04/063942 A1 IR 0 RO 0O OO0 0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Burcau

(43) International Publication Date
29 July 2004 (29.07.2004)

AT Y0 O O

(10) International Publication Number

WO 2004/063942 A1l

(51) International Patent Classification’: GO6F 17/30
(21) International Application Number:
PCT/GB2003/005490

(22) International Filing Date:
17 December 2003 (17.12.2003)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

10/341,763 13 January 2003 (13.01.2003) US

Applicant: INTERNATIONAL BUSINESS MA-
CHINES CORPORATION [US/US]; New Orchard
Road, Armonk, NY 10504 (US).

(71)

(71) Applicant (for MG only): IBM UNITED KINGDOM
LIMITED [GB/GB]; PO Box 41, North Harbour,

Portsmouth, Hampshire PO6 3AU (GB).

(72) Inventors: COLOSSI, Nathan, Gevaerd; 3621 Copper-
field Drive, Apartment 342, San Jose, CA 95136 (US).
MALLOY, William, Earl; 2637 Gamblin Drive, Santa
Clara, CA 95051 (US). PIRAHESH, Mir, Hamid; 1282

Quail Creek Circle, San Jose, CA 95120 (US). TOMLYN,

(74)

(81)

(84)

Craig, Reginald; 4501 Snell Avenue, #310, San Jose, CA
95136 (US).

Agent: WILLIAMS, Julian, David; IBM United King-
dom Limited, Intellectual Property Law, Hursley Park,
Winchester, Hampshire SO21 2JN (GB).

Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE,
GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR,
KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK,
MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT,
RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR,
TT, TZ, UA, UG, UZ, VC, VN, YU, ZA, 7ZM, ZW.

Designated States (regional): ARIPO patent (BW, GH,
GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Burasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FL, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE,
SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

with international search report

[Continued on next page]

(54) Title: SPECIFYING MULTIDIMENSIONAL CALCULATIONS FOR A RELATIONAL OLAP ENGINE

OLAP Model Objects

210

Measure

Measure I

230

— 250

& (57) Abstract: Disclosed is a system, method, and program for specifying multidimensional calculations. Selection of a subset of a
cube model metadata object that is generated from a facts metadata object and one or more dimension metadata objects is received.
The facts metadata object references one or more measure metadata objects. A statement is generated for retrieving multidimensional
information using metadata in the cube model metadata object and the measure metadata objects, wherein each of the measure

metadata objects specifies one or more aggregations.

WO 2004/063942 A1 I} 110 A08OH0 T 00000 0100 0.0 0 A

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gagzette.

WO 2004/063942 PCT/GB2003/005490

SPECIFYING MULTIDIMENSIONAL CALCULATIONS FOR A RELATIONAL OLAP ENGINE

BACKGROUND OF THE TINVENTION

Field of the Invention

The present invention relates to specifying multidimensional

calculations for a relational on-line analytical processing (OLAP) engine.

Description of the Related Art

On-line analytical ﬁrocessing (OLAP) has become increasingly
popular. Instead of reviewing piles of static reports printed on
green-bar paper, an OLAP analyst can expiore business results
interactively, dynamically adjusting the view of the data and asking
questions and getting answers almost immediately. This freedom from
static answers to fixed questions on a fixed schedule allows business
analysts to operate more effectively and te effegt improvements in

business operations.

Nigel Pendse introduced the term "FASMI'" to characterize OLAP
gsystems. The FASMI characteristics are: Fast, Analysis, Shared,
Multidimensional, and Information. For Ffurther information, see N.
Pendse, "What Is OLAP?" The OLAP Report,

http://vww.olaprepoxrt.com/fasmi .htm.

As for fast, in keeping with the spirit of the "O" in OLAP, such
syvstems need to provide results very quickly usually in just a few
seconds, and seldom in more than 20 or 30 seconds. This level of

performance is key in allowing analysts to work effectively without

distraction.

As for analysis, considering the "A" in OLAP, OLAP systems generally
provide rich analytic functions appropriate to a given application, with

minimal programming.

As for shared, an OLAP system is usually a shared resource. This
means that there is a requirement for OLAP systems to provide appropriate
security and integrity features. Ultimately, this can mean providing

different access controls on each cell of a database.

WO 2004/063942 PCT/GB2003/005490

As for multidimensional, multidimensionality is the primary
requirement for an OLAP system. OLAP products present their data in a
multidimensional framework. Dimensions are collections of related
identifiers, or attributes (product, market, time, channel, scenario, or
customer, for example) of the data values of the system. The identifiers
("The Lord of the Rings-DVD," "San Jose, Califorﬁia,“ *2002," "Retail
Rental," and "John Q. Public," for example) belonging to the collection
for a particular dimension generally have some sort of structure, such as
hierarchical. Sometimes there is more than one natural structure for

these.identifiers.

The multidimensional characteristic means that an OLAP system can
‘quickly switch among various orientations of dimensions, as well as among
various subsets and structural arrangements of a dimension. Because of
the multidimensional nature of OLAP systems, the collections of data that
they implement are referred to as cubes.: As for information, OLAP systems
store and calculate information. Data for OLAP systems often come from
one or more operational systems. Analytical models are applied to these
data, and the results are either stored in the system or generated at

query time. The quantity of information that a particular OLAP system can

manage is one characteristic of that system.

Enterprises have been storing multidimensional data, using a star or
snowflake schema, in relational databases for many years. Over time,
relational database vendors have added optimizations that enhance query
performance on these schemas. During the 1990s many special purpose
databases were developed that could handle added calculational complexity

and that generally performed better than relational engines.

Multidimensional OLAP (MOLAP) refers to the family of OLAP systems
in which special-purpose file systems or indexes are used to store cube
data. Express Web Publisher, Essbase™, TM1, and Pilot Suite are a few
examples of products based on special-purpose storage and indexing
technology. Microsoft's OLAP offering also includes a MOLAP engine.

These systems are often read-only systems that are loaded with base data
periodically, then derived results are calculated, stored, and indexed.
Scalability of MOLAP systems is often limited by the size of the batch
window within which derived results are calculated and stored. To improve

scalability, such systems often have a means for deferring calculation of

some derived results until query time.

WO 2004/063942 PCT/GB2003/005490

For relational OLAP (ROLAP), star schemas have been used for many
yvears as a means for representing multidimensional data in a relational
database. Many commercial software development companies, such as
MicroStrategy, Brio, Business Objects, Metacube, Hyperion, and Metaphor,
have developed batch or interactive multidimensional reporting and
exploration interfaces for relational star schemas. These systems were
all designed and implemented before super aggregate operators were added
to the Structured Query Language (SQL) language definition.

In particular, until a few vears ago, relational databases allowed
the calculation of aggregates at only a single level per query. For
example, one SELECT statement with a GROUP BY clause would be used to
retrieve a result set at a quarter level (i.e., for a set of quarters),
while another SELECT statement with a GROUP BY clause would be used to
retrieve a result set at a month level (i.e., for a set of months). This
forced relational OLAP systems to run multiple queries against the
database in order to calculate cells at varying levels.

To facilitate OLAP-type query creation and provide more advanced
optimizations, a DB2® Relational Database Management System (RDBMS),
available from International Business Macﬁlnes Corporation, implemented
three new super aggregate operators that were added to the SQL standard to
allow a single guery to generate multiple aggregates: ROLLUP, CUBE, and
GROUPING SETS. These super aggregate operators are extensions to the
GROUP BY clause and specify that aggregates be generated at multiple
levels. For example, one SELECT statement may be used to obtain a result
set of calculations qf aggregates at multiple levels (e.g., both quarter

and month) .

Note that these super aggregate operators are more than mere
shorthand for generating multiple grouping sets. Because multiple
grouping sets are requested in a single statement, the DB2® RDBMS can
build an execution plan that generates all the grouping sets in such a way
that each input row needed for the calculation is referenced only once.
This can result in performance improvements of orders of magnitude,
especially when the set of input rows does not fit in the buffer pool

(i.e., cache).

Prior art systems are designed to produce multidimensional reports
showing results with different levels of granularity by issuing multiple
queries. Multiple result sets are obtained for the multiple gueries, and

the result sets are merged to form a single report. Such systems depend

WO 2004/063942 PCT/GB2003/005490

on some sort of description (metadata) of the roles for the tables and
columns in a star schema for generating the necessary SQL statements to
retrieve the data to produce the multidimensional reports. The precise

metadata varies from product to product.

Multidimensional on-line analytical processing (OLAP) systems (e.g.;
from companies such as Hyperion, Cognos, and Microsoft) are designed to
return multidimensional result sets naturally, when given sets of members
for each edge of a multidimensional cube. The multidimensional OLAP
systems are also designed to compute some or all of the results in advance

of any query.

Multidimensional analysis has been done using SQL since the
introduction of relational databases, but relational OLAP systems have not
been able to return multidimensional results sets naturally or compute

some or all of the results in advance of a query.
Thus, there is a need in the art for an improved relational OLAP system.

SUMMARY OF THE TNVENTION

The present invention accordingly provides, in a first aspect, a
method for specifying multidimensional calculations, comprising:
receiving selection of a subset of a cube model metadata object that is
generated from a facts metadata object and one or more dimension
metadata objects, wherein the facts metadata object references one or
more measure metadata objects; and generating a statement for
retrieving multidimensional information using metadata in the cube
model metadata object and the one or more measure metadata objects,
wherein each of the measure metadata objects specifies one or more

aggregations.
Preferably, the statement is a structured query language statement.

Preferably, each of the measure metadata objects specifies one or

more structured gquery language expressions.

Preferably, each of the structured query language expressions
includes a template for building a query language expression.

WO 2004/063942 PCT/GB2003/005490

Preferably, the template uses a token notation that references a
specific column, attribute, or measure from a list of colummns, attributes

and measures.

Preferably, each of the structured query language expressions
includes a list of columns, attributes, and measures.

Preferably, the structured query language statement is generated
based on the specified one or more aggregations in each of the measure

metadata objects.

Preferably, the list of aggregations comprises a list of aggregation

functions and corresponding dimensions sets.

Preferably, the dimension set specifies NULL for a corresponding
aggregation function to include all available dimensions other than
dimensions specified in another aggregation function in the list of

aggregations.

Preferably, the measure metadata object specifies one or more
structured guery language expressions and wherein the structured query
language expressions are used as input to an aggregation in the list of

aggregations.

Preferably, the statement is generated using metadata in a hierarchy
metadata object to build ROLLUP clauses.

Preferably, a measure metadata object references another measure

metadata object.

Preferably, generation of the structured query language statement
further comprises: generating a SELECT statement for a grand total query.

Preferably, generation of the structured query language statement
further comprises: generating a SELECT statement for a slice of the

subset of the cube model metadata object.

Preferably, generation of the structured query language statement

further comprises: generating a SELECT statement for the subset of the

cube model metadata object.

WO 2004/063942 4 PCT/GB2003/005490

Preferably, the method further comprises: separating symmetric
measures and asymmetric measures defined in the one or more measure
metadata objects; generating structured query language statements for the
symmetric measures; dJgenerating structured query language statements for
the asymmetric measures; and combining the structured query language
statements for the symmetric and asymmetric measures into a single
structured query language statement.

Preferably, the combining comprises use of a join.

Preferably, the method further comprises: determining whether a
measure is compatible with one or more measures; and if the measure is not
compatible with the one or more measures, determining whether any of the
measures may be rewritten; and if an§ of the measures may be rewritten,

rewriting the measures.

Preferably, the method further comprises: generating a cube
metadata object based on the selection of the subset of the cube model
metadata object, including generating a structured query language
statement for creation of a cube view, wherein the structured query
language statement is generated from meta&;ta in the one or more measure

metadata objects.

Preferably, the method further comprises: under control of an
application program, using the cube model metadata object and one or more
of the measure metadata objects, generating a structured query language

statement to retrieve multidimensional information.

In a second aspect, the present invention provides a system for
specifying multidimensional calculations, comprising a computer system
having at least one programmable component to operate at least one
program for: receiving selection of a subset of a cube model metadata
object that is generated from a facts metadata object and one or more
dimension metadata objects, wherein the facts metadata object references
one or more measure metadata objects; and generating a statement for
retrieving multidimensional information using metadata in the cube model
metadata object and the one or more measure metadata objects, wherein each

of the measure metadata objects specifies one or more aggregations.

Preferably, the statement is a structured query language statement.

WO 2004/063942 PCT/GB2003/005490

Preferably, each of the measure metadata objects specifies one or

more structured query language expressions.

Preferably, each of the structured query language expressions
includes a template for building a query language expression.

Preferably, the template uses a token notation that references a
specific column, attribute, or measure from a list of columns, attributes

and measures.

Preferably, each of the structured query language expressions

includes a list of columns, attributes, and measures.

Preferably, the structured quer§ language statement is generated
based on the specified one or more aggregations in each of the measure

metadata objects.

Preferably, the list of aggregations comprises a list of aggregation

functions and corresponding dimensions sets.

Preferably, the dimension set specifies NULL for a corresponding
aggregation function to include all available dimensions other than
dimensions specified in another aggregation function in the list of

aggregations.

Preferably, the measure metadata object specifies one or more
structured query language expressions and wherein the structured query
language expressions are used as input to an aggregation in the list of

aggregations.

Preferably, the statement is generated using metadata in a hierarchy

metadata object to build ROLLUP clauses.

Preferably, a measure metadata object references another measure

metadata object.

Preferably, the at least one program further comprises: generating a

SELECT statement for a grand total query.

Preferably, the at least one program further comprises: generating a

SELECT statement for the subset of the cube model metadata object.

WO 2004/063942 PCT/GB2003/005490

Preferably, the at least one program further comprises: generating a
SELECT statement for the subset of the cube model metadata object.

Preferably, the at least one program further comprises: separating
symmetric measures and asymmetric measures defined in the ocne or more
measure metadata objects; genérating structured query language statements
for the symmetric measures; generating structured query language
statements for the asymmetric measures; and combining the structured query
language statements for the symmetric and asymmetric measures into a

single structured query language statement.
Preferably, the combining comprises use of a join.

Preferably, the at least one program further comprises: determining
whether a measure is compatible with one or more measures; and if the
measure is not compatible with the one or more measures, determining
whether any of the measures may be rewritten; and if any of the measures

may be rewritten, rewriting the measures.

Preferably, the at least one program further comprises: generating a
cube metadata object based on the selectiéa of the subset of the cube
model metadata object, including generating a structured query language
statement for creation of a cube view, wherein the structured query
language statement is generated from metadata in the one or more measure

metadata ocbjects.

Preferably, the at least one program further comprises: under
control of an application program, using the cube model metadata object
and one or more of the measure metadata objects, generating a structured

query language statement to retrieve multidimensional information.

In a third aspect, the present invention provides a computer program
comprising computer program code to, when loaded into a computer system
and executed thereon, cause the computer system to perform all the steps

of a method according to the first aspect.

The computer program may be embiodied in an article of manufacture
including a program for specifying multidimensional calculations, wherein
the program causes operations to be performed, the operations comprising:
receiving selection of a subset of a cube model metadata object that is
generated from a facts metadata object and one or more dimension
metadata objects, wherein the facts metadata object references one or

WO 2004/063942 PCT/GB2003/005490

more measure metadata objects; and generating a statement for

retrieving multidimensional information using metadata in the cube
model metadata object and the one or more measure metadata objects,
wherein each of the measure metadata objects specifies one or more

aggregations.
Preferably, the statement is a structured query language statement.

Preferably, each of the measure metadata objects specifies one or

more structured query language expressions.

Preferably, each of the structured query language expressions

includes a template for buillding a query language expression.

Preferably, the template uses a token notation that references a
specific column, attribute, or measure from a list of columns, attributes

and measures.

Preferably, each of the structured query language expressions

includes a list of columns, attributes, and measures.

Preferably, the structured query language statement is generated
based on the specified one or more aggregations in each of the measure

metadata objects.

Preferably, the list of aggregations comprises a list of aggregation

functions and corresponding dimensions sets.

Preferably, the dimension set specifies NULL for a corresponding
aggregation function to include all available dimensions other than
dimensions specified in another aggregation function in the list of

aggregations.

Preferably, the measure metadata object specifies one or more
structured query language expressions and wherein the structured query
language expressions are used as input to an aggregation in the list of

aggregations.

Preferably, the statement is generated using metadata in a hierarchy

metadata object to build ROLLUP clauses.

WO 2004/063942 PCT/GB2003/005490
10

Preferably, a measure metadata object references another measure

metadata object.

Preferably, the operations for generation of the structured query
language statement further comprise: generating a SELECT statement for a

grand total query.

Preferably, the operations for generation of the structured query
language statement further comprise: generating a SELECT statement for a
glice of the subset of the cube model metadata object.

Preferably, the operations for generation of the structured query
language statement further comprise: generating a SELECT statement for the

subset of the cube model metadata objéct.

Preferably, the operations further comprise: separating symmetric
measures and asymmetric measures defined in the one or more measure
metadata objects; generating structured query language statements for the
symmetric measures; generating structured query language statements for
the asymmetric measures; and combining the structured query language
statements for the symmetric and asymmetri; measures into a single

structured query language statement.
Preferably, the combining comprises use of a join.

Preferably, the operations further comprise: determining whether a
measure is compatible with one or more measures; and if the measure is
not compatible with the one or more measures, determining whether any of
the measures may be rewritten; and if any of the measures may be

rewritten, rewriting the measures.

Preferably, the operations further comprise: generating a cube
metadata object based on the selection of the subset of the cube model
metadata object, including generating a structured query language
statement for creation of a cube view, wherein the structured query
language statement is generated from metadata in the one or more measure

metadata objects.

Preferably, the operations further comprise: wunder control of an
application program, using the cube model metadata object and one or more
of the measure metadata objects, generating a structured query language

statement to retrieve multidimensional information.

WO 2004/063942 PCT/GB2003/005490
11

Thus, pereferably, provided are a method, system, and program for
specifying multidimensional calculations. Selection of a subset of a cube
model metadata object that 1s generated from a facts metadata object and
one or more dimension metadata objects is received. The facts metadata
object references one or more measure metadata objects. A statement is
generated for retrieving multidimensional information using metadata in
the cube model metadata object and the measure metadata objects, wherein

each of the measure metadata objects specifles one or more aggregations.

The described implementations of the invention provide a method,
system, and program for specifying multidimensional calculations in a

relational OLAP system.

BRIEF DESCRIPTION OF THE DRAWINGS

Referring now to the drawings in which like reference numbers

represent corresponding parts throughout:

FIG. 1 illustrates, in a block diagram, a computing environment in

accordance with certain implementations of the invention.

FIG. 2 illustrates that a facts metadata object and measure metadata
objects relate to relational data in accordance with certain

implementations of the invention.

FIG. 3 illustrates a sample star-join schema in accordance with

certain implementations of the invention.

FIG. 4 illustrates that dimension metadata objects are built from
relational tables in accordance with certain implementations of the

invention.

FIG. 5 illustrates that metadata objects fit together in a cube
model and map to a relational star schema of relational tables in

accordance with certain implementations of the invention.

FIG. 6 illustrates that conceptual metadata objects are categorized
in three layers in accordance with certain implementations of the

invention.

WO 2004/063942 PCT/GB2003/005490
12

FIG. 7 illustrates that metadata objects corresponding to a
Base/Relational layer are created in accordance with certain

implementations of the invention.

FIG. 8 illustrates additional metadata objects from the
Base/Relational layer in accordance with certain implementations of the

invention.

FIG. 9 illustrates multidimensional layer metadata objects created
based on a star-join schema in accordance with certain implementations of

the invention.

FIG. 10 illustrates instances of metadata objects used to define a

cube in accordance with certain impleﬁentations of the invention.

FIG. 11 illustrates that one instance of each metadata object in an
on-line analytical processing (OLAP) layer is created in accordance with

certain implementations of the invention.

FIG. 12 illustrates an example of a balanced hierarchy in accordance

with certain implementations of the invention.

PIG. 13 illustrates an example of an unbalanced hierarchy in

accordance with certain implementations of the invention.

FIG. 14 illustrates a ragged hierarchy in accordance with certain

implementations of the invention.

FIG. 15 illustrates a network hierarchy in accordance with certain

implementations of the invention.

FIG. 16 illustrates some relationships among some metadata objects

in accordance with certain implementations of the invention.

FIG. 17 illustrates a star schema composed of two dimension tables
and a fact table in accordance with certain implementations of the

invention.

FIGs. 18A-18E illustrate a possible set of metadata object instances
and some properties of metadata objects that may be generated for a star

schema in accordance with certain implementations of the invention.

WO 2004/063942 PCT/GB2003/005490
13

FIG. 19 illustrates Table A, which shows base data in accordance

with certain implementations of the invention.

FIG. 20 illustrates Table B, which shows a measure that has the
aggregations: SUM(Market) and MIN(Time) in accordance with certain

impleméntations of the invention.

FIGs. 21A-21D illustrate Table C, which shows a measure that has the
aggregations: SUM(Product) (i.e., sum of product), AVG(Time) (i.e.,
average over time), and MAX(Market) (i.e., maximum for market), in

accordance with certain implementations of the invention.

FIG. 22 illustrates creation of two fully additive measure metadata

objects in accordance with certain imﬁlementations of the invention.

FIG. 23 illustrates creation of a semi-additive measure in

accordance with certain implementations of the invention.

FIG. 24 illustrates creation of a composite measure with aggregation

in accordance with certain implementations of the invention.

FIG. 25 illustrates creation of a composite measure without

aggregation in accordance with certain implementations of the invention.

FIG. 26 illustrates creation of a measure with an OLAP function in

accordance with certain implementations of the invention.

FIG. 27 illustrates a measure with an aggregation and multiple

inputs in accordance with certain implementations of the invention.

FIG. 28 illustrates all defined measure metadata objects from FIGs.

22-27 in accordance with some implementations of the invention.

FIGs. 29A, 29B, 29C, 29D, and 29E illustrate logic for generating a
SQL statement for one or more measure metadata objects in accordance with

certain implementations of the invention.

FIG. 30 illustrates Table D, which lists some measures and indicates
which measures are symmetric or asymmetric in accordance with certain

implementations of the invention

WO 2004/063942 PCT/GB2003/005490
14

FIG. 31 illustrates Table E, which lists some aggregation functions
and indicates which aggregation functions are distributive and which are
non-distributive in accordance with certain implementations of the

invention.

FIG. 32 illustrates Table F, which lists measures and how an
aggregation step may be broken up into multiple aggregation steps for the
measures in accordance with certain implementations of the invention.

FIG. 33 illustrates one implementation of the architecture of a

computer system.

DETATILED DESCRIPTION

In the following description, reference is made to the accompanying
drawings which form a part hereof and which illustrate several

implementations of the present invention. It is understood that other
implementations may be utilized and structural and operational changes may
be made without departing from the scope of the present invention.

A. Multidimensional Metadata Introduction

In certain implementations, the invention provides multidimensional
metadata objects and techniques for using the multidimensional metadata
objects. For ease of reference, the preferred embofiment of the invention
will be referred to as an "OLAP multidimensional metadata system 100"
herein, and multidimensional metadata objects will be referred to as

"metadata objects."

In certain implementations, the OLAP multidimensional metadata
system 100 is implemented in a DB2® Universal Database (UDB) RDBMS,
available from International Business Machines Corporation. Although the
present specification describes the use of IBM's DB2® UDB RDBMS software,
those skilled in the art will recognize that the present invention can use
other RDBMS software, such as RDBMS software available from Oracle, IBM
Informix, Sybase. Additionally, the present invention can run on
computers using various operating systems, such as IBM z/0S®, IBM AIX®,
Microsoft Windows® 2000, Microsoft Windows® XP, Linux, Solaris, HP- UX.

WO 2004/063942 PCT/GB2003/005490
15

FIG. 1 illustrates, in a block diagram, a computing environment in
accordance with certain implementations of the invention. A Relational
Database Management System (RDBMS) 110 includes multidimensional metadata
software 120 (e.g., a stored procedure application programming interface
(API)) and a user interface 150. The RDBMS 110 accesses multidimensional
metadata objects 130 and a reiational database 140. In certain
implementations, the data in multidimensional metadata objects 130 and
relational database 140 may be stored in a single database.

An OLAP multidimensional metadata system 100 includes
multidimensional metadata software 120 (e.g., a stored procedure
application programming interface (API)), a user interface 150, and
multidimensional metadata objects 130. The multidimensional metadata
software 120 is used to create, store: and access the multidimensional
metadata objects 130. Optionally, a user interface 150 may be provided
for a user or administrator to send commands to the multidimensional
metadata software 120. A user may create, access, modify, or delete
multidimensional metadata objects 130 by submitting commands via the user
interface 150. The commands are received and processed by the
multidimensional metadata software 120. For example, the multidimensional
metadata software 120 may create and storévmultidimensional metadata

objects 130.

In certain implementations, the OLAP multidimensional metadata
system 100 provides an add-on feature for an RDBMS 110, such as DB2®
Universal Database (referred to herein as DB2® UDB), that improves the
ability of the RDBMS 110 to perform OLAP processing. The preferred
embodiment ofthe invention streamlines the deployment and management of
OLAP solutions, and improves the performance of OLAP tools and

applications.

In particular, the OLAP multidimensional metadata system 100
provides metadata objects. The new metadata objects are stored in, for
example, a database catalog (e.g., the DB2® UDB catalog) that describes
the dimensional model and OLAP constructs of existing relational data.

The database catalog provides a single repository from which OLAP
applications can capture multidimensional metadata. In certain
implementations, the metadata objects may reside on a data store other
than the database catalog or may reside across multiple data stores. With
the information in the central repository, a database optimizer is able to
use techniques specific to star schemas for optimizing the execution of

queries.

WO 2004/063942 PCT/GB2003/005490
16

with the metadata objects, the invention can optimize OLAP query
performance by aggregating data in summary tables and creating indexes.
The OLAP multidimensional metadata system 100 also provides a metadata
programming interface. In particular, the OLAP multidimensional metadata
system 100 provides a SQL-based and extensible mark-up languaée
(XMIL) -based application programming interface'(API) for OLAP tools and
application developers. Through, for example, Command Line Inte;face
(CLI), Open Database Connectivity (ODBC), or Java Database Connectivity
(JDBC™) connections or by using, for example, embedded SQL to DB2® UDB,
applications and tools can use a single stored procedure (i.e., an example
of multidimensional metadata software 120) to create, modify, and retrieve
metadata objects. In certain implementations, multiple stored procedures
may provide the functionality for creating, modifying, and retrieving

metadata objects.

OLAP multidimensional metadata system 100 metadata objects describe
relational information as intelligent OLAP structures, but the
multidimensional metadata objects provided by the invention are different
from traditional OLAP objects. The metadata objects of the invention
store metadata, meaning the metadata objects store information about the
data in the base tables. Metadata objécténdescribe where pertinent data

is located and can also describe relationships within the base data. For

example, a facts metadata object is a specific metadata object that stores
information about related measures, attributes and joins, but does not
include the data specifically from the base fact table.

Metadata provides a new perspective from which to understand data.
Without metadata objects, a database catalog only knows about table and
column names and cannot store information about the meanings of the tables
and columns or how the tables and columns relate to each other. With

metadata objects, this information may be stored.

Each metadata object completes a piece of the big picture showing
what the relational data means. Some metadata objects act as a base to
directly access relational data by aggregating data or directly
corresponding to particular columms in relational tables. Other metadata
objects describe relationships between the base metadata objects and link
these base metadata objects together. Ultimately, all of the metadata
objects can be grouped together by their relationships to each other, into
a metadata object called a cube model. A cube model represents a
particular grouping and configuration of relational tables. The purpose
of a cube model is to describe OLAP structures to a given application or

WO 2004/063942 PCT/GB2003/005490
17

tool. Cube models tend to describe all cubes that different users might
want for the data that are being analyzed. A éube model groups dimensions
and facts, and offers the flexibility of multiple hierarchies for
dimensions. A cube model conveys the structural information needed by
query design tools and applications that generate complex queries on star

schema databases.

The multidimensional metadata object model is designed to describe
the schemas used in relational databases to represent multidimensional
data. One way to organize such data is by using a star or snowflake
schema (in snowflake schemas the dimension tables are normalized) .
However, the model is flexible enough to handle any type of schema (e.g.,

more normalized schemas).

A.l Multidimensional Metadata Overview

The multidimensional metadata enables maintenance of metadata about
OLAP structures stored in data warehouses. This information was not
previously available in the database catalog and frequently is not
documented by data warehouse metadata repositories. Multidimensional
metadata helps the data warehouse designer represent the structural
relationship among tables and their columns. Once this metadata exists in
the database catalog, other components of the RDBMS 110, such as a
database optimizer (e.g., a DB2® UDB optimizer), can take advantage of the
structural information and perform queries, against data described by
these new OLAP metadata objects, faster. The metadata objects can also
assist business intelligence tools by providing the base structural
information needed to generate multidimensional queries against the data
warehouse. In order to capture OLAP structural information, the OLAP
multidimensional metadata system 100 defines several new metadata objects.
These metadata objects are able to describe key aspects of schemas
frequently used to model OLAP data, such as star-join and snowflake

schemas.

Adding the metadata objects to a database catalog provides full
functionality and integfation with other database components. The new
metadata objects are owned by a schema, in the same way as regular tables.
Another design point for the metadata objects is that most of them are
independently useful. That is, the metadata objects provide information
about the underlying relational schema, whether or not the metadata

objects are included in a more complex multidimensional structure.

WO 2004/063942 PCT/GB2003/005490
18

A cube model can be constructed in many ways, but is often built to
represent a relational star schema or snowflake schema. A cube model
based on a simple star schema is built around a central facts metadata
object that describes aggregated relational data from a fact table.
Measure metadata objects describe data calculations from columns in a
relational table and are joined together to create the facts metadata
object. FIG. 2 illustrates that a facts metadata object 210 and measure
metadata objects 220, 230 relate to relational data 250 in accordance with

certain implementations of the invention.

Dimension metadata objects are connected to the facts metadata
object in a cube model just as the dimension tables are connected to the
fact table in a star schema. Columns of data from relational tables are
represented by attribute metadata objects that are joined together to make

up a dimension metadata object.

FIG. 3 illustrates a sample star-join schema in accordance with
certain implementétions of the invention. The star-join schema has Time
310, Product 320, and Region 330 dimension tables joined to a central
Sales facts table 300. Attributes are created for the relevant dimension
and fact table 300, 310, 320, 330 columns-gn a relational table. Each
dimension table 310, 320, 330 has a dimensional key attribute such as
TimeID, ProductID, or RegionID. The region dimension table 330 also has
City and City_Population attributes and an attribute relationship named
CityPop AR. The attribute relationship expresses the functional
dependency that every value in the City attribute determines a
corresponding value in the City Population attribute. Within the facts
table, there are two measures for Sales and Costs and the three
dimensional key attributes TimeID, ProductID, and RegionlID.

Three joins join each dimension table 310, 320, 330 to the central
facts table 300 on the corresponding dimensional key attributes. In this
example, the dimension tables 310, 320, 330 are joined with the facts
table 300 based on either the TimeID, ProductID, or RegionID attributes.
FIG. 4 illustrates that dimension metadata objects 406, 410 are built from
relational tables 450 in accordance with certain implementations of the
invention. For example, among the metadata objects, dimension metadata
object 406 is built on attribute metadata object 408, and attribute
metadata object 408 is connected to an attribute 452 in a relational
table. Dimension metadata object 410 is built on attribute metadata
objects 412, 414 and a join metadata object 416. The attribute metadata

WO 2004/063942 PCT/GB2003/005490
19

objects are connected to attributes 454 and 456 in the relational tables
450.

Hierarchies store information about how the attributes within a
dimension are related to each other and structured. As a metadata object,
a hierarchy provides a way to calculate and navigate a dimension. Each
dimension has a corresponding hierarchy with levels defined for each
member attribute. For example, the Region dimension has a RegionH
hierarchy with levels defined for the State and City attributes, and also
references the CityPop AR attribute relationship. 1In a cube model, each
dimension can have multiple hierarchies, but the example star schema has

one hierarchy defined for each dimension.

In a star schema, all of the dimension metadata objects are
connected in a star shape to a central facts metadata object to create a
cube model. Join metadata objects can join tables td create a facts
metadata object or a aimension metadata object. Metadata joins can also
act as glue within the cube model by joining facts metadata objects to
dimension metadata objects. The dimension metadata objects have
information about all of their component hierarchies, attributes,
attribute relationships and related joins: Facts metadata objects have
information about all of their component measures, attributes, and related

joins.

FIG. 5 illustrates that metadata objects 500 fit together in a cube
model and map to a relational star schema of relational tables 550 in
accordance with certain implementations of the invention. A cube model
metadata object 510 is bullt on dimension metadata objects 512, 514, join

metadata objects 516, 518, and a facts metadata object 520.

Cube model metadata objects are flexible metadata objects whose
components may be reused to create more precise cube metadata objects for
specific applications. For example, a cube model metadata object may have
37 facts, but one cube metadata object generated from the cube model
metadata object may eliminate one or more dimension metadata objects, one
or more levels of a dimension metadata object, and/or one or more measure

metadata objects.

In addition to cube model metadata objects, there is a more specific
metadata object called a cube metadata object. A cube metadata object is
the closest metadata object to an OLAP conceptual cube. A cube metadata

object is a specific instance or subset of a cube model metadata object.

WO 2004/063942 PCT/GB2003/005490
20

A cube metadata object has a specific set of similar but more restrictive
metadata objects derived from the parent cube model metadata object
including: cube dimensions, cube hierarchies, and cube facts. For
example, a RegionCubeDim is a cube dimension that is a subset of
attributes derived from the Region dimensipn. RegionCubeDim references
the State and City attributes, but does not reference the City_ Population
attribute or CityPop AR attribute relationship. The RégionCubeDim
references the Region dimension that it scopes and all of the structural
information, including the join information, stays with the cube model

Region dimension.

In certain implementations, a cube metadata object has one cube
hierarchy defined per cube dimension, while a dimension metadata object
can have many hierarchies defined for the cube model metadata object.

This structural difference between a cube metadata object and a cube model
metadata object allows retrieval of a cube metadata object with a single
SQL statement.

FIG. 6 illustrates that conceptual metadata objects are categorized
in three layers in accordance with certain implementations of the
invention. These layers are a Base/Relati;nal layer 600, a,
Multidimensional layer 610, and an OLAP laver 620. The Base/Relational
layer 600 provides base infrastructure to othér metadata objects and
encapsulates concepts of the relational database. The Multidimensional
layer 610 includes metadata objects that reference metadata objects in the
Base/Relational layer 600 to provide a multidimensional abstraction over
the relational database. The OLAP layer 620 contains high-level metadata
objects that represent OLAP structures. By grouping metadata objects from
other layers, the OLAP layer 620 provides. OLAP cubes with different

degrees of complexity.

An example is provided for better understanding of the embodiment.
The example is based on a common structure used in data marts, a star-join
schema. For the star join schema, instances of the metadata objects are
created based on the Base/Relational, Multidimensional, and OLAP layers.
FIG. 3 illustrates a simple star-join schema consisting of a fact table
300, Fact, and three dimension tables Time 310, Product 320, and Region
340 in accordance with certain implementations of the invention.

Existing database catalogs typically store table and column names.
The information about what roles these tables and columns play, and how

the tables and columns relate to each other is lost. However, with the

WO 2004/063942 PCT/GB2003/005490
21

OLAP multidimensional metadata system 100, this information is captured by

creating metadata objects.

FIG. 7 illustrates that metadata objects 700 corresponding to a
Base/Relational layer are created in accordance with certain
implementations of the invention. Attributes are created for all the
dimension tables columns, and fact table columns used in joins. One
measure metadata object is created for each fact column in the fact table.
The joins used in this star-join schema are captured by the three join
metadata objects. The join metadata objects specify how to join
corresponding attributes of the fact table and dimension tables. One
attribute relationship in the Region dimension table is created to
represent the relationship between City and City_Population, and the fact
that every value in the City attribute determines a value in the

City_Population attribute.

FIG. 8 illustrates additional metadata objects from the
Base/Relational layer in accordance with certain implementations of the
invention. Three hierarchies 800, 810, 820 are created, indicating the
relationships among related attributes. These hierarchies 800, 810, 820
are used in the multidimensional layer by-aimensions in order to create a
means to calculate and ravigate the dimension. In the RegionH hierarchy
820, the CityPop AR attribute relationship is referenced. All attribute
relationships that apply to a given hierarchy are captured. One cube
hierarchy 850, 860, 870 per hierarchy is also created ih order to be used
in a cube context. The cube hierarchies 850, 860, 870 are used to scope
the levels of a hierarchy ﬁhat are interesting for a given cube. A cube
hierarchy 850, 860, 870 also captures attribute relationships that apply
to it.

FIG. 9 illustrates multidimensional layer metadata objects created
based on a star-join schema in accordance with certain implementations of
the invention. One Facts metadata object 900 is created for the fact
table Fact. The SalesFacts metadata object 900 includes the measures
available and the attributes needed in the facts to dimension joins. One
dimension metadata object 910, 920, 930 is created for each dimension
table that is part of the star-join schema. A dimension metadata object
groups attributes that are highly correlated, coming from a single
dimension table in this example. A dimension metadata object also
references hierarchies that apply on attributes of a dimension.
Dimensions can have multiple hierarchies defined, however, in the. example,

only one hierarchy is defined per dimension.

WO 2004/063942 PCT/GB2003/005490
22

FIG. 10 illustrates instances of metadata objegts 1000, 1010, 1020,
1030 used to define a cube in accordance with certain implementations of
the invention. A cube facts, cube dimension, and cube hierarchy metadata
objects are used to scope the attributes and measures that are part of a
cube. Each of these metadata objects references the metadata ocbject that
is being scoped, and all structural information, such as joins, is kept in
the main (i.e., parent) metadata object. All cube specific objects hold a
reference to a main object from which they were defined. For example, the
cube hierarchy metadata object has a reference to the hierarchy metadata
object from which the cube hierarchy metadata object was defined. In
certain implementations, for cube dimensions, one hierarchy is assigned.
In the example, a cube fact SalesCubeFacts 1000 is created and lists the

measure (Sales) that is used in the cube.

The OLAP layer is composed by cube model and cube metadata objects.
A cube model metadata object describes the facts and dimensions that are
interesting to a given application. The dimensions of a cube model
metadata object can have multiple hierarchies defined, which makes a cube
model metadata object a very flexible structure. A cube metadata object
is derived from a cube model metadata object, and so all cube dimensions,
cube hierarchies, and cube facts metadata-;bjecté are derived from the
cube model metadata object. A difference between a cube model metadata
object and a cube metadata object is that in a cube metadata ocbject one
hierarchy is defined per dimension, which makes it possible to retrieve a
cube metadata object with a single SQL statement.

FIG. 11 illustrates that one instance of each metadata object in an
OLAP laver is created in accordance with certain implementations of the
invention. The cube model created in the example captures one possible
cube model 1100 generated from the example star-join schema of FIG. 3. A
cube 1150 is created based on the cube dimensions TimeCubeDim,

ProductCubeDim, RegionCubeDim and cube facts SalesCubeFacts.

A.2 Metadata Object Properties

Each metadata object has a set of general properties in addition to
metadata object-specific properties. The general properties are used to
identify the metadata object instances, to describe the usage or role of
the metadata object instances, and to track metadata object instance
changes. In certain implementations, the metadata objects are named using

a schema in the same way that other database metadata objects are named.

WO 2004/063942 PCT/GB2003/005490
23

Full qualifications of the metadata object may be required when the

default user name schema is not desired.

Table 1 describes the general properties that exist for all metadata

objects in accordance with certain implementations of the invention.

Table 1
Property Description
Name Name of the metadata object.
Schema Schema that owns the metadata object.
Business Name presented to the end user. This name
name may be used in graphic user interfaces as a

name more meaningful to the end user.

Comments Textual description or comment on the

nature or usage of the metadata object.

Create Time the metadata object was created.

time .

Creator User (schema) that defined the metadata
object.

Modify Time the metadata object was last modified.

time

Modifier User (schema) that performed the
modification.

In addition to a common set of general properties shared by all
metadata objects, each metadata object has a set of metadata object
specific properties. These metadata object specific properties describe
the components and qualities that define the metadata object.

The cube model is a representation of a logical star schema. The cube
model is a grouping of relevant dimension metadata objects around a
central facts metadata object. Each dimension can have multiple
hierarchies, which increases the flexibility of the cube model. The
structural information about how to join the tables used by the facts and
dimension metadata objects is stored in the cube model. Also stored in

the cube model is enough information to retrieve OLAP data. Other

WO 2004/063942 PCT/GB2003/005490
24

reporting and ODLAP tools that understand the cube model and can handle

multiple hierarchies of a specific dimension can benefit from the use of a

cube model.

Cube models define a complex set of relationships and can be used to
selectively expose relevant facts and dimensions to an application. Each
join metadata object connecting a dimension to the central facts metadata
object is stored with the corresponding dimension as a set. Subsets of
cube model components can be used by many cubes for different analysis

purposes.

An empty cube model may be created that does not have a facts
metadata object or any dimensions. However, the cube model is completed
before creating a corresponding cube. The OLAP multidimensional metadata
system 100 validates a cube model by ensuring that the cube model includes
a facts metadata object, at least one dimension, and joins between the
existing facts and dimensions, and that all of the attributes reference
valid tables. A hierarchy is not regquired to consider a cube model
complete, however, to be able to define a cube from a cube model, at least

one hierarchy per dimension is defined.

Each metadata object has a set of metadata object-specific
properties that describe the components and gqualities that define the
metadata object. The metadata object specific properties of a cube model

are described Table 2 in accordance with certain implementations of the

invention.
Table 2
Property Description
Facts Facts used in the cube model.
Set of Dimensions that are used in the cube model
(dimension | and thelir corresponding joins.
, Jjoin)

The facts metadata object groups related measures which are
interesting to a given application. Multiple relational fact tables can
be joined on specific attributes to map additional related measures. The
facts metadata object stores information about the attributes used in fact
to dimension joins, and the attributes and joins used to map the
additional measures across multiple database tables. Therefore, in

WO 2004/063942 PCT/GB2003/005490
25

addition to a set of measures, a facts metadata object stores a set of
attributes and a set of joins. A facts metadata object is used in a cube

model as the center of a star schema.

The facts metadata object plays the role of a fact table in a star
schema. Just as a fact table does, a facts metadata object gathefs
measurement entities, represented in the database catalog by measures.
These need not come from the same table, allowing the designer to group

measures as required for any OLAP application.

The metadata object specific properties of a facts metadata object
are described in Table 3 in accordance with certain implementations of the

invention.

Table 3
Property Description
Set of Set of all related méasures in the facts
measures metadata object.
Set of Set of all attributes used in the facts

attributes | metadata object.

Set of Set of all joins needed to join all of the

joins specified measures and attributes.

The dimension metadata object plays the role of a dimension table in
a star schema. Dimensions group related attributes, which together
describe some aspect of one or more measures. Thus, the dimension
metadata object provides a way to categorize a set of related attributes
that together describe one aspect of a measure. Dimensions are used in
cube models to organize the data in the facts metadata object according to
logical categories such as Region, Product, or Time. Related attributes
and the joins needed to group these attributes together are defined in the

dimension metadata object specific properties.

Dimensions reference one or more hierarchies. Hierarchies describe
the relationship and structure of the dimensional attributes and can be

used to drive navigation and calculation of the dimension.

WO 2004/063942 PCT/GB2003/005490
26

Dimensions also have a type that describes whether the dimension is
time oriented. For example, a dimension called Time might contain
attributes such as Year, Quarter, and Month, and would be a time type.
Another dimension called Region might contain attributes such as Country,
State, City, and Population and would be a regular type. Type information
can be used by applications to intelligently and appropriately perform
time related functioms.

The metadata object specific properties of dimension metadata
objects are described in the following Table 4 in accordance with certain

implementations of the invention.

Table 4
Property Description
Set of Set of all attributes used in the
attributes dimension.
Set of Set of all joins needed to join all of
joins the specified attributes. The joins

needed to join the dimension tables are

specified here.

Set of Set of hierarchies that apply to the

hierarchies] dimension.

Type Dimension type.
[REGULAR,
TIME]

A hierarchy defines relationships among a set of one or more
attributes within a given dimension of a cube model. Defining these
relationships provides a navigational and computational means of
traversing a given dimension. Multiple hierarchies can be defined for a
dimension of a cube model. The hierarchy metadata object also references
a set of attribute relationships that link attributes in the hierarchy to
other related attributes. The attributes that are directly related by an
attribute relationship can be queried as part of the hierarchy. For
example, a hierarchy for a Region dimension can have a City attribute, and
an attribute relationship can link City to a City Population attribute.
This hierarchy can include City Population information in a query that

includes City.

WO 2004/063942 PCT/GB2003/005490
27

A hierarchy describes parent-child relationships among attributes.
This information is referred to by a dimension to indicate how dimension

members can be browsed, and how to aggregate data in the dimension.

The hierarchy type describes the relatlonship among the attributes
within the hierarchy. The following four hierarchy types are supported:

balanced, unbalanced, ragged, and network.

FIG. 12 illustrates an example of a balanced hierarchy 1200 in
accordance with certain implementations of the invention. A balanced
hierarchy is one with meaningful levels and branches that have a
consistent depth. A logical parent of each attribute is in the level
directly above that attribute. The balanced hierarchy 1200 represents
time where the meaning and depth of eéch level, such as Year 1210, Quarter
1220 and Month 1230 is consistent.

FIG. 13 illustrates an example of an unbalanced hierarchy 1300 in
accordance with certain implementations of the invention. An unbalanced
hierarchy is one with levels that have a consistent parent-child ‘
relationship, but have an inconsistent semantic meaning for all members in
a particular level. Also, the hierarchy B;ancheé have inconsistent

depths.

An unbalanced hierarchy can represent an organization chart. For
example, the unbalanced hierarchy 1300 shows a CEO on the top level of the
hierarchy and at least two of the people that might branch off below,
including the chief operating officer and the executive secretary. The
chief operating officer has many more people branching off also, but the
executive secretary does not. There is a consistent parent-child
relationship between the CEO and all of the people who report to the CEO.

However the semantic meaning~of the level directly below the CEO is
inconsistent because of the different types of employees in that level.

A ragged hierarchy is one in which each level has a consistent
meaning, but the branches have inconsistent depths because at least one
member attribute in a branch level is unpopulated. A ragged hierarchy can
represent a geographic hierarchy in which the meaning of each level such
as city or country is used consistently, but the depth of the hierarchy
varies. FIG. 14 illustrates a ragged hierarchy 1400 in accordance with
certain implementations of the invention. The ragged hierarchy 1400 shows
a geographic hierarchy that has Continent, Country, Pfovince/state, and
City levels defined. One branch has North America as the Continent,

WO 2004/063942 PCT/GB2003/005490
28

United States as the Country, California as the Province/State, and San
Francisco as the City. However the hierarchy 1400 becomes ragged when one
member does not have an entry at all of the levels. For example, another
branch has Europe as the Continent, Greece as the Country, and Athens as
the City, but has no entry for the Province/State level because this level
is not applicéble to Greece. In this example, the Greece and United
States branches descend to different depths, creating a ragged hierarchy
1400.

A network hierarchy is one in which the order of levels is not
specified, but in which levels do have semantic meaning. FIG. 15
illustrates a network hierarchy 1500 that describes product attributes
such as Color, Size, and PackageType. in accordance with certain
implementations of the invention. Because the attribute levels do not
have an inherent parent-child relationship, the order of the levels may
vary. A widget company might have member entries, such as white for
Color, small for Size, and shrink wrap for PackageType. A second member

entry might have red for Color, large for Size, and box for PackageType.

A hierarchy (balanced, unbalanced, ragged, or network) also
specifies deployment mechanisms for the hierarchy. A deployment mechanism
defines how to interpret the attributes of a hierarchy. The following two

deployment mechanisms are supported: standard and recursive.

The standard deployment mechanism uses the level definitions of the
hierarchy, where each attribute in the hierarchy defines one level. For
example, a balanced hierarchy for a Time dimension would be organized by
each defined level including Year, Quérter, and Month. Standard
deployment can be used with all four hierarchy types. Table 5 shows how
some of the balanced hierarchy attributes for a Time dimension are
organized using a standard deployment in accordance with certain

implementations of the invention.

WO 2004/063942 PCT/GB2003/005490

29
Table 5
Year Quartexr Month
2001 15t quarter January
2001 1%t quarter February
2001 18t quarter March
2002 1%¢ quarter January
2002 1%t quarter February
2002 1%t quarter March

The recursive deployment mechanism uses the inherent parent-child
relationships between the attributes of the hierarchy. An unbalanced
hierarchy using a recursive deployment is represented as parent-child
attribute pairs. For example, Table 6 shows the attribute pairs for the
unbalanced hierarchy describing an organization chart shown in FIG. 13 in
accordance with certain implementations of the invention. The
parent-child attribute pairs include: chief executive officer and
executive secretary, chief executive officer and chief operating officer,
chief operating officer and director of communications, director of
communications and communications specialist. Recursive deployment may be

used with an unbalanced hierarchy.

Table 6
Parent Attribute Child Attribute
Chief executive officer Executive secretary
Chief executive officer Chief operating officer
Chief operating officer Director of communications
Director of communications [Communications spécialist

The metadata object specific properties of a hierarchy metadata

object are described in the following Table 7 in accordance with certain

implementations of the invention.

WO 2004/063942 PCT/GB2003/005490

30
Table 7
Property Description
List of Ordered list of attributes from the
attributes top to the bottom of a hierarchy. In

the case of a recursive hierarchy,
two attributes are used as parent and
child.

Set of attribute | Set of all attribute relationships
relationships that link hierarchy attributes to

other attributes.

Type [BALANCED, Hierarchy-type.
UNBALANCED,
RAGGED, NETWORK]

Deployment Hierarchy deployment.
[STANDARD,
RECURSIVE]

A measure metadata object defines a measurement entity and is used
in facts metadata objects. Measures become meaningful within the context
of a dimension. For example, a revenue of 300 is not meaningful by
itself. When a revenue measure is put in the context of a dimension, such
as Region, the measure becomes meaningful. For example, the revenue for
Vermont is 300. Common examples of measure metadata objects are Revenue,
Cost, and Profit.

The measure object makes explicit the existence of a measurement
entity. Measures are defined by one or more SQL expressions, which can be
as simple as a mapping to a table column, or can involve multiple columns
and other measures or attributes. For each measure, a list of
aggregations is defined for calculations in the context of a cube model,
or cube. Fach aggregation in the list specifies an aggregation function,
such as SUM, COUNT, MIN, MAX, and a list of dimension in which the .
aggregation function is applied. An empty dimension set in an aggregation
indicates that all remaining dimensions, non-explicitly referenced in the
measure, are to be used. A measure will have more than one SQL expression
template when the first aggregation function used requires more than one
input, such as CORRELATION. A measure can have an empty list of
aggregations when it has a single SQL expression template, and it only

WO 2004/063942 PCT/GB2003/005490
31

refers to other measures. In this case, the aggregation of the referenced
measures take place. Measures and attributes share the same name space,
meaning that the names, when fully qualified by a schema, have to be
unique among measures and attributes. Common examples for measures are

Sales, Costs, Profit, etc.

Measures are defined by the aggregation of SQL expressions. Table
columns, attributes and measures are mapped to a template to build SQL
expressions (i.e., a "SQL expression template"). The resulting SQL
expressions are then used as input for the first aggregation function of
the measure. If a measure has more than one aggregation, the aggregation
functions are performed in the order they are listed, with each subsequent
aggregation taking the result of the previous aggregation as input. If
the SQL: expression of the measure metadata object only references other
measures, the aggregation function is omitted because the referenced

measures describe any required aggregations.

A SOL expression of a measure 1s created by the combination of two
properties: a SQL expression template and a list of columns, attributes,
and measures. The SQL expression template uses a token notation where
{$Sn} is the token and n references a speézfic column, attribute, or
measure from the list. The list of columns, attributes, and measures is

ordered, and the position in the list of a column, attribute or measure

corresponds to the token "n" value.

SOL expressions are used as input to the first aggregation. Each
aggregation specifies a function that is applied to a corresponding
dimension set. The aggregation function can be any aggregation function
supported by the underlying database, including, for example, SUM, COUNT,
MIN, MAX, and CORRELATION. In certain implementations, each dimension is
aggregated once by the measure metadata object. If the dimension set is
empty, the aggregation function is applied to all dimensions in the cube
or cube model that are not specifically being used by another aggregation
in the list. In certain implementations, the aggregate functions are

user-defined aggregate functions that are supported by RDBMS 110.

An example of a simple measure is Revenue. The Revenue measure can
be created for a cube model with three dimemnsions: Product, Market and
Time. Revenue has a SQL expression template (template = "{$$1}"), which

represents-a simple mapping to the column specified in the single-item

list of columns, attributes, and measures, where list = "Column Fact.Rev".

WO 2004/063942 PCT/GB2003/005490
32

The aggregation list is (SUM, <NULL>) where SUM is the aggregation
function, and <NULL> is an empty dimension set. The SQL expression is

used as input for the SUM aggregation function, resulting in the SQL:

SUM (Fact.Rev) .

A more complicated measure, Profit, might have a SQL expression

template (template = "{$$1} - {$$2)}"), where the list of attributes,
columns, and measures is list = "Measure Revenue, Column Fact.Cost".
Replacing the tokens with the correct references, the SQL expression
becomes: "Revenue - Fact.Cost". Expanding the revenue measure reference

to its column reference, the SQL expression becomes: "Fact.Rev -
Fact.Cost". The aggregation list of the Profit measure is : (SUM,
<NULL>) . Using the profit SQL expression as input for the SUM aggregation

function, the SQL for the Profit measure is: SUM(Fact.Rev - Fact.Cost).

If the measure has an aggregation function, such as CORRELATION,
that requires two or more parameters, the measure will have the number of
SOL expressions that the function requires as input. That is, the number
of parameters matches the number of SQL expressions. For example, if

CORRELATION requires two parameters, then there will be two SQL

expressions.

Measures also have a data type that is based on SQL data types. The
OLAP multidimensional metadata system 100 automatically determines the
data type of a measure. Additionally, measures and attributes share the
same name space. Therefore, each name, when fully qualified by a schema,
is unique among measures and attributes. The metadata object specific
properties of a measure metadata object are described in the following

Table 8 in accordance with certain implementations of the invention.

WO 2004/063942 PCT/GB2003/005490

33
Table 8
Property Description
List of SQL List of SQL expression templates
expression used as input for the first
templates aggregation function of the measure.

The templates reference columms,
attributes, and measures by using a
'{$Sn}' notation. In the template,
n is an ordinal number corresponding
to the list of columns, attributes,

and measures.

List of columns, For each SQL expression template, an
attributes, and ordered list of columns, attributes,
measures and measures is supplied. These

columns, attributes, and measures
are applied as specified in the SQL

expression template.

List of List of aggregations that specify
aggregations how a measure is calculated. Each
(list pf agoregation is composed by a SQL
aggregation aggregation function and an optional
functions, dimension set to apply the function
dimension sets) to.

Data type Determines the data type of the
(schema, name, attribute. Based on SQL data types,
length, scale) and composed

by data type schema, name, length,

and scale.

An attribute represents the basic abstraction of the database table
columns. An attribute is defined by a SQL expression that can be a
simple mapping to a table column, can involve multiple columns and other
attributes, and can involve all functionalities of the underlying
database, such as user-defined functions. In certain implementations,
when other attributes are used in the defining SQL: expression, the other
attributes cannot form attribute reference loops. For example, if

Attribute A references Attribute B, then Attribute B cannot reference

Attribute A.

WO 2004/063942 PCT/GB2003/005490
34

A SQL expression definition of an attribute is created by the
combination of two properties: a SQL expression template and a list of
columns and attributes. The SQL expression template uses a token notation
where {$Sn} is the token with n referencing a specific column or attribute
from the list. The list of columns and attributes is ordered, and the

position in the list of a column or an attribute corresponds to the token

_"a" value.
For example, the SQL expression template (template = "{$$1}]l o
|] {$521") can be used with a corresponding list such as list = "Column

CUSTOMER .FIRSTANME, Attribute LastName" to concatenate customers' first
and last names with a space between them. Replacing the SQL expression
template tokens with the correct list references, the SQL expression is:
"Customer.FirstName || ' ' || LastName". The attribute reference is
further expanded to a column reference to form the SQL expression:

"Customer .FirstName || ' ' || Customer.LastName".

An attribute can serve muitiple roles in the design of a data
warehouse or data mart. The roles that an attribute can serve are: level,

description, dimensional attribute, dimensional key, or key.

A level attributed is used in hierarchies. Examples of common level
attributes are: Year and Quarter, State and City. A description attribute
is used in a description type of attribute relationship and associates
additional descriptive information to another attribute. For example, a
table called Product might have an attribute with a product code and a
description attribute with a textual description. The dimensional
attribute is used in a dimensional type of attribute relationship and
defines specific characteristics and qualities of another attribute.
Examples of common dimensional attributes are: Population, Size, and
Weight. The dimensional key attribute is used to join facts and dimension
metadata objects and represents the primary key in a dimension table, or a
foreign key from a dimension table to be used in a fact table. The key
attribute is used to join tables within a facts or dimension metadata
object. Key attributes are often used in a snowflake schema.

Attributes and measures share the same name space. Therefore, each
name, when fully qualified by a schema, is unique among attributes and
measures. Attribute and measure metadata objects are abstractions of a
relational database column. However, they are defined by an SQL
expression that can include multiple columns. Measures are more
specialized than attributes-they include aggregation functions (column

WO 2004/063942 PCT/GB2003/005490
35

functions) that are used to calculate higher-level summaries from

lower-level data.

Table 9 describes the metadata object specific properties that
define an attribute metadata object in accordance with certain

implementations of the invention.

Table 9

Property Description

SQL: expression SQL expresgion that defines the
template attribute. The SQL expression
template references columns and
attributes by using a{$$n} notation,
where n is an ordinal number
corresponding to the list of columns

and attributes.

List of columns | Ordered list of all columns and
and attributes attributes composing the attribute.
for SQL These columns and attributes are
expression applied as specified in the SQL
expression template.

Data type Determines the data type of the
{schema, name, attribute. Based on SQL data types,
length, scale) and composed by data type schema,

name, length, and scale.

Role [LEVEL, Roles that the attribute serves.
DESCRIPTION,
DIMATTR,

DIMKEY, KEY]

An attribute relgtionship describes relationships of attributes in
general. The relationshibs are described by a left and a right attribute,
a type, a cardinality, and whether or not the relationships determine a
functional dependency. The type describes what the role of the right
attribute is with respect to the left attribute. For example, a
ProductName right attribute describes a ProductCode left attribute. The
relationship type between ProductName and ProductCode is DESCRIPTION. The
cardinality describes how the instances of the left and right attributes

WO 2004/063942 PCT/GB2003/005490
36

are related and it is interpreted based on cardinality. In a 1:1
cardinality, there is at most one left attribute instance for each right
attribute instance, and at most one right attribute instance for each left
attribute instance. In a 1:N cardinality, there is at most one left
attribute instance for each right attribute instance, and any number of
right attribute instances for each left attribute instance. In a N:1
cardinality, there is any number of left attribute instances for each
right attribute instance, and at most one right attribute instance for
each left attribute instance. In a N:N cardinality, there is any number
of left attribute instances for each right attribute instance, and any

number of right attribute instances for each left attribute instance.

The functional dependency property télls whether the attribute
relationship can also be used as a functional dependency. A functional
dependency defines a functional relationship between two attributes. For
example, a functional dependency can be defined between attributes such as
City and Mayor or Product and Color. The functional dependency tells that
every City value determines a Mayor value or that every Product value
determines a Color value. This means that the cardinality described in
the relationship is set by the designer, which is useful for query

optimizations.

One use of an attribute relationship is within the context of a
hierarchy in a dimension. Attributes that are directly related to the
hierarchy attributes can be queried as part of the hierarchy. This allows
each level of the hierarchy to define attributes that complement the
information of a given level. For example, a hierarchy can have a City
attribute. The City attribute can be related to a City_Population
attribute with an attribute relationship. With the attribute relationship

information, City Population information can be included in a gquery that

includes City.

The metadata object specific properties defining an attribute
relationship metadata object are described in the following Table 10 in

accordance with certain implementations of the invention.

WO 2004/063942 PCT/GB2003/005490
37
Table 10

Property Description
Left attribute | Left attribute used in the

relationship.
Right Right attribute used in the
attribute relationship.
Type Type of relationship described by the
[DESCRIPTION, attribute relationships. The type is
ASSOCIATED] used to determine what role an

' attribute plays.

Cardinality Cardinality expected in the join.
[1:1, 1:N,
N:1, N:N]
Functional Determines 1f the attribute
dependency relationship is also a functional
[YES, NO] dependency.

The join metadata object joins relational tables that are referenced
by two metadata objects. Two metadata objects can be joined on one or
more pairs of attribute metadata objects mapping to relational table
colums. In a facts to dimension join, a join metadata object joins
attributes from the facts metadata object and attributes from the
the set of attribute

dimension metadata object. In a composite join,

pairs is from the same set of tables. For example, to join relational
Tablel with a compound key of FirstName and LastNa&e, with a relational
Table2 that has a compound key of FName and Lname, one relational join

with two join predicates is used; one join predicate for Tablel.FirstName
and Table2.FName,
Table2.LName.

join metadata object.

a second join predicate for Tablel.lLastName and
The information about this composite join is stored in one

The join metadata object is defined by a list of the left attribute,
Also,
Joins can be used between two facts,

right attribute, and join operator. the join type and expected

cardinality are specified. two

dimensions, or a fact and a dimension. Join metadata objects are referred

to by cube model, facts, and dimension objects.

WO 2004/063942 PCT/GB2003/005490
38

The metadata object specific properties that define a join metadata

object are described in the following Table 11 in accordance with certain

implementations of the invention.

Table 11
Property Description
List of (left Left attribute: The attribute on the
attribute, left gide of the join. Right
right attribute: The attribute on the right
attribute, side of the join. Operator: Operator
operator) expected in the .join [=, <, >, <>, >=,
<=] .
Type [INNER, | Type of join expected.
FULL OUTER,
LEFT
QUTER, RIGHT
OUTER]
Cardinality Cardinality exp;éted in the join.
[1:1, 1:N,
N:1, N:Nj

A cube is a very precise definition of an OLAP cube that can be
delivered using a single SQL statement. Each cube is derived from a
single cube model. The cube facts and list of cube dimensions are subsets
of those in the referenced cube model. A cube view name is also defined
which represents the cube in the database. Cubes are appropriate for
tools and applications that do not use multiple hierarchies because cube

dimensions allow one cube hierarchy per cube dimension.

The purpose of a cube is to define a standard relational view of an
OLAP structure. In addition to the relational view, a cube p;ovides an
extended describe (e.g., XML document) that describes the roles of its
columns in multidimensional terms. In the process of defining a cube, the
designer selects a subset of the possible elements, choosing a single

hierarchy for each dimension. This ensures that the cube unambiguously

defines a single relational result set. The simplicity of a cube makes

WO 2004/063942 PCT/GB2003/005490

39

the cube useful to less sophisticated OLAP applications, such as portable

devices powered by World Wide Web ("Web") services.

The metadata object specific properties of a cube metadata object
are described in the following Table 12 in accordance with certain

implementations of the invention.

Table 12

Propexrty Description

Cube model | Cube model from which the cube is derived.

Cube facts | Cube facts used-in the cube. The cube
facts is derived from the facts metadata

object in the cube model.

List of Ordered list of cube dimensions used in the
cube cube. The cube dimension is derived from
dimensions | the dimensions in the cube model. One cube
hierarchy is associated with each cube

dimension.

Cube view |} View in the database that represents the

cube.
Extended XML, document describing roles of columns
Describe and their relationships in terms of a

multidimensional model

A cube facts metadata object has a subset of measures in an ordered
list from a specific facts metadata object. A cube facts metadata object
gives a cube the flexibility to scope facts for a cube model. The
structural information, such as the joins and attributes, is referenced
from the parent facts metadata object. The metadata object specific
properties that define a cube facts metadata object are described in the
following Table 13 in accordance with certain implementations of the

invention.

WO 2004/063942 PCT/GB2003/005490

40
Table 13
Property Description
Facts Facts from which the cube facts is derived.
List of Ordered list of measures used in a cube.
measures All measures are part of the facts from
which the cube facts is derived.

A cube dimension metadata object is used to scope a dimension for
use in a cube. The cube dimension metadatg object references the
dimension from which it is derived and the relevant cube hierarchy for the
given cube. In certain implementations, one cube hierarchy can be applied
to a cube dimension. The joins and attributes that apply to the cube
dimension are referenced from the dimension definition. The metadata
object specific properties that define a cube dimension metadata object
are described in the following Table 14 in accordance with certain

implementations of the invention.

Table 14

Propexrty Description

Dimension Dimension from which the cube dimension is

derived.

Cube Cube hierarchy that applies to the cube

hierarchy dimension.

A cube hierarchy metadata object is a scoped version of a hierarchy
and is used in a cube. A cube hierarchy references the hierarchy from
which it is derived and can have a subset of the attributes from the
parent hierarchy. Additionally, a cube hierarchy metadata object
references the attribute felationships that apply on the cube. In certain
implementations, one cube hierarchy can be defined for a cube dimension of
a cube. A cube hierarchy metadata object has the same hierarchy types and

deployment mechanisms as the hierarchy from which the cube hierarchy

metadata object is derived.

WO 2004/063942 PCT/GB2003/005490
41

A cube hierarchy is very similar to a hierarchy; however, a cube
dimension refers to a single cube hierarchy. This allows a single SELECT

statement to calculate the cells of a cube.

The metadata object specific pfoperties that define a cube hierarchy
metadata object are described in the following Table 15 in accordance with

certain implementations of the invention.

Table 15

Property Description

Hierarchy Hierarchy from which the cube hierarchy is

derived.

Lists of Ordered list of all attributes from the top
attributes | to the bottom of the cube hierarchy. The
order of the attributes should be the same

as in the parent hierarchy.

Set of Set of all attribute relationships that
attribute link cube hierarchy attributes to other
relationsh | attributes.

ip s

FIG. 16 illustrates some relationships among some metadata objects
in accordance with certain implementations of the invention. The arrows
indicate that a metadata object references another metadata object. For
example, a cube metadata object 1610 references a cube model metadata
object 1600. A more detailed relationship description of the metadata
objects is illustrated in Table 16 in accordance with certain

implementations of the invention.

WO 2004/063942

42

Table 16

PCT/GB2003/005490

Metadata
Metadata object
1

References

Metadata
Metadata object 2

Cube Model Zero or one Facts

Cube Model Zero or more Dimension/Join
Cube one Cube model
Cube one Cube Facts
Cube one Or more Cube Dimension
Facts one or more Measure

Facts Zero or more Attribute
Facts Zero or more Join
Dimension one or more Attribute
Dimension Zero or more Join
Dimension Zero or more Hierarchy
Cube Facts one Facts

Cube Facts one or more Measure

Cube Dimension one Dimension
Cube Dimension one or more Attribute

Cube Dimension one Cube Hierarchy
Hierarchy one oOr more Attribute
Hierarchy Zero or more Attribute
Relationship
Cube Hierarchy one Hierarchy
Cube Hierarchy one or more Attribute
Cube Hierarchy Zero or more Attribute

Relationship

WO 2004/063942 PCT/GB2003/005490

43

Measure Zero or more Measure
Measure Zero or more Attribute
Measure Zero or more Dimension
Attribute Zero or more Attribute
Attribute two Attribute
Relationship

Join multiple of two Attribute

(minimum of two)

In accordance with certain implementation, there is a metadata
object naming convention and rules for naming. Naming conventions and
rules other than those described herein may be used without departing from
the scope of the invention. There are two different naming conventions to
name objects: ordinary and delimited. For the metadata objects, due to
its flexibility, the delimited convention is used when naming objects and
referring to database tables and columns. The delimited convention allows
mixed case names, spaces, and special characters, such as natiomnal
language characters. The complete set of characters is determined by the
codepage of the database in which the objects reside.

Besides the naming conventions, some rules apply to the different
identifiers in the objects in certain implementations. For example, a
schema has a length of 1-30 bytes and schema names do not begin with
'SYS'; a name has a length of 1-128 bytes; a business name has a length of
1-128 bytes; comments have a length of 0-254 bytes; a table schema (used
in referencing columns) has a length of 1-128 bytes; a table name (used in
referencing columnsg) has a length of 1-128 bytes; and a column name (used

in referencing columns) has a length of 1-128 bytes.

In addition to the relationships that are enforced, additional rules
are described for each metadata object. That is, every metadata object
has its own set of rules, and an instance of a metadata object is valid if
the metadata object follows all of the metadata object rules for that
metadata object. The rules are separated in three categories: Base Rules,
Cube Model Completeness Rules, and Optimization Rules. The following
discussion of specific rules provides a set of rules for certain
implementations of the invention. In other implementations, the set of

WO 2004/063942 PCT/GB2003/005490
44

rules for one or more metadata objects may be modified without departing

from the scope of the invention.

The base rules for a cube model metadata object are: (1) the cube
model metadata object refers to zero or one facts metadata object; (2) the
cube model metadata object refers to zero or more dimension(s); (3)
dimension~join pairs have both a dimension and a join; (4) a join
associated with a dimension is valid if all attributes of one side of a
join are found in the attribute list of the facts metadata object and all
other 'side attributes are found in the attribute list of the dimension
metadata object; and (5) for each measure referenced in the facts of the
cube model, all the explicit dimension references in the aggregations of
the measure are referenced by the cube model. When the cube model
references at least one dimension, an aggregation with an empty dimension

set matches to at least one dimension from the cube model that was not

previously referenced.

The base rules for a cube metadata object are: (1) the cube metadata
object refers to one cube facts; (2) the cube metadata object refers to at
least one cube dimension; (3) cube facts is derived from the facts used in
the cube model; and, (4) cube dimensions are derived from the dimensions

used in the cube model.

The base rules for a facts metadata object are: (1) a facts metadata
object refers to at least one measure; (2) all attributes and measures
referenced by a facts are joinable; (3) in a facts metadata object
context, a single join can be defined bétween two given tables; (4) there
are no join loops in a facts metadata object; and, (5) all joins
referenced by a facts metadata object refer to fact metadata object

attributes.

The base rules for a dimension metadata object are: (1) the
dimension metadata object refers to at least one attribute; (2) attributes
referenced by a dimension are joinable; (3) there are no join loops; (4)
in a dimension context, a single join is defined between any two given
tables; (5) hierarchies referenced by a dimension refer to the attributes
of the dimension; (6) attribute relationships that are referenced by
hierarchies of a dimension refer to the attributes of the dimension; and
(7) joins referenced by a dimension refer to the attributes of the

dimension.

WO 2004/063942 PCT/GB2003/005490
45

The base rules for a cube facts metadata object are: (1) the cube
facts metadata object refers to at least one facts; (2) the cube facts
metadata object refers to at least one measure; and, (3) measures
referenced by a cube facts metadata object are part of the facts metadata

object.

The base rules for a cube dimension metadata object are as follows:
(1) the cube dimension metadata object refers to one dimension; (2) the
cube dimension metadata object refers to a cube hierarchy; and, (3) the
cube hierarchy referenced by the cube dimension metadata object is derived
from a hierarchy that is referenced by the dimension of the cube dimension

metadata object.

The base rules for a hierarchy metadata object are: (1) the
hierarchy metadata objecﬁ refers to at least one attribute; (2) two
attributes are required for a recursive deployment; (3) every attribute
relationship within a hierarchy has a left attribute as part of the
hierarchy; (4) every attribute relationship within the hierarchy has a
cardinality of 1:1 or N:1; and, (5) certain combinations of hierarchy
types and hierarchy deployments are allowed as indicated in Table 17 in

accordance with certain implementations of the invention.

Table 17
Type/ Standard Recursive
Deployment
Balanced X
Ragged - X
Unbalanced X X
Network X

The base rules for a cube hierarchy metadata object are: (1) the
cube hierarchy metadata object refers to one hierarchy; (2) the cube
hierarchy metadata object refers to at least one attribute; (3) attributes
referenced by the cube hierarchy metadata object are part of the
hierarchy; (4) the order of the attributes in the cube hierarchy metadata
object are the same as in the hierarchy (with the exception of hierarchies

defined as a network); (5) every attribute relationship within a hierarchy

WO 2004/063942 PCT/GB2003/005490
46

has a left attribute as part of the hierarchy; and, (6) attribute
relationships referenced in the cube hierarchy metadata object are also

referenced in the hierarchy that defines the cube hierarchy.

The base rules for a measure metadata object are: (1) a measure
metadata object can have, as parameters for each SQL expression template,
attributes, columns, measures, or none of them; (2) attributes and
measures, used as SQL template parameters, can not generate a dependency
loop among attributes and/or measures; (3) every SQL template defined in
the measure metadata object is not an empty string; (4) the SQL template
does not use aggregation functions; (5) aggregation is not required if at
least one measure and only measures are referenced; (6) the number of SQL
templates matches the number of parameters'of the first aggregation
function, if an aggregation is presenf; (7) a measure metadata object with
multiple SQL templates defines at least one aggregation step in an
aggregation script; (8) if measure metadata object A refers to measure
metadata object B, which defines multiple SQL templates, then measure
metadata object A does not have an aggregation script; this rule applies
for all levels in a measure reference tree; (9) a multi-parameter
aggregation function is used as the first aggregation; (10) if a measure
metadata object defines one or more aggreégtions; one aggregation may have
an empty dimension set; (11) within a measure metadata object, a dimension
may not be referenced more than once either within an aggregation or
across aggregations; (12) within a SQL expression template, token
indicators (i.e., {$%$#)) begin numbering with 1 and are consecutive with
no numbering gaps; and, (13) within a SQL expression, every column,

attribute and measure is referenced at least once.

The base rules for an attribute metadata object are: (1) an
attribute metadata object can have, as parameters for the SQL template,
attributes, columns, or none of them; (2) the attributes, used as
parameters for SQL template, can not generate a dependency loop among
attributes; (3) the SQL template can not be an empty string or blank
string; (4) no aggregation function is allowed to be part of the SQL
template; (5) within a SQL expression template, token indicators (i.e.,
{S#}) begin numbering with 1 and are consecutive with no numbering gaps;
and, (6) within a SQL expression, every column, attribute and measure is

referenced at least once.

The base rules for an attribute relationship metadata object are:

(1) the attribute relationship metadata object refers to two attributes;

WO 2004/063942 PCT/GB2003/005490
47

and, (2) the attribute relationship metadata object cannot be defined as
having a cardinality=N:N and a functional dependency=YES.

The base rules for the join metadata object are: (1) the join
metadata object refers to at least one triplet of left attribute, right
attribute, and operator; (2) all left attributes in the join metadata
object resolve into one or more columns of a single table; (3) all right
attributes in the join metadata object resolve into one or more columns of
a single table; and, (4) each triplet of the join metadata object defines
a valid operation; the datatypes of left and right attributes, as well as

the operation defined for them, are compatible.

The cube model completeness rules extend the base rules in order to
ensure that a cube model has the required links to other metadata objects
to allow effective warehouse SQL queries to be formed. The cube model. .
completeness rules for a cube model metadata object are: (1) a cube model
metadata object refers to one facts; (2) a cube model metadata object

refers to one or more dimensions.

The optimization rules extend the cube model completeness rules in

order to ensure that optimization of warehduse SQL queries can be

performed.

The optimization rules for a cube model metadata object is: (1) the
join used in the facts to dimension has a cardinality of 1:1 or N:1 and

joins a facts table to a primary table of a dimension.

The optimization rules for a dimension metadata object is: (1)
considering the join network formed by the joins of the dimension, there
is at least one table, primary table, in which all joins radiating from

this table have cardinality of N:1 or 1:1.

The optimization rules for a join metadata object are: (1) there is
a constraint defined on the columns that participate in the join; if the
join is a self-join, i.e. the same set of columns is used in both sides of
the equality, a primary key is defined matching the set of columns; in all
other cases, when the set of columns of one side are different from the
other side of the join, a primary key matches the columns of one side of
the join, énd a foreign key matches the other set of columns as well as
references the primary key; (2) the join cardinality is 1:1, N:1 or 1:N;
if the join is a self-join, the cardinality is 1:1; in all other join
cases, the cardinality is 1 on the side in which a primary key is defined

WO 2004/063942 PCT/GB2003/005490

48

and N on the side in which a foreign key is defined; if the foreign key
side has also a primary key defined on it, a 1 is used as cardinality; (3)
all attributes used in the Jjoin resolve to non-nullable SQL expressions;

and, (4) the join type is INNER JOIN.

A.4 Metadata.object Example

FIG. 17 illustrates a star schema composed of two dimension tables
1710, 1720 and a fact table 1700 in accordance with certain
implementations of the invention. Two lines 1730, 1740 represent joins
between the fact table 1700 and the dimension tables 1710, 1720. 1In
certain implementations, a database designer, using a modeling tool orxr
user interface 150, may create metadata obﬂect instances for metadata
objects 130. Most metadata objects 150 defined during the generation of
the multidimensional metadata can be reused for a new model if the

metadata objects overlap with the new model.

FIGs. 18A-18E illustrate a possible set of metadata object
instances, and, for simplicity, some properties of metadata objects, that
may be generated for the star schema of FIG. 17 in accordance with certain
implementations of the invention. In parficular; some of the omitted
properties in FIGs. 18A-18FE are common properties. For example, FIGs.
18A- 18E illustrate a cube model metadata object instance 1800, a cube
metadata object instance 1802, a facts metadata object instance 1804, a
cube facts metadata object instance 1806, measure metadata object
instances 1808, 1810, dimension metadata object instances 1812, 1814, cube
dimension metadata object instances 1816, 1818, hierarchy metadata object
instances 1820, 1822, 1824, cube hierarchy metadata object instances 1826,
1828, join metadata object instances 1830, 1832, and attribute metadata
object instances 1834-1848.

A user may use the user interface 150 to create metadata objects.
After creating an empty cube model metadata object, a facts metadata
object and dimension metadata objects are created and joined to the cube
model metadata object by creating appropriate join metadata objects.

The properties of the metadata objects discussed herein may be modified

without departing from the scope of the invention.

WO 2004/063942 PCT/GB2003/005490
49

B. Specifving Multidimensional Calculations for a Relational On-line

Analvtical Processing (ROLAP) Engine

The OLAP multidimensional metadata system 100 enables creation of a
measure metadata object to assist with multidimensional calculations. In
certain implementations, the measure metadata object includes the specific
properties defined in Table 8.

Measures in a measure metadata object are defined by the aggregation
of SOL expressions. In particular, table columns, attributes and measures
are mapped to a SQL expression template to build SQL expressions. The
resulting SQL expressions are then used as input for the first aggregation
function of the measure metadata object. If a measure metadata object has
more than one aggregation, the aggregétion functions are performed in the
order they are listed, with each subsequent aggregation taking the result
of the previous aggregation as its input. If the SQL. expression of the
measure metadata object only references other measures, the aggregation
function is omitted because the referenced measures describe any required

aggregations.

The SQL expressions used in the calculation of a measure are created
by the combination of two properties: a list of SQL expression templates
and a list of columns, attributes, and measures. The SQL expression
templates use a token notation where {$Sn} is the token and n references a
specific column, attribute, or measure from the list. The list of '
columns, attributes, and measures is ordered, and the position in the list
of a column, attribute or measure corresponds to the token "n" value. For
most aggregation functions the number of SQL expression templates in the
list i1s one, because most aggregation functions accept a single expression
as input. However, when an aggregation function such as CORRELATION is
used, the number of SQL expression templates match the number of input

parameters accepted by the aggregation function.

Again, SQL expressions are used as input to the first aggregation.
Each aggregation specifies a function that is applied to a corresponding
dimension set. The aggregation function can be any aggregation function
supported by the underlying RDBMS 110, including, for example, SUM, COUNT,
MIN, MAX, and CORRELATION. In certain implementations, each dimension is
aggregated once by the measure metadata object. If the dimension set is
empty, the aggregation function is applied to all dimensions in the cube
or cube model that are not specifically being used by any other

aggregations in the list.

WO 2004/063942 PCT/GB2003/005490
50

The multidimensional metadata software 120 automatically generates a
SQOL statement for generation of a cube view using the metadata in the

measure metadata object.

B.1l Requirements for Measures

This section describes some requirements for measures in accordance

with certain implementations of the invention.

One requirement for measures is support for a specific calculation
order within a measure. The calculation order for the set of measure
metadata objects referenced by a cube model metadata object or a cube
metadata object need not be the same - each measure metadata object may
specify a calculation order different than the calculation order of any
other measure metadata object. For example, a Quantity Sold = SUM(Revenue
/ UnitPrice) and Profit Margin = SUM(Profit) / SUM(Revenue). FIG. 19
illustrates Table A 1900, which shows base data in accordance with certain
implementations of the invention. A member named "Clothes" is a parent
for Trousers 1902, Shirt 1904, and Tie 1906, and the Quantity Sold for
Clothes is determined using Unit Price 1910 and Revenue 1912:
(680/40)+(780/60)+(175/25) = 17+13+7 = 37.— The Profit Margin for Clothes
is determined using Revenue 1912 and Profit 1914: (68+117+52.5) /
(680+780+175) = 237.5 / 1635 = 0.145.

Another requirement for measures is support for aggregation
functions with multiple input parameters, such as a correlation operation
(e.g., CORRELATION(Revenue, Profit)). The measure object needs to define

independent expressions for each aggregation function input.

Yet another requirement for measures is support for semi-additive
measures, such as snapshot measures (e.g., Inventory). For example, for
Market and Product dimensions, a sum operation is'performed (e.qg.,
SUM(Inventory)). For the Time dimension, a MIN operation is performed

(e.g., MIN(Inventory)).

FIG. 20 illustrates Table B 2000, which shows a measure that has the
aggregations: (SUM, Market) and (MIN, Time) in accordance with certain
implementations of the invention. In Table B 2000, numbers without
asterisks (e.g., *) or plus signs (e.g., +) represent base data. The
numbers with asterisks represent the aggregation for (SUM, Market). The
numbers with plus signs represent the aggregation for (MIN, Time). For

WO 2004/063942 PCT/GB2003/005490
51

example, (SUM, Market) for California 2002 for January 2004 is 28, and
(MIN, Time) for California 2002 for the quarterl 2006 is 25.

Additional regquirements for measures are support for one aggregation
function per dimension, support for different calculation order across
dimensions, and targeting to sophisticated applications (e.gl, find the
market locations that have the biggest average inventories, with (SUM,
Product), (AVE, Time), (MAX, Market)). Targeting to sophisticated
applications is a more generic representation of semi-additive measures,
which are described further below with reference to FIG. 23. Also, the
requirement of targeting to sophisticated applications is represented by
asymmetric measures, which are described further below. An asymmetric

measure defines multiple aggregation in the aggregation list.

FIGs. 21A-21D illustrate Table C 2100, which shows a measure that
has the aggregations: (SUM, Product) (i.e., sum of product), (AVG, Time)
(i.e., average over time), and (MAX, Market) (i.e., maximum for market),
in accordance with certain implementations of the invention. In table C
2100, the numbers without asterisks (e.g., *) or plus signs (e.g., +) or
dashes (e.g., -) represent base data. That is, the base data is
illustrated in FIG. 21A. In FIG. 21B, in-%able c 2100, the numbers for
the aggregation for (SUM, Product) have been added and are identified by
asterisks. For example, for Clothes 2102 in Los Angeles 2104 for January
2105, the (SUM, Product) is 66. In FIG. 21C, in Table C 2100, the numbers
for the aggregation for (AVG, Time) have been added and are identified by
plus-sign. For example, for Trousers 2106, for San Jose 2108 for the
first quarter (QTR1) 2109, (AVG, Time) is 11. In FIG. 21D, the numbers
for the aggregation for (MAX, Market) have been added and are identified
by dashes (e.g., -). For example, for Shirt 2110, for California 2112,

for January 2105, the (MAX, Market) is 36.

B.2 Degscribing Measures

In certain implementations of the invention, a measure metadata
object may be created that includes a list of expressions and a list of
aggregations. The measure metadata object was discussed in detail in
Section A. For ease of understanding, the measure metadata object will
also be discussed in this section. The list of expressions in the measure
metadata object includes a SQL expression template for each expression and
a list of columns, attributes and measures for each SQL expression
template. Each entry in the list of aggregations includes an aggregation

function and a corresponding dimension set. An empty dimension set means

WO 2004/063942 PCT/GB2003/005490
52

all remaining dimensions are to be used for the aggregation function. In
certain implementations, for the measure metadata object, only one

aggregation can have an empty dimension set.

FIG. 22 illustrates creation of two fully additive measure metadata
objects (Cost 2210 and Revenue 2220) in accordance with certain
implementations of the invention. In the example of FIG. 22, there are
three dimensions, Product 2202, Market 2204, and Time 2206. Each measure
metadata object 2210, 2220 specifies a <NULL> dimension set, which means

that all dimensions are used for the aggregation function of SUM.

The Cost measure metadata object 2210 is created for a cube model
with the three dimensiong: Product 2202, Market 2204, and Time 2206. The
Cost measure metadata object 2210 has a SQL expression template 2212
(template = "{$$1}"), which represents a, simple mapping to the column
specified in the single-item list of columns, attributes, and measures
(list = "Column Fact.Cost"). That is, for the Cost measure metadata
object 2110, the expression list refers to "{$$1}", which is a token that
is replaced with the column Fact.Cost when a SQL expression ls generated.
The aggregation list 2214 is (SUM, <NULL>)~where SUM is the aggregation
function, and <NULL> is an empty dimension set. The SQL expression from
the SQL expression template 2212 is used as input for the SUM aggregation
function, resulting in the SQL: SUM(Fact.Cost).

The Revenue measure metadata obiject 2220 is created for a cube model
with three dimensions: Product 2202, Market 2204, and Time 2206. The
Revenue measure metadata object 2220 has a SQL expression template 2222
(template = "{$$1}"), which represents a simple mapping to the column
specified in the single-item list of columns, attributes, and measures,
where list = "Column Fact.Rev". That is, for the Revenue measure metadata
object 2220, the expression list refers to "{$$1}", which is a token that
is replaced with the column Fact.Rev when a SQL expression is generated.
The aggregation list 2224 is (SUM, <NULL>) where SUM is the aggregation
‘function, and <NULL> is an empty dimension set. The SQL expression from
the SQL expression template 2222 is used as input for the SUM aggregation
function, resulting in the SQL: SUM({(Fact.Rev).

FIG. 23 illustrates creation of a semi-additive measure in
accordance with certain implementations of the invention. The Inventory
measure metadata object 2310 has a SQL expression template 2312 (template
= "{$81}"), which represents a simple mapping to the column specified in

the single-item list of columns, attributes, and measures, where list =

WO 2004/063942 ' PCT/GB2003/005490
53

"Column Fact.Inv". In the Inventory measure metadata object 2310, the
aggregations list 2314 includes two aggregations SUM and AVG (i.e.,
average). The Inventory measure metadata object 2310 aggregates the Time
dimension last, and so, the aggregation list specifies <NULL> for SUM,
which means all dimensions not referenced in the list (i.e., all
dimensions other than time, which would be product and market for this
example), and AVG for Time. The SUM operation is performed first, and the
results of the sum operation are used to perform the AVG operation. The
resulting SQL expression involves multiple aggregation steps. For ease of
understanding a simple example of the resulting SQL expression is
provided. For example, the resulting SQL expression may be: AVG(S1l),
where S1 is the result of SUM(Fact.Inv).

FIG. 24 illustrates creation of\a composite measure with aggregation
in accordance with certain implementations of the invention. In this
case, the Profit measure metadata object 2410 uses predefined measures and
determines the aggregation to be performed. A more complicated measure
such as, Profit, might have a SQL expression template 2412 (template =
"{881} - {$%2}*), where the list of columns, attributes, and measures is
list = "Measure Revenue, Column Fact.Cost". That is, the expression list
includes "{$$1} - {$$2}", which indicates-zhat the first token {$51} is
replaced with the result of the aggregation from the Revenue measure
metadata object 2220, and the second token {$$2} is replaced with the
result of the aggregation from the Cost measure metadata object 2210.
Replacing the tokens with the correct references, the SQL expression
becomes: "Revenue - Fact.Cost". Expanding the revenue measure reference
to its column reference, the SQL expression becomes: "Fact.Rev -

Fact.Cost".

The aggregation list 2414 of the Profit measure metadata object 2410
is: (SUM, <NULL>). In the aggregation list 2410, a <NULL> dimension set
is specified to represent all dimensions fox the SUM operation. Using the
profit SQL expression as input for the SUM aggregation function, the SQL
expression of the Profit measure is: SUM(Fact.Rev - Fact.Cost). That is,
profit is obtained by the sum of all subtractions of cost from revenue.

FIG. 25 illustrates creation of a composite measure without
aggregation in accordance with certain implementations of the invention.
In this case, the Profit Margin measure metadata object 2510 uses
predefined measure metadata objects (i.e., the Revenue measure metadata
ocbject 2220 and the Profit measure metadata object 2410) and does not
require any aggregation to be performed (which is indicated by a <NULL> in

WO 2004/063942 PCT/GB2003/005490
54

place of an aggregation in theAaggregation list 2414). In this case, the

aggregation comes from the base measures.

The Profit Margin measure metadata object has a SQL expression
template 2512 (template = "{$$1} / {$$2}"). The first token {$$1} is
replaced by thé result of the aggregation from the Profit measure metadata
object 2410, while the second token {$$2} is replaced by the result of the
aggregation from the Revenue measure metadata object 2220. Thus, the
resulting SQL expression for the Profit Margin measure ls SUM(Fact.Rev -
Fact.Cost)/ SUM(Fact.Rev). That is, a sum for profit is calculated, a sum
for revenue is calculated, and profit is divided by revenue to obtain

profit margin.

FIG. 26 illustrates creation of a measure with an OLAP function in
accordance with certain implementations of the invention. The Profit Rank
measure metadata object 2610 utilizes a RANK function (e.g., available
from a DB2® UDB RDBMS) to rank the profit measure. The new Profit Rank
measure metadata object 2610 does not requlre any aggregation. In
particular, the Profit Rank measure metadata object 2610 has a SQL
expression template (template = "RANK () OVER (ORDER BY{$3$1})"), which
indicates that the first token {$$1} is replaced.with the result of the
aggregation from the Profit measure metadata object 2410. The aggregation
list 2614 indicates that there is no aggregation with a <NULL> in place of
an aggregation function. The resulting SQL expression for the RANK
measure is RANK() OVER(ORDER BY SUM(Fact.Rev - Fact.Cost)).

FIG. 27 illustrates a measure with an aggregation and multiple
inputs in accordance with certain implementations of the invention. The
RevProfit Correlation measure metadata object 2710 utilizes the Revenue
and Profit measure metadata objects 2220, 2410. For the RevProfit
Correlation measure metadata object has two SQL expression templates 2712,
2713, each with a first token represented by {$$1}. For the SQL
expression template 2712 (template = "{$$1}"), the first token {$$1} is
replaced with the result of the aggregation from the Revenue measure
metadata object 2220. For the SQL expression template 2713 (template =
"{$81}"), the first token {$$1} is replaced with the result of the
aggregation from the Profit measure metadata object 2410. Then, a
correlation is performed. A correlation is a statistical function that
gives a measurement of how well two series of numbers relate to each
other. The resulting SQL expression for the Correlation measure is
CORRELATION (Fact.Rev, (Fact.Rev-Fact.Cost)). The aggregation list 2714

WO 2004/063942 PCT/GB2003/005490
55

specifies a CORRELATION operation and a <NULL> dimension set to represent

all dimensions.

FIG. 28 illustrates all defined measure metadata objects from FIGs.
22-27 in accordance with some implementations of the invention. Some
measure metadata objects bﬁild on others. For example, the RevProfit
Correlation measure metadata object 2710 builds on the Revenue measure
metadata object 2220 and the Profit measure metadata object 2410, while
the Profit measure metadata object 2410 builds on the Cost and Revenue

measure metadata objects 2210, 2220.

B.3 Generating a SOl Statement for Measures Represented by One or More

Measure Metadata Objects

The multidimensional metadata software 120 generates a single SQL
statement that calculates a set of measures represented by measure
metadata objects. FIG. 29A illustrates logic for generating a SQL
statement from one or more measure metadata objects in accordance with
certain implementations of the invention. Control begins in block 2900
with receipt of a measure description for ®ach of one or more measure:
metadata objects and generation of the one or more measure metadata
objects, such as one or more of the measure metadata objects illustrated
in FIGs. 22-28, based on the measure descriptions. 1In block 2902, a facts
description of a facts metadata object is received that references all of
the measure metadata objects, and a fact metadata object is generated from
the facts description. Additionally, the facts description references
attribute metadata objects and join metadata objects. In block 2903, a
dimension description for each of one or more dimension metadata objects
is received, and the one or more dimension metadata objects are generated
from the dimension descriptions. The dimension description references one
or more attribute metadata objects, zero or more join metadata objects,
and one or more hierarchy metadata objects. Fach hierarchy metadata
object includes information used to build a ROLLUP clause. In particular,
a cube model metadata object may reference several possible hierarchies,
but selection of a single hierarchy is required for SQL generation, in
certain implementations of the invention. In block 2904, a cube model
description of a cube model metadata object that references the facts and
one or more dimension metadata objects is received, and the cube model
metadata object is generated from the cube model description. In block
2906, a selection of a subset of the cube model metadata object is
received. In block 2908, a cube metadata object is generated based on the -

selection. Additionally, a SQOL statement is generated for creating a cube

WO 2004/063942 PCT/GB2003/005490
56

view from metadata in one or more measure metadata objects. The
generation of the SQL statement may also use other metadata in other

metadata objects (e.g., a hierarchy metadata object).

In particular, the generation of the SQL statement may generate one
or more ROLLUP operators from metadata in the hierarchy metadata object.
A ROLLUP operator, an extension of a GROUP BY clause, generates multiple
subtotal grouping clauses, based on a list of columns. The grouping
clauses are generated using information from the hierarchy metadata
object. This has the same effect, in OLAP terms, of a hierarchy
calculation in a given dimension. Conside£ a dimension such as location,
which has a hierarchy composed of country, state, and city. The
ROLLUP (country, state, city) clause generates the grouping clauses that
represent the calculation of the hierarchy. The general specification of
a ROLLUP of n elements (ci, Ca, . . . , Cai, Cn) 1s equivalent to the

following grouping clauses:

(cl r Ca2, e« « 4 Cpi. cn)
(Ci, €2, - . . , Cni)
(ca, C2)

(¢2)

Note that n elements in a ROLLUP clause translate to (n + 1)
grouping clauses. An OLAP application may have multiple dimensions
(e.g., defined in dimension metadata objects). A ROLLUP for each
dimension returns results that represent an OLAP cube, in a relational
way. The combination of more than one ROLLUP operator in a single
statement results in the Cartesian product of the grouping clauses
generated for each ROLLUP. For example, combining the following pair of
ROLLUP operators in a single statement ROLLUP (country, state), ROLLUP
(year, month) results in the generation of the following grouping clauses,

which are a set of grouping clauses that make up a cube:

(country, state, year, month)

(countxry, state, year)

~ WO 2004/063942 PCT/GB2003/005490
57

(country, state)
(country, year, month)
(country, year)
(country)

(year, month)

(vear)

()

Queries that use ROLLUP operators include all the generated grouping
clauses in a single result set. Hence, the result set includes the union
of all grouping clause columns, plus the aggregated columns. In order to
combine results of different grouping sets, nulls are returned in any
grouping columns in which a given row is not a member, as ‘illustrated in
the following example. See Table 18 for the result of the ROLLUP query
for a single dimension. A SELECT statement is generated that includes a
ROLLUP operator. The SELECT statement is generated based on metadata
objects 130. For example, in the SELECT statement below, the "sum"

operator is generated from a measures metadata object, and joins are

generated from a join metadata object.

SELECT country, state, sum(amt) AS revenue
FROM fact f, location 1

WHERE £.l1id = 1.1id

GROUP BY ROLLUP (country, state)

Table 18

Country State Revenue

- - 235329.23999999%99
CANADA - 35754.639999999999
CANADA ON 35754.639999999999
USA - 199574.60000000001
USA CA 103910.41

USA NY 94665.190000000002

In the example in Table 18, the row with the aggregate revenue for

USA is designated by a null (shown as a dash) in the state column. The

WO 2004/063942 PCT/GB2003/005490
58

row with the aggregate revenue for all countries and states is designated

by a null in both the country and state columns.

Although FIG. 29A describes use of measure metadata objects to
generate a cube view, in additional implementations, the measure metadata
objects may be used without creating a cube view. That is, the'cube view’
is one way to use the definitions of the measure metadata objects in order
to specify the calculations. Another way to use the definitions of the
measure metadata objects is for an application to read the measure
definitions and the cube model metadata ahd to directly generate a SQL

statement from the measure definitions and cube model metadata.

FIG. 29B illustrates .logic for generating a SQL statement from one
or more measure metadata objects and a cube model metadata object in
accordance with certain implementations of the invention. Control begins
in block 2910 with receipt of a measure description for each of one or
more measure metadata objects and generation of the one or more measure
metadata objects, such as one of the measure metadata objects illustrated
in FIGs. 22-28, based on the measure descriptions. In block 2912, a facts
description of a facts metadata object is_feceived that references all of
the measure metadata objects, and a fact metadaté object is generated from
the facts description. Additionally, the facts description references
attribute metadata objects and join metadata object. In block 2913, a
dimension description for each of one or more dimension metadata objects
is received, and the one or more dimension metadata objects are generated
from the dimension descriptions. The dimension description references one
or more attribute metadata objects, zero or more join metadata objects,
and one or more hierarchy metadata objects. Each hierarchy metadata
object includes information used to build a ROLLUP clause. In particular,
a cube model metadata object may reference several possible hierarchies,
but selection of a single hierarchy is required for SQL generation, in
certain implementations of the invention. In block 2914, a cube model
description of a cube model metadata object that references the facts and
one or more dimension metadata objects is received, and the cube model
metadata object is generated from the cube model description. In block
2916, a selection of a subset of the cube model metadata object is made by
an application program. In block 2918, under control of the application
program, using the cube model metadata object and one or more of the
measure metadata objects, a SQL statement is generated to retrieve
multidimensional information. The generation of the SQL statement may
also use other metadata in other metadata objects (e.g., a hierarchy

metadata object).

WO 2004/063942 ‘ PCT/GB2003/005490

59

The multidimensional metadata software 120 addresses key problems in
calculating multiple measures with a single SQL statement (i.e., symmetry
of a measure, distributiveness of aggregation functions involved, and
order dimensions appear in the aggregation script). Also, the
multidimensional metadata software 120 handles various query types (e.g.,
Grand Total query, Slice based query, and complete cube query). In a
Grand Total slice, only the grand total for all dimensions is returned. A

slice is a sub-cube, while a complete cube is an entire cube.

Measures are represented as measure metadata objects. When multiple
measures are to be calculated in a single SQL: statement, implementations
of the invention determine whether the measures are compatible.
Compatible measures have the same specificétion of aggregation order for
the dimensions that they reference. ff a set of measures are not
compatible, then the invention determines at least one way for the
calculation of the incompatible measures to be combined in a single SQL
statement. In certain implementations, the incompatible measures may be
combined using a JOIN operation (also referred to as "joining'), and this
processing is further described in FIG. 29C. In certain implementations,
the incompatible measures may be combined_?y restructuring aggregation
steps so that they are compatible (which is also'referred to as
"nesting"), and this processing is further described in FIG. 29D. 1In
certain implementations, a hybrid form of joining and nesting is
implemented in which some sets of measures are Jjoined and some sets of

measures are nested.

FIG. 29C illustrates further details of logic for combining measures
in accordance with certain implementations of the invention. The
processing of FIG. 29C illustrates the highest-level logic used to
generate a single SQL statement for calculating all measures.
Implementations of the invention attempt to generate the least number of
compatible measures sets. Also, when multiple sets are inevitable, due to
measure incompatibility, a preferred combination of sets is one that has a
symmetric set of measures, with all the symmetric measures in it.

In FIG. 29C, control begins at block 2940 with a set of measures
being accessed. A set of measures includes one or more measures. The
measures are accessed by referencing one or more metadata objects. In
block 2942, the set of measures in the one or more measure metadata
objects are separated into a gsymmetric measures set and an asymmetric
measures set. Symmetric measures have a single aggregation operator and

do not specify any specific aggregation order. In many applications such

WO 2004/063942 PCT/GB2003/005490
60

measures are common. All symmetric measures are compatible. A single SQL
statement to calculate all symmetric measures can be generated by using a
ROLLUP operatoxr per dimension. For example, the Revenue, Cost, and
Product measure used in previous examples are symmetric. Some measure
metadata objects may reference one or more other measures. For example, a
Pfofit Margin measure references Profit and Revenue measures, which
reference Income and Expense measures. Since both the Income and Expense
measures are symmetric, the Profit Margin measure is in the symmetric
measures set. In block 2944, a SQL statement is generated for the
symmetric measures set. In block 2945, a SQL statement is generated for
the asymmetric measures set. The symmetric and asymmetric measures sets
may be processed independently and concurrently or in any order.

In block 2946, the SQL statement for the symmetric measures set is
combined with the SQL statement for tﬁe asymmetric measures set to form a
single SQL statement for retrieving multidimensional information. The
technique used to combine these two statements depends on the nature of
the set of asymmetric measures. When some measures in the asymmetric set
can be computed from a common, symmetric subcube, nesting can be used to
combine the calculation of those measures and the symmetric measures by
rewriting the symmetric calculation as a nested calculation building on
the calculation of the common symmetric sﬁbcube.. If any measures of the
asymmetric set require dimensions to be aggregated in specific orders
(i.e., have little or no symmetry) or specify conflicting calculation
order for the dimensions of the cube, then those asymmetric measures are
divided into subsets sharing the same calculation order and a SQL:
statement is generated that combines them with an inner join. These
asymmetric measures with incompatibilities that can not be resolved by
means of nesting are then combined, by means of an inner join, with the
symmetric measures and with any asymmetric measures that were able to be

combined with the symmetric measures by means of nesting.

FIG. 29D illustrates further details of logic for combining
incompatible measures using nesting in accordance with certain
implementations of the invention. Control begins at block 2950 with a set
of measures being accessed. In block 2952, the next measure in the set of
measures is selected, starting with the one (e.g., the first). In block
2954, it is determined whether the measure is compatible with previous
measures. For the first measure processed, the determination is that the
measure is compatible (as there are no previous measures for the first
measure). If the measure is compatible, processing continues to block
2960, otherwise, processing continues to block 2956. In block 2956, it is

determined whether one or more measures may be rewritten so that the

WO 2004/063942 PCT/GB2003/005490
61

selected measure is compatible with the previous measures. If one or more
measures may be rewritten, processing continues to block 2958, otherwise,
processing continues to block 2964. 1In block 2958, one or more measures
are rewritten. Then, it i1s determined whether there is another measure to
be processed. If so, processing loops back to block 2952, otherwise,
processing continues to block 2962. In block 2962, the rewritten measures
are processed to generate a SQL statement for retrieving multidimensional
information. If the selected measure is not compatible with previous
measures, and cannot be rewritten, in block 2964, the measures are joined

with the technique described with reference to FIG. 29C.

FIG. 29E illustrates further details of logic for generating a SQL
statement for both a symmetric measure set and an asymmetric measure set
(blocks 2944, 2945) in accordance with certain implementations of the
invention. Control begins at block 2970 with expressions in one or more
SQL expression templates in the measure metadata object being input to a
first aggregation in an aggregation list defined in the measure metadata
object. 1In block 2972, the next aggregation is processed, starting with
one {e.g., the first aggregation). The result of processing an
aggregation is a SQL statement. If the measure contains multiple
aggregations, the SQL statement that resuiEs from the first aggregation is
used as input for the next aggregation. This is called nésted SQL
statements. In block 2974, it is determined whether there is an
additional aggregation in the aggregation list to process. If so,
processing loops back to block 2972, and the output of the processing of
the previous aggregation is input into the next aggregation. Otherwise,
processing continues to block 2976. In block 2976, a Structured Query
Language statement is output that retrieves multidimensional information.
In certain implementations, the SQL statement may be catalogued as a cube

view and referenced by a cube metadata object.

In terms of calculating multiple measures, symmetry of a measure,
distributiveness of aggregation functions involved, and order dimensions
appear in the aggregation script are addressed by the multidimensional

metadata software 120.

As for symmetry, a symmetric measure defines a single aggregation in
the aggregation list, and an asymmetric measure defines multiple
aggregation in the aggregation list. When a measure does not define an
aggregation, then the symmetry is defined by the base measures. In this
situation, a measure is symmetric if all of its base measures are

symmetric, and the measure is asymmetric if any of its base measures are

WO 2004/063942 PCT/GB2003/005490
62

asymmetric. FIG. 30 illustrates Table D 3000, which lists some measures
and indicates which measures are symmetric or asymmetric in accordance
with certain implementations of the invention. For example, the Cost
measure 3002 is symmetric, while the Inventory measure 3004 is asymmetric.
Table D 3000 does not provide an exhaustive list of measures, and other

measures also may be defined as symmetric or asymmetric.

As for distributiveness, an aggregation function is distributive
when it can be broken into multiple aggregation steps without changing the
result of the aggregation function. For example, for SUM, which is
distributive: single aggregation step = SUM(2, 8, 11) = 21, and this
single aggregation step may be broken into two aggregation steps, such as:
aggregation stepl has stepla = SUM(2, 8) and steplb = SUM(11); and
aggregation step2 = SUM(stepla, steplﬁ) = SUM(10,11) = 21. This
illustrates that SUM is a distributive function because when a single step
is broken apart, the results do not change. An aggregation function is
non-distributive when the aggregation function cannot be broken into
multiple aggregation steps without changing the result of the aggregation
function. For example, average (AVG), standard deviation (STDDEV), and
correlation (COﬁRELATION) are non—distribq}ive. For example, for AVG:
single aggregation step = AVG (2, 8, 11) =7, an& this single aggregation
step may be broken into two aggregation steps, such as: aggregation stepl
has stepla = AVG{2, 8) and steplb = AVG(1ll); and, aggregation step2 =
AVG (stepla, steplb) = AVG(5,11) = 8. This illustrates that the average is
a non-distributive measure because when a single aggregation step is

broken apart, the results may change.

FIG. 31 illustrates Table E 3100, which lists some aggregation
functions and indicates which aggregation functions are distributive and
which are non-distributive in accdrdance with certain implementations of
the invention. For example, the SUM aggregation function 3102 is
distributive, while the AVG 3104 and CORRELATION 3106 aggregation
functions are non-distributive. Table E does not provide an exhaustive
list of aggregation functions, and other aggregation functions may be

classgified as distributive or non-distributive.

As for the order that dimensions appear in the aggregation script,
it is desirable to have all measures of a facts table use the same number
of aggregation steps and to have each aggregation step calculate the same
set of dimensions. Two aggregation steps may be combined if the two
aggregation steps use the same aggregation function. Also, if both
agoregation functions are distributive, the aggregation step can be split

WO 2004/063942 PCT/GB2003/005490
63

into two or more aggregation steps. FIG. 32 illustrates Table F 3200,
which lists measures and how an aggregation step may be broken up into
multiple aggregation steps for the measures in accordance with certain
implementations of the invention. In Table D 3200, the numbers with
asterisks denote an alternative way to calculate the measure. For
example, for the Cost measure 3202, the first option is a SUM of product,
market, and time dimensions, while a second option is to first perform a
sum of product and market dimensions, and then to add in the time

dimension.

B.4 Generating a SOL Statement for a Symmetric Measures Set

The multidimensional metadata software 120 generates a SQL statement
for symmetric measures. For ease of ﬁnderstanding, SQL statements that
have been génerated for some symmetric measures are provided in this
section. The result of executing the SQL statement generated for a Grand
Total query or an Arbitrary Slice qﬁery, may be stored, for example, in a
report. However, the result of executing the SQL statement generated for
a complete cube query is a cube view, which may itself be queried.

For all types of queries, the generégion of the SQL expression for

each measure follows the flow described in FIG. 29E.

For example, for a Grand Total query with symmetric measures, the
multidimensional metadata software 120 may generate the following Select

statement:

select SUM(f.Cost) as Cost, SUM(f.Rev) as Revenue, SUM(f.Rev -
f.Cost) as Profit,

SUM(f.Revenue - f£.Cost) / SUM(f.Rev) as "Profit Margin",

RANK () OVER (ORDER BY SUM(f.Rev - f£.Cost)) as "Profit Rank",
CORRELATION (f.Revenue, f.Revenue - f£.Cost) as "RevProfit

Correlation" from Fact £

For an Arbitrary Slice query with symmetric measures, the
multidimensional metadata software 120 may generate the following Select

statement:

gselect SUM(f.Cost) as Cost, SUM(f.Rev) as Revenue, SUM(f.Rev -
f.Cost) as Profit,

SUM(f.Revenue - f.Cost) / SUM(f.Rev) as "Profit Margin",

RANK () OVER (ORDER BY SUM(f.Rev - f£.Cost)) as "Profit Rank",

WO 2004/063942 PCT/GB2003/005490
64

CORRELATION (f£.Revenue, f.Revenue - f£.Cost) as "RevProfit
Correlation”,

m.Country, m.State, t.Year

from Fact £, Market m, Time t

where f.marketid = m.marketid AND f.timeid = t.timeid

group by m.Country, m.State, t.Year

For a complete cube query with symmetric measures, the
multidimensional metadata software 120 may generate the following select
statement:

select SUM(f.Cost) as Cost, SUM(f.Rev) as Revenue, SUM(f.Rev -~

f.Cost) as Profit,

SUM(f.Revenue - f£.Cost) / SUM(f.Rev)'as *Profit Margin",

RANK () OVER (ORDER BY SUM(f.Rev - £.Cost)) as "Profit Rank”,

CORRELATION (f.Revenue, f.Revenue - £.Cost) as "RevProfit

Correlation", '

m.Country, m.State, m.City,

t.Year, t.Quarter, t.Month,

p.Line, p.Group, p.Product,

from Fact £, Market m, Time t; Prodqgt P

where f.marketid = m.marketid AND f.timeid = t.timeid AND f.prodid =

p.prodid

group by ROLLUP (m.Country, m.State, m.City),

ROLLUP(t.Year, t.Quarter, t.Month),
ROLLUP (p.Line, p.Group, p.Product)

B.5 Generating a SOL Statement for an Asymmetric Measures Set

The multidimensional metadata software 120 generates a SQL statement
for asymmetric measures. For ease of understanding, SQL statements that
have been generated for some asymmetric measures are provided in this
section. The result of executing the SQL statement generated for a Grand
Total query or an Arbitrary Slice query, may be stored, for example, in a
report. However, the result of executing the SQL statement generated for

a complete cube query is a cube view, which may itself be queried.

A set of asymmetric measures is calculated by using a nested SELECT
statement. Each of the aggregation steps maps to a level of nesting in
the SELECT. The first aggregation step is calculated in the innermost
nesting level of the SELECT, which is described in block 2970 of FIG. 29E.
The results of each level are used as input to the immediate outer nested

SELECT, as described in block 2972 of FIG. 29E. In each of these levels,

WO 2004/063942 PCT/GB2003/005490
' 65

for dimensions that have not yet been calculated and are not supposed to
be calculated in a given level, the most granular (detailed) dimension
attribute is included in the GROUP BY clause. In this manner, no
aggregation happens for those dimensions. With regards to the aggregation
functions, each level has the aggregation function taking as input the
results of the measure in the immediate inner level. For the loweét
level, the input for the aggregation function is the SQL expressions
defined in the measure, as described in block 2970 of FIG. 29E.

For example, for a Grand Total Query with asymmetric measures, the
multidimensional metadata software 120 may generate the following Select
statement:

select AVG(s.Inventory) as Inventory

from (select SUM(f.Inv) as inventory, £.timeid
from Fact £

group by f.timeid) s

For an Arbitrary Slice query with asymmetric measures, the
multidimensional metadata software 120 may generate the following Select
statement: =

select AVG(s.Inventory) as Inventory,

s.Country, s.State, s.Year

from (select SUM(f.Inv) as Inventory,

F.timeild,

m.Country, m.State, t.Year

from Fact £, Market m, Time t

where f.marketid = m.marketid AND f.timeid = t.timeid
group by f.timeid, m.Country, m.State, t.Year) s

group by s.Country, s.State, s.Year

For a complete cube query with asymmetric measures, the
multidimensional metadata software 120 may generate the following select
statement:

select AVG(s.Inventory) as Inventory,

s.Year, s.Quarter, s.Month,

s.Country, s.State, s.City,

s.Line, s.Group, s.Product)

from (select SUM(f.Inv) as Inventory, £.timeid, m.Country,
m.State, m.City,

t.Year, t.Quarter, t.Month, p.Line, p.Group, p.Product
from Fact f, Market m, Time t, Product p

WO 2004/063942 PCT/GB2003/005490
66

where f.marketid = m.marketid AND f.timeid = t.timeid AND
£f.prodid = p.prodid

group by f.timeid, t.Year, t.Quarter, t.Month,

ROLLUP (m.Country, m.State, m.City),

ROLLUP (p.Line, p.Group, p.Product)) s

group by ROLLUP(s.Year, s.Quarter, s.Month),

s.Country, s.State, s.City, s.lLine, s.Group, s.Product

B.6 Generating a SQL Statement for Incompatible Measure Sets

This section describes how multiple SQL statements generated for

multiple measure sets (e.g., symmetric and asymmetric measures sets) are

combined into a single SQL statement.

In the example of Table F, it is not possible to find a common set
of dimension sets. There are two options to calculate all (i.e.,
symmetric and asymmetric) measures. Each option creates two separate SQL
queries and merges them together. For example, a first option is to take
Cost, -Revenue, Profit, Profit Margin, Profit Rank, and RevProfit
Correlation of all dimensions ("AllDim") and an Inventory of AllbutTime,
Time. For example, a second option is to take a RevProfit Correlation of
all dimensions (*AllDim) and Inventory, Cost, Revenue, Profit, Profit

Margin, Profit Rank for AllbutTime, Time.

The multiple SQL statements generated for the symmetric and
asymmetric measures sets share the same set of attributes when these SQL
statements are generated for the same slice or cube. Therefore, the
attribute instances will be the same in all the SQIL. statements. The
technique of combining the SQL statements of different measures sets
consists of joining the results of both SQL statements. That is, the SQL
statements generated for each measures set are joined into a single SQL
statement by connecting them with an INNER JOIN. In certain
implementations, the type of join used is an INNER JOIN on the attributes

that were used in the GROUP BY clauses of the SQL statements.

The clause used in the inner join between the multiple SQL
statements depends on the type of SQL statements being combined (i.e.,
slice-based vs. complete cube). For slice-based SQL statements, the
clause used in the inner join will use a simple ANDed equality of all the

attributes in the slice. The following is a slice-based SQL statement

WO 2004/063942 PCT/GB2003/005490

67

generated by the multidimensional metadata software 120 for the first

option:

select rl.Inventory, r2.Cost, r2.Revenue, r2.Profit,
r2 .Margin,
r2."Profit
Rank", r2."RevProfit Correlation®,
rl.Country, rl.State, rl.Year
(select AVG(s.Inventory) as Inventory,
s.Country, s.State, s.Year
from (select SUM(£.Inv) as Inventory,
f.timeid, m.Country, m.State, t.Year
from Fact £, Market m, Time
where f.marketid = m.marketid AND f.timeid = t.timeid
group by f.timeid, m.Country, m.State, t.Year) s
group by s.Country, s.State, é.Year) rl
INNER JOIN
(select SUM(f.Cost) as Cost, SUM(f.Rev) as Revenue,
SUM (f.Rev
-f.Cost) as Profit =
SUM(f.Revenue - f.Cost) / SUM(f.Rev) as Margin,
RANK () OVER (ORDER BY SUM(f.Rev - f.Cost)) as "Profit Rank",
CORRELATION (f.Revenue, f.Revenue - f.Cost) as "RevProfit
Correlation",
m.Country, m.State, t.Year from Fact f, Market m, Time t
where f£.marketid = m.marketid AND f.timeid = t.timeid
group by m.Country, m.State, t.Year) r2
ON rl.Country = r2.Country AND rl.State = r2.State AND
rl.Year =

r2.Year

In a Grand Total slice, only the grand total for all dimensions is
returned. If the slice being queried is a Grand Total slice, then there
are no attributes that are being grouped by, therefore, a transient
constant attribute is used in the join clause. The transient constant
attribute is associated with the Grand Total column and describes whether
an aggregation is held for the given attribute. The following is a Grand
Total slice SQL statement generated by the multidimensional metadata

software 120 for the first option:

select rl.Inventory,

WO 2004/063942 PCT/GB2003/005490

68

r2.Cost, r2.Revenue, r2.Profit, r2.Margin, r2."Profit Rank",
r2."RevProfit

Correlation"

(select AVG(s.Inventory) as Inventory, 1 as GrandTotal
from (select SUM(f.Inv) as Inventory, f.timeid

from .Fact £

group by f.timeid) s

) rl

INNER JOIN
(select SUM(f.Cost) as Cost, SUM(f.Rev) as Revenue, SUM(f.Rev

f.Cost) as Profit,

SUM(f.Revenue - -f£.Cost) / SUM(f.Rev) as "Profit Margin",

RANK () OVER (ORDER BY SUM(%.REV - f.Cost)) as "Profit Rank",

CORRELATION (f.Revenue, f.Revenue - f£.Cost) as "RevProfit

Correlation", '

1 as GrandTotal

from Fact £) r2

ON rl.GrandTotal = r2.GrandTotal

For the complete cube type of SQL statemenﬁ, the join clause also

takes into consideration the fact that the instances of an attribute will
also contain the representation of aggregations. For that reason,
transient attributes are added to the base SQL statements that are being
combined. These new transient constant attributes describe whether an
aggregation is held for the given attribute. The join clause then joins
attribute instances when they contain specific members or contain
aggregation. The following is a cube- based SQL statement generated by
the multidimensional metadata software 120 for the first option that shows

the use of the transient constant attribute suffixed by AGG (i.e.,

aggregation) :

select rl.Inventory, r2.Cost, r2.Revenue, r2.Profit,
r2.Margin,
r2."Profit

Rank", r2."RevProfit Correlation",

rl.Year, rl.Quarter, rl.Month, rl.Country, rl.State, rl.City,

rl.Line,

rl.Group, rl.Product
(select AVG(s.Inventory) as Inventory, s.Year, s.Quarter,
s.Month,

s.Country, s.State, s.City, s.Line, s.Group, s.Product,

WO 2004/063942 PCT/GB2003/005490
69

'GROUPING (s.Year) as YearAgyg, GROUPING (s.Quarter) as
QuarterAgg, GROUPING (s.Month) as MonthAgg,
s.CountryAgg, s.StateAgg, s.CityAgg, s.LineAgg, s.GroupAdg,
s.ProductaAgg
from (select SUM(ﬁ.Inv) as Inventory, f.timeid, t.Year,
t.Quarter,
£ .Month, m.Country, m.State, m.City, p.Line, p.Group,
p.Product,
GROUPING (m.Country) as CountryAgg, GROUPING (m.State) as
StateAgg,
GROUPING (m.City) as CityaAgg,
GROUPING (p.Line) as LineAgg, GROUPING (p.Group) as GroupAdg,
GROUPING (p.Product) as ProductAgQ
from Fact £, ﬁarket m, Time t, Product p
where £.marketid = m.marketid AND f.timeid =
t.timeid AND
f.prodid = p.prodid
group by f£.timeid, t.Year, t.Quarter, t.Month,
ROLLUP (m.Country, m.State, m.City), ROLLUP(p.Line, p.Group,
p.Product)) s B
group by ROLLUP(s.Year, s.Quarter, s.Mbnth), s.Country,
s.State,
s.City, s.Line, s.Group, s.Product,
s.CountryAgg, s.StateAgg, s.CityvAgg, s.lLineAgg, s.GroupAgy,
s.ProductAgg) rl
INNER JOIN
(select SUM(f.Cost) as Cost, SUM(f.Rev) as Revenue,
SUM(f.Rev
~.Cost) as Profit,
SUM(f.Revenue - f.Cost) / SUM(f.Rev) as "Profit Margin®,
RANK () OVER (ORDER BY SUM(f.Rev - f£.Cost)) as "Profit Rank",
CORRELATION (f.Revenue, f.Revenue - £.Cost) as
"RevProfit
Correlation",
m.Country, m.State, m.City, t.Year, t.Quarter,
t.Month, p.Line,
p.Group, p.Product,
GROUPING (m.Country) as CountryAgg,
GROUPING (m.State)
as StateAgg, GROUPING (m.City) as CityAgg,
GROUPING (t.Year) as YearAgg, GROUPING (t.Quarter)
as

WO 2004/063942 PCT/GB2003/005490
70

QuarterAgg, GROUPING(t.Month) as MonthAgg,
GROUPING (p.Line) as LineAgg, GROUPING (p.Group) as
GroupAgyg, GROUPING (p.Product) as ProductAgg

from Fact £, Market m, Time t, Product p

where f.marketid = m.marketid AND f.timeid = t.timeid AND
' £.prodid =

p.prodid

group by ROLLUP (m.Country, m.State, m.City), ROLLUP(t.Year,
t.Quarter, t.Month), ROLLUP(p.Line, p.Group, p.Product)) r2
ON (rl.Country = r2.Country OR (rl.CountryAgg=1l AND
r2.CountryAgg=1)) AND
(rl.State = r2.State OR (rl.StateAgg=1l AND
' r2.StateAgg=1))
AND
(rl.City = r2.City OR (rl.CityAgg=1l AND r2.CityAgg=1)) AND
(rl.Year = r2.Year OR (rl.YearAgg=l AND r2.YearAgg=1l))
AND
(rl.Quarter = r2.Quarter OR (rl.QuarterAgg=1l AND
r2.QuarterAgg=1l)) AND
(rl.Month = r2.Month OR g;l.MbnthAgg=l AND
r2 .MonthAgg=1))

(rl.Line = r2.Line OR (rl.LineAgg=1l AND r2.LineAgg=1l))
AND .
(rl.Group = r2.Group OR (rl.GroupAgg=1l AND r2.GroupAgg=1l))
AND
(rl.Product = r2.Product OR (rl.ProductAgg=1 AND
r2.ProductaAgg=1))

Although the example above illustrates two measure sets,
implementations of the invention may combine more than two measures sets.
Moreover, although examples herein have beep directed to SQL statements,
other statements that may be used to access a database are within the

scope of the invention.

In certain implementations, rather than combining SQL statements
generated for multiple measures sets, aggregation sets are restructured so
that they are compatible. For example, calculation of Sales and Inventory
measures may be combined. Because the Sales measure uses SUM for all
dimensions and the Inventory measure uses SUM for all but time, the
computation fdr the Sales measure may be broken down into two steps. The
first step is SUM for all dimensions but time, and the last step is SUM

WO 2004/063942 PCT/GB2003/005490
71

for time (which works because SUM is distributive). This computation

order for Sales is now compatible with the steps required for Inventory.

IBM, DB2, Z/0S8, and AIX are trademarks of International Business
Machines Corporation in the United States and/or other countries. Windows
is a trademark of Microsoft Corporation in the United States and/or other
countries. Solaris and JDBC are trademarks of Sun Microsystems in the
United States and/or other countries. Linux is a trademark of Linus
Torvalds in the United States and/or other countries. HP-UX is an Open
Group UNIX 95 branded product in the United States and/or other countries.
Pilot Suite is a trademark of Pilot Software in the United States and/or
other countries. Express is a trademark of Oracle Corporation in the
United States and/or other countries. Essbase is a trademark of Hyperion
Solutions Corporation in the United Sfates and/or other countries. TMl is
a trademark of Applix, Inc. in the United States and/or other countries.

Additional Implementation Details

The described techniques for maintaining information on network
components may be implemented as a method,;apparatus or article of
manufacture using standard programming and/oxr enéineering techniques. to
produce software, firmware, hardware, or any combination thereof. The
term "article of manufacture" as used herein refers to code or logic
implemented in hardware logic (e.g., an integrated circuit chip,
Programmable Gate Array (PGA), Application Specific Integrated Circuit
(ASIC), etc.) or a computer readable medium, such as magnetic storage
medium (e.g., hard disk drives, floppy disks, tape, etc.), optical storage
(CD-ROMs, optical disks, etc.), volatile and non-volatile memory devices
(e.g., EEPROMs, ROMs, PROMs, RAMs, DRAMs, SRAMs, firmware, programmable
logic, etc.). Code in the computer readable medium is accessed and
executed by a processor. The code in which preferred embodiments are
implemented may further be accessible through a transmission medium or
from a file server over a network. In such cases, the article of
manufacture in which the code is implemented may comprise a transmission
media, such as a network transmission line, wireless transmission media,
signals propagating through space, radio waves, infrared signals, etc.
Thus, the article of manufacture" may comprise the medium in which the
code is embodied. Additionally, the "article of manufacture" may comprise
a combination of hardware and software components in which the code is
embodied, processed, and executed. Of course, those skilled in the art
will recognize that many modifications may be made to this configuration
without departing from the scope of the present invention, and that the

WO 2004/063942 PCT/GB2003/005490
72

article of manufacture may comprise any information bearing medium known

in the art.

The logic of FIGs. 29A, 29B, 29C, 29D, and 29E describes specific
operations occurring in a particular order. In alternative
implementations, certain of the logic operations may be performed in a
different order, modified or removed. Moreover, steps may be added to the
above described logic and still conform to the described implementatioms.
Further, operations described herein may occur seguentially or certain
operations may be processed in parallel, or operations described as

performed by a single process may be performed by distributed processes.

The logic of FIGs. 29A, 29B, 29C, 29D and 29E was described as being
implemented in software. This logic may be part of the operating system
of the host systems or an application program. In yet further
implementations, this loglc may be maintéined in storage areas or in a
read only memory or other hardwired type of device. The preferred logic
may be implemented in hardware or in programmable and non- programmable
gate array logic.

FIG. 33 illustrates one implementation of the architecture of the
computer system 100. The computer system 100 may implement a computer
architecture 3300 having a processor 3302 (e.g., a microprocessor), a
memory 3304 (e.g., a volatile memory device), and storage 3306 (e.g., a
non-volatile storage area, such as magnetic disk drives, optical disk
drives, a tape drive, etc.). The storage 3306 may comprise an intermal
storage device or an attached or network accessible storage. Programs in
the storage 3306 are loaded into the memory 3304 and executed by the
processor 3302 in a manner known in the art. The architecture further
includes a network card 3308 to enable communication with a network. An
input device 3310 is used to provide user input to the processor 3302, and
may include a keyboard, mouse, pen-stylus, microphone, touch sensitive
display screen, or any other activation or input mechanism known in the
art. An output device 3312 is capable of rendering information
transmitted from the processor 3302, or other component, such as a display

monitor, printer, storage, etc.

WO 2004/063942 PCT/GB2003/005490

73

The foregoing description of the preferred implementations of the
invention has been presented for the purposes of illustration and

It is not intended to be exhaustive or to limit the

description.
Many modifications and

invention to the precise form disclosed.
variations are possible in light of the above teaching.

WO 2004/063942 PCT/GB2003/005490
74

CLATMS

1. A method for specifying multidimensional calculations,
comprising:
receiving selection of a subset of a cube model metadata object that is
geneiated from a facts metadata object and one or more dimension
metadata objects, wherein the facts metadata object references one or
more measure metadata objects; and

generating a statement for retrieving multidimensional
information using metadata in the cube model metadata object and the
one or more measure metadata objects, wherein each of the measure

metadata objects specifies one or more aggregations.

2. The method of claim 1, wherein the statement is a

structured query language statement.

3. The method of claim 1, wherein each of the measure metadata

objects specifies one or more structured query language expressions.

4. The method of claim 3, wherein each of the structured query
language expressions includes a template for buiiding a query language

expression.

5. The method of claim 4, wherein the template uses a token
notation that references a specific column, attribute, or measure from

a list of columns, attributes and measures.

6. The method of claim 3, wherein each of the structured guery
language expressions includes a list of columns, attributes, and

neasures.

7. The method of claim 1, wherein the structured query
language statement is generated based on the specified one or more

aggregations in each of the measure metadata objects.

8. The method of claim 7, wherein the list of aggregations
comprises a list of aggregation functions and corresponding dimensions

sets.

WO 2004/063942 PCT/GB2003/005490
75

9. A system for specifying multidimensional calculations,
comprising a computer system having at least one programmable component
to operate at least one program for:

receiving selection of a subset of a cube model metadata object
that is generated from a facts metadata object and one or more
dimension metadata objects, wherein the facts metadata object
references one or more measure metadata objects; and

generating a statement for retrieving multidimensional
information using metadata in the cube model metadata object and the
one or more measure metadata objects, wherein each of the measure

metadata objects specifies one or more aggregations.

10. A computer program comprising computer program code to,
when loaded into a computer system and executed thereon, cause the
computer system to perform all the steps of a method as claimed in any

of claims 1 to 8.

WO 2004/063942 PCT/GB2003/005490
1/42

110
\
Relational Database
Management System
Relational 140
Database
100
4
OLAP Multidimensional
Metadata System
Multidimensional
Intlejgf'fearce > Metadata — 120
‘ ‘ Software
\ F
150 v
Multidimensional |— 130
Metadata Objects

WO 2004/063942

2/42

PCT/GB2003/005490

OLAP Model Objects

210
[
Facts
220 | 230
| v v |/
Measure Measure

Relational tables

Rl i R

=SSR S S |

— 230

FIG. 2

WO 2004/063942

Time

TimelD

Month

Quarter
Year

3/42

. Fact

PCT/GB2003/005490

Product

ProductiD
Product
320~ Size
Line
Group

e

TimelD
ProductiD
RegioniD

Sales
Costs

— 300

Region l

RegioniD
lip
City
City Population
State
Country

— 330

FIG. 3

WO 2004/063942 PCT/GB2003/005490
4/42

OLAP Model Objects 100
410
[
Dimension 406 Dimension
|11
412 414
v | v 416§ v |
Attribute | 408 attribute | M Join || Attribute
—
452 456
HH
— 450
Relational tables
e e
=== |

FIG. 4

WO 2004/063942 PCT/GB2003/005490
5/42

OLAP Model Objects 510 500
512 [516 Lpedel 516 514
\4 I A 4 , A\ 4 A4 I A\ 4 I
Dimension] | Join Facts Join | |Dimension
/ 111
\ 4 520 \ 4 A 4 \ 4
Attribute Attribute Join Attribute
— —

\ 4 A 4

Measure Measure

— 550

FIG. 5

PCT/GB2003/005490

WO 2004/063942

6/42

9914
[(¢4Q) feuonejay M_
lafe A
009 — __m%:m_mm.rmmm ;M%_hw__l_ fyoresely e%ﬁﬁ%m ulof anquny | | ainsespy
lafe] uoisuaLLi(j s}oe4
0191 |evoisuswipmnpy aqng agny voististiig SHE
029 — Jofe1 410 8qn) 1epojy aqny

PCT/GB2003/005490

WO 2004/063942

7/42

L3I

(uoneindog) (diz) (o)
(awoizsy) (aexs) (fnunog)

uorie|ndod A9
0} A1

yy dodfig

1oe4(qjuoiday
QJuoigey

a (10e4qjuoidey)

Om_mmu Qum.._a_ub%e@ @&%E_O

ujouoiday

Re4gianpoid
(RoNpoid

Rejqiawil
@lswil

uloflonpold uiopaw|
(ezs) (anonpoyg) Capunl) (puoy)
(3onpoid) (aurn) (dnoiy) (Jeyeny) (Jeay)

00£

PCT/GB2003/005490

WO 2004/063942

8/42

8 9l

fyaieisiy aqny fyoielsiy aqny fyaselaly agny
Houoiday HO1NpoId GHEI
(Huoi3ay)
(Yy dogfu)) (H¥onpold) (How))

) auf Japenp
a]els dnouy i1
funon

08 098 048

(4 mummb_ov 19npoid IO
k m.o auir Jayeny
IS fuosesen dnory /fyosessiy fyasesaiy

Hlanpoid

0c8 018 008

WO 2004/063942 PCT/GB2003/005490
9/42

90 920

| ProductDim
~ Group Line Product Size
ProductiD ProductH

900

TimeDim
Year Quarter Month
TimelD TimeH

SalesFacts

Sales Costs
TimelDFact ProductIDFact
RegionIDFact

RegionDim

Country State City Zip 930
‘ City_Population RegionID RegionH

FIG. 9

WO 2004/063942 PCT/GB2003/005490
10/42

1010 1020

TimeCubeDim ProductCubeDim

ProductCH
(ProductDim)

TimeCH
(TimeDim)

| SalesCubeFacts-

Sales

(Sales Facts) - 1000

RegionCubeDim 1030

RegionCH (RegionDim)

FIG. 10

WO 2004/063942 PCT/GB2003/005490
11/42

1100
Sales Cube Model ~ /

Facts: SalesFacts
Dimensions and Fact Table Joins:
(TimeDim, TimeJoin),
(ProductDim, Productloin),
(RegionDim, RegionJoin)

1150
Sales Cube
SalesCubeFacts
TimeCubeDim
ProductCubeDim
RegionCubeDim

FIG. 11

WO 2004/063942

12/42

PCT/GB2003/005490

1200

2001

1st Qfr

2002

st Qtr

Jan

Feb

Feb

Mar

Executive
Secretary

Chief
Operating
Officer

Director
of
Communications

Communications
Specialist

FIG. 13

WO 2004/063942 PCT/GB2003/005490
13/42
1400
/
North America Europe
United States Greece
California
San Francisco Athens
FIG. 14
1500
Red Shrink Wrap
Large White
Box Small

FIG. 15

PCT/GB2003/005490

WO 2004/063942

14/42

91 Dl

diysuonejey
anqupy <

toIsuawi(
9qny

" (s

0191 0091

aInsea)

s}084

WO 2004/063942 PCT/GB2003/005490
15/42

1710 1730 1700 1720
Location / _[Facts / 1740 Product /
LocationID H-— —~—0iq ProductiD (FK) _Z ~— 1 ProductID
City LocationID (FK) plo—-- Name
State SalesDollar - GroupName
Country SalesCost

FIG. 17

WO 2004/063942

PCT/GB2003/005490
16/42

Cube Model:
18001 Property‘ Value-
| Name LocationProduct
| Facts SalesFacts
Set of Dimensions (Location, LocationFacts), (Product, ProductFacts)
Cube:
1802 Property Valug
| Name LocationProduct
"| Cube Model LocationProduct
Cube Facts SalesCFacts
List of Cube Dimensions LocationCD, ProductCD
Facts: '
Property Value
188% Name | SalesFacts
| Set of Measures Revenue, Profit
Set of Attributes ProductiD_Facts, LocationID_Facts
Set of Joins <no joins used> -
Cube Facts:
Property Value
188? Name SalesCFacts
| Facts SalesFacts
Set of Measures Revenue, Profit
Measure:
1808 Property Value
| Name Revenue
| List of SQL Expression Template ["{$$1}"
List of Columns and Measures | Column: Facts.SalesDollar
List of Aggregations (SUM, <empty>)
Datatype DOUBLE
Property Value
18&? Name Profit
" List of SQL Expression Template | "{$$1} - {$$2}"
List of Columns and Measures | Measure: Revenue, Column: Facts.SalesCost
List of Aggregations (SUM, <empty>)
Datatype DOUBLE

FIG. 18A

WO 2004/063942

PCT/GB2003/005490

17/42

Dimension:
1812 Pn)perty Value.
- |Name Location
"[Set of Attributes LocationiD, Country, State, City
Set of Joins <no joins used>
Set of Hierarchies LocDetail, LocOverview
Type REGULAR
Property Value
18& Name Product
"I Set of Attributes ProductID, GroupName, ProdName
Set of Joins <no joins used>
Set of Hierarchies Product
Type REGULAR
Cube Dimension:
1816 ProDerty Value
| Name LocationCD
"{ Dimension Location
Cube Hierarchy LocOverviewCH
Property Value
18& Name ProductCD
"I Dimension Product
Cube Hierarchy ProductCH
Hierarchy:
Property Value
18&9 Name Loc Detail
[List of Attributes Country, State, City
Set of Attribute Relationships | <no attribute relationships used>
Type BALANCED
Deployment STANDARD
1829 Property Value .
| Name LocOverview
| List of Attributes Country, State
Set of Attribute Relationships | <no attribute relationships used>
Type BALANCED
Deployment STANDARD

FIG. 18B

WO 2004/063942 PCT/GB2003/005490
18/42
: Property Value
1824
, Name -] Product
List of Attributes GroupName, ProdName
Set of Attribute Relationships | <no attribute relationships used>
Type BALANCED
Deployment STANDARD
Cube Hierarchy:
1806 Property Value
O Name LocOverviewCH
Hierarchy LocOverview
List of Attributes Country, State
Set of Attribute Relationships | <no attribute relationships used >
Property Value
1828 :
o Name ProductCH
Dimension ProductCD
Hierarchy Product
List of Attributes GroupName, ProdName
Set of Attribute Relationships | <no attribute relationships used >
Join:
1830 Property Valug
| Name LocationFacts
" Join Triplets (LocationiD, LocationID_Facts, =)
Type INNER
Property Value
1832
| Name ProductFacts
“|Join Triplets (ProductD, ProductiD_Facts, =)
Type INNER

FIG. 18C

WO 2004/063942 PCT/GB2003/005490
19/42
Attribute:
1834 Property Value
| Name City
“| List of Columns and Attributes | Column: Location.City
SQL Expression Template "{$$1}"
Datatype VARCHAR(40)
Role LEVEL
1836 Property Value
| Name State
“| List of Columns and Attributes | Column: Location.State
SQL Expression Template REETE
Datatype VARCHAR(40)
Role LEVEL
1838 Property Value
i Name ProdName
“| List of Columns and Attributes | Cofumn: Product.Name
SQL Expression Template "I§$1}"
Datatype VARCHAR(40)
Role LEVEL
1840/ Property Value
| Name GroupName
"| List of Columns and Attributes | Column: Product.GroupName
SQL Expression Template "{$$1}"
Datatype VARCHAR(40)
Role LEVEL
1842 Property Value
\,,|Name ProductiD
List of Columns and Attributes | Column: Product.ProductiD
SQL Expression Template "LH61}
Datatype INTEGER
Role DIMKEY
Property Value
18& Name ProductlD Facts
"I List of Columns and Attributes | Column: Facts.ProductiD
| SQL Expression Template "{$$1}"
Datatype INTEGER
Role DIMKEY

FIG. 18D

WO 2004/063942

PCT/GB2003/005490

20/42

1846| Property Value
| Name LocationlD

List of Columns and Attributes | Column: Location.LocationiD
[SQL Expression Template REEE
Datatype INTEGER
Role DIMKEY

1848| Property Value

- | Name LocationID_Facts

| List of Columns and Attributes | Co/umn: Facts.LocationiD

SQL Expression Template "{$81}"
Datatype INTEGER
Role DIMKEY

FIG. 18E

PCT/GB2003/005490

WO 2004/063942

21/42

ol 9l

06°¢S 00°G/T 00°G¢ 9l — 9061
00°LTT 00°08L 0009 HIYS— 4061
0089 007089 00°0¥ S18snoll — 7061
1014 aNnuanay 0UIUN
v161 ¢l6l 0161

\ Y 9lqe]

0061

PCT/GB2003/005490

WO 2004/063942

22/42

+G¢
+0T

140

900¢

0¢ 9

*G¢ *(0€
01 (4
61 8
e gs
\ d elqeL

0002

%8¢ m_z_o,,w_mo —¢00¢
91 Sajasuy S0
01 9s0f ues
uef

/

700¢

PCT/GB2003/005490

WO 2004/063942

23/42

10

=Y
€1 =Vl
9=1T8

=Y
[€=V1
e =18

=¥

01 =Vl
GT=1S

IR\
/

001T¢

— P~

8¢
i

I I po
RIS

I
ASS

=Y
=Yl
=[S

=Y

¢l
8

J 8lqeL

=Y
=[S
Ge

(L (o]
gm oo i

oo
Er—-l

I
353

[S SaYi0[)

I Il
. -
ASS
@
]—-

]
=35

I

(9]

[

)

V1
[S siasnoj|
uer

HIYS

Il

PCT/GB2003/005490

WO 2004/063942

24/42

d1¢ 9l

= Y9
R
G =[S

=¥
€l =VI
9=18

=Y
1€ =Vl
=18

=YJ

0T = V1
GT=1IS

IR|\
/

001¢

=Y
LG =Y1
«97 =[S
=¥
[=Y
IT=1IS
=YJ
8¢ =Vl
[C=1S
= Y2
¢¢ = Y1
§=1IS
(o4

J 9|qeL

=Y)
+99 = y1— ¥01¢
x0€ =[S S8UI0]) — 7017
=Y0.
¢l =Yl
g=1S 8l
=Y)
9¢ = Y1
¢¢ =[S HIys
=Y)
81 =Vl
0T =[S siesnoi|
ue[
G0T¢

PCT/GB2003/005490

WO 2004/063942

25/42

JI¢ Il

=¥
*VG =Vl
xG7 =[S

=¥YJ

L=Vl

9=1I8

=)
x[G = VY1
97 =[S

=YJ
[=VY]
[=T1S

=Y
8¢ =V1
[Z=1S

=Y
¢l = Y1
8=13
qed

J 9lqeL

I

=)
£99 = y1— 101¢

x0€ =[S S8UI0I) — 7012

=Y.
=V
[S 8ll

=Y
9¢€ = V1
¢¢ =[S HUS

=Y

81 =Vl

0] =[S Ssiesnol]
uer |

[91z
601

¢

I
8

PCT/GB2003/005490

WO 2004/063942

26/42

65 =¥
165 = V1
+E07 = IS

90T =V)
+901 = VY1
+E8 =18

9TE =)
+9T¢ = V]
+E97 = IS

991 =VY)
+991 = V1
+I1=1S
100 /

\ 801¢

601¢

at¢ i

76 = Y0
x7G = Y1
24V =[S

€1 =¥
€l =Vl
9=1S

€=V
€=Vl
=18

“SI =¥

0T = V1
GT =18

IB|N
/

001¢

-[G=Y)
x[G = Y1
297 =[S

“IT=Y)
[=Y]
I=1fs

8C=Y)
8 = V1
[C=1S

¢ =Y)
¢ =Vl
8=13
Ged

J 8[geL

-99 =)
x99 = y1— ¥0I¢

08 =[S SaU0[) — 7017

<l =Y
¢l =Yl
§=1S 8l

98 = YV)— 7112
9€ = V1
¢¢ =[S HUS— 0112

81 =Y
8T = V1
0] =[S Siasnoi|
lief /

[01z
5012

PCT/GB2003/005490

WO 2004/063942

27/42

veie —

€CeC —

9022

au]

uojsuawi(

¢¢ Il

|15 Uojesalssy

A8Y 1984 UWNjo) (1

— .ﬁ M %% v. I

:JSI] UoISSaldx7
9nuaAdY

/ ainseajy

)

(<> s

J

[

0¢dc

70¢¢

AN
uoisuawIQ

-

(" <mow>wps)

18I] U01eFaIGHY —| V177
150073984 UWN|o9 (1)

:.ﬁ .—“%%W__ 1
18] Uoissaldx3 ¢1ee

1509

ansea)

/

01¢¢

¢0c¢

19npoid
uoIsuaLwIQ

PCT/GB2003/005490

WO 2004/063942

28/42

€¢ Ol

\

ol ‘DAY
<TINN> WS

Y187 ——"ISI] Uoljesaidsy

AU['19B4 uwnjog (1)

¢1€¢ — {198}

81| U0JSSaiaxg
fioyusnuj

_ anseay

)

alul]
uoisuawIq

VLT
uoisuswIQ

19npold
uoIsuawiq

PCT/GB2003/005490

WO 2004/063942

29/42

04¢¢ —

N

-

<TINN>_"WNS /
S} U0heseldsy — | vive

u,wco ainseay (2)
anuansy ainsedj\ (1) 21z
A28} - {198}~
JSI] U0jSSaldx3
Hoid
ainsesp \

0T¥¢

uoisuswi(

7¢ Il
(<> ngs)

:)SI] U01)ega.daYy

A8y1oe4 uwnjo (1)
__A ﬁ%%v:
:)SI] UoIssaldxy
anuaAsy
aInses|y.

\

/ 9022 7022

awi| BN

UoISUaLWI(

4 <TINN>_WNS /

1SI] Uol)e3a1dsYy

18097084 uwnjoy (1)
__ﬁ._”%%v.__

JSI] U0ISSaldx]
1509

alnsea|y K
[

0T¢c

¢0¢¢

Jonpoid
uoisuawiq

PCT/GB2003/005490

WO 2004/063942

30/42

\

<TION> WS)
18I Uopesaldgy

1809 ainseap (2)
8nuanay ainseap (1)

__AN%%W - .m H%%v:
JSIJ U0ISSaldx7
Hjoid
/ ainses|y \

/

(<> wns)

JSI] U01eF81F5Y — |

.m::.%s_ aInses| (2)
J1101d ainsesiy (1)
__AN%%W \ Aﬁ%%”v:/

JSI| Uoissaiaxy
uisiel yjoid

aInseay \
\ .

014¢

N

G¢ Il

0¢d¢ —

~ 01¥¢

— 716¢

— ¢14¢

oull]
uolsuawI(

4 <TINN> "WNS)

:1SI| UORBFBIGSY

A8y 1984 UWN|09g (1)
__A H w% v]
JSI] uoIssaldxy
anuasy

_ nsealy \

19%EN

0\ uoisuswig

:1SI] UoReFaldsy

15091084 UWwnNjo) (1)
{1$$ 3
)81 UoIssaldxg
1509

\ <TINN> WNS /

ainsea|)

J

[

01¢¢

19npoid

062\ uoisusuig

¢0¢c

PCT/GB2003/005490

WO 2004/063942

31/42

(" <Tin> ‘wns
JSI] UOREFBIFSY

1509 aInseap (2)
anuanay ainsesiy (1)

__AN%%V - AﬁW%v:

1S1] U0IsSaldx3
© Wjoid

[ainses|\

/

/

M s)

18I| Uol)eFa1dsy
08¢ — A8Y19e4 uwnjo) (1)
1 A I %% ”T_
‘1SI] UojsSaldxq
9NU3A3Y

_ | anses|y Y.

—~ 0T¥¢

(<> <TIN>)

181 uorjesalssy-—|

1014 aInsesy (1)
({183}

18I uoissaldxy
juey Jjoid

f aInseay)

oun]
uoIsuaLwIq

1941elp

90¢¢ \ uoisueung

— 719¢

—~ 019¢

\ <TINN>_"NNS /
:)SI| Uonesaldsy

150911984 uwnjo) (1)
AT$S T
381f Uossaidxg
150

ainses| \

[

0T¢¢

Ad ¥3040) ¥3A0 O MNVd—T— 7197

1onpoid

062\ uoisuswig

¢0cd

PCT/GB2003/005490

WO 2004/063942

32/42

r

.

<TIN> WS\

JSI] UOIB39.35Y

1509 aInseay (2)
anuanay ainsesy (1)

__.AN%%V. - A._”%mwv:
181 Uojssaldxy
}jold
INSea

/

[

01¥¢

¢ Il

0¢¢C — A18$3

4 <TINN> ‘NS)

:JSI] U0BSaITEY
A8yjoe4 uwne) (1)

JSIf UoIssalax]
anuanay

/ 9INSEa\ \

— 7

|

uol

"

(" <TIN>NOLLYTIN400 "\

anuaAsy ainsesiy (1)

‘181 uonesasEy —_| Y112
J01d 8insesy (1)
__Aﬂ%%w__./l mﬁNN

__.:“ w.: .
1Sl :o.m,m&nﬁ/ —¢1L¢

Je[aLi0) Jjoidady L o1/7

amsealy /

o]
uoIsusLuI(

194el\

90¢¢ \ uoisuswig

JSI] UORBFBIGFY

15093984 uwnjoy (1)

__.ﬁﬁ%%v:

J81] Uoissaldxy
1809

(<mn>wns)

ainsea|y \

10¢¢

[

01¢¢

19npoig
uoIsusLuIq

¢0e¢

PCT/GB2003/005490

WO 2004/063942

33/42

8¢ 9l

7
016¢

/

\

LoIsuaLuIq

uoISuaWI(

HoIsusLLI(

\ .A._._:zv.s_:.m / \ <TINN> ‘Wns /
4 <TINN VMN_\%m) 18I Uonesalzay 18I U0IesaITTY
:181] Uopesal
I 4 0722 — A8y 10e] uwnjo) (1) 180973084 uwnjo (1)
1509 8Inses|y () 188k 188
MAYONSEEN () |~ 0112 5 Uosarty i et
__"N%%% www ' . aInseajy 2InSea|y
18y Uojssaidig _ Y, J
Hjoid /
/ | 2INSeayy \ 012z
<TIN>*<TIIN> <TINN> ‘NOLLY T34409 . .
:151] uoyjesaiddy j 181 uonesaldgy (ouwy IAY
e 1oig ainseayy (1) 5 Uohesaisdy
"L%c_,_h&mﬁmw)joid ainses (1) . AT$$ 3 ~JSI] uonegaloslf
o p mmammﬁ%ﬁw - %__gmw_ ezwmms_) >=_.§N_ =Ew_8 (1)
i a1 i " ﬂww i
enuaney omseal (2) 29 OSauchg s oy 19 L0 Saideg
{288} /{1381 juey 1yoid UORE|31107) 10 JASY f10jusnu|
181 U0ISSaIdXT / aInsesiy : k / 9INSesf\ K / mﬁmms_ \
wiglep o4 ! V
)) 0TL¢ 0T€¢C
aInses|y al ayle \uz/ anpo
- \ T e 102z (earns Y~ 2022

WO 2004/063942 PCT/GB2003/005490
34/42

2900
\

Receive a measure description for each of one or more
measure metadata objects and generate the one or more
m

easure metadata objects based on the measure descriptions.

A4

Receive a facts description of a facts
metadata object that references all of
the measure metadata objects and }— 2902
generate the facts metadata object
based on the facts description.

Y

Receive a dimension description for
each of one or more dimension
metadata objects and generate the one |— 2903
or more dimension metadata objects
based on the dimension descriptions.

v

Receive a cube model description of a
cube model metadata object that
references the facts and one ormore | __ g4
dimension metadata objects and
generate a cube model metadata
object.

A 4

Receive selection of a subsetofthe | 9q06
cube model metadata object.

\4

Generate a cube metadata object,
including generating a Structured
Query Language statement for creation
of a cube view, wherein the Structured }— 2908
Query Language statement is
generated from metadata in one or
more measure metadata objects.

FIG. 29A

WO 2004/063942 PCT/GB2003/005490
35/42

2910
\

Receive a measure description for each of one or more
measure metadata objects and generate the one or more

measure metadata objects based on the measure descriptions.

A\ 4

Receive a facts description of a facts
metadata object that references all of
the measure metadata objects and }— 2912
generate the facts metadata object
based on the facts description.

A 4

Receive a dimension description for
each of one or more dimension
metadata objects and generate the one }— 2913
or more dimension metadata objects
based on the dimension descriptions.

v

Receive a cube model description of a
cube model metadata object that
references the facts and one ormore | 9914
dimension metadata objects and
generate a cube model metadata
object.

A 4

Receive selection of a subsetofthe | _ q;p
cube model metadata object.

v

Under control of an application
program, using the cube model
metadata object and one or more of the | __ 9913
measure metadata objects, generate a
Structured Query Language statement
to retrieve multidimensional information.

FIG. 29B

WO 2004/063942 PCT/GB2003/005490

36/42

2940
Access a set of measures.

A

y

Separate the set of measures into a
symmetric measures set and an
asymmetric measures set.

— 2942

2944

\

2945

[

A4 A 4

Process symmetric measures set to
generate a Structured Query Language
statement.

Process asymmetric measures set to
generate a Structured Query Language
statement.

A

y

single Structured

Combine generated Structured Query
Language statements for symmetric
and asymmetric measures sets into a

statement for retrieving
multidimensional information.

Query Language — 2946

FIG

29C

WO 2004/063942 PCT/GB2003/005490
37/42

Access a set of measures 2350
to be computed.

>
»
A

y

Select next measure, starting with the | __ 2952
first measure.

|s measure _
compatible with

previous
measures?

Yes

2956 2964

\

Join measures.

Can
one or more
measures be rewritten
for compatibility?

2958
\
Rewrite one or more measures.
2962
2960 (¢ /
/ Process rewritten measures to
Yes Another ™\ No | generate a Structured Query Language
measure? statement for retrieving
multidimensional information.

FIG. 29D

WO 2004/063942
38/42

2970
\

PCT/GB2003/005490

measure metadata object are input to a first aggregation in

< Expressions in one or more SQL expression templates in a

an aggregation list defined in the measure metadata object.

)

[
»

A 4

Process next aggregation, starting with
the first aggregation.

— 2972

Additional
aggregation?

Yes

2976

\

QOutput Structured Query Language
statement for retrieving
multidimensional information.

FIG. 29E

PCT/GB2003/005490

WO 2004/063942

39/42

0€ 94

U0NB|a1107) JJ0IJAsY

juey 11j0id

uiIe} 1joid

X< | >

140id

Aiojuanuy

— 700¢

X

aNuansYy

X

150

— ¢00¢€

aujewWAsy

A NETHHIT

@ eiqet

\
000¢

PCT/GB2003/005490

WO 2004/063942

40/42

€ 9l

X NOILYTIYH0O —~—9p1¢
X IV~ 01¢
X NNS —zo1¢
aAIINGLISIp-UoN oAINgLsIq
3 9{qetL cwﬁm

PCT/GB2003/005490

WO 2004/063942

41/42

¢€ Il

— ¢0¢€

(T) NOLLYT34Y09 tofe|[a.10) J1joidnsy

() NS »(1) NS (T) WNS yuey 1j0id

() NNS ‘WNS (1) NNS "WNS (T) WNS ‘NS UIBIelN Jjoid

() NS (1) NS (T) WNS 1old

~ (2) 9 (T) WNS Riogusnul

#(2) WNS (1) NS (T) NNS 9NUIAGY

»(¢) NS *(T) NS : (T) WNS 107

[awl|] [18yiejy Jonpoid] [BuW1] “Jexie}y Jonpoid]
AN [daig 1 dals
uopdQ puodag uondg puoasg uondq 1si14
\

1 2|qel

00¢€

WO 2004/063942

42/42

PCT/GB2003/005490

3300
\
Computer Architecture
3302 3304
\ \
Processor Memory
3306 3308
\ \
Network
Storage Card
3310 3312
\ \
Input Device Output Device

FIG. 33

INTERNATIONAL SEARCH REPORT

PCT/GB 03/05490

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 GO6F17/30

According 1o International Patent Classification (IPC) or to both hational classification and IPC

B. FIELDS SEARCHED

IPC 7 GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation o the extent that such documents are included in the fields searched

EPO-Internal, INSPEC

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication, where appropriate, of the relevant passages

IEEE COMPUT. SOC, USA,

LOS ALAMITOS, CA, USA
ISBN: 0-7695-1140-6

figures 3~6

X SCHWARZ H ET AL: "Improving the
processing of decision support queries:
the case for a DSS optimizer”
PROCEEDINGS 2001 INTERNATIONAL DATABASE
ENGINEERING AND APPLICATIONS SYMPOSIUM,

16 July 2001 (2001-07-16), - 18 July 2001
(2001-07-18) pages 177-186, XP002275210

page 179, left-hand coiumn, paragraph 3 -
page 180, right-hand column, paragraph 3;

1-10

)

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of clted documents ;

*A" document defining the general state of the art which is not
considered to be of particular relevance

*E" earlier document but published on or after the international
filing date

'L* document which may throw doubts on priority claim(s) or
which is cited 10 establish the publication date of another
citation or other special reason (as specified)

'O" document referring to an oral disclosure, use, exhibition or
other means

P document published prior fo the international filing date but
later than the priority date claimed

'T* later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

X document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

'Y* document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-
m%r:ts, ﬁuch combination being obvious to a person skilled
in the art,

*&" document member of the same patent family

Date of the actual completion of the international search

26 March 2004

Date of mailing of the intemational search report

16/04/2004

i -ame and maillng address of the ISA
European Patent Office, P.B. 5818 Patentlaan 2
NL ~ 2280 HV Rijswijk
Tel. (+31~70) 340-2040, TX. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authotized officer

Jaedicke, M

Form PCT/ISA/210 (second sheet) {January 2004)

page 1 of 2

Relevant to claim No.

INTERNATIONAL SEARCH REPORT

PCT/GB 03/05490

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category ©

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X

WO 01/09768 A (STERLING SOFTWARE INC)

8 February 2001 (2001-02-08)

page 11, line 8 - page 12, line 25

page 13, T1ine 16 ~ line 30

page 15, 1ine 3 - page 17, Tline 12

STOHR T ET AL: "An Integrative and
Uniform Model for Metadata management in
Data Warehousing Environments"
PROCEEDINGS OF THE INTERNATIONAL WORKSHOP
ON DESIGN AND MANAGEMENT OF DATA
WAREHOUSES DMDW99,

14 June 1999 (1999-06-14), - 15 June 1999
(1999-06-15) pages 1-16, XP002275211
GERMANY

page 11, tleft-hand column, paragraph 4 -
page 14, right-hand column, paragraph 4
US 2002/095430 Al (GUDBJARTSSON HAKON ET
AL) 18 July 2002 (2002-07-18)

abstract; claims 1-6

paragraph ‘0010! ~ paragraph ‘0016!
paragraph ‘0123! ~ paragraph ‘0132!;
figures 13-18

MANGISENGI O ET AL: "Metadata management
concept for multidimensional OLAP data
based on object-oriented concepts"

WEB INFORMATION SYSTEMS ENGINEERING, 2000.

PROCEEDINGS OF THE FIRST INTERNATIONAL
CONFERENCE ON HONG KONG, CHINA 19-21 JUNE
2000, LOS ALAMITOS, CA, USA,IEEE COMPUT.
SOC, US, 19 June 2000 (2000-06-19), pages
358-365, XP010521875

ISBN: 0-7695-0577~5

abstract

JIM GRAY ET AL: "Data Cube: A Relational
Aggregation Operator Generalizing
Group-By, Cross-Tab, and Sub-Totals"
JOURNAL OF DATA MINING AND KNOWLEDGE
DISCOVERY, NORWELL, MA, US, 1997, pages
29-63, XP002901286

ISSN: 1384-5810

page 48, paragraph 3 - paragraph 6

US 5 918 232 A (BRILL MICHAEL L ET AL)
29 June 1999 (1999-06-29)

column 12, 1ine 33 - column 13, line 13
column 14, line 1 - 1ine 19

1-10

1-10

1-10

1-10

1-10

1-10

Fomm PCT/ISA/210 (continuation of sacond sheet) (January 2004)

page 2 of 2

INTERNATIONAL SEARCH REPORT

PCT/GB 03/05490

Patent document

Publication

Patent family

Publication

cited in search report date member(s) date

WO 0109768 A 08-02-2001 US 6581054 Bl 17-06-2003
AU 768084 B2 04-12-2003
AU 6501600 A 19-02-2001
CA 2380040 Al 08-02-2001
CN 1399746 T 26—-02-2003
EP 1228448 A2 07-08-2002
JP 2003519418 T 17-06-2003
W0 0109768 A2 08-02-2001
ZA 200200533 A 16-01-2003

US 2002095430 Al 18-07-2002 US 6356900 Bl 12-03-2002
EP 1242872 A2 25-09-2002
WO 0150246 A2 12-07-2001

US 5918232 A 29-06-1999 NONE

Fommn PCT/ISA/210 {patent family annex) (January 2004)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

