

[54] GAUGE CONTROL METHOD AND APPARATUS INCLUDING WORKPIECE GAUGE DEVIATION CORRECTION FOR METAL ROLLING MILLS

[75] Inventors: Andrew W. Smith, Jr.; Richard Q. Fox, both of Pittsburgh, Pa.

[73] Assignee: Westinghouse Electric Corporation, Pittsburgh, Pa.

[22] Filed: Jan. 6, 1972

[21] Appl. No.: 215,749

[52] U.S. Cl. 72/11, 72/16

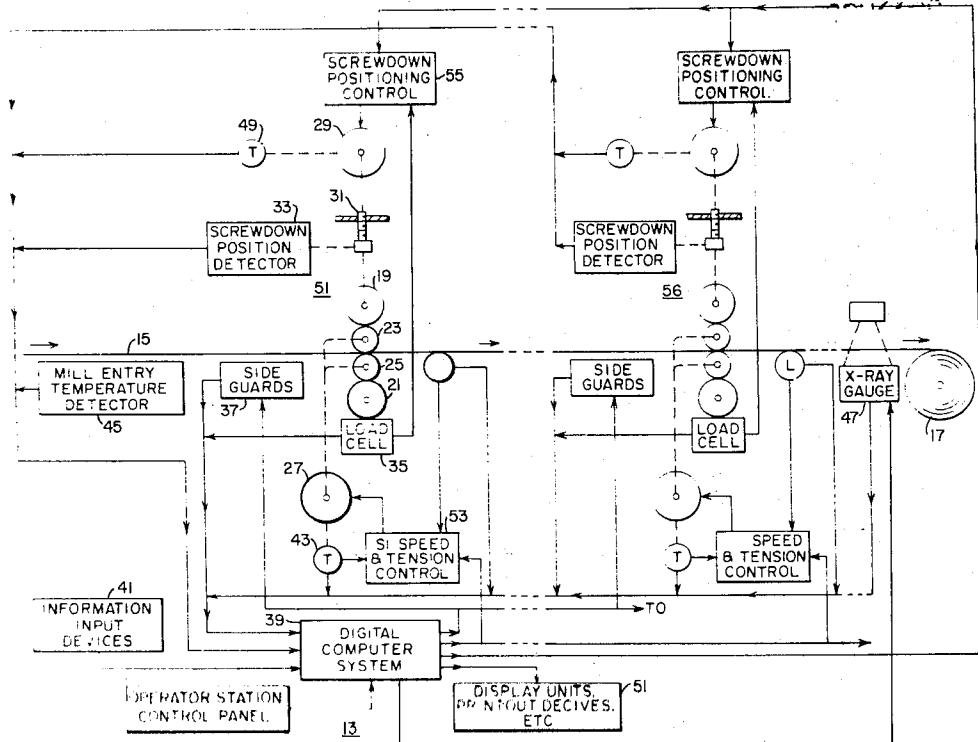
[51] Int. Cl. B21b 37/00

[58] Field of Search 72/6-12, 16, 72/19, 21

[56] References Cited

UNITED STATES PATENTS

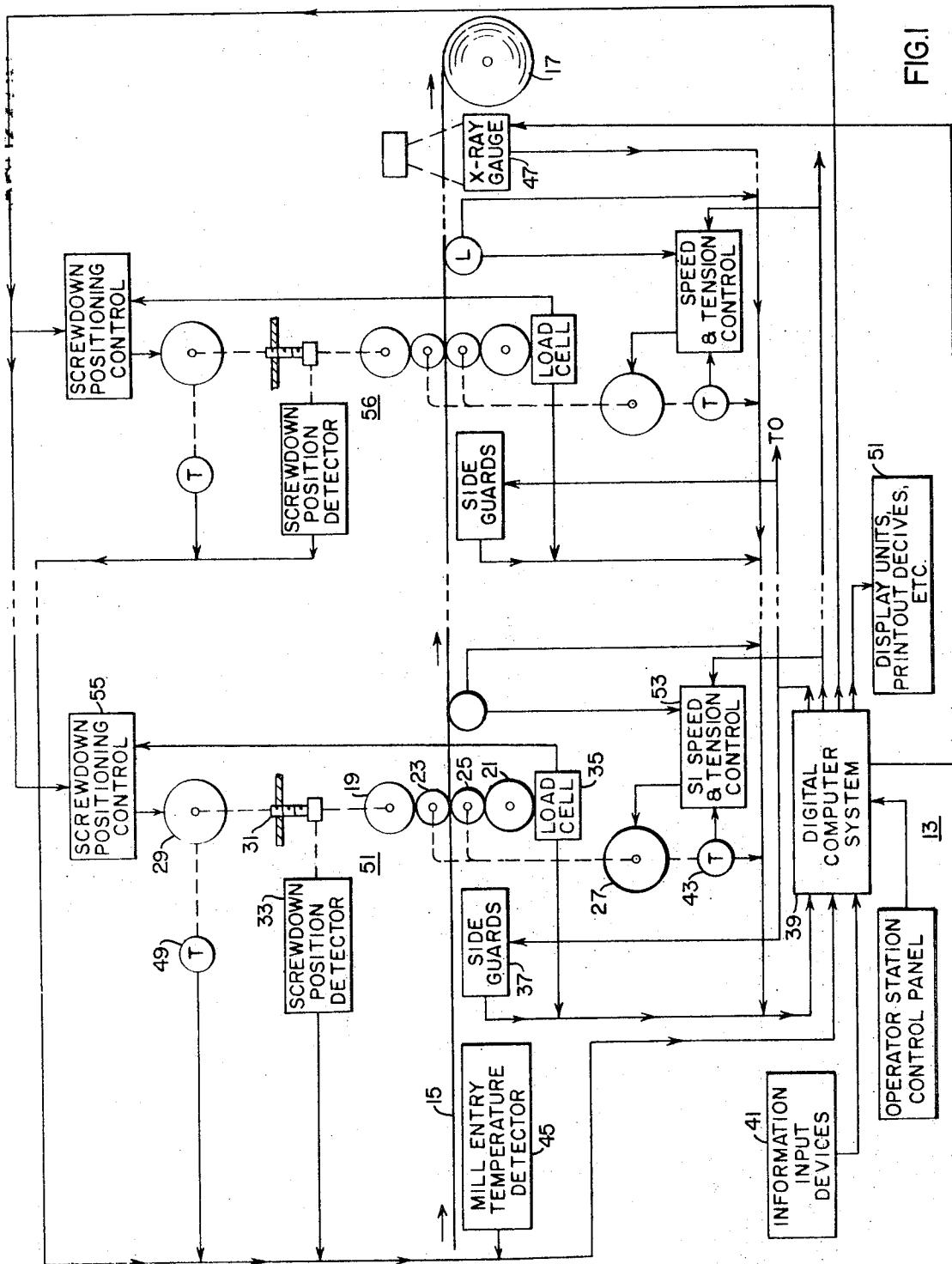
3,332,263	7/1967	Beadle et al.	72/7
3,186,200	6/1965	Maxwell	72/8
3,232,084	2/1966	Sims	72/16
3,186,201	6/1965	Ludbrook et al.	72/9
3,631,697	1/1972	Deramo et al.	72/8


3,568,637 5/1971 Smith, Jr. 72/8
3,574,280 4/1971 Smith, Jr. 72/8
3,552,162 1/1971 Gingher, Jr. et al. 72/16 X

Primary Examiner—Milton S. Mehr
Attorney, Agent, or Firm—R. G. Brodahl

[57] ABSTRACT

A programmed computer control system provides on line roll force gauge control for a tandem hot steel strip rolling mill. An automatic gauge control system including a programmed digital computer calculates screwdown movement required for correction of determined gauge error on the basis of measured roll force and screwdown position values and on the basis of calculated gauge deviation corrections for the provided roll opening settings for the roll stands. To compensate for gauge error conditions, a gauge error correcting screwdown movement value is determined to establish the total amount of corrective screwdown movement required at any particular point in time. The control system operates the mill screwdowns in accordance with the program calculations.


13 Claims, 14 Drawing Figures

PATENTED APR 9 1974

3,802,236

SHEET 1 OF 11

PATENTED APR 9 1974

3,802,236

SHEET 02 OF 11

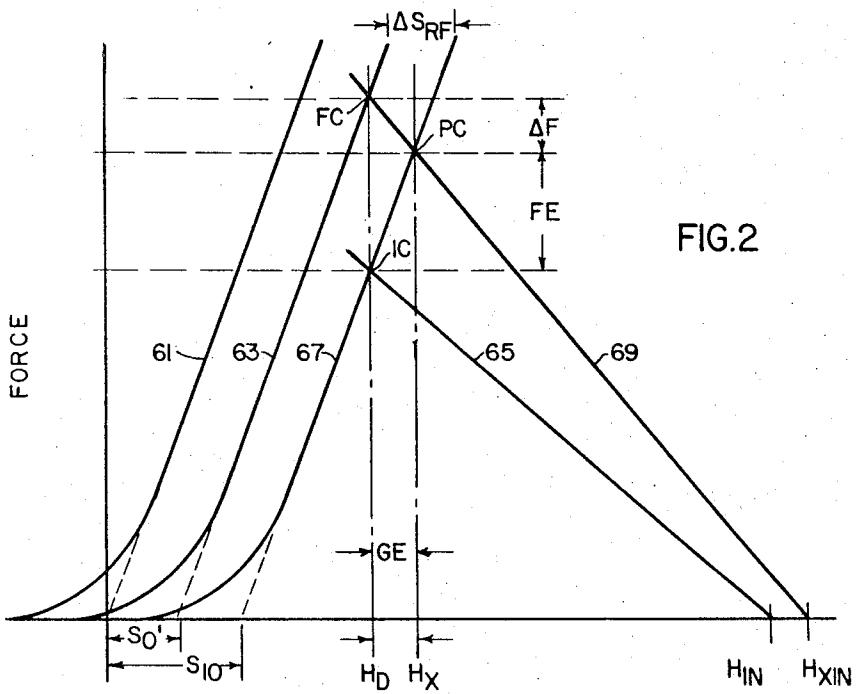


FIG.2

SCREWDOWN POSITION OR LOADING ROLL OPENING

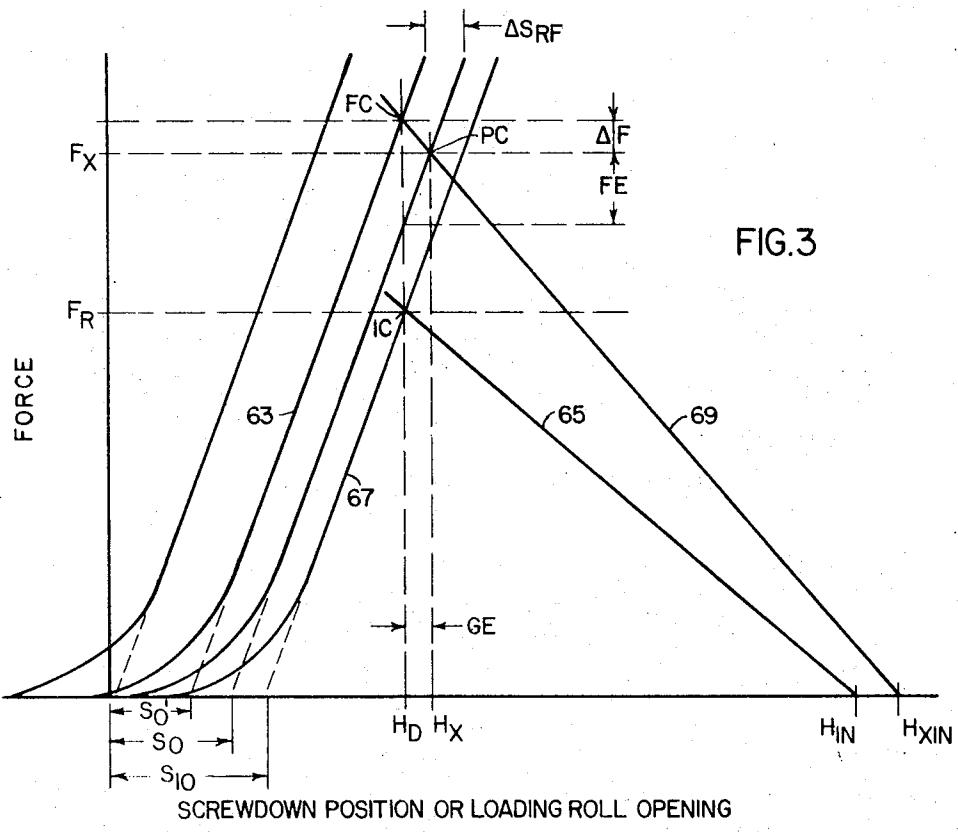


FIG.3

SCREWDOWN POSITION OR LOADING ROLL OPENING

PATENTED APR 9 1974

3,802,236

SHEET 03 OF 11

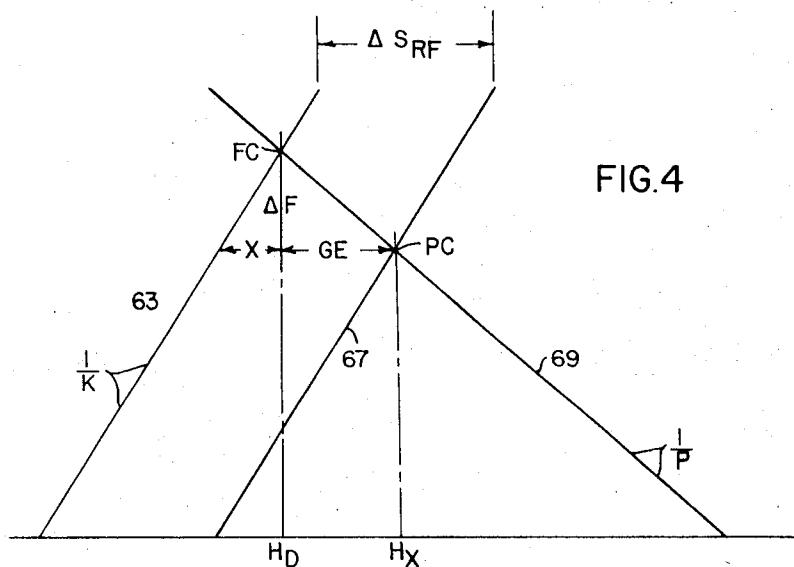


FIG.4

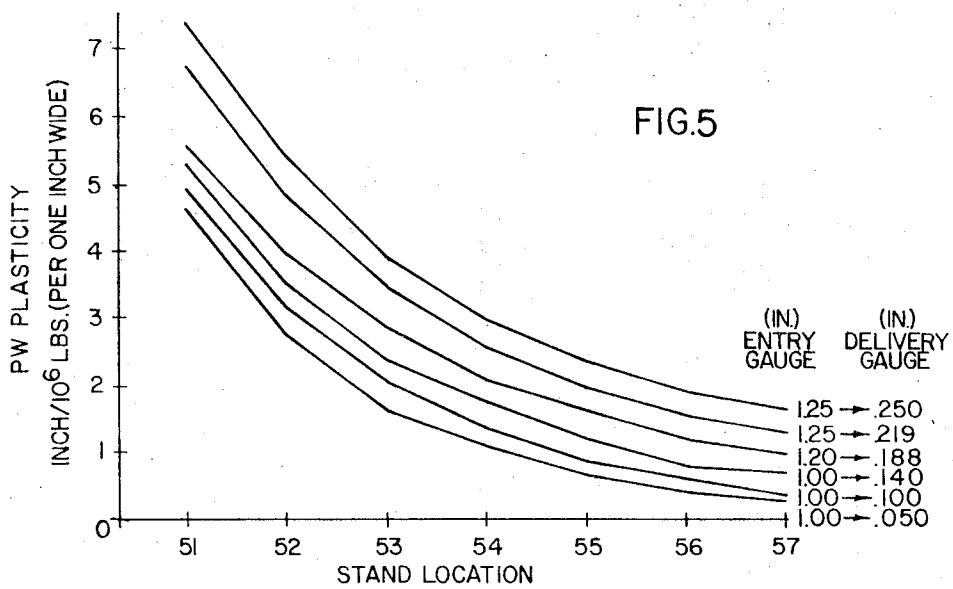


FIG.5

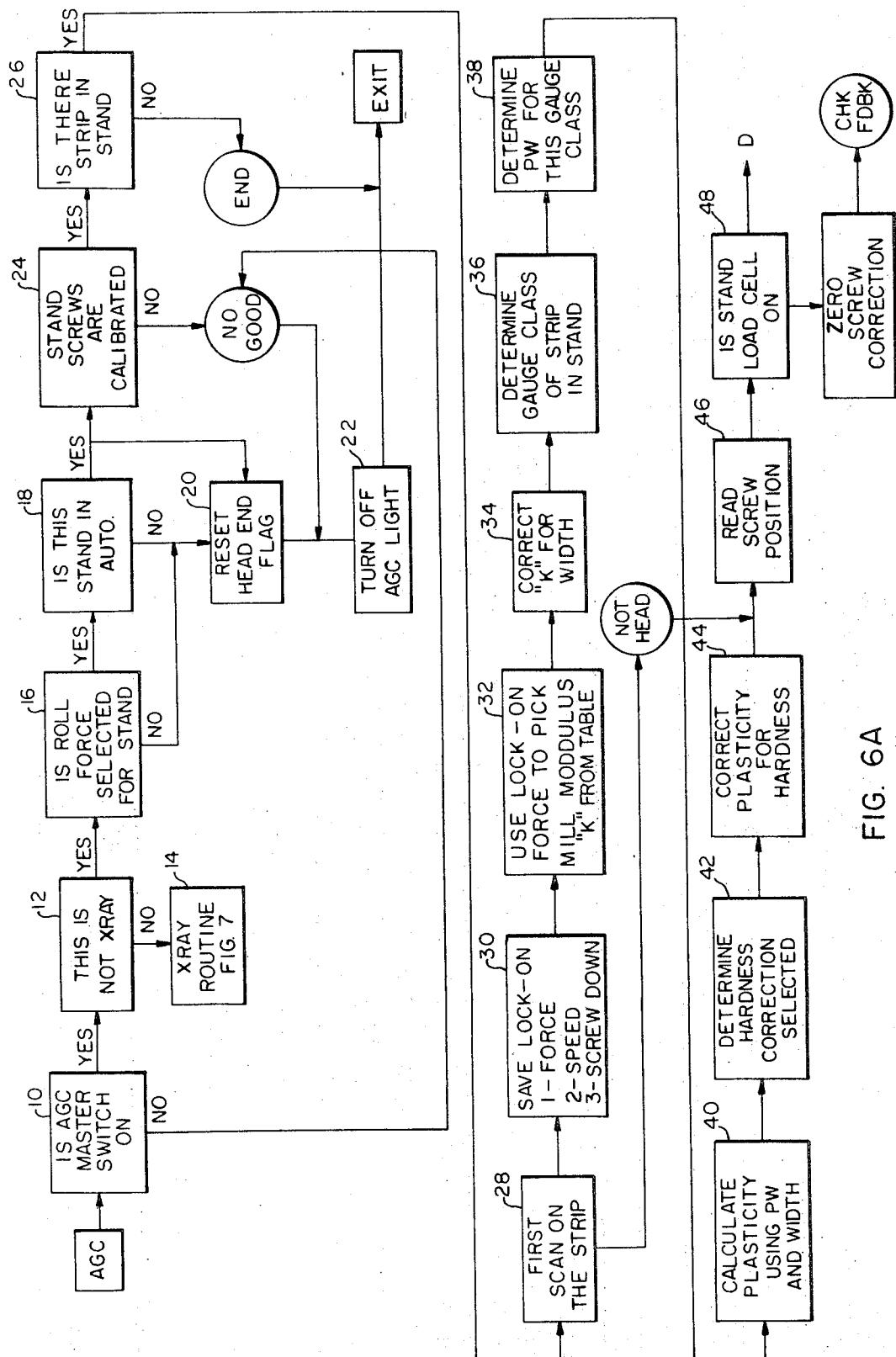


FIG. 6A

PATENTED APR 9 1974

3,802,236

SHEET 05 OF 11

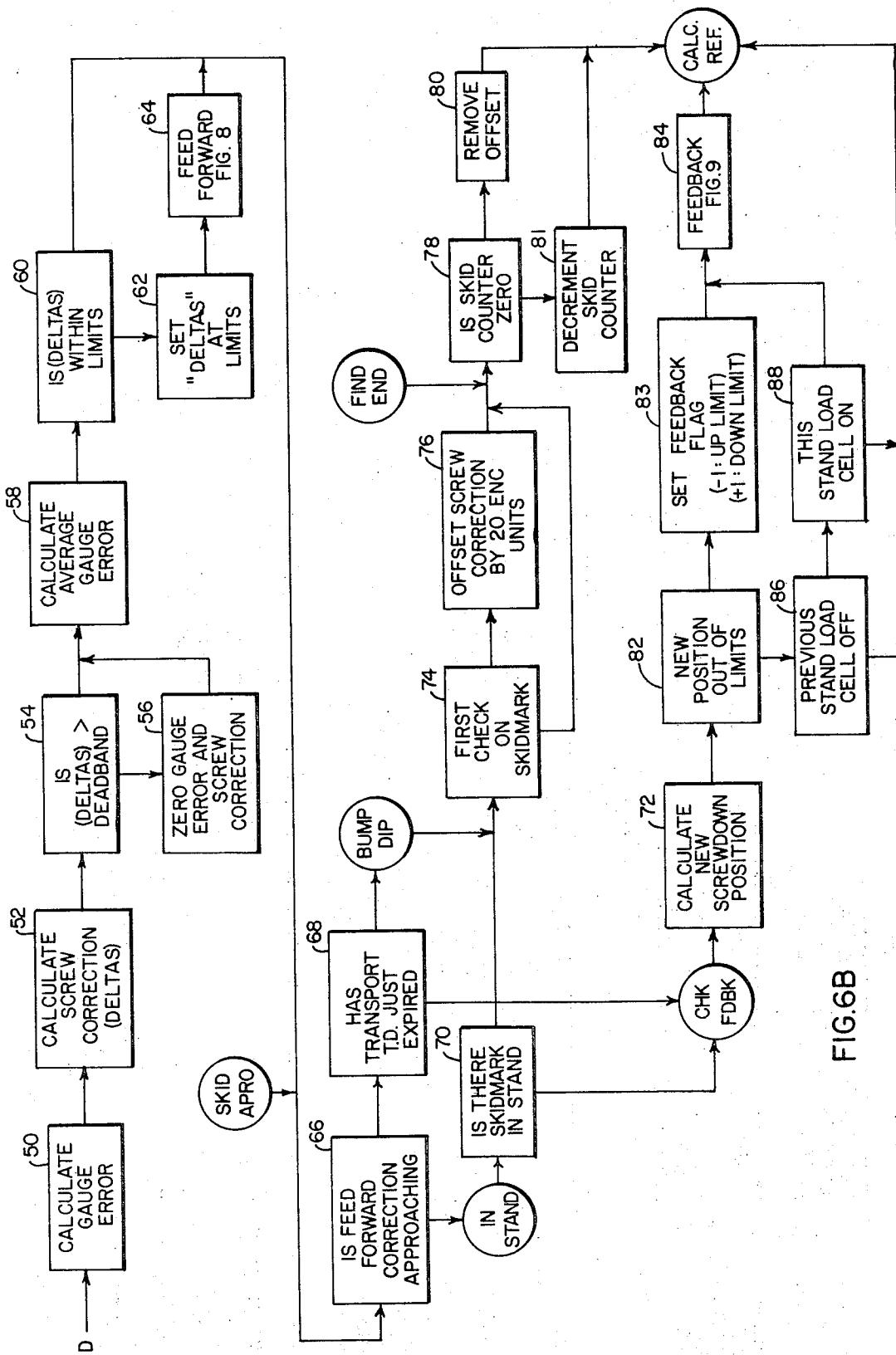


FIG.6B

PATENTED APR 9 1974

3,802,236

SHEET 06 OF 11

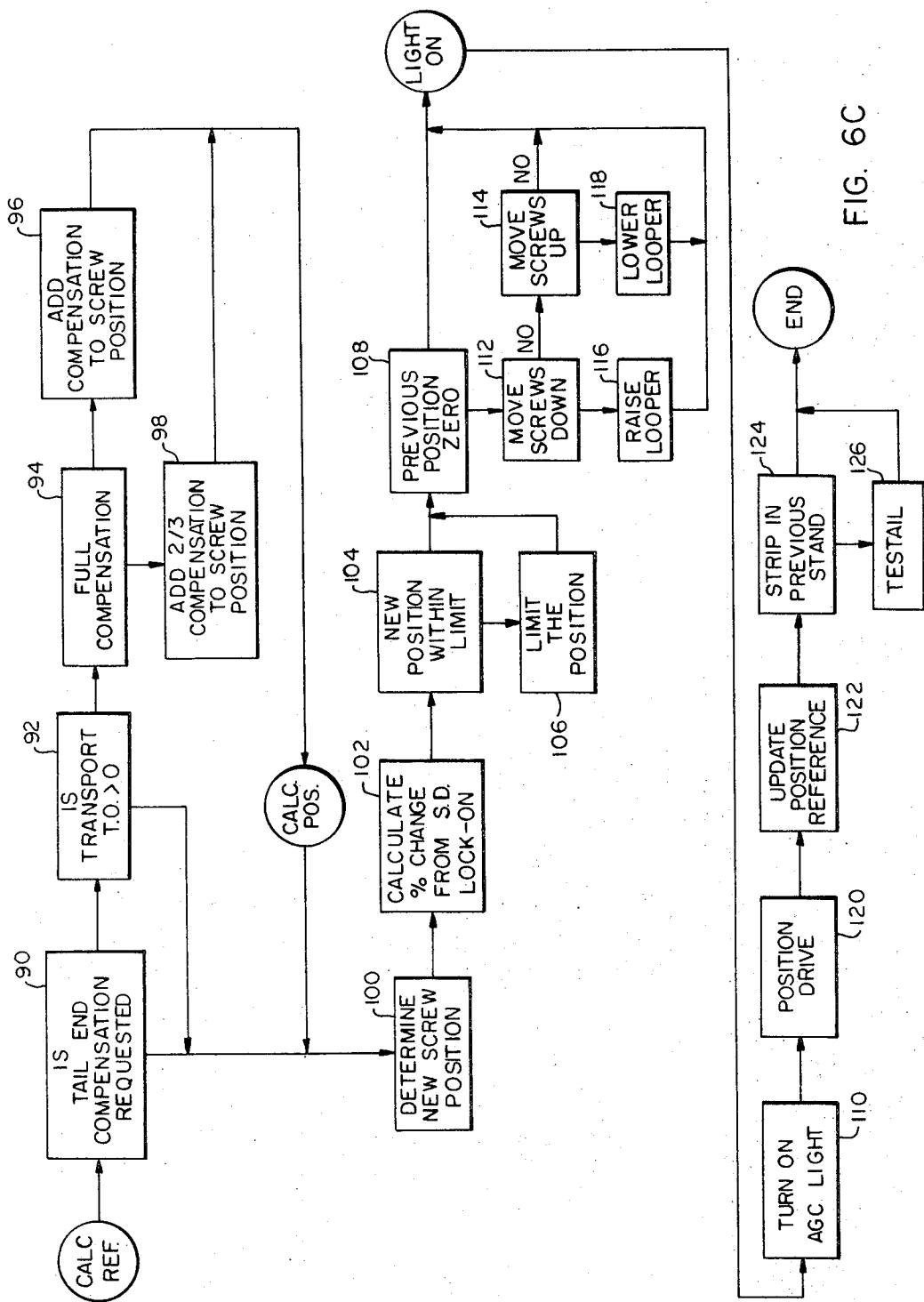


FIG. 6C

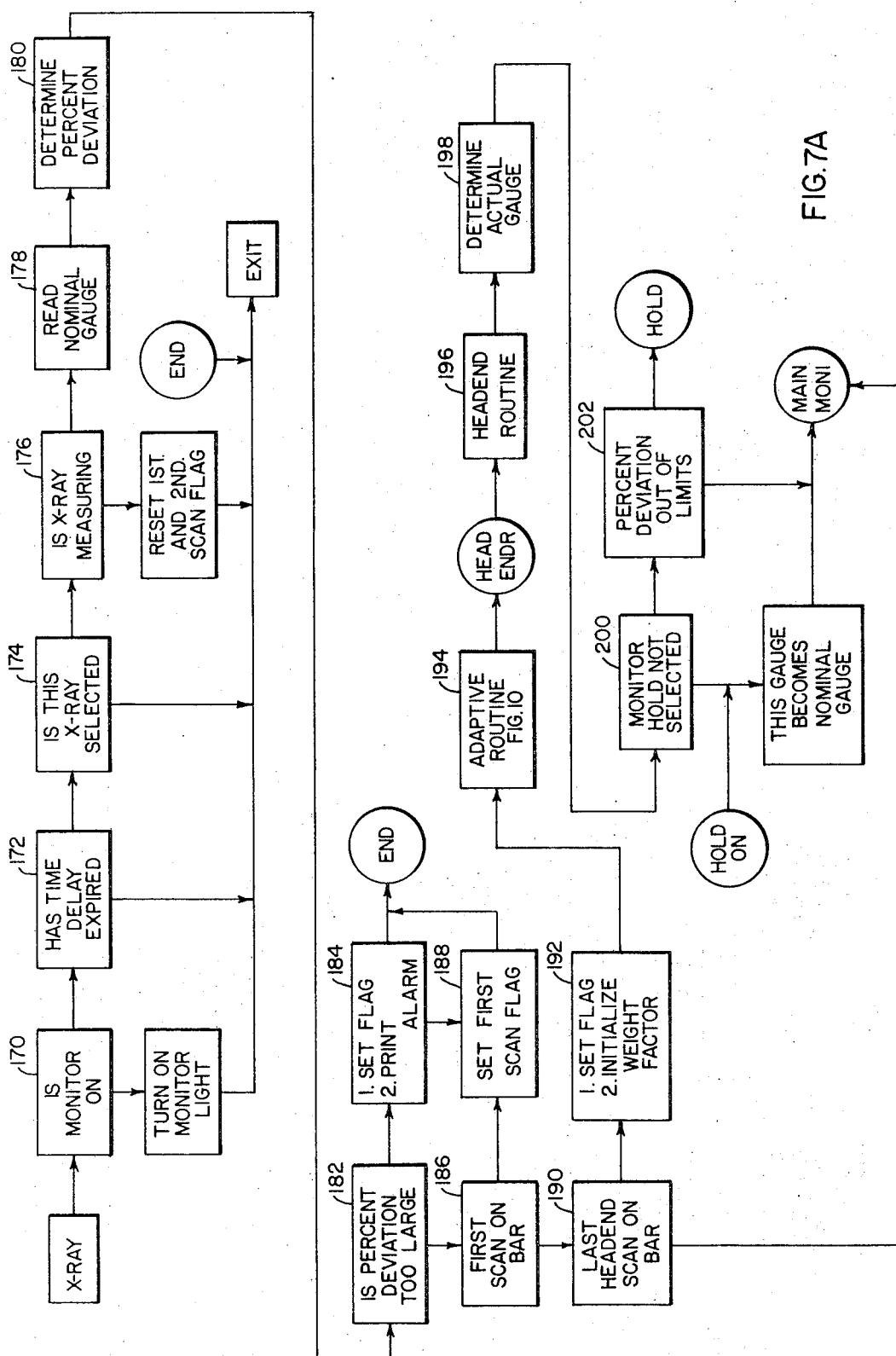


FIG. 7A

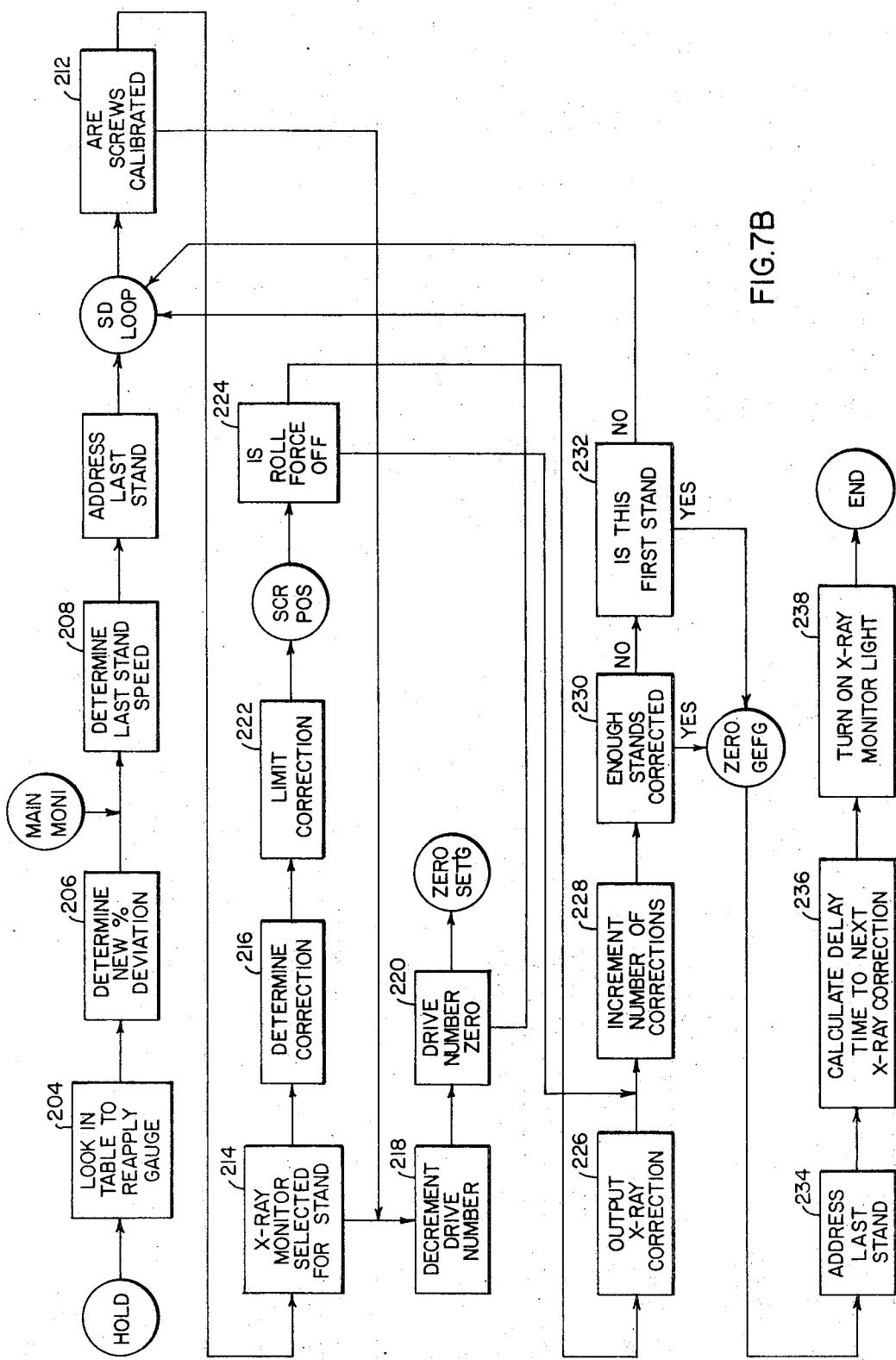



FIG.7B

SHEET 09 OF 11

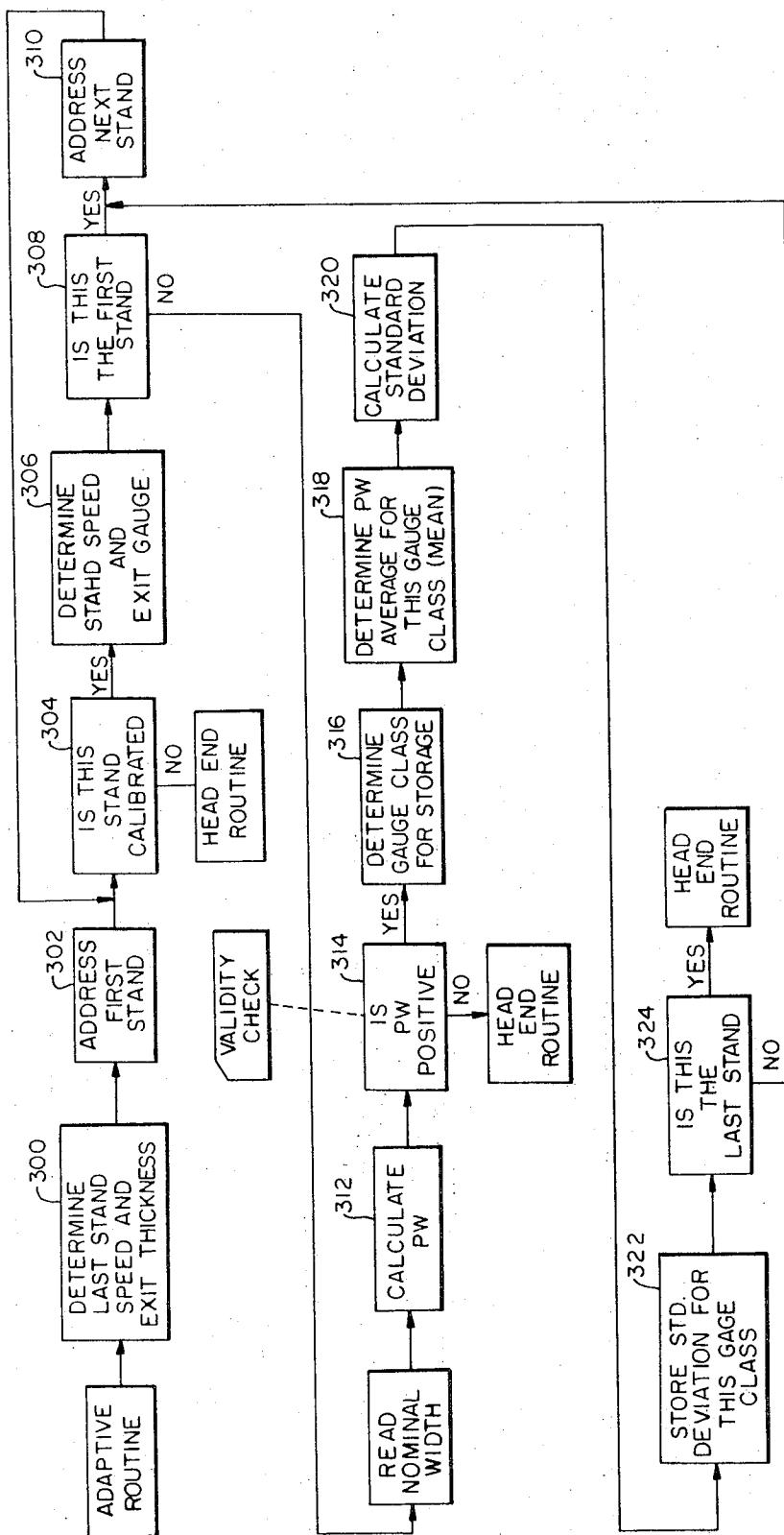


FIG. 10

SHEET 11 OF 11

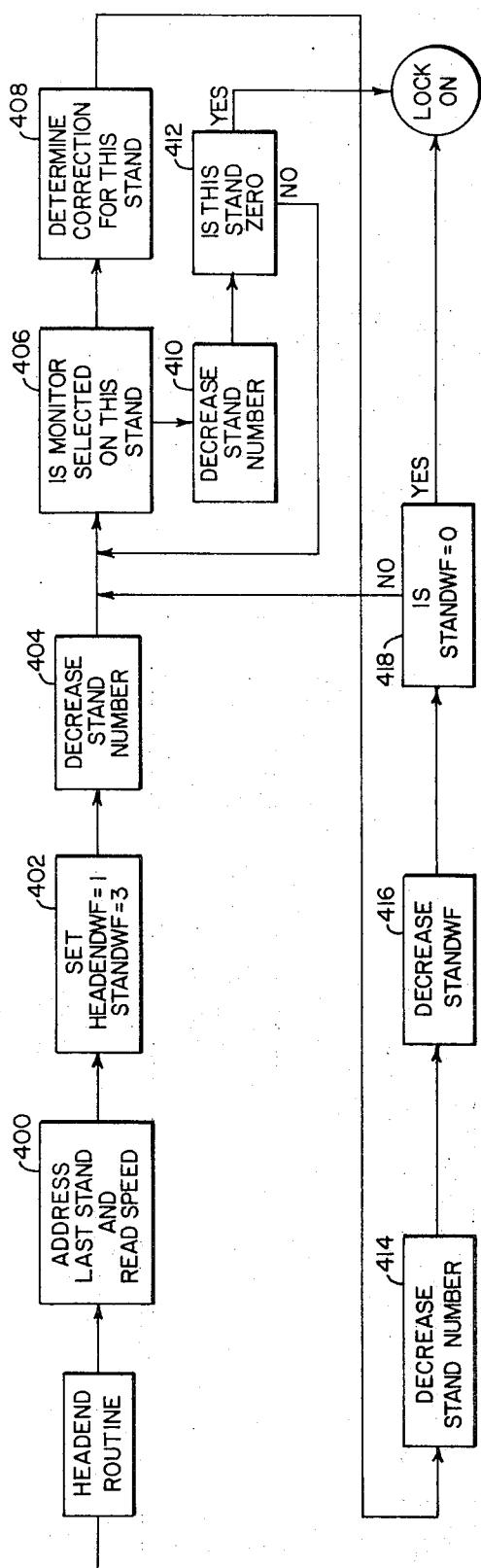


FIG.11

GAUGE CONTROL METHOD AND APPARATUS INCLUDING WORKPIECE GAUGE DEVIATION CORRECTION FOR METAL ROLLING MILLS

CROSS REFERENCE TO RELATED APPLICATIONS

Reference is made to the following concurrently filed and related patent applications which are assigned to the present assignee:

S.N. 215,747, filed Jan. 6, 1972, entitled Gauge Control Method And Apparatus Including Workpiece Plasticity Determination For Metal Rolling Mills and filed by A. W. Smith and R. Q. Fox.

S.N. 215,743, filed Jan. 6, 1972, entitled Gauge Control Method And Apparatus For Metal Rolling Mills and filed by A. W. Smith and R. Q. Fox.

BACKGROUND OF THE INVENTION

The present invention relates to workpiece strip metal tandem rolling mills and more particularly to roll force gauge control systems and methods used in operating such rolling mills.

In the operation of a metal or steel reversing or tandem rolling mill, the unloaded roll opening and the speed at each tandem mill stand or for each reversing mill pass are set up by the operator to produce successive workpiece (strip or plate) reductions resulting in work product at the desired gauge. Generally, the loaded roll opening at a stand equals the stand delivery gauge on the basis of the usually justifiable assumption that there is little or no elastic workpiece recovery.

Since the operator provided initial setup conditions or the initial roll opening settings provided by an associated computer control system operative with model equation information to calculate the setup screwdown schedules for the rolling mill, can be in error and since in any event certain mill parameters affect the stand loaded roll opening during rolling and after setup conditions have been established, a stand automatic gauge control system must be employed if it is necessary that the stand delivery gauge be closely controlled. Thus, at the present state of the rolling mill art and particularly the steel rolling mill art, a stand gauge control system is normally used for a reversing mill stand and for predetermined stands in tandem rolling mills.

More particularly, the well known gaugemeter or roll force system has been widely used to produce stand gauge control in metal rolling mills and particularly in tandem hot steel strip rolling mills and reversing plate mills where experience has demonstrated that roll force control is particularly effective. Earlier publications and patents such as an article entitled Installation and Operating Experience with Computer and Programmed Mill Controls by M. D. McMahon and M. A. Davis in the 1963 Iron and Steel Engineer Year Book at pages 726 to 733, an article entitled Automatic Gage Control for Modern Hot Strip Mills by J. W. Wallace in the December 1967 Iron and Steel Engineer at pages 75 to 86, U.S. Pat. No. 3,561,237 issued Feb. 9, 1971 to Eggers et al, and U.S. Pat. No. 2,726,541, issued Dec. 13, 1955 to R. B. Sims describe the theory upon which operation of the roll force and related gauge control systems is based. Attention is also called to U.S. Pat. No. 3,568,637 issued Mar. 9, 1971, U.S. Pat. Nos. 3,574,279 and 3,574,280 issued Apr. 13, 1971, and U.S. Pat. No. 3,600,920 issued Aug. 24, 1971 to A. W. SMith, which relate to roll force automatic gauge con-

trol systems. In referencing prior art publications or patents as background herein, no representation is made that the cited subject matter is the best prior art.

Briefly, the roll force gauge control system uses 5 Hook's law in controlling the screwdown position at a rolling stand, i.e., the loaded roll opening under workpiece rolling conditions equals the unloaded roll opening or screwdown position plus the mill spring stretch caused by the separating force applied to the rolls by 10 the workpiece. To embody this rolling principle in the roll force gauge control system, a load cell or other force detector measures the roll separating force at each controlled roll stand and the screwdown position is controlled to balance roll force changes from a reference value and thereby hold the loaded roll opening at a substantially constant value. The following well known formula expresses the basic roll force gauge control relationship:

$$h = So + FK \quad (1)$$

where:

h = loaded roll opening (workpiece delivery gauge or thickness)

25 So = unloaded roll opening (screwdown position)

K = mill spring constant

F = roll separating force.

Typically, the roll force gauge control system is an analog arrangement including analog comparison and amplification circuitry which responds to roll force and screwdown position signals to control the screwdown position and hold the following equality:

$$\Delta S = -\Delta F \cdot K \quad (2)$$

35 where:

ΔF = measured change in roll force from an initial force

40 ΔS = controlled change in screwdown position from an initial screwdown position.

After the unloaded roll opening setup and the stand speed setup are determined by the mill operator for a particular workpiece pass or series of passes, the rolling operation is begun and the screwdowns are controlled 45 to regulate the workpiece delivery gauge from the reversing mill stand or from each roll force controlled tandem mill stand. By satisfying Equation (2), and the assumptions implicit in Equation (1), the loaded roll opening h in Equation (1) is maintained constant or 50 nearly constant.

55 As the head end of the workpiece strip enters each roll stand of the mill, the lock-on screwdown position and the lock-on roll separating force are measured to establish what strip gauge should be maintained out of that roll stand. As the strip rolling operation proceeds, the roll stand separating force and the roll stand screwdown position values are monitored and any undesired change in roll separating force is detected and compensated for by a corresponding correction change in screwdown position. The lock-on gauge LOG is equal to the lock-on screwdown LOSD plus the lock-on force LOF multiplied by the mill stand spring modulus K. The workpiece strip delivery gauge G leaving the roll stand at any time during the rolling operation is in accordance with above equation (1) and is equal to the unloaded screwdown position SD plus the roll separating force F multiplied by the mill spring modulus K.

The gauge error is derived by subtracting the lock-on gauge from the delivery gauge. The following Equations 3, 4 and 5 set forth these relationships.

$$\text{LOG} = \text{LOSD} + K * \text{LOF}$$

5

$$G = SD + K * F$$

4

$$G - \text{LOG} = \text{GAUGE ERROR} = [\text{SD} - \text{LOSD}] + [(F - \text{LOF}) * K]$$

5

One mill condition which can cause steady state gauge error is an incorrect operator setup. Thus, the screwdown position and the stand speed setup at a particular stand results in a head end stand delivery gauge which may or may not equal the head end gauge desired from the setup values. If the roll force control uses a head end lock on roll force reference, the stand is roll force controlled to continue rolling the actual head end gauge unless the screwdowns are externally offset to produce the correct steady state gauge.

The initial screwdown position calibration is a direct electromechanical measurement technique made at the beginning of work roll life and if desired new "initial" calibrations are made at various subsequent time points in the work roll life. In any case, the predetermined initial screwdown calibration is subject to change during mill operation and any such change requires screwdown offset for correction of the roll force control operation. Typically, calibration drift is caused by changes in roll stand heating, stand speed (bearing oil film thickness), roll wear, differential leveling operation of the screwdowns for shape control and possibly by changes in other mill conditions.

When the initial screwdown calibration does drift, changes occur in the screwdown position at which roll facing occurs thereby making the unloaded roll opening correspondence with screwdown position differ from the initial correspondence by the amount of the calibration drift. As a result, the actual loaded roll opening, i.e. the actual gauge, differs from the expected value calculated with the use of an unloaded roll opening which is based on the erroneous calibration. The difference represents a gauge error condition which is correctable by a screwdown offset or, more specifically, a screwdown recalibration. If the mill spring constant changes, the actual loaded roll opening differs from the expected value calculated with the use of a mill stretch which is based on the erroneous mill spring constant, and the resultant gauge error condition is normally similarly correctable by a screwdown offset.

To provide steady state gauge error correction, the well known monitor gauge control system is usually employed to produce screwdown offset for the roll force controls. In the monitor system, an X-ray or other radiation gauge is placed at one or more predetermined process points and usually at least at a process point following the delivery end of the mill in order to sense actual delivery gauge after a workpiece transport delay from the point in time at which the actual delivery gauge is produced at the preceding stand or stands. The monitor system compares the actual delivery gauge with the desired delivery gauge and develops an analog feedback control signal to adjust the operation of the reversing mill roll force gauge control system or one or more predetermined tandem mill stand roll force gauge

control systems to supply desired steady state mill delivery gauge. In this manner, the conventional monitor system provides for transport delayed correction of steady state gauge errors which are caused or which are tending to be caused by a single mill variable or by a combination of mill variables.

In operator controlled mills, some steady state gauge correcting load can eventually be taken off the monitor system by screwdown recalibration, and the like, between workpiece passes if steady state gauge error tends to exist along the entire workpiece and persists from workpiece to workpiece. In this manner, some reduction is achieved in the length of off gauge workpiece material otherwise associated with monitor transport delay. Similarly, corrective monitor system operation caused by head end gauge errors can be reduced by changes in the operator or associated computer control system provided setup from workpiece to workpiece.

20 A background teaching of stored program digital computer system operation can be found in a book entitled Electronic Digital Systems by R. K. Richards and published in 1966 by John Wiley and Sons.

25 A more detailed description of computer programming techniques in relation to the control of metal rolling mills can be found in an article in the Iron and Steel Engineer Yearbook for 1966 at pages 328 through 334 entitled "Computer Program Organization for an Automatically Controlled Rolling Mill" by John S. Delianides and A. H. Green, and in another article in the Westinghouse Engineer for January 1965 at pages 13 through 19 and entitled "Programming for Process Control" by P. E. Lego.

SUMMARY OF THE INVENTION

In accordance with the broad principles of the present invention, a system and method for controlling gauge in a metal rolling mill employs means for detecting at least one error condition representing gauge error and means for controlling screwdown position at each of one or more predetermined rolling stands of the mill. Means are also provided for determining the total amount of screwdown movement (position change) required to correct the error condition at predetermined mill spring constant and workpiece plasticity values. In roll force gauge control, the roll force is detected and the determined error conditions is a gauge error.

50 There is calculated a correction in relation to a gauge error or X-ray gauge deviation measured after the last roll stand which correction is for selected roll stands previous to the last roll stand. This calculated correction is determined from the rolling of an initial workpiece strip for adjusting the roll opening settings of the selected roll stands before the subsequent rolling of another workpiece strip similar to that initial workpiece strip. A selected number of previous roll stands are corrected while the last stand is roll force gauge controlled. This correction is determined by a mass flow 55 relationship with the speed of the last stand and the speed of the corrected stand, the measured gauge deviation and a predetermined weighting factor.

60 A digital computer system is preferably employed to make the error correction screwdown movement determinations as well as to perform other mill control functions. The computer employs a programming system including an automatic roll force gauge control pro-

gram or AGC program which is executed at predetermined intervals to calculate the desired screwdown movement required at each roll force gauge controlled stand for gauge error correction including that stemming from roll force error detection at that stand. Screwdown movement for correcting roll force error is made on the basis of calculations which use selected workpiece plasticity and mill spring constant values stored in data tables in the computer system memory or otherwise determined by the computer system.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a schematic diagram of a tandem hot steel strip rolling mill and a digital computer system automatic gauge control therefor arranged for operation in accordance with the principles of the invention;

FIG. 2 illustrates a mill spring curve and a workpiece reduction curve for a given rolling mill stand and the manner in which roll force screwdown correction is determined in relation to a change in the stand load force;

FIG. 3 illustrates a mill spring curve and a workpiece reduction curve for a given rolling mill stand and the manner in which roll force screwdown correction is determined in relation to a change in both the stand load force and the stand screwdown position setting;

FIG. 4 shows an illustrative mill stand deflection curve and product deformation curve to show the required screw movement to correct a determined gauge error;

FIG. 5 shows a graphic representation of typical PW plasticity values, such as could be included in the use table as loaded into the computer control system memory or such as could be included in the adaptive table.

FIGS. 6A, 6B and 6C show an illustrative logic flow chart of an AGC program operative with a tandem hot strip rolling mill;

FIGS. 7A and 7B show an illustrative logic flow chart of an X-ray routine program operative with the AGC program shown in FIGS. 6A, 6B and 6C;

FIG. 8 shows an illustrative logic flow chart of a feed forward routine program operative with the above AGC program shown in FIGS. 6A, 6B and 6C;

FIG. 9 shows an illustrative logic flow chart of a feedback routine program operative with the AGC program shown in FIGS. 6A, 6B and 6C;

FIG. 10 shows an illustrative logic flow chart of the adaptive routine program operative with the X-ray routine program shown in FIGS. 7A and 7B; and

FIG. 11 shows an illustrative logic flow chart of the head end routine program operative with the X-ray routine program shown in FIGS. 7A and 7B.

GENERAL DESCRIPTION OF THE AUTOMATIC GAUGE CONTROL SYSTEM AND ITS OPERATION

There is shown in FIG. 1 a tandem hot strip steel finishing mill 11 operated with improved gauge control performance by a process control system 13 in accordance with the principles of the invention. Generally, however, the invention is applicable to various types of mills in which roll force gauge control is employed. Thus, the invention can be suitably adapted for application in hot steel plate reversing and other rolling mills.

The tandem mill 11 includes a series of reduction rolling stands with only two of the stands S1 and S6 shown. A workpiece 15 enters the mill 11 at the entry end in the form of a bar and it is elongated as it is transported through the successive stands to the delivery end of the mill where it is coiled as a strip on a down-coiler 17. The entry bar would be of known steel grade and it typically would have a thickness of about 1 inch and a width within some limited range such as 20 inches to 80 inches. The delivered strip would usually have approximately the same width and a thickness based upon the production order for which it is intended.

In the reduction rolling process, the successive stands operate at successively higher speeds to maintain proper workpiece mass flow. Each stand produces a predetermined reduction or draft such that the total mill draft reduces the entry bar to strip with the desired gauge or thickness.

Each stand is conventionally provided with a pair of backup rolls 19 and 21 and a pair of work rolls 23 and 25 between which the workpiece 15 is passed. A large DC drive motor 27 is controllably energized at each stand to drive the corresponding work rolls at a controlled speed.

As previously described, the sum of the unloaded work roll opening and the mill stretch substantially defines the workpiece gauge delivered from any particular stand in accordance with Hooke's law. To vary the unloaded work roll opening at each stand, a pair of screwdown motors 29 (only one shown at each stand) position respective screwdowns 31 (only one shown at each stand) which clamp against opposite ends of the backup rolls and thereby apply pressure to the work rolls. Normally, the two screwdowns 31 at a particular stand would be in identical positions, but they can be located in different positions for strip guidance during threading, for flatness or other strip shape control purposes or possibly for other purposes.

A conventional screwdown position detector or encoder provides an electrical representation of screwdown position at each strand. To provide an absolute correspondence between the screwdown position and the unloaded roll opening between the associated work rolls, a screwdown position detection system which includes the screwdown position detector 33 can be calibrated from time to time in the manner previously described.

Roll force detection is provided at each of predetermined stands by a conventional load cell 35 which generates an electrical analog signal. At the very least, each roll force controlled stand is provided with a load cell 35 and in many cases stands without roll force gauge control would also be equipped with load cells. The number of stands to which roll force gauge control is applied is predetermined during the mill design in accordance with cost-performance standards, and increasingly there is a tendency to apply roll force gauge control to all of the stands in a tandem hot strip steel mill. In the present case, a roll force gauge control system is assumed to be employed at each of the stands.

Conventional motorized sideguards 37 are located at predetermined points along the mill length. The sideguards 37 are operated during mill setup on the basis of the widths of the upcoming workpiece 15 thereby

defining the sides of the workpiece travel path for guidance purposes.

The process control system 13 provides automatic control for the operation of the tandem mill 11 as well as may be desired for associated production processes (not indicated) such as the operation of a roughing mill. Preferably, the process control system 13 comprises a programmed process control digital computer system 39 which is interfaced with the various mill sensors and the various mill control devices to provide control over many of the various functions involved in operating the tandem mill 11. According to user preference, the control system 13 can also include conventional manual and/or automatic analog controls for backup operation in performing preselected mill functions.

On the basis of these considerations, the digital computer system 39 includes a finishing mill on-line roll force gauge control computer system, such as a Prodac 2000 (P2000) sold by Westinghouse Electric Corporation. A descriptive book entitled Prodac 2000 Computer Systems Reference Manual has been published in 1970 by Westinghouse Electric Corporation and made available for the purpose of describing in greater detail this computer system and its operation.

The computer processor is associated with well known predetermined input systems typically including a conventional contact closure input system which scans contact or other signals representing the status of various process conditions, a conventional analog input system which scans and converts process analog signals, and operator controlled and other information input devices and systems 41 such as paper tape teletypewriter and dial input systems. It is noted that the information input devices 41 are generally indicated by a single block in FIG. 1 although different input devices can and typically would be associated with the computer system 39. Various kinds of information are entered into the computer system 39 through the input devices 41 including, for example, desired strip delivery gauge and temperature, strip entry gauge and width and temperature (by entry detectors if desired), grade of steel being rolled, plasticity tables, hardware oriented programs and control programs for the programming system, and so forth.

The contact closure input systems and the analog input systems interface the computer system 39 with the processes through the medium of measured or detected variables. The present invention is largely involved in the functioning of the automatic gauge control computer system, hereinafter referred to as the AGC computer. In one typical invention application, various mill signals are applied to the AGC computer input systems. These mill signals include the following:

1. A roll force signal from the load cell 35 at each stand proportional to stand roll separating force for use in roll force gauge control.

2. Screwdown position signals generated by the respective detectors 33 at the stands for use in roll force gauge control.

3 Screwdown motor speed signals generated by respective tachometers 49 at the stands for use in programmed regulation.

4 Stand speed signals generated by respective tachometers 43, with the speed signal used for calcula-

tion of acceleration compensation and for calculation of time delays in monitor operation.

5 A gauge deviation signal from an X-ray gauge 47 at the delivery end of the mill for programmed monitor gauge control through the roll force control.

6 An entry temperature signal from a mill entry temperature detector or pyrometer 45, the mill entry temperature for the head end of each workpiece 15 is stored.

10 7 Width signals supplied by sideguard follow potentiometers for mill spring constant calculations, etc.

It is noted at this point in the description, that the measured head end roll force is stored and used as a reference for roll force gauge control functioning at the 15 respective stands if the AGC computer is in the lock-on mode of roll force operation.

10 A contact closure output system would normally be associated with the digital computer system 39. In the 20 operation of the AGC contact closure output system, various control devices are operated in response to control actions calculated or determined by execution of control programs in the AGC computer.

25 To effect determined control actions, controlled devices are operated directly by means of output system contact closures or by means of analog signals derived from output system contact closures through a digital to analog converter. The principal control action outputs from the AGC computer contact closure output system include screwdown positioning commands 30 which are applied to respective screwdown positioning controls 55 in operating the screwdown motors 29 for screw movement, and speed control signals which are applied to the respective speed and tension control system 53 to cause a change in drive speed to compensate the force on the strip for a change in thickness being made by a screwdown movement.

35 Display and printout systems 51 such as numeral display, tape punch, and teletypewriter systems are also 40 associated with the outputs of the digital computer system 39 in order to keep the mill operator generally informed about the mill operation and in order to signal the operator regarding an event or alarm condition which may require some action on his part. The printout systems are also used to log mill data according to 45 computer log program direction.

Generally, the AGC computer uses Hooke's law to 50 determine the total amount of screwdown movement required at each roll force controlled stand at the calculating point in time for roll force and gauge error correction, i.e., for loaded roll opening and stand delivery gauge correction to the desired value. The calculation defines the total change in the unloaded roll opening required to offset a new mill stretch value or other roll 55 force and gauge error causing condition. The predicted corrective screwdown position change value is employed in a screwdown position control program in the AGC computer to define the screwdown motor position-time profile to be followed in making the corrective screwdown movement.

During rolling operation, the on line gauge control system operates the stands to produce strip product having desired gauge and proper shape, i.e., flat with slight crown. On line gauge control is produced by the roll force gauge control loops at the stands and the previously noted screwdown monitor gauge control system.

In the monitor system, the X-ray gauge 47 produces the previously indicated X-ray deviation signal which indicates the difference between actual strip delivery thickness and desired or target strip delivery thickness. In other cases, it may be desirable to employ an absolute thickness measurement X-ray gauge signal to form a basis for monitor control actions or, more generally, for screwdown offset control actions.

To effect on line gauge control in the closed loops, the programmed AGC computer system operates on the screwdown position detector and load cell signals from each stand as well as the X-ray gauge deviation signal to determine the control actions required for producing desired strip delivery gauge. Screwdown motor speed is in this instance also applied to the computer system 39 in order to provide for programmed screwdown positioning control. In effecting control operations, the AGC computer employs an AGC programming system which forms a part of the total programming system for the computer system 39. The AGC programming system includes programs oriented to controlling the AGC computer system hardware and programs oriented to developing the control actions.

In FIG. 2, curves are shown to illustrate the application of Hooke's law to a rolling mill stand and to illustrate the unique basis upon which the process control system 13 and in particular the on line AGC computer gauge control system provides improved gauge control speed, accuracy and stability and other operating benefits. A mill spring curve defines the separation between a pair of mill stand work rolls as a function of separating force and as a function of screwdown position. The slope of the mill spring curve is the well known mill spring constant K which is subject to variation as previously described. When a correct screwdown calibration is known and the screwdowns are positioned such that the empty work rolls are just facing, the unloaded screwdown zero position is defined. The zero screwdown location mill spring curve is indicated by the reference character 61.

At the correct calibration condition, the indicated theoretical face intersect represents theoretical roll facing and it is for this theoretical condition that the screwdown position is assigned to a zero value. Under the correct calibration condition, roll facing actually occurs when the screwdown position is at a slightly negative value because of the nonlinearity of the lower part of the mill spring curve. A definition of the screwdown calibration as being correct for the indicated theoretical condition is, however, convenient and appropriate for mill operation.

When the screwdowns are opened (positive movement) the unloaded roll opening increases as reflected by a change to the right in the graphical location of the mill spring curve as indicated generally by curve 67 such that the theoretical spring curve intersect equals the new unloaded roll opening. With screwdown closing, the mill spring curve is shifted to the left in a similar manner.

At any particular screwdown position and with correct screwdown calibration, the stand workpiece delivery gauge equals the unloaded roll opening as defined by the screwdown position S_{10} plus the mill stretch caused by the workpiece. If the screwdown calibration is incorrect, i.e., if the number assigned to the theoretical roll facing screwdown position is something other than zero because of roll crown wear or other causes,

the stand workpiece delivery gauge equals the unloaded roll opening plus the mill stretch plus or minus the calibration drift.

The amount of mill stretch depends on the characteristic reduction curve for the workpiece. As shown in FIG. 2, a reduction curve 65, for a strip of predetermined width represents the amount of force required to reduce the workpiece from a stand entry thickness (height) of H_{IN} . The workpiece plasticity P is the slope of the curve 65, and in this case the curve 65 is shown as being linear although a small amount of nonlinearity would normally exist.

Desired workpiece gauge H_D is the initial condition IC produced in this case since the amount of force required to reduce the workpiece from H_{IN} to H_D is equal to the amount of roll separating force required to stretch the rolls to a loaded roll opening H_D , i.e., the intersection of the mill spring curve at an initial screwdown opening S_{10} indicated by mill spring curve 67 and the workpiece reduction curve 65 lies at the desired gauge value.

As shown in FIG. 2, if the stand delivery gauge increases by a gauge error amount GE to H_X during a workpiece pass to produce a present condition PC, in this instance because the workpiece plasticity decreases and because the workpiece entry thickness increases to H_{XIN} as represented by the reduction curve 69, the stand screwdowns must be closed to a value which causes a future correct gauge condition FC. At the condition FC, the intersection of the mill spring curve and the new reduction curve 69 lies at the desired gauge H_D as provided by a spring curve location indicated by the reference character 63. In other words, corrective screwdown closing causes the unloaded screw opening to be reduced by an amount ΔS_{RF} to a new value which adds with the new mill stretch to equal the desired gauge H_D .

As shown in FIG. 3, after the stand screwdowns are moved from the initial position S_{10} to another position S_o , the force error FE and the related gauge error GE must not only take into consideration the change in force from the initial value F_R but also the change in screwdown from the initial position S_{10} . The correction required in the screwdown position is ΔS_{RF} to produce the desired gauge H_D , and the new screwdown position S_o' is

$$S_o' = S_o - \Delta S_{RF} \quad (6)$$

where:

S_o is the present unloaded screwdown position
 ΔS_{RF} is the required correction in the screwdown position.

In accordance with the present invention, ΔS_{RF} is calculated to enable roll force gauge control operation in accordance with the following programmed algorithm:

$$\Delta S_{RF} = [K/P + 1] * GE \quad (7)$$

ΔS_{RF} = required screwdown correction

where:

GE = gauge error
 K = mill spring constant (in/10⁶lb)
 P = workpiece plasticity (in/10⁶lb)

Equation 7 is derived with reference to FIG. 3 as follows:

$$GE = FE \cdot K = \text{gauge error}$$

(8)

$\Delta F = GE/P = \text{expected change in roll force resulting from corrective screwdown movement.}$

(9)

$$\Delta S_{RF} = \Delta F \cdot K + \Delta F \cdot P = \Delta F * [K+P]$$

(10)

$$\Delta S_{RF} = GE/P * [K+P] = GE * [K/P + 1]$$

(11)

In order to calculate the predicted amount of screwdown movement required to correct a gauge error, the gauge error GE is calculated as follows:

$$GE = [F_x - F_r] \cdot K + (S_o - S_{10})$$

(12)

In providing for the gauge error calculations Equation 12 defines the difference between the present roll force F_x and the reference roll force F_r (either lock on or absolute as predetermined) in relation to the stand mill spring constant and subtracts from that difference the amount of change in roll force caused by screwdown movement made to correct previous roll force error. For the condition PC shown in FIG. 2, $S_o = S_{10}$ in Equation 12, but in general S_o would typically have some value other than S_{10} as shown in FIG. 3.

Corrective screwdown movement in the predicted amount produces further roll force change and FE becomes zero if the system behavior corresponds to predictions and if no new roll force error develops during the period of correction. If the system does not behave as predicted, FE does not become zero and in effect a new roll force error PE is generated to the extent that the executed screwdown movement in the predicted amount fails to correct the stand delivery gauge.

It is also noted at this point in the description that the screwdown reference S_{10} used as a base for determining the gauge error GE in Equation 12 is updated as follows:

$$S_{10} (\text{new}) = S_{10} - S_M + S_{RF}$$

(13)

where:

S_M = Screwdown offset produced by conventional X-ray monitor operation

S_{RF} = screwdown offset produced for roll force error anticipated by feedforward action.

These quantities are considered more fully in the disclosure of the above referenced U.S. Pat. No. 3,561,237. By way of explanation, the screwdown reference S_{10} can be up-dated in accordance with Equation 13 as changes occur in S_M and S_{RF} in order to prevent the stand roll force gauge control system from responding to roll force changes caused solely by screwdown movement required by external screwdown offset system control for screwdown calibration, head end gauge error correction in the lock on mode of operation, anticipatory mill speed change compensation, anticipatory roll force error compensation or other gauge error correcting purposes. If conventional X-ray monitor is not employed in the system 13, the corresponding term S_M can be omitted from Equation 13.

Generally the operative value of each stand spring constant K is relatively accurately known. It is first determined by the conventional work roll screwdown test, and it is recalculated prior to each workpiece pass on the basis of the workpiece width and the backup roll

diameter. Each resultant spring curve 61 is stored for on line gauge control use.

The form in which the spring constant K is stored can vary. In the present case, the slope of the linear part of the spring curve is stored as a single value. The nonlinear part of the spring curve is estimated by three straight lines of increasing slope with the respective slopes stored as three separate spring constant values which are corresponding force range. As future mill data returns from computer data logging demonstrate presently unknown relationships which may define on line variations of the mill spring constant as a function of certain mill variables, provision can be made for programming on line calculations of the mill spring constant in accordance with such relationships under dynamic mill operating conditions.

The operative value of the workpiece plasticity P at each stand is also relatively accurately determined. In the present case, P tables are stored in the computer system 39 to identify the various values of P which apply to the various mill stands for various grade class and gauge class workpieces under various operating conditions and at various operating times during the rolling of the strip 14. The plasticity values are stored in the table as a plasticity for a product with a width of unity, typically in inches/10⁶ pounds/in wide. The values in the table, PW, are divided by the width of the product being rolled to obtain the appropriate value.

Hot strip mill gauge control using programmed digital computer evaluation of the roll force feedback information involves the combination of a number of process control operations. Roll force, screw position, and mill spring information is used to evaluate the gauge of the strip as it is worked in each stand, and an X-ray gauge is used on the strip as it passes out of the last stand to evaluate the absolute strip gauge produced by the rolling mill.

A multi-stand and continuous hot strip mill requires a gauge control system to maintain uniform gauge. Typically a hot strip mill will roll a single strip simultaneously in all of its stands. Therefore the gauge control system used with the mill should be able to determine gauge errors leaving each of the stands as quickly as possible, and it should be able to make corrections to those gauge errors in as many stands as may be necessary.

There are two gauge error detection systems used for this purpose to consider: (1) X-ray and (2) roll force. X-ray gauge measuring devices should be placed after each roll stand; they are accurate, but they are expensive, difficult to maintain, and can only detect errors after the workpiece strip has passed the provided distance between the associated roll stand and the subsequent gauge measuring X-ray device. On the other hand, the roll force gauge error detection system is much less expensive, and can be more easily implemented in all roll stands; it detects errors in the workpiece strip gauge as the strip is still passing between the rolls, thereby allowing more immediate evaluation of required corrections to the roll stand screwdown position setting. Unfortunately, the roll force system provides only a relative evaluation of the strip gauge, since it measures how much the strip gauge has deviated from the gauge of the head end portion of the strip.

A practical combination of the above two gauge error detection systems is to use roll force feedback information to calculate fast desired corrections to errors

in strip gauge, and to use one X-ray gauge measuring device after the last roll stand to evaluate the absolute gauge of the strip coming out of the last stand. The fast corrections are calculated from the roll force feedback information, combined with the detected stand screw-down position and the predetermined modulus of elasticity of the rolling stand. The slower X-ray device gauge error evaluation is used to calculate simultaneous monitor corrections to several stands so that the absolute value of the strip gauge leaving the rolling mill may be brought to the desired value. The output of each of these systems is a screw-down correction gauge in the respective positions of the screw-downs of each of the stands.

FIG. 2 shows the linear approximations of the mill deflection curve 67 and the product deformation curve 65 for a typical rolling mill stand operation. The unloaded roll opening S_{10} , sometimes called the screw-down because of the screw and nut system used for adjusting the roll opening, is the strip gauge that would be delivered if there were no roll separating force. As the stand roll force increases with a constant roll opening, the delivery strip gauge increases, since the mill stand stretches or deflects. This is shown by the line 67 with slope K. The product deformation characteristic is represented by the line 65 with slope P. If there were no force exerted by the roll stand on the product being rolled, the strip gauge would not be reduced and the delivery strip gauge would be equal to the entry strip gauge. If the roll force is caused to increase, the product is plastically deformed and the delivery strip gauge decreases. The slope of the mill characteristic line 67 is called the mill spring modulus K, and the slope of the product deformation characteristic line 65 is called the product plasticity P.

The delivery strip gauge is determined by the equilibrium point IC where the force exerted by the mill stand is equal to the force required to deform the product. Changes in workpiece strip entry gauge and/or changes in product hardness result in a change in stand roll force and delivery strip gauge. The gauge error correcting control system must move the screw-down to correct for these resulting error changes in strip gauge.

The main advantage of using the roll force gauge control system is the ability to detect error changes in strip gauge the instant they take place as the product is being rolled in the roll stand. A shift in strip delivery gauge or thickness can be caused by a change in entry thickness, or a change in hardness as usually caused by a change in temperature. This change in delivery gauge can be immediately detected by feedback information monitoring of the roll separating force on the roll stand.

FIG. 3 illustrates the operation of a gauge error detection system, with the mill spring line 67 and product plasticity line 65 representing the initial lock-on condition of operation and the mill spring line 63 and plasticity line 69 representing the future condition. As compared to the original lock-on conditions, the screw-down system has moved in the closing direction and the roll separating force has increased because of a harder cold portion of the workpiece strip passing through the roll stand.

The required gauge error correction in screwdown position is not only dependent on the strip gauge error but also on the stand mill spring modulus and the product plasticity values. In FIG. 3 there is illustrated how

the gauge error GE is removed by a screwdown correction ΔS_{RF} . The screwdown correction ΔS_{RF} is larger than and approximately twice the size of the gauge error GE, since this correction operation will actually result in an increase in stand roll force because of the greater reduction taken. Relatively soft workpiece strip products require a screw correction ΔS_{RF} very nearly the same as the gauge error GE but relatively hard products require a larger correction compared to the gauge error. The necessary screwdown movement ΔS_{RF} to correct a determined gauge error is determined as follows in relation to FIG. 4. The screwdown correction ΔS_{RF} can be determined by the relationship:

$$S_{RF} = X + GE$$

(14)

where:

X is the amount of roll opening change and hence strip delivery gauge change due to the stretch of the roll stand

GE is the gauge error.

The roll stand stretch X can be determined by the relationship:

$$X = K * \Delta F$$

(15)

where: ΔF is shown in FIG. 4 and is the change in roll force when the gauge error GE is corrected.

From the illustration shown in FIG. 4, it is also seen that

$$GE = P * \Delta F$$

(16)

$$\Delta F = GE/P$$

(9)

now combining Equation 9 with Equation 15 will give

$$X = K * (GE/P)$$

(17)

and combining Equation 17 with Equation 14 will give

$$\Delta S_{RF} = K * (GE/P) + GE$$

(18)

$$\Delta S_{RF} = GE * (K/P + 1)$$

(11)

50 The screwdown correction ΔS_{RF} is shown in FIG. 4 in relation to the gauge error GE, the desired gauge H_D and the present gauge H_X .

FIG. 5 shows a graphic representation of typical PW values stored for a seven stand tandem hot strip mill. 55 The six sets of values cover the range of thicknesses rolled from 0.050 inches to 0.250 inches. This could be an illustration of a use table as loaded by the operator into the computer storage memory or it could be an illustration of a learned table provided by the adaptive program.

The main roll force AGC program, as illustrated by the flowchart shown in FIG. 6, and the associated X-ray monitor program, as illustrated by the flowchart shown in FIG. 7, occupy the same task priority level, with both programs being initiated by the well known analog input signal scan operation. The roll force AGC program operationally maintains a constant workpiece

gauge based on the initial mill setup parameters provided by the operator, while the X-ray program backs up the roll force AGC control by monitoring the final product gauge and making desired adaptive corrections as needed.

When a workpiece strip is being rolled, the roll force AGC program corrects deviations from the initial or head end exit gauge of each stand, by adjusting the screw opening of the stand. A deviation in the exit gauge of a stand from its initial or head end lock-on value is reflected in a sensed change in the roll force of the stand from its initial value. From the exit gauge error when scanned and determined every 2/10 second, a gauge error correction to the screw opening is determined and made by adjusting the screwdown position of the respective roll stand.

The main AGC program also includes a subroutine for making corrections to a stand's entry gauge by feeding back determined gauge error under specified conditions to the screw opening of the previous stand, this feedback program subroutine is illustrated by the flowchart shown in FIG. 8. This feedback routine correction is normally made to the screwdown setting of a previous roll stand, when the screws for a given stand have reached a maximum or minimum limit and require further movement in a direction that would cause the limit to be exceeded, so a portion of the desired gauge error correction determined for that given stand is fed back to a previous stand such that the previous stand can help with this desired gauge error correction needed in relation to the operation of that given stand.

The flow charts shown in FIGS. 6, 7 and 8 are written in an effort to be substantially self-explanatory to persons skilled in this particular art, with the functions to be performed at each step of the flow charts being set forth accordingly.

In FIGS. 6A, 6B and 6C there is shown a flow chart to illustrate a preferred embodiment of a suitable AGC program operative with a tandem hot strip rolling mill. At step 10 a determination is made to see if the automatic gauge control or AGC program has been selected and desired by the operator to be functional. The AGC program is run shortly after the head end of a workpiece strip has entered that stands of the rolling mill, and for each roll stand the initial lock-on roll force, lock-on speed and lock-on screwdown position setting is measured and saved in memory storage. At step 12 a determination is made to see if this particular scan is not an X-ray scan; for a typical rolling mill installation, there may be seven roll stands to be scanned plus a scan of the X-ray device located after the last roll stand in relation to the provision of analog input signals to be scanned by the digital computer system. This step 12 procedure relates to the organization of the analog signal inputs; if this is an X-ray input signal scan, the program goes to the X-ray subroutine at step 14, and if this is not an X-ray scan and instead this is an AGC program run in relation to one of the drive stands the program goes to step 16 to determine if roll force has been selected by the operator for this stand, i.e., stand N, where N can be each one of the roll stands in sequence. Step 18 is provided to see if automatic scan has been selected by the operator for this stand. Each of steps 16 and 18 must be satisfied, or the program goes to step 20 for reset of a head end software flag and to step 22 for turn-off of the AGC light for that stand on the oper-

ator's control panel. The operator has a roll force select switch by which he initiates the roll force AGC program operation. At step 24 a determination is made to see if the screwdown positioning mechanisms for this stand have been calibrated. If they have, at step 26 the program checks to see that the workpiece strip is in this stand, and at step 28 to see if this is the first scan made on this particular strip. Each of these conditions has to be satisfied for the AGC program to run through for this stand as desired. For the first scan on this strip, the measured lock on force for this stand, the lock on speed and the lock on screwdown position is saved at step 30, since these parameter values will be later needed for control purposes.

At step 32, the measured lock on roll force for this stand is used with a predetermined look-up table of mill spring modulus values provided in storage, in relation to the well known nonlinear mill spring characteristic for a typical roll stand, to determine the value of the mill spring modulus K to use for subsequent calculations in relation to the lock on operation of this stand. It should be noted that the upper portion of the mill spring characteristic curve is well known by persons skilled in this art to be substantially linear as shown in

FIGS. 2 and 3 above an initial lower portion for the typical roll stand and in accordance with the disclosure of U.S. Pat. No. 2,726,541 of R. B. Sims. At step 34 the stand mill spring modulus K is corrected in relation to the known width of the workpiece strip. At step 36 the exit gauge class for this stand is determined, such that at step 38 an adaptive learned look-up table operation will provide the average plasticity PW for this gauge class. At step 40 the plasticity constant P is calculated in relation to this determined average value PW divided by the known width of the workpiece strip. At step 42 the desired hardness correction in relation to known grade of the strip being rolled is determined by a predetermined table look-up operation with operator provided values of same. At step 44 the plasticity P for this stand is corrected for hardness.

At step 46 the stand screw position is read. It should be noted that if the present scan was not the first scan on this particular strip at step 28, the program then went to step 46, through NOT HEAD which is referenced in the program listing operative with the digital computer. At step 48, if the stand load cell is ON, the strip gauge error is calculated at step 50 in accordance with above Equation 13. At step 52 the desired screw position correction ΔS_{RF} is calculated in accordance with above equation 11. At step 54 a check is made to see if the desired screw correction ΔS_{RF} is greater than an operator determined minimum response deadband value; if this screw correction is not greater than this deadband value, at step 56 it is made zero, and if this screw correction is greater than the deadband, at step 58 the running average gauge error is calculated. At step 60 if the screw correction is not within the operator defined maximum correction limits, the program advances to step 62 where the screw condition is set to equal that maximum correction limit and the feed forward subroutine is entered by step 64 to feed forward some of the needed gauge error correction from the stand to the later stands of the rolling mill. At step 66 a check is made to see if a feed forward correction from a previous stand is approaching this stand, such as would happen in relation to a skidmark. If it is, a determination is made at step 68 if the skidmark is about to

enter the present stand. If a skidmark or like condition is approaching the present stand it is desired to begin the movement of the stand screwdown mechanism. At step 66, if there was not a feed forward correction approaching this stand, there might have been such a correction already in the stand and the program then goes to step 70 to check if there is a skidmark in the present stand. If a skidmark is not in the stand and there is none approaching, the program goes to step 72 for the calculation of the new desired screwdown position for this stand. If there is a skidmark in this stand, and perhaps the stand screws have already begun to move, the step 74 is provided to determine if this has happened. If it is the first check, the screws are told to take off in the desired direction at full speed at step 76 for the purpose of skidmark correction. At step 78 a check is made to see if the end of the skidmark has arrived at this stand, and if so the screw correction of-set is removed at step 80. The counter is set in accordance with the known number of counts required to get the skidmark through this stand, and at step 81 if the skid counter is not zero the counter is decremented during each scan as required for the desired operation of the stand in relation to skidmark correction.

If there is not a skidmark in this stand at step 70, the program goes to step 72 where a screw correction, such as ΔS_{RF} is to be calculated for this stand, and this calculation is made to see where the screws should be positioned to remove the gauge error at this stand. At step 82 a check is made to see if this new position will put the stand out of operator desired limits. If it will be out of limits at this stand, the excess screw movement will be fed back to an earlier stand at step 84 after setting a software flag at step 83. If the new position is not out of limits at step 82, a check is made at step 86 to see if the previous stand load cell is OFF and not operating. At step 88 the load cell of this stand is checked to see if it is operating. Now the screwdown position reference calculation is begun, and at step 90 a determination is made if the tail end of the workstrip has as yet dropped out of the previous stand. At step 92 a transport time delay is checked, and at step 94 if full compensation is desired then this compensation is added to the screw position at step 96. Otherwise, partial compensation is made at step 98. The program then goes to step 100 to calculate the actual new position of the screws for this stand. At step 102 the percentage change from the lock on screwdown position is calculated, and at step 104 a check is made to see if the calculated actual position is within operator provided screw positions limits for this stand. At step 106 the screw position movement for this stand is held within desired limits if necessary. At step 108 if the previous screw position for this stand was zero, an AGC indicating light for the operator is turned at step 110; otherwise the direction of screw movement is determined at steps 112 and 114 with the looper going in respectively the opposite direction at steps 116 and 118. At step 120 the position regulator for this stand is told to move the screw positioning drive as desired, and at step 122 the new screw position reference for this stand is saved in memory for subsequent operations. At step 124 if the workstrip is still in the previous stand, the program ends, otherwise a desired subroutine in preparation for the next workpiece strip and reset the stand screw positions in relation to the position of the tail end of the workpiece strip is performed at step 126.

In relation to the X-ray routine at step 14 of the AGC program flow chart shown in FIG. 6A, there is shown in FIGS. 7A and 7B a flow chart to illustrate the operation of this subroutine. At step 170 a check is made to see that the operator has selected the X-ray monitor operation. At step 172 a determination is made that the provided time delay for the next correction has expired, and at step 174 a check is made to see that a particular X-ray device is selected in the event that two X-ray devices are provided after the last stand. At step 176 a determination is made that the X-ray device is measuring strip gauge. If any one of the determinations at steps 170, 172, 174 and 176 is negative then the program exits. At step 178 the operator desired target or nominal workpiece strip gauge is read from storage. It should be understood that gauge is herein used to mean the same as workpiece strip thickness, and it is commonly also spelled gage by persons skilled in this art. At step 180 the percent deviation between the desired nominal gauge and the X-ray device measured actual gauge is now determined. At step 182 a limit check is made, and if it is too large a flag is set and an alarm message printed at step 184 and the program exits. If it is not too large, at step 186 a check is made to see if this is the first scan on the workpiece bar or strip; and if it is, a flag is set at step 188 and the program ends. If this is not the first scan on the bar, at step 190 a determination is made to see if this is the last head end scan on the bar. At step 192 the last head end scan flag is set. At step 194 the program goes through a predetermined adaptive routine, to be later described, and after that the program goes through a head end routine at step 196 to adjust the screw position setups of the respective roll stands for the next similar workpiece strip. At step 198 the actual head end gauge is determined. At step 200 a check is made to see if the operator has selected lock on gauge control operation, and if not at step 201 this gauge becomes nominal gauge. At step 202 a check is made to see if the percent deviation is greater than some operator predetermined limit value, such as 10 percent. At step 204 a look-up table operation is provided in relation to operator provided values to reapply the desired or nominal strip gauge. At step 206 a new percent deviation is determined in relation to this new desired strip gauge.

At step 208 the last stand speed is determined, and a mass flow relationship including proportional integration of the established gauge error is the desired function to be performed here on a selected stand by stand basis, generally three such stands are selected by the operator. At step 210 the last stand is addressed, and now the correction of the selected stands occurs. At step 212 a check is made to see if the selected stand has calibrated screws, and at step 214 a check is made to see if the X-ray monitor operation has been selected by the operator for this stand. At step 216 the X-ray correction is determined for the selected stands, including the proportional integration function. This operation is continued for all selected stands. If the checks made at step 212 or 214 are failed, then the stand drive number is decremented at step 218 and a check is made at step 220 to see if this stand is number zero. At step 222 the correction is limited. At step 224 if the stand roll force gauge control system is turned off, then an X-ray correction is output for this stand at step 226; this permits providing only the X-ray correction with the roll force system turned off for a given stand when desired by the

operator. Step 228 is for incrementing the number of corrections. At step 230 a check is made to see if enough stands have been corrected. At step 232 a check is made to see if this stand under consideration is the first stand and at step 234 the last stand is addressed. At step 236 a determination is made of the required time delay to wait for the strip to pass from this stand to the next stand before the next correction is to be made in relation to the selected stands for the correction. This is a function of speed and distance involved.

In relation to the feed forward subroutine at step 64 of the AGC program flow chart shown in FIG. 6C, in FIG. 8 there is shown a flow chart to illustrate the operation of this subroutine. At step 250, if this is the last stand no gauge error correction can be fed forward in the direction of strip movement, so the subroutine ends. If this is the first sign of a skidmark at step 252, a counter is set at step 254 and a flag is set at step 256. The direction of the skidmark is determined at step 258, for example, to see if a soft spot in the strip has occurred, and at step 260 the required transport time delay is calculated in relation to the strip speed through this stand. At step 262, if this is not the first sign of a skidmark, the counter will be incremented each time the program runs. At step 264 the previous screw correction is made the new screw correction and the program then ends. At step 266 the transport time delay calculated at step 260 is saved, and at step 268 the stand that feeds forward is addressed.

In relation to the feedback subroutine at step 84 of the AGC program flow chart shown in FIG. 6B, in FIG. 9 there is shown a flow chart to illustrate the operation of this subroutine. At step 270, if this is the first stand no error correction can be fed back to an earlier stand so the program ends. At step 272 the preceding stand N-1 is addressed, with the present stand being stand N. At step 274 the desired flags are picked up, and it is now desired to check why the feedback subroutine was entered. At step 276, it is determined if the roll force load cell of the previous stand N-1 was faulty, and if so at step 278 the desired feedback correction applied to stand N-1 is calculated. If the roll force signal was provided at stand N-1, then at step 280 a check is made to see if the stand N-1 screw positioning mechanism was properly calibrated and if so the feedback correction is calculated at step 278. In general, the feedback subroutine can be entered if stand N went into screw position limits as well as if the load cell of stand N-1 was faulty, and steps 276 and 280 are related to the happening of one of these events. At step 282, the stand address indexing is set up, and the subroutine exits back to the AGC program shown in FIG. 6C.

In relation to the adaptive routine at step 194 of the X-ray program flow chart shown in FIG. 7A, in FIG. 10 there is shown a logic flow chart to illustrate the operation of this subroutine. An adaptive routine will be done to calculate the mean plasticity value and a standard deviation for each such plasticity value for this workpiece gauge class and for each roll stand. At step 300 there are determined the last stand speed and exit thickness; the exit thickness as measured by the X-ray device and the last stand speed are needed in order to establish the mass flow relationships. Digital speed measurement circuitry is used to determine each of the stand speeds. Now the mean plasticity value and the standard deviation for that value are calculated for

each of the stands, starting with the address of the first stand at step 302. Is this stand calibrated is checked at step 304. If it is not, the adaptive program exits to the head end routine. Using mass flow at step 306 from the stand speed, the exit gauge is determined. If this stand is the first stand at step 308, the program goes to step 309 because of inability to mass flow the first stand in relation to stand zero to determine the entry gauge and the program therefore cannot calculate plasticity value for the first stand. If it is not the first stand at step 308, the program goes to step 310 to read the nominal width of the workpiece strip, so the width is read from operator input thumbwheels and a calculation is made of the plasticity constant PW at step 312. The side-guard position could perhaps be fed back as an indication of workpiece width. A validity check is made at step 314 to make sure the calculated plasticity value for stand N is positive, which it should be and if it is not positive the program exits to the head end routine. A determination is made of the gauge class at step 316 for storage. At step 318 the mean plasticity or average plasticity value for this gauge class is determined, at step 320 the standard deviation is calculated and at step 322 it is stored away according to gauge class of workpiece product. At step 324 a determination is made to see if this is the last roll stand, and if it is not the program goes back to step 309 for processing each of the stands of the rolling mill. If this is the last stand at step 324, the program exits to the head end routine.

In relation to the head end correction routine at step 196 of the X-ray program flow chart shown in FIG. 7A, in FIG. 11 there is shown a logic flow chart to illustrate the operation of this subroutine.

The speed RPM_{LS} of the last stand is read at step 400. The weighting factors are initialized at step 402 and set up to index through each of the stands, with the head end weighting factor being set equal to 1 and the other selected stand weighting factors being set respectively equal to 2 and 3 for the purpose of providing the desired three/thirds, two/thirds and one/third relationship for three selected roll stands, for example, going back from stand 6, to stand 4 and then to stand 2. At step 404 the stand number is decreased and at step 406 a determination is made to see if X-ray gauge deviation correction is selected to monitor the operation of this stand. If it is, at step 408 the desired correction is determined for this stand. If it is not, at step 410 the stand number is decreased and step 412 checks to see if this stand is equal to zero. This operation will give the desired three/thirds, two/thirds and one/third gauge deviation correction relationship for the respective selected stands. When the stand weighing factor WF equals zero, the program subroutine will exit or end. After the function of step 408, the program goes to step 414 where the stand number is decreased, and then step 416 decreases the weighting factor and step 418 checks to see if the stand weighting factor is zero. If not, the program goes back to step 406. At step 408 the correction for this stand is determined by the relationship:

$$\text{CORRECTION} = (FPM_{LS}/FPM_{TS}) (\text{X-ray Gauge Deviation/weighting factor})$$

65 where the weighting factor for the highest stand number is one and for the lowest stand the number is three and the ratio of last stand speed is with this stand speed. (19)

The monitor switch is provided for the operator to select the X-ray correction function or not.

Functionally, the main roll force AGC operates when the analog scan program initiates the roll force AGC program level each time a stand's roll force or an X-ray deviation is scanned at periodic intervals of every 2/10 second.

In order for AGC corrections to be made to a given stand, the following conditions must exist:

1. "AGC Master" must be selected as determined at step 10.

2. "Roll Force" must be selected for the stand as determined at step 16.

3. The stand must be in the automatic mode as determined at step 18.

4. The stand's screws must be calibrated as determined at step 24.

If any one of the four is not met, the AGC program exists without making a correction.

If a strip has just entered the stand as determined at step 26, and this is the first scan check on the strip as determined at step 28, "lock-on" or initial values for the screw position and roll force are established at step 30, and values of mill spring constant and product plasticity are selected.

Each time a stand's roll force is scanned by the analog scan program, its new value is checked against the initial lock-on value and any deviation in roll force is directly related to an error in the stand's exit gauge at step 50 which is in turn directly related to a screw opening correction determined at step 52. If the screw correction is within a preestablished deadband at step 54, it is ignored at step 56. Otherwise it is checked to determine if it is greater than an operator provided maximum limit at step 60. If the screw correction does determine if it is greater than an operator provided maximum limit at step 60. If the screw correction does exceed the limit, a correction is made not only to this stand but also the next stand. Correcting the next stand (N + 1) from this stand (N) data is called feed forward. If a large screw correction is required on stand N, the time required to move the screwdown mechanism to make the correction may be long enough to cause a section of the strip to pass through the stand uncorrected. To catch the uncorrected portion, a screw opening correction is made to the next stand (N + 1) in anticipation of the arrival of the section. This correction is made T seconds after the disturbance is detected in stand N, where T is slightly less than the transport time between stand N and (N + 1). Likewise T seconds after the disturbance disappears from stand N, the correction is removed from stand (N + 1). If the screw correction for the stand under consideration is within predetermined limits at step 60 no feed forward correction is made.

The new position of the screws is calculated at step 72. Before a screw is corrected, its absolute position is checked at step 82 to see if it is presently at one of its minimum bound or maximum bound. If the screw is positioned to one of its limits, and the correction will cause it to exceed that limit, a feedback correction is determined at step 84 to the entry gauge of this stand (stand N).

The following conditions must be met before a feed-back can be made from stand N:

1. Stand N is not stand 1 as determined at step 270.

2. The load cell for stand (N-1) is not on or stand N is out of limits as determined at step 86 and at step 82.

3. The load cell for stand N is on as determined at step 88.

4. A feedback from stand N is not already in progress.

If all conditions are met, the feedback subroutine at step 84 and in accordance with the flowchart of FIG. 9 is entered.

The feedback routine makes three checks on stand N-1:

1. (N-1) is not 0 at step 270.

2. The screw for stand (N-1) is not at the same limit as stand N at step 274, i.e., if stand N is at its up limit, stand (N-1) is not at its up limit.

3. The screws for stand (N-1) are in calibration at step 280.

If all three checks are true, a feedback correction to the exit gauge of stand (N-1) is made. A predetermined time delay is initiated so that no further feedback can be made to stand (N-1) until the present feedback correction reaches stand N. The time delay is equal to the transport time between stand (N-1) and stand N.

25 After all corrections have been made to a stand, the net direction of the movement of the screws is determined at steps 112 and 114 and a signal is sent to the looper stand speed controls at one of steps 116 and 118 indicating that direction. If the screws are moved down, 30 the looper preceding the screws will tend to be moved up. If the screws are moved up the preceding looper tends to move down. Any looper movement causes corresponding speed correction to an adjacent stand to maintain constant looper height. Each time a screw-down is moved, a speed correction is sent in anticipation of the looper height change.

The function of the X-ray monitor program is to provide a reading, in absolute units of measure, of the finished product gauge. The roll force AGC system is 40 based on changes in screw position (and therefore product gauge) rather than absolute position and for that reason, there may be a discrepancy between desired gauge and actual gauge. The X-ray provides a reference for this comparison.

45 The X-ray information is used in one of two ways. If the last stand roll force is inoperative or failed the calibration tests for other reasons, the last stand is positioned by the X-ray monitor. On the other hand, if the last stand is being positioned by roll force AGC, then the last three stands, whose screws are calibrated, are corrected to produce the desired gauge.

In addition, the X-ray monitor program at step 194 updates a table of average values of product plasticity, P and makes head end corrections at step 196. The head end routine calculates an offset for this stand, based on the X-ray deviation, to add to the initial stand screw positions for the next similar strip which is to follow the strip being rolled. This procedure allows bad initial screw setups provided by the operator to be corrected in relation to subsequent strips which follow.

60 It is generally known and understood by persons skilled in this particular art of applying a computer control system that a combined hardware and software process control system comprises a special purpose extended control computer machine, and is provided when a general purpose computer is operated under the control of one or more software instruction pro-

grams. Such a process control system can be built if desired using hardware or wired logic programming in relation to the functional steps set forth in the flow charts, in view of the recognized general equivalence of a software programming embodiment and a hardware programming embodiment and a hardware programming embodiment of substantially the same control system. However, when an involved industrial application such as here described becomes somewhat complex, the economics tend to favor the software approach due to the greater expense and lack of flexibility when hardware logic circuits, such as well known NOR logic circuits, are wired together to provide the desired circuit arrangement built up of such logic circuits to perform the sequential program steps set forth in the illustrated flow charts.

DESCRIPTION OF THE PREFERRED EMBODIMENT

When the tail end of a strip drops out of a stand, the AGC program operation must prepare the stand for the next strip by resetting its screws. If the next strip is to be the same gauge as the previous strip, and if during the rolling of the previous strip the initial screw set-up resulted in an immediate X-ray gauge deviation, that error should be taken into consideration when setting up the screws for the next strip. This is accomplished by calculating a correction for each of selected roll stands which is added to the screw position reference for the next strip's initial screw set-up. The first X-ray gauge reading on a strip is ignored since it may have been taken on the initial head end portion of the strip which is usually distorted. When the X-ray scans a new strip for the second time, the head end corrections are calculated and stored for the next strip. The X-ray corrections are based on the gauge deviation reading from the X-ray device, in most applications and no correction is applied to the last stand. Only stands whose X-ray monitors are selected are corrected, with a predetermined limit such as three stands being selected.

The function of the head end routine is to enable the computer system to aid the operator in the initial set up of each roll stand in the rolling mill. The AGC programmed computer system is operative such that the operator dials in the desired screwdown position reference for each stand by means of a thumbwheel, and the computer system sets the screw openings of the respective roll stands to those position references. Then a workpiece is rolled and the head end of that workpiece will end up being at whatever gauge corresponds to those reference screw positions. One problem is that the operator does not consistently get those reference screw positions correct on the first try, and each roll stand commonly ends up rolling a workpiece gauge that is excessively heavy or excessively thin, so the operator provided set ups need to be changed. Under the prior art gauge control system operation the operator would eyeball the desired change for each stand by himself, but those changes in and by steps of successive approximations the operator would arrive at a set of positions for the respective screws for that particular product for that day that would result in reasonably good delivery gauge from the rolling mill at the front end of the subsequent bar.

In accordance with the present invention, the AGC programmed computer system still cannot do much about the front end of the first strip or bar, since it does

not have enough learned information at this time, but the AGC computer system can replace the operator function in the successive approximations for obtaining better and more correct gauge in the head end portion of the subsequent similar bars.

When the head end of the first workpiece strip has passed through all of the roll stands and enters the X-ray gauge positioned after the last roll stand, a delay for a short predetermined time period is provided and 10 then the head end thickness deviation is measured at the X-ray. This deviation is used as an indication of how satisfactory the initial operator provided set ups were. Then a gauge deviation correction is calculated in relation to the initial operator provided set ups, and 15 this gauge deviation correction will equal the head end gauge deviation at the X-ray gauge times the mass flow relationship with the stand to be corrected, times a dissipative constant. The determined gauge deviation correction is then applied to the stand screws and the screw position for the next strip will equal the screw position for the previous strip plus or minus this determined correction, depending upon the gauge deviation being negative or positive in relation to the desired target gauge. The full determined correction would be applied to the selected stand having the highest stand 20 number, while the screws of the selected stand having the middle stand number would receive a fractional correction such as two/thirds of the full correction, and the screws of the selected stand having the lowest stand 25 number would receive a fractional correction such as one/third of the full correction. If desired, more than three stands can be corrected, such as five stands of correction being provided in this manner instead of three.

30 35 This AGC program can be operative with a smaller digital computer gauge control system having no process model equations to determine the initially provided respective stand screw settings or stand screw-down schedules, so the operator can be using his own skill and knowledge to set the initial screw setting for each stand and then the here disclosed control system becomes operative to quickly correct these initial manual stand screw position set ups.

40 45 The here described head end correction routine uses a mass flow relationship to determine corrections applied to the operator provided screwdown set ups, and is operative with the smaller computer and provides a head end correction for only selected roll stands based upon the measured X-ray deviation for the head end 50 portion of the workpiece. This X-ray gauge deviation is determined by the X-ray device positioned after the last stand, and is equal to the difference between the operator desired target gauge delivered by the last stand and the measured actual gauge delivered by the last stand. An average X-ray measured gauge deviation is assumed to apply for the whole strip, and it is being used in relation to the whole of the next similar work strip.

55 60 65 A digital speed measurement for each stand is provided, and the head end correction operation uses that digital speed measurement for each selected stand to calculate the mass flow relationship delivery gauge error for stand N to correct the screwdown set up for stand N for the next similar workstrip. The latter set up lock on screwdown setting values are for selected stands for the rolling of the next similar workstrip in relation to the gauge error measured from the last stand,

and this gauge error is distributed among selected previous roll stands. The lock on X-ray measured gauge deviation is measured and applied back by mass flow relationships to correct the head end rolling of the next workstrip. The measured gauge error is ratio applied back to the selected roll stands by mass flow and weighting factors. The lock on screw setting for next workstrip is determined by the operator and then corrected by the here described gauge error corrections. This X-ray gauge deviation feedback correction is applied every 2/10 second for the entire length of the workstrip and provides a screw position correction in addition to the operator selected screw position.

GENERAL DESCRIPTION OF INSTRUCTION PROGRAM LISTING

In the Appendix there is included an instruction program listing that has been prepared to control the roll force automatic gauge control operation of a tandem rolling mill in accordance with the here disclosed control system and method. The instruction program listing is written in the machine language of the PRODAC P2000 digital computer system, which is sold by Westinghouse Electric Corporation for real time process control computer applications. Many of these digital computer systems have already been supplied to customers, including customer instruction books and descriptive documentation to explain to persons skilled in this art the operation of the hardware logic and the executive software of this digital computer system. This

instruction program listing is included to provide an illustration of one suitable embodiment of the present control system and method that has actually been prepared. This instruction program listing at the present time is a more or less development program and has not been extensively debugged through the course of practical operation for the real time automatic gauge control of a tandem rolling mill. It is well known by persons skilled in this art that most real time process control application programs contain some bugs or minor errors, and it is within the skill of such persons and takes varying periods of actual operation time to identify and correct the more critical of these bugs.

A person skilled in the art of writing computer instruction program listings, particularly for an invention such as the present roll force automatic gauge control system and method for a tandem rolling mill must generally go through the following determinative steps:

Step One — Study the workpiece rolling mill and its operation to be controlled, and then establish the desired control system and method concepts.

Step Two — Develop an understanding of the control system logic analysis, regarding both hardware and software.

Step Three — Prepare the system flowcharts and/or the more detailed programmer's flowcharts.

Step Four — Prepare the actual computer instruction program listings from the programmer's flowcharts. This instruction program listing included in the Appendix was prepared in relation to the programmer's flowcharts shown in FIGS. 6 and 11.

AGC DATA FILE		BIN	
0001		0002	ABS
0003		0004	TTL
0005	*	0006	*
0007		0008	*
0009		0010	*
0011	*	0012	
0013	FILE	0014	BRG
0015	FLSIZE	0016	BRG
0017	FWPFLS	0018	BRG
0019	FXDCON	0020	BRG
0021	REFENC	0022	BRG
0023	FBENC	0024	BRG
0025	OFFSET	0026	BRG
0027	CALPNT	0028	BRG
0029	ENCN8	0030	BRG
0031	WKDATA	0032	BRG
0033	CLREG	0034	BRG
0035	ZEROCB	0036	BRG
0037	ENGREF	0038	BRG
0039	SPDPAT	0040	BRG
0041	BINPT	0042	BRG
0043	CALFLAG	0044	BRG
0045	PFLCAL	0046	BRG
0047	PRFIL	0048	BRG
0049	PRLOB	0049	BRG
0050	SPDPAT	0050	BRG
0051	INTDLY	0051	BRG
0052	INTCNT	0052	BRG
0053	INTMAX	0053	BRG
0054	ERRTIM	0054	BRG
0055	ZEFFLAG	0055	BRG
0056	TOFFLAG	0056	BRG
0057	CONFAC	0057	BRG
0058	ZEROFF	0058	BRG
0059	TOLEN	0059	BRG
0060	ANTPAT	0060	BRG
0061	EJE	0061	BRG
0062	BCDDIG	0062	BRG
0063	BCD	0063	BRG
0064	*	0064	BRG
0065	*	0065	BRG
0066	*	0066	BRG
0067	MCI	0067	BRG
0068		0068	BRG
0069		0069	BRG
0070		0070	BRG
0071		0071	BRG
0072		0072	BRG
0073		0073	BRG
0074		0074	BRG
0075		0075	BRG
0076		0076	BRG
0077		0077	BRG
0078		0078	BRG
0079		0079	BRG
0080		0080	BRG
0081		0081	BRG
0082		0082	BRG
0083		0083	BRG
0084		0084	BRG
0085		0085	BRG
0086		0086	BRG
0087		0087	BRG
0088		0088	BRG
0089		0089	BRG
0090		0090	BRG
0091		0091	BRG
0092		0092	BRG
0093		0093	BRG
0094		0094	BRG
0095		0095	BRG
0096		0096	BRG
0097		0097	BRG
0098		0098	BRG
0099		0099	BRG
0100		0100	BRG
0101		0101	BRG
0102		0102	BRG
0103		0103	BRG
0104		0104	BRG
0105		0105	BRG
0106		0106	BRG
0107		0107	BRG
0108		0108	BRG
0109		0109	BRG
0110		0110	BRG
0111		0111	BRG
0112		0112	BRG
0113		0113	BRG
0114		0114	BRG
0115		0115	BRG
0116		0116	BRG
0117		0117	BRG
0118		0118	BRG
0119		0119	BRG
0120		0120	BRG
0121		0121	BRG
0122		0122	BRG
0123		0123	BRG
0124		0124	BRG
0125		0125	BRG
0126		0126	BRG
0127		0127	BRG
0128		0128	BRG
0129		0129	BRG
0130		0130	BRG
0131		0131	BRG
0132		0132	BRG
0133		0133	BRG
0134		0134	BRG
0135		0135	BRG
0136		0136	BRG
0137		0137	BRG
0138		0138	BRG
0139		0139	BRG
0140		0140	BRG
0141		0141	BRG
0142		0142	BRG
0143		0143	BRG
0144		0144	BRG
0145		0145	BRG
0146		0146	BRG
0147		0147	BRG
0148		0148	BRG
0149		0149	BRG
0150		0150	BRG
0151		0151	BRG
0152		0152	BRG
0153		0153	BRG
0154		0154	BRG
0155		0155	BRG
0156		0156	BRG
0157		0157	BRG
0158		0158	BRG
0159		0159	BRG
0160		0160	BRG
0161		0161	BRG
0162		0162	BRG
0163		0163	BRG
0164		0164	BRG
0165		0165	BRG
0166		0166	BRG
0167		0167	BRG
0168		0168	BRG
0169		0169	BRG
0170		0170	BRG
0171		0171	BRG
0172		0172	BRG
0173		0173	BRG
0174		0174	BRG
0175		0175	BRG
0176		0176	BRG
0177		0177	BRG
0178		0178	BRG
0179		0179	BRG
0180		0180	BRG
0181		0181	BRG
0182		0182	BRG
0183		0183	BRG
0184		0184	BRG
0185		0185	BRG
0186		0186	BRG
0187		0187	BRG
0188		0188	BRG
0189		0189	BRG
0190		0190	BRG
0191		0191	BRG
0192		0192	BRG
0193		0193	BRG
0194		0194	BRG
0195		0195	BRG
0196		0196	BRG
0197		0197	BRG
0198		0198	BRG
0199		0199	BRG
0200		0200	BRG
0201		0201	BRG
0202		0202	BRG
0203		0203	BRG
0204		0204	BRG
0205		0205	BRG
0206		0206	BRG
0207		0207	BRG
0208		0208	BRG
0209		0209	BRG
0210		0210	BRG
0211		0211	BRG
0212		0212	BRG
0213		0213	BRG
0214		0214	BRG
0215		0215	BRG
0216		0216	BRG
0217		0217	BRG
0218		0218	BRG
0219		0219	BRG
0220		0220	BRG
0221		0221	BRG
0222		0222	BRG
0223		0223	BRG
0224		0224	BRG
0225		0225	BRG
0226		0226	BRG
0227		0227	BRG
0228		0228	BRG
0229		0229	BRG
0230		0230	BRG
0231		0231	BRG
0232		0232	BRG
0233		0233	BRG
0234		0234	BRG
0235		0235	BRG
0236		0236	BRG
0237		0237	BRG
0238		0238	BRG
0239		0239	BRG
0240		0240	BRG
0241		0241	BRG
0242		0242	BRG
0243		0243	BRG
0244		0244	BRG
0245		0245	BRG
0246		0246	BRG
0247		0247	BRG
0248		0248	BRG
0249		0249	BRG
0250		0250	BRG
0251		0251	BRG
0252		0252	BRG
0253		0253	BRG
0254		0254	BRG
0255		0255	BRG
0256		0256	BRG
0257		0257	BRG
0258		0258	BRG
0259		0259	BRG
0260		0260	BRG
0261		0261	BRG
0262		0262	BRG
0263		0263	BRG
0264		0264	BRG
0265		0265	BRG
0266		0266	BRG
0267		0267	BRG
0268		0268	BRG
0269		0269	BRG
0270		0270	BRG
0271		0271	BRG
0272		0272	BRG
0273		0273	BRG
0274		0274	BRG
0275		0275	BRG
0276		0276	BRG
0277		0277	BRG
0278		0278	BRG
0279		0279	BRG
0280		0280	BRG
0281		0281	BRG
0282		0282	BRG
0283		0283	BRG
0284		0284	BRG
0285		0285	BRG
0286		0286	BRG
0287		0287	BRG
0288		0288	BRG
0289		0289	BRG
0290		0290	BRG
0291		0291	BRG
0292		0292	BRG
0293		0293	BRG
0294		0294	BRG
0295		0295	BRG
0296		0296	BRG
0297		0297	BRG
0298		0298	BRG
0299		0299	BRG
0300		0300	BRG
0301		0301	BRG
0302		0302	BRG
0303		0303	BRG
0304		0304	BRG
0305		0305	BRG
0306		0306	BRG
0307		0307	BRG
0308		0308	BRG
0309		0309	BRG
0310		0310	BRG
0311		0311	BRG
0312		0312	BRG
0313		0313	BRG
0314		0314	BRG
0315		0315	BRG
0316		0316	BRG
0317		0317	BRG
0318		0318	BRG
0319		0319	BRG
0320		0320	BRG
0321		0321	BRG
0322		0322	BRG
0323		0323	BRG
0324		0324	BRG
0325		0325	BRG
0326		0326	BRG
0327		0327	BRG
0328		0328	BRG
0329		0329	BRG
0330		0330	BRG
0331		0331	BRG
0332		0332	BRG
0333		0333	BRG
0334		0334	BRG
0335		0335	BRG
0336		0336	BRG
0337			

AGC DATA FILE

1024						
1025	0056	PRSET	ORG	\$+1		FLAG INDICATING PRESET WAS JUST DONE
	0057	*				REQUEST FOR BID TO PRESET PROGRAM
	0058	*				IF FLAG IS -1
1026	0059	REBID8	ORG	\$+1		POSITION REFERENCE FOR MOVING SCREWS
	0060	*				ON STRIP BIT OF STAND
	0061	*				STRIP IN STAND FLAG
1027	0062	RESET	ORG	\$+1		
1028	0063	*				
1029	0064	SIS	ORG	\$+1		F.B. FROM PREVIOUS 0.3 SECONDS
	0065	FB3	ORG	\$+1		CURRENT F.B. IN ENCODER UNITS
	0066	FEEDBK	ORG	\$+1		CALIBRATION REJECTION FLAG
	0067	*				
102A	0068	N8TCALIB	ORG	\$+1		MAXIMUM SLSYN SPEED IN RPM
	0069	*				
102B	0070	MAXSPD	ORG	\$+1		SELSYN POWER C8 LOCATION
102C	0071	SELPAR	ORG	\$+1		ADDRESS OF THUMBWHEEL REFERENCE
102D	0072	*				SPEED IN MPM
	0073	TWMCI	ORG	\$+1		CALIBRATION SPEED
	0074	*				CALIBRATION FORCE
102E	0075	SPEEDM	ORG	\$+1		
	0076	*				
102F	0077	C0RSPEED	ORG	\$+1		
	0078	*				
1030	0079	C0RF0RCE	ORG	\$+1		
1031	0080	ORG	ORG	\$+1		SPARE
1032	0081	ORG	ORG	\$+1		SPARE
1033	0082	ORG	ORG	\$+1		SPARE
1034	0083	ORG	ORG	\$+1		SPARE
1035	0084	ORG	ORG	\$+1		SPARE
1036	0085	ORG	ORG	\$+1		SPARE
1037	0086	ORG	ORG	\$+1		SPARE
1038	0087	ORG	ORG	\$+1		SPARE
1039	0088	ORG	ORG	\$+1		SPARE
103A	0089	ORG	ORG	\$+1		SPARE
103B	0090	ORG	ORG	\$+1		SPARE
	0091	EJE				THIS SECTION IS ONLY REQUIRED
	0092	*				FOR DRIVES UNDER AGC CONTROL
	0093	*				I.E. SCREWS.
	0094	*				
	0095					
	0096					
	0097	*				
103C	0098	NEGLIMT	ORG	\$+1		NEG. LIMIT FOR XRAY SCREW CHANGE
103D	0099	*				P0S. LIMIT FOR XRAY SCREW CHANGE
103E	0100	P0SLIM	ORG	\$+1		MAX SCREW CHANGE FOR AGC
	0101	*				
103F	0102	MAXDELT4	ORG	\$+1		REAL SCREWDOWN LOCK-ON
	0103	*				
1040	0104	REALSDLG	ORG	\$+1		SPEED LOCK-ON
	0105	*				
1041	0106	SPEEDLG	ORG	\$+1		PULSES PER REVOLUTION
	0107	*				
1042	0108	P0PERREV	ORG	\$+1		CLASS TABLE POINTER
	0109	*				
1043	0110	CLASS1	ORG	\$+1		CARD/PT FOR THIS LOOPER
	0111	*				
1044	0112	CARDPT	ORG	\$+1		CHANNEL NO. FOR THIS LOOPER
	0113	*				
1045	0114	L00PCHNG	ORG	\$+1		GAIN FOR THIS LOOPER
	0115	*				
	0116	L00PGAIN	ORG	\$+1		
	0117					
	0118					
	0119	*				THESE SLOTS ARE UNIQUE TO USIN0R
	0120					
	0121	*				THIS IS ROLL SPEED REFERENCE IN
	0122	*				METERS/MIN
1046	0123	SPDREF	ORG	\$+1		NO OF BCD DIGITS IN SPEED THUMBWHEEL
	0124	*				
1047	0125	SPDDIG	ORG	\$+1		MCI WORD FOR SPEED
	0126	*				
1048	0127	MCISPD	ORG	\$+1		'REBID8' FLAG FOR SPEED PRESET
	0128	*				
1049	0129	RBDSPD	ORG	\$+1		
	0130					
	0131					
	0132	*				
104A	0133	AGCWF	ORG	\$+1		AV. GAUGE ERROR WEIGHT FACTOR
	0134	*				
104B	0135	ANF0RCE	ORG	\$+1		ANALOG SCAN FORCE
	0136	*				
104C	0137	AVERR	ORG	\$+1		AVERAGE GAUGE ERROR USED BY FEEDBACK
	0138	*				
104D	0139	BACKTIME	ORG	\$+1		TRANSPORT TIME DELAY FOR FEEDBACK
	0140	*				
104E	0141	CIRCUM	ORG	\$+1		ROLL CIRCUMFRANCE IN MILLIMETERS
	0142	*				
104F	0143	COMPEN	ORG	\$+1		TAILED COMPENSATION VALUE
	0144	*				
	0145	*				
1050	0146	DEADBAND	ORG	\$+1		DEADBAND CALCULATED BY CALIB. PROGRAM
1051	0147	DELTAS	ORG	\$+1		IN ENCODER UNITS
	0148	*				
1052	0149	F0BK	ORG	\$+1		CHANGE IN S.D. FOR THIS STAND
	0150	*				STAND TO RECEIVE FEEDBACK
1053	0151	FEEDBUT	ORG	\$+1		FEEDBACK CORRECTION TO POSITIONING
	0152	*				
1054	0153	FEEDTIME	ORG	\$+1		SKID TRANSPORT TIME
	0154	*				
1055	0155	FIP	ORG	\$+1		FEEDBACK IN PROGRESS FLAG
	0156	*				
1056	0157	FORCELO	ORG	\$+1		FORCE LOCK ON

1057	0158	*		
1058	0159	FRSTSCAN	BRG	\$+1
1058	0160	*		
1059	0161	FRSTSKID	BRG	\$+1
1059	0162	*		
105A	0163	FRSTTAIL	BRG	\$+1
105A	0164	*		
105A	0165	GE	BRG	\$+1
105A	0166	*		
105B	0167	HEADEND	BRG	\$+1
105B	0168	*		
105C	0169	J1	BRG	\$+1
105D	0170	*		
105D	0171	K	BRG	\$+1
105E	0172	*		
105F	0173	*		
1060	0174	*		
1060	0175	*		
1061	0176	LIMFLAG	BRG	\$+1
1062	0177	*		
1063	0178	MANCOMP	BRG	\$+1
1064	0179	*		
1065	0180	MAXK	BRG	\$+1
1066	0181	*		
1067	0182	MAXRPM	BRG	\$+1
1068	0183	*		
1068	0184	MVEUP	BRG	\$+1
1068	0185	*		
1068	0186	MPM	BRG	\$+1
1068	0187	*		
1068	0188	BLDREF	BRG	\$+1
1068	0189	*		
1068	0190	BTHER	BRG	\$+1
1068	0191	*		
1068	0192	PLAST	BRG	\$+1
1068	0193	PLSCHL	BRG	\$+1
1068	0194	*		
1068	0195	POSITION	BRG	\$+1
1069	0196	*		
1071	0197	*		
1072	0198	*		
1072	0199	PTABLE	BRG	\$+1
1072	0200	BRG		\$+8
1072	0201	PULSE	BRG	\$+1
1073	0202	*		
1073	0203	PWTABLE	BRG	\$+1
1073	0204	BRG		\$+8
1073	0205	*		
107C	0206	RDIAMREG	BRG	\$+1
107D	0207	*		
107E	0208	RBLLDIAM	BRG	\$+1
1086	0209	*		
1087	0210	SAMPLSIZ	BRG	\$+1
1088	0211	BRG		\$+8
1089	0212	*		
108A	0213	SDL8	BRG	\$+1
108B	0214	*		
108C	0215	SCNDSCAN	BRG	\$+1
108D	0216	*		
108E	0217	SCREW	BRG	\$+1
1096	0218	*		
1097	0219	*		
1098	0220	SEPARATE	BRG	\$+1
1098	0221	*		
1098	0222	SKIDS	BRG	\$+1
1098	0223	*		
1098	0224	SKIDSIZE	BRG	\$+1
1098	0225	*		
1098	0226	SPEED	BRG	\$+1
1098	0227	*		
1098	0228	STANDEV	BRG	\$+1
1098	0229	BRG		\$+8
1098	0230	*		
1098	0231	TAILCOMP	BRG	\$+1
1098	0232	*		
1098	0233	TAILTIME	BRG	\$+1
1099	0234	*		
1099	0235	*		
1099	0236	TC8MPVAL	BRG	\$+1
109A	0237	*		
109A	0238	TC8MSOS	BRG	\$+1
109A	0239	*		
109B	0240	THICK	BRG	\$+1
109B	0241	EJE		
109C	0242	*		
109D	0243	*		
109E	0244	*		
109F	0245	L1	BRG	\$+1
109G	0246	L2	BRG	\$+1
109E	0247	L3	BRG	\$+1
109F	0248	L4	BRG	\$+1
10A0	0249	FXD8FF	BRG	\$+1
10A1	0250	FXDMUL	BRG	\$+1
10A2	0251	FXDSHF	BRG	\$+1
10A3	0252	PR8FWA	BRG	\$+1
10A4	0253	PR8RVA	BRG	\$+1
10A5	0254	GPTFLGS	BRG	\$+1
10A6	0255	REVLIM	BRG	\$+1
10A7	0256	FWDLIM	BRG	\$+1
10A8	0257	SPEEDS	BRG	\$+1

THIS SECTION IS REQUIRED FOR ALL DRIVES IN THE SYSTEM.

FEEDBACK PROPRT. INT. CONSTANT
FEEDBACK PRSPRT. INT. CONSTANT
FEEDBACK PRSPRT. INT. CONSTANT
FEEDBACK PROPRT. INT. CONSTANT
FEEDBACK PROPRT. INT. CONSTANT
FIXED PT. OFFSET
FIXED PT. MULT. FACTOR
'DRA' +X COEF
FORWARD PROFILE A
REVERSE PROFILE A
SPEED LIMIT OPTION FLAGS
REVERSE POSITION LIMIT
FORWARD POSITION LIMIT
FORWARD/REVERSE SPEED LIMITS

AGC TABLES

		0258	TTL	'AGC TABLES' X'1CC0'	
		0259	ORG		
1CC0		0260	*		
		0261	*		
		0262	*		
		0263	*		
		0264	*		
		0265	*		
1CC0	098A	08 1 BA A	0266	DAT	2490
1CC1	0A28	08 2 23 A	0267	DAT	2600
1CC2	0A96	08 2 96 A	0258	DAT	2710
1CC3	0B04	08 3 04 A	0269	DAT	2820
1CC4	0E72	08 3 72 A	0270	DAT	2930
1CC5	02EA	08 3 EA A	0271	DAT	3050
1CC6	0C62	08 4 62 A	0272	DAT	3170
1CC7	0L48	08 5 48 A	0273	DAT	3400
		0274	*		
1CC8	0744	00 7 44 A	0275	DAT	1860
1CC9	07AD	00 7 AD A	0276	DAT	1965
1CCA	0816	08 0 16 A	0277	DAT	2070
1CCB	087F	08 0 7F A	0278	DAT	2175
1CCC	08E8	08 0 E8 A	0279	DAT	2280
1CCU	0951	08 1 51 A	0280	DAT	2385
1CCE	098A	08 1 BA A	0281	DAT	2490
1CCF	0A8C	08 2 8C A	0282	DAT	2700
		0283	*		
1CD0	0596	00 5 96 A	0284	DAT	1430
1CD1	0604	00 6 04 A	0285	DAT	1540
1CD2	0672	00 6 72 A	0286	DAT	1650
1CD3	06E0	00 6 EA A	0287	DAT	1760
1CD4	074E	00 7 4E A	0288	DAT	1870
1CD5	07BC	00 7 BC A	0289	DAT	1980
1CD6	07D0	00 7 D0 A	0290	DAT	2000
1CD7	08E6	08 0 8E A	0291	DAT	2190
		0292	*		
1CD8	04CE	00 4 CE A	0293	DAT	1230
1CD9	0528	00 5 28 A	0294	DAT	1320
1CDA	0582	00 5 82 A	0295	DAT	1410
		0296			
1CDB	05DC	00 5 DC A	0296	DAT	1500
1CDC	0636	00 6 36 A	0297	DAT	1590
1CDD	0690	00 6 90 A	0298	DAT	1680
1CDE	06EA	00 6 EA A	0299	DAT	1770
1CDF	078A	00 7 8A A	0300	DAT	1930
		0301	*		
1CE0	042E	00 4 2E A	0302	DAT	1070
1CE1	047A	00 4 7A A	0303	DAT	1146
1CE2	04C6	00 4 C6 A	0304	DAT	1222
1CE3	0512	00 5 12 A	0305	DAT	1298
1CE4	055E	00 5 5E A	0306	DAT	1374
1CE5	05AA	00 5 AA A	0307	DAT	1450
1CE6	05FA	00 5 FA A	0308	DAT	1530
1CE7	0690	00 6 90 A	0309	DAT	1680
		0310	*		
1CE8	03DE	00 3 DE A	0311	DAT	990
1CE9	0420	00 4 20 A	0312	DAT	1056
1CEA	0462	00 4 62 A	0313	DAT	1122
1CEB	04A4	00 4 4A A	0314	DAT	1188
1CEC	04E6	00 4 E6 A	0315	DAT	1254
1CED	0528	00 5 28 A	0316	DAT	1320
1CEE	056E	00 5 6E A	0317	DAT	1390
1CEF	05F0	00 5 FU A	0318	DAT	1520
		0319	*		
1CF0	03C0	00 3 C0 A	0320	DAT	960
1CF1	03EE	00 3 EE A	0321	DAT	1006
1CF2	041C	00 4 1C A	0322	DAT	1052
1CF3	044A	00 4 4A A	0323	DAT	1098
1CF4	0478	00 4 78 A	0324	DAT	1144
1CF5	04A6	00 4 A6 A	0325	DAT	1190
1CF6	04D8	00 4 D8 A	0326	DAT	1240
1CF7	053C	00 5 3C A	0327	DAT	1340
		0328			
1D00		0330	ORG	X'1D00'	
		0331	*		
		0332	*		
		0333	*		
		0334	*		
1D00	18 5 00 A	0335	FORCE1	EQU	*
		0336	*		
1D00	0000	00 0 00 A	0337		
1D01	0258	00 2 58 A	0338	DAT	0
1D02	0480	00 4 80 A	0339	DAT	600
1D03	0708	00 7 08 A	0340	DAT	1200
1D04	0960	08 1 60 A	0341	DAT	1800
1D05	0B88	08 3 88 A	0342	DAT	3000
		0343	*		
1D06	0C00	00 0 00 A	0344	DAT	0
1D07	0258	00 2 58 A	0345	DAT	600
1D08	0480	00 4 80 A	0346	DAT	1200
1D09	0708	00 7 08 A	0347	DAT	1800
1D0A	0960	08 1 60 A	0348	DAT	2400
1D0B	0B88	08 3 88 A	0349	DAT	3000
		0350	*		
1D0C	0000	00 0 00 A	0351	DAT	0
1D0D	0258	00 2 58 A	0352	DAT	600
1D0E	0480	00 4 80 A	0353	DAT	1200
1D0F	0708	00 7 08 A	0354	DAT	1800
1D10	0960	08 1 60 A	0355	DAT	2400
1D11	0B88	08 3 88 A	0356	DAT	3000
		0357	*		
1D12	0C00	00 0 00 A	0358	DAT	0
1D13	0258	00 2 58 A	0359	DAT	600

GAUGE CLASSIFICATION TABLE FOR
EXIT GAUGES. VALUE IS IN ENCODER
UNITS + 800 (THE TECH. OFFSET OF
-1000)

DRIVE 1 DATA

DRIVE 2 DATA

DRIVE 3 DATA

DRIVE 5 DATA

DRIVE 6 DATA

DRIVE 7 DATA

ADJUST IN FIELD

DRIVE 1 DATA

DRIVE 2 DATA

DRIVE 3 DATA

DRIVE 4 DATA

DRIVE 5 DATA

TABLE OF FORCES FOR SELECTING K'S
IN UNITS OF METRIC TONS
FIRST ENTRY IS SMALLEST

AGC TABLES

1D14	0450	00 4 B3 A	0350	DAT	1200	
1D15	0708	00 7 03 A	0351	DAT	1800	
1D16	0560	08 1 63 A	0352	DAT	2400	
1D17	0888	08 3 B3 A	0353	DAT	3000	
			0354 *			DRIVE 5 DATA
1D18	0000	00 0 03 A	0355	DAT	0	
1D19	0258	00 2 53 A	0356	DAT	600	
1D20	0480	00 4 B3 A	0357	DAT	1200	
1D21	0708	00 7 03 A	0358	DAT	1800	
1D22	0560	08 1 63 A	0359	DAT	2400	
1D23	0888	08 3 B3 A	0370	DAT	3000	
			0371 *			DRIVE 6 DATA
1D24	0000	00 0 00 A	0372	DAT	0	
1D25	0258	00 2 53 A	0373	DAT	600	
1D26	0480	00 4 B3 A	0374	DAT	1200	
1D27	0708	00 7 03 A	0375	DAT	1800	
1D28	0560	08 1 63 A	0376	DAT	2400	
1D29	0888	08 3 B3 A	0377	DAT	3000	
			0378 *			DRIVE 7 DATA
1D40	0357		BRG	X'1D40'		
	0388 *					TABLE OF K'S FOR FORCES
	0389 *					IN ENCODER UNITS PER KILOTON
	0390 *					ADJUST IN FIELD
1D40	18 5 40 A	0391 KTABLE	EQU	\$		
	0392 *					DRIVE 1 DATA
1D40	0050	00 0 50 A	0393	DAT	80	
1D41	00A0	00 0 A0 A	0394	DAT	160	
1D42	00A0	00 0 A0 A	0395	DAT	160	
1D43	0CA0	00 0 A0 A	0396	DAT	160	
1D44	0CA0	00 0 A0 A	0397	DAT	160	
1D45	0CA0	00 0 A0 A	0398	DAT	160	
	0399 *					DRIVE 2 DATA
1D46	0050	00 0 50 A	0400	DAT	80	
1D47	0CA0	00 0 A0 A	0401	DAT	160	
1D48	0CA0	00 0 A0 A	0402	DAT	160	
1D49	0CA0	00 0 A0 A	0403	DAT	160	
1D4A	0CA0	00 0 A0 A	0404	DAT	160	
1D4B	0CA0	00 0 A0 A	0405	DAT	160	
	0406 *					DRIVE 3 DATA
1D4C	0050	00 0 50 A	0407	DAT	80	
1D4D	0CA0	00 0 A0 A	0408	DAT	160	
1D4E	0CA0	00 0 A0 A	0409	DAT	160	
1D4F	0CA0	00 0 A0 A	0410	DAT	160	
1D50	0CA0	00 0 A0 A	0411	DAT	160	
1D51	0CA0	00 0 A0 A	0412	DAT	160	
	0413 *					DRIVE 4 DATA
1D52	0050	00 0 50 A	0414	DAT	80	
1D53	0CA0	00 0 A0 A	0415	DAT	160	
1D54	0CA0	00 0 A0 A	0416	DAT	160	
1D55	0CA0	00 0 A0 A	0417	DAT	160	
1D56	0CA0	00 0 A0 A	0418	DAT	160	
1D57	0CA0	00 0 A0 A	0419	DAT	160	
	0420 *					DRIVE 5 DATA
1D58	0050	00 0 50 A	0421	DAT	80	
1D59	0CA0	00 0 A0 A	0422	DAT	160	
1D5A	0CA0	00 0 A0 A	0423	DAT	160	
1D5B	0CA0	00 0 A0 A	0424	DAT	160	
1D5C	0CA0	00 0 A0 A	0425	DAT	160	
1D5D	0CA0	00 0 A0 A	0426	DAT	160	
	0427 *					DRIVE 6 DATA
1D5E	0050	00 0 50 A	0428	DAT	80	
1D5F	0CA0	00 0 A0 A	0429	DAT	160	
1D60	0CA0	00 0 A0 A	0430	DAT	160	
1D61	0CA0	00 0 A0 A	0431	DAT	160	
1D62	0CA0	00 0 A0 A	0432	DAT	160	
1D63	0CA0	00 0 A0 A	0433	DAT	160	
	0434 *					DRIVE 7 DATA
1D64	0050	00 0 50 A	0435	DAT	80	
1D65	0CA0	00 0 A0 A	0436	DAT	160	
1D66	0CA0	00 0 A0 A	0437	DAT	160	
1D67	0CA0	00 0 A0 A	0438	DAT	160	
1D68	00A0	00 0 A0 A	0439	DAT	160	
1D69	0CA0	00 0 A0 A	0440	DAT	160	

AUTOMATIC GAUGE CONTROL

0441	TTL	X'AUTOMATIC GAUGE CONTROL'	
0442 *			THIS PROGRAM MODIFIED 3/15/71
0443 *			
0444 *			
0445 *			
0446 *			
0447 *			
0448 *			
0449 *			
0450 *			
0451 *			
0452 *			
0453 *			
4100	0454	BRG	X'4100'
4100	41A8	DAT	BEGIN-1
4101	0000	DAT	0
4102	0000	DAT	0

AUTOMATIC GAUGE CONTROL

4103	0000	00 0 00 A	0458	DAT	0
4104	0000	00 0 00 A	0459	DAT	0
4105	0000	00 0 00 A	0460	DAT	0
4106	0000	00 0 00 A	0461	DAT	0
4107	0000	00 0 00 A	0462	DAT	0
4108	0000	00 0 00 A	0453	DAT	0
4109	0000	00 0 00 A	0454	DAT	0
410A	0000	00 0 00 A	0455	DAT	0
410B	0000	00 0 00 A	0466	DAT	0
410C	0000	00 0 00 A	0467	DAT	0
410D	0000	00 0 00 A	0458	DAT	0
410E	0000	00 0 00 A	0459	DAT	0
410F	0000	00 0 00 A	0470	D	DAT 0

0471 EJE

0472 *

0473 *

0474 *

0475 *

0476 *

0477 *

0478 *

THIS DATA MUST BE DEFINED BY PROGRAMMER

OUTPUT SYSTEM FOR LOGGERS
0 FOR DIGITAL SYSTEMS
1 FOR ANALOG SYSTEMS

0001	00 0 01 A	0479	DIGLBBP	EQU	1
		0480			
		0481			
4110	4001	40 0 01 A	0482	AGCNUM	DAT X'4001'
4111	007F	00 0 7F A	0483	*	
4112	0004	00 0 04 A	0484	AGCPAT	DAT X'7F'
4113	18F3	18 0 F3 A	0485	*	
4114	0000	00 0 00 A	0486	AGCREG	DAT 4
4115	0020	00 0 20 A	0487	*	
4116	0800	08 0 00 A	0488	AGCMREG	DAT X'18F3'
4117	0100	00 1 00 A	0489	*	
4118	0100	00 1 00 A	0490	AGCPAT1	DAT 0
4119	0002	00 0 02 A	0491	*	
411A	1000	18 5 00 A	0492	BITPAT1	DAT X'201'
		0493	*		
		0494	*		
		0495	BITPAT2	DAT X'8001'	
		0496	*		
		0497	*		
		0498	BITPAT3	DAT X'1001'	
		0499	*		
		0500	BITPAT4	DAT X'1001'	
		0501	*		
		0502	*		
		0503	DELAY	DAT	2
		0504			
		0505	FORCEP	DAT	FORCE1
		0506			
		0507	*		
		0508	*		
		0509			
		0510	GAGETBLE	EQU	\$
411B	0078	00 0 78 A	0511	DAT	120
411C	008C	00 0 8C A	0512	DAT	140
411D	00A0	00 0 A0 A	0513	DAT	160
411E	0054	00 0 B4 A	0514	DAT	180
411F	00C8	00 0 C8 A	0515	DAT	200
4120	00DC	00 0 DC A	0516	DAT	220
4121	00F0	00 0 F0 A	0517	DAT	240
4122	0104	00 1 04 A	0518	DAT	260
4123	0118	00 1 18 A	0519	DAT	280
4124	012C	00 1 2C A	0520	DAT	300
4125	0140	00 1 40 A	0521	DAT	320
4126	0154	00 1 54 A	0522	DAT	340
4127	0168	00 1 68 A	0523	DAT	360
4128	017C	00 1 7C A	0524	DAT	380
4129	0190	00 1 90 A	0525	DAT	400
		0526	*		
		0527	GAGEBIT1	DAT	X'8001'
		0528	*		
		0529	GAGEBIT2	DAT	X'20001'
		0530	*		
		0531	HARDBITS	DAT	X'FO1'
		0532	*		
		0533	HARDREG	DAT	X'18F11'
		0534			
		0535			
		0536	*		
		0537	*		
		0538	*		
		0539	*		
		0540	*		
		0541	*		
		0542	*		
412E	40 1 2E A	0543	HARDTBL	EQU	\$
		0544	*		
412E	0064	00 0 64 A	0545	DAT	100
412F	0065	00 0 65 A	0546	DAT	101
4130	0066	00 0 66 A	0547	DAT	102
4131	0067	00 0 67 A	0548	DAT	103
4132	0068	00 0 68 A	0549	DAT	104
4133	0069	00 0 69 A	0550	DAT	105
4134	006A	00 0 6A A	0551	DAT	106
4135	006B	00 0 6B A	0552	DAT	107
4136	006C	00 0 6C A	0553	DAT	108
4137	006D	00 0 6D A	0554	DAT	109
		0555	*		
		0556	INDEXSIZ	DAT	0
		0557	*		
		0558	*		

TABLE OF % CORRECTIONS TO P FOR
HARDNESS
FIRST ENTRY IS FOR NO CORRECTION
SECOND ENTRY IS FOR SMALLEST
CORRECTION
PERCENT SHOULD BE GREATER THAN 100
ADJUST IN FIELD

100% NO CORRECTION

SPEED DIFFERENCE FACTOR

PROPORTIONAL INTEGRATOR FOR XRAY
FEEDBACK

AUTOMATIC GAUGE CONTROL

4139	003C	00 0 3C A	0559	J2	DAT	60	
413A	0078	00 0 74 A	0560	J3	DAT	120	
413B	0096	00 0 96 A	0561	J4	DAT	150	
			0562				
413C	1D40	18 5 40 A	0563	KTABLEP	DAT	KTABLE	POINTER TO K TABLE
			0564				
			0565	*			
			0566	*			
			0567	*			
413D	000A	00 0 0A A	0568	LIMIT	DAT	10	MAX. ALLOWED % CHANGE IN SCREWDOWN
413E	0080	00 0 80 A	0569	LOOPSET	DAT	X'80'	(FROM LOCKON). FEEDBACK OCCURS
			0570	*			WHEN REF REACHES 'LIMIT'
			0571	*			
413F	000C	00 0 0C A	0572	MAXALLOW	DAT	12	MAX INITIAL XRAY DEV BEFORE LOCK
			0573	*			*ON OCCURS
4140	0019	00 0 19 A	0574	MAXGAGE	DAT	25	MAXIMUM GAGE IN PERCENT
			0575	*			
			0576	*			
4141	0A28	08 2 28 A	0577	MAXWIDTH	DAT	2600	MAX WIDTH OF MILL PRODUCTS
4142	0000	00 0 00 A	0578	M8NPAT0F	DAT	0	IN MILLIMETERS
4143	0000	00 0 00 A	0579	M8N0FFAT	DAT	0	
			0580	*			
4144	18F7	18 0 F7 A	0581	MHOLDREG	DAT	X'18F7'	MON. HOLD LIGHT OFF CCI PATTERN
			0582	*			MON. LIGHT OFF CCI PATTERN
4145	FFE7	F8 7 E7 A	0583	MINGAGE	DAT	*25	MON. HOLD CCI REGISTER ADDRESS
			0584	*			
4146	000A	00 0 0A A	0585	MOND BAND	DAT	10	MINIMUM GAGE IN PERCENT
			0586	*			
4147	0800	08 0 00 A	0587	MON8NMSK	DAT	X'800'	MONITOR ON LIGHT MASK
			0588	*			
4148	0800	08 0 00 A	0589	MON8NPAT	DAT	X'800'	MONITOR ON LIGHT PATTERN
			0590				
4149	4C01	40 0 01 A	0591	MON8N0UM	DAT	X'4001'	MONITOR ON LIGHT REGISTER
			0592	*			
414A	0004	00 0 04 A	0593	MON8NREG	DAT	4	NUMBER OF DRIVES
			0594	*			
414B	0007	00 0 07 A	0595	N80FDRVS	DAT	7	XRAY MONITOR ON CCI BIT PATTERN
			0596	*			
414C	0100	00 1 00 A	0597	8NBITPAT	DAT	X'100'	TEMPORARY REFERENCE FOR STRTPES
			0598	*			
414D	0000	00 0 00 A	0599	P8SITN	DAT	0	NUMBER OF T.D. FOR XRAY SCAN
			0600	*			
414E	0004	00 0 04 A	0601	PRGRAMM	DAT	4	PULSES PER REVOLUTIONS
			0602	*			
414F	0064	00 0 64 A	0603	PULPREV	DAT	100	MON. HOLD CCI BIT PATTERN
			0604	*			
4150	0200	00 2 00 A	0605	GAGEPAT	DAT	X'200'	ESTIMATE OF TIME FOR SCREWS TO PBS.
			0606	*			IN TENTHS OF SECONDS
			0607				
4151	000A	00 0 0A A	0608	SCRDELAY	DAT	10	FORCE ADJUSTMENT TABLE BASED ON
			0609	*			SPEED
			0610	*			
			4152	40 1 52 A	0611	SPEEDTAB EQU	\$
4152	0000	00 0 00 A	0612	DAT	0		
4153	0000	00 0 00 A	0613	DAT	0		
4154	0000	00 0 00 A	0614	DAT	0		
4155	0000	00 0 00 A	0615	DAT	0		
4156	0C00	00 0 00 A	0616	DAT	0		
4157	0000	00 0 00 A	0617	DAT	0		
			0618	*			MON. SELECTED CCI BIT PATTERN
			0619	*			(PER STAND BASIS)
4158	1000	10 0 00 A	0620	STD8M8BT	DAT	X'1000'	THICKNESS CCI REGISTER
			0621	*			
4159	18EE	18 0 EE A	0622	THREG1	DAT	X'18EE'	
			0623	THREG2	DAT	X'18F0'	'MONITIME' TIME FUNCTION
415A	18F0	18 0 F0 A	0624	*			
			0625	TIMEFUNC	DAT	3	NUMBER OF ENCODER UNITS PER MILLIMET
415C	0050	00 0 50 A	0626	*			
415D	0032	00 0 32 A	0627	UNITSPMM	DAT	80	WIDTH CORR FACTOR FOR 1K
			0628	*			
415E	1903	18 1 03 A	0629	WFACTR	DAT	50	WIDTH CCI REGISTER
			0630	*			
415F	0096	00 0 96 A	0631	WIDTHREG	DAT	X'1903'	DISTANCE BETWEEN XRAYS IN MM
			0632	*			
4160	18F7	18 0 F7 A	0633	XDIST	DAT	150	XRAY 1 MEAS. CCI REGISTER ADDRESS
			0634	*			
4161	18F7	18 0 F7 A	0635	XRAY1REG	DAT	X'18F7'	XRAY 2 MEAS. CCI REGISTER ADDRESS
			0636	*			
4162	0004	00 0 04 A	0637	XRAY2REG	DAT	X'18F7'	HEAD END DELAY TIME
			0638	*			
4163	0400	00 4 00 A	0639	XRHDTIME	DAT	4	XRAY 1 SLCT. CCI BIT PATTERN
			0640	*			
4164	1000	10 0 00 A	0641	XSELBIT1	DAT	X'4001'	XRAY 2 SLCT. CCI BIT PATTERN
			0642	*			
4165	18F7	18 0 F7 A	0643	XSELBIT2	DAT	X'10001'	XRAY 1 SLCT. CCI REGISTER ADDRESS
			0644	*			
4166	18F7	18 0 F7 A	0645	XSELREG1	DAT	X'18F7'	XRAY 2 SLCT. CCI REGISTER ADDRESS
			0646	*			
4167	18F7	18 0 F7 A	0647	XSELREG2	DAT	X'18F7'	XRAY MON. ON CCI REGISTER ADDRESS
			0648	*			
			0649	XRNREG	DAT	X'18F7'	
			EJE				
			0650	*			THIS DATA IS INTERNAL TO PROGRAM
			0651	*			
			0652	*			AGC LIGHT CCI MASK
			0653	*			
4168	0000	00 0 00 A	0654	*			
			0655	AGCMASK	DAT	0	AVERAGE GAUGE DEVIATION
4169	0000	00 0 00 A	0656	*			
			0657	AVERDEV	DAT	0	AVERAGE MONITOR DEVIATION IN
			0658	*			ENCODER UNITS
			0659	*			
416A	0C00	00 0 00 A	0660	AVERAGER	DAT	0	

AUTOMATIC GAUGE CONTROL

416B	0000	00 0 03 A	0661	*		
416C	0000	00 0 03 A	0662	*		
			0663	CAL1	DAT	0
			0664	CAL2	DAT	0
			0665	*		
416D	0000	00 0 00 A	0666	CBMPF	DAT	0
			0667	*		
416E	0000	00 0 03 A	0668	COUNT	DAT	0
			0669	*		
416F	0000	00 0 00 A	0670	DEVWEIGF	DAT	0
4170	0000	00 0 03 A	0671	DGE	DAT	0
4171	0000	00 0 03 A	0672	*	DAT	0
			0673	*		
4172	0000	00 0 03 A	0674	DRNS	DAT	0
4173	0000	00 0 03 A	0675	FDEV	DAT	0
4174	0000	00 0 03 A	0676	FILEADR	DAT	0
4175	0000	00 0 03 A	0677	FRSTX	DAT	0
			0678	*		
4176	0000	00 0 00 A	0679	GAGEREAP	DAT	0
4177	0000	00 0 03 A	0680	GAIN	DAT	0
			0681	*		
4178	0000	00 0 00 A	0682	GAUDEDEV	DAT	0
			0683	*		
4179	0000	00 0 03 A	0684	HARDNESS	DAT	0
			0685	*		
417A	0000	00 0 03 A	0686	HEADWF	DAT	0
417B	0000	00 0 03 A	0687	INDEX	DAT	0
			0688	*		
417C	0000	00 0 00 A	0689	LASTSTND	DAT	0
417D	0000	00 0 03 A	0690	LIM0	DAT	0
417E	0000	00 0 00 A	0691	LIM1	DAT	0
417F	0000	00 0 03 A	0692	LIM2	DAT	0
			0693	*		
			0694	*		
4180	0000	00 0 00 A	0695	MPMLS	DAT	0
			0696	*		
			0697	*		
4181	0000	00 0 00 A	0698	MONITIME	DAT	0
			0699	*		
4182	0000	00 0 00 A	0700	NEWMEAN	DAT	0
4183	0000	00 0 03 A	0701	NEWMEAN2	DAT	0
4184	0000	00 0 00 A	0702	*	DAT	0
4185	0000	00 0 03 A	0703	NEWSIZE	DAT	0
			0704	*		
4186	0000	00 0 00 A	0705	NOMINAL	DAT	0
			0706	*		
4187	0000	00 0 00 A	0707	BLDMEAN	DAT	0
4188	0000	00 0 00 A	0708	BLDMEAN2	DAT	0
4189	0000	00 0 00 A	0709	*	DAT	0
			0710	*		
418A	0000	00 0 03 A	0711	BLDSIZE	DAT	0
			0712	*		
418B	0000	00 0 00 A	0713	BUTBFLIM	DAT	0
			0714	*		
418C	0000	00 0 00 A	0715	PRCNTDEY	DAT	0
			0716	*		
418D	0000	00 0 03 A	0717	PW	DAT	0
418E	0000	00 0 03 A	0718	*	DAT	0
			0719	*		
418F	0000	00 0 00 A	0720	PUK	DAT	0
			0721	*		
4190	0000	00 0 03 A	0722	RETURN	DAT	0
4191	0000	00 0 03 A	0723	SAVEB	DAT	0
			0724	*		
4192	0000	00 0 03 A	0725	SAVEC	DAT	0
			0726			
4193	0000	00 0 00 A	0727			
4194	0000	00 0 00 A	0728	STANDWF	DAT	0
			0729			
4195	0000	00 0 00 A	0730	TEMPDRN8	DAT	0
			0731	*		
4196	0000	00 0 00 A	0732	TEMP	DAT	0
4197	0000	00 0 00 A	0733	*	DAT	0
4198	0000	00 0 00 A	0734	THICKREG	DAT	0
			0735	*		
			0736	*		
4199	0000	00 0 03 A	0737	WF	DAT	0
			0738	*		
419A	0000	00 0 00 A	0739	WIDTH	DAT	0
4198	0000	00 0 00 A	0740	XTEMP	DAT	0
419C	0000	00 0 00 A	0741	*	DAT	0
419D	0000	00 0 00 A	0742	FBXRAY	DAT	0
419E	0000	00 0 00 A	0743	FBCEADR	DAT	0
419F	0000	00 0 00 A	0744	KTABLADR	DAT	0
			0745			
			0746			
41A0			0747	RES	9	
			0748	EJE		
			0749	*		
0000	00 0 00 A		0750	SLA	EQU	0
4000	40 0 00 A		0751	*		
8000	80 0 00 A		0752	SRA	EQU	X'4000'
C000	C0 0 00 A		0753	*		
			0754	DLA	EQU	X'8000'
			0755	DRA	EQU	X'0000'
			0756			
0004	00 0 04 A		0757	MOO	EQU	4
0080	00 0 80 A		0758	K:X1	EQU	X'801
0081	00 0 81 A		0759	K:X2	EQU	X'811
00AC	00 0 AC A		0760	K:X3	EQU	X'AC1
0082	00 0 82 A		0761	K:X4	EQU	X'821
00AD	00 0 AD A		0762	K:X5	EQU	X'AD1

STAND CALIBRATION STATUS AS DETERMINED BY THE FEEDBACK ROUTINE

STAND COMPENSATION FACTOR

NEW GAUGE

GAUGE THICKNESS OF LAST STAND PRODUCT

LAST STAND STRIP VELOCITY IN METERS /MIN

MONITOR TRANSPORT TIME DELAY FROM APPLICATION TO TABLE

NEW MEAN PW

NOMINAL GAUGE

BLD MEAN PW

BLD SAMPLE SIZE

LAST STAND REQUIRES FEEDBACK

PERCENT DEVEATION

PLASTICITY *WIDTH

K CORRECTION FACTOR

RETURN ADDRESS FOR FEEDBACK ROUTINE

AVERAGE MONITOR DEVIATION WEIGHTING FLAG

WIDTH OF STRIP

SHIFT LEFT ARITHMETIC

SHIFT RIGHT ARITHMETIC

DOUBLE LEFT ARITHMETIC

DOUBLE RIGHT ARITHMETIC

AUTOMATIC GAUGE CONTROL

0CA8	00 0	AB A	0753	K:X6	EQU	X'AB'
0CAE	00 0	AE A	0754	K:X7	EQU	X'AE'
0CB3	00 0	B3 A	0755	K:X8	EQU	X'B3'
0CAF	00 0	AF A	0756	K:X9	EQU	X'AF'
0CB4	00 0	B4 A	0757	K:X10	EQU	X'B4'
0CB5	00 0	B5 A	0758	K:X20	EQU	X'B5'
0CA2	00 0	A2 A	0759	K:XFF	EQU	X'A2'
0CA0	00 0	AJ A	0770	K:XFFFF	EQU	X'A0'
0C48	00 0	48 A	0771	DTAFLES	EQU	X'48'
0C49	00 0	49 A	0772	TMDLYTBL	EQU	X'49'
0C4C	00 0	4C A	0773	MESSAGE	EQU	X'4C'
0C29	00 0	29 A	0774	S:CC6	EQU	X'29'
0C36	00 0	36 A	0775	GRAYBIN	EQU	X'36'
0C38	00 0	38 A	0776	STRTPBS	EQU	X'38'
002E	00 0	C 2E A	0777	TWHEX	EQU	X'2E'
			0778	*		
			0779	*		
0090	00 0	90 A	0780	XRAY	EQU	X'90'
			0781	*		
0C91	00 0	91 A	0782	XRAYNB	EQU	X'91'
			0783	*		
0092	00 0	92 A	0784	SCANNUM	EQU	X'92'
0064	00 0	64 A	0785	HEADGAGE	EQU	X'64'
			0786	EJE		
			0787	*		
			0788	*		
41A9	0A27	08 2 27 A	0789	BEGIN	LDB	=D
41AA	3004	30 0 04 A	0790		CDR	M00
410F		40 1 0F A	0791		BSB	D
			0792	*		
			0793			
			0794	*		
			0795	*		
			0796	*		
41AB	2892	28 0 92 A	0797		LDA	SCANNUM
41AC	AAC6	A8 2 C0 A	0798		STA	DRN8
41AD	2C04	28 5 04 A	0800		LDA	*AGCMREG
41AE	5C06	58 4 09 A	0801		AND	BITPAT1
			0802	*		
			0803	*		
41AF	F215	F0 2 15 A	0804		ZJP	N8G88UX
41B0	2AC2	28 2 C2 A	0805		LDA	DRN8
41B1	46B3	48 0 B3 A	0806		SUB	K:X8
			0807	*		
41B2	B31F	B0 3 1F A	0808		PJP	XRAYPR
			0809	*		
41B3	2A1F	28 2 1F A	0810		LDA	=SLA
41B4	42B5	40 2 B5 A	0811		ADD	DRN8
41B5	46B0	48 0 BJ A	0812		SUB	K:X1
41B6	A603	A8 0 03 A	0813		STA	G
41B7	2860	28 0 B9 A	0814		LDA	K:X1
41B8	9605	98 0 05 A	0815		SHF	A
			0816	*		
41B9	AAAF	A8 2 AF A	0817		STA	AGCMASK
			0818	*		
			0819	*		
41B8	2448	28 0 45 A	0820		LDA	DTAFLES
41B5	4457	48 2 B7 A	0821		SUB	DRN8
41B6	1105	10 1 05 A	0822		LDC	*A
41B6	2905	28 1 05 A	0823		LDA	*A
			0824		STA	SAVEC
41B8	AAD4	A8 2 D4 A	0825		BSC	FILE
	1000	10 0 00 A	0826	*		
			0827		LDA	MCI
41C0	6C05	60 0 05 A	0828		INC	A
41C1	2905	28 1 05 A	0829		LDA	*A
41C2	5C07	58 4 07 A	0830		AND	BITPAT2
41C3	F204	F0 2 04 A	0831		ZJP	N8G88D
41C4	72C8	70 2 0F A	0832		JMP	CHKAUTB
			0833			
41C5	40 1 C5 A	0834	N8G88DX	EQU	\$	
41C5	2C02	28 4 02 A	0835	LDA	AGCPAT	
41C6	AA2A	A8 2 A2 A	0836	STA	AGCMASK	
41C7	7201	70 2 01 A	0837	JMP	N8G88D+1	
41C8	40 1 C8 A	0838	N8G88D	EQU	\$	
			0839	*		
			0840		STZ	HEADEND
			0841	*		
			0842	*		
41C9	ED29	E8 5 29 A	0843	SST	*SICCO,B	
41CA	0C01	00 0 01 A	0844	DAT	AGCNUM+D	
41CB	0C05	00 0 05 A	0845	DAT	AGCPAT1-D	
41CC	0003	00 0 03 A	0846	DAT	AGCREG+D	
41CD	0059	00 0 59 A	0847	DAT	AGCMASK+D	
41CE	EDE7	E8 5 E7 A	0848	END	SST	*EXIT,B
41CF	7209	70 2 D9 A	0849	JMP	BEGIN	
41D0	410F	40 1 0F A	0850	LPL		
41D1	43E1	40 3 E1 A				
41D2	0C03	00 0 03 A				
41D3	41D3	40 1 D3 A				
			0851	EJE		

41D4	40 1	D4 A	0852	*	IS AUTO SELECTED FOR THE STAND	
41D4	2E23	28 6 23 A	0853	CHKAUTO	EOU	\$
41D5	6C05	6C 0 05 A	0854	LDA	MCI	
41D5	2905	28 1 05 A	0855	INC	A	
41D6	5C08	55 4 08 A	0856	LDA	*A	
41D7	F2F	F0 2 EF A	0857	AND	BITPAT3	
41D8			0858	ZJP	NOG99D	
			0859	*	ARE SCREWS CALIBERATED	
			0860	*	NB: ZJP NOG99D	
41D9	2E11	28 6 11 A	0851	LDA	CALFLAG	

AUTOMATIC GAUGE CONTROL

41DA	B2ED	80 2 ED A	0862	PJP	NCG08D	
			0863	*		IS STRIP IN STAND FLAG SET
			0864	*		NO: ZJP END
41DB	2E27	28 6 27 A	0865	LDA	SIS	
41DC	F2F1	F0 2 F1 A	0866	ZJP	END	
			0867	*		IS THIS FIRST SCAN IN STRIP
			0868	*		NO: NJP NTHHEAD
41DD	2E5B	28 6 53 A	0869	LDA	HEADEND	
41DE	BA55	56 2 55 A	0870	NJP	NTHHEAD	
41DF	3E5B	38 6 53 A	0871	*		THIS IS FIRST SCAN
41EO	6E5B	68 6 53 A	0872	STZ	HEADEND	
			0873	*		SET 'HEAD END WAS PROCESSED' FLAG
			0874	*		SAVE SCREWDOWN LOCK ON
			0875	*		READ ENCODER
			0876	*		STORE VALUE
41E1	ED36	E8 5 36 A	0877	SST	*GRAYBIN,B	
41E2	AE87	A8 6 87 A	0878	*		SAVE LOCK ON SPEED
41E3	2E8D	28 6 80 A	0879	STA	SDLB	
41E4	AE40	A8 6 40 A	0880	*		SAVE LOCK ON SPEED
			0881	LDA	SPEED	
			0882	STA	SPEEDLB	
			0883	*		SAVE LOCK ON FORCE (METRIC TONS)
41E5	2E4B	28 6 43 A	0884	LDA	ANFORCE	
41E6	AE56	A8 6 56 A	0885	STA	F5RCLE0	
			0886	*		SAVE REAL SCREWDOWN LOCKON
41E7	2E40	28 6 AD A	0887	LDA	FX05FF	
41E8	D44D	DO 4 4D A	0888	MPY	UNITSPPM	
41E9	DA46	08 2 48 A	0889	DIV	*100	
41EA	4687	40 6 87 A	0890	ADD	SDLB	
41EB	AE3F	A8 6 3F A	0891	STA	REALSDLB	
			0892			FIND FORCE TABLE
41EC	2A86	28 2 86 A	0893	LDA	DRNB	
41ED	6805	68 0 05 A	0894	DCR	A	
41EE	DCAB	DO 0 AB A	0895	MPY	K;X6	
41EF	AE04	A8 0 04 A	0896	STA	E	
41FO	440B	40 4 0B A	0897	ADD	FORCEP	
41F1	AAAD	AB 2 AD A	0898	STA	FORCEADR	
41F2	2C2D	28 4 2D A	0899	LDA	KTABLEP	
41F3	4C04	40 0 04 A	0900	ADD	E	
41F4	AAAB	A8 2 AB A	0901	STA	KTABLADR	
			0902	*		CALCULATE THE K
			0903	*		LOOK UP K FOR THIS FORCE
			0904	*		
			0905	*		FORCE 1 IS SMALLEST FORCE IN THIS
41F5	3C5F	38 4 5F A	0906	STZ	COUNT	DRIVE'S SECTION OF FORCE TABLE
41F6	2AA8	28 2 A3 A	0907	LARGERF	LDA	
			0908	*		
			0909	*		
41F7	445F	40 4 5F A	0910	ADD	COUNT	
41F8	2905	28 1 05 A	0911	LDA	*A	
41F9	4E56	48 6 56 A	0912	SUB	FORCELE0	
			0913	*		IS TABLE FORCE EXCEEDED
			0914	*		YES: PJP THISFRC
41FA	B207	80 2 07 A	0915	PJP	THISFRC	
41FB	645F	60 4 5F A	0916	INC	COUNT	
41FC	2C5F	28 4 5F A	0917	LDA	COUNT	
41FD	4EAD	48 0 AD A	0918	SUB	K;X5	
41FE	B201	80 2 01 A	0919	PJP	*#2	
41FF	72F6	70 2 F6 A	0920	JMP	LARGERF	
4200	28AD	28 0 AD A	0921	LDA	K;X5	
4201	AC5F	A8 4 5F A	0922	STA	COUNT	
			0923	*		LOOK UP K IN TABLE
4202	2A9D	28 2 9D A	0924	THISFRC	LDA	
4203	445F	40 4 5F A	0925	ADD	COUNT	
4204	2905	28 1 05 A	0926	LDA	*A	
4205	AE5D	A8 6 5D A	0927	STA	K	
			0928	*		CORRECT K FOR WIDTH OF STRIP
			0929	*		$K = K - WFACTR + (W * WFACTR / MAXWIDTH)$
			0930	*		READ WIDTH
			0931	*		
			0932	*		WIDTH STORED IN MILLIMETERS
4206	244F	20 4 4F A	0933	LDE	WIDTHREG	
4207	2E92	28 0 B2 A	0934	LDA	K;X4	
4208	ED2E	E8 5 2E A	0935	SST	*T*HEXB	
			0936	*		
4209	AA91	A8 2 91 A	0937	STA	WIDTH	
420A	D44E	DO 4 4E A	0938	MPY	WFACTR	
			0939	*		DIVIDE BY MAXIMUM PRODUCT WIDTH
			0940	*		IN MILLIMETERS
420B	DC32	D8 4 32 A	0941	DIV	MAXWIDTH	
420C	4C4E	48 4 42 A	0942	SUB	WFACTR	
420D	4E5D	40 6 5D A	0943	ADD	K	
420E	AE5D	A8 6 5D A	0944	STA	K	
			0945	*		PICK UP PLASTICITY FROM TABLE
			0946	*		DETERMINE GAUGE CLASS
			0947	*		
420F	3C5F	38 4 5F A	0948	STZ	COUNT	
4210	2E42	28 6 42 A	0949	LARGERF	LDA	CLASS1 IS ADDRESS OF CLASS TABLE
			0950	*		FOR THIS DRIVE
			0951	*		
4211	445F	40 4 5F A	0952	ADD	COUNT	
4212	2905	28 1 05 A	0953	LDA	*A	
4213	4E87	48 6 87 A	0954	SUB	SDLB	
			0955	*		IS TABLE GAUGE EXCEEDED
			0956	*		YES: PJP THISCLAS
4214	B237	B0 2 07 A	0957	PJP	THISCLAS	
4215	645F	60 4 5F A	0958	INC	COUNT	
4216	2C5F	28 4 5F A	0959	LDA	COUNT	
4217	4EAE	48 0 AL A	0960	SUB	K;X7	
4218	B201	B0 2 01 A	0961	PJP	*#2	
4219	72F6	70 2 F6 A	0962	JMP	LARGERF	
421A	28AE	28 0 AE A	0963	LDA	K;X7	
421B	AC5F	A8 4 5F A	0964	STA	COUNT	

AUTOMATIC GAUGE CONTROL

421C	40 2 1C A	0965	*	
		0966	*	
		0967	THISCLAS EQU.	\$
		0968	*	
		0969	*	
		0970	*	
421C	2E69	28 6 69 A	0971	LDA PTABLE
421D	445F	40 4 5F A	0972	*
421E	2905	28 1 05 A	0973	ADD COUNT
421F	D212	D0 2 12 A	0974	LDA *A
4220	DC88	D8 4 88 A	0975	MPY *100
4221	AE66	A8 6 66 A	0976	DIV WIDTH
			0977	STA PLAST
			0978	*
4222	2D1E	28 5 1E A	0979	LDA *HARDREG
4223	5C1D	58 4 1D A	0980	AND HARDBITS
4224	1A0E	18 2 0E A	0981	LDG *SRA+4
4225	9805	98 0 05 A	0982	SHF A
4226	AC6A	A8 4 6A A	0983	STA HARDNESS
4227	2A0C	28 2 0C A	0984	LDA =HARDTABL
4228	446A	40 4 6A A	0985	ADD HARDNESS
4229	2905	28 1 05 A	0986	LDA *A
423A	AC6A	A8 4 6A A	0987	STA HARDNESS
			0988	*
423B	2E66	28 6 66 A	0989	LDA PLAST
423C	D205	D0 2 05 A	0990	MPY =100
423D	DC6A	D8 4 6A A	0991	DIV HARDNESS
423E	AE66	A8 6 66 A	0992	STA PLAST
423F	7204	70 2 04 A	0993	MP NOTHEAD
4230	4233	40 2 33 A	0994	LPL
4231	0064	00 0 64 A		
4232	4C04	40 0 04 A		
4233	412E	40 1 2E A		
			0995	EJE
			0996	*
			0997	*
			0998	*
4234	40 2 34 A	1000	NOTHEAD EQU	\$
4235	ED36	E8 5 36 A	1001	*
	AE69	A8 6 69 A	1002	SST *GRAYBIN,B
			1003	STA SCREW
			1004	*
4236	2E2A	28 6 2A A	1005	*
4237	F202	F0 2 02 A	1006	LDA NOTCALIB
			1007	ZJP GAUGERR
			1008	*
			1009	*
4238	3E51	38 6 51 A	1010	STZ DELTAS
4239	7348	70 3 48 A	1011	JMP CHKFDBK
			1012	*
423A	40 2 3A A	1013	GAUGERR EQU	\$
		1014	*	
		1015	*	
		1016	*	
		1017	*	
423A	2E8D	28 6 8D A	1018	LDA SPEED
423B	4E40	48 6 40 A	1019	SUB SPEEDL0
423C	D429	D0 4 29 A	1020	MPY INDEXSIZ
423D	DE40	D8 6 40 A	1021	DIV SPEEDL0
423E	BA08	B8 2 08 A	1022	NJP INDEX0
423F	4A43	48 2 43 A	1023	SUB *
4240	B203	B0 2 03 A	1024	PJP *4
4241	4241	40 2 41 A	1025	ADD =5
4242	AC6C	A8 4 6C A	1026	STA INDEX
4243	7204	70 2 04 A	1027	JMP \$4
4244	2A3E	28 2 3E A	1028	LDA =5
4245	AC6C	A8 4 6C A	1029	STA INDEX
4246	7201	70 2 01 A	1030	JMP \$4
4247	3C6C	38 4 6C A	1031	INDEXO STZ INDEX
			1032	*
			1033	*
			1034	LDA *SPEEDTAB
			1035	ADD INDEX
			1036	LDA *A
			1037	STA E
			1038	LDA ANFORCE
			1039	SUB FORCEL0
			1040	SUB E
			1041	HPY K
			1042	*
			1043	*
			1044	DIV *100
			1045	ADD SCREW
			1046	SUB SDBL
			1047	ADD FEEDSUT
			1048	ADD OTHER
			1049	STA GE
			1050	*
			1051	*
			1052	*
4256	D45D	D0 6 5D A	1053	MPY K
4257	DE66	D8 6 66 A	1054	DIV PLAST
4258	4E5A	40 6 5A A	1055	ADD GE
4259	AE51	A8 6 51 A	1056	STA DELTAS
426A	B202	B0 2 02 A	1057	PJP CHCKSIZE
426B	4256	40 2 53 A	1058	NEGDELT EQU S
426C	3E95	38 0 05 A	1059	STZ A
426D	4E51	48 6 51 A	1060	SUB DELTAS
			1061	*
			1062	*
			1063	*
			1064	*
			1065	*

L88K UP P IN TABLE
THERE ARE 8 VALUES IN PTABLE
CONVERT WIDTH TO ENCODER UNITS
ADDRESS OF FIRST PTABLE VALUE
COUNT IS 0 - 7

CORRECT FOR HARDNESS

HARDNESS IS IN %

THIS IS START OF AGC MAIN PATH

READ PRESENT SCREW POSITION

DID LOAD CELL TEST PROPERLY
YES! ZJP GAUGERRCONTINUE IF NOT CALIBRATED BUT
DO NOT MOVE SCREW TO CORRECT GAUGE

STAND CALIBRATED

CALCULATE GAUGE ERROR
 $GE = (F - FLS - SP) * K + S + FEEDSUT + OTHER$

DETERMINE SPEED ADJUSTMENT

PICK UP SPEED ADJUSTMENT FROM
TABLECONVERT ANFORCE AND FORCEL0 TO
KILOTONS

GAUGE ERROR

CALC SCREW CORRECTION !DELTAS!
 $DELTAS = GE * (1 + K/P) = GE + GE * K/P$

SCREW CORRECTION

IF SCREW CORRECTION IS VERY SMALL,
IGNORE IT I.E. WITHIN DEADBAND

AUTOMATIC GAUGE CONTROL

425D	40 2 5D A	1066	CHCKSIZE EQU	\$	
425D	48 6 5D A	1067	SUB	DEADBAND	
425E	B202	1068	PJP	AVERAGE	
425F	40 2 5F A	1069	TOOSMALL EQU	\$	
		1070	*		GUAGE ERROR IS TOO SMALL
425F	3E5A	1071	STZ	GE	
4260	3L51	1072	STZ	DELTA	
		1073	*		CALCULATE AVERAGE ERROR FOR USE BY
		1074	*		FEEDBACK ROUTINE
4261	2E5A	1075	AVERAGE	LDA	GE
4262	D050	1076	MPY	K:X1	
4263	A461	1077	STE	DGE	
4264	AC62	1078	STA	DGE+1	
4265	2L4C	1079	LDA	AVER	
4266	D84A	1080	MPY	AGCWF	
4267	C461	1081	ADA	DGE	
4268	664A	1082	INC	AGCWF	
4269	DE4A	1083	DIV	AGCWF	
4270	AE4C	1084	STA	AVER	
4270	AC54	1085	STA	FEDEV	
4270	2E4A	1086	LDA	AGCWF	
4270	48AD	1087	SUB	KIX5	
4270	BA02	1088	NJP	\$+3	
4270	28AD	1089	LDA	KIX5	
4270	AE4A	1090	STA	AGCWF	
		1091	*		
		1092	*		
		1093	*		IF CHANGE IN SCREW POSITION IS
		1094	*		TOO LARGE, LIMIT IT
4271	2E51	1095	LDA	DELTA	
4272	4E3E	1096	SUB	MAXDELTA	
4273	B205	1097	PJP	PUSLIMIT	
4274	2E3E	1098	LDA	MAXDELTA	
4275	4051	1099	ADD	DELTA	
4276	6A05	1100	NJP	NEGLIMIT	
		1101	*		NO SKID MARK IN THIS STAND SINCE
		1102	*		DELTA IS WITHIN LIMITS
4277	3E58	1103	STZ	FRSTSKID	
		1104	*		
4278	7243	1105	JMP	SKIDAPR0	
4279	40 2 73 A	1106	PUSLIMIT EQU	\$	
4279	2E51	1107	LDA	DELTA	
4279	A5C4	1108	STA	E	
4278	720A	1109	JMP	FEEDFWD	
427C	40 2 7C A	1110	NEGLIMIT EQU	\$	
427C	3805	1111	STZ	A	
427D	4E51	1112	SUB	DELTA	
427E	A804	1113	STA	E	
427F	7206	1114	JMP	FEEDFWD	
4280	4152	1115	LPL		
4281	42D7	1116	EJE		FEED FORWARD ROUTINE
4282	0C05	1117	*		
4283	03E8	1118	*		
4284	42B5	1119	*		
4285	42B6	1120	FEEDFWD EQU	\$	
		1121	*		IF LAST STAND DO NOT FEED FORWARD
		1122	*		JUMP TO SKID APPROACH
4286	2C63	1123	LDA	DRNB	
4287	4C3C	1124	SUB	NOOFDRVS	
4286	B233	1125	PJP	SKIDAPR0	
4289	2648	1126	LDA	DTAFLES	
428A	4C63	1127	SUB	DRNB	
428B	6805	1128	DCR	A	
		1129	*		STORE POINTER TO NEXT DRIVE'S
		1130	*		DATA FILE IN 'G'
428C	1905	1131	LDG	*A	
428D	7206	1132	JMP	SKIDMARK	
		1133	*		BACK OF SKID MARK, INC LENGTH COUNT
428E	1003	1134	INSKID	LDC	G
428F	668C	1135	INC	SKIDSIZE	
		1136	*		UPDATE SIZE OF SKID
4290	1483	1137	LDC	SAVEC	
4291	2804	1138	LDA	E	
4292	AE88	1139	STA	SKIDS	
4293	7228	1140	JMP	SKIDAPR0	
		1141			
4294	4294	1142	SKIDMARK EQU	\$	
4294	2E58	1143	LDA	FRSTSKID	
		1144	*		
		1145	*		IS THIS FIRST SIGN OF SKIDMARK NO: NJP INSKID
4295	BAF8	1146	NJP	INSKID	
4296	1003	1147	LDC	G	
		1148	*		STORE 1 IN SKID COUNTER
4297	28B1	1149	LDA	K:X2	
4298	AE8C	1150	STA	SKIDSIZE	
4299	1483	1151	LDC	SAVEC	
429A	3E58	1152	STA	FRSTSKID	
429B	6E58	1153	DCR	FRSTSKID	
		1154	*		SET FLAG FOR SKID UP OR SKID DOWN
429C	2E51	1155	LDA	DELTAS	
429D	1003	1156	LDC	G	
429E	3E62	1157	STZ	MOVEUP	
429F	2805	1158	LDA	A	
42A0	BA01	1159	NJP	TRANTIME	
42A1	6E62	1160	DCR	MOVEUP	
		1161	*		
		1162	*		CALCULATE TRANSIENT TIME DELAY DISTANCE FROM THIS STAND TO NEXT

AUTOMATIC GAUGE CONTROL

42A2	40 2 A2 A	1163	TRANTIME EQU	\$		
42A2	1463	10 4 83 A	1164	LDC	SAVEC	
42A3	3604	38 0 04 A	1165	STZ	E	
42A4	2E8A	28 6 8A A	1166	LDA	SEPARATE	
42A5	DE9D	08 6 80 A	1167	DIV	SPEED	
42A6	3604	38 0 04 A	1168	STZ	E	
42A7	D212	00 2 12 A	1169	MPY	=600	
42A8	DC4E	08 6 42 A	1170	DIV	CIRCUM	
42A9	A6C3	48 0 03 A	1171	STA	G	
42AA	2248	28 0 43 A	1172	LDA	DATAFILES	
42AD	4C63	48 4 63 A	1173	SUB	DRNG	
42AC	6205	68 0 05 A	1174	DCR	A	
42AD	1105	10 1 05 A	1175	LDC	*A	
42AE	2649	28 0 49 A	1176	LDA	TMOLYTB	
42AF	4208	40 2 08 A	1177	ADD	*X125	
42BG	4463	40 4 63 A	1178	ADD	DRNG	
42B1	6005	60 0 05 A	1179	LDC	A	
42B2	A14	48 0 04 A	1180	STA	E	
42B3	2213	28 0 03 A	1181	LDA	G	
42B4	4C6A	48 4 04 A	1182	SUB	DELAY	
42B5	A704	48 1 01 A	1183	STA	*E	
42B6	3E54	38 6 54 A	1184	STZ	FEEDTIME	
42B7	1463	10 4 83 A	1185	LDC	SAVEC	
42B8	7271	70 2 71 A	1186	*	COUNTED DOWN BY PERIODIC PROGRAM	
42B9	0258	00 2 58 A	1187	JMP	CALCREF	
42BA	0C25	00 0 25 A	1188	LPU		
42B9	4329	40 3 29 A	1189	*	IS SKID MARK APPROACHING	
42BC	40 2 BC A	1190	SKIDAPRO EQU	\$		
42BC	2C63	28 4 63 A	1191	*	TRANSPORT TIMER FLAG	
42BD	6805	68 0 05 A	1192	LDA	DRNG	
42BE	F219	F0 2 19 A	1193	DCR	A	
42BF	2E54	28 6 54 A	1194	ZJP	CHKFDBK	
42CO	F217	F0 2 17 A	1195	LDA	FEEDTIME	
			1196	ZJP	CHKFDBK	
			1197	*		
			1198	*	NONE APPROACHING, CHECK IF ANY IN STAND	
42C1	B213	B0 2 13 A	1199	*		
			1200	PJP	INSTAND	
			1201	*		
			1202	*		
42C2	3E54	38 6 54 A	1203	BUMPDIP	STZ	
42C3	6654	60 6 54 A	1204	INC	FEEDTIME	
42C4	2E62	28 6 62 A	1205	LDA	MOVEUP	
42C5	BA03	B6 2 03 A	1206	NJP	MOVEDN	
			1207	*		
42C6	2A32	28 2 32 A	1208	LDA	=-20	
42C7	AE51	48 6 51 A	1209	STA	DELTAS	
42C8	7202	70 2 02 A	1210	JMP	FINDEND	
			1211	*		
42C9	40 2 C9 A	1212	MOVEDN	EQU	\$	
42C9	2A2E	28 2 2E A	1213	LDA	=-20	
42CA	AE51	48 6 51 A	1214	STA	DELTAS	
			1215	*		
42CB	40 2 CB A	1216	FINDEND	EQU	\$	
42CB	6E8C	68 6 8C A	1217	DCR	SKIDSIZE	
			1218	*		
			1219	*		
42CC	F201	F0 2 01 A	1220	*	ZJP END0FSKD	
42CD	725C	70 2 5C A	1221	*	SKID MARK IS STILL IN STAND	
			1222	JMP	CALCREF	
			1223	*	SKID MARK IS THROUGH, REMOVE OFFSET	
42CE	40 2 CE A	1224	*			
42CE	2E62	28 6 62 A	1225	END0FSKD	EQU	\$
42CF	BA02	B8 2 02 A	1226	LDA	MOVEUP	
			1227	NJP	\$+3	
42D0	2A27	28 2 27 A	1228	LDA	=20	
42D1	7201	70 2 01 A	1229	JMP	\$+2	
42D2	2A26	28 2 25 A	1230	LDA	=-20	
42D3	AE51	48 6 51 A	1231	STA	DELTAS	
42D4	7255	70 2 55 A	1232	JMP	CALCREF	
			1233	*		
42D5	2E8C	28 6 8C A	1234	INSTAND	LDA	
42D6	F201	F0 2 01 A	1235	ZJP	SKIDSIZE	
			1236	*	CHKFDBK	
42D7	B2F3	B0 2 F3 A	1237	*		
			1238	PJP	FINDEND	
42D8	40 2 D8 A	1239	CHKFDBK	EQU	\$	
42D8	3E5E	38 6 5E A	1240	STZ	LIMFLAG	
42D9	2E89	28 6 83 A	1241	LDA	SCREW	
42DA	4E51	48 6 51 A	1242	SUB	DELTAS	
42DB	AE68	48 6 64 A	1243	STA	POSITION	
42DC	4E87	48 6 87 A	1244	SUB	SOLR	
			1245	*		
42DD	D219	D0 2 19 A	1246	MPY	=100	
42DE	DE3F	D8 6 3F A	1247	DIV	REALSDL8	
42D9	A504	A8 0 04 A	1248	STA	E	
42E0	4C2E	48 4 2E A	1249	SUB	LIMIT	
			1250	*		
42E1	B21A	B0 2 1A A	1251	PJP	SETFLAGU	
42E2	2B04	28 0 04 A	1252	LDA	E	
42E3	442E	40 4 22 A	1253	ADD	LIMIT	
42E4	BA1B	B8 2 1B A	1254	NJP	SETFLAGD	
42E5	F21A	F0 2 1A A	1255	ZJP	SETFLAGD	
			1256	*		
42E6	2463	20 4 63 A	1257	LDE	DRNG	
42E7	6204	68 0 04 A	1258	DCR	E	
42E8	F241	F0 2 41 A	1259	ZJP	CALCREF	
42E9	2B48	28 0 48 A	1260	LDA	DATAFILES	
42EA	4B04	48 0 04 A	1261	SUB	E	
42EB	1105	10 1 05 A	1262	LDC	*A	

AUTOMATIC GAUGE CONTROL

42EC	2E2A	28 6 2A A	1263	LDA	NETCALIB	
42ED	AC87	A8 4 87 A	1254	STA	TEMP	
42EL	1483	10 4 83 A	1255	LDC	SAVEC	
42EF	2C87	28 4 87 A	1266	LDA	TEMP	
42FO	6C05	60 0 05 A	1257	INC	A	
42F1	F201	F0 2 01 A	1258	ZJP	\$+2	IS L.C. OFF
42F2	7237	70 2 37 A	1259	JMP	CALCREF	IS THIS STAND LOAD CELL ON
42F3	2E2A	28 6 2A A	1270	*		
42F4	FE0E	F0 2 0E A	1271	LDA	NETCALIB	
42F5	7234	70 2 34 A	1272	ZJP	FEEDBACK	
42F6	0C64	00 0 64 A	1273	JMP	CALCREF	
42F7	0C14	00 0 14 A	1274	LPL		
42F8	FFEC	F8 7 EC A				
42F9	42F3	40 2 F3 A				
42FA	42FF	40 2 FF A				
42FB	4302	40 3 02 A				
			1275	EJE		
			1276	*		FEEDBACK ROUTINE
			1277	*		IS STAND BEFORE THIS DISQUALIFIED
			1278	*		SET FLAG TO INDICATE UP LIMIT
42FC	3805	38 0 05 A	1279	SETFLAGU	STZ	A
42FD	6C05	60 0 05 A	1280	INC	A	
42FE	AE5L	A8 6 5E A	1281	STA	LIMFLAG	
42FF	7203	70 2 03 A	1282	JMP	FEEDBACK	
			1283	*		SET FLAG TO INDICATE DOWN LIMIT
4300	3805	38 0 05 A	1284	SETFLAGD	STZ	A
4301	6205	68 0 05 A	1285	DCR	A	
4302	AE5E	A8 6 5E A	1286	STA	LIMFLAG	
			1287	*		CAN STAND BEHIND THIS MOVE
			1288	FEEDBACK	EQU	\$
4303	2C63	28 4 63 A	1289	LDA	DRNB	
4304	6605	68 0 05 A	1290	DCR	A	
4305	F223	F0 2 23 A	1291	ZJP	FBRET1	
4306	2546	28 0 46 A	1292	LDA	DTAFLES	
4307	4C63	48 4 63 A	1293	SUB	DRN9	
4308	6C05	60 0 05 A	1294	INC	A	
4309	AC65	A8 4 65 A	1295	STA	FILEADR	
			1296	*		ADDRESS OF FILE FOR STAND BEHIND THI
430A	3C5C	38 4 5C A	1297	STZ	CAL1	
430B	2L11	28 6 11 A	1298	LDA	CALFLAG	
430C	BA01	88 2 01 A	1299	NJP	\$+2	
430D	6C5C	68 4 5C A	1300	DCR	CAL4	
			1301	*		IF ZERO SET A NETCALIB. FLAG
430E	40 3 0E A	1302	ZEROSTD	EQU	\$	
430F	2E5E	28 6 5E A	1303	LDA	LIMFLAG	
430F	F207	F0 2 07 A	1304	*		IS THE PROBLEM LACK OF RF SIGNAL
			1305	ZJP	CHKRF	
4310	2C5C	28 4 5C A	1306	*		IS N-1 CALIBRATED
			1307	LDA	CAL1	
4311	6C05	60 0 05 A	1308	*		CONTINUE IF YES
4312	F216	F0 2 16 A	1309	INC	A	
4313	7208	70 2 08 A	1310	ZJP	FBRET1	
4314	4328	40 3 25 A	1311	JMP	BTPUT	
			1312	LPL		
4315	4316	40 3 16 A				
4316	431B	40 3 18 A				
			1313	*		FEEDBACK TO STAND WITH BAD RF SIGNAL
4317	40 3 17 A	1314	CHKRF	EQU	\$	
4317	1565	10 5 65 A	1315	*		ADDRESS OF FILE FOR STAND N-1
			1316	LDC	*FILEADR	
			1317	*		IS ROLL FORCE BK
4318	2E2A	28 6 2A A	1318	LDA	NETCALIB	
4319	6005	60 0 05 A	1319	INC	A	
431A	F201	F0 2 01 A	1320	ZJP	BTPUT	
431B	7200	70 2 00 A	1321	JMP	FBRET1	
			1322			
431C	40 3 1C A	1323	BTPUT	EQU	\$	
			1324	*		SAVE CORRECTION IN 'FEEDBUT' FOR
			1325	*		INCLUSION IN NEW POSITION REF
431C	1483	10 4 83 A	1326	LDC	SAVEC	
431D	2E5A	28 6 5A A	1327	LDA	GE	
431E	D680	D0 6 80 A	1328	MPY	SPEED	
431F	1565	10 5 65 A	1329	LDC	*FILEADR	
4320	DE80	D8 6 80 A	1330	DIV	SPEED	
4321	D69C	D0 6 9C A	1331	MPY	L1	
4322	DE90	D8 6 90 A	1332	DIV	L2	
4323	A803	A8 0 03 A	1333	STA	G	
4324	2E53	28 6 53 A	1334	LDA	FEEDBUT	
4325	D69C	D0 6 9C A	1335	MPY	L3	
4326	017F	U8 6 9F A	1336	DIV	L4	
4327	4003	40 0 03 A	1337	ADD	G	
4328	AE53	A8 6 53 A	1338	STA	FEEDBUT	
			1339			
4329	40 3 29 A	1340	FBRET1	EQU	\$	
4329	1483	10 4 83 A	1341	LDC	SAVEC	
			1342	*		CALCULATE AND LIMIT REFERENCE
432A	40 3 2A A	1343	CALCREF	EQU	\$	
			1344	*		IS TAIL END COMPENSATION REQUESTED
432A	2E97	28 6 97 A	1345	LDA	TAILCOMP	
432B	F20F	F0 2 0F A	1346	ZJP	CALCPBS	
			1347	*		HAS TRANSPORT TIME ELAPSED
432C	2E98	28 6 98 A	1348	LDA	TAILTIME	
432D	F20D	F0 2 0D A	1349	ZJP	CALCPBS	
			1350	*		YES, IS THIS FULL COMPENSATION
432E	2E97	28 6 97 A	1351	LDA	TAILCOMP	
432F	6005	60 0 05 A	1352	INC	A	
4330	F205	F0 2 05 A	1353	ZJP	FULLCOMP	
			1354	*		2/3 COMPENSATION REQUESTED
4331	2E4F	28 6 4F A	1355	LDA	COMPEN	
4332	DCB1	D0 0 B1 A	1356	MPY	KIX2	
4333	DBAC	D8 0 AC A	1357	DIV	KIX3	

AUTOMATIC GAUGE CONTROL

4334 4659 40 6 83 A 1358 ADD SCREW
 4335 7206 70 2 05 A 1359 JRP CALCPBS1
 4336 2E4F 28 6 4F A 1360 FULLCOMP LDA COMPEN
 4337 4659 40 6 83 A 1361 ADD SCREW
 4338 7203 70 2 03 A 1362 JMP CALCPBS1
 4339 433A 40 3 3A A 1363 LPL
 433A 433B 40 3 33 A 1364 CALCPBS LDA SCREW
 433B 2E89 28 6 83 A 1365 CALCPBS1 SUB DELTAS
 433C 4E51 48 6 51 A 1366 STA POSITION
 433D AE68 A8 6 66 A 1367 SUB SDL9
 433E 4E87 48 6 87 A 1368 * CALCULATE PERCENT CHANGE FROM SDL9
 433F D2B7 D0 2 B7 A 1369 MPY *100
 4340 DL3F D8 6 3F A 1370 DIV REALSDL9
 4341 A254 A6 0 04 A 1371 STA E
 4342 4C2E 48 4 2E A 1372 SUB LIMIT
 4343 B204 B0 2 04 A 1373 PJP LIMREFUP
 4344 2804 28 0 04 A 1374 LDA E
 4345 442E 40 4 2E A 1375 ADD LIMIT
 4346 BA11 88 2 11 A 1376 NJP LIMREFDN
 4347 7214 70 2 14 A 1377 JMP POSIT
 4348 2C2E 28 4 22 A 1378 LIMREFUP LDA LIMIT
 4349 42AD 40 2 AD A 1379 ADD *100
 434A D63F D0 6 3F A 1380 CAL MPY REALSDL9
 434B DAAB D8 2 AB A 1381 DIV *100
 434C B202 B0 2 02 A 1382 PJP *43
 434D 50A0 50 0 A0 A 1383 ESR K:XFFFF
 434E 6005 60 0 05 A 1384 INC A
 434F A803 A8 0 03 A 1385 STA G
 4350 2EA0 28 6 A6 A 1386 LDA FX0BFF
 4351 D44D D0 4 4D A 1387 MPY UNITSPPMM
 4352 DAA4 D8 2 A4 A 1388 DIV *100
 4353 A804 A8 0 04 A 1389 STA E
 4354 2803 28 0 03 A 1390 LD A G
 4355 4804 48 0 04 A 1391 SUB E
 4356 AE68 A8 6 68 A 1392 STA POSITION
 4357 7204 70 2 04 A 1393 JMP POSIT
 4358 2A9E 28 2 9E A 1394 LIMREFDN LDA *100
 4359 4C2E 48 4 2E A 1395 SUB LIMIT
 435A 72EF 70 2 EF A 1396 JMP CAL
 435B 435B 40 3 53 A 1397 LPL
 1398 *
 1399 *
 435C 40 3 5C A 1400 P68IT EQU \$
 1401 *
 435D 2E64 28 6 64 A 1402 LDA OLDREF
 435E F214 F0 2 14 A 1403 ZJP LIGHTON
 435F 4E68 48 6 68 A 1404 SUB POSITION
 1405 SKP,DIGL80P+1 DIGITAL,ANALOG
 1406
 1407
 1408
 1409
 1410
 435F 40 3 5F A 1447 ANALOG EQU \$
 1448
 1449
 1450 *
 1451
 435F 12AB 18 0 A3 A 1452 LDS K:X6
 4360 D645 D0 6 45 A 1453 MPY L80PGAIN
 4361 D495 D8 2 93 A 1454 DIV *100
 4362 442F 40 4 2F A 1455 ADD L80PSET
 4363 B202 B0 2 02 A 1456 PJP *3
 4364 3E05 38 0 03 A 1457 STZ A
 4365 7205 70 2 05 A 1458 JMP L80PSTRT
 4366 4E42 48 0 A2 A 1459 SUB K:XFF
 4367 B202 B0 2 02 A 1460 PJP *3
 4368 40A2 40 0 A2 A 1461 ADD K:XFF
 4369 7201 70 2 01 A 1462 JMP L80PSTRT
 436A 28A2 28 0 A2 A 1463 LDA K:XFF
 436B 40 3 68 A 1464 L80PSTRT EQU \$
 436B 9805 98 0 05 A 1465 SHF A
 436C 4643 40 6 43 A 1466 ADD CARDPT
 436D 2001 20 0 01 A 1467 LDE B
 436E A482 A0 4 82 A 1468 STE SAVEB
 436F 0E44 08 6 44 A 1469 LDS L80PCHNB
 1470 *
 1471 *
 1472 *
 1473 *
 1474 *
 4370 8C00 88 4 00 A 1475 IBA O/B
 0000 00 0 00 A 1476 BSB
 4371 0818 08 3 18 A 1477 LDB SAVEB
 410F 40 1 0F A 1478 BSB D
 4372 40 3 72 A 1479 LIGHTON EQU \$
 1480 *
 4372 ED29 E8 5 29 A 1481 SST *S1CC8,B
 4373 0001 00 0 01 A 1482 DAT AGCNUM=D
 4374 0002 00 0 02 A 1483 DAT AGCPAT=D
 4375 0003 00 0 03 A 1484 DAT AGCREG=D
 4376 0C59 00 0 59 A 1485 DAT AGCMASK=D
 4377 2E68 28 6 68 A 1486 *
 4378 AC3E A8 4 3E A 1487 LDA POSITION
 4379 2C63 28 4 63 A 1488 STA POSITION
 437A 420E 40 2 0E A 1489 LDA DRN9
 437B A886 A8 4 86 A 1490 ADD *X180001
 437C E13B E8 5 35 A 1491 STA TEMPDRN9
 437D 0086 00 0 86 A 1492 SST *STRTPOS,B
 437E 003E 00 0 3E A 1493 DAT TEMPDRN9=D
 437F 2E68 28 6 68 A 1494 DAT POSITION
 1495 *
 437F 2E68 28 6 68 A 1496 LDA POSITION
 FOR THE IBA INSTRUCTIONS, 'A' WILL
 CONTAIN THE PATTERN JUST CALC. IN
 BITS 6 - 13, THE CARD NO. IN BITS
 2 - 5, AND THE CARD POINT IN BITS
 0 - 1.
 TURN ON AGC IN METION LIGHT
 B1D POSITIONING PACKAGE
 UPDATE BLD REFERENCE

AUTOMATIC GAUGE CONTROL

				STA	BLDREF	
4380	AE64	A8 6 64 A	1497			
			1498	*		
			1499	*		
4381	2848	28 0 43 A	1500	LDA	DTAFLS	
4382	4C63	48 4 63 A	1501	SU3	DRNB	
4383	6005	60 0 05 A	1502	INC	A	
4384	1105	10 1 05 A	1503	LDC	*A	
4385	2E27	28 6 27 A	1504	LDA	SIS	
4386	BCBE	B8 4 BE A	1505	NJP	END	
4387	7203	70 2 03 A	1506	JMP	TESTAIL	
4388	6000	80 0 00 A	1507	LPL		
4389	4191	40 1 91 A	1508			
438A	438A	40 3 6A A	1509	*		
438B	40 3 8A A		1510	TESTAIL	EQU	\$
4388	1483	10 4 83 A	1511	LDC	SAVEC	
438C	2E59	28 6 59 A	1512	LDA	FRSTTAIL	
438D	BCBE	B8 4 BE A	1513	NJP	END	
438E	6E59	68 6 59 A	1514	*		
438F	2E23	28 6 23 A	1515	DCR	FRSTTAIL	
4390	6005	60 0 05 A	1516	LDA	MCI	
4391	2905	28 1 05 A	1517	INC	A	
4392	5C08	58 4 08 A	1518	LDA	*A	
4393	F4BE	F0 4 BE A	1519	AND	BITPAT3	
			1520	ZJP	END	
4394	2D04	28 5 04 A	1521	*		
4395	5C09	58 4 09 A	1522	LDA	*AGCMREG	
4396	F4BE	F0 4 BE A	1523	AND	BITPAT4	
4397	2C63	28 4 63 A	1524	ZJP	END	
4398	4C3C	48 4 3C A	1525	LDA	DRNB	
4399	F4BE	F0 4 BE A	1526	SU3	NE8FDRVS	
			1527			
439A	2848	28 0 48 A	1528	ZJP	END	
439B	4C63	48 4 63 A	1529	*		
439C	6805	68 0 05 A	1530	LDA	DTAFLS	
439D	1105	10 1 05 A	1531	SU3	DRNB	
439E	3E97	38 6 97 A	1532	DCR	A	
439F	6E97	68 6 97 A	1533	LDC	*A	
43A0	1483	10 4 83 A	1534	STZ	TAILCOMP	
			1535	DCR	TAILCOMP	
			1536	LDC	SAVEC	
43A1	2E8A	28 6 8A A	1537	*		
43A2	D23E	D0 2 3E A	1538	LDA	SEPARATE	
43A3	DE4E	D6 6 4E A	1539	MPY	*600	
43A4	3E04	38 0 04 A	1540	DIV	CIRCU	
43A5	D8D	D8 0 62 A	1541	STZ	E	
43A6	A204	A8 0 04 A	1542	DIV	SPEED	
43A7	2848	28 0 48 A	1543	STA	E	
43A8	4C63	48 4 63 A	1544	LDA	DTAFLS	
43A9	6805	68 0 05 A	1545	SU3	DRNB	
43AA	1105	10 1 05 A	1546	DCR	A	
43AB	2E04	28 0 04 A	1547	LDC	*A	
43AC	AE98	A8 6 93 A	1548	STA	E	
			1549	STA	TAILTIME	
43AD	2849	28 0 49 A	1550	*		
43AE	4233	40 2 33 A	1551	*		
43AF	4C63	40 4 63 A	1552	LDA	TMDLYTBL	
43B0	A804	A8 0 04 A	1553	ADD	*X120	
43B1	2E98	28 6 95 A	1554	ADD	DRNB	
43B2	A904	A8 1 04 A	1555	STA	E	
43B3	3E98	38 6 95 A	1556	LDA	TAILTIME	
43B4	6E98	68 6 95 A	1557	STA	*E	
			1558	STZ	TAILTIME	
			1559	DCR	TAILTIME	
43B5	2C63	28 4 63 A	1560	*		
43B6	4882	48 0 B2 A	1561	*		
43B7	BCBE	B8 4 BE A	1562	LDA	DRNB	
			1563	SUB	K:X4	
			1564	NJP	END	
43B8	2C3C	28 4 3C A	1565	*		
43B9	6805	68 0 05 A	1566	LDA	NE8FDRVS	
43BA	4C63	48 4 63 A	1567	DCR	A	
43BB	F4BE	F0 4 BE A	1568	SUB	DRNB	
			1569	ZJP	END	
43BC	2848	28 0 48 A	1570	*		
43BD	4C63	48 4 63 A	1571	LDA	DTAFLS	
43BE	6805	68 0 05 A	1572	SU3	DRNB	
			1573	DCR	A	
43BF	6805	68 0 05 A	1574	DCR	A	
43C0	1105	10 1 05 A	1575	LDC	*A	
43C1	3E97	38 6 97 A	1576	STZ	TAILCOMP	
43C2	6E97	68 6 97 A	1577	DCR	TAILCOMP	
43C3	6E97	68 6 97 A	1578	DCR	TAILCOMP	
			1579	*		
43C4	2848	28 0 45 A	1580	LDA	DTAFLS	
43C5	4C63	48 4 63 A	1581	SU3	DRNB	
43C6	6805	68 0 05 A	1582	DCR	A	
43C7	1105	10 1 05 A	1583	LDC	*A	
43C8	2E8A	26 6 8A A	1584	LDA	SEPARATE	
43C9	D217	D0 2 17 A	1585	MPY	*600	
43CA	DE4E	D6 6 4E A	1586	DIV	CIRCU	
43CB	3E04	38 0 04 A	1587	STZ	E	
43CC	DE8D	D8 6 8D A	1588	DIV	SPEED	
43CD	A604	A8 0 04 A	1589	STA	E	
43CE	2848	28 0 45 A	1590	LDA	DTAFLS	
43CF	4C63	48 4 63 A	1591	SU3	DRNB	
43D0	6805	68 0 05 A	1592	DCR	A	
43D1	6805	68 0 05 A	1593	DCR	A	
43D2	1105	10 1 05 A	1594	LDC	*A	
43D3	AE98	A8 6 93 A	1595	STZ	TAILTIME	
43D4	1105	10 1 05 A	1596	LDC	*A	

IS THIS FIRST SCAN ON TAIL END
IS STRIP BUT OF THE STAND BEHIND

STRIP IS BUT OF STAND BEHIND THIS
RESTORE C REGISTER

IS STAND ON PRESET

YES, IS TAIL END COMPENSATION SELECT
IS THIS LAST STAND

NO, COMPENSATE NEXT STZND
SET UP COMPENSATION TIMING

IF ONE OF LAST 4 STANDS, PROCESS
TWO STANDS

IS THIS SECOND LAST STAND

NO, COMPENSATE NEXT TWO STANDS

SET UP COMPENSATION TIMING

AUTOMATIC GAUGE CONTROL

43D5	A698	A0 6 93 A	1597	STL	TAILTIME
43D6	2449	28 0 42 A	1598	LDA	TMOLYTB
43D7	420A	40 2 0A A	1599	ADD	=X12D
43D8	4463	40 4 63 A	1600	ADD	DRND
43D9	6305	60 0 05 A	1601	INC	A
43DA	A594	A8 0 0+ A	1602	STA	E
43DB	2193	26 6 93 A	1603	LDA	TAILTIME
43DC	A904	A8 1 0+ A	1604	STA	*E
43DD	3E98	38 6 93 A	1605	STZ	TAILTIME
43DE	6298	68 6 93 A	1606	DCR	TAILTIME
43DF	745E	70 4 8E A	1607	JMP	END
43E0	0258	00 2 53 A	1608	LPL	
43E1	0C2D	00 0 23 A	1609		
			1610	EJE	

AGC XRAY MONITOR

			1611	TTL	*AGC XRAY MONITOR
			1612	*	
			1613	*	
			1614	*	THIS PROGRAM RUNS ON THE AGC TASK LEVEL
			1615	*	IT USES THE READINGS FROM THE
			1616	*	XRAY TO KEEP THE ROLL FORCE AGC ON
			1617	*	ON ABSOLUTE GAUGE.
			1618		
43E2	40 3 E2 A	1618	XRAYPR	EQU	\$
		1619	*		IS MONITOR ON
43E2	2058	28 5 56 A	1620	LDA	*XRAYREG
43E3	5C3D	58 4 3D A	1621	AND	BNB1TPAT
43E4	F213	F0 2 13 A	1622	ZJP	MNB1FF
		1623	*		HAS TRANSPORT TIME DELAY EXPIRED
43E5	2C72	28 4 72 A	1624	LDA	MN1TIME
43E6	F201	F0 2 01 A	1625	ZJP	GAUGON
43E7	748E	70 4 BE A	1626	JMP	END
43E8	43E8	40 3 E3 A	1627	GAUGON	EQU
43E8	2891	28 0 91 A	1628	LDA	\$
43E9	4881	48 0 B1 A	1629	SUB	XRAYNO
43EA	F213	F0 2 13 A	1630	ZJP	KIX2
		1631			CHK2
		1632			
43EB	2C51	28 5 51 A	1633	LDA	*XRAY1REG
43EC	5C54	58 4 54 A	1634	AND	XSELBIT1
		1635	*		IS XRAY 1 SELECTED
		1636	*		NE: ZJP END
43ED	F46E	F0 4 BE A	1637	ZJP	END
43EE	2D56	28 5 56 A	1638	LDA	*XSELREG1
43EF	5C1B	58 4 1B A	1639	AND	GAGEBIT1
		1640	*		IS XRAY 1 MEASURING
		1641	*		NO: ZJP NOXRAY
43F0	F203	F0 2 03 A	1642	ZJP	NOXRAY
43F1	2C4A	28 4 4A A	1643	LDA	THREG1
43F2	AC89	A8 4 89 A	1644	STA	THICKREG
43F3	7213	70 2 13 A	1645	JMP	CONVXRAY
		1646			
		1647			
43F4	40 3 F4 A	1648	NBXRAY	EQU	\$
		1649	*		CLEAR HEAD END FLAGS
43F4	3C72	38 4 72 A	1650	STZ	MN1TIME
43F5	2C53	28 4 53 A	1651	LDA	XRHDTIME
43F6	AC66	A8 4 66 A	1652	STA	FRSTX
43F7	3C84	38 4 84 A	1653	STZ	SCNDX
43F8	40 3 F5 A	1654	MNB1FF	EQU	\$
		1655	*		TURN OFF 'MONITOR' LIGHT BY
		1656	*		OUTPUTTING A ZERO
43F8	EC29	E8 5 29 A	1657	SST	*SICCD8B
43F9	003A	00 0 3A A	1658	DAT	MN1NOM-D
43FA	0C34	00 0 34 A	1659	DAT	MN1NFPAT-D
43FB	0C38	00 0 38 A	1660	DAT	MN1NKEG-D
43FC	0038	00 0 38 A	1661	DAT	MN1NMSK-D
43FD	748E	70 4 BE A	1662	JMP	END
		1663			
		1664			
43FE	40 3 FE A	1665	CHK2	EQU	\$
43FE	2L52	28 5 52 A	1666	LDA	*XRAY2REG
43FF	5C55	58 4 55 A	1667	AND	XSELBIT2
		1668	*		IS XRAY 2 SELECTED
		1669	*		NE: ZJP END
4400	F4BE	F0 4 BE A	1670	ZJP	END
4401	2D57	28 5 57 A	1671	LDA	*XSELREG2
4402	5C1C	58 4 1C A	1672	AND	GAGEBIT2
		1673	*		IS XRAY 2 MEASURING
		1674	*		NO: ZJP NOXRAY
4403	F2F0	F0 2 F0 A	1675	ZJP	NOXRAY
4404	2C4B	28 4 4B A	1676	LDA	THREG2
4405	AC89	A8 4 89 A	1677	STA	THICKREG
4406	7200	70 2 03 A	1678	JMP	CONVXRAY
		1679	*		
		1680	*		
4407	40 4 07 A	1681	CONVXRAY	EQU	\$
4407	2C66	28 4 66 A	1682	LDA	FRSTX
4408	BA01	B8 2 01 A	1683	NJP	S+2
4409	3C67	38 4 67 A	1684	STZ	GAGEREP
440A	2890	28 0 9J A	1685	LDA	XRAY
440B	D440	D0 4 40 A	1686	MPY	UNITSPMM
440C	DA1E	D8 2 1E A	1687	DIV	*100
440D	4C67	48 4 67 A	1688	SUB	GAGEREP
		1689	*		GAUGE DEV IN ENCODER UNITS
440E	AC69	A8 4 69 A	1690	STA	GAUGEDEV
		1691			
		1692			

AGC XRAY MONITOR

440F 40 4 0F A 1693 * CALCULATE PERCENT DEVIATION
 440F 2489 20 4 89 A 1694 READGAUG EQU \$
 440F 2489 20 4 89 A 1695 * READ NOMINAL GAUGE
 440F 2489 20 4 89 A 1696 LDE THICKREG
 440F 2489 20 4 89 A 1697 * LDA WITH NO. OF BCD DIGITS
 4410 28B2 28 0 B2 A 1698 LDA K:X4
 4411 E2E 88 5 2E A 1699 SST *TWHEX,B
 4412 D4D 00 4 4D A 1700 MPY UNITSMM
 4413 DA17 D8 2 17 A 1701 DIV #100
 4414 4467 40 4 67 A 1702 ADD GAGEREAP
 4415 AC77 AB 4 77 A 1703 *
 4416 2C69 28 4 69 A 1704 STA NOMINAL
 4417 D213 D0 2 13 A 1705 *
 4418 DC77 D8 4 77 A 1706 LDA GAUGEDEV
 4419 AC7D AB 4 7D A 1707 MPY #100
 4419 AC7D AB 4 7D A 1708 DIV NOMINAL
 4419 AC7D AB 4 7D A 1709 *
 4419 AC7D AB 4 7D A 1710 STA PRCTDEV
 4419 AC7D AB 4 7D A 1711 *
 4419 AC7D AB 4 7D A 1712 *
 4419 AC7D AB 4 7D A 1713 *
 441A 4C31 48 4 31 A 1714 SUB MAXGAGE
 441B B207 80 2 07 A 1715 PJP MESSAG10
 441C 2C36 28 4 36 A 1716 LDA MINGAGE
 441D 4C7D 48 4 7D A 1717 SUB PRCTDEV
 441E B204 80 2 04 A 1718 PJP MESSAG10
 441F 40 4 1F A 1719 *
 441F 40 4 1F A 1720 *
 441F 40 4 1F A 1721 CHKSCAN1 EQU \$
 441F 40 4 1F A 1722 * IS THIS FIRST SCAN BN BAR
 441F 40 4 1F A 1723 * YES, SET FIRST SCAN FLAG AND EXIT
 4420 2C66 28 4 66 A 1724 LDA FRSTX
 4420 BA0C 88 2 0C A 1725 NJP CHKSCAN2
 4421 6C66 68 4 66 A 1726 DCR FRSTX
 4422 74BE 70 4 BE A 1727 JMP END
 4423 40 4 23 A 1728 *
 4423 40 4 23 A 1729 *
 4423 40 4 23 A 1730 MESSAG10 EQU \$
 4423 40 4 23 A 1731 *
 4423 40 4 23 A 1732 *
 4423 284C 28 0 4C A 1733 LDA MESSAGE
 4424 4207 40 2 07 A 1734 ADD #10
 4425 A804 AB 0 04 A 1735 STA E
 4426 3805 38 0 05 A 1736 STZ A
 4427 6605 68 0 05 A 1737 DCR A
 4428 A904 AB 1 04 A 1738 STA #E
 4429 74BE 70 4 BE A 1739 JMP END
 442A 0064 00 0 64 A 1740 LPL *
 442B 000A 00 0 0A A 1741 CHKSCAN2 EQU \$
 442C 442C 40 4 2C A 1742 LDA SCNDX
 442D 442D 40 4 2D A 1743 *
 442D 2C84 28 4 84 A 1744 * IS THIS HEADEND OF BAR
 442E BB1B 88 3 1B A 1745 NJP MAINMBN
 442F 3C84 38 4 84 A 1746 * SET SECOND SCAN FLAG
 4430 6C84 68 4 84 A 1747 STZ SCNDX
 4430 6C84 68 4 84 A 1748 DCR SCNDX
 4431 3C8A 38 4 8A A 1749 *
 4432 648A 60 4 8A A 1750 STZ WF
 4432 648A 60 4 8A A 1751 INC WF
 4433 3C5B 38 4 5B A 1752 STZ AVERAGER
 4433 3C5B 38 4 5B A 1753 EJE
 4434 2846 28 0 48 A 1754 *
 4435 4C3C 48 4 3C A 1755 *
 4436 1105 10 1 05 A 1756 *
 4437 2C77 28 4 77 A 1757 *
 4438 4469 40 4 69 A 1758 *
 4439 AE9B AB 6 98 A 1759 *
 443A AC60 AB 4 60 A 1760 *
 443A AC60 AB 4 60 A 1761 *
 443A AC60 AB 4 60 A 1762 *
 443A AC60 AB 4 60 A 1763 *
 443A AC60 AB 4 60 A 1764 *
 443A AC60 AB 4 60 A 1765 *
 443A AC60 AB 4 60 A 1766 *
 443A AC60 AB 4 60 A 1767 *
 443A AC60 AB 4 60 A 1768 *
 443A AC60 AB 4 60 A 1769 *
 443A AC60 AB 4 60 A 1770 *
 443A AC60 AB 4 60 A 1771 *
 443A AC60 AB 4 60 A 1772 *
 443A AC60 AB 4 60 A 1773 *
 443A AC60 AB 4 60 A 1774 *
 443A AC60 AB 4 60 A 1775 *
 443A AC60 AB 4 60 A 1776 *
 443A AC60 AB 4 60 A 1777 *
 443A AC60 AB 4 60 A 1778 *
 443A AC60 AB 4 60 A 1779 *
 443A AC60 AB 4 60 A 1780 *
 443A AC60 AB 4 60 A 1781 *
 443A AC60 AB 4 60 A 1782 *
 443A AC60 AB 4 60 A 1783 *
 443A AC60 AB 4 60 A 1784 *
 443A AC60 AB 4 60 A 1785 *
 443A AC60 AB 4 60 A 1786 *
 443A AC60 AB 4 60 A 1787 *
 443A AC60 AB 4 60 A 1788 *
 443A AC60 AB 4 60 A 1789 *
 4440 40 4 40 A 1790 NEXTSTAN EQU \$
 4440 6463 60 4 63 A 1791 INC DRNB
 4441 2848 28 0 40 A 1792 LDA DTAFLES
 4442 4C63 48 4 63 A 1793 SUB DRNB

AGC XRAY MONITOR

4443	1105	10 1 05 A	1794	LDC	*A	
4444	2505	28 1 05 A	1795	LDA	*A	
4445	AC63	A8 4 83 A	1796	STA	SAVEC	
4446	2E2A	28 6 2A A	1797	LDA	NSTCALIB	
			1798	*		
			1799	*		
			1800	*		
4447	BB04	BB 3 04 A	1801	NJP	HEADENDR	IS ROLL FORCE OR SPEED FAULTY
4448	7204	70 2 04 A	1802	JMP	CALCGAGE	YES: NJP 'HEADENDR' TO AVOID MASS
4449	453F	40 5 3F A	1803	LPL		FLOW CALCULATION
444A	03E8	00 3 E3 A				
444B	44DD	40 4 D0 A				
444C	444C	40 4 4C A				
			1804	*		CALC GAGE OF PROD. LEAVING STAND
			1805			
			1806	*		EXIT GAUGE=DELIVERY GAUGE*MPMLS/MPM
			1807			
			1808			
444D	40 4 4D A		1809	CALCGAGE EQU	\$	CALCULATE METERS PER MINUTE OF THIS
			1810			STAND
			1811	*		
			1812	*		
			1813			
444D	2E4E	28 6 4E A	1814	LDA	CIRCUM	CALCULATE THIS STAND'S DELIVERY
444E	D680	D0 6 8D A	1815	MPY	SPEED	GAUGE
444F	DAFB	D8 2 F0 A	1816	DIV	=1000	IN ENCODER UNITS
4450	AE63	A8 6 63 A	1817	STA	MPM	
			1818	*		
			1819	*		
			1820	*		
			1821			
			1822	*		
4451	2C6D	28 4 6D A	1823	LDA	LASTSTND	GAUGE=(MPMLS/MPM)(LSTHICK)
4452	D471	D0 4 71 A	1824	MPY	MPMLS	
4453	DE63	D8 6 63 A	1825	DIV	MPM	
			1826	*		DELIVERY GAUGE IN ENCODER UNITS
4454	AE9B	A8 6 9B A	1827	STA	THICK	
			1828			PW CAN NOT BE CALCULATED FOR STAND 8
			1829	*		ONE
			1830	*		
4455	2C63	28 4 63 A	1831	LDA	DRNB	
4456	6805	68 0 05 A	1832	DCR	A	
4457	F2E8	F0 2 E8 A	1833	ZJP	NEXTSTAND	
			1834	*		PW=(THICK(N-1)-THICK(N))(WIDTH)(HARD
			1835	*		/FORCE)
			1836	*		CALCULATE CHANGE IN THICKNESS
4458	2848	28 0 48 A	1837	LDA	DTAFLES	
4459	4C63	48 4 63 A	1838	SUB	DRNB	
4460	6005	60 0 05 A	1839	INC	A	
4461	1105	10 1 05 A	1840	LDC	*A	
4462	2E9B	28 6 9B A	1841	LDA	THICK	
4463	1483	10 4 83 A	1842	LDC	SAVEC	
4464	4E9B	48 6 9B A	1843	SUB	THICK	
			1844	*		STAND DRAFT IN ENCODER UNITS
4465	AC87	A8 4 87 A	1845	STA	TEMP	
			1846			
			1847			
4466	2D1E	28 5 1E A	1848	LDA	*HARDREG	
4467	5C1D	58 4 1D A	1849	AND	HARDBITS	
4468	1A1E	18 2 1E A	1850	LDG	*SRA+4	
4469	9805	98 0 05 A	1851	SHF	A	
4470	AC6A	A8 4 6A A	1852	STA	HARDNESS	
4471	2A1C	28 2 1C A	1853	LDA	*HARDTABL	
4472	446A	40 4 6A A	1854	ADD	HARDNESS	
4473	2905	28 1 05 A	1855	LDA	*A	
4474	AC6A	A8 4 6A A	1856	STA	HARDNESS	
4475	244F	20 4 4F A	1857	LDE	WIDTHREG	
4476	2B62	28 0 B2 A	1858	LDA	K1X4	
4477	ED2E	E8 5 2E A	1859	SST	*THHEXB	
			1860	*		CORRECT FOR HARDNESS
4478	D46A	D0 4 6A A	1861	MPY	HARDNESS	
			1862	*		CONVERT TO ENCODER UNITS PER KILTON
4479	DE56	D8 6 56 A	1863	DIV	FBRCEL0	
4480	D487	D0 4 87 A	1864	MPY	TEMP	
4481	DABC	D8 2 BC A	1865	DIV	*10	
4482	AC7F	A8 4 7F A	1866	STA	PW+1	
			1867	*		IS PW NEG= YES: NJP HEADENDR
4483	BA6C	B8 2 6C A	1868	NJP	HEADENDR	
			1869	*		STORE IN PW TABLE
			1870	*		DETERMINE GAUGE CLASS
4484	3C5F	38 4 5F A	1871	STZ	CBUNT	
4485	2E42	28 6 42 A	1872	LARGRC	LDA	
4486	445F	40 4 5F A	1873	ADD	CLASS1	
4487	2905	28 1 05 A	1874	LDA	COUNT	
4488	4E87	48 6 87 A	1875	SUB	*A	
4489	B20B	B0 2 08 A	1876	PJP	SDL0	
4490	645F	60 4 5F A	1877	INC	THSCLASS	
4491	2C5F	28 4 5F A	1878	LDA	COUNT	
4492	48AE	48 0 AE A	1879	SUB	K1X7	
4493	B201	B0 2 01 A	1880	PJP	\$+2	
4494	72F6	70 2 F6 A	1881	JMP	LARGRC	
4495	28AE	28 0 AE A	1882	LDA	K1X7	
4496	AC5F	A8 4 5F A	1883	STA	CBUNT	
4497	7203	70 2 03 A	1884	JMP	THSCLASS	
4498	4004	40 0 04 A	1885	LPL		
4499	412E	40 1 2E A				
4500	4482	40 4 82 A				
			1886	*		AVERAGE PW INTB TABLE
4483	40 4 83 A		1887	THSCLASS	EQU	
4484	2E73	28 6 73 A	1888	LDA	PWTABLE	
4485	445F	40 4 5F A	1889	ADD	CBUNT	
			1890		LDA	

AGC XRAY MONITOR

4486	AC78	A8 4 78 A	1891	STA	BLQMEAN
4487	2E7E	28 6 7E A	1892	*	
4488	445F	40 4 5F A	1893	LDA	SAMPLSIZ
4489	A804	A8 0 04 A	1894	ADD	COUNT
4490	2905	28 1 05 A	1895	STA	E
4491	C47E	C0 4 7E A	1896	LD _A	*A
4492	1C7B	18 4 7B A	1897	STA	BLDSIZE
4493	6003	60 0 03 A	1898	SUB	*32
4494	D803	D8 0 03 A	1899	PJP	\$+2
4495	B2C1	B0 2 01 A	1900		
4496	6104	60 1 04 A	1900	INC	*E
4497	2C78	28 4 73 A	1901	LDA	BLDMEAN
4498	D47B	D0 4 73 A	1902	MPY	BLDSIZE
4499	C47E	C0 4 7E A	1903	ADA	PW
4490	1C7B	18 4 7B A	1904	LDG	BLDSIZE
4493	6003	60 0 03 A	1905	INC	G
4494	D803	D8 0 03 A	1906	DIV	G
4495	AC73	A8 4 73 A	1907	STA	NEWMEAN
4496	2E73	28 6 73 A	1908	LDA	PNTABLE
4497	445F	40 4 5F A	1909	ADD	COUNT
4498	A804	A8 0 04 A	1910	STA	E
4499	2C73	28 4 73 A	1911	LD _A	NEWMEAN
449A	A904	A8 1 04 A	1912	STA	*E
449B	2C78	28 4 73 A	1913	LDA	BLDSIZE
449C	6005	60 0 05 A	1914	INC	A
449D	AC76	A8 4 76 A	1915	STA	NEWSIZE
			1916	*	
449E	2C73	28 4 73 A	1917	LDA	NEWMEAN
449F	D005	D0 0 05 A	1918	MPY	A
449G	A48C	A0 4 8C A	1919	STE	XTEMP
449A	AC80	A8 4 8D A	1920	STA	XTEMP+1
4492	2804	28 0 04 A	1921	LDA	E
4493	D476	D0 4 76 A	1922	MPY	NEWSIZE
4494	AC74	A8 4 74 A	1923	STA	NEWMEAN2
4495	3C75	38 4 75 A	1924	STZ	NEWMEAN2+1
4496	3804	38 0 04 A	1925	STZ	E
4497	1A33	18 2 33 A	1926	LDG	*DRA+1
4498	2C8C	28 4 8C A	1927	LDA	XTEMP
4499	9804	98 0 04 A	1928	SHF	E
449A	D476	D0 4 76 A	1929	MPY	NEWSIZE
449B	1A30	18 2 30 A	1930	LDG	*DLA+1
449C	9804	98 0 04 A	1931	SHF	E
449D	C474	C0 4 74 A	1932	ADA	NEWMEAN2
449E	A474	A0 4 74 A	1933	STE	NEWMEAN2
449F	AC75	A8 4 75 A	1934	STA	NEWMEAN2+1
			1935	*	
			1936	*	
449G	2E8E	28 6 8E A	1937	LDA	STANDEV
449B1	445F	40 4 5F A	1938	ADD	COUNT
449B2	2905	28 1 05 A	1939	LDA	*A
449B3	D0B4	D0 0 84 A	1940	MPY	KIXIO
449B4	AC88	A8 4 88 A	1941	STA	TEMP+1
449B5	A487	A0 4 87 A	1942	STE	TEMP
			1943		
449B6	2C76	28 4 78 A	1944	LDA	BLDMEAN
449B7	D005	D0 0 05 A	1945	MPY	A
449B8	C487	C0 4 87 A	1946	ADA	TEMP
449B9	A48C	A0 4 8C A	1947	STE	XTEMP
449B10	AC8D	A8 4 8D A	1948	STA	XTEMP+1
			1949		
449B11	2804	28 0 04 A	1950	LDA	E
			1951	*	
449C	D47B	D0 4 7B A	1952	MPY	BLDSIZE
449D	AC79	A8 4 79 A	1953	STA	BLDMEAN2
449E	3C7A	38 4 7A A	1954	STZ	BLDMEAN2+1
449F	3804	38 0 04 A	1955	STZ	E
449G	1A1A	18 2 1A A	1956	LDG	*DRA+1
449C1	2C8C	28 4 8C A	1957	LDA	XTEMP
449C2	9804	98 0 04 A	1958	SHF	E
449C3	D478	D0 4 78 A	1959	MPY	BLDSIZE
449C4	1A17	18 2 17 A	1960	LDG	*DLA+1
449C5	9804	98 0 04 A	1961	SHF	E
449C6	C479	C0 4 79 A	1962	ADA	BLDMEAN2
			1963	*	
449C7	A479	A0 4 79 A	1964	STE	BLDMEAN2
449C8	AC7A	A8 4 7A A	1965	STA	BLDMEAN2+1
			1966		
449C9	2C76	28 4 76 A	1967	LDA	NEWSIZE
449C10	D0B4	D0 0 84 A	1968	MPY	KIXIO
449C11	A803	A8 0 03 A	1969	STA	G
			1970	*	
449C12	2C7F	28 4 7F A	1971	LDA	PW+1
449C13	D005	D0 0 05 A	1972	MPY	A
			1973	*	
449C14	C479	C0 4 79 A	1974	ADA	BLDMEAN2
449C15	CC74	C8 4 74 A	1975	SDA	NEWMEAN2
			1976		
449D0	D803	D8 0 03 A	1976	DIV	G
449D1	A804	A8 0 04 A	1977	STA	E
			1978	*	
449D2	2E8E	28 6 8E A	1979	LDA	STANDEV
449D3	445F	40 4 5F A	1980	ADD	COUNT
449D4	A105	A0 1 05 A	1981	STE	*A
449D5	2C63	28 4 63 A	1982	LDA	DRN0
449D6	4C3C	48 4 3C A	1983	SUB	N88FDRVS
449D7	B206	B0 2 06 A	1984	PJP	HEADENDR
449D8	7305	70 3 05 A	1985	JMP	NEXTSTAND
449D9	0020	00 0 20 A	1986	LPL	
449DA	C001	C0 0 01 A			
449DB	B001	B0 0 01 A			
449DC	44DD	40 4 DD A			
449DD	443F	40 4 3F A			

PW=(BLDMEAN*BLDSIZE+NEWPW)/BLDS+1

LIMIT SAMPLSIZ TO 32

SQUARE NEW MEAN AND SAVE

SQUARE BLD MEAN, ADD BLD VARIENCE
WHICH IS (DEV/8)**2

UPDATED 'BLD MEAN SQUARED'

SQUARE PW

ADD BLD MEAN SQUARED

STORE ANSWER IN TABLE OF STANDARD DE

AGC XRAY MONITOR

			1987	EJE	
			1988	*	
			1989	*	
			1990	*	
			1991	*	
			1992	*	
			1993	*	
	44DE	40 4 DE A	1994	HEADENDR EQU	\$
44DE	2C69	28 4 69 A	1995	LDA	GAUGEDEV
44DF	D226	00 2 26 A	1996	MPY	*100
44EO	DC4D	D8 4 4D A	1997	DIV	UNITSPMM
			1998	*	
44E1	A864	A8 0 64 A	1999	STA	HEADGAGE
			2000		
44E2	2848	28 0 48 A	2001	LDA	DTAFILES
44E3	4C3C	48 4 3C A	2002	SUB	N88FDRV\$
44E4	1105	10 1 05 A	2003	LDC	*A
44E5	6468	60 4 68 A	2004	INC	HEADAF
			2005	*	
44E6	28AD	28 0 AD A	2006	LDA	K:X5
44E7	AC85	48 4 85 A	2007	STA	STANDWF
44E8	2C3C	28 4 3C A	2008	LDA	N88FDRV\$
44E9	6805	68 0 05 A	2009	DCR	A
44EA	AC63	A8 4 63 A	2010	STA	DRN8
			2011	*	
			2012	*	
			2013	*	
			2014	*	
44EB	2E63	28 6 63 A	2015	LDA	MPM
44EC	AC71	A8 4 71 A	2016	STA	MPMLS
			2017		
			2018		
			2019	*	
	44ED	40 4 ED A	2020	NXTSTND EQU	\$
44ED	2848	28 0 48 A	2021	LDA	DTAFILES
44EE	4C63	48 4 63 A	2022	SUB	DRN8
44EF	1105	10 1 05 A	2023	LDC	*A
44FO	2E23	28 6 23 A	2024	LDA	HCI
			2025	*	
44F1	6C05	60 0 05 A	2026	INC	A
44F2	2305	28 1 05 A	2027	LDA	*A
44F3	5C49	58 4 49 A	2028	AND	STDMONBT
			2029	*	
44F4	F201	F0 2 01 A	2030	ZJP	\$+2
44F5	7203	70 2 03 A	2031	JMP	CORRECAL
44F6	40 4 F6 A	2032	NEWDR	EQU	\$
44F6	6C63	68 4 63 A	2033	DCR	DRN8
			2034	*	
44F7	F20F	F0 2 0F A	2035	ZJP	LOCKBN
44F8	72F4	70 2 F4 A	2036	JMP	NXTSTND
			2037		
			2038		
44F9	40 4 F9 A	2039	CORRECAL EQU	\$	
44F9	2C71	28 4 71 A	2040	LDA	MPMLS
44FA	D469	00 4 69 A	2041	MPY	GAUGEDEV
44FB	DE63	D8 6 63 A	2042	DIV	MPM
44FC	D485	D0 4 85 A	2043	MPY	STANDWF
44FD	DC65	D8 4 65 A	2044	DIV	HEADWF
44FL	DCA0	DG 0 AJ A	2045	MPY	K:FFFF
44FF	D8A0	D8 AD A	2046	DIV	K:X5
4500	4626	40 6 26 A	2047	ADD	RESET
4501	AE26	A8 6 25 A	2048	STA	RESET
4502	6C85	68 4 85 A	2049	DCR	STANDWF
			2050	*	
4503	F203	F0 2 03 A	2051	ZJP	LOCKBN
4504	72F1	70 2 F1 A	2052	JMP	NEWDR
4505	00 6 64 A	2053	LPL		
4506	4506	40 5 06 A	2054	EJE	
			2055	*	
			2056	*	
			2057	*	
			2058		
4507	40 5 07 A	2059	LOCKBN EQU	\$	
4507	2D35	28 5 35 A	2060	LDA	*MHOLDREG
			2061	*	
4508	5C41	58 4 41 A	2062	AND	GAGEPAT
4509	F201	F0 2 01 A	2063	ZJP	\$+2
450A	7218	70 2 18 A	2064	*	
			2065	JMP	HOLDON
			2066	*	
450B	2C69	28 4 69 A	2067	LDA	GAUGEDEV
450C	4C30	48 4 30 A	2068	SUB	MAXALLOW
450D	B204	80 2 04 A	2069	PJP	HOLD
450E	2C69	28 4 69 A	2070	LDA	GAUGEDEV
450F	4430	40 4 30 A	2071	ADD	MAXALLOW
4510	BA01	B8 2 01 A	2072	NJP	HOLD
			2073	*	
4511	722E	70 2 2E A	2074	JMP	MAINMONI
			2075	*	
			2076	*	
4512	2C77	28 4 77 A	2077	HOLD	LDA
4513	4469	40 4 69 A	2078		NBMINAL
4514	A804	A8 0 04 A	2079	ADD	GAUGEDEV
4515	3803	38 0 03 A	2080	STA	E
4516	2C69	28 4 69 A	2081	STZ	G.
4517	B213	B0 2 13 A	2082	LDA	GAUGEDEV
4518	2884	28 0 84 A	2083	PJP	HOLDTHIK
4519	A803	A8 0 03 A	2084	STA	K:X10
			2085	*	
			2086	*	
			2087	HOLDPHTHIN DCR	G
451A	6803	68 0 03 A	2087	LDA	G
451B	2803	28 0 03 A	2088		

THIS ROUTINE IMPROVES ON THE
INITIAL SET-UP OF THE SCREWS
BY EVALUATING THE GAUGE OF THE
HEAD END OF A STRIP AND THEN
ADJUSTING THE TABLE OF PRESET
VALUES.

STBRE HEAD END GAGE

INCREMENT HEAD END IMPORTANCE FACTOR

READ PREVIOUS VALUE OF RESET TABLE
AND ADD CORRECTION
CORRECTION = (DEV * MPMLS / MPM) / HEADAF
* STANDWF / 3

START WITH SECOND LAST STAND

IS THIS STAND'S MONITOR SELECTED
YES; JMP CORRECAL

GO TO !LOCKBN! IF ALL STANDS CHK'D

GO TO !LOCKBN! IF ALL STANDS CHK'D
MONITOR WILL LOCK ON GAUGE IF
HOLD! IS SELECTED

GAUGE DEV. IS > 10% OR IF !MON.
IS MONITOR HOLD SELECTED

YES; JMP HOLDON

IS DEVIATION OUT OF LIMIT

NB: JMP MAINMONI

DETERMINE IF THIS IS TO BE ROLLED
LIGHT OR HEAVY

PICK LIGHTER GAUGE AS NEW TARGET
BY SEARCHING 'GAGETBL'

AGC XRAY MONITOR

451C	F223	F0 2 23 A	2089	ZJP	MAINMBNI	ENTRY 1 OF 'GAGETBL' IS SMALLEST
451D	2A5E	28 2 5E A	2090	*	LDA	GAGETBL
451E	4003	40 0 03 A	2091	ADD	G	
451F	2905	28 1 05 A	2092	LDA	*A	
4520	AC67	48 4 67 A	2093	STA	GAGEREAP	
4521	2804	28 0 04 A	2094	LDA	E	
4522	4C67	48 4 67 A	2095	SUB	GAGEREAP	
4523	4430	40 4 33 A	2096	ADD	MAXALLOW	
4524	BAF5	88 2 F5 A	2093	NJP	HOLDTHIN	
4525	7210	70 2 10 A	2099	JMP	PCTCALC	
4526	40 5 25 A	2100	HOLDON	EQU	\$	MONITOR WILL HOLD PRESENT GAUGE
4526	2C69	28 4 69 A	2101	*	LDA	GAUGEDEV
4527	AC67	48 4 67 A	2102	STA	GAGERAP	
4526	3C69	38 4 69 A	2103	STZ	GAUGEDEV	
4529	3A05	38 0 05 A	2104	STZ	A	
452A	7214	70 2 1+ A	2105	JMP	PCTSTORE	
452B	40 5 23 A	2107	HOLDTHIK	EQU	\$	PICK HEAVIER GAUGE AS NEW TARGET BY SEARCHING 'GAGETBL' G IS LOOP COUNTER
452B	6003	60 0 03 A	2111	INC	G	
452C	2803	28 0 03 A	2112	LDA	G	
452D	4884	48 0 B4 A	2113	SUB	K:X10	
452E	B211	80 2 11 A	2114	PJP	MAINMBNI	ADDRESS OF 1 ENTRY OF GAGETBL ENTRY 1 IS SMALLEST
452F	2A4C	28 2 4C A	2115	LDA	GAGETBL	
4530	4003	40 0 03 A	2116	*	ADD	G
4531	2905	28 1 05 A	2118	LDA	*A	DETERMINE NEW NOMINAL GAUGE
4532	AC67	48 4 67 A	2119	*	STA	GAGEREAP
4533	4804	48 0 04 A	2120	SUB	E	
4534	4430	40 4 33 A	2122	ADD	MAXALLOW	
4535	BAF5	88 2 F5 A	2123	NJP	HOLDTHIK	
4536	40 5 36 A	2124	PCTCALC	EQU	\$	CALC PERCENT DEV FROM LOCKON
4536	1C67	18 4 67 A	2125	*	LDG	GAGERAP
4537	2C67	28 4 67 A	2126	*	DETERMINE NEW DEVIATION	
4538	4C77	48 4 77 A	2127	*	LDA	GAGERAP
4539	AC67	48 4 67 A	2128	SUB	NOMINAL	
453A	2C69	28 4 69 A	2129	STA	GAGEREAP	
453B	4C67	48 4 67 A	2130	LDA	GAUGEDEV	
453C	AC69	48 4 69 A	2131	SUB	GAGEREAP	
453D	D2C8	D0 2 C8 A	2132	STA	GAUGEDEV	
453E	D803	D8 0 03 A	2133	MPY	=100	
453E	1C67	18 4 67 A	2134	DIV	G	PRCNTDEV IS % DEV. OF LOCKON FROM NEW NOMINAL GAUGE
453F	AC7D	A8 4 7D A	2135	PCTSTORE	STA	PRCNTDEV
4540	40 5 40 A	2139	EJE	*		
4540	MAINMBNI	EQU	\$			
4541	*					
4542	*					
4543	*					
4544	2C3C	28 4 3C A	2144	LDA	NO8DRVS	NORMAL PATH: MAINTAIN ABSOLUTE CALIBRATION OF ROLL FORCE SYSTEM
4545	AC63	48 4 63 A	2145	STA	DRN8	
4546	2848	28 0 48 A	2146	LDA	DTAFLES	
4547	4C63	48 4 63 A	2147	SUB	DRN8	
4548	1105	10 1 05 A	2148	LDC	*A	
4549	2E4E	28 6 4E A	2149	LDA	CIRCUM	
4549	D68D	D0 6 8D A	2150	*		CALCULATE LAST STAND SPEED IN METERS/MIN
4550	DA6A	D8 2 6A A	2152	MPY	SPEED	
4551	AC71	A8 4 71 A	2153	DIV	=1000	
4552	*		2154	STA	MPMLS	
4553	*		2155	*		EXIT THICK=XRAY THICK*MPMLS/MPM
4554	28AC	28 0 AC A	2156	LDA	K:X3	
4555	AC5E	48 4 5E A	2157	STA	COMP	
4556	454B	40 5 4B A	2158	SDL80P	EQU	
4557	2848	28 0 48 A	2159	LDA	DTAFLES	
4558	4C63	48 4 63 A	2160	SUB	DRN8	
4559	6005	60 0 05 A	2161	INC	A	
4560	1105	10 1 05 A	2162	LDC	*A	
4561	2E11	28 6 11 A	2163	LDA	CALFLAG	
4562	B22F	B8 2 2F A	2164	PJP	DECREM	
4563	*		2165	*		CHECK IF MONITOR IS SELECTED ON THICK STAND
4564	2E23	28 6 23 A	2166	*		
4565	6005	60 0 05 A	2167	LDA	MC1	
4566	2905	28 1 05 A	2168	INC	A	
4567	5C49	58 4 49 A	2169	LDA	*A	
4568	F22A	F0 2 2A A	2170	AND	STDMBNT	
4569	2E4E	28 6 4E A	2171	ZJP	DECREM	
4570	D68D	D0 6 8D A	2172	*		CALCULATE ROLL FORCE ERROR
4571	DA59	D8 2 59 A	2173	LDA	CIRCUM	
4572	AE63	A8 6 63 A	2174	MPY	SPEED	
4573	*		2175	DIV	=1000	
4574	*		2176	STA	MPM	
4575	*		2177	*		OTHER=GAUGEDEV*MPMLS/MPM*J1/M2+
4576	*		2178	*		OTHER*J3/J4
4577	2C71	28 4 71 A	2179	LDA	MPMLS	
4578	D65C	D0 6 5C A	2180	MPY	J1	
4579	DE63	D8 6 63 A	2181	DIV	MPM	
4580	D469	D0 4 69 A	2182	MPY	GAUGEDEV	
4581	DC2A	D8 4 2A A	2183	DIV	J2	
4582	A803	A8 0 03 A	2184	STA	G	
4583	2E65	28 6 65 A	2185	LDA	OTHER	
4584	D42B	D0 4 2B A	2186	MPY	J3	
4585	DC2C	D8 4 2C A	2187	DIV	J4	
4586	4003	40 0 03 A	2188	ADD	G	
4587	A804	A8 0 04 A	2189	STA	E	
4588	*		2190	*		E CONTAINS ERROR

4565	BA1D	B8 2 10 A	2191	NJP	NEGLIM	
4566	4E3D	46 6 30 A	2192	SUB	P8SLIM	
4567	BA01	B8 2 01 A	2193	NJP	SC8P8S	
4568	2E3D	20 6 30 A	2194	LDE	P8SLIM	
4569	2E04	28 0 04 A	2195	SCRPOS	LDA E	
456A	AE65	A8 6 65 A	2196	STA	8THER	
			2197	*		
456B	2E23	28 6 23 A	2198	LDA	MCI	
456C	6C05	60 0 05 A	2199	INC	A	
456D	2E05	28 1 03 A	2200	LDA	*A	
456E	5C07	58 4 07 A	2201	AND	BITPAT2	
456F	F201	F0 2 01 A	2202	ZJP	S+2	
4570	720B	70 2 03 A	2203	JMP	8THERCALC	
			2204	*		
4571	ED36	E8 5 36 A	2205	SST	*GRAYBIN,B	
4572	4E65	48 6 65 A	2206	SUB	8THER	
4573	AC3E	A8 4 3E A	2207	STA	POSITN	
4574	2C63	28 4 63 A	2208	LDA	DRN8	
4575	4E3E	40 2 3E A	2209	ADD	=X'8000'	
4576	AC86	A8 4 85 A	2210	STA	TEMPDRN8	
4577	EC3B	E8 5 35 A	2211	SST	*STRTP8S,B	
4578	0C86	00 0 86 A	2212	DAT	TEMPDRN8=0	
4579	003E	00 0 3E A	2213	DAT	POSITN-D	
457A	7205	70 2 05 A	2214	JMP	DECREM	
			2215			
457B	411A	40 1 1A A	2216			
			2217	GAGETBL DAT	GAGETBLE+1	
			2218			
457C	40 5 7C A	2219	2220	8THERCAL EQU	\$	
457C	6C5E	68 4 5E A	2221	DCR	CMPF	
457D	F201	F0 2 01 A	2222	ZJP	\$+2	
457E	7201	70 2 01 A	2223	JMP	DECREM	
457F	3E65	38 6 65 A	2224	STZ	8THER	
4580	6C63	68 4 63 A	2225	DECREM	DCR	
4581	F205	F0 2 05 A	2226	ZJP	ZER8GEFG	
4582	72C8	70 2 C8 A	2227	JMP	SDL08P	
4583	4E3C	48 6 3C A	2228	NEGLIM	SUB	
4584	B2E4	B0 2 E4 A	2229	PJP	NEGLIMT	
4585	2E3C	20 6 3C A	2230	LDE	SCRPOS	
4586	72E2	70 2 E2 A	2231	JMP	SCRPOS	
4587	40 5 87 A	2232	ZER8GEFG EQU	\$		
		2233	*			
4587	2C3C	28 4 3C A	2234	LDA	NU0FDRVS	
4588	AC63	A8 4 63 A	2235	STA	DRN8	
4589	2C4C	28 4 4C A	2236	LDA	TIMEFUNC	
458A	AC5E	A8 4 5E A	2237	STA	CMPF	
458B	AC72	A8 4 72 A	2238	STA	MNITIME	
		2239	*			
458C	40 5 8C A	2240	2240	TIMEL08P EQU	\$	
458C	2E48	28 0 48 A	2241	LDA	DTAFLES	
458D	4C63	48 4 63 A	2242	SUB	DRN8	
458E	1105	10 1 05 A	2243	LDC	*A	
		2244	*			
458F	2E23	28 6 23 A	2245	*		
4590	6C05	60 0 05 A	2246	LDA	MCI	
4591	2E05	28 1 05 A	2247	INC	A	
4592	5C49	58 4 49 A	2248	LDA	*A	
4593	F201	F0 2 01 A	2249	AND	STDMONBT	
4594	6C5E	68 4 5E A	2250	ZJP	\$+2	
4595	3E04	38 0 4+ A	2251	DCR	CMPF	
		2252	STZ	E		
4596	2E8A	28 6 8A A	2253	LDA	SEPARATE	
4597	DE8D	D8 6 8D A	2254	DIV	SPEED	
4598	D21A	D0 2 1A A	2255	MPY	*600	
4599	DE4E	D8 6 4E A	2256	DIV	CIRCU	
459A	A803	A8 0 03 A	2257	STA	G	
459B	2C72	28 4 72 A	2258	LDA	MNITIME	
459C	4003	40 0 03 A	2259	ADD	G	
459D	AC72	A8 4 72 A	2260	STA	MNITIME	
459E	2C5E	28 4 5E A	2261	LDA	CMPF	
459F	F203	F0 2 03 A	2262	ZJP	SETTIMER	
45A0	6C63	68 4 63 A	2263	TIMEDEC	DCR	
45A1	F201	F0 2 01 A	2264	ZJP	SETTIMER	
45A2	72E9	70 2 E9 A	2265	JMP	TIMEL08P	
45A3	40 5 A3 A	2266	SETTIMER	EQU	\$	
45A3	2E49	28 0 49 A	2267	LDA	TMDLYTBL	
45A4	443F	40 4 3F A	2268	ADD	PROGRAMN	
45A5	A804	A8 0 04 A	2269	STA	E	
45A6	2C72	28 4 72 A	2270	LDA	MNITIME	
45A7	A904	A8 1 04 A	2271	STA	*E	
	45A8	40 5 A3 A	2272	LIGHT	EQU	\$
		2273	*			
45A8	ED29	E8 5 29 A	2274	SST	*S:CC8,B	
45A9	003A	00 0 3A A	2275	DAT	MN0N0M=0	
45AA	0039	00 0 39 A	2276	DAT	MN0N0PAT=0	
45AB	0C3B	00 0 3B A	2277	DAT	MN0N0REG=0	
45AC	0038	00 0 35 A	2278	DAT	MN0N0MSK=0	
45AD	3C5A	38 4 5A A	2279	STZ	AVERDEV	
45AE	3C60	38 4 60 A	2280	STZ	DEWEIGF	
45AF	6460	60 4 60 A	2281	INC	DEWEIGF	
45B0	74RE	70 4 BE A	2282	JMP	END	
45B1	03E8	00 3 E8 A				
45B2	0258	00 2 58 A				
45B3	8C00	80 0 03 A	2283	END		
0000	ERRORS	00 0 03 A				

IS ROLL FORCE TURNED OFF

YES: OUTPUT CORRECTION OF XRAY

DETERMINE TIME DELAY TO FURTHEST STAND CORRECTED

CHECK IF MONITOR IS SELECTED FOR THIS STAND

SET LIGHT MONITOR ON

We claim:

1. A gauge control system for a rolling mill having at least a first roll stand and a second roll stand operative with initial roll opening settings to reduce the gauge of a plurality of similar workpieces passed through said rolling mill, said system comprising:

means for measuring the gauge deviation of a first of said workpieces leaving said second roll stand,

means for determining a correction for adjusting the roll opening setting of at least said first roll stand for the passage of at least a second workpiece in accordance with a predetermined mass flow relationship between said gauge deviation of said first workpiece, the operating speed of said first roll stand and the operating speed of said second roll stand, and,

means for controlling the roll opening of said first roll stand for the passage of at least said second workpiece in accordance with said gauge correction.

2. The gauge control system for a rolling mill of claim 1, including

means for controlling the roll opening of said second roll stand in accordance with the measured roll force of that second roll stand and the predetermined mill spring characteristic of that second roll stand.

3. The gauge control system of claim 1, with said rolling mill having a plurality of roll stands and said second roll stand being the last roll stand of the rolling mill, said system including

means for controlling the roll opening of a third roll stand positioned between said first roll stand and said last roll stand during the passage of at least said second workpiece in accordance with said correction,

with said relationship including a weighting factor having a first value when said correction is determined for adjusting the roll opening of said first roll stand and having a second and different value when said correction is determined for adjusting the roll opening of said third roll stand.

4. The gauge control system for a rolling mill of claim 1, with said rolling mill having a plurality of roll stands operative to reduce the gauge of said plurality of workpieces passed through said rolling mill,

with said correction being determined by the relationship $\text{CORRECTION} = (\text{RPM}_{LS}) \text{ GAUGE DEVIATION}/(\text{RPM}_{TS}) \text{ WEIGHTING FACTOR}$, where the RPM_{TS} is the operating speed of said first roll stand, where RPM_{LS} is the operating speed of said second roll stand and the weighting factor is determined in relation to a desired portion of said determined correction that is to be applied to said first roll stand.

5. The gauge control system for a rolling mill of claim 1, with said second roll stand being controlled by a roll force gauge control system responsive to a roll force determined workpiece gauge leaving said second roll stand.

6. A method of controlling the workpiece gauge leaving a rolling mill having at least a first roll stand operative with initial roll opening settings to reduce the gauge of a plurality of similar workpieces passed through said rolling mill and including a device for measuring the gauge deviation of a first workpiece leaving said rolling mill, the steps of said method comprising:

determining a roll opening correction for application to said first roll stand during the passage of at least a second workpiece in accordance with a predetermined mass flow relationship with said gauge deviation of said first workpiece and the workpiece movement from said rolling mill as compared to the workpiece movement from said first roll stand, and

controlling the operation of said first roll stand in accordance with a roll opening setting modified by said correction.

7. The method of controlling the workpiece gauge leaving a rolling mill of claim 6, with said rolling mill having a plurality of roll stands operative to reduce the gauge of said plurality of workpieces passed through said rolling mill, with said method including:

determining the roll opening correction for application to each of selected roll stands during the passage of at least said second workpiece in accordance with said predetermined relationship and a predetermined weighting factor for each of said selected roll stands such that a decreasing portion of said correction is applied to each selected roll stand in relation to the distance of the selected roll stand ahead of the last roll stand of the rolling mill.

8. The method of controlling the workpiece gauge leaving a rolling mill of claim 6, with said rolling mill having a plurality of roll stands and with said plurality of workpieces being similar in at least one of gauge classification and grade classification, said method including:

determining a roll opening correction for application to each of selected roll stands during the passage of at least said second workpiece such that the roll opening setting of an earlier selected roll stand is corrected less than the roll opening setting of a later selected roll stand.

9. The method of controlling the workpiece gauge leaving a rolling mill of claim 6, with said rolling mill having a plurality of roll stands operative to reduce the gauge of said plurality of workpieces passed through said rolling mill, the steps of said method including:

determining a weighting factor in relation to each of selected roll stands for providing a predetermined portion of said roll opening correction to each selected roll stand, and

controlling the roll opening of each of said selected roll stands in accordance with said correction and said weighting factor for that roll stand.

10. The method of controlling the workpiece gauge leaving a rolling mill of claim 6 with said method including:

determining said roll opening correction in relation to a predetermined weighting factor for applying a decreased correction to said first roll stand in accordance with the distance between said first roll stand and the last roll stand of said rolling mill.

11. The gauge control system for a rolling mill of claim 1 with said correction being determined in accordance with a weighting factor in relation to a desired portion of said gauge correction that is to be applied to said first roll stand.

12. A gauge control system for a rolling mill having at least a first roll stand and a second roll stand operative to reduce the gauge of first and second workpieces passed through said rolling mill and including a device for measuring the gauge deviation of said first work-

piece leaving said second roll stand, said system comprising:

means for determining a gauge correction for application to said first roll stand during the passage of said second workpiece in accordance with a predetermined relationship between said gauge deviation of said first workpiece, the operating speed of said first roll stand, the operating speed of said second roll stand and a weighting factor in relation to a desired portion of said determined gauge correction 10 that is to be applied to said first roll stand, and means for controlling the roll opening of said first roll stand during the passage of said second workpiece in accordance with said gauge correction.

13. A method of controlling the workpiece gauge 15 leaving a rolling mill having at least a first roll stand operative to reduce the gauge of first and second work-

pieces passed through said rolling mill and in relation to a measured gauge deviation of said first workpiece leaving said rolling mill, the steps of said method comprising:

determining a gauge correction for application to said first roll stand during the passage of said second workpiece in accordance with a predetermined relationship between the measured gauge deviation of said first workpiece, the workpiece movement from said rolling mill as compared to the workpiece movement from said first roll stand,

determining a predetermined weighting factor in relation to said first roll stand, and controlling the operation of said first roll stand in accordance with said gauge correction and said weighting factor.

* * * * *

20

25

30

35

40

45

50

55

60

65