0318] Analogous to object re-distribution is fat scalar scalarisation for local variables

allocated on the stack. Each encoding pointer for a fat scalar gets a distinct local

variable name or accessor. The encoding pointers for the various local variables in a

function are shuffled among themselves as in the re-distributed objects above by

5 shuffling their order of declaration. The stack frame representing storage for the local

variables is fattened like the heap object above. For accessing a scalar, its scalarised

individual encoding pointers are accessed using their accessors from their shuffled

locations on the stack frame. This scheme suffices so long as there is no garbage

collection in the obfuscation system. If garbage collection (GC) is sought, the garbage

10 collector has no way of figuring out which encoding pointers in the shuffled locations

make up a pointer scalar and hence cannot collect such pointers from the stack.

[0319] To allow scalarisation supportive of garbage collection, stack frames containing

pointer scalars are shifted to the heap. This allows the frame to become an ordinary heap

15 object, supportive of re-distribution of encoding pointers. The heap object, as in

1013/DEL/2013 (PCT/IB2014/060291), and 2713/DEL/2012 (PCT/IB2013/056856) has

access to object layout that identifies the locations of pointer scalars. Using this, the

garbage collector can calculate a pointer scalar from its encoding pointers and thus

collect the pointer. Garbage collection for heap objects alone is straightforward, given

20 the object layouts available for them in 1013/DEL/2013 (PCT/IB2014/060291), and

2713/DEL/2012 (PCT/IB2013/056856).

[0320] The scalarisation scheme for local variables becomes as follows: A call to a

function f with a pointer scalar containing stack frame is transformed to the sequence:

25 frame-ptr = createframe(fat arguments); f'(frameptr); reclaim(frameptr);

[0321] In this sequence, createframeO creates a heap object containing the

redistributed fat scalar arguments. The function f'() is a transformed version of fO

85

WO 2016/199166 PCT/IN2016/050169

wherein local variable accesses are replaced with field accesses over the frame pointer.

ReclaimO returns the frame pointer, for reuse later or deallocation. In this pseudocode

sequence, frame-ptr itself is an obfuscated fat scalar. It is scalarised as described above

for the non garbage collector case.

5

[0322] When a frame is created, it is doubly linked to presently live heap frames that

have already been created. The list of presently live heap frames is a stack in itself,

representing the order of creation of the frames. The doubly linked structure, is made up

of obfuscated pointer scalars (fat scalars). CreateframeO and reclaimO push and pop

10 the frame on this stack. With this, the call f'(frame-ptr), wherein the scalarised

frame-ptr is carried on the normal function stack does not require the frame-ptr to be

collected from the normal stack by the garbage collector. The garbage collector can

ignore this pointer. The pointer is available from the doubly-linked stack of frame

pointers constructed by create-frameo. Hence, frame-ptr can undergo scalarisation as in

15 the non-GC case and yet work with GC.

[0323] For efficiency, createframeO and reclaimO can minimize object allocation and

deallocation by saving a returned frame on an unused frames list and reusing from the

list first in creating a new frame. ReclaimO scrubs each returned frame of all pointers in

20 this endeavour so that the garbage collector does not end up chasing pointers from an

unused frame.

[0324] In the above, preferably, createframeO is implemented as a macro or inlined

code, to obfuscate its functioning.

25

[0325] A further optimisation in the above GC-supportive scalarisation scheme is to lay

out the heap frames on the normal stack itself. In other words, to inline a heap frame on

the stack and to somehow insert a layout also in the stack frame. This requires close

86

WO 2016/199166 PCT/IN2016/050169

integration with the specific compiler used for compiling the program, since the stack

implementation is tied to it.

[0326] The re-distribution or scalarisation scheme described so far can be further

5 enhanced to include false scalars interspersed in-between pointer encoded scalars. To do

this, a fat aggregate object is magnified in size, e.g. multiplied by a prime number, with

encoding pointers accessed by appropriate striding through the object. The storage left

unused in-between encoding pointers can be filled with false scalars, whose only

purpose is to obfuscate the data structure. The false scalars can be accessed as normal

10 scalars, with say statistical computation and assignments etc. carried out over them for

obfuscation reasons.

[0327] If the user decides not to obfuscate all scalars in a procedure or file, the

obfuscation mechanism can carry this out as follows. The unobfuscated scalar is

15 fattened, just like an obfuscated counterpart, but the enhanced storage carries the plain

scalar directly. It is accessed and used directly from say the lower bytes in the larger

storage. No encoding via pointers of its parts is carried out. Such an unobfuscated scalar

looks like the false scalar described above, in a data structure. However, it is not false

and actually serves a useful purpose.

20

[0328] In the reference counting mechanism discussed above (which is not used in the

one-time pad/pointer scheme), incrementing a reference count occurs when an encoding

pointer is reused to represent a scalar part. For this, the memory manager needs to be

able to locate the encoding pointer, which may be carried out as follows: Using object

25 metadata as in 1013/DEL/2013 (PCT/IB2014/060291), and 2713/DEL/2012

(PCT/IB2013/056856), where allocated objects are partitioned by size, a struct pointed

by an encoding pointer may be isolated from other program objects that have a different

size. For the objects of the same size as encoding pointer structs, generated by the

87

WO 2016/199166 PCT/IN2016/050169

application, a filter function or macro is to be provided as a part of the application, that

identifies an object as an application object or not. Using this filter, the partition of

objects the size of encoding pointer structs is traversed, doing a reverse mapping for

each non application object to identify its scalar part. Once a struct with encoding

5 pointer has been located with the sought value for scalar part, the encoding pointer is

reused in encoding that scalar part and the reference count incremented. Note that in this

method, no forward mapping table is used, which can aid an adversary, inadvertantly.

The search through structs may be sped up by organising them in the memory manager

according to the allocation regions they correspond to (e.g. a later allocated region has

10 its encoding pointer structs allocated later). Also, the use of smaller allocation regions

and fewer structs per region speeds up the search.

[0329] Note that when a larger number of bits are used to encode dereferenced pointers

pointing to a region, for example for striding by primes, a large number of pointers are

15 left unused, which can be used to record reference count information. For example,

when striding by a prime number k, the k-i pointers are left unused in each stride. All

the k pointers passed in one stride may be considered as encoding the same part

information, with the k distinct values defining k different reference counts. By this

mechanism, the reference counting mechanism can recover some of its representation

20 space, ceded to the part encoding mechanism.

[0330] The obfuscation mechanism is best implemented in an untyped program image,

where the lack of type information makes it harder for an adversary to understand the

data. So for example, a flattened C/C++ image, with lack of information on what

25 comprises pointer and non-pointer data aids obfuscation. The obfuscation mechanism

straightforwardly can randomise or strip the lexical symbols like variable names in a

program, using a source-to-source transformation, so that the binary code and associated

tables become harder to read or reverse engineer. A Java source can be translated to C++

88

WO 2016/199166 PCT/IN2016/050169

enroute to class flattening and C compilation to strengthen the obfuscation via

compilation to native code.

[0331] The invulnerability guarantee for pointers for GC (as in 1013/DEL/2013

5 (PCT/IB2014/060291), and 2713/DEL/2012 (PCT/IB2013/056856)) can be

straightforwardly kept by allowing the GC system to carry out the further encoding to

obfuscated fat pointers. The obfuscation and GC systems can be combined into an

integrated system for this purpose.

10 [0332] The reachability of fat scalars, including fat pointers needs to be traced through

the program, just like singleword pointers are propagated in prior art. This is to permit

the appropriate handling of fat scalars, including insertion of encode and decode

operations at appropriate locations. Cast operations, like the decode operation of

1013/DEL/2013 (PCT/IB2014/060291), from fat scalar to scalar or vice versa may

15 further be allowed. The propagation can either be done by user annotation and/or static

analysis, such as the static analysis 1013/DEL/2013 (PCT/IB2014/060291). The system

may provide the property that all objects reached by an operation such as read/write are

either fat objects or normal objects. This allows doing away with carrying run-time tags

with objects stating whether they are fat or thin, since fat objects are always treated by

20 fat operations and thin objects are always treated by thin operations (refer singleword

and doubleword pointers of 1013/DEL/2013 (PCT/IB2014/060291). Such a bifurcation

is also convenient for obfuscating object metadata also, in case of fat objects, since the

fat operations accessing them can process the metadata accordingly. Obfuscation of

object metadata brings the run-time program closer to the untyped program image ideal,

25 discussed above.

[0333] It is desirable for the obfuscation system to generate code in its source to source

transformation wherein fields are destablised additionally to being encoded. So for

89

WO 2016/199166 PCT/IN2016/050169

instance, a read-only field is periodically side effected back and forth to make it appear

non read-only, while the non-spurious uses all end up with the safe read-only value. The

control flow graph can be de-stabilised to compute extraneously, e.g. allocation region

statistics discussed earlier, to hide the valuable computation. The continuation for a

5 computation can be recorded in a "program counter" structure, for example, the index of

an iterative loop being such a structure, and diversions from the main computation

carried out extraneously while tracking the real continuation (index) carefully in hiding

the program flow. Computation of substeps comprising different steps can be re-ordered

to merge and diffuse the steps into each other, obfuscating control flow. Fields can be

10 duplicated, additionally to being encoded, with the duplicated fields being mirror

images only upon non-spurious use and not otherwise. Migration of field storage can be

supported, for example, as done in the inter-object re-distribution mechanism discussed

above, to make fields hard to discern. Garbage collection with object relocation aids this

endeavour, e.g. as in 1013/DEL/2013 (PCT/IB2014/060291), and 2713/DEL/2012

15 (PCT/IB2013/056856), that can be provided by the obfuscating memory manager.

[0334] The cryptography code is preferably generated in a source-to-source transformed

common set of files for both application and cryptography code so that the codes are

undistinguishable from each other. This is preferable over say linking as a dynamically

20 linked library (DLL) that is straightforward to identify.

[0335] Finally, it is to be re-emphasized that 1013/DEL/2013 (PCT/IB2014/060291),

and 2713/DEL/2012 (PCT/IB2013/056856)) entertain both singleword and doubleword

encoded pointers, both of which can be catered to by the obfuscation system presented

25 here. The user's indication of singleword or doubleword preference may be incorporated

in the compilation process for the system.

90

WO 2016/199166 PCT/IN2016/050169

Attack Scenarios, Bounded by Time and Partitioning

[0336] A distribution system for a multimedia and text combination asset is disclosed.

The asset comprises a software player that hides one or more keys or cryptography

implementation within itself and is bundled with a combination of video, audio, or text

5 data in encrypted form. The software player can decrypt and play the data or encrypt and

add data, without requring any customer-specific symmetric or assymetric key or

password to be input or made available during installing or running the player.

[0337] According to an embodiment, the software player thwarts simple data capture

10 mechanisms comprising one or more of screen bitmap capture, screen text clip capture,

screen text clipboard capture, or audio clip capture.

[0338] According to another embodiment, the hidden keys or cryptography

implementation of the software player comprises an expiry date or mechanism so that

15 the player does not work after the date or mechanism disallows it.

[0339] According to yet another embodiment, the software player enables a free or

priced update with a continuing player of a different hidden keys or cryptography

implementation, upon expiry of the player.

20

[0340] According to an embodiment, the update recurs with a well-announced expiry

date for planning convenience.

[0341] According to another embodiment, data bundled with the software player is

25 reduced to a small partition. The remaining one or more data partitions may be bundled

and distributed with one or more other software players, each comprising distinct hidden

keys or cryptography implementation.

91

WO 2016/199166 PCT/IN2016/050169

[0342] According to an embodiment, no plaintext fragment of encrypted data is exposed

by the distribution system to a user, other than possibly only sale-related input such as

buyer details or payment details.

5 [0343] A distribution method for a multimedia and text combination asset is disclosed.

The method comprises a step of encrypting or decrypting a combination of video, audio

or text data bundled with a software player, using the hidden keys or cryptography

implementation of the software player such that no customer-specific symmetric or

assymetric key or password is required to be input or made available during the

10 installing or running of the player.

[0344] An authenticator (downloaded software asset, or the code invoked for a

particular potent) is identified by the potent version it handles. This comprises a specific

cryptography implementation within the potent, including hidden keys and data.

15

[0345] The scheme presented herein is strong in that none of its cryptographic workings

display the plaintext version of encrypted data to a user at any stage. The authentication

dialogue and the copyright enforcement all deal with internally generated and encrypted

data by potents or authenticators. The plaintext is never made available. Secure selling

20 has an element of user input (e.g. buyer name, credit card information) that is plaintext

input, but such input is small and can easily be diluted with other data to be encrypted.

Some of this information, e.g. buyer name, may also be carried in the clear (un

encrypted or semi-encrypted) to hide the encryption process. Sometimes the sale

information is simply not there e.g. when giving away software freely in a sale or

25 promotion, or when the software is not sold by itself (e.g. the monitor software

discussed later, that's likely bundled with an operating system transaction).

92

WO 2016/199166 PCT/IN2016/050169

[0346] For an attacker to break secure selling, he is likely to make multiple purchase

attempts to get sale-related plaintext to work with. The attempts can be forced to be

staggered, if too many attempts are clustered, or denied altogether after a threshold. In a

more restrictive scenario, an alternative is to not let the potent collect sale data. The

5 selling can be done by the delegated sales means, wherein the delegation identifier does

not directly represent plaintext user data (it might compute and represent a hash of the

plaintext and/or machine context, thereby not exposing plaintext encryption to an

adversary).

10 [0347] As discussed above, the strong cryptography system presented herein can be

made stronger still. We discuss next, further safeguards and safety strategies for the

system, against attacks.

[0348] If a potent is compromised in an attack, then all its cryptography functions as

15 well as the corresponding authenticator's functions become unreliable as follows:

[0349] Authentication With cryptography compromised, a potent masquerador

can fool the cryptographic check of an authenticator. However, the non

cryptographic hash checks of the authenticator continue to remain in force. The

20 demonstration of functionality and informal knowledge of antecedents add depth

to the level of authentication. Hence authentication, generally albeit informally

continues to hold even if cryptography fails. Detailed hash tests are important in

such authentication, so authentication by website also (like a downloaded

authenticator) has to compute enough hash data in its checking.

25

[0350] Sales Secure, sales, directly from a potent may be carried out, but the

information can be intercepted and stolen on the way since the data can be

decrypted. A masquerador can be distributed that mimics the potent only to capture

93

WO 2016/199166 PCT/IN2016/050169

sales information from duped customers. Both these scenarios face logistical

problems, since an interception can only occur at the location of a buyer, which is

unknown at any time. As regards a masquerador, it is likely to continue failing

authentication as discussed above.

5

[0351] Copyright The context of an environment can be decrypted to recognise

the information. Thereafter, the context can be re-created on any machine to freely

run the software on that machine without any sales. In other words, a potent can

become freeware after it has been compromised.

10

[0352] If a potent version is distributed with an expiry date, e.g. an expiry flag that the

potent must occasionally read from the content provider's website, then the potent can

stop running soon after the expiry occurs. Such a choice bounds the time within which a

successful cryptographic attack needs to be carried out, making it harder to do. Beating

15 authentication, with its additional checks is a strictly more harder problem to carry out

within the time window. So organized data theft, using say a masquerador, in the context

of a potent with an expiry date is an unlikely problem, for reasonably sized time

windows. Further, a time window also limits the loss through copyright subversion as

all copies expire. Upgraded potents with new version numbers replace only the

20 potentates as potentates, free of charge, while others have to make a purchase of an

upgraded potent to reach potentate status.

[0353] For multimedia data bundled with potentates, broken cryptography is a serious

problem, since the data once decrypted can be freely circulated independently of

25 potentates. The time window helps, as it reduces the chances of breaking cryptography.

Further benefit can be obtained by partitioning multimedia data among a set of potents,

each with a unique cryptography version, distinct from others. In order to play the data,

all the potents have to be downloaded and played in the sequence of played data, viz. a

94

WO 2016/199166 PCT/IN2016/050169

potent is played when it is needed to decode the played data. The partitioning of data

among potents can be done to make each partition un-interesting to an adversary. For

example, no partition should contain a complete album by an artist, as that might be

worthwhile to a pirate to mount an attack. No partition should contain the best hits of an

5 artist, since again, that might be worth attacking to compile the greatest hits by the artist.

[0354] To contain the number of potent versions to circulate, they can be re-used to play

other multimedia data. So for instance, a set of hundred potents can be standardized

upon. Supposing that the total number of albums in the market number fifty, the fifty

10 albums of say twenty songs apiece can be distributed at will among the potents, with

each potent getting ten songs on average. The partition of each potent can be selected to

not be of commercial interest to anyone (random songs, not generating a theme or

album of interest to a pirate). The hundred potents can be sold free at the outset to any

buyer and copied/downloaded once to reside in his hardware player/computer. The data

15 then streamed or downloaded in, partition by partition, can be paid for and tracked

separately on a potent by-potent basis. Each potent would be organised with expiry

dates, so that it would upgrade automatically, free of charge upon expiry, deleting its

expired data partition and acquiring (or generating) a new substitute in its place.

20 [0355] Figure 8 summarizes the structure of multimedia/text potents. An original potent

(shown as a diskette with legs icon) at the bottom of the figure and all bundled data is

replaced by a set of N potents at the top, each potent being responsible for a partition of

the bundled data. Installation now comprises installation of the N potents and data

partitions on a machine. Each potent and data partition evolves according to its shown

25 timeline, with well known update schedules, allowing data to be kept encrypted safely

for a long duration. Piracy is minimized, made harder, and un-interesting on a potent-by

potent basis.

95

WO 2016/199166 PCT/IN2016/050169

Authentic client software including browser and updates

[0356] A software authentication and installation monitoring system is disclosed. The

system comprises a means for hiding one or more keys or cryptography implementation.

The system further comprises a means for tracking authentic software or certified

5 software or user-built software installed on a machine by storing the information in

encrypted form on the machine using the hidden keys or cryptography implementation.

The system further comprises a means for mediating in a software installation, ensuring

that authentication steps are carried out that ensure the authenticity of the installed

software. The system further comprises a means for disallowing a user setting the

10 permission of a file to execute, unless the file is known to be built or certified by the

user or known to be authentically installed as per the tracked information. The system

further comprises a means for disallowing an executable file to run, unless the file is

built or certified by the user or known to be authentically installed as per the tracked

information. The system further comprises a means for stopping a running program, if

15 the running program is found to not be user built or certified, or authentically installed

as per the tracked information. The system further comprises a means for scanning the

machine periodically, resetting the the execute permissions of any unknown files.

[0357] According to an embodiment, the system updates an expired or expiring soft

20 ware with a successor software having different hidden keys or cryptography

implementation.

[0358] According to another embodiment, the update recurs with a well-announced

expiry date for planning convenience.

25

[0359] According to an embodiment, the system instals and periodically updates an

authenticated browser.

96

WO 2016/199166 PCT/IN2016/050169

[0360] According to an embodiment, no plaintext fragment of encrypted data is exposed

by the system to a user.

[00361] According to an embodiment, the distribution system instals an authenticated

5 digital asset on a machine where installed software consists of authenticated assets only.

[00362] According to another embodiment, the asset installation is mediated by a

monitoring system on the machine.

10 [00363] According to an embodiment, the asset installation instals and periodically

updates an authenticated browser.

[00364] According to an embodiment, the monitoring system disallows unmediated

asset installation by resetting execution permission or disallowing a file with execute

15 permission to run, or stopping a running software.

[00365] According to an embodiment, secure selling is carried out even on a machine

with un-authenticated software.

20 [0366] A software authentication and installation monitoring method is disclosed. The

method comprises the steps of (a) hiding one or more keys or cryptography

implementation; (b) tracking authentic software or certified software or user-built

software installed on a machine by storing the information in encrypted form on the

machine using the hidden keys or cryptography implementation; (c) mediating in a

25 software installation, ensuring that authentication steps are carried out that ensure the

authenticity of the installed software; (d) disallowing a user setting the permission of a

file to execute, unless the file is known to be built or certified by the user or known to

be authentically installed as per the tracked information; (e) disallowing an executable

97

WO 2016/199166 PCT/IN2016/050169

file to run, unless the file is built or certified by the user or known to be authentically

installed as per the tracked information; (f) stopping a running program, if the running

program is found to not be user built or certified, or authentically installed as per the

tracked information; and (g) scanning the machine periodically, resetting the the execute

5 permissions of any unknown files.

[0367] What is trustworthy? An https website represents a company, so that may be

considered as trustworthy as the company and can be held as authentic as such. Now

how about the access to the website? In accessing the https website, is the browser

10 authentic? Is any software on the client computer authentic? Unless a customer has a

guarantee, an ambush can be launched from any unproven client resource. After all, how

does a customer know whether the browser he uses from a cyber cafe or hotel lounge is

giving it a secure transaction using say, a credit card?

15 [0368] On any client machine, before accepting a networked delivery of authentic

software, the receiving software on the client side, that interacts with the customer, has

to be proven authentic. This, frankly is a chicken and egg problem in the software

industry (secure software is not delivered because it cannot be received securely, secure

software is not received securely because it has not been delivered), that only accepts

20 one physical solution - the machine has to come with a warranty as such from the

original seller of the machine. Further, the warranty has to ensure that the updates the

machine accepts in its life are not going to break the warranty. In this section, we show

how our method allows the provision of such a warranty by software sellers.

25 [0369] First, the original machine can be loaded with a physically authenticated original

software by the machine manufacturer according to our method, straightforwardly. All

software necessary for the safe functioning of the machine can be preloaded thus,

making the machine secure at the original sale time by the manufacturer. Next, an

98

WO 2016/199166 PCT/IN2016/050169

authenticated update to software, to the authentic client machine thus, in the life of the

machine later can be carried out as follows:

[0370] Step 1 In this step, the current paint file, inclusive of the context of the

5 machine is transmitted in the encrypted form to the content provider. The content

provider after decrypting the context, re-encrypts it according to the cryptography

implementation of the version of the software that will replace the present

software. The present software inclusive of the paint file is deleted from the client

machine.

10

[0371] Step 2 The new software copy is sent to the client machine using a secure

protocol such as https, preferably, simplifying the authentication step. The sale

step is carried out free of charge or for the seller determined fee, by a recognition

of the client context as follows. The under-sale new potent computes and sends the

15 machine context to the content provider (e.g. as a part of the delegation id or direct

sale data) and the content provider after recognising it applies the relevant free or

cost charge to the buyer. After the sale, the installation proceeds as usual and the

new software completes its replacement of the earlier software.

20 [0372] In this scenario, the content provider receives many update requests from clients.

Not all the clients need be authentic. The content provider can safely ignore this fact and

treat the clients uniformly, as a subverted machine can at most only corrupt the sale

price of the new software and not affect the replacing software (version) in any manner.

If the next software version survives subversion, then the sale corruption does not last

25 beyond one update and the newer softwares can continue working safely thereafter.

[0373] In an authentic client, all softwares pertinent to the safe functioning of the client

are allowed only authenticated updates as described above. Monitoring software to

99

WO 2016/199166 PCT/IN2016/050169

ensure this can be provided as a part of the operating system or system software for the

machine. The monitoring software straightforwardly mediates between the user and the

content provider, to ensure all needed authentication steps are carried out correctly in

any update supervised by the monitor. The monitoring software itself may undergo

5 regular updates to keep its cryptography implementation out of reach of subversion.

Regardless, since authentication itself is unlikely to be subverted, as discussed earlier,

the periodicity of such updates may be low.

[0374] The monitoring software can allow fresh installations of new software by a user.

10 This would allow any version of an authenticated software to be installed as new

software on the machine. As before, all authentication steps would be confirmed by the

monitoring software for a content provider with an https website for downloading the

software or authenticator. An update attempt, disguised as an installation of software in

addition to an already installed software for a content provider may be disallowed by the

15 monitoring software by recognising its https page identity.

[0375] Software installation unsupervised by the monitor can be prevented by the

monitor periodically scanning the file system for executable files and resetting their

execute permissions to a non execute status, if the files are not known to be installed

20 authentically. As discussed later, the monitor would keep with itself, in encrypted form,

the knowledge of all authentic installations on the machine. If a user tries to set a file

back to execute permission, the monitor would enter into a dialog with the user

demanding that the user certify the safety of the file. By certifying an unknown file thus,

the user in effect takes responsibility for the file, just as he does for executable files built

25 by himself. Furthermore, the monitor would intercept any executable run attempt and

check its authentic installations status (or user certification/build) prior to letting the

executable run. For an executable on a removable medium where the permission cannot

be reset, e.g. a compact disc, the monitor may simply disallow the executable to run,

100

WO 2016/199166 PCT/IN2016/050169

forcing a supervised installation of the executable prior to running. For boot-time

running of an executable off removable media (e.g. using BIOS or Basic Input/Output

System), when the monitor may not be running yet, the monitor can do a checking of

installed files after booting to choose resetting permissions of any newly installed files.

5 Similarly, the any executables loaded and left runnning after booting can be chosen and

shut down by the monitor to contain the running processes to only authenticated ones.

The monitor may do this prior to general network access by the client machine so that

only the authenticated executables are exposed to the network by the client machine.

10 [0376] For software development environments, the monitor may allow software builds

the exception of execute permissions straightforwardly (e.g. by tracking the location at

which the executable is built and optionally copied under supervision), disallowing only

unsupervised copied software the capability of execute permissions. Tracking

installations and user built/certified executable locations is carried out by storing the

15 information locally on the machine, in encrypted form so that the information cannot be

subverted. Cryptography hiding for this purpose may be carried out by our method, with

occasional periodic updates ensuring that the system survives all subversion attempts.

Note that even if the cryptography of a monitor is subverted, an executable taking

advantage of the information cannot be run on the machine without proper installation,

20 which would be denied to an adversary. Thus the monitor is a safe mechanism for

implementing authentic clients.

[0377] Software installation by piece and part, e.g. dyanmically-linked libraries, may be

straightforwardly folded in by updating piece by piece while running the

25 potent/potentate as a whole to carry out the steps.

[0378] Browser software in particular may be warranteed authentic by the mechanism

above. Since https protcol is assumed by the mechanism above, the step of deleting

101

WO 2016/199166 PCT/IN2016/050169

existing browser software may be carried out after the newer version has been fully

installed and has taken over the charge of all https communication.

[0379] Figure 9 summarizes the structure of an authentic client monitor, whereby

5 installation of only authentic software or user built/certified software is carried out on a

machine. The monitor is built with our hidden keys or cryptography mechanism so that

it can encrypt or decrypt data privately. This is used to track the present set of authentic

software installations on the machine. Included in this set are also user built or certified

executables so that the user is responsible for ensuring the safety of this part. The

10 monitor intercepts file execution permission changes, so that a file is not allowed to

have execute permissions unless it falls in the tracked set of authentic softwares or is

user built/certified. The interception may involve a dialog with the user for this purpose.

The monitor can stop a running program, if it finds that the program does not fall in the

allowed tracked set. The monitor periodically scans the machine for files with execute

15 permissions, resetting the same, if the file is not in the allowed tracked set. Such

scanning can be carried out as a background activity occasionally, so that the load on the

machine is reduced and the various interceptions carried out by the monitor are

lightweight (the interception work is reduced by this scanning). The monitor mediates in

program installation and update so that only

20 authentic program installations or updates occur. Whenever a program is run, the

monitor intercepts the step, so that only a tracked, allowed program is allowed to run.

The monitor may initiate a dialog with the user prior to acting on its decisions, in case

its tracked data is likely to be informed by the dialog (e.g. about user build/certification

status).

25

[0380] A public key cryptography mechanism may be argued as a more capable method,

since the public key does not need to be hidden. It is to be noted however, that a client

with a public key can decrypt only public information broadcast by a content provider,

102

WO 2016/199166 PCT/IN2016/050169

since the communication can be intercepted and decrypted using the public key. The

public key allows a client to encrypt data that can only be decrypted by the content

provider, without interception and decryption by an adversary. No further capability is

available to a public key carrying client and larger capability, such as both encrypting

5 and decrypting local data or offline operation requires the client to carry secret

data/keys, for which our method provides the most effective solution.

[0381] Besides offering the capability to deliver authentic software to authentic clients,

our method is capable of authentic software delivery and secure sales to non

10 authenticated clients also. For example, physical delivery of authentic software to such a

client may be carried out with secure sale either directly or by delegation. Secure sale

here is underpinned by the fact that encryption/decryption is carried out at the

application level (hidden of course) so reliance of security on lower layers of

communication is not needed. This is a novel contribution of our work. Further, once

15 such software has been spread to authentic clients and others, copies of the same may be

propagated further to other clients accompanied by secure sales. The larger the spread of

such authentic software, the larger is the set of sources from which software copies can

be distributed further. Thus authentic software delivery is maximised by our work, a

further addition to the contribution above made by our work.

20

[0382] Since authentication is unlikely to be undermined by an adversary in our work,

the calendar of software upgrades can be advertised. So the profusion of offline

authenticators in the network can be planned and used more capably by the users,

monitors and content provider, all parties to the software distribution. Again, this is a

25 unique contribution of our work.

[0383] Our work, and its physical delivery opportunity, maximises the spread of

authentic software, whether authentic clients are present or not. When secure network is

103

WO 2016/199166 PCT/IN2016/050169

warranteed, then network delivery can be maximised. When such warranties are not

present, then physical delivery from a large spread of sources can be maximised.

Regardless, the authentic software spread is maximised.

5 [0384] Expanding the pie: Each time a buyer takes a risk with an unsure asset

(antecedents partially known), and makes a successful purchase using a secure payment

channel, the number of known authentic seats for authentic software increase - it is

known that the purchased software talks to the provider correctly. Even if the

cryptography of the software is undermined, the adversary has no gain in such

10 purchases. Such a software purchase increases the informal authentication confidence,

but not formal authentication count. Such sales can proceed in concurrence with the

formally authenticated sales. The analog of such risk taking just does not exist in other

authentication mechanisms, that are secure website/receiving client software driven.

15 Remarks

[0385] Distributed potents and potentates can be shut down variously as follows. (a)

Stop sales: E.g. shut down keys and rest. (b) Make it free thereafter: Make public a

freeing coupon. Make it year by year, so that renewals are needed to continue endlessly.

(c) Put expiry dates or lifetimes: potents potentates shut thereafter. Renewals can be by

20 updates at each expiry.

[0386] Pointer based encoding poses formidable challenges to an adversary. First,

pointer analysis is known to be intractable, so the system is not amenable to static

analysis. Dynamic interpretation of the binary code using tools of capability similar to

25 valgrind may be the only resort and these are hampered by the steganography and

abstraction/representation obfuscation carried out herein.

104

WO 2016/199166 PCT/IN2016/050169

[0387] The steps of the illustrated method described above herein may be implemented

or performed with a general-purpose processor, a digital signal processor (DSP), an

application specific integrated circuit (ASIC), a field programmable gate array (FPGA)

or other programmable logic device, discrete gate or transistor logic, discrete hardware

5 components, or any combination thereof designed to perform the functions described

herein. A general-purpose processor may be a microprocessor, but in the alternative, the

processor may be any conventional processor, controller, micro controller, or state

machine. A processor may also be implemented as a combination of computing devices,

e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one

10 or more microprocessors in conjunction with a DSP core, or any other such

configuration.

[0388] Figure 8 illustrates a computer system 1000 in which the asset distribution

system may be implemented in accordance with an embodiment of the invention. The

15 computer system 1000 may include a processor 1002, e.g., a central processing unit

(CPU), a graphics processing unit (GPU), or both. The processor 1002 may be a

component in a variety of systems. For example, the processor 1002 may be part of a

standard personal computer or a workstation. The processor 1002 may be one or more

general processors, digital signal processors, application specific integrated circuits,

20 field programmable gate arrays, servers, networks, digital circuits, analog circuits,

combinations thereof, or other now known or later developed devices for analyzing and

processing data The processor 1002 may implement a software program, such as code

generated manually (i.e., programmed).

25 [0389] The term "module" may be defined to include a plurality of executable modules.

As described herein, the modules are defined to include software, hardware or some

combination thereof executable by a processor, such as processor 1002. Software

modules may include instructions stored in memory, such as memory 1004, or another

105

WO 2016/199166 PCT/IN2016/050169

memory device, that are executable by the processor 1002 or other processor. Hardware

modules may include various devices, components, circuits, gates, circuit boards, and

the like that are executable, directed, or otherwise controlled for performance by the

processor 1002.

5

[0390] The computer system 1000 may include a memory 1004, such as a memory 1004

that can communicate via a bus 1008. The memory 1004 may be a main memory, a

static memory, or a dynamic memory. The memory 1004 may include, but is not limited

to computer readable storage media such as various types of volatile and non-volatile

10 storage media, including but not limited to random access memory, read-only memory,

programmable read-only memory, electrically programmable read-only memory,

electrically erasable read-only memory, flash memory, magnetic tape or disk, optical

media and the like. In one example, the memory 1004 includes a cache or random

access memory for the processor 1002. In alternative examples, the memory 1004 is

15 separate from the processor 1002, such as a cache memory of a processor, the system

memory, or other memory. The memory 1004 may be an external storage device or

database for storing data. Examples include a hard drive, compact disc ("CD"), digital

video disc ("DVD"), memory card, memory stick, floppy disc, universal serial bus

("USB") memory device, or any other device operative to store data. The memory 1004

20 is operable to store instructions executable by the processor 1002. The functions, acts or

tasks illustrated in the figures or described may be performed by the programmed

processor 1002 executing the instructions stored in the memory 1004. The functions,

acts or tasks are independent of the particular type of instructions set, storage media,

processor or processing strategy and may be performed by software, hardware,

25 integrated circuits, firm-ware, micro-code and the like, operating alone or in

combination. Likewise, processing strategies may include multiprocessing,

multitasking, parallel processing and the like.

106

WO 2016/199166 PCT/IN2016/050169

[0391] As shown, the computer system 1000 may or may not further include a display

unit 1010, such as a liquid crystal display (LCD), an organic light emitting diode

(OLED), a flat panel display, a solid state display, a cathode ray tube (CRT), a projector,

a printer or other now known or later developed display device for outputting

5 determined information. The display 1010 may act as an interface for the user to see the

functioning of the processor 1002, or specifically as an interface with the software

stored in the memory 1004 or in the drive unit 1016.

[0392] Additionally, the computer system 1000 may include an input device 1012

10 configured to allow a user to interact with any of the components of system 1000. The

input device 1012 may be a number pad, a keyboard, or a cursor control device, such as

a mouse, or a joystick, touch screen display, remote control or any other device

operative to interact with the computer system 1000.

15 [0393] The computer system 1000 may also include a disk or optical drive unit 1016.

The disk drive unit 1016 may include a computer-readable medium 1022 in which one

or more sets of instructions 1024, e.g. software, can be embedded. Further, the

instructions 1024 may embody one or more of the methods or logic as described. In a

particular example, the instructions 1024 may reside completely, or at least partially,

20 within the memory 1004 or within the processor 1002 during execution by the computer

system 1000. The memory 1004 and the processor 1002 also may include computer

readable media as discussed above.

[0394] The present invention contemplates a computer-readable medium that includes

25 instructions 1024 or receives and executes instructions 1024 responsive to a propagated

signal so that a device connected to a network 1026 can communicate voice, video,

audio, images or any other data over the network 1026. Further, the instructions 1024

may be transmitted or received over the network 1026 via a communication port or

107

WO 2016/199166 PCT/IN2016/050169

interface 1020 or using a bus 1008. The communication port or interface 1020 may be a

part of the processor 1002 or may be a separate component. The communication port

1020 may be created in software or may be a physical connection in hardware. The

communication port 1020 may be configured to connect with a network 1026, external

5 media, the display 1010, or any other components in system 1000, or combinations

thereof. The connection with the network 1026 may be a physical connection, such as a

wired Ethernet connection or may be established wirelessly. Likewise, the additional

connections with other components of the system 1000 may be physical connections or

may be established wirelessly. The network 1026 may alternatively be directly

10 connected to the bus 1008.

[0395] The network 1026 may include wired networks, wireless networks, Ethernet

AVB networks, or combinations thereof. The wireless network may be a cellular

telephone network, an 802.11, 802.16, 802.20, 802.1 Q or WiMax network. Further, the

15 network 1026 may be a public network, such as the Internet, a private network, such as

an intranet, or combinations thereof, and may utilize a variety of networking protocols

now available or later developed including, but not limited to TCP/IP based networking

protocols.

20 [0396] While the computer-readable medium is shown to be a single medium, the term

"computer-readable medium" may include a single medium or multiple media, such as a

centralized or distributed database, and associated caches and servers that store one or

more sets of instructions. The term "computer-readable medium" may also include any

medium that is capable of storing, encoding or carrying a set of instructions for

25 execution by a processor or that cause a computer system to perform any one or more of

the methods or operations disclosed. The "computer-readable medium" may be non

transitory, and may be tangible.

108

WO 2016/199166 PCT/IN2016/050169

[0397] In an example, the computer-readable medium can include a solid-state memory

such as a memory card or other package that houses one or more nonvolatile read-only

memories. Further, the computer-readable medium can be a random access memory or

other volatile re-writable memory. Additionally, the computer-readable medium can

5 include a magneto-optical or optical medium, such as a disk or tapes or other storage

device to capture carrier wave signals such as a signal communicated over a

transmission medium. A digital file attachment to an e-mail or other self-contained

information archive or set of archives may be considered a distribution medium that is a

tangible storage medium. Accordingly, the disclosure is considered to include any one or

10 more of a computer-readable medium or a distribution medium and other equivalents

and successor media, in which data or instructions may be stored.

[0398] In an alternative example, dedicated hardware implementations, such as

application specific integrated circuits, programmable logic arrays and other hardware

15 devices, can be constructed to implement various parts of the system 1000.

[0399] Applications that may include the systems can broadly include a variety of

electronic and computer systems. One or more examples described may implement

functions using two or more specific interconnected hardware modules or devices with

20 related control and data signals that can be communicated between and through the

modules, or as portions of an application-specific integrated circuit. Accordingly, the

present system encompasses software, firmware, and hardware implementations.

[0400] The system described may be implemented by software programs executable by

25 a computer system. Further, in a non-limited example, implementations can include

distributed processing, component/object distributed processing, and parallel

processing. Alternatively, virtual computer system processing can be constructed to

implement various parts of the system.

109

WO 2016/199166 PCT/IN2016/050169

[0401] The system is not limited to operation with any particular standards and

protocols. For example, standards for Internet and other packet switched network

transmission (e.g., TCP/IP, UDP/IP, HTML, HTTP) may be used. Such standards are

5 periodically superseded by faster or more efficient equivalents having essentially the

same functions. Accordingly, replacement standards and protocols having the same or

similar functions as those disclosed are considered equivalents thereof.

[0402] Benefits, other advantages, and solutions to problems have been described above

10 with regard to specific embodiments. However, the benefits, advantages, solutions to

problems, and any component(s) that may cause any benefit, advantage, or solution to

occur or become more pronounced are not to be construed as a critical, required, or

essential feature or component of any or all the claims.

15 [0403] While specific language has been used to describe the disclosure, any limitations

arising on account of the same are not intended. As would be apparent to a person in the

art, various working modifications may be made to the process in order to implement

the inventive concept as taught herein.

20

25

110

WO 2016/199166 PCT/IN2016/050169

We claim:

1. A distribution system operable in a computing environment for binary

encoded digital

assets, comprising:

5 (a) a hiding means for hiding one or more keys or cryptography implementation

in a digital asset;

(b) a copying means for asset distribution for receiving a functionally-restricted

asset copy for use or further distribution, directly or as a further copy, with or

without access to a computer network; and

10 (c) a self-policing means for enforcing asset safety, comprising:

i. an authentication means for an un-authenticated, digital asset for

constructing encrypted credentials data using one or more keys or cryptography

implementation hidden in the asset by the hiding means, for authentication by an

authenticated digital asset or website;

15 ii. a secure selling means for an authenticated digital asset for either

carrying out a sale transaction directly, securely, or delegating the sale to a

separate secure means, identifying the delegation by an encrypted identifier

constructed using one or more keys or cryptography implementation hidden in

the asset by the hiding means and decrypting the response from the secure means

20 using the one or more keys or cryptography implementation hidden in the asset

to determine the success of the sale; and

iii. a copyright and license enforcement means for an asset for carrying

out encryption and decryption of computing context and other data using one or

more keys or cryptography implementation hidden in the asset by the hiding

25 means, with functionally-unrestricted asset use permitted only after the asset has

been sold and licensed to run in a recognisable computing context.

2. The digital assets of claim 1, wherein an asset comprises software.

111

WO 2016/199166 PCT/IN2016/050169

3. The asset of claim 2, wherein the asset further comprises a combination of

encrypted video, audio, or text data bundled with the software, and the

software is a software player to decrypt and play the data or encrypt and add

5 data.

4. The bundled software of claim 3, wherein the software player thwarts simple

data capture mechanisms comprising one or more of screen bitmap capture,

10 screen text clip capture, screen text clipboard capture, or audio clip capture.

5. The software of claim 2, wherein the hidden keys or cryptography

implementation of the software comprises an expiry date or mechanism so

that the software does not work after the date or mechanism disallows it.

15

6. The software of claim 5, enabling a free or priced update with a continuing

digital asset of different hidden keys or cryptography implementation, upon

expiry of the software.

20 7. The update of claim 6, recurring with a well-announced expiry date for

planning convenience.

8. The bundled data of claim 3, wherein the data decrypted or encrypted by the

hidden keys or cryptography implementation of the software player is

25 reduced to a small partition so that the remaining one or more partitions may

be bundled with one or more other software players, each distributed with its

own distinct hidden keys or cryptography implementation.

112

WO 2016/199166 PCT/IN2016/050169

9. The distribution system of claim 1, installing an authenticated digital asset

on a machine with installed software consisting of authenticated assets only.

10. The asset installation of claim 9, mediated by a monitoring system on the

5 machine.

11. The asset installation of claim 10, updating an expired or expiring asset with

a successor asset of different hidden keys or cryptography implementation.

10 12. The update of claim 11, recurring with a well-announced expiry date for

planning convenience.

13. The asset installation of claim 12, installing and periodically updating an

authenticated browser.

15

14. The monitoring system of claim 10, disallowing unmediated asset

installation by resetting execution permission or disallowing a file with

execute permission to run, or stopping a running software.

20 15. The secure selling means of claim 1, for carrying out a sale securely, even on

a machine with un-authenticated software.

16. The distribution system of claim 1, such that no plaintext fragment of

encrypted data is exposed to a user, other than possibly only sale-related

25 input such as buyer details or payment details.

113

WO 2016/199166 PCT/IN2016/050169

17. The copyright and license enforcement means of claim 1, wherein the

computing context and other data are stored with the digital asset after sale

and installation.

5 18. The authentication means of claim 1, wherein the credentials data

constructed by a digital asset are passed to a browser to authenticate.

19. The hiding means according to claim 1, wherein a key is stored in a digital

asset by distribution into a subset of a large number of candidate data fields

10 in the asset, the reconstruction of the key from the fields not being apparent

from a reverse engineered control flow of the asset, forcing a combinatorially

large number of key reconstructions to be considered in a key search making

key discovery infeasible.

15 20. A cryptography hiding system operable in a computing environment for

hiding one or more keys or cryptography implementation in a binary

encoded digital asset using holistic, efficient steganography, comprising:

(a) an interleaving means for sequentially or concurrently interleaving the

computation of non-cryptography, useful code with cryptography code;

20 (b) an obfuscating memory management means for creating an encoded pointer

representation of any scalar, comprising one or more encoding pointers pointing

to one or more objects created and managed by the memory management means

for maintaining the scalar in an obfuscated state throughout the lifetime of the

scalar;

25 (c) a class obfuscation means for translating a class to one or more data

structures or procedures; and

114

WO 2016/199166 PCT/IN2016/050169

(d) a procedure obfuscation means for de-stacking one or more parameters of a

procedure or translating a procedure call to jumps to and from an inlined

procedure body.

5 21. A cryptography hiding system operable in a computing environment for

hiding one or more keys or cryptography implementation in a binary

encoded digital asset using holistic, efficient steganography, comprising an

interleaving loop or recursive procedure instantiating one or more re-entrant

calls to one or more procedures or macros in cryptography code, such that

10 one or more re-entrant calls to one or more procedures or macros in useful,

non-cryptography code are interspersed in-between any two cryptography

code calls, and that a cryptography call typically comprises a smaller stateful

computation than a larger stateful computation comprised by a non

cryptography call.

15

22. The interleaving loop or recursive procedure of claim 21, parallelised to

execute a cryptography call largely in parallel with non-cryptography

computation.

20 23. An obfuscating memory management system operable in a computing

environment for creating an encoded pointer representation of any scalar,

comprising one or more encoding pointers pointing to one or more objects

created and managed by the memory management system for maintaining the

scalar in an obfuscated state throughout the lifetime of the scalar.

25

24. The objects of claim 23, laid out randomly over the heap memory.

115

WO 2016/199166 PCT/IN2016/050169

25. An encoding pointer of claim 23, such that the pointer is used only once in

encoding a scalar part.

26. An object of claim 23, comprising one or more fields containing one or more

5 pointers to one or more allocated objects, such that the value denoted by an

encoding pointer can be obtained by dynamic computation comprising the

use of a combination of the object, one or more of the pointers, one or more

of other pointers, and the allocate objects.

10 27. The one or more pointers to allocated objects contained in fields of the

object in claim 26, further denoting a value of a reference count for an

encoding pointer such that the value can be obtained by dynamic

computation comprising the use of a combination of the object, one or more

of the pointers, one or more of other pointers, and the allocated objects.

15

28. The memory management system of claim 27, incrementing the reference

count upon dynamically finding a scalar part's encoding pointer using a filter

function.

20 29. The memory management system of claim 27, reclaiming the object upon

reference count elimination.

30. The memory management system of claim 26, reclaiming or migrating one

or more of the object or allocated objects using garbage collection.

25

31. The memory management system of claim 26, never storing a scalar or scalar

part directly in memory.

116

WO 2016/199166 PCT/IN2016/050169

32. The memory management system of claim 23, scalarising the scalar into

independent encoding pointers.

33. The memory management system of claim 23, distributing an aggregate

5 object's scalars' encoding pointers all over the object.

34. The memory management system of claim 23, distributing a set of aggregate

objects' scalars' encoding pointers all over the objects.

10 35. The memory management system of claim 34, further re-distributing the

encoding pointers in the set of aggregate objects, upon increase or decrease

in objects due to allocation or de-allocation.

36. The memory management system of claim 35, deferring an object de

15 allocation till a further re-distribution for vacating the de-allocated object

prior to the de-allocation.

37. The memory management system of claim 23, initialising the scalar using

dynamic computation comprising the use of a set of literals disjoint from the

20 literal initializing the scalar in an un-obfuscated program.

38. An object of claim 23, comprising one or more fields denoting a value for an

encoding pointer or a reference count such that the value or count can be

obtained by dynamic computation comprising the use of the object.

25

39. An encoding pointer representation of the scalar according to claim 23,

changed when one or more objects pointed to by one or more encoding

117

WO 2016/199166 PCT/IN2016/050169

pointers are migrated by garbage collection, without changing the scalar's

value denotation itself.

40. An obfuscating memory management system operable in a computing

5 environment for allocating or de-allocating an object with meta-data

comprising object size or layout such that the contents of the object may be

obfuscated by distribution or redistribution, part by part, anywhere over the

object or one or more other objects.

10 41. The memory management system of claim 40, deferring the object's

deallocation till occupants of the object in lieu of parts distributed or re

distributed to other objects have been vacated.

42. The object of claim 40, allocated with larger storage than its meta-data size,

15 so that false scalars or duplicated parts may be used to fill the extra space for

further obfuscation.

43. The memory management system of claim 40, comprising a garbage

collector.

20

44. The garbage collector of claim 42, using the layout meta-data to identify or

de-obfuscate pointer scalars in the object.

45. The memory management system of claim 40, scalarizing the object's parts

25 in substitution for object allocation on the stack such that object's encoding

pointers are scalarised and independently stored.

118

WO 2016/199166 PCT/IN2016/050169

46. The memory management system of claim 45, enabling part-by-part

scalarisation of all stack-allocated variables of a procedure, such that the

variables are shifted to heap allocation only if the variables comprise a

pointer scalar.

5

47. The memory management system of claim 40, such that the object meta-data

itself is obfuscated.

48. A procedure obfuscation system operable in a computing environment for

10 de-stacking one or more procedure parameters, comprising:

(a) a static analyser means capable of guidance by one or more user annotations;

and

(b) a source-to-source transformer means capable of replacing a reference to a

procedure parameter with a non-stack reference.

15

49. The user annotations of claim 48, comprising sharpening a symbolic value of

a variable, location or expression to a subset of a symbolic value generated

by a static analyser.

20 50. The non-stack reference of claim 48, comprising a global variable.

51. The static analyser means of claim 48, comprising a means for determining

that a procedure call has no nested calls to the procedure.

25 52. The system of claim 48, wherein the static analyser means further comprises

a means for determining that the number of nested procedure calls to a

procedure contained within a call to the same procedure is less than a

119

WO 2016/199166 PCT/IN2016/050169

statically-known constant, and the non-stack reference further comprises a

global array variable indexed at a nesting depth of a procedure call.

53. The system of claim 48, wherein the static analyser means further comprises

5 a means for determining that barring procedure return values, all

dependencies within a procedure are intra-procedural, and the source-to

source transformer means comprises a means for replacing a procedure with

a parameter memoising procedure.

10 54. The system of claim 53, wherein the static analyser means further comprises

a means for computing a schedule of calls for a recursive computation

involving a procedure and the source-to-source transformer means comprises

invoking the procedure according to the schedule in a loop or recursion.

15 55. A computing context storing system operable in a computing environment

for storing a computing context, wherein a computing context comprises a

narrow time window within which the computing context is stored in the

computing environment.

20 56. The system of claim 55, wherein narrow time windows or exact times of

creation or modification of one or more files or folders along with their

locations in a computing environment further comprise the computing

context.

25 57. The system of claim 55, wherein the partial content of one or more files or

folders along with their locations in a computing environment further

comprise the computing context.

120

WO 2016/199166 PCT/IN2016/050169

58. The system of claim 55, wherein the names of one or more files or folders

along with their locations in a computing environment further comprise the

computing context.

5 59. The system of claim 55, wherein functional data related to the accurate

working of the computing environment further comprises the computing

context.

60. A computing context recognition system operable in a computing

10 environment for handling and recognising a changing computing context,

that stores a computing context to re-construct the computing context from

the stored data later, recognising the later context to be that of the same

computing environment for which the context was stored, if the

reconstructed context matches a freshly computed context for more than a

15 preset, passing number of stored context entities.

61. The system of claim 60, wherein after a computing context is recognised, a

revised computing context is stored in place of the earlier stored computing

context, for more accurate recognition of a computing context later.

20

62. The system of claim 60, wherein functional data related to the accurate

working of the computing environment further comprises the computing

context.

25 63. A distribution system operable in a computing environment for a multimedia

and text combination asset comprising a software player that hides one or

more keys or cryptography implementation within itself and is bundled with

a combination of video, audio, or text data in encrypted form such that the

121

WO 2016/199166 PCT/IN2016/050169

software player can decrypt and play the data or encrypt and add data,

without requring any customer-specific symmetric or assymetric key or

password to be input or made available during installing or running the

player.

5

64. The software player of claim 63, wherein the player thwarts simple data

capture mechanisms comprising one or more of screen bitmap capture,

screen text clip capture, screen text clipboard capture, or audio clip capture.

10 65. The software player of claim 63, wherein the hidden keys or cryptography

implementation of the player comprises an expiry date or mechanism so that

the player does not work after the date or mechanism disallows it.

66. The software player of claim 65, enabling a free or priced update with a

15 continuing player of a different hidden keys or cryptography implementation,

upon expiry of the player.

67. The update of claim 66, recurring with a well-announced expiry date for

planning convenience.

20

68. The bundled data of claim 63, wherein the data decrypted or encrypted by the

hidden keys or cryptography implementation of the software player is

reduced to a small partition so that the remaining one or more data partitions

may be bundled and distributed with one or more other software players,

25 each comprising distinct hidden keys or cryptography implementation.

122

WO 2016/199166 PCT/IN2016/050169

69. The distribution system of claim 63, such that no plaintext fragment of

encrypted data is exposed to a user, other than possibly only sale-related

input such as buyer details or payment details.

5 70. A software authentication and installation monitoring system operable in a

computing environment for installing authenticated software only on a

machine, comprising:

(a) a means for hiding one or more keys or cryptography implementation;

(b) a means for tracking authentic software or certified software or user-built

10 software installed on a machine by storing the information in encrypted form on

the machine using the keys or cryptography implementation hidden by the hiding

means;

(c) a means for mediating in a software installation, ensuring that authentication

steps are carried out that ensure the authenticity of the installed software;

15 (d) a means for disallowing a user setting the permission of a file to execute,

unless the file is known to be built or certified by the user or known to be

authentically installed as per the encrypted information kept by the tracking

means;

(e) a means for disallowing an executable file to run, unless the file is built or

20 certified by the user or known to be authentically installed as per the encrypted

information kept by the tracking means;

(f) a means for stopping a running program, if the running program is found to

not be user built or certified, or authentically installed as per the encrypted

information kept by the tracking means; and

25 (g) a means for scanning the machine periodically, resetting the the execute

permissions of any unknown files.

123

WO 2016/199166 PCT/IN2016/050169

71. The system of claim 70, updating an expired or expiring software with a

successor software having different hidden keys or cryptography

implementation.

72. The update of claim 71, recurring with a well-announced expiry date for

5 planning convenience.

73. The system of claim 72, installing and periodically updating an authenticated

browser.

10 74. The system of claim 70, such that no plaintext fragment of encrypted data is

exposed to a user.

75. A distribution method operable in a computing environment for binary

encoded digital assets, comprising:

15 (a) a hiding step for hiding one or more keys or cryptography implementation in

a digital asset;

(b) a copying step for receiving a functionally-restricted asset copy for use or

further distribution, directly or as a further copy, with or without access to a

computer network; and

20 (c) a self-policing step for enforcing asset safety comprising:

i. an authentication step for an un-authenticated, digital asset for

constructing encrypted credentials data using one or more keys or cryptography

implementation hidden in the asset, for authentication by an authenticated digital

asset or website;

25 ii. a secure selling step for an authenticated digital asset for

either carrying out a sale transaction directly, securely, or delegating the sale to a

separate secure means, identifying the delegation by an encrypted identifier

constructed using one or more keys or cryptography implementation hidden in

124

WO 2016/199166 PCT/IN2016/050169

the asset and decrypting the response from the secure means using the one or

more keys or cryptography implementation hidden in the asset to determine the

success of the sale; and

iii. a copyright and license enforcement step for an asset for

5 carrying out encryption and decryption of computing context and other data

using one or more keys or cryptography implementation hidden in the asset, with

functionally-unrestricted asset use permitted only after the asset has been sold

and licensed to run in a recognisable computing context.

10 76. A cryptography hiding method operable in a computing environment for

hiding one or more keys or cryptography implementation in a binary

encoded digital asset using holistic, efficient steganography, comprising:

(a) an interleaving step for interleaving sequentially or concurrently, the

computation of non-cryptography, useful code with cryptography code;

15 (b) an obfuscating memory management step for creating an encoded pointer

representation of any scalar, comprising the use of one or more encoding

pointers pointing to one or more objects created and managed for maintaining

the scalar in an obfuscated state throughout the lifetime of the scalar;

(c) a class obfuscation step for translating a class to one or more data structures

20 or procedures; and

(d) a procedure obfuscation step for de-stacking one or more parameters of a

procedure or translating a procedure call to jumps to and from an inlined

procedure body.

25 77. A cryptography hiding method operable in a computing environment for

hiding one or more keys or cryptography implementation in a binary

encoded digital asset using holistic, efficient steganography, comprising the

step of using an interleaving loop or recursive procedure for instantiating one

125

WO 2016/199166 PCT/IN2016/050169

or more re-entrant calls to one or more procedures or macros in cryptography

code, such that one or more re-entrant calls to one or more procedures or

macros in useful, non-cryptography code are interspersed in-between any

two cryptography code calls, and that a cryptography call typically comprises

5 a smaller stateful computation than a larger stateful computation comprised

by a non-cryptography call.

78. An obfuscating memory management method operable in a computing

environment for creating an encoded pointer representation of any scalar,

10 comprising the step of using one or more encoding pointers pointing to one

or more objects created and managed for maintaining the scalar in an

obfuscated state throughout the lifetime of the scalar.

79. An obfuscating memory management method operable in a computing

15 environment comprising the step of allocating or de-allocating an object with

meta-data comprising object size or layout such that the contents of the

object may be obfuscated by distribution or re-distribution, part by part,

anywhere over the object or one or more other objects.

20 80. A procedure obfuscation method operable in a computing environment for

de-stacking one or more procedure parameters, comprising a static analysis

step guided by one or more user annotations, and a source-to-source

transformation step replacing a reference to a procedure parameter with a

non-stack reference.

25

81. A computing context storing method operable in a computing environment

for storing a computing context, comprising a step of storing a computing

context within a narrow time window part of the computing context.

126

WO 2016/199166 PCT/IN2016/050169

82. A computing context recognition method operable in a computing

environment for handling and recognising a changing computing context,

comprising the steps of:

5 (a) Storing a computing context; and

(b) Re-constructing the computing context from the stored data later, recognising

the later context to be that of the same computing environment for which the

context was stored, if the reconstructed context matches a freshly computed

context for more than a preset, passing number of stored context entities.

10

83. A distribution method operable in a computing environment for a

multimedia and text combination asset comprising a step of encrypting or

decrypting a combination of video, audio or text data bundled with a

software player, using the hidden keys or cryptography implementation of

15 the software player such that no customer-specific symmetric or assymetric

key or password is required to be input or made available during the

installing or running of the player.

84. A software authentication and installation monitoring method operable in a

20 computing environment for installing authenticated software only on a

machine, comprising the steps of:

(a) hiding one or more keys or cryptography implementation;

(b) tracking authentic software or certified software or user-built software

installed on a machine by storing the information in encrypted form on the

25 machine using the hidden keys or cryptography implementation;

(c) mediating in a software installation, ensuring that authentication steps are

carried out that ensure the authenticity of the installed software;

127

WO 2016/199166 PCT/IN2016/050169

(d) disallowing a user setting the permission of a file to execute, unless the file is

known to be built or certified by the user or known to be authentically installed

as per the encrypted information kept in the tracking step;

(e) disallowing an executable file to run, unless the file is built or certified by the

5 user or known to be authentically installed as per the encrypted information kept

in the tracking step;

(f) stopping a running program, if the running program is found to not be user

built or certified, or authentically installed as per the encrypted information kept

in the tracking step; and

10 (g) scanning the machine periodically, resetting the the execute permissions of

any unknown files.

128

	Abstract
	Description
	Claims
	Drawings

