Office de la Proprieté Canadian CA 2508317 C 2012/07/24

Intellectuelle Intellectual Property
du Canada Office (11)(21) 2 508 31 7
Un organisme An agency of 12y BREVET CANADIEN
'Industrie Canada ndustry Canada
CANADIAN PATENT
13) C
(86) Date de dépét PCT/PCT Filing Date: 2003/12/02 (51) Cl.Int./Int.Cl. HO4L 29/06 (2006.01),
(87) Date publication PCT/PCT Publication Date: 2004/08/12 GO6F 1//30(2000.01), GO6F 9/44(2006.01),

HO4L 29/08 (2006.01)

(45) Date de délivrance/lssue Date: 2012/07/24 _
(72) Inventeurs/Inventors:
(85) Entree phase nationale/National Entry: 2005/06/01 HEYMANN, JUERGEN, DE:
(86) N° demande PCT/PCT Application No.: 1B 2003/006400 OFFERMANN, UDO, DE;
] o o | HAYER, ROMAN, DE;
(87) N° publication PCT/PCT Publication No.: 2004/068367 DRITTLER, BERNHARD. DE:
(30) Priorité/Priority: 2002/12/02 (US60/430,503) BRENDLE, RAINER, DE

(73) Proprietaire/Owner:
SAP AKTIENGESELLSCHAFT, DE

(74) Agent: SMART & BIGGAR

(54) Titre : RETOUR SESSION PERMETTANT DES APPLICATIONS WEB ASSOCIEES A UN ETAT
(54) Title: SESSION-RETURN ENABLING STATEFUL WEB APPLICATIONS

110
BROWSER / CLIENT

START AND
TERMINATING URLS
PASSING ESIDs

MAPPING || SEssION(S)
MODULE MEMORY
109~ 104
APPLICATION A
SERVER PLATFORM
108
~ 112
PAGE URL + ESID 1400
GENERATOR GENERATOR
122 120
PORTAL SERVER

(57) Abrégée/Abstract:
Mechanisms for allowing allow multi-session capability and session-return enabling stateful web applications include providing a
start URL of a requested portal page with an "External Session |ID" (ESID). The ESID is an argument that is different between the

,
L
X
e
e . ViNENEE
L S S \
ity K
.' : - h.l‘s_‘.}:{\: .&. - A L~
.
A

A7 /7]
o~

» . _
(l an adH http://opic.ic.ge.ca* Ottawa/Gatineau K1A 0C9 - Atp.//cipo.dic.ge.ca o p1C
OPIC - CIPO 191

CA 2508317 C 2012/07/24

anen 2 508 317
13) C

(57) Abrege(suite)/Abstract(continued):

two Instances of the application (on the same page), and leads to different / independent sessions In the server. When a user
returns to the same page, the ESIDs are passed again with the individual application requests, and the server can then logically
reconnect to the proper session and allow the user to continue. The ESID can be used to return to an application after the user has

previously left to go to another application and then desires to come back, or even when the user closed the browser and restarts
the application later.

wO 2004/068367 A3 I D00 AT 00 A A0 000 O 0

CA 02508317 2005-06-01

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization

International Bureau

(43) International Publication Date

12 August 2004 (12.08.2004) PCT

(51) International Patent Classification’: HO041. 29/06,
GO6F 17/30, 9/44

(21) International Application Number:
PCT/IB2003/006400

(22) International Filing Date: 2 December 2003 (02.12.2003)
(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:
60/430,503 2 December 2002 (02.12.2002) US

(71) Applicant: SAP AKTIENGESELLSCHAFT [DE/DE];
Neurottstrasse 16, 69190 Walldort (DE).

(72) Inventors: HEYMAN, Juergen; Berolfweg 26, 9123 Hei-
delberg (DE). OFFERMANN, Udo; Goethestr. 22, 69226

(74)

(81)

(84)

(10) International Publication Number

WO 2004/0638367 A3

Nussloch (DE). HAYER, Roman; In der Froehn 32, 66125
Saarbruecken (DE). DRITTLER, Bernhard; Erich-Keist-
ner-Strasse 1, 69190 Walldorf (DE). BRENDLE, Rainer;
Adalbert-Seifriz-Strasse 28, 69161 Neckargemuend (DE).

Agents: SCHIUMA, Daniele et al.; Mueller-Boré & Part-
ner, Grafinger Strasse 2, 81671 Miinchen (DE).

Designated States (national): AE, AG, AL, AM, AT, AU,
AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, 1.C,
LK, LR, LS, LT, LU, L.V, MA, MD, MG, MK, MN, MW,
MX, MZ, NI, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD,
SE, SG, SK, SL, T], TM, TN, TR, TT, TZ, UA, UG, UZ,
VC, VN, YU, ZA, ZM, ZW.

Designated States (regional): ARIPO patent (BW, GH,
GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (Al, BE, BG, CH, CY, CZ, DE, DK, EL,

[Continued on next page]

(54) Title: SESSION-RETURN ENABLING STATEFUL WEB APPLICATIONS

110
BROWSER / CLIENT

102
PORTAL PAGE

116

112
PAGE URL + ESID
GENERATOR GENERATOR
122 120
PORTAL SERVER

109

I APPLICATION A

108

(57) Abstract: Mechanisms for allowing
allow multi-session capability and
session-return enabling stateful web
applications include providing a start URL
of a requested portal page with an "External

Session ID" (ESID). The ESID is an
argument that is different between the two

SESSION MANAGER START AND instances of the application (on the same
TERMINATING URLS _ _
PASSING ESIDs page), and leads to different / independent
ESID : :
sessions in the server. When a user returns
MAPPING | [SESSIONGS) to t'he same page, .the. ESIDS are 'passed
MODULE MEMORY again with the individual application

requests, and the server can then logically
104 reconnect to the proper session and allow
the user to continue. The ESID can be
used to return to an application after the
user has previously left to go to another
application and then desires to come back,

SERVER PLATFORM or even when the user closed the browser

and restarts the application later.

CA 02508317 2005-06-01

WO 2004/068367 A3 |IHIH ! FUD A0 YA 10 A AR RO RRR AR A A

ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, (88) Date of publication of the international search report:

SI, SK, TR), OAPI patent (BEF, BJ, CF, CG, CI, CM, GA, 30 September 2004
GN, GQ, GW, ML, MR, NE, SN, TD, TG).
Published: For two-letter codes and other abbreviations, refer to the "Guid-

— with interational search report ance Notes on Codes and Abbreviations" appearing at the begin-

— before the expiration of the time limit for amending the ning of each regular issue of the PCT Gazette.

claims and to be republished in the event of receipt of
amendments

CA 02508317 2011-05-30

SESSION-RETURN ENABLING STATEFUL WEB APPLICATIONS

BACKGROUND

[0002] The following description relates to server session management and backwards

navigation from a browser in a stateful server session.

[0003] A portal is a mechanism by which various web content can be assembled 1nto one
or more portal pages delivered to a client and displayed in a browser application running on the
client. The portal pages are typically delivered from a server according to the hypertext transfer
protocol (HTTP). A web application is a separate callable unit stored on any server, and typically
called via uniform resource locator (URL) address. On the portal level, the callable unit and 1ts
content is sometimes called a portlet (also called pagelets, iViews, webparts, etc.). Thus, an
application appears as a portlet, which is assembled onto one or more web pages according to a
page layout scheme. Pages are the navigation units in a portal, i.e. the user always navigates to a

page, which then calls all the portlets on that page.

[0004] For simplicity, assume that a portlet is isolated, i.e. the content runs nside a page
structure called an IFRAME. A user can navigate around a portlet in several ways. such as
“clicking” inside the portlet using a mouse device and/or pointer. For intra-application-

navigation (e.g. navigation to a “next screen”), the user is considered

CA 02508317 2005-06-01
WO 2004/068367 PCT/1IB2003/006400

“inside” an application which doesn't affect the page level
around the portlet or application. When the user navigates on

the portal level, the user also selects a new portal page or

even the same portal page as a target. When that occurs, the

old portal page i1s displaced in the browser, as is the portlet
containing an application. Accordingly, the user “leaves an

application” when he or she leaves the portal page that

contains an application.

[0005] STATE IN WEB APPLICATIONS

[0006] Web-based applications consist of a sequence of

pages delivered from a server to a client. When a user

navigates through the sequence of pages, the server maintains

“state,” 1.e. retains data about user input on previously

viewed pages, navigation history, and data needed by the
application to respond to the user, etc. State is typically

kept in a session by the server, and identified for each

session by a session identifier (“sessionID”) generated by the

server. The sessionIDs can be kept in a browser “cookie”
(information for future use that is sent by the server and

stored on the client) or in a URL included in the gerver

response. All non-trivial applications need server state to

be able to respond quickly to user request. Therefore, most

business applications on the web are “stateful.”

[0007] Normally, there can only be one session per user

and/or per browser process. A web application is “multi-

session enabled” when a user can run two or more instances of

the same application at the same time — in the extreme case

slide-by-side in two IFRAMEs in the same browser window.

Multi-session applications are started with a “start-URL” that

has no sessionID, and then the server creates a session and

2

CA 02508317 2011-05-30

maintains the session association by putting the sessionID in URLs (URL rewriting) or in
cookies. A truly multi-session enabled application cannot use cookies for sesstonlDs since the
cookies would overwrite each other when they meet in the same browser window (process), and
there is no way for the server to distinguish between the two parallel requests that come from
two IFRAMESs in the same browser. Thus. multi-session capability requires sessionlDs to be
encoded in URLs. This causes a complication for “session-return’™ that will be described further

below.

[0008] One issue appears in the combination of multi-session and page “back”
navigation. To allow multi-session capability, session IDs must be encoded in URLs, which
means that a portal page contains a start URL, and then server responds with a new session for
each applications instance. But when the user comes “back™ to the same page, the same start

URLSs are fired, and the server again has no way to distinguish between the two instances in the

two [FRAMEs on the page.
[0009] BASIC SESSION TERMINATION

[0010] One method for server session termination is described in related Canadian
Application Serial No. 2,415,571, filed on July 7, 2001, having a priority date of July 11, 2000.

and entitled, “Method, Apparatus and System for Network-Based Peer-to-Peer Business

Transactions”. The system scenario is a portal calling web applications.

[0011] Users enter applications and request pages/screens from server-based

applications. Applications need resources such as “session state” to perform requested dialogue

Or

J

CA 02508317 2005-06-01
WO 2004/068367 PCT/1IB2003/006400

online transactions, possibly need to acquire locks or other
critical resources during some part of a transaction. When
the user leaves the application in the middle of a
transaction, the server does not technically notice, since
HTTP is connectionless, and this can happen by navigating to
another portal page, or even simply closing the browser. When

the user does not explicitly terminate the application, such

as when the user logs off from the session, the server's
session state (and possibly even locks) are kept on the
server, wasting resources until timeout. Therefore, the
portal must notify the server and/or application when the user
leaves the application, so that the server can release the

resources asgsoclated with the application.

[0012] Basic session termination works as follows: the
portal provides a Session Manager (SM) that runs partly hidden
in the portal / browser. When an application is started

inside a portal page, as part of its response in the hypertext

markup language 1t sends a “session termination URL” to the

SM. When the current page is displaced and the SM has stored

a session termination URL for the current page, this session

termination URL is sent back to the server so that the server

can then release the session and all i1its agsociated resources.

This is how the server gets “notified” that the application

was left, and its resources should be released.

[0013] THE NEED FOR SESSION-RETURN ENABLING

[0014] The “Basic Session Termination” described above
terminates the session as soon as the user leaveg the
application, i.e. when the user jumps to another page by
navigation, or by browser shortcut, etc. However, users

typically want to be able to explore various pages of a second

4

CA 02508317 2005-06-01
WO 2004/068367 PCT/1IB2003/006400

application or page, and then go back to a previously-visited
page/application and continue working there. 1In essence,
users want stateful applications, that are often exposed in

portals, to behave mostly like static content with respect to

the “back” function in the browser.

[0015] One problem is that it is not known whether the user
will ever come back to the first page / application, which
means that the server needs to immediately be notified when

the user leaves the application, and then releases its session

state at that time. Therefore, one issue includes modifying
the Basic Session Termination concept to allow a “Session-
Return,” i.e. the ability of a user to return to a previous-

visited session in the same state ags when the user left the

segssion.

[0016] Thus, applications cannot be allowed to simply

“walt” to return or continue later, but must indeed terminate

immediately when the user leaves. In order to be able to
return, the application would need to first store whatever

part of the state 1s necessary to return. It is undesirable

to store the full internal state, or the state of some other

form, such as storing all user interface fields for example:

Further, an application cannot be expected to store its full

current state at any given time, so that any working

intermediate state can be saved fully. Thus, the persistent

part of the session state will be stored and the transient

state will be discarded. The state that i1s stored

persistently 1s called the “session return state,” and would

generally include the IDs of the objects being shown/edited,
as well as possibly some UI state, such as which tab is active

1in a tab strip, the open-closed state of trees, etc.

CA 02508317 2005-06-01
WO 2004/068367) PCT/1IB2003/006400

Restarting the application with these parameters reloaded from
the session return state will give the desired “back” or
segssion-return perception to the user, and the application

enough data to restart itself with that data.

[0017] Thus, 1t can be assumed that the application is able

to store 1ts session return state when it receives a

Cermination request, and can be restarted such that it will
reload the previous session return state to show substantially
the same output as when the user left. However, this means

that the interpretation of the termination request of the

Basic Session Termination concept has changed from “completely
terminate” to “store session return state and then terminate.”
This new interpretation can be called “session minimize.” How
much an application stores in the session return state is

variable and up to the application. In a case where nothing

i1s kept, the session minimize is the same as the conventional

terminate completely - in which the application restarts from

scratch each time.

[0018] When an application has been restarted, and the
“session return state” has been loaded, a problem occurs when
multiple instances of the application are active at the same
time. The server will not know which “session return state”
to load when restarting the application. The problem exists
regardless whether the application is started in separate
browser windows or even in the same browser window (i.e.

inside two IFRAMEs in a portal page, etc.).
SUMMARY

[0019] This document discloses a method and system to

enable users in a portal environment to navigate between

CA 02508317 2005-06-01
WO 2004/068367 PCT/1IB2003/006400

applications in a coherent or “stateful” manner. Without this

feature, a user of a web application would lose the state of
an application they left when navigating to another

applications. In one embodiment, a computing system is

configured for “Session Return Enabling,” i.e. a technique

that allows stateful web applications to gracefully support

"browser back” functions, or generically, “back in any form.”
This 1s an important feature for providing stateful web
applications in portals to improve the overall user

experience.

[0020] Instead of the server generating sessionIDs, the

client caller, typically a portal or via the browser, passes

Co the server a given sessionID that the caller wants to use
CLo refer to a session at start time and thereafter, for

termination and restart for example. This given session ID,

called an External SessionID (ESID), is passed each time an

application is started, preferably as a URL parameter in the

start URL of the application.

[0021] If the ESID does not refer to an active or minimized
session for which a return state is kept, a new sessgion is
created and associated with the ESID. During this

session/application, the ESID is irrelevant, as the server may

sti1ll keep its “o0ld” sessionID encoded in the URLs or cookies

in addition to the “new” ESIDs. When the user leaves the

page/application, however, the client SM notifies the server

of this fact by sending the termination URL to the server,
which includes the ESID. The server then minimizes its state

and stores it under the ESID key. When an application start

URL is sent with an ESID to the server, and the server finds

1t has a minimized session (i.e. a sesgsion return state)

10

20

CA 02508317 2012-02-10

stored for the ESID, the application is started and given the session return state as initial parameters
(“1nit parameters™).

[0022] According to a broad aspect, the present invention seeks to provide a method for
session-return to enable a stateful web application, comprising: receiving from a portal used by a
client a termination uniform resource locator (URL) relating to a terminated web application session,
the termination URL including a given session ID that the client wants to use to refer to a session at
start time and thereafter for termination and restart, the given session ID being an external session
identifier (ESID) identifying the terminated web application session; wherein the ESID is generated
by a session manager of the portal used by the client; minimizing a state related to the terminated
web application session; storing a minimized state related to the terminated web application session
associated with the ESID in a table on the server, wherein the minimized state is a session-return
state related to the terminated web application session; receiving a request from the client for a new
web application session; determining whether the request includes an identifier that corresponds to
the ESID of the terminated web application session, wherein determining whether the request
includes an identifier that corresponds to the ESID of the terminated web application session further
includes mapping the identifier to one or more ESIDs stored in the table; and if the identifier
corresponds to the ESID of the terminated web application session, serving the new web application
session according to the minimized state related to the terminated web application session, and if the
identifier does not correspond to the ESID of the terminated web application session, serving the
new web application session in a startup mode.

According to another broad aspect, the present invention seeks to provide a system
for performing page-back of a web application, comprising: a portal comprising a session manager
configured to generate a termination uniform resource locator (URL) relating to a terminated web
application session, the termination URL including a given session ID that the client wants to use to

refer to a session at start time and thereafter for termination and restart, the given session ID being

3

10

20

CA 02508317 2012-02-10

an external session identifier (ESID) identifying the terminated web application session, and further
configured to send the ESID to a server; and a server platform hosting the server and having a
memory configured to store a minimized state related to the terminated web application session
associated with the ESID in a table, wherein the minimized state 1s a session-return state related to
the terminated web application session; and a mapping module configured to map a request for a
new web application session to one or more ESIDs stored in the table in the memory, the server
platform being further configured to serve the new web application sesston in the minimized state
associated with one ESID if the request corresponds to the ESID of the terminated web application
session, and if the request does not correspond to the ESID of the terminated web application
session, the server platform is configured to serve the new web application session in a startup
mode.

[0023] If an application is continually called using the same ESID, the application can be
terminated when the user leaves, yet when it is started again continue at substantially the same point
as when it terminated. To allow multiple instances, session termination, and session return of the
same application, the ESID must be generated and sent repeatedly by the client rather than the
SErver.

(0024} Thus, an ESID is used to refer to a session at startup of an application, and when re-

starting the application for session return. This provides a stateful application, and allows the server

to minimize state for the application, or in other words keep only “session return” state, but still

fully terminate the application. Further,

8a

CA 02508317 2005-06-01
WO 2004/068367 PCT/1IB2003/006400

the use of an ESID allows for the application to be

“continued” in a meaningful way.

[0025] A benefit of the disclosed techniques is that the-
server releases all resources related to an application upon

termination of the application, i.e. as soon as the user
leaves. However, the techniques described herein allow the

user to come back to the application and continue in a manner

such that the user does not to have to start over each time.
the user visits the application, and allows multiple instances
of applications to be distinguished at the same time. The

techniques that use an ESID enable all of these features.

[0026] The details of one or more embodiments are set forth
in the accompanying drawings and the description below. Other
features, objects, and advantages will be apparent from the

description and drawings, and from the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

[0027] These and other aspects will now be described in

detail with reference to the following drawings.

[0028] FIG. 1 1is a block diagram of a web application
session.
[0029] FIG. 2 is a flowchart of a method of session-return

enabling stateful web applications.

[0030] Like reference symbols in the various drawings

indicate like elements.

CA 02508317 2005-06-01
WO 2004/068367 PCT/1IB2003/006400

DETATILED DESCRIPTION

[0031] The systems and techniques described here relate to
enabling a browser to navigate back to reach a previously-
vislted application page in the same state as when previously

visited in a previous session.

[0032] To allow multi-session capability, a mechanism to
distinguish between two instances in two IFRAMEs on a page

includes providing a start URL of the portal page with an

“External Session ID” (ESID). The ESID is an argument that is

different between the two instances of the application (on the

same page), and leads to different / independent sessions in

the server. Thus, when the user returns to the same page, the
ESIDs are passed again with the individual application

requests, and the server can then logically reconnect to the

proper session and allow the user to continue.

[0033] Thus, instead of letting the server create a session
ID arbitrarily, the portal or caller passes an ESID when

starting (i.e. when first calling) an application on the

server. This ESID can then be used to come back to the

application, in situations such as after the user left to go

to another application and then came back, or even when the

user closed the browser and restarts the application later.

The ESID allows the “session return” that will be described in

further detail.

[0034] Note that the ESIDs is independent from session

management (see below) and from the portal. An ESID can be

used on any URL that starts an application. When a server

simply lets sessions or applications wait for timeout (instead

of terminating them), the ESID can be used when the

10

CA 02508317 2005-06-01
WO 2004/068367 PCT/1IB2003/006400

application is started again (start URL). Accordingly, a

pending session / application instance is selected, and allows

the usexr to continue with that session.

[0035] ESIDs can be arbitrary strings that are used as keys
to select sessions, e.g. “page3/appl” and “page3/app2” for

example. ESIDs can also be explicit fixed wvalues that are not
generated to denote a particular page context as in the

previous example, or “no value” which means that the

application 1s fully terminated when left, and always started
from scratch when the user re-enters. This is a matter of

configuration that can be finely tuned as required. Also, an

element such as a “WindowID” can be appended to an ESID so

that one can have two instances of pages in two browser

windows that run independent instances of applications.

[0036] The use of ESIDs can also extend the basic session
termination mechanism. Instead of requiring the server to
send a session termination URL to the session manager, the

client / portal can send a standard termination notification

passing the ESID. This has the additional benefit that

session management now also supports any MIME type. It

requlires that the server understand the ESID-based termination

notification, and that all ESIDs coming to a server (for any

user) are different.

[0037] FIG. 1 shows a block diagram of a web application-
session 100, including a portal page 102 that displays one or
more instances of an application 104, i.e. one or more web
pages and their content, served from server 108 platform, i.e.
by an application serxrver or the like. Each instance of the
application 104 is ultimately displayed in a browser operating

on a client 110. The application 104 of the web application

11

CA 02508317 2005-06-01
WO 2004/068367 PCT/1IB2003/006400

session 100 can also be displayed simultaneously with other
web content, such as content from a local client application
or from another application server. The portal page 102
includes a session manager (SM) 106 for managing each
application session 100 based on session information received
from each instance of the application 104. The SM 106 can be
page-level script code. In one embodiment, the SM 106

ldentifies a session according to a user’s navigation and

activities through various pages of the application 104.

[0038] In order for a user to visit a previously-viewed
page, the server platform 108 keeps some “state” of the

session, i.e. information relating to the instance of the

application, even when the user leaves the application and
provokes the session manager to send a termination
notification to the application server 118. In one
embodiment, the server platform 108 includes a session memory

109 for storing a state of a session of an application that a

user has left. The state includes an instance identifier,

which further includes a page identifier of each page of the
segsion. An i1nstance identifier can be stored for each page
visited in the session, thereby providing a memory having a
number of i1nstance identifiers. The session memory 109 can be

in the memory of a computer or in a database.

[0039] A portal server 112 includes a page generator 122

for generating the portal page 102. The portal server 112
also includes a URL generator 120. As a user navigates within

a session and out of an application, the URL generator 120 of

the portal server 112 provides the ESID, i.e. an instance
identifier. The ESID also includes a page identifier of each

page visited in the session. Accordingly, when a user wants

12

CA 02508317 2005-06-01
WO 2004/068367 PCT/1IB2003/006400

to revisit a session, and have a page of the session displayed

in the same state as when they left it, the portal page 102

will send to the server platform 108 a start URL for the page

requested, as well as an ESID associated with the requested

page.

[0040] Using the ESID, the view state i1s saved when thé
user leaves the page, and is found again when the user
revisits. The ESID can be typically formatted to include a
page identifier (pagelD). Since a user can use more than one
window either through the portal page 102 or on the browser /
client 110, the ESID may also contain a window ildentifier
(windowID) . Alternatively, ESIDs can be specified that lead
to sessions in which the same page i1is shared by many portal

pages 102. Accordingly, the same ESID can be specified from

different places, and on multiple paths.

[0041] ESIDs are specified as page properties, and can be

passed via URL to the server platform 108. When a requested

application does not include an ESID, the application simply
starts fresh each time 1t i1s requested. When the server
platform 108 receives the ESID and start URL, a mappling module

116 maps the ESID to particular session, i.e. it checks

whether a corresponding ESID already has been stored in the
session memory 109. If the ESID does not exist, the server
platform 108 creates a new instance of the session of the

requested application 104. If the ESID does exist, the server

platform 108 starts the application 104 and passes it in the
saved state to the portal page 102.

[0042] In one embodiment, the ESIDs are held in the client
SM 106. The portal server 112 generates the portal page 102,
includes the generic SM 106, and also the FRAME(s) for the

13

CA 02508317 2005-06-01
WO 2004/068367 PCT/1IB2003/006400

application(s) 104. Since the ESIDs are also generated by the
portal server 112, and added to the start URLs for the FRAMEs,

the request to the application comes from the content FRAMES

of each instance of the application 104. The portal server

112 knows the ESIDs, and can generate embedded scripting into

the portal page 102 to enter the ESIDs into the SM 106. The

page 102 itself has no knowledge of the ESIDs as no ID for the
page is needed, and it just carries the SM 106 that contains

the ESIDs.

[0043] In another embodiment, ESIDs are passed on the start
URLs, but not kept in the SM 106, but kept in the portal
sexrver 112 only. This time the portal page 102 gets a unique
ID under which the portal server 112 stores the ESIDs that
were generated for this page. The page ID i1is needed since a
user can have multiple browser windows open with portal
content at the same time. When the user leaves the page, the
SM 106 notifies the portal server 112, passing the page ID.
The portal server 112 then generates a set of termination

1.}

requests with the ESIDs, and sends this “termination page” to

the client 110, from which they are transmitted to the

appropriate sexrver platform 108.

[0044] FIG. 2 is a flowchart of a method 200 of session-

return enabling stateful web applications. At 202, the client

caller, typically a portal or via the browser, passes to the

server a given ESD that the caller wants to use to refer to a
segsion at start time and thereafter, for termination and
restart for example. The ESID 1is passed each time an
application is started, preferably as a URL parameter in the

start URL of the application, however other ways of passing

the ESID to the server may be used.

14

CA 02508317 2005-06-01

WO 2004/068367 PCT/IB2003/006400
[0045] The server receives the ESID at 204. During each
session/application, the ESID is irrelevant. In fact, the

server may still keep its “old” sessionID encoded in the URLs

or cookiles in addition to the “new” ESIDs. When the user

L |

ient SM sends a

leaves the page/application, however, the c

termination URL with ESID to the server, which then minimizes
its state and stores it under the ESID key, at 206. The

server releases all resources related to an application upon

termination of the application, i.e. as soon as the user

leaves.

[0046] When an application start URL with ESID is sent to

the server at 208, and the server determines whether it has a

minimized session (i.e. a session return state) stored for

N

this ESID by mapping the ESID in the request with one or more

stored ESIDs previously received, at 210. If the request
ESTID does not refer to an active or minimized session for
which a return state is kept, a new session is created and

associated with the request ESID at 212. If the server has a

session return state related to the request ESID, the
application 1s started and given the session return state as
initial parameters (“init parameters”) at 214. The session

continues at 216.

[0047] Accordingly, i1f an application is continually called
using the same ESID, the application could be immediately
terminated when the user leaves, yet continue at substantiaily
the same point when i1t is started again. For multiple
instances, session termination, and session return of the same
application, the ESID must be generated and sent repeatedly.by

the client. Thus, an ESID is used to refer to a session at

15

CA 02508317 2005-06-01
WO 2004/068367 PCT/1IB2003/006400

startup of an application, and when re-starting the

application for session return.

[0048] In one embodiment, an ESID is a key string with no

internal structure. Thus, a user can simply call an

application X three times with different ESIDs, e.g. by a URL

of the type http://server/X?ESID=a. The disclosed technique

preferably uses the Basic Session Management function of a
client SM, which sends termination notifications to the server
each time the user leaves the application or a page of the

application.

[0049] In one example, a portal employs the Basic Session

Management and generates the ESIDs. The portal includes

multiple pages having names such as

“/roles/salesrep/ovw paged” or the like. Now, consider two

instances of an application “orderdetail” as portlets on the

same page “odl” and “od2.” Using cookies for server

segssionlDs, both pages would share the same sessionID, and
thus refer to the same server session. Thus, a user cannot
browse independently in odl and od2, as one page would always

show the data of the other. If the server / application uses

URL-encoded sessionlIDs, odl and od2 could be separate, but

when the user leaves, they must be terminated. When the user

returns, they would always start from scratch since the server

does not know where the requests come from, and the start URLs

always start a new session. Now, using ESIDs such as

“/roles/salesrep/ovw paged/odl” and

“/roles/salesrep/ovw paged4/od2,” there are two clearly defined

server sessions that correspond to the instances of these

applications on their respective page. When the user returns

16

CA 02508317 2005-06-01
WO 2004/068367 PCT/1IB2003/006400

to one or both pages, both sessions can continue where they

left off.

[0050] The values of ESIDs also have another implication:

when the same application is provided on two pages, and use

the “page path” as the exemplary ESIDs shown above, two

independent sesgssions are provided. This way an application
can be used independently at two locations in the portal

navigation.

[0051] The ESID also handles another situation in which a
standard sessionID lacks capability. In another example, when

the user opens a new browser window with a “ctrl-N” function,

1.e. a new browser window, but using the same processes such

as the same shared cookies, a similar situation occurs as with

two applications side-by-side. Either the applications refer
to the same server session, and thus confusingly affect each

other, or a new session is started, but the user can never

return to either one. When a windowID is éppended to the
ESID, a new window will automatically refer to a new session

and/or application instance. Thus, opening a new parallel and

independent workspace for the same application can now be

accomplished.

[0052] The use of the ESID mechanism as described above
requires a context that provides the Basic Session Termination
as a prerequisite. Alternatively, however, in an alternative
scenario the ESIDs could be appended manually to the
application start URL by an administrator. In the context of
a portal, the ESID values can be generated dynamically,

including a static part as a path to of the application (e.g.

“/roles/salesrep/ovw_paged4/odl”) and a dynamic part such as

17

CA 02508317 2005-06-01
WO 2004/068367 PCT/1IB2003/006400

“<windowID>.” Preferably, ESIDs are generated using URL

templates that combine various dynamic values.

[0053] According to one method, the server keeps some

“state” even when the user leaves an application and the
session manager sends the termination notification. This

state can be kept as “read only/view state” (e.g. which object

had been selected, tree state, etc.). This state is typically
small and can be kept for a longer time. When the user

revisits the same page of the application, the server reloads

the “view state” and shows the same page in the same state as

when the user left.

[0054] To enable the session-return feature along with the
SRM feature, the SRM concept and its interpretation by the
server, instead of just receiving the CLOSE command, may

receive different more detailed notifications such as follows:

[0055] LEAVE: Indicates that the user left application,

e.g., by navigating through the portal. This is the same as
the previous CLOSE command. However, in this case, the

application should “minimize”, i.e. minimize its use of

resources, rather than terminate. The application can
minimize by, e.g., writing out dialog state, going to read-

only mode, releasing all locks and memory, etc. The

application may store just enough information to be able to
"restore” and come back to the same state. The application

can record the user’s activity in the application, e.g.,

navigation through fields and entering data, and then
serialize the data. This may require only 20-30 kBytes of

memory. The user may never come back, and there will be no

further notification (until LOGOFF). The resulting state

18

CA 02508317 2005-06-01
WO 2004/068367 PCT/1IB2003/006400

should be able to exist for a long time (timeout), since

minimal resources are being used.

[0056] RESTORE: Received after page-back with an existing

BESID. The application should revert the “minimize” operation,

1.e., reads the data back and restores the previous state.

T .

The application 1s now in the “expensive” (resource-wise)

state again.

[0057] LOGOFF: Sent when the user actually leaves the

portal. This 1s an optional notification - in addition to

LEAVE - that the application can now immediately terminate.

instead of minimizing.

[0058] Note that the notifications of LEAVE, RESTORE and
LOGOFF are notifications the application gets from the server.

The SRM only sends CLOSE (now mapped to LEAVE), and LOGOFF.

(=]

The server recognlzes the “found existing ESID” case (session-

return) and then sends the RESTORE notification to the

application.

[0059] So far we are collécting for each ESID and

application (per user) a 'session return state'. The question

naturally arises, how can one ever In order to start a new

instance from scratch, an additional LOGOFF event can be

defined that is sent to the application(s) when the user

leaves the application portal altogether. When the server

recelves the LOGOFF notification with the ESIDs, it will

discard the session return states for the ESIDs.

[0060] Various implementations of the systems and
techniques described here can be realized in digital
electronic circuitry, integrated circuitry, specially designed

ASICs (application specific integrated circuits), computer

19

CA 02508317 2005-06-01
WO 2004/068367 PCT/1IB2003/006400

hardware, firmware, software, and/or combinations thereof.

These various implementations can include implementation in

one or more computer programs that are executable and/or
interpretable on a programmable system including at least one
programmable processor, which may be special or general |
purpose, coupled to receive data and instructions from, and to

transmit data and instructions to, a storage system, at least

one i1nput device, and at least one output device.

[0061] These computer programs (also known as programs,
software, software applications or code) include machine

instructions for a programmable processor, and can be

implemented in a high-level procedural and/or object-oriented

programming language, and/or in assembly/machine language. As

used herein, the term “machine-readable medium” refers to any
computer program product, apparatus and/or device (e.g.,
magnetic discs, optical disks, memory, Programmable Logic
Devices (PLDs)) used to provide machine instructions and/or

data to a programmable processor, including a machine-readable

medium that receives machine instructions as a machine-

readable signal. The term “machine-readable signal” refers to

any signal used to provide machine instructions and/or data to

a programmable processor.

[0062] To provide for interaction with a user, the systems
and techniques described here can be implemented on a computer

having a display device (e.g., a CRT (cathode ray tube) or LCD

(ligquid crystal display) monitor) for displaying information

to the user and a keyboard and a pointing device (e.g., a

mouse or a trackball) by which the user can provide input to

the computer. Other kinds of devices can be used to provide

for interaction with a user as well; for example, feedback

20

CA 02508317 2005-06-01
WO 2004/068367 PCT/1B2003/006400

provided to the user can be any form of sensory feedback

(e.g., visual feedback, auditory feedback, or tactile

feedback); and input from the user can be received in any

form, including acoustic, speech, or tactile input.

[0063] The systems and technigues described here can be
implemented in a computing system that includes a back-end
component (e.g., as a data server), or that includes a
middleware component (e.g., the application server), or that

includes a front-end component (e.g., a client computer having

a graphical user interface or a Web browser through which a
user can interact with an implementation of the systems and

techniques described here), or any combination of such back-

end, middleware, or front-end components. The components of
the system can be interconnected by any form or medium of
digital data communication (e.g., a communication network) .
Examples of communication networks include a local area

network (“LAN”), a wide area network (“WAN”), and the

Internet.

[0064] The computing system can include clients and
servers. A client and server are generally remote from each
other and typically interact through a communication network.
The relationship of client and server arises by virtue of
computer programs running on the respective computers and

having a client-server relationship to each other.

[0065] Although a few embodiments have been described in

detail above, other modifications are possible. Portions of

this disclosure discuss operation though a portal, but any of
a number of access systems and methods may be used to manage
web application sessions. The logic flows depicted in FIG. 2

do not require the particular order shown, or sequential

21

CA 02508317 2005-06-01
WO 2004/068367 PCT/1IB2003/006400

order, to achieve desirable results. Other embodiments may be

within the scope of the following claims.

22

10

20

CA 02508317 2012-02-10

Claims
1. A method for session-return to enable a stateful web application, comprising:

receiving from a portal used by a client a termination uniform resource locator (URL)
relating to a terminated web application session, the termination URL including a given session ID
that the client wants to use to refer to a session at start time and thereafter for termination and restart,
the given session ID being an external session identifier (ESID) identifying the terminated web
application session; wherein the ESID is generated by a session manager of the portal used by the

client;
minimizing a state related to the terminated web application session;

storing a minimized state related to the terminated web application session associated
with the ESID in a table on the server, wherein the minimized state is a session-return state related

to the terminated web application session;

receiving a request from the client for a new web application session;

determining whether the request includes an identifier that corresponds to the ESID
of the terminated web application session, wherein determining whether the request includes an
identifier that corresponds to the ESID of the terminated web application session further includes

mapping the identifier to one or more ESIDs stored in the table; and

if the identifier corresponds to the ESID of the terminated web application session,

serving the new web application session according to the minimized state related to the terminated

web application session, and

if the identifier does not correspond to the ESID of the terminated web application

session, serving the new web application session in a startup mode.

2. A method in accordance with claim 1, wherein storing the minimized state related to

the terminated web application further includes storing the ESID identifying the terminated web

application sesston.

23

10

20

CA 02508317 2012-02-10

3. A method in accordance with claim 1 or claim 2, further comprising at least one of:

receiving an ESID in response to serving the new web application session; and receiving an ESID

each time a new web application session is started.

4, A method in accordance with any one of claims 1 to 3, wherein the request includes a
start URL.
S. A system for performing page-back of a web application, comprising:

a portal comprising a session manager configured to generate a termination uniform resource
locator (URL) relating to a terminated web application session, the termination URL including a
given session ID that the client wants to use to refer to a session at start time and thereafter for
termination and restart, the given session ID being an external session identifier (ESID) identifying

the terminated web application session, and further configured to send the ESID to a server; and

a server platform hosting the server and having a memory configured to store a minimized
state related to the terminated web application session associated with the ESID in a table, wherein
the minimized state is a session-return state related to the terminated web application session; and a
mapping module configured to map a request for a new web application session to one or more

ESIDs stored in the table in the memory,

the server platform being further configured to serve the new web application session in the
minimized state associated with one ESID if the request corresponds to the ESID of the terminated
web application session, and if the request does not correspond to the ESID of the terminated web
application session, the server platform is configured to serve the new web application session in a

startup mode.

6. A system in accordance with claim 5, wherein the server is a web application server.

24

CA 02508317 2005-06-01

WO 2004/068367 PCT/IB2003/006400
1/2
110
BROWSER / CLIENT
102
PORTAL PAGE 106
START AND
TERMINATING URLS

PASSING ESIDs

MAPPING
MODULE
104

SESSION MANAGER I

SESSION(S)
MEMORY

APPL A
APPL A
INST1 | 045
I APPLICATION A
d SERVER PLATFORM
108
112
PAGE URL + ESID 100
GENERATOR [GENERATOR
122 ~ 120
PORTAL SERVER

FIG. 1

CA 02508317 2005-06-01
WO 2004/068367

2/2
202
__| . GLENT/PORTAL
GENERATES ESID AND
SENDS TO sERVERJ
y.
204

_ SERVER RECEIVES ESID
AND STORES ESID IN A

PCT/IB2003/006400

FIG. 2

212

TABLE
Y |
206 STORE STATE OF
\w__| TERMINATED WEB
APPLICATION SESSION
WITH RELATED ESID
208
RECEIVE REQUEST FOR .
“~——| NEW WEB APPLICATION |
SESSION
210
NEW ESID MATCHES
STORED ESID?

214 START NEW WEB
APPLICATION SESSION
ACCORDING TO STATE

RELATED TO
TERMINATED WEB
APPLICATION SESSION
216

CREATE NEW WEB
» APPLICATION SESSION IN
STARTUP MODE

~

g

\C CONTINUE ‘>

110

BROWSER / CLIENT
102
PORTAL PAGE 106
START AND
SESSION MANAGER TERMINATING URLS
PASSING ESIDs

SERVER PLATFORM
108
112
PAGE URL + ESID 100
GENERATOR GENERATOR
122 120

PORTAL SERVER

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - abstract
	Page 4 - abstract
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - claims
	Page 29 - claims
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - abstract drawing

