‘3

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5.
HO4L 9/28 Al

(11) International Publication Number:

(43) International Publication Date:

WO 94/10778

11 May 1994 (11.05.94)

(21) International Application Number: PCT/US93/10585

(22) International Filing Date: 2 November 1993 (02.11.93)

(30) Priority data:

970,611 3 November 1992 (03.11.92) US

(71) Applicant: NOVELL, INC. [US/US]; 122 East 1700 South,
Provo, UT 84601 (US).

(72) Inventor: KINGDON, Kevin ; 1331 East 600 North, Orem,
UT 84057 (US).

(74) Agents: HECKER, Gary, A. et al.; Hecker & Harriman,
2049 Century Park East, Suite 1200, Los Angeles, CA
90067 (US). i

(81) Designated States: AT, AU, BB, BG, BR, BY, CA, CH,
CZ, DE, DK, ES, FI, GB, HU, JP, KP, KR, KZ, LK,
LU, MG, MN, MW, NL, NO, NZ, PL, PT, RO, RU,
SD, SE, SK, UA, VN, European patent (AT, BE, CH,
DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT,
SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN,
ML, MR, NE, SN, TD, TG).

Published
With international search report.
Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of |
amendments.

(54) Title: METHOD AND APPARATUS FOR AUTHENTICATION OF CLIENT SERVER COMMUNICATION

(57) Abstract

The present invention provides a method and apparatus for message packet
authentication to prevent the forging of message packets. A portion of the message
digest, referred to as the signature, is then appended to the actual message when it
is sent over the wire (205). The receiving station strips the signature from the mes-
sage (208), preappends the same secret session key (209) and creates its own mes-
sage digest (212). The signature of the digest created by the receiving station is
compared to the signature of the digest appended by the sending station (213). If
there is a match, an authentic message is assumed (214). If there is no match, the

message is considered as invalid and discarded (216).

[)

0

Preappend
session key

Append signature /
to message

26

Preappend session /
key to message

) No
64 bytes?

Yes

uz

az

Execute MD as
R e
Execute message
. a6 23
No Yes M
Unauthorized Signature w =
message; discard i ‘7 Valid message

applications under the PCT.

AT
AU
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG
CH
Cl
™
CN
Cs
cz
DE
DK
ES
Fl
FR
GA

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international

Austria
Australia
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus
Canada
Central African Republic
Congo
Switzerland
Céte d’lvoire
Camecroon
China
Czechoslovakia
Czech Republic
Germany
Dénmark
Spain

Finland
France

Gabon

GB
GE
GN
GR
HU
IE

IT

Je

KE
KG
KP

KR
Kz
Ll
LK
LU
Lv
mMC
MD
MG
ML
MN

United Kingdom
Georgia

Guinca

Greece

Hungary

Ircland

taly

Japan

Kenya

Kyrgystan
Democratic People’s Republic
of Korea
Republic of Korea
Kazakhstan
Liechtenstein

Sri Lanka
Luxembourg
Latvia

Monaco

Republic of Moldova
Madagascar

Mali

Mongolia

MR
MW
NE
NL
NO
NZ
PL
PT
RO
RU
sD
SE
Si
SK
SN
™
TG
TJ

UA
us
vz
VN

Mauritania
Malawi

Niger

Netherlands
Norway

New Zealand
Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Slovenia

Stovakia

Senegal

Chad

Togo

Tajikistan
Trinidad and Tobago
Ukraine

United States of America
Uzbekistan

Viet Nam

1

WO 94/10778 1 PCT/US93/10585
METHOD AND APPARATUS FOR AUTHENTICATION OF CLIENT
SERVER COMMUNICATION

5 FIELD OF THE INVENTION

This invention relates to the field of network communications.

BACKGROUND ART

10
Personal computers, or workstations, may be linked through a

computer network to allow the sharing of data, applications, files,
processing power, communications and other resources, such as printers,
modems, mass storage and the like. Generally, the sharing of resources is

15 accomplished by the use of a network server. The server is a processing unit
dedicated to managing the centralized resources, managing data and sharing
these resources with other PC's and workstations, often referred to as
"clients". The server, network and PC's or workstations, combined
together, constitute a client/server computer network. An example of a

20 client/server network model is illustrated in Figure 1.

Figure 1 illustrates a client machine 101 coupled to a server machine
102. The client machine 101 may be a PC, workstation, etc. The server
machine may be a dedicated processor, PC, workstation, etc, that includes
25 mass storage on which files are stored. Typically, the mass storage is a disk
drive or other suitable device.

The client machine 101 is comprised of a client 102 that
communicates with a client stub 103. The client stub 103 communicates
30 with a transport entity 104. The server machine 105 includes a server 106,
server stub 107, and transport entity 108.

Referring to the client machine 101, the client 102 is a local processor
that utilizes files of the server. The client stub 103 is a collection of local
35 procedures that enable the client to access the server. The transport entity
104 provides access to the network, or "wire" 109. Wire 109 refers to the
communications medium between the client and server and may be an
actual hardwired communications medium, or may be a wireless

WO 94/10778 : PCT/US93/10585

10

15

20

25

30

35

-

connection. Similarly, the server stub 107 is a collection of procedures that
enable the server to communicate with the client, and transport entity 108
provides access from the server to the wire 109.

In operation, communication between the client and server is in the
form of requests (from the client) and replies (from the server). This
communication is in the form of remote procedure calls. The client is
analogous to an application calling a procedure and getting a result. The
difference is that the procedure is not necessarily on the same machine as
the client 101, but rather on the server machine 105.

Initially, the client 102 calls a stub procedure located on the client
machine in the client stub 103 (resident in the client 102 local address space).
The client stub 103 constructs a message from the call and provides it to the
transport entity 104. The transport entity 104 communicates the message on
the wire 109 to the server machine 105. At the server, the transport entity
108 passes the message to the server stub 107. The server stub then calls the
appropriate server procedure from the server 106. The server 106 operates
on the message and then returns the procedure and any result to the server
stub 107. The server stub 107 constructs a reply message and provides it to
the transport entity 108. The reply message is sent to the transport entity 104
of the client machine 101 over the wire 109. The transport entity provides
the reply message to the client stub 103. The client stub 103 returns the
procedure and any value returned by the server to the client 102.

On a computer network, clients and users have different levels of
privileges. Certain functions, adding users, deleting users, changing
passwords, etc., are restricted to the highest privileged users. These users and
clients are often network administrators, and it is necessary for these users to
be able to modify the network as necessary. In addition, there may be certain
types of files or activities that are restricted from most users. For example,
financial data is often restricted to users who have a need to know or use the
financial data. Generally, other users are not permitted to access that data.

In a client/server model, messages are transported as "packets". An
example of a message packet is illustrated in Figure 3A. The message

.consists of a 4-byte length header (low high) indicator 301. The length

WO 94/10778 ‘ PCT/US93/10585

10

15

20

25

30

35

-3-

header 301 identifies the length of the message that follows and includes the
following information:

CheckSum
PacketLength
TransportControl
HPacketType
DestinationNet
DestinationNode
DestinaltionSocket
SourceNet
SourceNode
SourceSocket

The length header 301 is followed by a request code 302. The request
code 302 is the particular type of procedure being requested by the client. The
request code 302 is followed by data 303. The data 303 may be of variable
length.

One particular type of message packet is referred to as an "NCP
packet"”, where NCP refers to NetWare Core Protocol. (NetWare is a
trademark of Novell, Corporation of Provo, Utah). NetWare is an
operating system for network systems. An NCP packet includes the
following additional information in the length header:

packet type
sequence number

connection low
task
connection high

The standard portion of the message packet provides source address,
destination address and length, among other pieces of information. The
NCP portion includes a connection number and a sequence number. The
station connection number provides the server with an index into a table of
active stations. The server uses the active station table to track information
about that station's session, including the station's network address and
sequence number.

WO 94/10778 PCT/US93/10585

10

15

20

25

30

35

-4-

The connection number is used in part as a security check. When a
server receives a request packet, it uses the packet's connection number as
an index into its connection table. The request packet's network address
must match the network address stored in the connection table entry
corresponding to the connection number contained in the request packet.
This is one method of validating a request packet.

The sequence number is also used to validate packets. The sequence
number is a byte that is maintained by both the server and the client. When
the client sends a request packet, that client increments the sequence
number. Likewise, when a server receives a request packet, it increments
that client's sequence number (stored in the server's connection table). The
sequence number wraps around on every 256th request made by the client
(because it is one byte in length).

Before incrementing the client's sequence number, the server checks
the sequence number against a list of already-received request packets. This
check is to ensure that the server does not service duplicate request packets.
If the sequence number does not indicate a duplicate request packet, the
server checks the request packet's sequence number against the sequence
number stored in the server's connection table. If these two numbers are
not equal, the server discards the packet.

In spite of these precautions, it is sometimes possible to forge a
message packet by detecting the network address, connection station, the
station's connection number, and the station's sequence number. Typically,
the purpose in forging a message packet is to "imitate" a higher privileged
user or client so that the privilege level of the forger can be upgraded. The
forger may obtain a more privileged station's connection number by
capturing network packets from the communications medium. These are
network packets that are sent from a higher privileged station to the server.
A forger may capture these packets using a protocol analysis tool.

By obtaining a connection number, a forger may attempt to forge a
message by sending a message to the server destination address, using the
same station connection number as in the intercepted message. However,
that alone is not sufficient to enable an intruder to forge a message. As
noted above, the server checks the sequence number and compares it
against a list of already-received requests. The sequence number of the new

WO 94/10778 PCT/US93/10585

10

15

20

-5-

request should have associated with it the next consecutive sequence
number. If not, it is an invalid request and the server discards the packet.

An intruder may attempt to forge a message by "guessing” at the
sequence number. Because the sequence numbers "wrap around" after 256,
the intruder need only try to make 256 attempts before the sequence number
is found. It should be noted that the intruder does not receive responses
from the server, but rather must detect responses from the server or detect if
a request issued to the server has been executed (e.g., a change in privilege
status for the intruder).

One possible solution to a network intruder is to monitor network
use to detect intruder-type activity. For example, the network could be
monitored so that trial and error attempts to provide a correct sequence
number are detected. For example, a window could be defined with a
certain number of allowed failed tries at providing sequence numbers. A
problem is that depending on the size of the window for allowed retries, an
intruder could randomly provide a correct sequence number within the
window. If the window is made smaller, legitimate transactions might be
interrupted when the correct sequence number is not provided by a
legitimate user. It is desired to provide a method and apparatus for
preventing intruder network access instead of just detecting intruder access.

WO 94/10778 PCT/US93/10585

10

15

20

-6-

SUMMARY OF THE PRESENT INVENTION

The present invention provides a method and apparatus for message
packet authentication to prevent the forging of message packets. After a
message packet is created, a secret session key is preappended to the message,
and a message digesting algorithm is executed on the altered message to
create a message digest. A portion of the message digest, referred to as the
signature, is then appended to the actual message when it is sent over the
wire. The receiving station strips the signature from the message,
preappends the same secret session key and creates its own message digest.
The signature of the digest created by the receiving station is compared to
the signature of the digest appended by the sending station. If thereis a
match, an authentic message is assumed. If there is no match, the message
is considered as invalid and discarded. An advantage of the present
invention is that the session key is never transmitted over the wire. The
receiving station (server) already has the key and uses the key along with
the message data to recalculate the message digest upon receiving the
packet. The shared secret key (session key) is generated during initiation of
the NCP session. In addition, cumulative state information is maintained
by both the sending station and the receiving station. This state
information is also used to authenticate messages.

WO 94/10778 PCT/US93/10585
7-
BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a block diagram of a client/server model.

5 Figure 2 is a flow diagram of a message session using the session key
of the present invention.

Figures 3A-3G are diagrams of message structure during a message

session.
10
Figure 4 is a flow diagram of the client state during a message session.
Figure 5 is a flow diagram of the server state during a message session.
15 Figure 6 is a flow diagram illustrating the generation of a session key.

Figure 7 is a flow diagram of a method of authenticating a session key.

Figure 8 is a block diagram of a computer system in which the present
20 invention may be implemented.

Figure 9 is a block diagram of the present invention.

WO 94/10778 PCT/US93/10585

10

15

20

25

30

35

-8

DETAILED DESCRIPTION OF THE INVENTION

A method and apparatus for message authentication is described. In
the following description, numerous specific details, such as message type,
message length, etc., are provided in detail in order to provide a more
thorough description of the present invention. It will be apparent,
however, that the present invention may be practiced without these specific
details. In other instances, well-known features are not described in detail
so as not to unnecessarily obscure the present invention.

The present invention provides a signature with each message that
identifies and authenticates the sender. In addition, the invention tracks
state information about the session and uses its cumulative effect to help
protect and authenticate senders.

The signature scheme of the invention takes advantage of an operation
known as "message digesting". Message digesting is a scheme to provide data
integrity and detect errors. There are a number of message digesting
algorithms available for use, some of which are provided by Rivest, Shamir
and Associates (RSA). RSA message digesting algorithms are known as MD2,
MD4 and MD5. The preferred embodiment of the present invention utilizes a
derivative of message digesting algorithm MD4. The MD4 algorithm is
described in RFC 1320, "The MD4 Message-Digest Algorithm", R. Rivest, MIT
Laboratory for Computer Science and RSA Data Security, Inc. April 1992,
incorporated by reference herein. In the preferred embodiment of the present
invention, the padding scheme described herein is used instead of the padding
scheme described in the MD4 algorithm. However, the present invention may
be used with any suitable padding scheme. In addition, the MD2 and MD5
digesting algorithms may be used as the digesting algorithm.

Other cryptographically secure, one way hashing algorithms may be
used instead of a digesting algorithm without departing from the scope and
spirit of the present invention. A hash function is a mathematical function
that maps values from a large domain into a smaller range. In the preferred
embodiment the hash function is such that the results of applying the
function to a set of values in the domain will be evenly distributed (and
apparently random) over the range. Using the present scheme, encryption
of a message can be avoided, saving time, while still providing the benefit of
an effective digital authentication signature.

WO 94/10778 PCT/US93/10585

10

15

20

25

30

35

MESSAGE SIGNATURE

The method for creating and utilizing a signature to authenticate a
message is illustrated in the flow diagram of Figure 2. At step 200, a message
is created by the client. This message is as shown in Figure 3A. The message
consists of a 4-byte length header (low high) indicator 301. The length header
301 identifies the length of the message that follows and includes source and
destination information. The length header 301 is followed by a request code
302. The request code 302 is the particular type of procedure being requested
by the client. The request code 302 is followed by data 303. The data 303 may
be of variable length.

At step 201 a session key, whose creation is described in detail below,
is pre-appended to the message. The prepending of the session key of step
201 of Figure 2 is illustrated in Figure 3B. An 8-byte key 304 is preappended
to the message before the length indicator 301.

At decision block 202, the argument "64 bytes?" is made. If the
argument is false, meaning the message does not have 64 bytes, the system
proceeds to step 203 and the remainder of the message is filled with zeros.
This is the padding 305 of Figure 3B. In the preferred embodiment, the
message digest algorithm requires 64 bytes for operation so that if necessary,
padding 305 (consisting of zeros) is added to the end of the message. The
request code and data total 52 bytes, with 4 bytes of the length indicated in 8
bits of the session key for a total of 64 bytes.

After step 203, or if the argument at decision block 202 is true, the
system proceeds to step 204. At step 204, the message digest algorithm is
executed to generate a message digest from the preappended message. The
execution of the message digest algorithm creates the 16-byte message digest
of Figure 3C.

At step 205, the first eight bytes, i.e. the signature 306, of the digest is
appended to the message. This is illustrated in Figure 3D. The 8-byte
signature 306 is added to the end of the actual NCP data. No padding is
required for sending the message over the wire. At step 206, the message is
sent to the server. Steps 200-206 are executed by the client, and steps 206-216
are executed by the server.

WO 94/10778 PCT/US93/10585

10

15

20

25

30

35

-10-

At step 206, the server receives the message. At step 208, the server
strips the signature 306 from the message. The signature 306 is stripped from
the message as illustrated in Figure 3E.

At step 209, the server pre-appends the session key generated and
stored by the server (which should be the same session key as generated and
stored by a valid user) to the message. This is illustrated in Figure 3F where
the server session key 304' is preappended to the message. At decision block
210, the argument "64 bytes?" is made. If the argument is false, the system
proceeds to step 211 and fills the remainder of the message with zeros, as -
illustrated by padding 305 of Figure 3F.

After step 211, or if the afgument at decision block 210 is true, the
system proceeds to step 212. At step 212, the MD4 algorithm is executed to
create a server message digest, referred to here as digest'. This results in the
16-byte message digest of Figure 3G. The first 8 bytes, i.e. signature’ 306' of
this message digest are then stripped away and compared to the signature
306 that was sent with the message by the client.

At decision block 213, the argument "Signature = Signature'?" is made.
This step is to determine if the signature generated by the client is the same as
the signature' generated by the server. If the argument at decision block 213 is
true, the system proceeds to step 214 and a valid message is indicated. At step
215, the message is executed. If the argument at decision block 212 is false, the
system proceeds to step 216. At step 216, an unauthorized message is indicated
and the message is discarded. At step 217, an alert is generated to indicate that
an unauthenticated message was attempted.

The preferred embodiment of the present invention utilizes eight bytes of
the digest as the signature. Any number of bytes or bits of the digest may be used
as the signature without departing from the scope of the present invention.

In some cases, message packets use the entire data field, precluding
the ability to append the eight byte message digest. In typical applications,
block size negotiations assume 64 bytes for protocol header information. In
reality, most protocol headers consume less than 56 bytes, leaving 8 bytes
always available for the 8 byte digest information. If eight bytes of free space
are not available, an artificially smaller block size is negotiated so that an 8
byte space can be guaranteed.

WO 94/10778 PCT/US93/10585

10

15

20

25

30

35

-11-

STATE TRACKING

In addition to the message signature scheme described above, the
present invention also provides a method of message authentication using
state information. The nature of the MD4 algorithm is such that it is
cumulative, i.e. the message digest function can be executed in stages.

For example, a block of a file of messages can be provided to the
message digest algorithm, digested and the next block of file can be read in
and the digesting continued. The output state of the execution of the
digesting algorithm is used as an input state on the next digesting step. The
net effect of executing the message digest algorithm in stages is as if the
message digest algorithm were executed on an entire block of information
in a single pass. Thus, a cumulative effect can be had by remembering the
state at the end of each algorithm execution. The present invention takes
advantage of this cumulative effect and state information to provide an
additional level of security and authentication.

Both the client and server track and store state information. In the
present invention, this state information consists of the most recently
generated message digest. A provisional message digest, using the current
message digest and new message, is generated and stored by the client and
server. When a new message is received, a new message digest is
generated and compared to the provisional digest. A match is only
possible if the other party had the previous state information. The
incorrect starting state information will propagate an error that identifies
intruders and forged messages.

Referring to Figure 4, a flow diagram of state tracking for a client is
illustrated. At step 401, the current state of the client is the full 16 byte
message digest generated from a previous valid message. At step 402, the
client creates a new message. At step 403, the client applies the message
digesting algorithm to the new message, using the current state (digest) as a
starting point to create a provisional state.

At step 404, the message is sént to the server. At step 405, the client
receives a reply from the server. At step 406, the reply is checked, using the
provisional state of step 403. This is accomplished by stripping the server
generated digest from the message, applying the message digest algorithm to

WO 94/10778 PCT/US93/10585

10

15

20

25

30

35

-12-

the message (using the provisional state as a starting point) and comparing
the first eight bytes of the resulting digest to the first eight bytes of the server

generated digest.

At decision block 407, the argument "valid reply?" is made. If the
argument is false, the system proceeds to step 408 and does not advance the
state, since an invalid reply has been received. The next message generated
by the client will use the existing current state as the starting point for the
digesting algorithm. If the argument at decision block 407 is true, the system
proceeds to step 409 and advances the state, that is, is makes the provisional
state the current state. That new current state will now be the starting point
when applying the digesting algorithm to the next message.

In some cases, the client may send a burst of data to the server, or a
client request may generate a burst reply. The order of the messages in the
packet burst (except for the first packet) is not necessarily fixed. This can
create problems in calculating state information, because of the cumulative
nature of the digesting algorithm. For packet burst replies, the server
calculates the message digest for the first reply packet and uses the same
state to calculate message digests for all remaining packets in the burst. In
this manner, regardless of the order of the packets after the first packet, state
integrity can be maintained.

Burst requests are handled the same way. The first packet in a stream
is factored in the state of the digest algorithm. Subsequent packets in the
burst request use the same state as the first packet as the initial state.

A flow diagram illustrating the operation of the server in maintaining
state information is illustrated in Figure 5. At step 501, the server receives a
message from the client. At decision block 502, the argument "burst?" is
made. If the argument is true, the system uses the state of the first packet and
returns to step 503. If the argument is false, the system proceeds to step 503
and checks the sequence number. At decision block 504, the argument
"repeat sequence number?" is made. This is to identify repeat requests. The
digest output generated for request packets is always factored into the digest

state. Thus, the prior digest state must be maintained by the server when

repeat requests are encountered. If the argument at decision block 504 is true,
the system proceeds to step 505 and recomputes a provisional state based on
the new message, using the stored previous state.

WO 94/10778 : PCT/US93/10585

At decision block 506, the argument "burst?” is made. If the
argument is true, the system proceeds to step uses the state of the first packet
and returns to step 507. If the argument is false, the system proceeds to step

5 507. At step 507, the signatures of the message are verified based on the
provisional state. At decision block 508, the argument "valid?" is made. If
the argument is false, the system discards the message and provides an alert
for a potential forged message at step 509. If the argument at decision block
508 is true, the system replies to message at step 510.

10

If the argument at decision block 504 is false, the system proceeds to
decision block 511. At decision block 511, the argument "next consecutive
sequence number?" is made. If the argument is false, the system proceeds to
step 512, declares the message invalid and discards it. In other words, the

15 sequence number was inappropriate. If the argument at decision block 511
is true, the system proceeds to step 513 and verifies the signatures based on
the provisional state that has been maintained. .

At decision block 514, the argument "valid?" is made. If the

20 argument is false, the system proceeds to step 509, the message is discarded,
and an alert is generated. If the argument is true, the system proceeds to
step 515. At step 515, the provisional state is redefined as the current state.
At step 516, a new provisional state is created based on the reply. At
decision block 517, the argument "burst?" is made. If the argument is true,

25 the system uses the state of the first packet and proceeds to step 518. If the
argument is false, the system proceeds to step 518 and replies to the client
based on the provisional state that has been calculated.

SESSION KEY

30

A method of generating a client session key is illustrated in Figure 6.

When a user attempts to communicate on the network, the user must first be
identified to the server. To initiate a session, the user attempts to log on to
the client machine. At step 601, the client requests a challenge from the

35 server machine. The challenge consists of 8 bytes of random numbers. The
client then prompts the user for an account name and a password at step 602.
When the user enters an account name and password, the client machine
determines an object ID associated with the account at step 603. (The object
ID is a numeric surrogate key or index that is associated with each account).

WO 94/10778 PCT/US93/10585

10

15

20

25

30

35

-14-

At step 604, the client machine uses the password and the object ID to
compute a digest using a digest algorithm to generate a 16 byte result
referred to here as Digestl. At step 605, the client machine builds a buffer of
Digest], the challenge and, optionally, a text string. In the preferred
embodiment, the text string of the present invention is "Authorized
NetWare Client". The buffer is padded with 0's if necessary to provide 64
bytes for execution of the digest algorithm.

At step 606, the client machine performs a second digest on the buffer
(Digest]1, the challenge, 0's padding, and, optionally, the text string) to
generate a digest of the buffer called Dbuffer. At step 607, the first eight bytes
of Dbuffer are stripped and defined as the session key. Although eight bytes
are used as the session key in the preferred embodiment of the present
invention, any number of bytes or bits may be used without departing from
the scope of the invention.

The server also has stored the password, account name, and object ID
of the user. The server also has generated the challenge, and stores that
value. Using the same steps, the server machine can generate the session
key. Thus, the session key is never transmitted over the wire. It is
generated from secure information at the client machine and the server
machine. In addition, because the session key depends in part on the
challenge (a random number) the session key is different for each
client/server session.

Although not shown in Figure 6, a response is generated to the
challenge after step 604. The response, which is sent over the wire to the
server, is generated by a hashing algorithm that is different from the
hashing algorithm that is used in steps 605 and 606. If step 604 is
accomplished using the MD4 algorithm, then the challenge response can
use, for example, the MD5 algorithm and the session key is generated using
the MD4 algorithm. Alternatively, the challenge response can be generated
using the MD4 algorithm and the session key can be generated using a
different algorithm, such as the MD5 algorithm. Any different digesting or
hashing schemes can be used as long as there is no mapping of the output of
one algorithm to the output of the other algorithm.

WO 94/10778 PCT/US93/10585

10

15

20

30

35

-15-

The MD5 algorithm is described in RFC 1321, "The MD5 Message-
Digest Algorithm", R. Rivest, MIT Laboratory for Computer Science and
RSA Data Security, Inc. April 1992 and incorporated herein by reference.

SESSION KEY AUTHENTICATION

Figure 7 illustrates a flow diagram of a method of authenticating a
session key. At step 701, a client generates a session key as described in
connection with Figure 6. At step 702, a request is sent to the server by the
client, using the session key to generate a digest and a signature as described
in connection with Figure 2.

At step 703, the server strips the signature from the message of the
client, and uses the server's stored copy of the account name, password, and
object ID to first generate its version of Digestl, namely Digest1’, and then
uses Digest1' to generate the server version of the session key, namely
session key'. At step 704, the server generates Digest' as described in
connection with Figure 2.

At decision block 705, the argument "Signature = Signature'?" is
made. If the argument is false, the system proceeds to step 706 and the
server sends a negative ack to the client and the server does not change its
state. The server does not initialize its state for a new session. If the
argument at decision block 705 is true, the system proceeds to step 707 and
the server sends an "OK" acknowledgement to the client. At step 708, the
server initializes the client state and stores the session key it has generated.
At step 709, the server initializes the server state and stores the session key.
The initial state of the client and server is defined to be an initial state
documented, for example, in the MD4 standard.

The client and server of the present invention may be implemented
on any conventional or general purpose computer system. An example of
one embodiment of a computer system for implementing this invention is
illustrated in Figure 8. A keyboard 810 and mouse 811 are coupled to a bi-
directional system bus 818. The keyboard and mouse are for introducing
user input to the computer system and communicating that user input to
CPU 813. The computer system of Figure 8 also includes a video memory
814, main memory 815 and mass storage 812, all coupled to bi-directional
system bus 818 along with keyboard 810, mouse 811 and CPU 813. The mass

WO 94/10778 PCT/US93/10585
-16-

storage 812 may include both fixed and removable media, such as magnetic,
optical or magnetic optical storage systems or any other available mass
storage technology. Bus 818 may contain, for example, 32 address lines for
addressing video memory 814 or main memory 815. The system bus 818

5 also includes, for example, a 32-bit data bus for transferring data between
and among the components, such as CPU 813, main memory 815, video
memory 814 and mass storage 812. Alternatively, multiplex data/address
lines may be used instead of separate data and address lines.

10 In the preferred embodiment of this invention, the CPU 813 is a 32-bit
microprocessor manufactured by Intel, such as the 80386 or 80486. However,
any other suitable microprocessor or microcomputer may be utilized. Main
memory 815 is comprised of dyhamic random access memory (DRAM).

Video memory 814 is a dual-ported video random access memory.
15
One port of the video memory 814 is coupled to video amplifier 816.
The video amplifier 816 is used to drive the cathode ray tube (CRT) raster
monitor 817. Video amplifier 816 is well known in the art and may be
implemented by any suitable means. This circuitry converts pixel data stored

20 in video memory 814 to a raster signal suitable for use by monitor 817.
Monitor 817 is a type of monitor suitable for displaying graphic images, and in
the preferred embodiment of this invention, has a resolution of approximately
1020 x 832. Other resolution monitors may be utilized in this invention.

25 The computer system described above is for purposes of example
only. The present invention may be implemented in any type of computer
system or programming or processing environment.

A block diagram of the present invention is illustrated in Figure 9. A

30 message generator 901 is a source of messages from a sending station to a
receiving station. In this example, the sending station is a client and the
receiving station is a server. The message generator 901 provides a message
902. A session key 904 is stored in session key storage 903. The session key
904 is preappended to the message 902 at summer 905, resulting in appended

35 message 906. Appended message 906 is provided to the digester/buffer block
907, where it is digested and the first eight bytes are used as a signature 908.
Signature 908 is combined with message 902 at summer 911, resulting in
signed message 912. Signed message 912 is coupled to a receiving station
through transmitter/receiver 913.

WO 94/10778 PCT/US93/10585

10

15

20

25

-17-

State storage 909 stores the current and provisional states of the
sending station and provides them on line 910 to the digester/buffer block

© 907 as needed. A challenge 923 and local password 924 are also provided to

the digester/buffer block 907 for generation of the session key 904 on
initialization of a session. :

The received signed message 914 is separated into signature 916 and
message 917 elements at subtractor 915. The message 917 is combined with a
session key 920 from session key storage 919 at summer 918, resulting in an
appended message 921. Appended message 921 is provided to digester/buffer
922, where it is digested. The first eight bytes of the digest define a signature
927. The signature 927 is provided to compare/authenticate block 928, along
with the signature 916 of the received message 914. The compare/signature
block compares signature 927 with signature 916. When the signatures match,
a valid message is indicated. If the signatures do not match, the message is
declared invalid and discarded.

State information for the digesting operation of digester/buffer 922 is
provided on line 926 from state storage 925. A challenge 929 and password
930 are also provided to digester/buffer 922 for generation of a session key.

The elements of Figure 9 can be implemented as executable

* instructions in a processing means.

Thus, a method and apparatus for authentication of client/server

~communication has been described.

WO 94/10778 PCT/US93/10585

10

15

20

25

30

35

-18-

CLAIMS

1. A method of authenticating a message transmitted between a
sender and a receiver comprising the steps of:

generating a message at said sender;

combining a session key with said message to create a first appended
message;

calculating a first digest of said first appended message;

combining a first portion of said first digest with said message to
create a transmit message;

transmitting said transmit message to said receiver;

removing said first portion of said first digest from said transmit
message to result in said message;

combining said session key with said message to generate a second
appended message;

calculating a second digest of said second appended message;

comparing said said portion of said first digest and a second portion of

said second digest;
authenticating said message when said first portion of said first digest
matches said second portion of said second digest.

2. The method of claim 1 wherein said sender is a client in a

client/server network.

3. The method of claim 1 wherein said receiver is a server in a
client/server network.

4. The method of claim 1 wherein said step of calculating a first
digest of said first appended message is accomplished by executing a digest
algorithm on said first appended message.

5. The method of claim 4 wherein said digest algorithm is an
MD4 digest algorithm.
6. The method of claim 4 wherein a current state of said sender is

used as an initial state when executing said digest algorithm to create said
first digest.

WO 94/10778 PCT/US93/10585

10

15

20

30

35

- -19-

7. The method of claim 6 wherein said current state is used as an
initial state when executing said digest algorithm to create said second digest.

8. The method of claim 7 wherein said current state is advanced
when an authenticated message is received.

9. The method of claim 8 wherein said current state is not
advanced when an authenticated message is not received.

10. The method of claim 1 wherein said session key is generated by

the steps of:

- providing a random number sequence challenge to said sender;

requesting a password from a user of said sender;
generating a first pass digest from said password;
combining said first pass digest and said challenge in a buffer;
generating a buffer digest of said buffer;
defining said session key as a first number of bytes of said buffer digest.

11. Apparatus for authenticating a message transmitted between a
sender and a receiver comprising:

means for generating a message at said sender;

means for combining a session key with said message to create a first
appended message;

means for calculating a first digest of said first appended message;

means for combining said a first portion of said first digest with said
message to create a transmit message;

means for transmitting said transmit message to said receiver;

means for removing said first portion of said first digest from said
transmit message to result in said message;

means for combining said session key with said message to generate a
second appended message; -

means for calculating a second digest of said second appended message;

means for comparing said said first portion of said first digest and a
second portion of said second digest;

means for authenticating said message when said first portion of said
first digest matches said second portion of said second digest.

12. The apparatus of claim 11 wherein said sender is a client in a
client/server network.

WO 94/10778 : PCT/US93/10585

10

15

20

30

-20-

13. The apparatus of claim 11 wherein said receiver is a server in a

client/server network.

14. The apparatus of claim 11 wherein said first digest of said first
appended message is calculated by executing a digest algorithm on said first
appended message.

15. The apparatus of claim 14 wherein said digest algorithm is an
MD4 digest algorithm.

16. The apparatus of claim 14 wherein a current state of said sender
is used as an initial state when executing said digest algorithm to create said
first digest.

17. = The apparatus of claim 16 wherein said current state is used as an
initial state when executing said digest algorithm to create said second digest.

18. The apparatus of claim 17 wherein said current state is
advanced when an authenticated message is received.

19. The apparatus of claim 18 wherein said current state is not
advanced when an authenticated message is not received.

20. The apparatus of claim 11 further including means for
generating a session key comprising:

means for providing a random number sequence challenge to said
sender;

means for requesting a password from a user of said sender;

means for generating a first pass digest from said password;

means for combining said first pass digest and said challenge in a buffer;

means for generating a buffer digest of said buffer;

means for defining said session key as a first number of bytes of said
buffer digest.

179 PCT/US93/10585

WO 94/10778

| 8inbi4

£mus

j1odsueay,
801

601

901

SUNUDEBIA I3AI3G

votL

Limua
jiodsueury, ,

€01

col

SUIYDeA JU3iD)

2/9

’

217

e

64 bytes ?

WO 94/10778 PCT/US93/10585
200
. Create message |~
Figure 2 |

201

Preappend /

session key

203

~

Fill with 0's

Send message

Receive message

Strip signature

Preappend session
key to message

64 bytes ?

Execute MD

Generate alert

Create Digest'

216
/

Unauthorized
message; discard

Signature =
Si gnature' ?

213
Yes

204
Execute MD |~
205
Append signature /
to message

client

.............................

211
L~

Fill with 0's

212

215
pd

Execute message

214
7

Valid message

PCT/US93/10585

WO 94/10778

3/9

4¢ ainbi4
R S A
o \ Wm&
€0¢ -] AP
coe P apoo jsanbaux
/
g wsuay
,Yoe 7| Ao
3¢ ainbi4
€0] b
S apod jsanbaz
Log — yiSuaj

B¢ ainbi4 Ng ainbi4
315 315 315 315
N\ ~ / N\ »\ / N ~ \ \b\ /
L
V sa4q zg sdas 90¢ ~ sahqg sa4q g opc SM4asg
de ainbiy
T ped E\
ae ainbi4 w4 ped
v sa1hq zg
90g] armjeudrs g0t | wep '
Ve ainbi4
I ejep o apod jsanbaz / P wep
£0€
1 apod j3sanbaz
w0e e W3uay w0g - apoo jsonbax
— y38ua
10¢ I 308] PE | 106 1 y38uay

4 /9

WO 94/10778 ’ PCT/US93/10585
401
Current state /
402
Create message /
403
Provisional state /
404
Send message /
405
Receive reply /
406
Check using provisional state /

408

/

Valid reply ? Do not advance state

409

Advance state, i.e /
provisional = current

Figure 4
SUBSTITUTE SHEET (RULE 26)

5/9

WO 94/10778 PCT/US93/10585
501 Reply t >0
\ eply to message | -~ 509
Receive message £
N
° Discard,
Alert
502
508 —
Use state Y Yes 7y
of first {—=2 Veritv o 507
ackel erily signatures
P , based on /
L No provisional state
503 No 506 I
N Check sequence #

Yes | Use state
of first
packet

504
. Recompute 505
Repeat provisional state /
sequence # ? based on new
message
511
513
Next Verify signatures /
consecutive based on
sequence # ? provisional state
514
512 N
0
\ Invalid, Valid ?
Discard
Yes
515
Provisional state /
becomes current state
516
Create new |~
provisional state

517

Yes |Use state
of first
packet

Figure 5 No !
518

Replybasedon | _~
provisional state

SUHRSTITIITF SHFFT (RHI F 26)

WO 94/10778 6/9 PCT/US93/10585

601
Client prompts for y

’
name and password

602

Client requests /
challenge from server

603

Client looks up object /
ID for user name

604
Client executes digest /

algorithm of password and
object ID to generate Digestl

Build buffer that contains 605
Digest1 followed a challenge /
followed by string
"authorized NetWare
client" pad with zeros

Compute message digest /
of buffer = Dbuffer

607

1st 8 bytes of /

Dbuffer = session key

Figure 6

QURSTIT!TE QUEFET /RI NN E 2R)

7/9

WO 94/10778 : PCT/US93/10585
701
Client generates session key /
702
Send authentication /
request to server
client
server
703
Server has stored copy |~
of password and object 1D
and it knows challenge
/ 704
Server calculates Digest|
706

/

Send negative ACK to client,
do not inijtialize change state

Signature =

Signature' ?

707
/

O.K. to client

708
Initialize client state store /
session key

709
Initializes server state, /

store session key FlgUI’e 7

QURSTITHTF QHEFT (RIN F 2R\

WO 94/10778 PCT/US93/10585

- 8/89

816 817

.| Video crr |

Amp
813 : 814

Video Main

Cru ‘Memory Memory
N 1
I: - 818
Keyboard Mouse Mass Storage
810 ~/ 81 -~ ’ 812 ~/

WO 94/10778

979

PCT/US93/10585

State Storage |~ 909
903 /910
/ ' 923
¢—Ch Il/
Session Digester / enge
Key Buffers i — Password
~N
\ 924
907
Message
Generator 908
/
912
913
TX / RX .
Figure 9
/928 914\1 915
Compare /
Authenticate
919
P
927
e Session

Z

Key

929

Digester /

Buffers

/7
l¢— Challenge
l§— Password

N

926
/

930

State Storage

925
L~

SUBSTITIITF SHFFT /RIN F 2R)

International application No.

INTERNATIONAL SEARCH REPORT
' PCT/US93/10585

A. CLASSIFICATION OF SUBJECT MATTER

IPC(5) :HO4L 9/28

US CL :380/28
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.s. : 380/23,25, 28, 30

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

A US, A, 4,656,474 (MOLLIER ET AL) 07 APRIL 1987, SEE| 1-20
ENTIRE DOCUMENT

Y US, A, 4,799,258 (DAVIES) 17 JANUARY 1989, SEE COL.| 1-20
1, LINES 50-65.

A US, A, 4,868,877 (FISCHER) 19 SEPTEMBER 1989, SEE| 1-20
FIG. 5

Y US, A, 5,050,212 (DYSON) 17 SEPTEMBER 1991, SEE COL. | 1-20
3, LINES 15-30.

Y US, A, 5,140,634 (GUILLOU ET AL) 18 AUGUST 1992, SEE| 1-20
FIGS. 5 AND 6.

AP US, A, 5,210,795 (LIPNER ET AL.) 11 MAY 1993, SEE FIG.| 1-20
2.

D Further documents are listed in the continuation of Box C. D See patent family annex.

* Special categories of cited d ents: T later document published after the international filing date or priority
“r s L . date and not in conflict with the application but cited to understand the
A documentdefining the general state of the art which is not considered principle or theory underlying the invention
to be part of particular relevance
ope X" d t of particul ; the cl d invention cannot be
E earlicr document published on or after the ml:muonnl filing date considered novel or cannot be considered to involve an inveative step
document whlch) may throw donbu on priority clmm(s) or which is when the document is taken alonc
cited to establish the date of anoth or other . . L.
special reason (as ,Pec,ﬁed) Y document of p 3 the d invention cannot be
considered 0 mvolvc an mvmuve step when the document is
0 document referring 10 an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination
means being obvious to a person skilled in the art
P d ent published prior to the | filing date but later than ~ ~g~ document member of the same patent family

the pnonty date claimed

Date of the actual completion of the international search

13 JANUARY 1994

Date of mailing of the international search report

MAR 07 1994

/

Name and mailing address of the ISA/US Authorized officer é/
ggmmissioner of Patents and Trademarks
x PCT
Washingion, D.C. 20231 SALVATORE CANGIALOSI
Facsimile No. (703) 305-3230 Telephone No. (703) 308-0482

Form PCT/ISA/210 (second sheet)(July 1992)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

