(12) STANDARD PATENT (11) Application No. AU 2011314228 B2
(19) AUSTRALIAN PATENT OFFICE

(54) Title
Entropy coder for image compression

(51) International Patent Classification(s)

GOG6F 9/44 (2006.01) GOG6F 17/00 (2006.01)
GOG6F 13/14 (2006.01)
(21) Application No: 2011314228 (22) Date of Filing: 2011.09.14

(87) WIPO No: WO12/050722

(30) Priority Data

(31) Number (32) Date (33) Country
12/894,793 2010.09.30 us
(43) Publication Date: 2012.04.19

(44) Accepted Journal Date: 2014.07.31

(71) Applicant(s)
Microsoft Corporation

(72) Inventor(s)
Abdo, Nadim Y.

(74) Agent/ Attorney
Davies Collison Cave, Level 15 1 Nicholson Street, MELBOURNE, VIC, 3000

(56) Related Art
US 5689255 A1 (FRAZIER et al.) 18 November 1997
US 2010/0111410 A1 (LU et al.) 6 May 2010

wO 2012/050722 A3 || 111N 0 O OO

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

=

O OO0 A0
(10) International Publication Number

WO 2012/050722 A3

19 April 2012 (19.04.2012) WIPOIPCT

(51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every
GOG6F 17/00 (2006.01) GO6F 9/44 (2006.01) kind of national protection available): AE, AG, AL, AM,
GO6F 13/14 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
. .. CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
(21) International Application Number: N DZ. EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
PCT/US2011/051660 HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR,
(22) International Filing Date: KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
14 September 2011 (14.09.2011) MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
. OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD,
(25) Filing Language: English SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,

(26) Publication Language: English TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(30) Priority Data: (84) Designated States (unless otherwise indicated, for every
12/894,793 30 September 2010 (30.09.2010) Us kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG,
(71) Applicant (for all designated States except US): MI- ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
CROSOFT CORPORATION [US/US]; One Microsoft TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
Way, Redmond, Washington 98052-6399 (US). EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
(72) Inventor: ABDO, Nadim Y.; ¢/o Microsoft Corporation, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,

LCA - International Patents, One Microsoft Way, Red-
mond, Washington 98052-6399 (US).

TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
ML, MR, NE, SN, TD, TG).

[Continued on next page]

(34

910

Title: ENTROPY CODER FOR IMAGE COMPRESSION

- 900

Data

{ Encoder A Encoder B

920

Network

FIG.9

930

(57) Abstract: Example embodiments of the present disclos-
ure provide for a fast entropy coder / decoder for use in real
time image compression. A method of processing graphics
data for transmission to a remote computing device may
comprise receiving graphics data representative of a client
screen to be rendered, receiving information indicative of
available bandwidth for transmission and, based on the in-
formation, determining that the available bandwidth meets a
predetermined threshold, and entropy encoding the graphics
data using a fixed bit size encoding stream, wherein runs of
zeroes are encoded in a variable number of units of the fixed
bit size, and literal values are encoded using one of an entry
in a cache of recently used literal values or a variable num-
ber of units of the fixed bit size.

WO 2012/050722 A3 IR0 A 000000 0 Y0 0

Declarations under Rule 4.17: Published:
— as to applicant's entitlement to apply for and be granted — with international search report (Art. 21(3))

tent (Rule 4.17(ii
a patent (Rule @) (88) Date of publication of the international search report:
— as to the applicant’s entitlement to claim the priority of 19 July 2012
the earlier application (Rule 4.17(iii))

11 Jun 2014

2011314228

20

25

Hixp\erwovemMNRPorthhDCCINPAGI 239571 doc-13/08/2014

ENTROPY CODER FOR IMAGE COMPRESSION

BACKGROUND

[0001] One increasing popular form of networking may generally be referred (o as remote
presentation systems, which can use protocols such as Remote Desktop Protocol (RDP)
and Independent Computing Architecture (ICA) to share a desktop and other applications
executing on a server with a remote client. Such computing systems typically transmit the
keyboard presses and mouse clicks or selections from the client to the server, relaying the
screen updates back in the other direction over a network connection (e.g., the Internet). As
such, the user has the experience as if his or her machine is operating entircly locally.
when in reality the client device is only sent screenshots of the desktop or applications as
they appear on the server side.

[0002] In the remote desktop environment, data representing graphics to be transmitted to
the client arc typically compressed by the server, transmitted from the server to the client
through a nctwork, and decompressed by the client and displayed on the local uscr display.
The process of encoding the data typically requires significant proccssor computation
cycles to compress and decompress the data. Such processing requirements may havc a
direcl effect on the encoding and decoding latency from the server to the client and
negatively impact the remote user's experience.

[0002A] It is desired to address or ameliorate one or more disadvantages or limitations

associated with the prior art, or to at least provide a useful alternative

SUMMARY
[0003] In accordance with the present invention there is provided a method of processing
graphics data for transmission to a remote computing device, the method comprising:
receiving graphics data representative of a client screen associated with a virtual
machine session;
receiving information indicative of available bandwidth for said transmission and.
bascd on the information, determining that the available bandwidth mccts a predetermined

threshold, and

11 Jun 2014

2011314228

HeixpinternoveNRPonbhDCCUNPI63 23957 Ldoc- 1308/ 2014

S

entropy encoding coefficients of transformed graphics data using a compact stream

of bit tokens that form groups that align to byte boundaries, wherein:

runs of zerocs are encoded in a variable number of multiples of a quantum
size:

literal values are encoded using an entry in a cache of rccently used literal
values; and

other values are encoded using a minimum number of multiples of the
quantum sizc.
[0004] The present invention also provides a system for processing graphics data for
{ransmission to a remote computing device, comprising:

a computing device comprising at least onc processor:

a memory communicatively coupled to said processor when said system is
opcrational; said memory having stored therein computer instructions that upon execution
by the at least one processor cause:

recciving graphics data representing a client screen associated with a virtual
machinc session;

dividing said graphics data into data tilcs;

entropy encoding coefficients of transformed data tiles using a strcam of bit tokens
that form groups that align to byte boundaries, wherein:

runs of zeroes are encoded in a variable number of multiples of a quantum size;

literal values are encoded using an entry in a cache of recently used literal values:
and

other values are encoded using a minimum number of units of the quantum sizc.
[0004A) The present invention also provides a computer readable storage device storing
thercon computer executable instructions for processing graphics data for transmission to a
client computer, said instructions for:

receiving graphics data representative of a client screen associated with a virtual
machine session; and

entropy encoding coefficients of transformed graphics data using a compact stream
of bit tokens that form groups that align to byte boundaries such that the cncoded data can

be decoded using a byte-based decoding process, wherein:

11 Jun 2014

2011314228

20

o
w

30

HoixpitmenwovewNRPorhDCC INPWGW 2957 1 doc-1305/2014

S2A -

runs of zeroes are encoded in a variable number of multiples of a nibble:
literal values are encoded using an entry in a cache of recently uscd literal
values; and

other values are encoded using a minimum number of multiples of a nibblc.

BRIEF DESCRIPTION OFF THE DRAWINGS

[0005] Preferred embodiments of the present invention are hereinafter described. by way
of non-limiting example only, with reference to the accompanying drawings, in which:
[0006] FIGs. 1 and 2 depict an example computer system wherein aspects of the present
disclosure can be implemented.

[0007] FIG. 3 depicts an operational environment for practicing aspects of the present
disclosure.

[0008] IG. 4 depicts an operational environment for practicing aspects of the present
disclosure.

[0009FIG. S illustrates a computer system including circuitry for effectuating remote
desktop services.

[0010 FIG. 6 illustrates a computer system including circuitry for effectuating remote
services.

[0011 FIG. 7 illustrates an example of a decoding process.

[0012 FIG. 8 illustrates an example of an encoding process.

(0013 F1G. 9 illustrates an example of an operational procedure for processing graphics
data for transmission to a client computer.

[0014 FIG. 10 illustrates an example of an operational procedure for processing graphics
data for transmission to a client computer.

[001SFIG. 11 illustrates an example system for processing graphics data for

transmission to a client computer.

DETAILED DESCRIPTION
[0016] One problem with remote presentation systems is that such systems tend to favor
data compression at the expense of processor performance. Many systems assume that

bandwidth is more likely to be limited and thus sacrifice processor performance in order 1o

11 Jun 2014

2011314228

20

HanpUne neon e NRPoithbDCC INPT OIS doc- 13032001

-2B -

achieve higher levels of data compression and thus reduce the amount of data that needs to
be transmitted over the limited bandwidth data link. However, many remote presentation
clients today are lower end devices that may use lower speed processors but that may have
access to abundant bandwidth. In such cases overall performance and user experience may
be improved by using a simpler compressor and less computationally demanding
compression techniques even if it means that the compression is reduced.

[0016A] In various embodiments, methods and systems are disclosed for a fast cntropy
coder / decoder for usc in real time image compression. IFor example, a mecthod of
processing graphics data for transmission to a remote computing device may comprise
receiving graphics data representative of a client screen to be rendered, recciving
information indicative of available bandwidth for transmission and, based on the
information, determining that the available bandwidth meets a predetermined threshold.
and entropy encoding the graphics data using a fixed bit size encoding stream, wherein
runs of zeroes are encoded in a variable number of units of the fixed bit size, and literal
values are encoded using one of an entry in a cache of recently used literal values or a
variable number of units of the fixed bit size.

[0017] Systems, methods, and computer readable media for graphics data for transmission
to a remote computing device, and systems, methods, and computer readable media for
altering a view perspective within a virtual environment, are described herein.

Computing Environments In General Terms

[0017A] Certain specific dctails are set forth in the following description and figurcs to

provide a thorough understanding of various embodiments of the disclosure. Certain well-

10

15

20

25

30

WO 2012/050722 PCT/US2011/051660

known details often associated with computing and software technology are not set forth
in the following disclosure to avoid unnecessarily obscuring the various embodiments of
the disclosure. Further, those of ordinary skill in the relevant art will understand that they
can practice other embodiments of the disclosure without one or more of the details
described below. Finally, while various methods are described with reference to steps and
sequences in the following disclosure, the description as such is for providing a clear
implementation of embodiments of the disclosure, and the steps and sequences of steps
should not be taken as required to practice this disclosure.

[0018] It should be understood that the various techniques described herein may be
implemented in connection with hardware or software or, where appropriate, with a
combination of both. Thus, the methods and apparatus of the disclosure, or certain aspects
or portions thereof, may take the form of program code (i.c., instructions) embodied in
tangible media, such as floppy diskettes, CD-ROMs, hard drives, or any other machine-
readable storage medium wherein, when the program code is loaded into and executed by
a machine, such as a computer, the machine becomes an apparatus for practicing the
disclosure. In the case of program code execution on programmable computers, the
computing device generally includes a processor, a storage medium readable by the
processor (including volatile and non-volatile memory and/or storage elements), at least
one input device, and at least one output device. One or more programs that may
implement or utilize the processes described in connection with the disclosure, e.g.,
through the use of an application programming interface (API), reusable controls, or the
like. Such programs are preferably implemented in a high level procedural or object
oriented programming language to communicate with a computer system. However, the
program(s) can be implemented in assembly or machine language, if desired. In any case,
the language may be a compiled or interpreted language, and combined with hardware
implementations.

[0019] A remote desktop system is a computer system that maintains applications that
can be remotely executed by client computer systems. Input is entered at a client computer
system and transferred over a network (e.g., using protocols based on the International
Telecommunications Union (ITU) T.120 family of protocols such as Remote Desktop
Protocol (RDP)) to an application on a terminal server. The application processes the input
as if the input were entered at the terminal server. The application generates output in

response to the received input and the output is transferred over the network to the client

10

15

20

25

30

WO 2012/050722 PCT/US2011/051660

[0020] Embodiments may execute on one or more computers. FIGs. 1 and 2 and the
following discussion are intended to provide a brief general description of a suitable
computing environment in which the disclosure may be implemented. One skilled in the
art can appreciate that computer systems 200, 300 can have some or all of the components
described with respect to computer 100 of FIG. 1 and 2.

[0021] The term circuitry used throughout the disclosure can include hardware
components such as hardware interrupt controllers, hard drives, network adaptors,
graphics processors, hardware based video/audio codecs, and the firmware/software used
to operate such hardware. The term circuitry can also include microprocessors configured
to perform function(s) by firmware or by switches set in a certain way or one or more
logical processors, e.g., one or more cores of a multi-core general processing unit. The
logical processor(s) in this example can be configured by software instructions embodying
logic operable to perform function(s) that are loaded from memory, ¢.g., RAM, ROM,
firmware, and/or virtual memory. In example embodiments where circuitry includes a
combination of hardware and software an implementer may write source code embodying
logic that is subsequently compiled into machine readable code that can be executed by a
logical processor. Since one skilled in the art can appreciate that the state of the art has
evolved to a point where there is little difference between hardware, software, or a
combination of hardware/software, the selection of hardware versus software to effectuate
functions is merely a design choice. Thus, since one of skill in the art can appreciate that a
software process can be transformed into an equivalent hardware structure, and a hardware
structure can itself be transformed into an equivalent software process, the selection of a
hardware implementation versus a software implementation is trivial and left to an
implementer.

[0022] FIG. 1 depicts an example of a computing system which is configured to with
aspects of the disclosure. The computing system can include a computer 20 or the like,
including a processing unit 21, a system memory 22, and a system bus 23 that couples
various system components including the system memory to the processing unit 21. The
system bus 23 may be any of several types of bus structures including a memory bus or
memory controller, a peripheral bus, and a local bus using any of a variety of bus
architectures. The system memory includes read only memory (ROM) 24 and random
access memory (RAM) 25. A basic input/output system 26 (BIOS), containing the basic
routines that help to transfer information between elements within the computer 20, such

as during start up, is stored in ROM 24. The computer 20 may further include a hard disk

_4-

10

15

20

25

30

WO 2012/050722 PCT/US2011/051660

drive 27 for reading from and writing to a hard disk, not shown, a magnetic disk drive 28
for reading from or writing to a removable magnetic disk 29, and an optical disk drive 30
for reading from or writing to a removable optical disk 31 such as a CD ROM or other
optical media. In some example embodiments, computer executable instructions
embodying aspects of the disclosure may be stored in ROM 24, hard disk (not shown),
RAM 25, removable magnetic disk 29, optical disk 31, and/or a cache of processing unit
21. The hard disk drive 27, magnetic disk drive 28, and optical disk drive 30 are
connected to the system bus 23 by a hard disk drive interface 32, a magnetic disk drive
interface 33, and an optical drive interface 34, respectively. The drives and their
associated computer readable media provide non volatile storage of computer readable
instructions, data structures, program modules and other data for the computer 20.
Although the environment described herein employs a hard disk, a removable magnetic
disk 29 and a removable optical disk 31, it should be appreciated by those skilled in the art
that other types of computer readable media which can store data that is accessible by a
computer, such as magnetic cassettes, flash memory cards, digital video disks, Bernoulli
cartridges, random access memories (RAMs), read only memories (ROMs) and the like
may also be used in the operating environment.

[0023] A number of program modules may be stored on the hard disk, magnetic disk 29,
optical disk 31, ROM 24 or RAM 25, including an operating system 35, one or more
application programs 36, other program modules 37 and program data 38. A user may
enter commands and information into the computer 20 through input devices such as a
keyboard 40 and pointing device 42. Other input devices (not shown) may include a
microphone, joystick, game pad, satellite disk, scanner or the like. These and other input
devices are often connected to the processing unit 21 through a serial port interface 46 that
is coupled to the system bus, but may be connected by other interfaces, such as a parallel
port, game port or universal serial bus (USB). A display 47 or other type of display device
can also be connected to the system bus 23 via an interface, such as a video adapter 48. In
addition to the display 47, computers typically include other peripheral output devices (not
shown), such as speakers and printers. The system of FIG. 1 also includes a host adapter
55, Small Computer System Interface (SCSI) bus 56, and an external storage device 62
connected to the SCSI bus 56.

[0024] The computer 20 may operate in a networked environment using logical
connections to one or more remote computers, such as a remote computer 49. The remote

computer 49 may be another computer, a server, a router, a network PC, a peer device or

-5-

10

15

20

25

30

WO 2012/050722 PCT/US2011/051660

other common network node, a virtual machine, and typically can include many or all of
the elements described above relative to the computer 20, although only a memory storage
device 50 has been illustrated in FIG. 1. The logical connections depicted in FIG. 1 can
include a local area network (LAN) 51 and a wide area network (WAN) 52. Such
networking environments are commonplace in offices, enterprise wide computer networks,
intranets and the Internet.

[0025] When used in a LAN networking environment, the computer 20 can be connected
to the LAN 51 through a network interface or adapter 53. When used in a WAN
networking environment, the computer 20 can typically include a modem 54 or other
means for establishing communications over the wide area network 52, such as the
Internet. The modem 54, which may be internal or external, can be connected to the
system bus 23 via the serial port interface 46. In a networked environment, program
modules depicted relative to the computer 20, or portions thereof, may be stored in the
remote memory storage device. It will be appreciated that the network connections shown
are examples and other means of establishing a communications link between the
computers may be used. Moreover, while it is envisioned that numerous embodiments of
the disclosure are particularly well-suited for computer systems, nothing in this document
is intended to limit the disclosure to such embodiments.

[0026] Referring now to FIG. 2, another embodiment of an exemplary computing system
100 is depicted. Computer system 100 can include a logical processor 102, ¢.g., an
execution core. While one logical processor 102 is illustrated, in other embodiments
computer system 100 may have multiple logical processors, e.g., multiple execution cores
per processor substrate and/or multiple processor substrates that could each have multiple
execution cores. As shown by the figure, various computer readable storage media 110
can be interconnected by one or more system busses which couples various system
components to the logical processor 102. The system buses may be any of several types of
bus structures including a memory bus or memory controller, a peripheral bus, and a local
bus using any of a variety of bus architectures. In example embodiments the computer
readable storage media 110 can include for example, random access memory (RAM) 104,
storage device 106, e.g., electromechanical hard drive, solid state hard drive, etc.,
firmware 108, e¢.g., FLASH RAM or ROM, and removable storage devices 118 such as,
for example, CD-ROMs, floppy disks, DVDs, FLASH drives, external storage devices,
etc. It should be appreciated by those skilled in the art that other types of computer

10

15

20

25

30

WO 2012/050722 PCT/US2011/051660

readable storage media can be used such as magnetic cassettes, flash memory cards, digital
video disks, Bernoulli cartridges.

[0027] The computer readable storage media provide non volatile storage of processor
executable instructions 122, data structures, program modules and other data for the
computer 100. A basic input/output system (BIOS) 120, containing the basic routines that
help to transfer information between elements within the computer system 100, such as
during start up, can be stored in firmware 108. A number of programs may be stored on
firmware 108, storage device 106, RAM 104, and/or removable storage devices 118, and
executed by logical processor 102 including an operating system and/or application
programs.

[0028] Commands and information may be received by computer 100 through input
devices 116 which can include, but are not limited to, a keyboard and pointing device.
Other input devices may include a microphone, joystick, game pad, scanner or the like.
These and other input devices are often connected to the logical processor 102 through a
serial port interface that is coupled to the system bus, but may be connected by other
interfaces, such as a parallel port, game port or universal serial bus (USB). A display or
other type of display device can also be connected to the system bus via an interface, such
as a video adapter which can be part of, or connected to, a graphics processor 112. In
addition to the display, computers typically include other peripheral output devices (not
shown), such as speakers and printers. The exemplary system of FIG. 1 can also include a
host adapter, Small Computer System Interface (SCSI) bus, and an external storage device
connected to the SCSI bus.

[0029] Computer system 100 may operate in a networked environment using logical
connections to one or more remote computers, such as a remote computer. The remote
computer may be another computer, a server, a router, a network PC, a peer device or
other common network node, and typically can include many or all of the elements
described above relative to computer system 100.

[0030] When used in a LAN or WAN networking environment, computer system 100 can
be connected to the LAN or WAN through a network interface card 114. The NIC 114,
which may be internal or external, can be connected to the system bus. In a networked
environment, program modules depicted relative to the computer system 100, or portions
thereof, may be stored in the remote memory storage device. It will be appreciated that
the network connections described here are exemplary and other means of establishing a

communications link between the computers may be used. Moreover, while it is

-7-

10

15

20

25

30

WO 2012/050722 PCT/US2011/051660

envisioned that numerous embodiments of the present disclosure are particularly well-
suited for computerized systems, nothing in this document is intended to limit the
disclosure to such embodiments.

[0031] A remote desktop system is a computer system that maintains applications that
can be remotely executed by client computer systems. Input is entered at a client computer
system and transferred over a network (e.g., using protocols based on the International
Telecommunications Union (ITU) T.120 family of protocols such as Remote Desktop
Protocol (RDP)) to an application on a terminal server. The application processes the input
as if the input were entered at the terminal server. The application generates output in
response to the received input and the output is transferred over the network to the client
computer system. The client computer system presents the output data. Thus, input is
received and output presented at the client computer system, while processing actually
occurs at the terminal server. A session can include a shell and a user interface such as a
desktop, the subsystems that track mouse movement within the desktop, the subsystems
that translate a mouse click on an icon into commands that effectuate an instance of a
program, etc. In another example embodiment the session can include an application. In
this example while an application is rendered, a desktop environment may still be
generated and hidden from the user. It should be understood that the foregoing discussion
is exemplary and that the presently disclosed subject matter may be implemented in
various client/server environments and not limited to a particular terminal services
product.

[0032] In most, if not all remote desktop environments, input data (entered at a client
computer system) typically includes mouse and keyboard data representing commands to
an application and output data (generated by an application at the terminal server)
typically includes video data for display on a video output device. Many remote desktop
environments also include functionality that extend to transfer other types of data.

[0033] Communications channels can be used to extend the RDP protocol by allowing
plug-ins to transfer data over an RDP connection. Many such extensions exist. Features
such as printer redirection, clipboard redirection, port redirection, etc., use
communications channel technology. Thus, in addition to input and output data, there may
be many communications channels that need to transfer data. Accordingly, there may be
occasional requests to transfer output data and one or more channel requests to transfer

other data contending for available network bandwidth.

10

15

20

25

30

WO 2012/050722 PCT/US2011/051660

[0034] Referring now to FIG. 3 and 4, depicted are high level block diagrams of
computer systems configured to effectuate virtual machines. As shown in the figures,
computer system 100 can include elements described in FIGs. 1 and 2 and components
operable to effectuate virtual machines. One such component is a hypervisor 202 that may
also be referred to in the art as a virtual machine monitor. The hypervisor 202 in the
depicted embodiment can be configured to control and arbitrate access to the hardware of
computer system 100. Broadly stated, the hypervisor 202 can generate execution
environments called partitions such as child partition 1 through child partition N (where N
1s an integer greater than or equal to 1). In embodiments a child partition can be
considered the basic unit of isolation supported by the hypervisor 202, that is, each child
partition can be mapped to a set of hardware resources, ¢.g., memory, devices, logical
processor cycles, etc., that is under control of the hypervisor 202 and/or the parent
partition and hypervisor 202 can isolate one partition from accessing another partition’s
resources. In embodiments the hypervisor 202 can be a stand-alone software product, a
part of an operating system, embedded within firmware of the motherboard, specialized
integrated circuits, or a combination thereof.

[0035] In the above example, computer system 100 includes a parent partition 204 that
can also be thought of as domain 0 in the open source community. Parent partition 204
can be configured to provide resources to guest operating systems executing in child
partitions 1-N by using virtualization service providers 228 (VSPs) that are also known as
back-end drivers in the open source community. In this example architecture the parent
partition 204 can gate access to the underlying hardware. The VSPs 228 can be used to
multiplex the interfaces to the hardware resources by way of virtualization service clients
(VSCs) that are also known as front-end drivers in the open source community. Each
child partition can include one or more virtual processors such as virtual processors 230
through 232 that guest operating systems 220 through 222 can manage and schedule
threads to execute thereon. Generally, the virtual processors 230 through 232 are
executable instructions and associated state information that provide a representation of a
physical processor with a specific architecture. For example, one virtual machine may
have a virtual processor having characteristics of an Intel x86 processor, whereas another
virtual processor may have the characteristics of a PowerPC processor. The virtual
processors in this example can be mapped to logical processors of the computer system
such that the instructions that effectuate the virtual processors will be backed by logical

processors. Thus, in these example embodiments, multiple virtual processors can be

-9-

10

15

20

25

30

WO 2012/050722 PCT/US2011/051660

simultaneously executing while, for example, another logical processor is executing
hypervisor instructions. Generally speaking, and as illustrated by the figures, the
combination of virtual processors, various VSCs, and memory in a partition can be
considered a virtual machine such as virtual machine 240 or 242.

[0036] Generally, guest operating systems 220 through 222 can include any operating
system such as, for example, operating systems from Microsoft®, Apple®, the open
source community, etc. The guest operating systems can include user/kernel modes of
operation and can have kernels that can include schedulers, memory managers, etc. A
kernel mode can include an execution mode in a logical processor that grants access to at
least privileged processor instructions. Each guest operating system 220 through 222 can
have associated file systems that can have applications stored thereon such as terminal
servers, e-commerce servers, email servers, etc., and the guest operating systems
themselves. The guest operating systems 220-222 can schedule threads to execute on the
virtual processors 230-232 and instances of such applications can be effectuated.

[0037] Referring now to FIG. 4, illustrated is an alternative architecture that can be used
to effectuate virtual machines. FIG. 4 depicts similar components to those of FIG. 3,
however in this example embodiment the hypervisor 202 can include the virtualization
service providers 228 and device drivers 224, and parent partition 204 may contain
configuration utilities 236. In this architecture, hypervisor 202 can perform the same or
similar functions as the hypervisor 202 of FIG. 2. The hypervisor 202 of FIG. 4 can be a
stand alone software product, a part of an operating system, embedded within firmware of
the motherboard or a portion of hypervisor 202 can be effectuated by specialized
integrated circuits. In this example parent partition 204 may have instructions that can be
used to configure hypervisor 202 however hardware access requests may be handled by
hypervisor 202 instead of being passed to parent partition 204.

[0038] Referring now to FIG. 5, computer 100 may include circuitry configured to
provide remote desktop services to connecting clients. In an example embodiment, the
depicted operating system 400 may execute directly on the hardware or a guest operating
system 220 or 222 may be effectuated by a virtual machine such as VM 216 or VM 218.
The underlying hardware 208, 210, 234, 212, and 214 is indicated in the illustrated type of
dashed lines to identify that the hardware can be virtualized.

[0039] Remote services can be provided to at least one client such as client 401 (while
one client is depicted remote services can be provided to more clients.) The example

client 401 can include a computer terminal that is effectuated by hardware configured to

- 10 -

10

15

20

25

30

WO 2012/050722 PCT/US2011/051660

direct user input to a remote server session and display user interface information
generated by the session. In another embodiment, client 401 can be effectuated by a
computer that includes similar elements as those of computer 100 FIG. 1b. In this
embodiment, client 401 can include circuitry configured to effect operating systems and
circuitry configured to emulate the functionality of terminals, e.g., a remote desktop client
application that can be executed by one or more logical processors 102. One skilled in the
art can appreciate that the circuitry configured to effectuate the operating system can also
include circuitry configured to emulate a terminal.

[0040] Each connecting client can have a session (such as session 404) which allows the
client to access data and applications stored on computer 100. Generally, applications and
certain operating system components can be loaded into a region of memory assigned to a
session. Thus, in certain instances some OS components can be spawned N times (where
N represents the number of current sessions). These various OS components can request
services from the operating system kernel 418 which can, for example, manage memory;
facilitate disk reads/writes; and configure threads from each session to execute on the
logical processor 102. Some example subsystems that can be loaded into session space
can include the subsystems that generates desktop environments, the subsystems that track
mouse movement within the desktop, the subsystems that translate mouse clicks on icons
into commands that effectuate an instance of a program, etc. The processes that effectuate
these services, e.g., tracking mouse movement, are tagged with an identifier associated
with the session and are loaded into a region of memory that is allocated to the session.
[0041] A session can be generated by a session manager 416, e.g., a process. For
example, the session manager 416 can initialize and manage each remote session by
generating a session identifier for a session space; assigning memory to the session space;
and generating system environment variables and instances of subsystem processes in
memory assigned to the session space. The session manager 416 can be invoked when a
request for a remote desktop session is received by the operating system 400.

[0042] A connection request can first be handled by a transport stack 410, e.g., a remote
desktop protocol (RDP) stack. The transport stack 410 instructions can configure logical
processor 102 to listen for connection messages on a certain port and forward them to the
session manager 416. When sessions are generated the transport stack 410 can instantiate
a remote desktop protocol stack instance for each session. Stack instance 414 is an

example stack instance that can be generated for session 404. Generally, each remote

-11 -

10

15

20

25

30

WO 2012/050722 PCT/US2011/051660

desktop protocol stack instance can be configured to route output to an associated client
and route client input to an environment subsystem 444 for the appropriate remote session.
[0043] As shown by the figure, in an embodiment an application 448 (while one is shown
others can also execute) can execute and generate an array of bits. The array can be
processed by a graphics interface 446 which in turn can render bitmaps, e.g., arrays of
pixel values, that can be stored in memory. As shown by the figure, a remote display
subsystem 420 can be instantiated which can capture rendering calls and send the calls
over the network to client 401 via the stack instance 414 for the session.

[0044] In addition to remoting graphics and audio, a plug and play redirector 458 can
also be instantiated in order to remote diverse devices such as printers, mp3 players, client
file systems, CD ROM drives, etc. The plug and play redirector 458 can receive
information from a client side component which identifies the peripheral devices coupled
to the client 401. The plug and play redirector 458 can then configure the operating
system 400 to load redirecting device drivers for the peripheral devices of the client 401.
The redirecting device drivers can receive calls from the operating system 400 to access
the peripherals and send the calls over the network to the client 401.

[0045] As discussed above, clients may use a protocol for providing remote presentation
services such as Remote Desktop Protocol (RDP) to connect to a resource using terminal
services. When a remote desktop client connects to a terminal server via a terminal server
gateway, the gateway may open a socket connection with the terminal server and redirect
client traffic on the remote presentation port or a port dedicated to remote access services.
The gateway may also perform certain gateway specific exchanges with the client using a
terminal server gateway protocol transmitted over HTTPS.

[0046] Turning to FIG. 6, depicted is a computer system 100 including circuitry for
effectuating remote services and for incorporating aspects of the present disclosure. As
shown by the figure, in an embodiment a computer system 100 can include components
similar to those described in FIG. 2 and FIG. 5, and can effectuate a remote presentation
session. In an embodiment of the present disclosure a remote presentation session can
include aspects of a console session, e.g., a session spawned for a user using the computer
system, and a remote session. Similar to that described above, the session manager 416
can initialize and manage the remote presentation session by enabling/disabling

components in order to effectuate a remote presentation session.

-12 -

10

15

20

25

30

WO 2012/050722 PCT/US2011/051660

[0047] One set of components that can be loaded in a remote presentation session are the
console components that enable high fidelity remoting, namely, the components that take
advantage of 3D graphics and 2D graphics rendered by 3D hardware.

[0048] 3D/2D graphics rendered by 3D hardware can be accessed using a driver model
that includes a user mode driver 522, an API 520, a graphics kernel 524, and a kernel
mode driver 530. An application 448 (or any other process such as a user interface that
generates 3D graphics) can generate API constructs and send them to an application
programming interface 520 (API) such as Direct3D from Microsoft®. The API 520 in
turn can communicate with a user mode driver 522 which can generates primitives, ¢.g.,
the fundamental geometric shapes used in computer graphics represented as vertices and
constants which are used as building blocks for other shapes, and stores them in buffers,
e.g., pages of memory. In one embodiment the application 448 can declare how it is going
to use the buffer, e.g., what type of data it is going to store in the buffer. An application,
such as a videogame, may use a dynamic buffer to store primitives for an avatar and a
static buffer for storing data that will not change often such as data that represents a
building or a forest.

[0049] Continuing with the description of the driver model, the application can fill the
buffers with primitives and issue execute commands. When the application issues an
execute command the buffer can be appended to a run list by the kernel mode driver 530
and scheduled by the graphics kernel scheduler 528. Each graphics source, ¢.g.,
application or user interface, can have a context and its own run list. The graphics kernel
524 can be configured to schedule various contexts to execute on the graphics processing
unit 112. The GPU scheduler 528 can be executed by logical processor 102 and the
scheduler 528 can issue a command to the kernel mode driver 530 to render the contents
of the buffer. The stack instance 414 can be configured to receive the command and send
the contents of the buffer over the network to the client 401 where the buffer can be
processed by the GPU of the client.

[0050] Illustrated now is an example of the operation of a virtualized GPU as used in
conjunction with an application that calls for remote presentation services. Referring to
FIG. 6, in an embodiment a virtual machine session can be generated by a computer 100.
For example, a session manager 416 can be executed by a logical processor 102 and a
remote session that includes certain remote components can be initialized. In this example
the spawned session can include a kernel 418, a graphics kernel 524, a user mode display

driver 522, and a kernel mode display driver 530. The user mode driver 522 can generate

- 13-

10

15

20

25

30

WO 2012/050722 PCT/US2011/051660

graphics primitives that can be stored in memory. For example, the API 520 can include
interfaces that can be exposed to processes such as a user interface for the operating
system 400 or an application 448. The process can send high level API commands such as
such as Point Lists, Line Lists, Line Strips, Triangle Lists, Triangle Strips, or Triangle
Fans, to the API 420. The API 520 can receive these commands and translate them into
commands for the user mode driver 522 which can then generate vertices and store them
in one or more buffers. The GPU scheduler 528 can run and determine to render the
contents of the buffer. In this example the command to the graphics processing unit 112
of the server can be captured and the content of the buffer (primitives) can be sent to client
401 via network interface card 114. In an embodiment, an API can be exposed by the
session manager 416 that components can interface with in order to determine whether a
virtual GPU is available.

[0051] In an embodiment a virtual machine such as virtual machine 240 of FIG. 3 or 4
can be instantiated and the virtual machine can serve as a platform for execution for the
operating system 400. Guest operating system 220 can embody operating system 400 in
this example. A virtual machine may be instantiated when a connection request is
received over the network. For example, the parent partition 204 may include an instance
of the transport stack 410 and may be configured to receive connection requests. The
parent partition 204 may initialize a virtual machine in response to a connection request
along with a guest operating system including the capabilities to effectuate remote
sessions. The connection request can then be passed to the transport stack 410 of the guest
operating system 220. In this example each remote session may be instantiated on an
operating system that is executed by its own virtual machine.

[0052] In one embodiment a virtual machine can be instantiated and a guest operating
system 220 embodying operating system 400 can be executed. Similar to that described
above, a virtual machine may be instantiated when a connection request is received over
the network. Remote sessions may be generated by an operating system. The session
manager 416 can be configured to determine that the request is for a session that supports
3D graphics rendering and the session manager 416 can load a console session. In
addition to loading the console session the session manager 416 can load a stack instance
414’ for the session and configure system to capture primitives generated by a user mode
display driver 522.

[0053] The user mode driver 522 may generate graphics primitives that can be captured

and stored in buffers accessible to the transport stack 410. A kernel mode driver 530 can

- 14 -

10

15

20

25

30

WO 2012/050722 PCT/US2011/051660

append the buffers to a run list for the application and a GPU scheduler 528 can run and
determine when to issue render commands for the buffers. When the scheduler 528 issues
a render command the command can be captured by, for example, the kernel mode driver
530 and sent to the client 401 via the stack instance 414.

[0054] The GPU scheduler 528 may execute and determine to issue an instruction to
render the content of the buffer. In this example the graphics primitives associated with
the instruction to render can be sent to client 401 via network interface card 114.

[0055] In an embodiment, at least one kernel mode process can be executed by at least
one logical processor 112 and the at least one logical processor 112 can synchronize
rendering vertices stored in different buffers. For example, a graphics processing
scheduler 528, which can operate similarly to an operating system scheduler, can schedule
GPU operations. The GPU scheduler 528 can merge separate buffers of vertices into the
correct execution order such that the graphics processing unit of the client 401 executes
the commands in an order that allows them to be rendered correctly.

[0056] One or more threads of a process such as a videogame may map multiple buffers
and cach thread may issue a draw command. Identification information for the vertices,
e.g., information generated per buffer, per vertex, or per batch of vertices in a buffer, can
be sent to the GPU scheduler 528. The information may be stored in a table along with
identification information associated with vertices from the same, or other processes and
used to synchronize rendering of the various buffers.

[0057] An application such as a word processing program may execute and declare , for
example, two buffers - one for storing vertices for generating 3D menus and the other one
storing commands for generating letters that will populate the menus. The application
may map the buffer and; issue draw commands. The GPU scheduler 528 may determine
the order for executing the two buffers such that the menus are rendered along with the
letters in a way that it would be pleasing to look at. For example, other processes may
issue draw commands at the same or a substantially similar time and if the vertices were
not synchronized vertices from different threads of different processes could be rendered
asynchronously on the client 401 thereby making the final image displayed seem chaotic
or jumbled.

[0058] A bulk compressor 450 can be used to compress the graphics primitives prior to
sending the stream of data to the client 401. In an embodiment the bulk compressor 450
can be a user mode (not shown) or kernel mode component of the stack instance 414 and

can be configured to look for similar patterns within the stream of data that is being sent to

-15 -

10

15

20

25

30

WO 2012/050722 PCT/US2011/051660

the client 401. In this embodiment, since the bulk compressor 450 receives a stream of
vertices, instead of receiving multiple API constructs, from multiple applications, the bulk
compressor 450 has a larger data set of vertices to sift through in order to find
opportunities to compress. That is, since the vertices for a plurality of processes are being
remoted, instead of diverse API calls, there is a larger chance that the bulk compressor 450
will be able to find similar patterns in a given stream.

[0059] In an embodiment, the graphics processing unit 112 may be configured to use
virtual addressing instead of physical addresses for memory. Thus, the pages of memory
used as buffers can be paged to system RAM or to disk from video memory. The stack
instance 414’ can be configured to obtain the virtual addresses of the buffers and send the
contents from the virtual addresses when a render command from the graphics kernel 528
is captured.

[0060] An operating system 400 may be configured, e.g., various subsystems and drivers
can be loaded to capture primitives and send them to a remote computer such as client
401. Similar to that described above, a session manager 416 can be executed by a logical
processor 102 and a session that includes certain remote components can be initialized. In
this example the spawned session can include a kernel 418, a graphics kernel 524, a user
mode display driver 522, and a kernel mode display driver 530.

[0061] A graphics kernel may schedule GPU operations. The GPU scheduler 528 can
merge separate buffers of vertices into the correct execution order such that the graphics
processing unit of the client 401 executes the commands in an order that allows them to be
rendered correctly.

[0062] Referring to Figure 7, a block diagram illustrating a decoding process is shown, in
accordance with one embodiment of the present disclosure. The encoding process is
shown in Figure 8. The encoded tile may be first run through an RLGR decoder 900 to
generate a quantized tile coefficient. This may be performed on the CPU.

[0063] Dequantization 705 may be implemented on the CPU using SSE2 instructions.
After dequantization, the ten subbands of the three components of the tile may be copied
into three Direct3D texture buffers of format L16, one for each of Y, U and V. These three
textures may be uploaded onto the GPU and can be used by the Inverse DWT stage 710 as
input.

[0064] All of these variations for implementing the above mentioned partitions are just
exemplary implementations, and nothing herein should be interpreted as limiting the

disclosure to any particular virtualization aspect.

- 16 -

10

15

20

25

30

WO 2012/050722 PCT/US2011/051660

Entropy Encoder

[0065] In a virtual desktop or remote presentation session, the user graphics and video
may be rendered at the server for each user. The resulting bitmaps may then be sent to the
client for display and interaction. To reduce the bandwidth requirements on the network,
bitmaps may be compressed before sending to the client. It is desirable that the
compression technique be efficient with low latency.

[0066] Described herein is a system and method for encoding and decoding bitmaps and
other graphics data. The encoding system may include a tiling system with a tiling module
that initially divides source image data into data tiles. A frame differencing module may
then output only altered data tiles to various processing modules that convert the altered
data tiles into corresponding tile components. In an embodiment, a quantizer may perform
a compression procedure upon the tile components to generate compressed data according
to an adjustable quantization parameter. An adaptive entropy encoder selector may then
select one of a plurality of entropy encoders to perform an entropy encoding procedure to
thereby produce encoded data. The entropy encoder may also utilize a feedback loop to
adjust the quantization parameter in light of current transmission bandwidth
characteristics. The process of compressing, encoding and decoding graphics data as
referred to herein may generally use one or more methods and systems described in
commonly assigned U.S. Patent Number 7,460,725 entitled “System And Method For
Effectively Encoding And Decoding Electronic Information” and U.S. Application No.
12/399,302 entitled “Frame Capture, Encoding, And Transmission Management” filed on
March 6, 2009, hereby incorporated by reference in their entirety.

[0067] In various methods and systems disclosed herein, improvements to the processing
and handling of the various processes described above may be used to provide more
efficient processing and thus a more timely and rich user experience. The methods and
systems also provide for improvements in providing such graphics support when the
network and/or system resources are providing adequate bandwidth and/or the client
device has slower processing speed or resources. The embodiments disclosed herein for
rendering, encoding and transmitting graphics data may be implemented using various
combinations of hardware and software processes. In some embodiments, functions may
be executed entirely in hardware. In other embodiments, functions may be performed
entirely in software. In yet further embodiments, functions may be implemented using a

combination of hardware and software processes. Such processes may further be

-17-

10

15

20

25

30

WO 2012/050722 PCT/US2011/051660

implemented using one or more CPUs and/or one or more specialized processors such as a
graphics processing unit (GPU) or other dedicated graphics rendering devices.

[0068] Furthermore, while the following descriptions are provided in the context of
remote presentation systems, it should be understood that the disclosed embodiments may
be implemented in any type of system in which graphics data is encoded and compressed
for delivery over a network.

[0069] Various embodiments may incorporate the use of the discrete wavelet transform
(DWT) function for transforming individual YUV components of the tiles into
corresponding YUYV tile subbands. A quantizer function may perform a quantization
procedure by utilizing appropriate quantization techniques to compress the tile subbands.
The quantizer function may produce compressed image data by reducing the bit rate of the
tiles according to a particular compression ratio that may be specified by an adaptive
quantization parameter received via a feedback loop from an entropy encoder.

[0070] In one embodiment, a GPU may be provided a bitmap with changed rectangles
that need to be compressed. The bitmap may be further split into logical tiles and only tiles
that change within the changed rectangle are encoded and compressed. In this manner, the
process effectively implements a caching scheme in concert with the client where the
resulting decoded image is maintained and displayed.

[0071] Remote presentation compression algorithms are employed to reduce the
bandwidth of the display stream to levels that are acceptable for transmission over local
area networks, wide area networks, and low-bandwidth networks. Such algorithms
typically trade off CPU time on the server side for a lower desired bandwidth.

[0072] Image compressors may be used that may employ a phase called an entropy coder.
An entropy encoder function may perform an entropy encoding procedure to generate
encoded data. In certain embodiments, the entropy encoding procedure further reduces the
bit rate of the compressed image data by substituting appropriate codes for corresponding
bit patterns in the compressed image data received from the quantizer.

[0073] The entropy encoding employed in a remote presentation system generally
balances CPU performance (i.e. speed) with compression ratio. Entropy coders may be
tuned for good compression at reasonable CPU speed. Typical entropy coders include
Run-Length, Huffman, arithmetic, and variations of Golomb-Rice coders. One of the main
problems in designing efficient entropy coders for remote presentation applications is that
typically there are large variations in the statistics of blocks of integers to be encoded.

Studies have shown that in most cases the data prior to quantization have probability

- 18 -

10

15

20

25

30

WO 2012/050722 PCT/US2011/051660

distributions that can be significantly more concentrated near zero than a Gaussian
distribution.

[0074] The present disclosure is concerned with implementing a simplified entropy coder
that is configured to improve encoding and decoding speed at the potential expense of loss
of compressibility. However, in many situations this tradeoff may be acceptable and
actually more desirable in scenarios which are limited by low-speed CPUs rather than
bandwidth. The net result is that an encoder/decoder may be provided that is two or three
times faster than current encoders/decoders at a loss of compressibility on the order of
10% to 20%.

[0075] Such an encoder/decoder may be useful because it enables scenarios in which
optimizing for processor speed is a higher priority than saving every last bit of bandwidth.
For example, lower end client devices may achieve better performance with a simpler
compressor to allow for faster processing. Remote presentations systems are typically
optimized to reduce bandwidth regardless of CPU cost and capability. In many systems
today, bandwidth may be plentiful while the client devices may be simpler devices such as
set top boxes or thin clients.

[0076] In one embodiment an entropy encoder may be configured to avoid using a
variable bit-stream format. Employing a variable bit-stream is invariably slower to encode
and decode efficiently. In an embodiment, an encoder may be configured to use nibble-
sized (aka quad-bit) codes to achieve a regular-size of fixed-size encoding stream. By
using such a stream, the stream may be faster to decode and can be decoded securely (with
full overflow checks) at much less CPU cost.

[0077] In one example scheme the encoder encodes the following types of operations:

1) Run’s of 0’s (which are common inputs to the entropy encoder) - Run’s of 0’s
are encoded in a variable number of quads matched to the statistical observation that the
majority of runs are very short

2) Literal values - Literal values are encoded either as an Least Recently Used
(LRU) hit in a table (cache) of the most recent literal values seen or as a variable number
of quads again benefiting from the statistical properties that smaller values are more likely
to occur
[0078] In both cases there are effectively two streams: (a) the quad-stream of op-codes
and (b) the large value stream. Certain op-codes for either a run-length or a literal length

simply indicate “get the next value in the large value stream.”

-19-

10

15

20

25

30

WO 2012/050722 PCT/US2011/051660

[0079] The large value stream may be encoded with a basic multi-byte encoding scheme
that uses less bytes for small values than large values, but at the same time is guaranteed to
operate only on fixed-byte boundaries. By using such an encoding scheme, both the quad-
stream and value-stream can be decoded without the need for complex bit-shifting or
variable-bit decoding schemes, thus allowing for much faster performance than the more
general/complex entropy coders (e.g., RLGR or various Huffman based schemes). Such a
simplified encoder may be configured such that any number of bits, for example from 1 to
32 bits, can be encoded. In more complex encoding, decoding becomes computationally
challenging because of the variable bits and the necessary processing which typically
requires many coding branches and a significant amount of bookkeeping during
processing. Using this simplified scheme allows for minimizing such complexity by using
a regular size structure (e.g., quads). In such a scheme, no output symbol is more than four
bits and the data are in multiples of a byte with no shifts or rolls. A byte may contain two
codes that can be processed in parallel if desired. Furthermore, if the number of quads are
known then buffer overruns can be avoided. In trials using typical remote presentation
scenarios a loss of only 10-20% compressibility was measured at a gain of 2-3 times
performance using currently available CPU’s.

[0080] In some embodiments, logic may be provided for switching between a more
complex/slower entropy coder and a simpler encoder as described herein. For example,
referring to Fig. 9, a remote presentation system may provide at least two encoders 910
and 920. Encoder 910 may be a complex entropy encoder such as one that implements
RLGR. Encoder 920 may be a simplified encoder in accordance with the present
disclosure. Depending on the conditions of network 930, the system may choose one of
the encoders 910 or 920 to encode data 900. For example, if network conditions indicate
that the network is congested and that available bandwidth is limited, complex encoder
910 may be selected for encoding data 900 in order to minimize the amount of data to be
transmitted over network 930. Similarly, if network conditions indicate that the network is
not congested, simplified encoder 910 may be selected for encoding data 900 in order to
provide faster processor performance at the client.

[0081] Appendix A provides an example implementation of a simplified encoder in
accordance with this disclosure.

[0082] Figure 10 depicts an exemplary operational procedure for processing graphics
data for transmission to a client computer including operations 1000, 1002, 1004, and

1006. Referring to Figure 10, operation 1000 begins the operational procedure and

=20 -

10

15

20

25

30

WO 2012/050722 PCT/US2011/051660

operation 1002 illustrates receiving graphics data representative of a client screen
associated with a virtual machine session. Operation 1004 illustrates receiving information
indicative of available bandwidth for said transmission and, based on the information,
determining that the available bandwidth meets a predetermined threshold. Operation
1006 illustrates entropy encoding coefficients of transformed graphics data using a
compact stream of bit tokens aligned to byte boundaries. In an embodiment, runs of zeroes
are encoded in a variable number of multiples of a quantum size, literal values are encoded
using an entry in a cache of recently used literal values, and other values are encoded
using a minimum number of multiples of the quantum size. A bit token may be a string of
bits that define a unit of data. For example, in a nibble based system a four bit token is
used.

[0083] In various embodiments, the quantum size may be a nibble. In some
embodiments, the operational procedure may include generating a stream of entropy
encoding op-codes and a large value stream. The procedure may further include entropy
encoding the large value stream with a multi-byte encoding scheme that uses less bytes for
small values than large values and dividing said graphics data into data tiles, processing
said data tiles into tile components, and performing said entropy encoding on said tile
components. The encoding scheme may be configured to operate only on fixed-byte
boundaries.

[0084] Figure 11 depicts an exemplary system for processing graphics data for
transmission to a client computer as described above. Referring to Figure 11, system 1100
comprises a processor 1110 and memory 1120. Memory 1120 further comprises computer
instructions configured to process graphics data for transmission to a remote computing
device. Block 1122 illustrates receiving graphics data representing a client screen
associated with a virtual machine session. Block 1124 illustrates dividing said graphics
data into data tiles. Block 1126 illustrates entropy encoding coefficients of transformed
data tiles using a stream of bit tokens aligned to byte boundaries.

[0085] Any of the above mentioned aspects can be implemented in methods, systems,
computer readable media, or any type of manufacture. For example, a computer readable
medium can store thereon computer executable instructions for processing graphics data
for transmission to a client computer. Such media can comprise a first subset of
instructions for receiving graphics data representative of a client screen associated with a
virtual machine session and a second subset of instructions for entropy encoding

coefficients of transformed graphics data using a compact stream of bit tokens aligned to

-21 -

10

15

20

25

30

WO 2012/050722 PCT/US2011/051660

byte boundaries such that the encoded data can be decoded using a byte-based decoding
process. It will be appreciated by those skilled in the art that additional sets of instructions
can be used to capture the various other aspects disclosed herein, and that the two
presently disclosed subsets of instructions can vary in detail per the present disclosure.
[0086] The foregoing detailed description has set forth various embodiments of the
systems and/or processes via examples and/or operational diagrams. Insofar as such block
diagrams, and/or examples contain one or more functions and/or operations, it will be
understood by those within the art that each function and/or operation within such block
diagrams, or examples can be implemented, individually and/or collectively, by a wide
range of hardware, software, firmware, or virtually any combination thereof.

[0087] It should be understood that the various techniques described herein may be
implemented in connection with hardware or software or, where appropriate, with a
combination of both. Thus, the methods and apparatus of the disclosure, or certain aspects
or portions thereof, may take the form of program code (i.e., instructions) embodied in
tangible media, such as floppy diskettes, CD-ROMs, hard drives, or any other machine-
readable storage medium wherein, when the program code is loaded into and executed by
a machine, such as a computer, the machine becomes an apparatus for practicing the
disclosure. In the case of program code execution on programmable computers, the
computing device generally includes a processor, a storage medium readable by the
processor (including volatile and non-volatile memory and/or storage elements), at least
one input device, and at least one output device. One or more programs that may
implement or utilize the processes described in connection with the disclosure, e.g.,
through the use of an application programming interface (API), reusable controls, or the
like. Such programs are preferably implemented in a high level procedural or object
oriented programming language to communicate with a computer system. However, the
program(s) can be implemented in assembly or machine language, if desired. In any case,
the language may be a compiled or interpreted language, and combined with hardware
implementations.

[0088] While the invention has been particularly shown and described with reference to a
preferred embodiment thereof, it will be understood by those skilled in the art that various
changes in form and detail may be made without departing from the scope of the present
invention as set forth in the following claims. Furthermore, although elements of the
invention may be described or claimed in the singular, the plural is contemplated unless

limitation to the singular is explicitly stated.

-22 -

11 Jun 2014

2011314228

Hispilemove:NRPonbEDCCINPWGI2R9ST | doe- 13052004

-22A -

[0089] Throughout this specification and the claims which follow, unless the
context requires otherwise, the word "comprise”, and variations such as "compriscs" and
"comprising", will be understood to imply the inclusion of a stated integer or step or group
of integers or steps but not the exclusion of any other integer or step or group of integers or

> steps.

[0090] The reference in this specification to any prior publication (or information
derived from it), or to any matter which is known, is not, and should not be taken as an
acknowledgment or admission or any form of suggestion that that prior publication (or
information derived from i) or known matter forms part of the common general

10 knowledge in the field of endeavour to which this specification relates.

11 Jun 2014

2011314228

HA\vpinienvovemNRPonbliDCC INPAG3 231957) doc-13/05/2014

223 -

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. A method of processing graphics data for transmission to a remotc computing
device, the method comprising:
receiving graphics data representative of a client screen associated with a virtual
machine session;
receiving information indicative of available bandwidth for said transmission and,
based on the information, determining that the available bandwidth mects a predetcrmincd
threshold, and
entropy encoding coefficients of transformed graphics data using a compact stream
of bit tokens that form groups that align to bytc boundaries, wherein:
runs of zeroes are encoded in a variable number of multiplcs of a quantum
size;
literal values are encoded using an entry in a cache of rccently used literal
valucs; and
other values arc cncoded using a minimum number of multiples of the

quantum size.

o

The method of claim 1, wherein said quantum size 1s a nibble.

3. The method of claim 1 or 2, further comprising generating a strcam of entropy

cncoding op-codes and a large value stream.

4, The mcthod of claim 3, further comprising entropy encoding the large value strcam

with a multi-byte encoding scheme that uscs less bytes for small values than large valucs.

5. The mcthod of claim 4, wherein the encoding scheme is configured to operate only

on fixcd-byte boundaries.

6. The method of claim 4 or 5. further comprising dividing said graphics data into
data tiles, processing said data tiles into tile components, and performing said entropy

encoding on said tile components.

11 Jun 2014

2011314228

HAixp\hienovemNRPonbhDCCUXP6323957_1 doc-13/05/2014

-4 -

7. The method of any one of claims 1-6, further comprising transmitting the encoded
coefficients to a computing device configured to process the encoded cocfficients based on

the quantum size.

8. The method of claim 7, further comprising entropy decoding the cncoded
coefficients.
9. A system for processing graphics data for transmission to a remote computing

device, comprising:

a computing device comprising at least one processor;

a memory communicatively coupled to said processor when said system is
operational; said memory having stored therein computer instructions that upon execution
by the at least one processor cause:

rcceiving graphics data representing a client screen associated with a virtual
machinc session;

dividing said graphics data into data tiles;

entropy encoding coefficients of transformed data tiles using a strcam of bit tokens
that form groups that align to byte boundaries, wherein:

runs of zeroes arc ecncoded in a variable number of multiples of a quantum sizc:

literal values are encoded using an entry in a cache of rccently uscd literal values:
and

other values are encoded using a minimum number of units of the quantum size.

10. The system of claim 9, further comprising transmitting the encoded coefficients to
a computing device configured to process the encoded coefficients based on the quantum

size.

11, The system of claim 9 or 10, whercin the cncoded data is operable for efficient
dccoding by a entropy decoding process configured to operate on the encoded data on a

per-byte basis.

12. The system of any one of claims 9-11, whercin said quantum sizc is a nibble.

11 Jun 2014

2011314228

Hoxpyntenvoven NRPorthEDCC INPG3 23937 | dac- 130322014

-25 -

13. The system of any one of claims 9-12, further comprising generating a strcam of

entropy encoding op-codes and a large value stream.

14. The system of claim 13, further comprising entropy encoding the large value
strcam with a multi-bytc encoding scheme that uses less bytes for small values than large

values.

15. The system of any one of claims 9-14, wherein the encoding scheme is configured

to opcrate only on fixed-byte boundaries.

16. A computer readable storage device storing thercon computer cxccutable
instructions for processing graphics data for transmission to a client computer. said
instructions for:
receiving graphics data representative of a client screen associated with a virtual
machine session; and
entropy encoding coefficients of transformed graphics data using a compact stream
of bit tokens that form groups that align to byte boundaries such that the encoded data can
be decoded using a byte-based decoding process, wherein:
runs of zeroes are encoded in a variable number of multiples of a nibble:
literal values are encoded using an entry in a cache of recently uscd literal
values; and

other values are encoded using a minimum number of multiples of a nibblec.

17. The computer rcadable storage device of claim 16, further comprising instructions
for transmitting the cncoded coefflicients to a computing device configured to process the

encoded coefficients based on a per-byte basis.

18. The computer readable storage device of claim 16 or 17, further comprising

generating a stream of entropy encoding op-codes and a large value stream.

19. The computer rcadable storage device of claim 18, further comprising centropy

encoding the large value stream with a multi-byte encoding scheme that uses less bytes for

11 Jun 2014

2011314228

HoixppintenvovemNRPonbDCCINPVGI23937_ | doc-13/05/2014

-26 -

small valucs than large values.

20. The computer readable storage device of claim 19, wherein the encoding scheme is

configured to operatc only on fixed-byte boundaries.

21. The method of any onc of claims 1-8, wherein the graphics data comprises an
indication of a first portion of the client screen that has changed from a previous frame and
an indication of a second portion of the client screen that has not changed from the
previous frame, and wherein the entropy encoding includes entropy encoding coefficicnts
of thc graphics data corresponding to the first portion of the client screen using the

compact strcam of bit tokens that form groups that align to the byte boundaries.

22. The system of any one of claims 9-15, further comprising determining whether at
least a first data tile has changed from a previous frame and whether available bandwidth
meets a predetermined threshold; and

when at least a first data tile has changed from a previous frame and when the
availablc bandwidth meets the predetermined threshold: entropy encoding the cocfficients
of the first data tile using the stream of bit tokens that form groups that align to the byte

boundaries.

23. The device of any one of claims 16-20, wherein the graphics data comprises an
indication of a first portion of the client screen that has changed from a previous framc and
an indication of a second portion of the client screen that has not changed from the
previous frame, and wherein the entropy encoding includes cntropy encoding coefficients
of the graphics data corresponding to the first portion of the clicnt screen using the
compact strecam of bit tokens that form groups that align to the byte boundarics such that

the cncoded data can be decoded using a byte-based decoding process.

PCT/US2011/051660

WO 2012/050722

111

I "Old

0z 1/Indwon

RIOWB) WaISAS

9€
06 aauQq Addoj4 mco:w_o__aads
lllll I
e
62 obeIO)S a|qeAOWway
(sheind 6¥ 0 pieoghay cy 8snon =
s)1eIndwo) sjowsy ge eleq | Lg 'sboid)
: Dﬂﬁ(- qllrlllllllllllllrﬁ welbo.d o | 9 sddv | ¢€ SO
mﬂm?ﬂ?@d | 0€ @AlQ [eondo 8z aALQ Addoj4 S
_ N eeeeemee T
¢S NYM | = = | Lz 9nuqpreH
N N |) 'y
wapo [_ 4
it it _4__
| A A
| 14
NV | ve 4 €€ d/1 sAlUQ Z¢e d/183ng
P €S /I HOMIBN d/1 Hod |euss /I 8AUQ 1eondO %s1q oneubepy %SIq pIeH 8€ v.1va
I NYHOO0¥d
| A
7 K y 1€
“ SIWVH90¥d
_ Y3HLO
IIIIIIII €2 sng wajsAs 9€
A A SINVHD0Yd
29 GS v 'z NOLLYDI1ddY
A 96 sng ISOS > nn
9d1naQ abelolg 19)depy 1SoH 19ydepy ospIp . g€ SO
' Buissaoolid Sz VYD)
_ 9¢ SOIg _
£p TOWION (v WOY)
| — | —
= 1 1 NN

WO 2012/050722

2/11

PCT/US2011/051660

112 Graphics
Processing Unit

100 Computer System

116 1/0O Devices

ﬁIO Computer Readable Storage Med|a

114 NIC

108 Firmware

122 processor

118 Removable Storage
Devices

122 processor

|

I

|

I

|

| | I | I
| | I | I
I I executable | | executable |
| | instructions | instructions
| [| I [
I S — — N g — —
I

: 106 Storage Device 104 RAM

|

I r-——>>7=7 | r—-———==-" I
| I | I |
I | 122 processor | | 122 processor |
I | executable | | executable |
I | instructions | instructions |
I | | | I
I e e e — —_——— e e e e — —
I

I

I

102 Logical
Processor

FIG. 2

WO 2012/050722 PCT/US2011/051660

3/11
100 Computer System
204 Parent Child Partition 1 Child Partition N
Partition
228 220 Guest OS 220 Guest OS
Service Services Services
Providers
240 Virtual Machine 242 Virtual Machine
224 Device 216 230 Virtual 218 232 Virtual
Drivers VSCs || Processor VSCs | |Processor
202 Hypervisor

112
106 Storage| | 114 NIC Graphics | [102 Logical | [404 RAM
Device ProcL;JegtS|ng Processor
ni

FIG. 3

WO 2012/050722 PCT/US2011/051660

4/11

100 Computer System

204 Parent Child Partition 1 Child Partition N
Partition
—————— 220 Guest OS 220 Guest OS
| 236 |
| Configuration | Remote Remote
| Utilities | Services Services
240 Virtual Machine 242 Virtual Machine
224 Device 216 230 Virtual 218 232 Virtual
Drivers VSCs Processor VSCs Processor

202 Hypervisor

228 Virtualization Service
Providers

224 Device Drivers

112
106 Storage|| 114 NIC Graphics 102 Logical | | 404 RAM
Device PFOCLJJestSaIng Processor
ni

FIG. 4

WO 2012/050722 PCT/US2011/051660

5/11
100 Computer
400 Operating System
416 458 Plug
Session and Play
Manager Redirector
410 Transport
Stack
404 Session
448
Application
l_ _ ___ | N I % ______ User Mode _
414’ Stack Kernel Mode
Instance 444 Environment
Subsystem
450 Bulk |14 446 Graphics
Compressor Interface
420 Remote
- Display
Subsystem
418 OS Kernel
------- v y -
e 112
i 106 i : 102
| Storage |} 114NIC | i oS {1 Logical {104 RAM
i Device i Unit Processor

WO 2012/050722 PCT/US2011/051660

6/11

100 Computer

400 Operating System

416 458' Plug 448
Session and Play Application
Manager Redirector

!

410 Transport
Stack 522 User
520 API || Mode
Driver
__________________ User Mode_
Kernel Mode
524 Graphics 444 Environment
' Subsystem
414" Stack & Kernel :
Instance 528 GPU 446 Graphics
Scheduler Interface
450 Bulk
Compressor *
v 420 Remote
> Display
530 Kernel Mode
—> Driver Subsystem
418 OS Kernel
) \ 4
€ I
P : 112
£106 Storage} i 114 NIC Graphics | {102 Logical } § 104 ram
i Device |} PFOEJGS_tSIng Processor
: : ni

401 Client

FIG. 6

PCT/US2011/051660

WO 2012/050722

711

00Z
Buipooag
Adosug

G0L
uonjeziuenpeq

L 'Old

0LL
1Mai

SLL
g9d ¢ANA

02L
9L
;abew) indinQ

PCT/US2011/051660

WO 2012/050722

8/11

Buipon Adosug

_A|

uoneznuenp

8 'Old

ANACEOY

_A|

3|l pbew| ndu|

WO 2012/050722

910

PCT/US2011/051660
9/11
e 900
Data
i Encode
i Encoder A Encoder B |
T 920
N N
v v
Network
S~ 930

FIG. 9

WO 2012/050722 PCT/US2011/051660

10/11

1002 receiving graphics data representing a client screen
associated with a virtual machine session

'

1004 receiving information indicative of available
bandwidth and determining that the available bandwidth
meets a predetermined threshold

l

1006 entropy encoding coefficients of transformed
graphics data using a compact stream of bit tokens that
form groups that align to byte boundaries

FIG. 10

WO 2012/050722 PCT/US2011/051660

11/11

Processor 1110

A Y

Memory 1120

Instructions for:

1122 receiving graphics data representing a client screen associated
with a virtual machine session

1124 dividing said graphics data into data tiles

1126 entropy encoding coefficients of transformed data tiles using a
stream of bit tokens that form groups that align to byte boundaries

FIG. 11

