
INTERNATIONAL APPLICATION PUBLISHED UNDER TOE PATENT COOPERATION TREATY (PCT)

PCT WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

(51) International Patent Classification 6 : (11) International Publication Number: wo 98/27464
G03F 13/16 Al

(43) International Publication Date: 25 June 1998 (25.06.98)

(21) International Application Number: PCT/US97/22876

(22) International Filing Date: 12 December 1997 (12.12.97)

(30) Priority Data:
08/768,775 17 December 1996 (2.96 ا7ا.) US

(71) Applicant: INTEL CORPORATION [US/US]; 2200 Mission
College Boulevard，Santa Clara, CA 95052 (US).

(72) Inventor: ΜίπΑί, Millind; 1149 Hillside Boulevard，South
San Francisco, CA 94080 (US).

(74) Agents: TAYLOR, Edwin, H. et al.; Blakely，Sokoloff, Taylor
& Zafman LLP, 7th floor，1240¿ Wilshire Boulevard，Los
Angeles，CA 90025 (US).

(81) Designated States: AL, AM, AT，AT (Utility model), AU
(Petty patent)，AZ，BA BB:BG，BR，BY，CA CH, CN，cu，
CZ, CZ (u 1 tv modei)，DE，DE (útility model)，DK, DK
(Utility model)؛ EE, EÉ (Util y model), ES, FI，FI (Utility
model) GB GE, GH，HU, ID, IL, IS, JP，KE，KG, KP,
KR KZ, LC, LK，LR，LS LT, LU, LV，MD，MG，MK,
MN，MW，MX, N0, NZ，PL，PT，RO, RU，SD, s¿，SG;
SI，SK, SK (utility model)，SL, TJ: TM, TR，TT，UA, UG，
UZ, VN, YU，z١v, ARIPO patent (GH, GM, KE，LS，MW,
SD，SZ，UG，z▼)，Eurasian patent (AM, A¿，BY，KG, KZ,
MD, RU, TJ，TM; European ؟atent (AT: BE: CH: DE，DK:
ES，FI，FR, GB, GR, IE, IT，LU, MC NL，PT，SE)，OAPI
patent (BF，BJ，CF，CG，CI; CM，GA, GN，ML，MR, NE，
SN, TD, TG).

Publish؛؟
With international search report.
Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of
amendments.

(54) Title: CONTROLLING MEMORY ACCESS ORDERING IN A MULTI-PROCESSING SYSTEM

TO OTHER
PROCESSORS

(57) Abstract

As shown in the Figure, a technique for controlling memory access ordering in a multi-pr?cessing system (11) in which a sequence
of accesses to acquire, access and release a shared spaci of memory (15) is stricily adhered to by use يمآ two specialized instructions for
controlling memory (15) access. Two instructions noted as MFDA (Memory Fence Directional - Acquire) and MFDR (Memory Fence
Directions - Release) are utilized to control the ordering. The MFDA instruction operates to ensure that all previous accesses to the
specified address (typically to a lock controlling access to the shared space (15)) become visible to other pr؟cessors before all future
¿cesses are permitted. The MFDR instruction creates to ensure that all previous accesses become visible to other processors before any
future accesses to the specified address.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing intemationai applications under the PCT.

AL Albania
AM Am»enia
AT Austria
AU Australia
AZ Azerbaijan
BA Bosnia and Herzegovina
BB Barbados
BE Belgium
BF Burkina Faso
BG Bulgaria
BJ Benin
BR Brazil
BY Belarus
CA Canada
CF Central African Republic
CG Congo
CH Switzerland
٢٦ Cb١.tho٦٢e
CM Cameroon
CN China
CU Cuba
CZ Czech Republic
DE Germany
DK Denmark
EE Estorba

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho
Lithuania
Luxembourg
Latvia
Monaco
Republic of Moldova
Madagascar
The former Yugoslav
Republic of Macedonia
Mali
Mongolia
Mauritania
Malawi
Mexico
Niger
Netherlands
Norway
New Zealand
Poland
Portugal
Romana
Russian Federation
Sudan
Sweden
Singapore

ES Spain
FI Finland
FR France
GA Gabon
GB United Kingdom
GE Georgia
GH Ghana
GN Guinea
GR Greece
HU Hungary
IE Ireland
IL Israel
IS Iceland
IT Italy
JP Japan
KE Kenya
KG Kyrgyzstan
KP Democratic People’s

Republic of Korea
KR Republic of Korea
KZ Kazakstan
LC Saint Lucia
LI Liechtenstein
LK Sri Lanka
LR Liberia

SI Slovenia
SK Slovakia
SN Senegal
sz Swaziland
TD Chad
TG Togo
TJ Tajikistan
TM Turkmenistan
TR Turkey
TT Trinidad and Tobago
UA Ukraine
UG Uganda
US United States of America
uz Uzbekistan
VN VietNam
YU Yugoslavia
zw Zimbabwe

wo 98/27464 PCT/US97/22876

CONTROLLING MEMORY ACCESS ORDERING
IN A MULTIPROCESSING SYSTEM

BACKGROUND OF THE INVENTION

1. Field of the Invention
The present invention relates to the field of processors and，more

particularly，to a technique for providing memory access ordering in a multiple
processing environment·
2. Background of the Related Art

In an operation of a processor the order in which program instructions are
executed is critical to the proper operation of the processor· Where earlier
processors executed memory accessing operations in the order in which the
instructions were executed by a program，more advanced processors have the
capability of changing the order in which the accesses are made to memory，
provided that the processor maintains a record of the proper order of the memory
accesses. The technique of reordering memory accesses (such as read and write
operations to memory) is especially desirable, since such reordering can enhance
the speed of data processing. For example，if a particular access to memory is
pending for a variety of reasons, the processor can continue with the next access if
reordering is permitted. Otherwise，the processor must wait until the current
access is completed，before proceeding with the next access. Thus，there is a
significant advantage in performance if memory accesses can be performed in the
order other than the order required by the program.

Accordingly, in more advanced processors, the ordering of "reads" and/or
“writes" (also rcferred to as “loads" and "stores") from/to memory can be changed
from the actual sequence provided by the execution of the program instructions.
Again, the processor maintains the necessary control so that the final order of the
various results of the accesses is consistent with the program instructions. This is
also true, where cache memory or memories are used in conjunction with main
memory storage. In that instance, the memory access ordering control is

-1-

wo 98/27464 PCT/US97/22876

complicated by the maintaining of the location of the valid data, but the overall
concept is the same.

However，when multipk processors (or devices capable of accessing
memory) are utilized in which a given memory or a portion of a memory is shared
by more than one processor，an added constraint is placed on the multiple
processor computer system to ensure that the ordering of memory accesses from
one processor is made visible to the other processors，according to the order of the
program instructions，at least as to the shared memory space. That is, where each
individual processor can maintain a record of reordering memory accesses it
generates，the other processor(s) may not know that this reordering has occurred.
Accordingly, an access to a shared memory location generated by a processor in
the system must be observed by (made visible to) the other processor(s) in the
same order as noted in the program, unless a mechanism is in place to permit
reordering. Otherwise，there exists a possibility that the data obtained by one
processor may not be the valid data as required by the program.

One mechanism for controlling accesses to a memory area shared by
multipk processors is the use of a semaphore (or flag) as a "key" for obtaining
entry into the shared space. In this scheme，a processor can obtain entry into the
shared memory area only if it gains access to the “lock" controlling the shared
memory area. Only one processor is permitted to gain control of the lock at any
one time. Once a processor gains entry into the shared memory area by acquiring
the lock, it must then set the semaphore so as to prevent any other processor from
gaining entry into the shared space until the lock is released. Typically，a particular
address location is designated as the lock and values written to this address location
determine the states of the semaphore.

By utilizing the above described locking scheme，reordering of accesses is
a concern when accesses are made to acquire or rebase the lock to the shared
memory space. Each processor is generally free to reorder accesses to its non-
shared memory space, since this space is not accessed by the other processor(s)
and such accesses to поп-shared memory space need not be made visible to the
other processor(s) in the proper order. It is appreciated that other devices, such as

-2-

wo 98/27464 PCT/US97/22876

input/output devices，may also require such access ordering control. The access
ordering control is important where two accesses must be done in order. Thus，
access ^dering is not limited to the access of memory only.

Visibility of an access is defined for a read and a write as follows. A read
to an address A by a processor Pl is considercd visible from the point of view of a
second processor Ρ2, if a write to address A iss^d by Ρ2 cannot change the value
read by Pl. Likewise，a write to an address A by processor Pl is considered
visible from the point of view of a second processor Ρ2, if a read from address A
iss^d by the program cannot return the value of A prior to the write by Pl.

The use of semaphores to control accesses to the shared memory space can
provide adequate controls once a processor gains entry into the shared space.
However，a problem still resides in properly ordering the accesses for acquiring
and releasing the lock. Since memory accesses are n—ed for acquiring and
releasing the lock，it is possible for a processor to reorder these accesses in
reference to its other memory accesses，inchding memory accesses to the shared
memory space. Since the lock location is shared by the other processor(s) in the
system，the accesses to acquire and release the lock may not be visible to the other
processors in the proper sequence relative to the accesses to the shared area of
memory. Thus，some mechanism is still needed to maintain ordering for memory
accesses for acquiring and releasing the lock in order to make these accesses
visible.

Accordingly，the present invention provides for a technique of controlling
memory access ordering in a system that has multiple memory accessing devices
and in which more than one such device is permitted access to a shaded location in
memory. Furthermore，the technique of the present invention provides memory
access ordering through instruction support，but without requiring modifications to
existing load and store instructions which are used to access the memory.

wo 98/27464 PCT/US97/22876

SUMMARYOFTHEINVENTION

The present invention describes a technique for controlling memory access
ordering in a multi-processing system in which a sequence of accesses to acquire，
access and Mease a shared space of memory is strictly Mhered to by use of two
specialized instructions for controlling memory access ordering. In a multiple
processing computer system where processing devices (such as processors) are
able to reorder accesses to memory，the proper sequence of acquiring, acœssing
and rcleasing the shared space of memory must be maintained by each processor
and made visible to the other processors in the program order·

The present invention utilizes two instructions noted as MFDA (Memory
Fence Directional - Acquirc) and MFDR (Memory Fence Directional - Release) for
controlling the memory access ordering to the shared space. The MFDA
instruction when encountered in a program operates to ensurc that all previous
accesses to the specified ddress (typically the address associated with a lock
permitting access to the shared memory location(s)) become visible to other
processors befOTe all future accesses are permitted. The MFDR instruction when
encountered in a program operates to ensure that all previous accesses become
visible to other processors before any future accesses to the specified address.

By using the MFDA and MFDR instructions as synchronization points for
acquiring and releasing the lock associated with a shared space, and by
programming the accesses to the shared space between the two instructions，the
ordering of acquiring, accessing and Weasing the shared space is maintained. As
to other arcas where such ordering is not needed, the accesses can be radily
reordered，since the MFDA and MFDR instructions impose the ordering
restrictions only to the specified address·

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a block schematic diagram showing a prior multiple-processor
computer system having a plurality of processors coupled to a memory and in

-4-

wo 98/27464 PCT/US97/22876

which a portion of the memory is accessed by more than one processor, but a lock
is used to permit only one processor to acœss the shared memory space.

Figure 2 is a block diagram showing dements of one of the processors for
the computer system of Figure 1.

Figure 3 shows a sequence of program steps for the processor of Figure 2,
including accesses to acquire and rclease the lock which control the accesses to the
shared space of the memory.

Figure 4 shows an ordering scheme for the programming steps of Figure 3
when a sequential consktency model is used.

Figure 5 shows an ordering scheme for the programming steps of Figure 3
when a processor consistency model is used.

Figure 6 shows an ordering scheme for the programming steps of Figure 3
when a weak consistency model is used.

Figure 7 shows an ordering scheme for the programming steps of Figure 3
when a rclease consistency model is used.

Figure 8 shows an impkmentation of the present invention in conforming
to the release consistency model of Figure 7 by using two directional instructions
of the present invention to provide acquire and release synchronization points with
respect to accesses to the shared memory space. \

Figure 9 shows a sequence of program steps in which a MFDA instruction
of the preferred embodiment is used to estabUsh a directional acquire
synchronization point.

-5-

wo 98/27464 PCT/US97/22876

Figure 10 shows a sequence of program steps in which a MFDR
instruction of the preferred embodiment is used to establish a directional rekase
synchronization point.

Figure 11 is a block diagram of a computer system in which the MFDA and
MFDR instructions are implemented.

-6-

wo 98/27464 PCT/US97/22876

DETAILED DESCRIPTION ◦F THE PREFERRED EMBODIMENT

A technique for controlling memory access ordering in a multi-processing
system is described. In the following description，numerous specific details are set
forth, such as specific instructions，instruction formats，components such as a
particular type of memory，processor elements，etc·，in order to provide a thorough
understanding of the present invention. However，it will be appreciated by one
skilled in the art that the present invention may be practiced without these specific
details. In other instances，well known techniques and structures have not been
described in detail in order not to obscure the present invention. It is appreciated
that the present invention is implemented as particular instructions for a processor，
but the invention can be practiced in other instruction formats as well.

In order to underst^d the memory access ordering scheme and control
provided by the present invention，a multiple-processor system and a memory
access ordering scheme for operating in such a multiple-processor system must
first be understood. Accordingly, an exemplary multiple-processor computer
system 10 is illustrated in Figure 1, in which a plurality of processors 11 operate
within the system. The illustration shows four processors 11 (designated Pl -
Ρ4)，although the actual number of such processors 11 is a design choice. All of
the processors 11 are coupled to a memory 12 by a bus 13 and specifically to a
shared memory spare 15 within the memory 12.

It is appreciated that the configuration of the memory 12 can be comprised
of a variety of ways. The memory 12 is utilized to store (or save) information
(data and/or program instructions) for use by the processors 11. Generally,
information is "read”("loaded”)from the memory 12 and information is "written”
("stored" or "saved") into the memory 12 by the processors 11. The general
accessing of the memory 12 by each of the processor 11 is well-known in the art.
The memory 12 can be of a v^iety of memories，inchding RAM (random-access-
memory) main memory and/or a mass storage device such as a "hard" disk. It
could also be a cache memory. In the particular example，all four of the processors
11 access the memory 12 and in which a selected portion of the memory 12,

-7-

wo 98/27464 PCT/US97/22876

designated as the shared space 15, is accessed by all four of the processors 11. It
is possible that there may be other shared spaces within the memory 12, in which
two or more of the processors 11 have the ability to access such shared spaces.
The поп-shared spaces of the memory 12 are generally relegated to the access by
one processor 11 only.

Accordingly, where locations in the memory 12 are accessed by a single
processor 11 only，data dependency is the only concern. However，where multiple
processors can access locations in memory that are designated as shared locations,
such as the shared space 15, some other control must be used to control and limit
the accesses so that data being utilized by one processor is not corrupted by a
second processor. One technique of implementing such control is by the use of a
semaphore· In order to access the shared space，the semaphorc (also referred to as
a flag，lock or shared variable) is used so that only one processor will have access
to the shared space at any given time (at least as to changing the value of the
information stored therein).

In Figure 1，the semaphore employed is a lock (or lock variable) 16, which
is assigned to control the accesses to the shared space 15 (as shown by doted-line
17). The lock 1Ö IS a particular location in memory that is assigned to contain a
value associated with obtaining accesses to the sharcd space 15. Thus，in order for
one of the processors 11 to access the shared space 15, it must first access the lock
16 and test the state (value) of the data stored in the lock location 16. In the
simplest format，two values (for example，bit states 1 and 0) can be assigned to
lock 16 to indicate the lock states.

It is to be appreciated that the actual lock values and lock states for the lock
16 is a design choice and many variations can be devised，other than the example
described herein. Also, the location of the lock 16 need not be within the memory
12 itself. It is also possible that other memory accessing devices (devices such as
direct memory access controllers) may attempt to access the shared memory space
15. In these instances，these devices would function similar to the processors 11
described herein for gaining access to the shared space 15.

-8-

wo 98/27464 PCT/US97/22876

The accessing of the memory 12 by the processors 11 for data transfer
typically involves the use of load and store operations. The use of load and store
instructions for "read” and “write" operations is well known· Since the lock 1Ö IS
at a particular memory location in the example，similar load/store type operations
can be used to read and write to the lock 16, A read-modify-write operation using
load/store instructions (or other specialized instructions) can be used for acquiring
the lock 16. A read-modify-write operation would read the lock value and if the
value denotes a condition where access is available (no other processor having
access)，the value is modified and written back to the lock location. The modified
value denotes a locked condition so that when other processors read the value in
the lock location 16，access will not be granted. When the original processor no
longer requires utilization of the shared space 15, it will write the original value
back into the lock location freeing the shared space 15. An example of such a read-
modify-write instruction for accessing a lock is described in a patent application
titled “Compare And Exchange Operation In A Multiple Processing System;，，Serial
No. : filed .

Referring to Figure 2, basic elements of a processor required to practice the
present invention are shown. Generally，each processor 11 includes an execution
unit 18, register file 19 and prefetchAlecoder unit 20. The execution unit 18 is the
processing core of the processor 11 for executing the various processor
instructions. The register file 19 is a set of general purpose registers for storing (or
saving) various information required by the execution unit 18. Therc may be more
than one regster file in more advanced systems. The prefetch/decoder unit 20
fetches instructions from a storage location (which could be the memory 12)
holding the instructions of a program that will be executed and decodes these
instructions for execution by the execution unit 18. In more advanced processors
utilizing pipelined architecture，future instructions are prefetched and decoded
beforc the instructions are actually needed so that the processor is not idle while
waiting for the instructions to be fetched when needed. A memory pipeline buffer
(buffer memory) is used to store memory access operations which are pending in
the pipeline for memory access. Th s general concept for storing and retiring

-9-

wo 98/27464 PCT/US97/22876

pending accesses is known in the art· One example is described in a patent
application titled “Apparatus And Mettod ◦f Maintaining Proœssor Ordering In A
Multiprocessor System” by Nitin V. Sarangdhar; Serial No. 08/177,259; filed
January 4, 1994.

The various units of the processor 11 are coupled to an internal bus
structure 23. A bus interface unit (BIU) 22 provides an interface for coupling the
internal bus 23 to the extemal bus 13. It is appreciated that the structure of the
buses 13 and/or 23 may take various forms. Furthermore, it is appreciated that the
processor 11 actually includes many тоте components than just the components
shown in Figure 2.

Referring to Figure 3, a program sequence for one of the processors 11 (Pl
is used in the example herein) is shown comprised of a sequence of memory
accesses noted as A - K. The ordering of accesses Α-Κ coiTesponds to the order
required by the program instructions. Accesses E - H are shown as accesses to the
sharcd memory space 15 of Figurcs 1 ^d 2. Thus，acquiring of the lock 16 must
be achieved prior to performing access E. In the example，access D is used to
acquire the lock 16. Once the accesses E - H to the shared space 15 are competed，
access I is used to rebase the lock 16. Then，accesses ل - K are performed.

It is appreciated that access D to acquire the lock 16 and access I to release
the lock 16, may each be performed by one instruction or multiple instructions.
However，what is important is that the execution be performed as atomic
operations，so that once execution commences to acquire or release the lock 16, the
particular operation will not be interrupted by another instruction. Generally，the
preference is to use a single instruction，such as a red-modify-write instruction，
for access D and a single instruction for access I.

It is imperative that the programming order for acquiring the lock 16,
utilizing the shared space 15 ^d releasing the lock 16 be made visible to the other
processors in the proper order as the program order. However，once the shared
space 15 is acquired, the processor is free to reorder the accesses to the shared
space 15. Stated alternatively，accesses E - H must occur after the lock 16 is

-10-

wo 98/27464 PCT/US97/22876

acquired and must be completed prior to the Mease of the lock 16 to ensure
integrity of the shared space 15.

Since there are a number of memory access ordering or reordering schemes
available, it is useful to identify pertinent access ordering schemes to determine if
any are Maptable for achieving the desired properties noted above. Accordingly
four mMels (caUed “consistencies”) are described below in rcference to the Figures
4-7. The four models are the “sequential”，“processor"，"weak” ^d “release”
consistencies.

Referring to Figurc 4, the sequential consistency OTdering model as applied
to the sequenœ of program steps of Figure 3 is shown. Sequential consistency
model is a memory access ordering model that requires that the execution of
programs on different processors shouW appear as some interleaving of the
execution of the programs in one processor. The sequential consistency access
model is satisfied if for each processor no reads or writes are re-ordered with
respect to previous reads or writes. That is，no memory access reordering is
permitted at all and accesses A · K are performed in the sequential program order.
Thus，reordering of accesses is not a concern with the sequential consistency
model.

In Figure 5, the processor consktency ordering model is illustrated. The
processor consktency model is a memory access ordering model that requires that
all accesses with respect to a write in a first program become visible to a second
program in the same order as specified in the first program (which also implies that
reads from the second program become visible to the first program in the same
order as specified in the secOTd program). The processor consistency access
model can be impkmented simply by allowing only future reads to be out of order
with respect to writes.

Figure 5 also shows the processor consistency ordering model in operation
for accesses A · K. Since access D typically requires at least a read operation,
future reads and writes are not permitted to cross this barrier. Also, since access I
is typically a write operation, all previous accesses must be made visible first.
However，a read access (shown here as access ل) can be reordered to transcend

-11-

wo 98/27464 PCT/US97/22876

access I. This future read reordering is permissiWe since it does not violate the
requirement of confining shared accesses (E - H) within the lock acquire ^d
rclease boundÉes established by accesses D and I.

It is appreciated that either of the above two consistency models can
provide the acquire and rclease ordering control，but the restrictions required of the
models provide for a less dynamic system performance· Thus，although either of
the two above models can be used to order accesses for the shared space, it is
preferred to seek a more flexible model■

Weak consistency is a memory access ordering model that removes any
implkd ordering requirements between rads and writes· The weak consistency
model only requires that the ordering of visibility of reads and writes for a program
is enforced explicitly by the program at appropriate synchronization points. The
weak consistency model is illustrated in Figure 6. The weak consistency model
does not require the program to dktinguish between the acquiring and releasing of
a lock. Thus，although a lock is required, the weak consistency model relies on the
program to set the synchronization point wherever ordering is to be synchronized.

In Figure 6, the weak consistency ordering model is illustrated having
synchronization points occurring at the lock acquire and release access points. The
first synchronization point D’ is set just after access D to acquire the lock. The
second synchronization point I’ is set just prior to access I to release the lock 16.
Accesses A · D can be reordered in any manner (as shown by arrows 26)，but
cannot transcend the synchronization point D，. Reordering of access D with
previous accesses A - c is permitid since accesses A - c are not to the sharcd
space 15. The synctoonization point D，ensures that accesses E ■ H occur after the
lock 16 has been acquired. Reordering is permitted among accesses E · H (as
shown by arrows 27). The second synchronization point I’ ensures that all
accesses E - H to the shared space 15 is completed before the lock 1Ö IS released.
Accordingly，reordering of accesses I - K (as shown by arrows 28) is permitted，
since accesses to the shared space 15 have been completed.

The synchronization points D’ and I’ operate as a barrier to prevent any
accesses to cross the synchronization points. One way to achieve the

-12-

wo 98/27464 PCT/US97/22876

synchronization at points D，and I’ is to utilize a Memory Fence (MF) instruction
known in the art. The MF instruction ensures that a hard and fast separation
occurs at the synchronization points, so that proper ordering is maintained as to the
acquire and release of the shared space 15. However，a disadvantage with this
model is the inability of any access to transcend the synchronization barrier.

Release consistency is a particular implementation of the weak memory
ordering model in which an acquire and a release of a lock are differentiated. The
release consistency model is satisfied if all of the accesses from a processor after
the access to the lock to acquire the shared data are made visiWe to other processors
after the access to the lock; and all of the accesses from a processor before the
access to the lock to release the shared data are made visiWe to other processors
before the access to rebase the lock.

In Figure 7, the rebase consistency ordering model is illustrated having an
acquire synchronization point and a release synchronization point. Whereas in the
weak consistency model the synchronization points do not differentiate between the
different accesses，the acquire and release synchronization points are differentiated
in the release consistency model· Thus, utilizing this model，accesses E - H to the
shared space 15 can be reordered within the boundaries of the acquire
synchronization and rekase synchronization points (as shown by arrows 29)，but
cannot be reordered to occur outside of this boundary. Thus，by ensuring that the
accesses to acquire and release the lock are disposed beyond the two
synchronization points，accesses to the shared space 15 cannot be reordered with
respect to the accesses for acquiring and releasing the lock 16.

However，it is to be appreciated that the accesses residing outside of the
boundary (accesses A - c and ل - K in the example) can be reordered with respect
to the accesses for acquiring and reteasing the lock. Since these accesses are not to
the shared space 15, they can be rcordered with respect to the accesses to the
shared space 15 (as shown by arrows 30 and 31). Because certain accesses are
permitted to transcend the synchronization boundaries，the rebase consistency
model offers the most flexibility and enhanced performance advantage when
compared to the other thrce consistency models. Accordingly，the preferred

_13-

wo 98/27464 PCT/US97/22876

embodiment described below Adresses a technique for providing this Mease
consistency irodel for reorfering of accesses.

The preferred embodiment defines two new instructions for use in an
instruction set architecture for a processor. The instructions are for the primary
purpose of providing ordering control to shared space(s) of memory so that
information is not corrupted in a multipte-processor system，but without restricting
the rcordering of accesses too severely so that significant flexibility still remains in
the system to allow for the reordering of memory accesses.

The two new instructions are defined as a Memory Fence Directional -
Acquire (MFDA) instruction and a Memory Fence Directional - Release (MFDR)
instruction. It is to be noted that the function of each instruction is what is
important and not the names given to the instructions. However，the instruction
names are descriptive of the functions performed by the MFDA and MFDR
instructions. Each of the two instructions (shown in Figures 8 - 11) is identified
by an opwde followed by an address (ADDR). The address ADDR is associated
with the address location descriptor for identifying the shared space 15, and
typically ADDR is the address location (either full or ^te(s) of an Mdress) of lock
16 when the earlier described semaphorc technique is used to control accesses to
the shared space 15.

Examples of instruction format for the two instmctions are:
MFDA(ADDR) and MFDR(ADDR)

It is also to be noted that the ADDR value may be indirectly obtained. For
example，the MFDA or MFDR instruction will specify a register (for example, a
rcgister in register file 19) which contains the actual ADDR value.

The two instructions are used in the context of providing the rcquircments
of the release consistency model, although the invention can be readily configured
to provide for the other consktency models as well· As illustrated in Figure 8, the
MFDA instruction is positioned after the instruction to acquire the lock 16 in the
program and is shown at step D” (following access D). The MFDR instmction is
positioned before the instruction to release the lock 16 in the program (at step I)

-14-

wo 98/27464 PCT/US97/22876

and is shown at step 1’’. The address ADDR is attributed to the address of the lock
16 and is present in the accesses to acquire and release the lock 16.

The MFDA instruction, which operation is illustrated in more detail in
Figure 9, causes all previous accesses to the specified address ADDR to become
visible to the other processor(s) before all future accesses. Thus，by having ADDR
correspond to the lock 16 address，the MFDA instruction ensures that the access to
acquire the lock is made visible before proceeding with the accesses E · H into the
shared space 15. The MFDA instruction operates as a synchronization boundary
only for accesses having the specified ADDR address. Accordingly，in the
example of Figure 8, access D will be made visible prior to proceeding with the
accesses following access D’，· It is to be appreciated that accesses ordered
previous to the MFDA instruction (namely, accesses A - c) need not maintain the
ordering with respect to the MFDA instruction，as long as these accesses do not
reference address ADDR. Thus, accesses A - c can be reordered (even with
respect to access D) and transition across the D，，MFDA boundary. However，
access D cannot transition the D’’ MFDA boundary. Thus, the ordering between
the lock 16 access and accesses to the shared space 15 is not violated.

The MFDR instruction, which operation is illustrated in more detail in
Figure 10, causes all previous accesses to become visible to the other processor(s)
before any future accesses to the specified address ADDR. Thus，the MFDR
instruction ensures that all accesses ordered prior to the MFDR instruction are
made visible prior to the access to release the lock. The MTOR instruction operates
as a synchronization boundary only for accesses having the specified ADDR
address. Accordingly, in the example of figure 8, all accesses prior to the access I
are made visible prior to proceeding with access I prior to the releasing of the lock.
However，it is to be appreciated that accesses ordered after the MFDR instruction
which does not specify an access to ADDR (namely accesses ل and K)，need not
maintain the ordering with respect to the MFDR instruction· Thus, accesses ل and
K can be reordered (even with respect to access I) and transition across the 1’，
boundary. However，access I cannot transition the 1’’ MFDR boundary.

-15-

wo 98/27464 PCT/US97/22876

As implemented in the preferred embodiment，the MFDA and MFDR
instructions provide for two directional synchronization points to bracket the
accesses to the shared space 15 to not be reordered with respect to the accesses to
acquire ^d release the lock 16. However, the accesses to the shared space 15 can
be readily reordered amongst them^lves (arrows 29) and accesses not associated
with the shared space 15 can redily transition across the MFDA or MFDR
boundary (arrows 30 and 31).

Thus，it is appreciated that MFDA and MFDR instructions operate to
provide the requirements of the release consistency model，which has the most
flexibility for ordering of the four consistency models described. Accordingly，
with the practice of the present invention，a memory access reordering is permitted
for memory accesses (both reads and writes)，with directional reordering
synchronization imposed at the occurrence of the MFDA and MFDR instructions，
but wherein that reordering synchronization is limited to a particular specified
Mdress.

Referring to Figure 11，a computer system 40 implementing the present
invention is shown· The computer system is essentially equivalent to the computer
system 10 shown in Figurcs 1 ^d 2, but now implements the MFDA and MFDR
instructions of the preferred embodiment. Accordingly, the computer system is
generally implemented in a processing environment where multiple processors (or
other processing devices) are utilized and in which the memory 12 includes a
shared memory space or location 15, The MFDA and MFDR instructions are
shown within the execution unit 18 of the processor 11，where the instructions are
executed.

In the particular example，the pipeline memory buffer 21 is used to storc
pending memory accesses in the pipeline. The MFDA instruction when executed
can identify any pending accesses with matching addresses as the specified addrcss
ADDR. Thus，any pending acquire lock access would be identified in the buffer
21. The constraints described above requires the acquire lock access to be retired
from the buffer 21 (and made visible) before any future accesses are perfomed.

-16-

wo 98/27464 PCT/US97/22876

The same applies to the MFDR instruction. When this instruction is
encountered，future accesses can continue until an access matching the specified
address is encountered. At this point，all pending accesses in the buffer 21 will be
retired before any future accesses can occur. Thus，any pending accesses to the
shared space 15 will be made visiWe prior to the access to rekase the lock. Again，
it is to be strcssed that the above description is but one example of impkmenting
the prcsent invention.

The format of the MFDA and MFDR instructions as implemented in the
preferred embodiment allow for these instructions to be in similar format as a
load/store (read/write) instructions，so that MFDA and MFDR instructions can use
the same address path and dependency logic as that of a load and/or store
instructions to memory. Accordingly, the present invention can be readily
incorporated into a modified load (for access)，store (for release) and/or other
instructions, if so desired, instead of utilizing separate MFDA and MFDR
instructions. That is, a modified load and/or store instruction can incorporate the
functionality of the MFDA and MFDR instructions. For example, with a hybrid
instruction，the MFDA instruction can be combined with the access instruction for
acquiring the lock 16 and the MFDR instruction can be combined with the access
instruction for rcleasing the lock 16. However，when separate MFDA and MFDR
instructions are utilized, changes are not needed to the existing load/store
instructions of an instruction set architecture. Additionally, because the ordering
controls to the shared space 15 are imposed by the MFDA and MFDR instructions
(in software)，both application and operating system software can utilize these
controls.

Thus，it is appreciated that there are a variety of ways to implement the
operation of the two instructions. Furthermore，the ordering scheme of the present
invention can be implemented in a variety of memory accessing schemes and is not
necessarily limited to the just to the processors or to the semaphore example
provided herein. It could also be implemented in a single processor environment.
Accordingly，a scheme for controlling memory access ordering in a multiple
memory accessing or processing system is described.

-17-

wo 98/27464 PCT/US97/22876

CLAIMS:

I Claim:

1. A computer system which permits reordering of accesses
comprising:

a memory in which shared information can be saved therein at a shared
location;

plurality of memory accessing devices coupled to said memory and in
which said devices access said shaded location by acquiring it;

each memory accessing device capable of resp^ding to an execution of a
first instraction which specifies an acquire address associated with acquiring said
shared location, wherein said execution of said first instraction causes all previous
accesses referencing said acquire address prior to said first instraction to become
^siWe prior to allowing memory accesses following said first instraction; and

each memory accessing device capable of resprading to an execution of a
secOTd instraction which specifies a Mease address associated with releasing said
shared location，wherein said execution of said second instruction causes all
previous accesses prior to said second instruction to become visible prior to
allowing accesses referencing said Mease Mdress following said sec^d
instruction.

2. The computer system of claim 1 wherein each of said memory
accessing devices is capable of allowing other accesses to memory，which do not
reference said acquire ddress，to be reordered from a program order with rcspect
to said first instraction·

3. The computer system of claim 2 wherein each of said memory
accessing devices is capable of allowing other accesses to memory, which do not
reference said release address，to be reordered from said program order with
rcspect to said second instmction.

-18-

wo 98/27464 PCT/US97/22876

4. The computer system of claim 3 wherein accesses to said memory
ordered after said first instruction and prior to said second instruction can be
reordered among themselves.

5. The computer system of claim 4 wherein said acquire address and
said release Mdress are the same.

6. The computer system of claim 4 wherein said memory accessing
devices are comprised of processors.

7. A computer system which permits reordering of accesses from a
program order comprising:

a memory in which shared information can be saved therein at a shared
location;

plurality of processors coupled to said memory and in which said
processors are capable of accessing said sha^d location by acquiring a lock
associated with said shared location;

each processor having an execution unit for executing a first instruction
which specifies an acquire address associated with acquiring said lock to acquire
access to said shared location, wherein said first instruction causes all previous
accesses referencing said acquire address prior to said first instruction to become
visible prior to allowing memory accesses following said first instruction: and

said execution unit for executing a second instruction which specifies a
release Mdress for releasing said lock to release access to said shared location,
wherein said second instruction causes all previous accesses prior to said second
instruction to become visible prior to allowing accesses referencing said release
address following said second instruction.

-19-

wo 98/27464 PCT/US97/22876

8. The computer system of claim 7 wherein each of said processors
allows other accesses to memory, which do not reference said acquire address，to
be reordered from a program order with respect to said first instruction.

9. The computer system of claim 8 wherein each of said processors
allows other accesses to memory, which do not reference said release addrcss, to
be reordered from said program order with respect to said second instruction.

10. The computer system of claim 9 wherein accesses to said shared
infomation ordered after said first instruction and prior to said second instruction
can be reordered among themselves.

11. The computer system of claim 9 wherein said acquire address and
said release address are the same.

12. The computer system of claim 9 wherein each of said processors
further includes a buffer memory resident therein for having unexecuted memory
accesses of its processor to be saved therein and in which said instructions cause
said buffer memory to be accessed to determine if any accesses containing said
addrcss are saved therein.

13. In a computer system，a method of utilizing a set of two instructions
to maintain an ordering of an access to a shared location，such that accesses
refercncing and acquire address and a rebase address associated with acquiring and
rcleasing said shared location is observed in a program order with said access to
said shared location，comprising the steps of:

impkmenting a memory in which at least a portion of said memory can be
allocated as said shaded location;

implementing a memory accessing device which responds to an execution
of a first instruction that specifies said acquire address, wherein said first
instruction causes all prcvious accesses referencing said acquire address prior to

-20-

wo 98/27464 PCT/US97/22876

said first instruction to become visible prior to allowing memory accesses
following said first instruction:

implementing said memory accessing device which responds to an
execution of a second instruction that specifies said release address，wherein said
second instruction causes all previous accesses prior to said second instruction to
become visible prior to allowing accesses referencing said release address
following said second instmction.

14. The method of claim 13 wherein said computer system has more
than one memory accessing device and in which said shared location in said
memory is accessed by more than one of said memory accessing devices.

15. The method of claim 13 wherein a lock variable is assigned as a
semaphore for permitting entry into said shared location and in which only one of
said memory accessing devices at a time is permitted access to said shared location.

16. The method of claim 13 wherein said acquire and release addresses
are the same.

17. ha computer system, a method of utilizing a set of two instructions
to maintain an ordering of an access to a shared location，such that accesses
referencing an address associated with said shared location is observed in a
program order with said access to said shared location, comprising the steps of:

implementing a memory in which at least a portion of said memory can be
allocated as a shared memory，wherein at least one location within said shared
memory is defined as said shared location; \

implementing a processing device which responds to execute a first
instruction which specifies said address for acquiring said shared location, wherein
said first instruction causes all previous accesses referencing said address prior to
said first instruction to become visible prior to allowing memory accesses
following said first instruction;

-21-

wo 98/27464 PCT/US97/22876

implementing said processing device which resprads to execute a secrad
instruction which specifies said address for releasing said shared location wherein
said sec^d instruction causes all previous accesses prior to said secrad instruction
to become visible prior to allowing accesses referencing said address following
said second instruction.

18. The method of claim 17 wherein said shared location in said
memory is accessd by more than rae of said processing devices·

19. The method of daim 17 wherein a lock variable is assig^d as a
semaphore for permitting entry into said shared location and in which only one of
said processing devices at a time is permitted access to said shared location·

20. In a computer system having a plurality of processors, a method of
utilizing a set of two instructions to maintain an ordering of an access to a shared
location in memory accessed by more than one of said processors，such that
accesses referencing an acquire address and a release address associated with
acquiring and releasing said shared location in memory is observed in a program
order with said access to said shared location，comprising the steps of:

executing a first instruction which specifies said acquire address wherein
said first instruction causes all previous accesses referencing said acquire address
prior to said first instruction to become visible prior to allowing memory accesses
following said first instruction;

executing an instruction for accessing said shared location;
executing a second instruction which specifies said release address wherein

said second instruction causes all previous accesses prior to said second instruction
to become visible prior to allowing accesses referencing said release address
following said second instruction.

-22-

wo 98/27464 PCT/US97/22876

21. The method of claim 20 further including a step of executing an
acquire instruction prior to said first instruction for acquiring access to said shared
location，said acquire instruction having said acquire address as part of its
instruction.

22. The method of claim 21 further including a step of executing a
rebase instruction after said second instruction for Measing access to said shared
location，said release instruction having said release address as part of its
instruction.

23. The method of claim 22 wherein other accesses to memory，other
than to said shared location in memory and which do not reference said acquire and
Mease addresses，are permitted to be observed out of order from said program
order with respect to said first or second instruction.

24. The method of claim 23 wherein said acquire and rclease addresses
are the same.

-23-

wo 98/27464 PCT/US97/22876

1/7

FIGUREI

TO OTHER
PROCESSORS

FIGURE 2

wo 98/27464 PCT/US97/22876

2/7

SEQUENTIAL
CONSISTENCY

/А /А
/В /В
/С /С
/D —► ACQU^E LOCK / D — يk ACQUIRE LOCK

/Е ٦ IE ٦

/F ACCESSES то / F ع ACCESSES TO
/G م / SHARED SPACE بم

ا ى
SHARED SPACE م

/н」 ل
/1 ч► RELEASE LOCK /1 —>、RELEASE LOCK
ل/ دا
/К /к

FIGURE3 FIGURE4

wo 98/27464 PCT/US97/22876

3/7

В/
/С

/ D—* ACQUIRE LOCK

٦ IE
F I ACCESSES TO/

/G Г SHARED SPACE

1Η」

r/I —*RELEASE LOCK

(READ) اخم، ل

25
К/

/D —*ACQUIRE LOCK

/ D' ه— SYNCHRONIZATION
POINT (MF) ن

IE 一ヽ

/F
/G
/Н

ACCESSES TO
SHARED SPACE لم

لآ؛
 SYNCHRON ZATION —ه '1 /

PO^T(MF)
/I -—RELEASELock

PROCESSOR
CONSISTENCY 2Ç؛

FIGURES
WEAK
CONSISTENCY

FIGURE 6

PCT/US97/22876
wo 98/27464

/А

م/7

/А

/В

/D—> ACQUIRE LOCK
ACQUIRE
SYNCHRONIZATION /D’.一—mfda

م

ACCESSES
TO SHARED
SPACE

/Н

/I

 RELEASE هزر
SYNCHRONIZATION

—> RELEASE LOCK

/Е

/F

/G

/Н

/К
RELEASE
CONSISTENCY

MFDR

RELEASE LOCK

/К
FIGURE 8

FIGURE 7

wo 98/27464 PCT/US97/22876

5/7

/ PREVIOUS ACCESS

/ PREVIOUS ACCESS

PREVIOUS ACCESS
一 ACQUIRE LOCK (ADDR)

IF AVAILABLE，THEN
CHANGE VALUE TO
CLOSE THE LOCK

٠
MFDA^DDR) ——

ALL PREVIOUS ACCESSES
REFERENCING ADDR MUST
BE MADE VISILE BEFORE
PROCE^NG WITH FUTURE
ACCESSES

ب

/FUTURE ACCESS ٠٦١

ACCESSES
)TO SHARED

AREA

/ FUTURE ACCESS ノ

FIGURE 9

wo 98/27464 PCT/US97/22876

6/7

/ PREVIOUS ACCESS

ACCESSES
> TO SHARED

AREA

/ PREVIOUS ACCESS ノ

/MFDR(ADDR) ——
٠

/ FUTURE ACCESS
·WRITETO RELEASE

THE LOCK (ADDR)

ALL PREVIOUS ACCESSES
MUST BE MADE VISIBLE
BEFORE PROCEEDING WITH
FUTURE ACCESSES
REFERENCING ADDR

/FUTURE ACCESS

/ FUTURE ACCESS

FIGURE 10

PCT/US97/22876

Λ

wo 98/27464

s
ccoss
LÜooyd

ссшн
٠-о
ه

」

INTERNATIONAL SEARCH REPORT International application No.

PCT/US97/22876

A. CLASSIFICATION OF SUBJECT MATTER
1PC(6) : G03F 13/16
use¿ :711^47, 167, 141

Accord^g to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED
Minimum documentotion searched (classification system followed by classification symbols)

U.S. : 711/147, 167, 141

Documentation searched other than minimum documentation to the extent that such documente are deluded in the fields searched

corresponding US application (08/768,775)

Electronic dato base consulted during the international search (name of data base and，where practicable，search temis used)

APS

c. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication，where appropriate，of the relevant passages Relevant to claim No.

Y

Y٠p

Y

A

us 5,208,914 A (WILSON ET AL) 04 May 1993 (04/05/93)，see
column 2, lines 56-60, ajlumn 3, lines 1-3¿，column 15, lines 56-
60.

US 5,623,670 A (BOHANNON ET AL) 22 April 1997 (22/04/97)，
column 1，lines 17-34.

GHARACHORLOO et al. Performance Evaluation of Memory
Consistency Models for Shared-Memory Multiprocessors. SIGARCH
Computer Architecture News. April افؤل，Vol .19, N0.2, page 246.

US 5，168,547 A (MILLER ET AL) 01 December 1992 (01/12/92)，
see entire document.

1-24

15, 19

1-12, 17-19

1-24

[XI Further documente arc listed in the continuation of Box c< [1 See patent family annex.

٠ Special categories of cited docienti: ■T" later document publiihed after the international filing date or pnority
date and not in conflict with the application but cited to undentand

·A· docient detmwg the general ٠ئئ of the art which ئ not coniidered the principle or Лвогу underlying the in٧٠nüon
to b。of particular relevance

·„· . ٠ د Lf t 1 د ح .ع · د ،٠ Γ ١٠ دد ■X· doc_ent of particular relcvie; the claimed invention cannot b٥·E. ٠nrU«r document publilbd on or after the international filing data ’.-’.ب- .. -....... ..-
■L■ document which my throw doubts on priority ٠laim(s> or which أ when the document i» taken alone

citoil to eitablilh the publication dato of another citation or other ... ٠
specie! reason (a· specified) ·Y٠ document of particule relevance: Ле claimed invention cannot be

considered to involve an inventive stop when the document لآ
■o■ document referring to an oral dúd٠iure١ Ufe, exhibition or other comhined with one or more other such documents» such combination

mean· being obviou، to a per»on ٠kil١٠d in the art

"p" document published prior to the international filing date but later than ・&■ document member of the same patent family
the priority dató claimed

Date of the actual completion of the international search

27 MARCH 1998

Date of mailing of the international search report

م ا 9 MAY 鵬
Name and mailing address of the ISAAJS

Commissioner Oî Patente and Trademarks
Box PCT
Washington, D.c. 20231

Facsimile No. (703)305-3230

٨مجؤ،لا٢
/Esteban A· Rockett

Telephone No. (703) 305"4970

Form PCT/ISA/210 (second sheetXJuly 1992)*

INTERNATIONAL SEARCH REPORT International application No٠

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document» with ^dication，where appropriate» of the relevant passages Relevant to c aim No.

A US 5,586，331 A (LEVENSraiN) 17 December 1996 (17ハ2/96)，
see entire document·

1-24

A US 5,566,319 A (LENZ) 15 October 1996 (15/10/96)，see entire
document·

1-24

A US 5,363,498 A (SAKURABA ET AL.) 08 November 1994
(08/11/94), entire document.

1-24

Form PCT/ISA/210 (continuation of second sheetXJuly 1992)★

