(86) Date de dépôt PCT/PCT Filing Date: 2009/01/05
(87) Date publication PCT/PCT Publication Date: 2009/07/16
(45) Date de délivrance/Issue Date: 2016/12/06
(85) Entrée phase nationale/National Entry: 2010/07/05
(86) N° demande PCT/PCT Application No.: US 2009/000038
(87) N° publication PCT/PCT Publication No.: 2009/089986
(30) Priorités/Priorities: 2008/01/04 (US61/009,971); 2008/09/26 (US61/194,294); 2008/12/05 (US61/201,146)

(51) Cl.Int./Int.Cl. C07D 487/04 (2006.01), A61K 31/519 (2006.01), A61K 31/52 (2006.01), A61P 19/02 (2006.01), A61P 29/00 (2006.01), C07D 473/34 (2006.01)

(72) Inventeurs/Inventors:
REN, PINGDA, US;
LIU, YI, US;
WILSON, TROY EDWARD, US;
CHAN, KATRINA, US;
ROMMEL, CHRISTIAN, US;
LI, LIANSHENG, US

(73) Propriétaire/Owner:
INTELLIKINE LLC, US

(74) Agent: ADE & COMPANY INC.

(54) Titre : ISOQUINOLINE-1(2H)-ONES SUBSTITUE ET SES UTILISATIONS
(54) Title: SUBSTITUTED ISOQUINOLIN-1(2H)-ONES AND USES THEREOF

TNP-Ficoll assay description

BDA-1, female

First dose

D-1
D-2
D-3
D-4
D-5
D-6
D-7

Collect serum

ELISA assay to measure antibody level

(57) Abrégé/Abstract:
Chemical entities that modulate PD kinase activity, pharmaceutical compositions containing the chemical entities, and methods of using these chemical entities for treating diseases and conditions associated with P13 kinase activity are described herein.
Title: CERTAIN CHEMICAL ENTITIES, COMPOSITIONS AND METHODS

TNP-Ficoll assay description

BDA-1, female

First dose

D-1 D-2 D-3 D-4 D-5 D-6 D-7

TPN-Ficoll injection

Collect serum

ELISA assay to measure antibody level

Figure 1

Abstract: Chemical entities that modulate PD kinase activity, pharmaceutical compositions containing the chemical entities, and methods of using these chemical entities for treating diseases and conditions associated with P13 kinase activity are described herein.
SUBSTITUTED ISOQUINOLIN-1(2H)-ONES AND USES THEREOF

BACKGROUND OF THE INVENTION

[0002] The activity of cells can be regulated by external signals that stimulate or inhibit intracellular events. The process by which stimulatory or inhibitory signals are transmitted into and within a cell to elicit an intracellular response is referred to as signal transduction. Over the past decades, cascades of signal transduction events have been elucidated and found to play a central role in a variety of biological responses. Defects in various components of signal transduction pathways have been found to account for a vast number of diseases, including numerous forms of cancer, inflammatory disorders, metabolic disorders, vascular and neuronal diseases (Gaestel et al. Current Medicinal Chemistry (2007) 14:2214-2234).

[0003] Kinases represent a class of important signaling molecules. Kinases can generally be classified into protein kinases and lipid kinases, and certain kinases exhibit dual specificities. Protein kinases are enzymes that phosphorylate other proteins and/or themselves (i.e., autophosphorylation). Protein kinases can be generally classified into three major groups based upon their substrate utilization: tyrosine kinases which predominantly phosphorylate substrates on tyrosine residues (e.g., erb2, PDGF receptor, EGF receptor, VEGF receptor, src, abl), serine/threonine kinases which predominantly phosphorylate substrates on serine and/or threonine residues (e.g., mTorC1, mTorC2, ATM, ATR, DNA-PK, Akt), and dual-specificity kinases which phosphorylate substrates on tyrosine, serine and/or threonine residues.

[0004] Lipid kinases are enzymes that catalyze the phosphorylation of lipids. These enzymes, and the resulting phosphorylated lipids and lipid-derived biologically active organic molecules, play a role in many different physiological processes, including cell proliferation, migration, adhesion, and differentiation. Certain lipid kinases are membrane associated and they catalyze the phosphorylation of lipids contained in or associated with cell membranes. Examples of such enzymes include phosphoinositide(s) kinases (such as PI3-kinases, PI4-Kinases), diacylglycerol kinases, and sphingosine kinases.

[0005] The phosphoinositide 3-kinases (PI3Ks) signaling pathway is one of the most highly mutated systems in human cancers. PI3K signaling is also a key factor in many other
diseases in humans. PI3K signaling is involved in many disease states including allergic contact dermatitis, rheumatoid arthritis, osteoarthritis, inflammatory bowel diseases, chronic obstructive pulmonary disorder, psoriasis, multiple sclerosis, asthma, disorders related to diabetic complications, and inflammatory complications of the cardiovascular system such as acute coronary syndrome.

[0006] PI3Ks are members of a unique and conserved family of intracellular lipid kinases that phosphorylate the 3'-OH group on phosphatidylinositol or phosphoinositides. The PI3K family comprises 15 kinases with distinct substrate specificities, expression patterns, and modes of regulation (Katso et al., 2001). The class I PI3Ks (p110α, p110β, p110δ, and p110γ) are typically activated by tyrosine kinases or G-protein coupled receptors to generate PIP3, which engages downstream effectors such as those in the Akt/PDK1 pathway, mTOR, the Tec family kinases, and the Rho family GTPases. The class II and III PI3-Ks play a key role in intracellular trafficking through the synthesis of PI(3)P and PI(3,4)P2. The PIKKs are protein kinases that control cell growth (mTORC1) or monitor genomic integrity (ATM, ATR, DNA-PK, and hSmg-1).
The delta (δ) isoform of class I PI3K has been implicated, in particular, in a number of diseases and biological processes. PI3K δ is expressed primarily in hematopoietic cells including leukocytes such as T-cells, dendritic cells, neutrophils, mast cells, B-cells, and macrophages. PI3K δ is integrally involved in mammalian immune system functions such as T-cell function, B-cell activation, mast cell activation, dendritic cell function, and neutrophil activity. Due to its integral role in immune system function, PI3K δ is also involved in a number of diseases related to undesirable immune response such as allergic reactions, inflammatory diseases, inflammation mediated angiogenesis, rheumatoid arthritis, auto-immune diseases such as lupus, asthma, emphysema and other respiratory diseases. Other class I PI3K involved in immune system function includes PI3K γ, which plays a role in leukocyte signaling and has been implicated in inflammation, rheumatoid arthritis, and autoimmune diseases such as lupus.

Downstream mediators of the PI3K signal transduction pathway include Akt and mammalian target of rapamycin (mTOR). Akt possesses a pleckstrin homology (PH) domain that binds PIP3, leading to Akt kinase activation. Akt phosphorylates many substrates and is a central downstream effector of PI3K for diverse cellular responses. One important function of Akt is to augment the activity of mTOR, through phosphorylation of TSC2 and other mechanisms. mTOR is a serine-threonine kinase related to the lipid kinases of the PI3K family. mTOR has been implicated in a wide range of biological processes including cell growth, cell proliferation, cell motility and survival. Disregulation of the mTOR pathway has been reported in various types of cancer. mTOR is a multifunctional kinase that integrates growth factor and nutrient signals to regulate protein translation, nutrient uptake, autophagy, and mitochondrial function.

As such, kinases, particularly PI3Ks are prime targets for drug development. There remains a need for PI3K inhibitors suitable for drug development. The present invention addresses this need and provides related advantages as well by providing new classes of kinase inhibitors.

SUMMARY OF THE INVENTION

In one aspect, the present invention provides compounds of Formula I below or pharmaceutically acceptable salts thereof, wherein

![Formula I](image)

- Wₐ is heterocycloalkyl, aryl or heteroaryl;
- B is a moiety of Formula II;

![Formula II](image)

- wherein Wₑ is aryl, heteroaryl, heterocycloalkyl, or cycloalkyl, and q is an integer of 0, 1, 2, 3, or 4;
[0014] X is absent or –(CH(R³))z-, and z is an integer of 1;
[0015] Y is absent, or –N(R⁵)–;
[0016] R¹ is hydrogen, alkyl, alkenyl, alkynyl, alkoxy, amidido, alkoxy carbonyl, sulfonamido, halo, cyano, or nitro;
[0017] R² is alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, heteroarylalkyl, alkoxy, amino, halo, cyano, hydroxy or nitro;
[0018] R³ is hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, alkoxy, amidido, amino, alkoxy carbonyl sulfonamido, halo, cyano, hydroxy or nitro;
[0019] R⁵, R⁶, R⁷, and R⁸ are independently hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, alkoxy, amidido, amino, acyl, acyloxy, sulfonamido, halo, cyano, hydroxy or nitro; and each instance of R³ is independently hydrogen, alkyl, cycloalkyl, or heterocycloalkyl.
[0020] In another aspect, the present invention provides compounds which are of Formula I, or their pharmaceutically acceptable salts thereof, wherein

![Formula I]

[0022] W⁴ is heterocycloalkyl, aryl or heteroaryl;
[0023] B is alkyl, amino, heteroaryl, or a moiety of Formula II;

![Formula II]

[0024] wherein W⁴ is aryl, heteroaryl, heterocycloalkyl, or cycloalkyl, and q is an integer of 0, 1, 2, 3, or 4;
[0025] X is absent or is –(CH(R³))z– and z is independently an integer of 1, 2, 3, or 4;
[0026] Y is absent, –O–, –S–, –S(=O)–, –S(=O)₂–, –N(R⁵)–, –C(=O)–, –C(=O)₂–, –N(R⁵)(C=O)–, –N(R⁵)(C=O)₂–;
[0027] R¹ is hydrogen, alkyl, heteroalkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, aroylalkyl, heteroaryl, heteroarylalkyl, alkoxy, amidido, amino, acyl, acyloxy, alkoxy carbonyl, sulfonamido, halo, cyano, hydroxy, nitro, phosphate, urea, or carbonate;
[0028] R² is alkyl, heteroalkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, aroylalkyl, heteroaryl, heteroarylalkyl, alkoxy, amidido, amino, acyl, acyloxy, alkoxy carbonyl, sulfonamido, halo, cyano, hydroxy, nitro, phosphate, urea, or carbonate;
[0029] R³ is hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, alkoxy, amidido, amino, acyl, acyloxy, alkoxy carbonyl, sulfonamido, halo, cyano, hydroxy, aroyl, heteroaryl, or nitro;
[0030] R^5, R^6, R^7, and R^8 are independently hydrogen, C_1-C_4alkyl, C_2-C_3alkenyl, C_2-C_3alkynyl, C_2-C_3cycloalkyl, C_1-C_4heteroalkyl, C_1-C_4alkoxy, C_1-C_4amido, amino, acyl, C_1-C_4acyloxy, alkoxy carbonyl, C_1-C_4sulfonamido, halo, cyano, hydroxy or nitro; and
[0031] each instance of R^5 is independently hydrogen, C_1-C_{10}alkyl, C_3-C_5cycloalkyl, heterocycloalkyl, or C_2-C_{10}heteroalkyl.
[0032] In some of the embodiments, X is -CH$_2$-, -CH(CHR$_2$CH$_3$)$_2$-, or -CH(CH$_3$)$_2$-.
[0033] In some embodiments, X-Y is -CH$_2$N(CH$_3$)$_2$-, -CH$_2$N(CHR$_2$CH$_3$)$_2$-, -CH(CH$_3$CH$_3$)-NH- or -CH(CH$_3$)-NH-.
[0034] In some embodiments, W_d is a pyrazolopyrimidine of Formula III:

![Formula III](image)

10

[0035] wherein R^{11} is H, alkyl, halo, amino, amido, hydroxy, or alkoxy, and R^{12} is H, alkyl, alkynyl, alkenyl, halo, aryl, heteroaryl, heterocycloalkyl, or cycloalkyl. In some embodiments, W_d is a pyrazolopyrimidine of Formula III, wherein R^{11} is H, alkyl, halo, amino, amido, hydroxy, or alkoxy, and R^{12} is cyano, amino, carboxylic acid, or amido.
[0036] In some embodiments, the compound of Formula I has the structure of Formula IV:

![Formula IV](image)

15

[0037] wherein R^{11} is H, alkyl, halo, amino, amido, hydroxy, or alkoxy, and R^{12} is H, alkyl, alkynyl, alkenyl, halo, aryl, heteroaryl, heterocycloalkyl, or cycloalkyl. In some embodiments, the compound of Formula I has the structure of Formula IV wherein R^{11} is H, alkyl, halo, amino, amido, hydroxy, or alkoxy, and R^{12} is cyano, amino, carboxylic acid, or amido.
[0038] In some embodiments of the compound of Formula I, R^{11} is amino. In some embodiments of the compound of Formula I, R^{12} is alkyl, alkenyl, alkynyl, heteroaryl, aryl, or heterocycloalkyl. In some embodiments of the compound of Formula I, R^{12} is cyano, amino, carboxylic acid, or amido. In some embodiments of the compound of Formula I, R^{12} is a monocyclic heteroaryl. In some embodiments of the compound of Formula I, R^{12} is a bicyclic heteroaryl.
[0039] In some embodiments of the compound of Formula I, the compound has the structure of Formula V:
In some of the embodiments of Formula I, X-Y is N(CH₂CH₃)CH₂- or N(CH₃)CH₂-.

In some of the embodiments of Formula I, the compound has a structure of Formula VI:

In some of the embodiments of Formula I, R¹ is H, -CH₃, -Cl, or -F.

In some of the embodiments of Formula I, R⁵, R⁶, R⁷, and R⁸ are hydrogen.

In some of the embodiments of Formula I, B is a moiety of Formula II;

wherein Wₓ is aryl, heteroaryl, heterocycloalkyl, or cycloalkyl, and q is an integer of 0, 1, 2, 3, or 4.

In another aspect of the invention a compound and its pharmaceutically acceptable salts having the structure of Formula I is provided, wherein:

B is a moiety of Formula II;

wherein Wₓ is aryl, heteroaryl, heterocycloalkyl, or cycloalkyl, and q is an integer of 0, 1, 2, 3, or 4;

X is absent or -(CH(R₈)ₙ)ₓ, and z is an integer of 1;

Y is absent, or -N(R₉)ₓ;

when Y is absent, Wₓ is:

or when Y is present, Wₓ is:

R¹ is hydrogen, alkyl, alkenyl, alkynyl, alkoxy, amido, alkoxycarbonyl, sulfonamido, halo, cyano, or nitro;
R² is alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, heteroaryalkyl, alkoxy, amino, halo, cyano, hydroxy or nitro;

R³ is hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, alkoxy, amido, amino, alkoxyacarbonyl sulfonamido, halo, cyano, hydroxy or nitro;

each instance of R⁵ is independently hydrogen, C₁-C₁₀alkyl, cycloalkyl, or heterocycloalkyl; and R¹² is H, alkyl, alkenyl, alkynyl, halo, aryl, heteroaryl, heterocycloalkyl, or cycloalkyl.

In another aspect of the invention a compound and its pharmaceutically acceptable salts having the structure of Formula I is provided, wherein:

B is alkyl, amino, heteroaryl, or a moiety of Formula II;

wherein W₂ is aryl, heteroaryl, heterocycloalkyl, or cycloalkyl, and q is an integer of 0, 1, 2, 3, or 4;

X is absent or -(CH(R³))ₙ, and z is an integer of 1, 2, 3, or 4;

Y is absent, -N(R³)⁺, or -N(R³)-CH(R³)⁻;

W₂ is:

R¹ is hydrogen, alkyl, heteroalkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, aroylalkyl, heteroaryl, heteroaryalkyl, alkoxy, amido, amino, acyl, acyloxy, alkoxyacarbonyl, sulfonamido, halo, cyano, hydroxy, nitro, phosphate, urea, or carbonate;

R² is alkyl, heteroalkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, aroylalkyl, heteroaryl, heteroaryalkyl, alkoxy, amido, amino, acyl, acyloxy, alkoxyacarbonyl, sulfonamido, halo, cyano, hydroxy, nitro, or phosphate;

R¹ is hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, alkoxy, amido, amino, acyl, acyloxy, alkoxyacarbonyl, sulfonamido, halo, cyano, hydroxy, nitro, aryl or heteroaryl;

each instance of R⁵ is independently hydrogen, C₁-C₁₀alkyl, C₇-C₉cycloalkyl, heterocycloalkyl, or C₁₂-C₁₅heteroaryl; and

R¹² is H, alkyl, alkenyl, alkynyl, halo, aryl, heteroaryl, heterocycloalkyl, cycloalkyl, cyano, amino, carboxylic acid, alkoxyacarbonyl or amido.

In some embodiments, R¹ is -H, -CH₃, -CH₂CH₃, -CF₃, -Cl or -F. In other embodiments, R¹ is -CH₃, -Cl, or -F.

In some embodiments, B is a moiety of Formula II, wherein W₂ is aryl, heteroaryl, heterocycloalkyl, or cycloalkyl, and q is an integer of 0, 1, 2, 3, or 4. In some embodiments, B is heterocycloalkyl. In some embodiments, B is a monocyclic heteroaryl. In some embodiments, B is substituted phenyl. In some embodiments, B is substituted alkyl.

In some embodiments, B is -(CH₂)₂-NR²R³, wherein each R⁴ is independently hydrogen, alkyl, fluoroalkyl, carbocyclyl, carbocyclylalkyl, aryl, aralkyl, heterocycloalkyl, heterocycloalkylalkyl, heteroaryl or heteroaryalkyl, or -NR²R³ are combined together to form a cyclic moiety.

In some embodiments, R¹ is H, -F, -Cl, -CN, -CH₃, isopropyl, -CF₃, -OCH₃, nitro, or phosphate. In some embodiments, R¹ is phosphate.
In some embodiments, R² is halo, hydroxy, cyano, or nitro, and q is 1. In some embodiments, R² is phosphate and q is 1. In some embodiments, R² is alkyl or halo and q is 1 or 2.

In some embodiments, X is -CH₂₇-, -CH(CH₂CH₃)₂, or -CH(CH₃)₂-. In some embodiments, X-Y is -CH₂-N(CH₃)₂, -CH₂-N(CH₂CH₃), -CH(CH₂CH₃)-NH- or -CH(CH₃)-NH-. In some embodiments is N(CH₂CH₃)CH₂- or N(CH₃)CH₂.-

In some embodiments, R¹₂ is a monocyclic heteroaryl. In some embodiments, R¹₂ is a bicyclic heteroaryl. In some embodiments, R¹₂ is a heterocycloalkyl.

In some embodiments, the compound of Formula I has the structure of Formula IV-A:

![Formula IV-A](image)

In some embodiments, the compound of Formula I has the structure of Formula V-A:

![Formula V-A](image)

In some embodiments, the compound of Formula I has the structure of Formula IV-A or Formula V-A.

In some embodiments, the compound of Formula I has the structure of Formula V-B:

![Formula V-B](image)

In some embodiments, the compound of Formula I has the structure of Formula VI-A:
In another aspect of the invention, a composition is provided which comprises a pharmaceutically acceptable excipient and one or more compounds of Formula I, Formula IV, IV-A, V, V-A, V-B, VI, and VI-A. In some embodiments, the composition is a liquid, solid, semi-solid, gel, or an aerosol form.

In another aspect of the invention, a method of inhibiting a phosphatidyl inositol-3 kinase (PI3 kinase), is provided comprising: contacting the PI3 kinase with an effective amount of one or more compounds disclosed herein. For instance, the step of contacting involves the use of one or more compounds of Formula I, Formula IV, IV-A, V, V-A, V-B, VI, and VI-A. In some embodiments, the step of contacting comprises contacting a cell that contains said PI3 kinase. In some embodiments of the method, the inhibition takes place in a subject suffering from a disorder associated with malfunctioning of one or more types of PI3 kinase. Some exemplary diseases involving malfunctioning of one or more types of PI3 kinases are selected from the group consisting of autoimmune diseases, rheumatoid arthritis, respiratory disease, allergic reactions, and various types of cancers. Where desired, the compound used in the method has the structure of Formula IV, wherein R\text{11} is amino and R\text{12} is substituted phenyl.

In some embodiments of the method, the inhibition takes place in a subject suffering from rheumatoid arthritis or a respiratory disease, and wherein the compound has the structure of Formula IV, and wherein R\text{11} is amino and R\text{12} is bicyclic heteroaryl.

In some embodiments, the method comprises administering a second therapeutic agent to the subject.

In yet another aspect, the present invention provides a method of treating a disease manifesting an undesired immune response. The method comprises the step of administering to a subject in need thereof, one or more compounds disclosed herein including compounds of Formula I, Formula IV, IV-A, V, V-A, V-B, VI, and/or VI-A, in an amount that is effective in ameliorating said undesired immune response. In some embodiments, the one or more compounds inhibit T-cell independent B-cell activation as evidenced by a reduction in production of anti-TNP IgG3 by at least about five folds when administered in an amount less than about 30 mg/kg BID dose to a test animal.

In some embodiments, the disease treated is associated with swelling or pain of a joint of a subject. The method can be effective in ameliorating one or more rheumatoid arthritis symptoms as evidenced by reduction in mean joint diameter by at least about 10% after 17 days and/or reduction in ankle diameter by at least 5-10% or more after several days to weeks of treatment, including for example reduction in ankle diameter by at least 5% after 7 days of treatment. In another embodiment, the undesired immune response is evidenced by enhanced production of anti-type II collagen antibodies, and the use of one or more subject compounds reduces the serum anti-type II collagen level at an ED50 of less than about 10 mg/kg.

[0083]
According to an aspect of the invention, there is provided a compound of Formula I:

![Chemical Structure](image)

Formula I

or a pharmaceutically acceptable salt thereof, wherein

B is a moiety of Formula II;

![Chemical Structure](image)

Formula II

wherein Wc is aryl, heteroaryl, heterocycloalkyl, or cycloalkyl, and

q is an integer of 0, 1, 2, 3, or 4;

X is absent or \(-\text{CH}(R^3)\)-;

Y is \(-\text{N}(R^9)\)-;

W_d is:

![Chemical Structure](image)

R^1 is hydrogen, C_1-C_6 alkyl, or halo;

R^2 is C_1-C_6 alkyl or halo;

R^3 is hydrogen or C_1-C_6 alkyl; and

each instance of R^9 is independently hydrogen or C_1-C_6 alkyl,
wherein alkyl, heteroaryl, heterocycloalkyl, or cycloalkyl are unsubstituted.

According to a further aspect of the invention, there is provided a pharmaceutical composition comprising a pharmaceutically acceptable excipient and a compound as described above.

According to another aspect of the invention, there is provided use of a compound as described above for manufacture of a medicament for inhibiting a catalytic activity of a PI3 kinase present in a cell.

According to a still further aspect of the invention, there is provided use of a compound as described above for the manufacture of a medicament for treating a disorder, wherein the disorder is a cancer, a bone disorder, an inflammatory disease, an immune disease, a nervous system disease, a metabolic disease, a respiratory disease, thrombosis, or a cardiac disease.
BRIEF DESCRIPTION OF THE DRAWINGS

[0084] The novel features of the invention are set forth with particularity in the appended claims. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings of which:

[0085] FIG. 1 depicts an exemplary protocol for measuring T-cell independent production of TNP specific antibodies in vivo.

[0086] FIG. 2 depicts the fold reduction in TNP specific IgG3 response to antigens provided by compounds 7 and 53 of formula IV as compared to a vehicle control, when administered orally.

[0087] FIG. 3 depicts the dose-dependent effect of twice daily oral administration of compound 53 of formula IV in reducing the increase in ankle diameter over time in a collagen-induced developing arthritis model in rats. Also depicted are the results from non-arthritic control rats, arthritic control rats administered with a negative control vehicle, and arthritic control rats treated twice daily with methotrexate.

[0088] FIG. 4 depicts the dose-dependent effect of compounds 7 and 53 of formula IV in improving ankle histopathology when administered in a collagen-induced developing arthritis model in rats. Also depicted are the results from arthritic control rats administered with negative control vehicle or methotrexate.

[0089] FIG. 5 depicts the dose-dependent effect of compounds 7 and 53 of formula IV in improving knee histopathology when administered in a collagen-induced developing arthritis model in rats. Also depicted are the results from arthritic control rats administered with negative control vehicle or methotrexate.

[0090] FIG. 6 depicts the dose-dependent effect of compounds 7 and 53 of formula IV in reducing the level of anti-type II collagen antibodies in vivo when administered to a collagen-induced developing arthritis rat model. Also depicted are the results from arthritic rats administered with negative control vehicle or methotrexate.

[0091] FIG. 7 depicts the dose-dependent effect of compound 7 of formula IV on improving ankle histopathology when administered in collagen-induced developing arthritis model in rats. Also depicted are the results from arthritic vehicle control rats and methotrexate-treated arthritic rats.

[0092] FIG. 8 depicts the dose-dependent effect of compound 53 of formula IV administered daily on ankle histopathology in a collagen-induced established arthritis model in rats. Also depicted are the results from arthritic arthritis vehicle control rats and Enbrel-treated arthritic rats.

[0093] FIG. 9 depicts the dose-dependent effect of compound 53 of formula IV administered twice daily on ankle histopathology in a collagen-induced established arthritis model in rats. Also depicted are the results from arthritic vehicle control rats and Enbrel-treated arthritic rats.

[0094] FIG 10 depicts the dose-dependent effect of compound 53 of formula IV on the increase in average paw volume in an adjuvant induced arthritis model.

[0095] FIG 11 depicts the effect of compound 53 of formula IV on the average weight over time of rats in an adjuvant induced arthritis model in rats.

DETAILED DESCRIPTION OF THE INVENTION

[0096] While preferred embodiments of the present invention have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the invention.
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as is commonly understood by one of skill in the art to which this invention belongs.

As used in the specification and claims, the singular form "a", "an" and "the" includes plural references unless the context clearly dictates otherwise.

As used herein, "agent" or "biologically active agent" refers to a biological, pharmaceutical, or chemical compound or other moiety. Non-limiting examples include simple or complex organic or inorganic molecule, a peptide, a protein, an oligonucleotide, an antibody, an antibody derivative, antibody fragment, a vitamin derivative, a carbohydrate, a toxin, or a chemotherapeutic compound. Various compounds can be synthesized, for example, small molecules and oligomers (e.g., oligopeptides and oligonucleotides), and synthetic organic compounds based on various core structures. In addition, various natural sources can provide compounds for screening, such as plant or animal extracts, and the like. A skilled artisan can readily recognize that there is no limit as to the structural nature of the agents of the present invention.

The term "agonist" as used herein refers to a compound having the ability to initiate or enhance a biological function of a target protein, whether by inhibiting the activity or expression of the target protein. Accordingly, the term "agonist" is defined in the context of the biological role of the target polypeptide. While preferred agonists herein specifically interact with (e.g. bind to) the target, compounds that initiate or enhance a biological activity of the target polypeptide by interacting with other members of the signal transduction pathway of which the target polypeptide is a member are also specifically included within this definition.

The terms "antagonist" and "inhibitor" are used interchangeably, and they refer to a compound having the ability to inhibit a biological function of a target protein, whether by inhibiting the activity or expression of the target protein. Accordingly, the terms "antagonist" and "inhibitors" are defined in the context of the biological role of the target protein. While preferred antagonists herein specifically interact with (e.g. bind to) the target, compounds that inhibit a biological activity of the target protein by interacting with other members of the signal transduction pathway of which the target protein is a member are also specifically included within this definition. A preferred biological activity inhibited by an antagonist is associated with the development, growth, or spread of a tumor, or an undesired immune response as manifested in autoimmune disease.

An "anti-cancer agent", "anti-tumor agent" or "chemotherapeutic agent" refers to any agent useful in the treatment of a neoplastic condition. One class of anti-cancer agents comprises chemotherapeutic agents. "Chemotherapy" means the administration of one or more chemotherapeutic drugs and/or other agents to a cancer patient by various methods, including intravenous, oral, intramuscular, intraperitoneal, intravesical, subcutaneous, transdermal, buccal, or inhalation or in the form of a suppository.

The term "cell proliferation" refers to a phenomenon by which the cell number has changed as a result of division. This term also encompasses cell growth by which the cell morphology has changed (e.g., increased in size) consistent with a proliferative signal.

"Co-administration," "administered in combination with," and their grammatical equivalents, as used herein, encompasses administration of two or more agents to an animal so that both agents and/or their metabolites are present in the animal at the same time. Co-administration includes simultaneous administration in separate compositions, administration at different times in separate compositions, or administration in a composition in which both agents are present.
[00105] The term "effective amount" or "therapeutically effective amount" refers to that amount of a compound described herein that is sufficient to effect the intended application including but not limited to disease treatment, as defined below. The therapeutically effective amount may vary depending upon the intended application (in vitro or in vivo), or the subject and disease condition being treated, e.g., the weight and age of the subject, the severity of the disease condition, the manner of administration and the like, which can readily be determined by one of ordinary skill in the art. The term also applies to a dose that will induce a particular response in target cells, e.g. reduction of platelet adhesion and/or cell migration. The specific dose will vary depending on the particular compounds chosen, the dosing regimen to be followed, whether it is administered in combination with other compounds, timing of administration, the tissue to which it is administered, and the physical delivery system in which it is carried.

[00106] As used herein, "treatment" or "treating," or "palliating" or "ameliorating" are used interchangeably herein. These terms refers to an approach for obtaining beneficial or desired results including but not limited to therapeutic benefit and/or a prophylactic benefit. By therapeutic benefit is meant eradication or amelioration of the underlying disorder being treated. Also, a therapeutic benefit is achieved with the eradication or amelioration of one or more of the physiological symptoms associated with the underlying disorder such that an improvement is observed in the patient, notwithstanding that the patient may still be afflicted with the underlying disorder. For prophylactic benefit, the compositions may be administered to a patient at risk of developing a particular disease, or to a patient reporting one or more of the physiological symptoms of a disease, even though a diagnosis of this disease may not have been made.

[00107] A "therapeutic effect," as that term is used herein, encompasses a therapeutic benefit and/or a prophylactic benefit as described above. A prophylactic effect includes delaying or eliminating the appearance of a disease or condition, delaying or eliminating the onset of symptoms of a disease or condition, slowing, halting, or reversing the progression of a disease or condition, or any combination thereof.

[00108] The term "pharmaceutically acceptable salt" refers to salts derived from a variety of organic and inorganic counter ions well known in the art. Pharmaceutically acceptable acid addition salts can be formed with inorganic acids and organic acids. Inorganic acids from which salts can be derived include, for example, hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, and the like. Organic acids from which salts can be derived include, for example, acetic acid, propionic acid, glycolic acid, pyruvic acid, oxalic acid, maleic acid, malonic acid, succinic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, cinnamic acid, mandelic acid, methanesulfonic acid, ethanesulfonic acid, p-toluensulfonic acid, salicylic acid, and the like. Pharmaceutically acceptable base addition salts can be formed with inorganic and organic bases. Inorganic bases from which salts can be derived include, for example, sodium, potassium, lithium, ammonium, calcium, magnesium, iron, zinc, copper, manganese, aluminum, and the like. Organic bases from which salts can be derived include, for example, primary, secondary, and tertiary amines, substituted amines including naturally occurring substituted amines, cyclic amines, basic ion exchange resins, and the like, specifically such as isopropylamine, trimethylamine, diethylamine, triethylamine, tripropylamine, and ethanalamine. In some embodiments, the pharmaceutically acceptable base addition salt is chosen from ammonium, potassium, sodium, calcium, and magnesium salts.

[00109] "Pharmaceutically acceptable carrier" or "pharmaceutically acceptable excipient" includes any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents and the like. The use of such media and agents for pharmaceutically active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active ingredient, its use in the therapeutic compositions of the invention is contemplated. Supplementary active ingredients can also be incorporated into the compositions.
"Signal transduction" is a process during which stimulatory or inhibitory signals are transmitted into and within a cell to elicit an intracellular response. A modulator of a signal transduction pathway refers to a compound which modulates the activity of one or more cellular proteins mapped to the same specific signal transduction pathway. A modulator may augment (agonist) or suppress (antagonist) the activity of a signaling molecule.

The term "selective inhibition" or "selectively inhibit" as applied to a biologically active agent refers to the agent's ability to selectively reduce the target signaling activity as compared to off-target signaling activity, via direct or interact interaction with the target.

The term "B-ALL" as used herein refers to B-cell Acute Lymphoblastic Leukemia.

"Subject" refers to an animal, such as a mammal, for example a human. The methods described herein can be useful in both human therapeutics and veterinary applications. In some embodiments, the patient is a mammal, and in some embodiments, the patient is human.

"Radiation therapy" means exposing a patient, using routine methods and compositions known to the practitioner, to radiation emitters such as alpha-particle emitting radionucleotides (e.g., actinium and thorium radionucleides), low energy transfer (LET) radiation emitters (e.g., beta emitters), conversion electron emitters (e.g., strontium-89 and samarium-153-EDTMP, or high-energy radiation, including without limitation x-rays, gamma rays, and neutrons.

"Prodrug" is meant to indicate a compound that may be converted under physiological conditions or by solvolysis to a biologically active compound described herein. Thus, the term "prodrug" refers to a precursor of a biologically active compound that is pharmaceutically acceptable. A prodrug may be inactive when administered to a subject, but is converted in vivo to an active compound, for example, by hydrolysis. The prodrug compound often offers advantages of solubility, tissue compatibility or delayed release in a mammalian organism (see, e.g., Bundgard, H., Design of Prodrugs (1985), pp. 7-9, 21-24 (Elsevier, Amsterdam). A discussion of prodrugs is provided in Higuchi, T., et al., "Pro-drugs as Novel Delivery Systems," A.C.S. Symposium Series, Vol. 14, and in Bioreversible Carriers in Drug Design, ed. Edward B. Roche, American Pharmaceutical Association and Pergamon Press, 1987.

The term "prodrug" is also meant to include any covalently bonded carriers, which release the active compound in vivo when such prodrug is administered to a mammalian subject. Prodrugs of an active compound, as described herein, may be prepared by modifying functional groups present in the active compound in such a way that the modifications are cleaved, either in routine manipulation or in vivo, to the parent active compound. Prodrugs include compounds wherein a hydroxy, amino or mercapto group is bonded to any group that, when the prodrug of the active compound is administered to a mammalian subject, cleaves to form a free hydroxy, free amino or free mercapto group, respectively. Examples of prodrugs include, but are not limited to, acetate, formate and benzilate derivatives of an alcohol or acetamide, formamide and benzamide derivatives of an amine functional group in the active compound and the like.

The term "in vivo" refers to an event that takes place in a subject's body.

The term "in vitro" refers to an event that takes place outside of a subject's body. For example, an in vitro assay encompasses any assay run outside of a subject assay. In vitro assays encompass cell-based assays in which cells alive or dead are employed. In vitro assays also encompass a cell-free assay in which no intact cells are employed.

Unless otherwise stated, structures depicted herein are also meant to include compounds which differ only in the presence of one or more isotopically enriched atoms. For example, compounds having the present structures except for the replacement of a hydrogen by a deuterium or tritium, or the replacement of a carbon by 13C- or 14C-enriched carbon are within the scope of this invention.
The compounds of the present invention may also contain unnatural proportions of atomic isotopes at one or more of atoms that constitute such compounds. For example, the compounds may be radiolabeled with radioactive isotopes, such as for example tritium (\(^3\)H), iodine-125 (\(^\text{125}\)I) or carbon-14 (\(^\text{14}\)C). All isotopic variations of the compounds of the present invention, whether radioactive or not, are encompassed within the scope of the present invention.

When ranges are used herein for physical properties, such as molecular weight, or chemical properties, such as chemical formulae, all combinations and subcombinations of ranges and specific embodiments therein are intended to be included. The term "about" when referring to a number or a numerical range means that the number or numerical range referred to is an approximation within experimental variability (or within statistical experimental error), and thus the number or numerical range may vary from, for example, between 1% and 15% of the stated number or numerical range. The term "comprising" (and related terms such as "comprise" or "comprises" or "having" or "including") includes those embodiments, for example, an embodiment of any composition of matter, composition, method, or process, or the like, that "consist of" or "consist essentially of" the described features.

The following abbreviations and terms have the indicated meanings throughout.

PI3-K = Phosphoinositide 3-kinase; PI = phosphatidylinositol; PDK = Phosphoinositide Dependent Kinase; DNA-PK = Deoxyribosel Nucleic Acid Dependent Protein Kinase; PTEN = Phosphatase and Tensin homolog deleted on chromosome Ten; PIKK = Phosphoinositol Kinase Like Kinase; AIDS = Acquired Immuno Deficiency Syndrome; HIV = Human Immunodeficiency Virus; Mel = Methyl Iodide; POCl\(_3\) = Phosphorous Oxychloride; KCN = Potassium IsoThiocyanate; TLC = Thin Layer Chromatography; MeOH = Methanol; and CHCl\(_3\) = Chloroform.

Abbreviations used herein have their conventional meaning within the chemical and biological arts.

"Alkyl" refers to a straight or branched hydrocarbon chain radical consisting solely of carbon and hydrogen atoms, containing no unsaturation, having from one to ten carbon atoms (e.g., C\(_1\)-C\(_{10}\) alkyl). Whenever it appears herein, a numerical range such as "1 to 10" refers to each integer in the given range; e.g., "1 to 10 carbon atoms" means that the alkyl group may consist of 1 carbon atom, 2 carbon atoms, 3 carbon atoms, etc., up to and including 10 carbon atoms, although the present definition also covers the occurrence of the term "alkyl" where no numerical range is designated. In some embodiments, it is a C\(_1\)-C\(_4\) alkyl group. Typical alkyl groups include, but are in no way limited to, methyl, ethyl, propyl, isopropyl, n-butyl, iso-butyl, sec-butyl isobutyl, tertiary butyl, penty1, isopentyl, neopentyl, hexyl, septyl, octyl, nonyl, decyl, and the like. The alkyl is attached to the rest of the molecule by a single bond, for example, methyl (Me), ethyl (Et), n-propyl, 1-methylethyl (iso-propyl), n-butyl, n-pentyl, 1,1-dimethylethyl (t-butyl), 3-methylhexyl, 2-methylhexyl, and the like. Unless stated otherwise specifically in the specification, an alkyl group is optionally substituted by one or more of substituents which independently are: alkyl, heteroalkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, aryalkyl, heteroaryl, heteroarylalkyl, hydroxy, halo, cyano, trifluoromethyl, trifluoromethoxy, nitro, trimethylsilyl, -OR\(^a\), -SR\(^a\), -OC(O)-R\(^a\), -N(R\(^a\))\(_2\), -C(O)R\(^a\), -C(O)OR\(^a\), -OC(O)N(R\(^a\))\(_2\), -C(O)N(R\(^a\))\(_2\), -N(R\(^a\))C(O)OR\(^a\), -N(R\(^a\))C(O)\(_2\), N(R\(^a\))C(NR\(^a\))N(R\(^b\))\(_2\), -N(R\(^a\))S(O)\(_2\), where t is 1 or 2, -S(O)\(_2\)OR\(^a\) (where t is 1 or 2), -S(O)\(_2\)N(R\(^a\))\(_2\) (where t is 1 or 2), or PO\(_3\)(R\(^a\))\(_2\) where each R\(^a\) is independently hydrogen, alkyl, fluoroalkyl, carbocyclyl, carbocyclylalkyl, aryl, aralkyl, heterocycloalkyl, heterocycloalkylalkyl, heteroaryl or heteroarylalkyl.

"Alkylaryl" refers to an -(alkyl)aryl radical where aryl and alkyl are as disclosed herein and which are optionally substituted by one or more of the substituents described as suitable substitutes for aryl and alkyl respectively.
WO 2009/088986
CA 02711446 2010-07-05
PCT/US2009/000038

[00125] “Alkylheteraryl” refers to an -(alkyl)hetaryl radical where hetaryl and alkyl are as disclosed herein and which are optionally substituted by one or more of the substituents described as suitable substituents for aryl and alkyl respectively.

[00126] “Alkylheterocycloalkyl” refers to an -(alkyl) heterocycyl radical where alkyl and heterocycloalkyl are as disclosed herein and which are optionally substituted by one or more of the substituents described as suitable substituents for heterocycloalkyl and alkyl respectively.

[00127] An "alkene" moiety refers to a group consisting of at least two carbon atoms and at least one carbon-carbon double bond, and an "alkyne" moiety refers to a group consisting of at least two carbon atoms and at least one carbon-carbon triple bond. The alkyl moiety, whether saturated or unsaturated, may be branched, straight chain, or cyclic.

[00128] "Alkenyl" refers to a straight or branched hydrocarbon chain radical group consisting solely of carbon and hydrogen atoms, containing at least one double bond, and having from two to ten carbon atoms (i.e. C₂-C₁₀ alkenyl).

Whenever it appears herein, a numerical range such as "2 to 10" refers to each integer in the given range; e.g., "2 to 10 carbon atoms" means that the alkenyl group may consist of 2 carbon atoms, 3 carbon atoms, etc., up to and including 10 carbon atoms. In certain embodiments, an alkenyl comprises two to eight carbon atoms. In other embodiments, an alkenyl comprises two to five carbon atoms (e.g., C₂-C₅ alkenyl).

[00129] The alkene is attached to the rest of the molecule by a single bond, for example, ethenyl (i.e., vinyl), prop-1-eny1 (i.e., allyl), but-1-eny1, pent-1-eny1, penta-1,4-dienyl, and the like. Unless stated otherwise specifically in the specification, an alkenyl group is optionally substituted by one or more substituents which independently are: alkyl, heteroalkyl, alkenyl, alkenyl, cycloalkyl, heterocycloalkyl, aryl, alkyalkyl, heteroaryl, heteroaryllalkyl, hydroxy, halo, cyano, trifluoromethyl, trifluoromethoxy, nitro, trimethylsilyl, -OR, -SR, -OC(O)-R, - (R)₂, -C(O)R, -C(O)OR, -C(O)N(R)₂, -C(O)N(R)₂, -N(R)C(O)OR, -N(R)C(O)R, -N(R)C(NR)₂, -N(R)C(NR)₂, -N(R)SO₂R, (where t is 1 or 2), -SO₂OR, (where t is 1 or 2), -SO₂N(R)₂, PO₂(OR)₂, where each R is independently hydrogen, alkyl, fluoroalkyl, carbocyclyl, carbocyclylalkyl, aryl, aralkyl, heterocycloalkyl, heterocycloalkylalkyl, heteroaryl or heteroaryllalkyl.

[00130] "Alkenyl-cycloalkyl" refers to an -(alkenyl)cycloalkyl radical where alkenyl and cyclo alkyl are as disclosed herein and which are optionally substituted by one or more of the substituents described as suitable substituents for alkenyl and cycloalkyl respectively.

"Alkenyl" refers to a straight or branched hydrocarbon chain radical group consisting solely of carbon and hydrogen atoms, containing at least one triple bond, having from two to ten carbon atoms (i.e. C₂-C₁₀ alkenyl).

Whenever it appears herein, a numerical range such as "2 to 10" refers to each integer in the given range; e.g., "2 to 10 carbon atoms" means that the alkenyl group may consist of 2 carbon atoms, 3 carbon atoms, etc., up to and including 10 carbon atoms. In certain embodiments, an alkenyl comprises two to eight carbon atoms. In other embodiments, an alkenyl has two to five carbon atoms (e.g., C₂-C₅ alkenyl). The alkenyl is attached to the rest of the molecule by a single bond, for example, ethenyl, propynyl, butynyl, pentynyl, hexynyl, and the like. Unless stated otherwise specifically in the specification, an alkenyl group is optionally substituted by one or more substituents which independently are: alkyl, heteroalkyl, alkenyl, alkenyl, cycloalkyl, heterocycloalkyl, aryl, alkyalkyl, heteroaryl, heteroaryllalkyl, hydroxy, halo, cyano, trifluoromethyl, trifluoromethoxy, nitro, trimethylsilyl, -OR, -SR, -OC(O)-R, - (R)₂, -C(O)R, -C(O)OR, -C(O)N(R)₂, -C(O)N(R)₂, -N(R)C(O)OR, -N(R)C(O)R, -N(R)C(NR)₂, -N(R)C(NR)₂, -N(R)SO₂R, (where t is 1 or 2), -SO₂OR, (where t is 1 or 2), -SO₂N(R)₂, PO₂(OR)₂, where each R is independently hydrogen, alkyl, fluoroalkyl, carbocyclyl, carbocyclylalkyl, aryl, aralkyl, heterocycloalkyl, heterocycloalkylalkyl, heteroaryl or heteroaryllalkyl.

[00131] "Alkynyl-cycloalkyl" refers to refers to an -(alkynyl)cycloalkyl radical where alkynyl and cyclo alkyl are as disclosed herein and which are optionally substituted by one or more of the substituents described as suitable substituents for alkynyl and cycloalkyl respectively.

[00132] "Carboxaldehyde" refers to a -(C=O)H radical.

[00133] "Carboxyl" refers to a -(C=O)OH radical.

[00134] "Cyano" refers to a -CN radical.

[00135] "Cycloalkyl" refers to a monocyclic or polycyclic radical that contains only carbon and hydrogen, and may be saturated, or partially unsaturated. Cycloalkyl groups include groups having from 3 to 10 ring atoms (i.e. C₃-C₁₀ cycloalkyl). Whenever it appears herein, a numerical range such as "3 to 10" refers to each integer in the given range; e.g., "3 to 10 carbon atoms" means that the cycloalkyl group may consist of 3 carbon atoms, etc., up to and including 10 carbon atoms. In some embodiments, it is a C₃-C₆ cycloalkyl radical. In some embodiments, it is a C₇-C₁₀ cycloalkyl radical. Illustrative examples of cycloalkyl groups include, but are not limited to the following moieties: cyclopropyl, cyclobutyl, cyclopentyl, cyclopentenyl, cyclohexyl, cyclohexenyl, cycloheptyl, cyclooctyl, cyclooctynyl, cyclodecyl, norbornyl, and the like. Unless stated otherwise specifically in the specification, a cycloalkyl group is optionally substituted by one or more substituents which independently are: alkyl, heteroalkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, aroylalkyl, heteroarylalkyl, hydroxy, halo, cyano, trifluoromethyl, trifluoromethoxy, nitro, trimethylsilyl, -OR, -SR, -OC(O)-R, -N(R')₂, -C(O)R, -C(O)OR, -OC(O)N(R')₂, -C(O)N(R')₂, -N(R')C(O)OR, -N(R')C(O)R, -N(R')C(O)N(R')₂, N(R')C(NR')N(R')₂, -N(R')S(O),R (where t is 1 or 2), -S(O),OR (where t is 1 or 2), -S(O),N(R')₂ (where t is 1 or 2), or PO(O)(OR')₂, where each R' is independently hydrogen, alkyl, fluoroalkyl, carbocyclic, carboalkyl, aryl, aroyl, heterocycloalkyl, heterocycloalkylalkyl, heteroaryl or heteroarylalkyl.

[00136] "Cycloalkyl-alkenyl" refers to a -(cycloalkyl) alk enyl radical where cycloalkyl and heterocycloalkyl are as disclosed herein and which are optionally substituted by one or more of the substituents described as suitable substituents for heterocycloalkyl and cycloalkyl respectively.

[00137] "Cycloalkyl-heterocycloalkyl" refers to a -(cycloalkyl) heterocycloalkyl radical where cycloalkyl and heterocycloalkyl are as disclosed herein and which are optionally substituted by one or more of the substituents described as suitable substituents for heterocycloalkyl and cycloalkyl respectively.

[00138] "Cycloalkyl-heteroaryl" refers to a -(cycloalkyl) heteroaryl radical where cycloalkyl and heterocycloalkyl are as disclosed herein and which are optionally substituted by one or more of the substituents described as suitable substituents for heterocycloalkyl and cycloalkyl respectively.

[00139] The term "alkoxy" refers to the group -O-alkyl, including from 1 to 8 carbon atoms of a straight, branched, cyclic configuration and combinations thereof attached to the parent structure through an oxygen. Examples include methoxy, ethoxy, propoxy, isopropoxy, cyclopropyloxy, cyclohexyloxy and the like. "Lower alkoxy" refers to alkoxy groups containing one to six carbons. In some embodiments, C₁₋₄ alkyl, is an alkyl group which encompasses both straight and branched chain alkyls of from 1 to 4 carbon atoms.

[00140] The term "substituted alkoxy" refers to alkoxy wherein the alkyl constituent is substituted (i.e., -O-(substituted alkyl)). Unless stated otherwise specifically in the specification, the alkoxy moiety of an alkoxy group is optionally substituted by one or more substituents which independently are: alkyl, heteroalkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, aroylalkyl, heteroaryl, heteroarylalkyl, hydroxy, halo, cyano, trifluoromethyl, trifluoromethoxy, nitro, trimethylsilyl, -OR, -SR, -OC(O)-R, -N(R')₂, -C(O)R, -C(O)OR, -OC(O)N(R')₂, -C(O)N(R')₂, -N(R')C(O)OR, -N(R')C(O)R, -N(R')C(O)N(R')₂, N(R')C(NR')N(R')₂, -N(R')S(O),R (where t is 1 or 2), -S(O),OR (where t is 1 or 2), -S(O),N(R')₂, -PO(O)(OR')₂, where each R' is independently hydrogen, alkyl, fluoroalkyl, carbocyclic, carboalkyl, aryl, aroyl, heterocycloalkyl, heterocycloalkylalkyl, heteroaryl or heteroarylalkyl.
(where \(t \) is 1 or 2), or \(\text{PO}_{3}(\text{R}^k)_{2} \), where each \(\text{R}^k \) is independently hydrogen, alkyl, fluoroalkyl, carbocyclic, carbocyclylalkyl, aryl, aralkyl, heterocycloalkyl, heterocycloalkylalkyl, heteroaryl or heteroaryalkyl.

[00141] The term "alkoxy carbonyl" refers to a group of the formula \((\text{alkoxy})(\text{C}=\text{O})\)- attached through the carbonyl carbon wherein the alkoxy group has the indicated number of carbon atoms. Thus a \(\text{C}_1-\text{C}_6 \) alkoxy carbonyl group is an alkoxy group having from 1 to 6 carbon atoms attached through its oxygen to a carbonyl linker. "Lower alkoxy carbonyl" refers to an alkoxy carbonyl group wherein the alkoxy group is a lower alkoxy group. In some embodiments, \(\text{C}_1-\text{C}_4 \) alkoxy, is an alkoxy group which encompasses both straight and branched chain alkoxy groups of from 1 to 4 carbon atoms.

[00142] The term "substituted alkoxy carbonyl" refers to the group \((\text{substituted alkyl})-\text{O}-(\text{C}=\text{O})\)- wherein the group is attached to the parent structure through the carbonyl functionality. Unless stated otherwise specifically in the specification, the alkyl moiety of an alkoxy carbonyl group is optionally substituted by one or more substituents which independently are: alkyl, heteroalkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, aralkyl, heteroaryl, heteroaryalkyl, hydroxy, halo, cyano, trifluoromethyl, trifluoromethoxy, nitro, trimethylsilyl, \(-\text{OR}^k\), \(-\text{OC}(\text{OR})\)-, \(-\text{N}(\text{R}^k)\)-, \(-\text{C}(\text{OR})\)-, \(-\text{C}(\text{O})\)-, \(-\text{OC}(\text{OR})\)-, \(-\text{OC}(\text{O})\)(\text{R}^k)\), \(-\text{C}(\text{O})\)(\text{R}^k)\)-, \(-\text{N}(\text{R}^k)\)(\text{C}(\text{O})\)(\text{R}^k)\)-, \(-\text{N}(\text{R}^k)\)(\text{C}(\text{O})\)(\text{R}^k)\)(\text{N}(\text{R}^k)\)-, \(-\text{N}(\text{R}^k)\)(\text{S}(\text{O})\)(\text{R}^k)\) (where \(t \) is 1 or 2), \(-\text{S}(\text{O})\)(\text{OR}^k) (where \(t \) is 1 or 2), \(-\text{S}(\text{O})\)(\text{R}^k) (where \(t \) is 1 or 2), or \(\text{PO}_{3}(\text{R}^k)\), where each \(\text{R}^k \) is independently hydrogen, alkyl, fluoroalkyl, carbocyclic, carbocyclylalkyl, aryl, aralkyl, heterocycloalkyl, heterocycloalkylalkyl, heteroaryl or heteroaryalkyl.

[00143] "Acyl" refers to the groups \((\text{alkyl})-\text{C}(\text{O})\)-, \((\text{aryl})-\text{C}(\text{O})\)-, \((\text{heteroaryl})-\text{C}(\text{O})\)-, \((\text{heteroaryalkyl})-\text{C}(\text{O})\)-, and \((\text{heterocycloalkyl})-\text{C}(\text{O})\)-, wherein the group is attached to the parent structure through the carbonyl functionality. In some embodiments, it is a \(\text{C}_1-\text{C}_{10} \) acyl radical which refers to the total number of chain or ring atoms of the alkyl, aryl, heteroaryl or heterocycloalkyl portion of the acyloxy group plus the carbonyl carbon of acyl, i.e., three other ring or chain atoms plus carbonyl. If the \(\text{R} \) radical is heteroaryl or heterocycloalkyl, the hetero ring or chain atoms contribute to the total number of chain or ring atoms. Unless stated otherwise specifically in the specification, the "\(\text{R}^k \)" of an acyloxy group is optionally substituted by one or more substituents which independently are: alkyl, heteroalkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, aralkyl, heteroaryl, heteroaryalkyl, hydroxy, halo, cyano, trifluoromethyl, trifluoromethoxy, nitro, trimethylsilyl, \(-\text{OR}^k\), \(-\text{OC}(\text{OR})\)-, \(-\text{N}(\text{R}^k)\)-, \(-\text{C}(\text{OR})\)-, \(-\text{C}(\text{O})\)-, \(-\text{OC}(\text{OR})\)-, \(-\text{OC}(\text{O})\)(\text{R}^k)\), \(-\text{C}(\text{O})\)(\text{R}^k)\)-, \(-\text{N}(\text{R}^k)\)(\text{C}(\text{O})\)(\text{R}^k)\)-, \(-\text{N}(\text{R}^k)\)(\text{C}(\text{O})\)(\text{R}^k)\)(\text{N}(\text{R}^k)\)-, \(-\text{N}(\text{R}^k)\)(\text{S}(\text{O})\)(\text{R}^k)\) (where \(t \) is 1 or 2), \(-\text{S}(\text{O})\)(\text{OR}^k) (where \(t \) is 1 or 2), \(-\text{S}(\text{O})\)(\text{R}^k) (where \(t \) is 1 or 2), or \(\text{PO}_{3}(\text{R}^k)\), where each \(\text{R}^k \) is independently hydrogen, alkyl, fluoroalkyl, carbocyclic, carbocyclylalkyl, aryl, aralkyl, heterocycloalkyl, heterocycloalkylalkyl, heteroaryl or heteroaryalkyl.

[00144] "Acyloxy" refers to a \((\text{R}(\text{C}=\text{O})\)- radical wherein "\(\text{R} \)" is alkyl, aryl, heteroaryl, heteroaryalkyl, or heterocycloalkyl, which are as described herein. In some embodiments, it is a \(\text{C}_1-\text{C}_4 \) acyloxy radical which refers to the total number of chain or ring atoms of the alkyl, aryl, heteroaryl or heterocycloalkyl portion of the acyloxy group plus the carbonyl carbon of acyl, i.e., three other ring or chain atoms plus carbonyl. If the \(\text{R} \) radical is heteroaryl or heterocycloalkyl, the hetero ring or chain atoms contribute to the total number of chain or ring atoms. Unless stated otherwise specifically in the specification, the "\(\text{R}^k \)" of an acyloxy group is optionally substituted by one or more substituents which independently are: alkyl, heteroalkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, aralkyl, heteroaryl, heteroaryalkyl, hydroxy, halo, cyano, trifluoromethyl, trifluoromethoxy, nitro, trimethylsilyl, \(-\text{OR}^k\), \(-\text{OC}(\text{OR})\)-, \(-\text{N}(\text{R}^k)\)-, \(-\text{C}(\text{OR})\)-, \(-\text{C}(\text{O})\)-, \(-\text{OC}(\text{OR})\)-, \(-\text{OC}(\text{O})\)(\text{R}^k)\), \(-\text{C}(\text{O})\)(\text{R}^k)\)-, \(-\text{N}(\text{R}^k)\)(\text{C}(\text{O})\)(\text{R}^k)\)-, \(-\text{N}(\text{R}^k)\)(\text{C}(\text{O})\)(\text{R}^k)\)(\text{N}(\text{R}^k)\)-, \(-\text{N}(\text{R}^k)\)(\text{S}(\text{O})\)(\text{R}^k)\) (where \(t \) is 1 or 2), \(-\text{S}(\text{O})\)(\text{OR}^k) (where \(t \) is 1 or 2), \(-\text{S}(\text{O})\)(\text{R}^k)\) (where \(t \) is 1 or 2), or \(\text{PO}_{3}(\text{R}^k)\), where each \(\text{R}^k \) is independently hydrogen, alkyl, fluoroalkyl, carbocyclic, carbocyclylalkyl, aryl, aralkyl, heterocycloalkyl, heterocycloalkylalkyl, heteroaryl or heteroaryalkyl.
(where \(t \) is 1 or 2), or \(\text{PO}_x(\text{R}^y)_z \), where each \(\text{R}^x \) is independently hydrogen, alkyl, fluoroalkyl, carbocyclyl, carbocyclyalkyl, aryl, alkaryl, heterocyclyl, heterocyclyalkyl, heteroaryl or heteroaryalkyl.

[00145] "Amino" or "amine" refers to a \(-\text{N}(\text{R}^x)_2\) radical group, where each \(\text{R}^x \) is independently hydrogen, alkyl, fluoroalkyl, carbocyclyl, carbocyclyalkyl, aryl, alkaryl, heterocyclyl, heterocyclyalkyl, heteroaryl or heteroaryalkyl, unless stated otherwise specifically in the specification. When a \(-\text{N}(\text{R}^x)_2\) group has two \(\text{R}^x \) other than hydrogen they can be combined with the nitrogen atom to form a 4-, 5-, 6-, or 7-membered ring. For example, \(-\text{N}(\text{R}^x)_2\) is meant to include, but not be limited to, 1-pyrrolidinyl and 4-morpholinyl. Unless stated otherwise specifically in the specification, an amino group is optionally substituted by one or more substituents which independently are: alkyl, heteroalkyl, alkenyl, alkynyl, cycloalkyl, heterocyclylalkyl, aryl, aralkyl, heteroaryl, heteroaryalkyl, hydroxy, halo,

cyano, trifluoromethyl, trifluoromethoxy, nitro, trimethylsilyl, -OR', -
SR', -OC(O)-R', -NR'(R')_2, -C(O)R', -C(O)OR', -OC(O)NR'(R')_2, -C(O)NR'(R')_2, -NR'(R')_2C(O)OR', -NR'(R')_2C(O)R', -
N(R')_2C(O)NR'(R')_2, N(R')_2C(NR'(R')_2N(R')_2, -N(R')_2S(O)R', (where \(t \) is 1 or 2), -SO_2OR' (where \(t \) is 1 or 2), -SO_2N(R')_2 (where \(t \) is 1 or 2), or \(\text{PO}_x(\text{R}^y)_z \), where each \(\text{R}^x \) is independently hydrogen, alkyl, fluoroalkyl, carbocyclyl, carbocyclyalkyl, aryl, alkaryl, heterocyclyl, heterocyclyalkyl, heteroaryl or heteroaryalkyl and each of these

moieties may be optionally substituted as defined herein.

[00146] The term "substituted amino" also refers to N-oxides of the groups \(-\text{NHR}^x\), and \(-\text{NR}^x\text{R}^y\) each as described above. N-oxides can be prepared by treatment of the corresponding amino group with, for example, hydrogen peroxide or m-chloroperbenzoic acid. The person skilled in the art is familiar with reaction conditions for carrying out the N-oxidation.

[00147] "Amide" or "amido" refers to a chemical moiety with formula \(-\text{C}(\text{O})\text{N}(\text{R})_2\) or \(-\text{NHC}(\text{O})\text{R}\), where R is selected from the group consisting of hydrogen, alkyl, cycloalkyl, aryl, heteroaryl (bonded through a ring carbon) and heterocyclyl (bonded through a ring carbon), each of which moiety may itself be optionally substituted. In some embodiments it is a C_1-C_4 amido or amide radical, which includes the amide carbonyl in the total number of carbons in the radical. The R_2 of \(-\text{N}(\text{R})_2\) of the amide may optionally be taken together with the nitrogen to which it is attached to form a 4-, 5-, 6-, or 7-membered ring. Unless stated otherwise specifically in the specification, an amido group is optionally substituted independently by one or more of the substituents as described herein for alkyl, cycloalkyl, aryl, heteroaryl, or heterocyclylalkyl. An amide may be an amide acid or a peptide molecule attached to a compound of Formula (1), thereby forming a prodig. Any amine, hydroxy, or carbonyl side chain on the compounds described herein can be amidoified. The procedures and specific groups to make such amides are known to those of skill in the art and can readily be found in reference sources such as Greene and Wuts, Protective Groups in Organic Synthesis, 3rd ed., John Wiley & Sons, New York, N.Y., 1999.

[00148] "Aromatic" or "aryl" refers to an aromatic radical with six to ten ring atoms (e.g., C_6-C_10 aromatic or C_4-C_10 aryl) which has at least one ring having a conjugated pi electron system which is carbocyclic (e.g., phenyl, fluorenyl, and naphthyl). Bivalent radicals formed from substituted benzenoid derivatives and having the free valence atoms at ring atoms are named as substituted phenylene radicals. Bivalent radicals derived from univalent polycyclic hydrocarbon radicals whose names end in "-yl" by removal of one hydrogen atom from the carbon atom with the free valence are named by adding "-idene" to the name of the corresponding univalent radical, e.g., a naphthyl group with two points of attachment is termed naphthylidene. Whenever it appears herein, a numerical range such as "6 to 10" refers to each integer in the given range; e.g., "6 to 10 ring atoms" means that the aryl group may consist of 6 ring atoms, 7 ring atoms, etc., up to and including 10 ring atoms. The term includes monocyclic or fused-ring polycyclic (i.e., rings which share adjacent pairs of ring atoms) groups. Unless stated otherwise specifically in the specification, an aryl moiety is optionally substituted by one or more substituents which are independently: alkyl, heteroalkyl, alkenyl,
alkynyl, cycloalkyl, heterocycloalkyl, aryl, aryalkyl, heteroaryl, heterocycloalkyl, hydroxy, halo, cyano, trifluoromethyl, trifluoromethoxy, nitro, trimethylsilyl, -OR*, -SR*, -OC(O)-R*, -N(R*)₂, -C(O)R*, -C(O)OR*, -OC(O)N(R*)₂, -C(O)N(R*)₂, -N(R*)₃C(O)OR*, -N(R*)₃C(O)R*, -N(R*)₅C(NR*)₃, N(R*)₅S(O)₂R* (where t is 1 or 2), -S(O)OR* (where t is 1 or 2), -SO₃H (where t is 1 or 2), -SO₃R* (where t is 1 or 2), or PO₃R*₂, where each R* is independently hydrogen, alkyl, fluoroalkyl, carbocycylyl, aryl, aralkyl, heterocycloalkyl, heterocycloalkylalkyl, heteroaryl or heteroaromatic.

[00149] “Aralkyll” or “aryalkyl” refers to an (aryl)alkyl—radical where aryl and alkyl are as disclosed herein and which are optionally substituted by one or more of the substituents described above as suitable substituents for aryl and alkyl respectively.

[00150] “Ester” refers to a chemical radical of formula –COOR, where R is selected from the group consisting of alkyl, cycloalkyl, aryl, heteroaryl (bonded through a ring carbon) and heterocyclic (bonded through a ring carbon). Any amine, hydroxy, or carboxyl side chain on the compounds described herein can be esterified. The procedures and specific groups to make such esters are known to those of skill in the art and can readily be found in reference sources such as Greene and Wuts, Protective Groups in Organic Synthesis, 3.suprd ed., John Wiley & Sons, New York, N.Y., 1999.

Unless stated otherwise specifically in the specification, an ester group is optionally substituted by one or more substituents which independently are: alkyl, heteroalkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, aryalkyl, heteroaryl, heterocycloalkyl, hydroxy, halo, cyano, trifluoromethyl, trifluoromethoxy, nitro, trimethylsilyl, -OR*, -SR*, -OC(O)-R*, -N(R*)₂, -C(O)R*, -C(O)OR*, -OC(O)N(R*)₂, -C(O)N(R*)₂, -N(R*)₃C(O)OR*, -N(R*)₃C(O)R*, -N(R*)₅C(NR*)₃, N(R*)₅S(O)₂R* (where t is 1 or 2), -S(O)OR* (where t is 1 or 2), -SO₃H (where t is 1 or 2), or PO₃R*₂, where each R* is independently hydrogen, alkyl, fluoroalkyl, carbocycylyl, aryl, aralkyl, heterocycloalkyl, heterocycloalkylalkyl, heteroaryl or heteroaromatic.

[00151] “Fluoralkyl” refers to an alkyl radical, as defined above, that is substituted by one or more fluoro radicals, as defined above, for example, trifluoromethyl, difluoromethyl, 2,2,2-trifluoroethyl, 1-fluoromethyl-2-fluoroethyl, and the like. The alkyl part of the fluoroalkyl radical may be optionally substituted as defined above for an alkyl group.

[00152] “Halo”, “halide”, or, alternatively, “halogen” means fluoro, chloro, bromo or iodo. The terms “haloalkyl,” “haloalkenyl,” “haloalkynyl” and “haloalkoxy” include alkyl, alkenyl, alkynyl and alkoxy structures that are substituted with one or more halo groups or with combinations thereof. For example, the terms “fluoroalkyl” and “fluoroalkoxy” include haloalkyl and haloalkoxy groups, respectively, in which the halo is fluorine.

[00153] “Heteroalkyl,” “heteroalkenyl” and “heteroalkynyl” include optionally substituted alkyl, alkenyl and alkynyl radicals and which have one or more skeletal chain atoms selected from an atom other than carbon, e.g., oxygen, nitrogen, sulfur, phosphorus or combinations thereof. A numerical range may be given, e.g. C₁-C₂ heteroalkyl which refers to the chain length in total, which in this example is 4 atoms long. For example, a –CH₂OCH₂CH₃ radical is referred to as a “C₃” heteroalkyl, which includes the heteroatom center in the atom chain length description.

Connection to the rest of the molecule may be through either a heteroatom or a carbon in the heteroalkyl chain. A heteroalkyl group may be substituted with one or more substituents which independently are: alkyl, heteroalkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, aryalkyl, heteroaryl, heterocycloalkyl, hydroxy, halo, cyano, nitro, oxo, thioxo, trimethylsilyl, -OR*, -SR*, -OC(O)-R*, -N(R*)₂, -C(O)R*, -C(O)OR*, -OC(O)N(R*)₂, -C(O)N(R*)₂, -N(R*)₃C(O)OR*, -N(R*)₃C(O)R*, -N(R*)₅C(NR*)₃, N(R*)₅S(O)₂R* (where t is 1 or 2), -S(O)OR* (where t is 1 or 2), -SO₃H (where t is 1 or 2), or PO₃R*₂, where each R* is independently hydrogen, alkyl, fluoroalkyl, carbocycylyl, heterocycloalkyl, aryl, aralkyl, heterocycloalkylalkyl, heteroaryl or heteroaromatic.
"Heteroalkylaryl" refers to an -(heteroalkyl)aryl radical where heteroalkyl and aryl are as disclosed herein and which are optionally substituted by one or more of the substituents described as suitable substituents for heteroalkyl and aryl respectively.

"Heteroalkylheteroaryl" refers to an -(heteroalkyl)heteroaryl radical where heteroalkyl and heteroaryl are as disclosed herein and which are optionally substituted by one or more of the substituents described as suitable substituents for heteroalkyl and heteroaryl respectively.

"Heteroalkylheterocycloalkyl" refers to an -(heteroalkyl)heterocycloalkyl radical where heteroalkyl and heterocycloalkyl are as disclosed herein and which are optionally substituted by one or more of the substituents described as suitable substituents for heteroalkyl and heterocycloalkyl respectively.

"Heterocycloalkyl" refers to an -(heteroalkyl) cycloalkyl radical where heteroalkyl and cycloalkyl are as disclosed herein and which are optionally substituted by one or more of the substituents described as suitable substituents for heteroalkyl and cycloalkyl respectively.

"Heteroaryl" or, alternatively, "heteroaromatic" refers to a 5- to 18-membered aromatic radical (e.g., C₂-C₁₃ heteroaryl) that includes one or more ring heteroatoms selected from nitrogen, oxygen and sulfur, and which may be a monocyclic, bicyclic, tricyclic or tetracyclic ring system. Whenever it appears herein, a numerical range such as "5 to 18" refers to each integer in the given range; e.g., "5 to 18 ring atoms" means that the heteroaryl group may consist of 5 ring atoms, 6 ring atoms, etc., up to and including 18 ring atoms. Bivalent radicals derived from univalent heteroaryl radicals whose names end in "-yl" by removal of one hydrogen atom from the atom with the free valence are named by adding "-idine" to the name of the corresponding univalent radical, e.g., a pyridyl group with two points of attachment is a pyridylidene. An N-containing "heteroaromatic" or "heteroaryl" moiety refers to an aromatic group in which at least one of the skeletal atoms of the ring is a nitrogen atom. The polycyclic heteroaryl group may be fused or non-fused. The heteroatom(s) in the heteroaryl radical is optionally oxidized. One or more nitrogen atoms, if present, are optionally quaternized. The heteroaryl is attached to the rest of the molecule through any atom of the ring(s).

Examples of heteroaryl include, but are not limited to, azezipinyl, acridinyl, benzimidazolyl, benzindolyl, 1,3-benzodioxolyl, benzofuranyl, benzo[c]diazoyl, benzothiadiazoyl, benzothiophenyl, benzo[b][1,4]dioxepinyl, benzo[b][1,4]oxazinyl, 1,4-benzodioxanoyl, benzonaphthofuranoyl, benzo[c]azoyl, benzodioxolyl, benzodioxinyl, benzo[c]azoyl, benzopyranoyl, benzopyranoyl, benzofuranoyl, benzo[c]furazanyl, benzothiazooyl, benzothiophenyl, benzothienyl, benzothienyl[3,2-d]pyrimidinyl, benzo[c]triazolyl, benzo[c][4,6]imidazo[1,2-c]pyridinyl, carbazoyl, cinnolinyl, cyclopenta[d]pyrindinyl, 6,7-dihydro-5H-cyclopenta[4,5]thieno[2,3-d]pyrimidinyl, 5,6-dihydrobenzo[h]quinazolinyl, 5,6-dihydrobenzo[h]cinnolinyl, 6,7-dihydro-5H-benzo[b][1,2-c]pyridazinyl, dibenzofuranyl, dibenzo[c]thiophenyl, furanyl, furazanyl, furanonyl, furanopyl, furanopyl)[3,2-c]pyrindinyl, 5,6,7,8,9,10-hexacyclooctoa[d]pyrimidinyl, 5,6,7,8,9,10-hexacyclooctoa[d]pyrindazinyl, 5,6,7,8,9,10-hexacyclooctoa[d]pyrindinyl, isothiazoyl, imidazoyl, indazoyl, indolyl, indazoyl, indoliny, indolinyl, isoquinolinyl, indolizylin, isoazoyl, 5,8-methano-5,6,7,8-tetrahydroquinazolinyl, naphthyridinyl, 1,6-naphthyridinonyl, oxadiazoyl, 2-oxazepinyl, oxazoyl, oxiranyl, 5,6,7,8,9,10,10a-octahydrobenzo[h]quinazolinyl, 1-phenyl-1H-pyrrolyl, phenazinyl, phenothiazinyl, phenoxazinyl, phthalazinyl, pteridinyl, purinyl, pyranyl, pyrrol, pyrazolyl, pyrazoly, pyrazolyl, pyrazolo[3,4-d]pyrimidinyl, pyridinyl, pyrdo[3,2-d]pyrimidinyl, pyrdo[3,4-d]pyrimidinyl, pyrazinyl, pyrimidinyl, pyridazinyl, pyrrol, quinazolinyl, quinolinyl, quinolinyl, tetrahydroquinolinyl, 5,6,7,8-tetrahydroquinazolinyl, 5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidinyl, 6,7,8,9-tetrahydro-5H-cyclohepta[4,5]thieno[2,3-d]pyrimidinyl, 5,6,7,8-tetrahydro[4,5-c]pyridazinyl, thiazoyl, thiazoloy, thiazopyranoyl, triazolyl, tetrazolyl, triazinyl, thieno(2,3-d)pyrimidinyl, thieno(3,2-d)pyrimidinyl, thieno(2,3-c)pridinyl, and thiophenyl (i.e. thienyl). Unless stated
otherwise specifically in the specification, a heteraryl moiety is optionally substituted by one or more substituents which are independently: alkyl, heteroalkyl, alkenyl, alkylnyl, cycloalkyl, heterocycloalkyl, aryl, arylalkyl, heteroaryl, heteroaerylalkyl, hydroxy, halo, cyano, nitro, oxo, thioxo, trimethylsilyl, -OR, -SR, -(CO)(OR), -(NR)(2), -(C(O)OR), -(C(O)N)(R)(2), -(N(R)(2))C(O)(OR), -(N(R)(2))C(O)(R)(3), -(N(R)(2))S(O)(R)(4) (where t is 1 or 2), -(S(O))(2)OR (where t is 1 or 2), -(S(O))(2)N(R)(2) (where t is 1 or 2), or PO(R)(3), where each R is independently hydrogen, alkyl, fluoroalkyl, carbocyclic, carbocyclicalkyl, aryl, aralkyl, heterocycloalkyl, heterocycloalkylalkyl, heteroaryl or heteroaryloalkyl.

[00159] Substituted heteroaryl also includes ring systems substituted with one or more oxide (-O-) substituents, such as pyridinyl N-oxides.

[00160] "Heteroaerylalkyl" refers to a moiety having an aryl moiety, as described herein, connected to an alkylene moiety, as described herein, wherein the connection to the remainder of the molecule is through the alkylene group.

[00161] "Heterocycloalkyl" refers to a stable 3- to 18-membered non-aromatic ring radical that comprises two to twelve carbon atoms and from one to six heteroatoms selected from nitrogen, oxygen and sulfur. Whenever it appears herein, a numerical range such as "3 to 18" refers to each integer in the given range; e.g., "3 to 18 ring atoms" means that the heterocycloalkyl group may consist of 3 ring atoms, 4 ring atoms, etc., up to and including 18 ring atoms. In some embodiments, it is a C3-C10 heterocycloalkyl. In some embodiments, it is a C4-C10 heterocycloalkyl. Unless stated otherwise specifically in the specification, the heterocycloalkyl radical is a monocyclic, bicyclic, tricyclic or tetracyclic ring system, which may include fused or bridged ring systems. The heteroatoms in the heterocycloalkyl radical may be optionally oxidized. One or more nitrogen atoms, if present, are optionally quaternized. The heterocycloalkyl radical is partially or fully saturated. The heterocycloalkyl may be attached to the rest of the molecule through any atom of the ring(s). Examples of such heterocycloalkyl radicals include, but are not limited to, dioxolanyl, thiényl[1,3]dithianyl, decahydroisoquinolinyl, imidazolinyl, imidazolidinyl, isothiazolidinyl, isoazolidinyl, morpholinyl, octahydroindolyl, octahydroisoindolyl, 2-oxopiperazinyl, 2-oxo-piperidinyl, 2-oxopyrrolidinyl, oxazolidinyl, piperidinyl, piperazinyl, 4-piperidonyl, pyrrolidinyl, quinuclidinyl, thiazolidinyl, tetrahydrofuranyl, thianyl, tetrahydropyranyl, thiomorpholinyl, 1-oxo-thiomorpholinyl, and 1,1-dioxo-thiomorpholinyl. Unless stated otherwise specifically in the specification, a heterocycloalkyl moiety is optionally substituted by one or more substituents which independently are: alkyl, heteroalkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, arylalkyl, heteroaryl, heteroaryloalkyl, hydroxy, halo, cyano, nitro, oxo, thioxo, trimethylsilyl, -OR, -SR, -(CO)(OR), -(NR)(2), -(C(O)OR), -(C(O)N)(R)(2), -(N(R)(2))C(O)(OR), -(N(R)(2))C(O)(R)(3), -(N(R)(2))S(O)(R)(4) (where t is 1 or 2), -(S(O))(2)OR (where t is 1 or 2), -(S(O))(2)N(R)(2) (where t is 1 or 2), or PO(R)(3), where each R is independently hydrogen, alkyl, fluoroalkyl, carbocyclic, carbocyclicalkyl, aryl, aralkyl, heterocycloalkyl, heteroaryl or heteroaryloalkyl.

[00162] "Heterocycloalkyl" also includes bicyclic ring systems wherein one non-aromatic ring, usually with 3 to 7 ring atoms, contains at least 2 carbon atoms in addition to 1-3 heteroatoms independently selected from oxygen, sulfur, and nitrogen, as well as combinations comprising at least one of the foregoing heteroatoms; and the other ring, usually with 3 to 7 ring atoms, optionally contains 1-3 heteroatoms independently selected from oxygen, sulfur, and nitrogen and is not aromatic.

[00163] "Isomers" are different compounds that have the same molecular formula. "Stereoisomers" are isomers that differ only in the way the atoms are arranged in space. "Enantiomers" are a pair of stereoisomers that are non-superimposable mirror images of each other. A 1:1 mixture of a pair of enantiomers is a "racemic" mixture. The term "(±)" is used to designate a racemic mixture where appropriate. "Diastereoisomers" are stereoisomers that have
at least two asymmetric atoms, but which are not mirror-images of each other. The absolute stereochemistry is specified according to the Cahn-Ingold-Prelog R-S system. When a compound is a pure enantiomer the stereochemistry at each chiral carbon can be specified by either R or S. Resolved compounds whose absolute configuration is unknown can be designated (+) or (-) depending on the direction (dextro- or levorotatory) which they rotate plane polarized light at the wavelength of the sodium D line. Certain of the compounds described herein contain one or more asymmetric centers and can thus give rise to enantiomers, diastereomers, and other stereoisomeric forms that can be defined, in terms of absolute stereochemistry, as (R)- or (S)-. The present chemical entities, pharmaceutical compositions and methods are meant to include all such possible isomers, including racemic mixtures, optically pure forms and intermediate mixtures. Optically active (R)- and (S)- isomers can be prepared using chiral synthons or chiral reagents, or resolved using conventional techniques. When the compounds described herein contain olefinic double bonds or other centers of geometric asymmetry, and unless specified otherwise, it is intended that the compounds include both E and Z geometric isomers.

[00164] "Moiety" refers to a specific segment or functional group of a molecule. Chemical moieties are often recognized chemical entities embedded in or appended to a molecule.

[00165] "Nitro" refers to the –NO₂ radical.
[00166] "Oxa" refers to the -O- radical.
[00167] "Oxo" refers to the =O radical.
[00168] "Tautomers" are structurally distinct isomers that interconvert by tautomerization. "Tautomerization" is a form of isomerization and includes prototropic or proton-shift tautomerization, which is considered a subset of acid-base chemistry. "Prototrophic tautomerization" or "proton-shift tautomerization" involves the migration of a proton accompanied by changes in bond order, often the interchange of a single bond with an adjacent double bond. Where tautomerization is possible (e.g. in solution), a chemical equilibrium of tautomers can be reached. An example of tautomerization is keto-enol tautomerization. A specific example of keto-enol tautomerization is the interconversion of pentane-2,4-dione and 4-hydroxypent-3-en-2-one tautomers. Another example of tautomerization is phenol-keto tautomerization. A specific example of phenol-keto tautomerization is the interconversion of pyridin-4-ol and pyridin-4(1H)-one tautomers.

[00169] The compounds of the present invention may also contain unnatural proportions of atomic isotopes at one or more of atoms that constitute such compounds. For example, the compounds may be radiolabeled with radioactive isotopes, such as for example tritium (³H), iodine-125 (¹²⁵I) or carbon-14 (¹⁴C). All isotopic variations of the compounds of the present invention, whether radioactive or not, are encompassed within the scope of the present invention.

[00170] A "leaving group or atom" is any group or atom that will, under the reaction conditions, cleave from the starting material, thus promoting reaction at a specified site. Suitable examples of such groups unless otherwise specified are halogen atoms, mesityl, p-nitrobenzensulphonyloxy and tosylxy groups.

[00171] "Protecting group" has the meaning conventionally associated with it in organic synthesis, i.e. a group that selectively blocks one or more reactive sites in a multifunctional compound such that a chemical reaction can be carried out selectively on another unprotected reactive site and such that the group can readily be removed after the selective reaction is complete. A variety of protecting groups are disclosed, for example, in T.H. Greene and P. G. M. Wuts, Protective Groups in Organic Synthesis, Third Edition, John Wiley & Sons, New York (1999). For example, a hydroxy protected form is where at least one of the hydroxy groups present in a compound is protected with a hydroxy protecting group. Likewise, amines and other reactive groups may similarly be protected.
"Solvate" refers to a compound (e.g., a compound selected from Formula I or a pharmaceutically acceptable salt thereof) in physical association with one or more molecules of a pharmaceutically acceptable solvent. It will be understood that "a compound of Formula I" encompass the compound of Formula I and solvates of the compound, as well as mixtures thereof.

"Substituted" means that the referenced group may be substituted with one or more additional group(s) individually and independently selected from acyl, alkyl, alkylaryl, cycloalkyl, aralkyl, aryl, carbohydrate, carbonate, heteroaryl, heterocycloalkyl, hydroxy, alkoxy, aryloxy, mercapto, alkylthio, arylthio, cyano, halo, carbonyl, ester, thiocarboxyl, isocyanate, thiocyanate, isothiocyanate, nitro, oxo, perhaloalkyl, perfluoroalkyl, phosphate, silyl, sulfinyl, sulfonyl, sulfonamidyl, sulfoxyl, sulfonate, urea, and amino, including mono- and di-substituted amino groups, and the protected derivatives thereof. Di-substituted amino groups encompass those which form a ring together with the nitrogen of the amino group, such as for instance, morpholino. The substituents themselves may be substituted, for example, a cycloalkyl substituent may have a halide substituted at one or more ring carbons, and the like. The protecting groups that may form the protective derivatives of the above substituents are known to those of skill in the art and may be found in references such as Greene and Wuts, above.

"Sulfonyl" refers to the groups: -S-(optionally substituted alkyl), -S-(optionally substituted aryl), -S-(optionally substituted heteroary1), and -S-(optionally substituted heterocycloalkyl).

"Sulfinyl" refers to the groups: -S(O)-H, -S(O)-(optionally substituted alkyl), -S(O)-(optionally substituted amino), -S(O)-(optionally substituted aryl), -S(O)-(optionally substituted heteroaryl), and -S(O)-(optionally substituted heterocycloalkyl).

"Sulfonyl" refers to the groups: -S(O)2-H, -S(O)2-(optionally substituted alkyl), -S(O)2-(optionally substituted amino), -S(O)2-(optionally substituted aryl), -S(O)2-(optionally substituted heteroaryl), and -S(O)2-(optionally substituted heterocycloalkyl).

"Sulfinamidyl" or "sulfonamido" refers to a -S(=O)2-NRR radical, where each R is selected independently from the group consisting of hydrogen, alkyl, cycloalkyl, aryl, heteroaryl (bonded through a ring carbon) and heteroalicyclic (bonded through a ring carbon). The R groups in -NRR of the -S(=O)2-NRR radical may be taken together with the nitrogen to which it is attached to form a 4-, 5-, 6-, or 7-membered ring. In some embodiments, it is a C1-C10 sulfonamido, wherein each R in sulfonamido contains 1 carbon, 2 carbons, 3 carbons, or 4 carbons total. A sulfonamido group is optionally substituted by one or more of the substituents described for alkyl, cycloalkyl, aryl, heteroaryl respectively.

"Sulfoxyl" refers to a -S(=O)2OH radical.

"Sulfonate" refers to a -S(=O)2-OR radical, where R is selected from the group consisting of alkyl, cycloalkyl, aryl, heteroaryl (bonded through a ring carbon) and heteroalicyclic (bonded through a ring carbon). A sulfonate group is optionally substituted on R by one or more of the substituents described for alkyl, cycloalkyl, aryl, heteroaryl respectively.

Where substituent groups are specified by their conventional chemical formulae, written from left to right, they equally encompass the chemically identical substituents that would result from writing the structure from right to left, e.g., -CH2O- is equivalent to -OCH2-.

Compounds of the present invention also include crystalline and amorphous forms of those compounds, including, for example, polymorphs, pseudopolymorphs, solvates, hydrates, unsolvated polymorphs (including anhydrates), conformational polymorphs, and amorphous forms of the compounds, as well as mixtures thereof.

"Crystalline form," "polymorph," and "novel form" may be used interchangeably herein, and are meant to include all crystalline and amorphous forms of the compound, including, for example, polymorphs, pseudopolymorphs, solvates,
hydrates, unsolvated polymorphs (including anhydrides), conformational polymorphs, and amorphous forms, as well as mixtures thereof, unless a particular crystalline or amorphous form is referred to.

[00182] Chemical entities include, but are not limited to, compounds of Formula I, and all pharmaceutically acceptable forms thereof. Pharmaceutically acceptable forms of the compounds recited herein include pharmaceutically acceptable salts, chelates, non-covalent complexes, prodrugs, and mixtures thereof. In certain embodiments, the compounds described herein are in the form of pharmaceutically acceptable salts. Hence, the terms "chemical entity" and "chemical entities" also encompass pharmaceutically acceptable salts, chelates, non-covalent complexes, prodrugs, and mixtures thereof.

[00183] In addition, if the compound of Formula I is obtained as an acid addition salt, the free base can be obtained by basifying a solution of the acid salt. Conversely, if the product is a free base, an addition salt, particularly a pharmaceutically acceptable addition salt, may be produced by dissolving the free base in a suitable organic solvent and treating the solution with an acid, in accordance with conventional procedures for preparing acid addition salts from base compounds. Those skilled in the art will recognize various synthetic methodologies that may be used to prepare non-toxic pharmaceutically acceptable addition salts.

[00184] In one aspect, the present invention provides a compound of Formula I:

![Formula I](image)

[00185] or its pharmaceutically acceptable salt thereof, wherein
[00186] W_d is heterocycloalkyl, aryl or heteroaryl;
[00187] B is alkyl, amino, heteroalkyl, or a moiety of Formula II;

![Formula II](image)

[00188] wherein W_e is aryl, heteroaryl, heterocycloalkyl, or cycloalkyl, and q is an integer of 0, 1, 2, 3, or 4;
[00189] X is absent or is $-(CH(R^6))_z$, and z is an integer of 1, 2, 3, or 4;
[00190] Y is absent, $-O_2$, $-S$, $-O_2(S)-$, $-O_2(S)_2$, $-N(R^8)_2$, $-C=O(-CHR^3)_2$, $-C(O)-$, $-N(R^8)_2C=O$, or $-N(R^8)_2C(OH)_2$;
[00191] R^1 is hydrogen, alkyl, heteroalkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, arylalkyl, heteroaryl, heteroaryalkyl, alkoxy, amido, amino, acyl, acyloxy, alkoxycarbonyl, sulfonamido, halo, cyano, hydroxy, nitro, phosphate, urea, or carbonate;
[00193] \(R^2 \) is alkyl, heteroalkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylyalkyl, alkoxy, amino, acyl, acyloxy, alkoxycarbonyl, sulfonamido, halo, cyano, hydroxy, nitro, phosphate, urea, or carbonate;

[00194] \(R^3 \) is hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, alkoxy, amino, acyl, acyloxy, alkoxycarbonyl, sulfonamido, halo, cyano, hydroxy, nitro, aryl, or heteroaryl;

[00195] \(R^5, R^6, R^7, \) and \(R^8 \) are independently hydrogen, \(C_1-C_4 \) alkyl, \(C_2-C_3 \) alkenyl, \(C_2-C_3 \) alkynyl, \(C_3-C_5 \) cycloalkyl, \(C_1-C_4 \) heteroalkyl, \(C_1-C_4 \) alkoxy, \(C_1-C_4 \) amido, amino, acyl, \(C_1-C_4 \) acyloxy, \(C_1-C_4 \) sulfonamido, halo, cyano, hydroxy or nitro; and

[00196] each instance of \(R^9 \) is independently hydrogen, \(C_1-C_{10} \) alkyl, \(C_1-C_5 \) cycloalkyl, heterocycloalkyl, or \(C_1-C_{10} \) heteroalkyl.

[00197] In some embodiments, \(B \) is unsubstituted or substituted alkyl, including but not limited to \(-\text{(CH}_2\text{)}_n\)NR\(^n\)R\(^n\), wherein each \(R^n \) is independently hydrogen, alkyl, fluoroalkyl, carbocyclyl, carbocyclylalkyl, aryl, aralkyl, heterocycloalkyl, heterocycloalkylalkyl, heteroaryl or heteroarylyalkyl, or NR\(^n\)R\(^n\) are combined together to form a cyclic moiety, which includes but is not limited to piperidinyl, piperazinyl, and morpholinyl. In some embodiments, \(B \) is unsubstituted or substituted amino. In some embodiments, \(B \) is unsubstituted or substituted heteroalkyl.

[00198] In some embodiments, \(B \) is a moiety of Formula II and wherein \(W_n \) is a member selected from the group consisting of unsubstituted or substituted aryl, substituted phenyl, unsubstituted or substituted heteroaryl including but not limited to pyridin-2-yl, pyridin-3-yl, pyridin-4-yl, pyrimidin-4-yl, pyrimidin-2-yl, pyrimidin-5-yl, or pyrazin-2-yl, unsubstituted or substituted monocyclic heteroaryl, unsubstituted or substituted bicyclic heteroaryl, a heteroaryl comprising two heteroatoms as ring atoms, unsubstituted or substituted heteroaryl comprising a nitrogen ring atom, heteroaryl comprising two nitrogen ring atoms, heteroaryl comprising a nitrogen and a sulfur as ring atoms, unsubstituted or substituted heterocycloalkyl including but not limited to morpholinyl, tetrahydropyranyl, piperazinyl, and piperidinyl, unsubstituted or substituted cycloalkyl including but not limited to cyclopentyl and cyclohexyl.

[00199] In some embodiments, \(B \) is one of the following moieties:
In some embodiments, B is substituted by one or more of alkyl, heteroalkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl alkoxy, amido, amino, acyl, acyloxy, alkoxy carbonyl, sulfonamido, halo, cyano, hydroxy or nitro, each of which alkyl, heteroalkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, alkoxy, amido, amino, acyl, acyloxy, or sulfonamido, may itself be substituted.

In some embodiments, R¹ is a member selected from the group consisting of hydrogen, unsubstituted or substituted alkyl, unsubstituted or substituted heteroalkyl, unsubstituted or substituted alkenyl, unsubstituted or substituted alkynyl, unsubstituted or substituted cycloalkyl, or unsubstituted or substituted heterocycloalkyl. In some embodiments, R¹ is unsubstituted or substituted aryl, unsubstituted or substituted arylalkyl, unsubstituted or substituted heteroaryl, or unsubstituted or substituted heteroarylalkyl. In some embodiments, R¹ is unsubstituted or substituted alkyl, unsubstituted or substituted amino. In some embodiments, R¹ is unsubstituted or substituted acyl, unsubstituted or substituted acyloxy, unsubstituted or substituted alkoxy carbonyl, or unsubstituted or substituted sulfonamido. In some embodiments, R¹ is halo which includes -Cl, -F, -I, and -Br. In some embodiments, R¹ is selected from the group consisting of cyano, hydroxy, nitro, unsubstituted or substituted phosphate, unsubstituted or substituted urea, and carbonate.

In some embodiments, when R¹ is alkyl, R¹ is methyl, ethyl, propyl, isopropyl, n- butyl, tert- butyl, sec-butyl, pentyl, hexyl or heptyl.

In some embodiments, when R¹ is alkyl, heteroalkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, alkoxy, amido, amino, acyl, acyloxy, alkoxy carbonyl, sulfonamido, or hydroxy, R¹ is substituted by phosphate, unsubstituted urea, or substituted urea, or carbonic acid, or carbonate.

In some embodiments, when R¹ is alkyl, heteroalkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, alkoxy, amido, amino, acyl, acyloxy, alkoxy carbonyl, or sulfonamido, R¹ is substituted by one or more of alkyl, heteroalkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, alkoxy, amido, amino, acyl, acyloxy, alkoxy carbonyl, sulfonamido, halo, cyano, hydroxy
or nitro, each of which alkyl, heteroalkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, arylalkyl, heteroaryl, heteroaryalkyl, alkoxy, amido, amino, acyl, acyloxy, alkoxy carbonyl, or sulfonamido may itself be substituted.

In some embodiments, R² is a member selected from the group consisting of unsubstituted or substituted alkyl, unsubstituted or substituted heteroaryl, unsubstituted or substituted alkenyl, unsubstituted or substituted alkynyl, unsubstituted or substituted cycloalkyl, unsubstituted or substituted heterocycloalkyl. In some embodiments, R² is unsubstituted or substituted aryl, unsubstituted or substituted arylalkyl, unsubstituted or substituted heteroaryl, or unsubstituted or substituted heteroaryalkyl. In some embodiments, R² is unsubstituted or substituted alkoxy, unsubstituted or substituted amido, or unsubstituted amino. In some embodiments, R² is unsubstituted or substituted acyl, unsubstituted or substituted acyloxy, unsubstituted or substituted alkoxy carbonyl, or unsubstituted or substituted sulfonamido. In some embodiments, R² is halo, which is –I, -F, -Cl, or -Br. In some embodiments, R² is selected from the group consisting of cyano, hydroxy, nitro, a carboxylic acid, and a carbonate. In some embodiments, R² is unsubstituted or substituted phosphate. In some embodiments, R² is unsubstituted or substituted urea. In some embodiments, when R² is alkyl, R² is methyl, ethyl, propyl, isopropyl, n-butyl, tert-butyl, sec-butyl, pentyl, hexyl or heptyl.

In some embodiments, when R² is alkyl, heteroalkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, arylalkyl, heteroaryl, heteroaryalkyl, alkoxy, amido, amino, acyl, acyloxy, alkoxy carbonyl, sulfonamido, or hydroxy, it is substituted by phosphate, substituted by urea, or substituted by carbonate.

In some embodiments, when R² is alkyl, heteroalkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, arylalkyl, heteroaryl, heteroaryalkyl, alkoxy, amido, amino, acyl, acyloxy, alkoxy carbonyl, or sulfonamido, it is substituted by one or more of alkyl, heteroaryl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, alkoxy, amido, amino, acyl, acyloxy, alkoxy carbonyl, sulfonamido, halo, cyano, hydroxy or nitro, each of which alkyl, heteroaryl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, alkoxy, amido, amino, acyl, acyloxy, alkoxy carbonyl, or sulfonamido may itself be substituted.

In some embodiments, q is an integer of 0. In some embodiments, q is an integer of 1. In some embodiments, q is an integer of 2. In some embodiments, q is an integer of 3. In some embodiments, q is an integer of 4.

In some embodiments of the compound of Formula I, R³ is a member selected from the group consisting of hydrogen, unsubstituted or substituted alkyl, unsubstituted or substituted alkenyl, and unsubstituted or substituted alkynyl. In some embodiments, R³ is unsubstituted or substituted aryl, unsubstituted or substituted heteroaryl, unsubstituted or substituted cycloalkyl, or unsubstituted or substituted heterocycloalkyl. In some embodiments, R³ is unsubstituted or substituted alkoxy, unsubstituted or substituted amido, unsubstituted or substituted amino. In some embodiments, R³ is unsubstituted or substituted acyl, unsubstituted or substituted acyloxy, unsubstituted or substituted alkoxy carbonyl, or unsubstituted or substituted sulfonamido. In some embodiments, R³ is halo, which is –I, -F, -Cl, or -Br.

In some embodiments, R³ is selected from the group consisting of cyano, hydroxy, and nitro. In some embodiments, when R³ is alkyl, R³ is methyl, ethyl, propyl, isopropyl, n-butyl, tert-butyl, sec-butyl, pentyl, hexyl or heptyl. In some embodiments, R³ is -CF₃.

In some embodiments, when R³ is alkyl, alkenyl, aryl, heteroaryl, cycloalkyl, heterocycloalkyl, alkoxy, amido, amino, acyl, acyloxy, alkoxy carbonyl, or sulfonamido, it is substituted with one or more of alkyl, heteroaryl, alkenyl, alkyloxy cycloalkyl, heterocycloalkyl, aryl, heteroaryl, alkoxy, amido, amino, acyl, acyloxy, alkoxy carbonyl, sulfonamido, halo, cyano, hydroxy or nitro, each of which alkyl, heteroaryl, alkenyl, alkyloxy cycloalkyl, heterocycloalkyl, aryl, heteroaryl, alkoxy, amido, amino, acyl, acyloxy, alkoxy carbonyl, or sulfonamido may itself be substituted.
In some embodiments, the compound of Formula I, R^5 is hydrogen, unsubstituted or substituted alkyl (including but not limited to unsubstituted or substituted C_{1-4}alkyl). In some embodiments, R^5 is unsubstituted or substituted alkenyl including but not limited to unsubstituted or substituted C_{2-4}alkenyl. In some embodiments, R^5 is unsubstituted or substituted alkynyl including but not limited to unsubstituted or substituted C_{2-4}alkynyl. In some embodiments, R^5 is unsubstituted or substituted cycloalkyl including but not limited to unsubstituted or substituted C_{3-7}cycloalkyl. In some embodiments, R^5 is unsubstituted or substituted heterocycloalkyl. In some embodiments, R^5 is unsubstituted or substituted heteroalkyl including but not limited to unsubstituted or substituted C_{1-6}heteroalkyl. In some embodiments, R^5 is unsubstituted or substituted alkoxy including but not limited to unsubstituted or substituted C_{1-4}alkoxy. In some embodiments, R^5 is unsubstituted or substituted amido including but not limited to unsubstituted or substituted C_{1-4}amido. In some embodiments, R^5 is unsubstituted or substituted amino. In some embodiments, R^5 is unsubstituted or substituted acyl, unsubstituted or substituted acyloxy, unsubstituted or substituted C_{1-4}acyloxy, unsubstituted or substituted alkoxyacyl, unsubstituted or substituted sulfonamido, or unsubstituted or substituted C_{1-4}sulfonamido. In some embodiments, R^5 is halo, which is -I, -F, -Cl, or -Br. In some embodiments, R^5 is selected from the group consisting of cyano, hydroxy, and nitro. In some other embodiments, R^5 is -CH_3, -CH_2CH_3, n-propyl, isopropyl, -OCH_3, -OCH_2CH_3, or -CF_3.

In some embodiments, when R^5 is alkyl, alkenyl, alkynyl, cycloalkyl, heteroalkyl, acyl, alkoxy, amido, amino, alkoxyacyl, or sulfonamido, R^5 is optionally substituted with one or more of alkyl, heteroalkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, alkoxy, amido, amino, acyl, alkoxy, alkoxyacyl, sulfonamido, halo, cyano, hydroxy or nitro, each of which alkyl, heteroalkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, alkoxy, amido, amino, acyl, alkoxy, alkoxyacyl, or sulfonamido may itself be substituted.

In some embodiments of the compound of Formula I, R^6 is hydrogen, unsubstituted or substituted alkyl (including but not limited to unsubstituted or substituted C_{1-4}alkyl). In some embodiments, R^6 is unsubstituted or substituted alkenyl including but not limited to unsubstituted or substituted C_{2-4}alkenyl. In some embodiments, R^6 is unsubstituted or substituted alkynyl including but not limited to unsubstituted or substituted C_{2-4}alkynyl. In some embodiments, R^6 is unsubstituted or substituted cycloalkyl including but not limited to unsubstituted or substituted C_{3-7}cycloalkyl. In some embodiments, R^6 is unsubstituted or substituted heterocycloalkyl. In some embodiments, R^6 is unsubstituted or substituted heteroalkyl including but not limited to unsubstituted or substituted C_{1-6}heteroalkyl. In some embodiments, R^6 is unsubstituted or substituted alkoxy including but not limited to unsubstituted or substituted C_{1-4}alkoxy. In some embodiments, R^6 is unsubstituted or substituted amido including but not limited to unsubstituted or substituted C_{1-4}amido. In some embodiments, R^6 is unsubstituted or substituted amino. In some embodiments, R^6 is unsubstituted or substituted acyl, unsubstituted or substituted acyloxy, unsubstituted or substituted C_{1-4}acyloxy, unsubstituted or substituted alkoxyacyl, unsubstituted or substituted sulfonamido, or unsubstituted or substituted C_{1-4}sulfonamido. In some embodiments, R^6 is halo, which is -I, -F, -Cl, or -Br. In some embodiments, R^6 is selected from the group consisting of cyano, hydroxy, and nitro. In some other embodiments, R^6 is -CH_3, -CH_2CH_3, n-propyl, isopropyl, -OCH_3, -OCH_2CH_3, or -CF_3.

In some embodiments, when R^6 is alkyl, alkenyl, alkynyl, cycloalkyl, heteroalkyl, acyl, alkoxy, amido, amino, alkoxyacyl, or sulfonamido, R^6 is optionally substituted with one or more of alkyl, heteroalkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, alkoxy, amido, amino, acyl, alkoxy, alkoxyacyl, sulfonamido, halo, cyano, hydroxy or nitro, each of which alkyl, heteroalkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, alkoxy, amido, amino, acyl, alkoxy, alkoxyacyl, or sulfonamido may itself be substituted.
[00216] In some embodiments of the compound of Formula I, R^7 is hydrogen, unsubstituted or substituted alkyl (including but not limited to unsubstituted or substituted C_1-C_4alkyl). In some embodiments, R^7 is unsubstituted or substituted alkenyl including but not limited to unsubstituted or substituted C_2-C_5alkenyl. In some embodiments, R^7 is unsubstituted or substituted alkynyl including but not limited to unsubstituted or substituted C_2-C_3alkynyl. In some embodiments, R^7 is unsubstituted or substituted cycloalkyl including but not limited to unsubstituted or substituted C_3-C_7cycloalkyl. In some embodiments, R^7 is unsubstituted or substituted heterocycloalkyl. In some embodiments, R^7 is unsubstituted or substituted heteroalkyl including but not limited to unsubstituted or substituted C_1-C_4heteroalkyl. In some embodiments, R^7 is unsubstituted or substituted alkoxy including but not limited to unsubstituted or substituted C_1-C_4alkoxy. In some embodiments, R^7 is unsubstituted or substituted amido including but not limited to unsubstituted or substituted C_1-C_4amido. In some embodiments, R^7 is unsubstituted or substituted amino. In some embodiments, R^7 is unsubstituted or substituted acyl, unsubstituted or substituted acyloxy, unsubstituted or substituted C_1-C_4acycloxy, unsubstituted or substituted alkoxyacyl, unsubstituted or substituted sulfonamido, or unsubstituted or substituted C_1-C_4sulfonamido. In some embodiments, R^7 is halo, which is -I, -F, -Cl, or -Br. In some embodiments, R^7 is selected from the group consisting of cyano, hydroxy, and nitro. In some other embodiments, R^7 is -CH_3, -CH_2CH_3, n-propyl, isopropyl, -OCH_3, -OCH_2CH_3, or -CF_3.

[00217] In some embodiments, when R^7 is alkyl, alkenyl, alkynyl, cycloalkyl, heteroalkyl, acyl, alkoxy, amido, amino, acyloxy, alkoxyacyl, or sulfonamido, R^7 is optionally substituted with one or more of alkyl, heteroalkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, alkoxy, amido, amino, acyl, acyloxy, alkoxyacyl, sulfonamido, halo, cyano, hydroxy or nitro, each of which alkyl, heteroalkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, alkoxy, amido, amino, acyl, acyloxy, alkoxyacyl, or sulfonamido may itself be substituted.

[00218] In some embodiments of the compound of Formula I, R^8 is hydrogen, unsubstituted or substituted alkyl (including but not limited to unsubstituted or substituted C_1-C_4alkyl). In some embodiments, R^8 is unsubstituted or substituted alkenyl including but not limited to unsubstituted or substituted C_2-C_5alkenyl. In some embodiments, R^8 is unsubstituted or substituted alkynyl including but not limited to unsubstituted or substituted C_2-C_3alkynyl. In some embodiments, R^8 is unsubstituted or substituted cycloalkyl including but not limited to unsubstituted or substituted C_3-C_7cycloalkyl. In some embodiments, R^8 is unsubstituted or substituted heterocycloalkyl. In some embodiments, R^8 is unsubstituted or substituted heteroalkyl including but not limited to unsubstituted or substituted C_1-C_4heteroalkyl. In some embodiments, R^8 is unsubstituted or substituted alkoxy including but not limited to unsubstituted or substituted C_1-C_4alkoxy. In some embodiments, R^8 is unsubstituted or substituted amido including but not limited to unsubstituted or substituted C_1-C_4amido. In some embodiments, R^8 is unsubstituted or substituted amino. In some embodiments, R^8 is unsubstituted or substituted acyl, unsubstituted or substituted acyloxy, unsubstituted or substituted C_1-C_4acycloxy, unsubstituted or substituted alkoxyacyl, unsubstituted or substituted sulfonamido, or unsubstituted or substituted C_1-C_4sulfonamido. In some embodiments, R^8 is halo, which is -I, -F, -Cl, or -Br. In some embodiments, R^8 is selected from the group consisting of cyano, hydroxy, and nitro. In some other embodiments, R^8 is -CH_3, -CH_2CH_3, n-propyl, isopropyl, -OCH_3, -OCH_2CH_3, or -CF_3.

[00219] In some embodiments, when R^8 is alkyl, alkenyl, alkynyl, cycloalkyl, heteroalkyl, acyl, alkoxy, amido, amino, acyloxy, alkoxyacyl, or sulfonamido, R^8 is optionally substituted with one or more of alkyl, heteroalkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, alkoxy, amido, amino, acyl, acyloxy, alkoxyacyl, sulfonamido, halo, cyano, hydroxy or nitro, each of which alkyl, heteroalkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, alkoxy, amido, amino, acyl, acyloxy, alkoxyacyl, or sulfonamido may itself be substituted.
[00220] In some embodiments of the compounds of Formula I, R⁵, R⁶, R⁷, and R⁸ are H.

[00221] In some embodiments of the compound of Formula I, X is absent. In some embodiments, X is -(CH(R⁹))ₙ and z is an integer of 1, 2, 3 or 4.

[00222] In some embodiments, R⁹ is unsubstituted or substituted alkyl including but not limited to unsubstituted or substituted C₁-C₁₀alkyl. In some embodiments, R⁹ is unsubstituted or substituted cycloalkyl including but not limited to unsubstituted or substituted C₃-C₇cycloalkyl. In some embodiments, R⁹ is methyl or hydrogen. In some embodiments, R⁹ is unsubstituted or substituted heterocycloalkyl including but not limited to unsubstituted or substituted C₂-C₁₀heteroalkyl. In some embodiments, R⁹ is unsubstituted or substituted heteroalkyl including but not limited to unsubstituted or substituted C₂-C₁₀heteroalkyl.

[00223] When R⁹ is any of the above, in some embodiments, X is -CH₂-, -CH₂CH₂-, -CH₂CH₂CH₂-, -CH(CH₃)-, or -CH(CH₂CH₃)-. In some embodiments, when X is -CH(CH₃)-, -CH(CH₃)- is in an (S)- or (R)-stereochemical configuration.

[00224] In some embodiments of the compound of Formula I, Y is absent. In some embodiments, Y is -O-, -S-, -S'=(O)-, -S=(O)₂-, -N(C=O)-, -N(R⁹)(C=O)-, -N(R⁹)(C=O)NH-, -N(R⁹)C(R⁹)₂- (such as -N(R⁹)CH₂-), specifically -N(CH₃)CH₂-, N(CH(CH₃))CH₂- or N(CH₂CH₃)CH₂-, -N(R⁹)_2-, -N(CH₃)-, -N(CH₂CH₃)-, or -N(CH(CH₃))₂-. In some embodiments, Y is -C(=O)-(CHR⁹)- and z is an integer of 1, 2, 3, or 4.

[00225] In some embodiments, X-Y is -CH₂-, -CH₂N(CH₃)-, -CH(CH₃)-NH-, (S)-CH(CH₃)-NH-, or (R)-CH(CH₃)-NH-. In some embodiments, X-Y is -N(CH₃)CH₂-, N(CH₂CH₃)CH₂-, -N(CH(CH₃))CH₂-, or -NHCH₂-.

[00226] In some embodiments of the compounds of Formula I, Wₐ is a member selected from the group consisting of unsubstituted or substituted heterocycloalkyl, unsubstituted or substituted aryl, and unsubstituted or substituted heteroaryl. In some embodiments, Wₐ is unsubstituted or substituted monocyclic heteroaryl, or unsubstituted or substituted bicyclic heteroaryl. In some embodiments, Wₐ is a bicyclic heteroaryl having at least one heteroatom, e.g., a bicyclic heteroaryl having at least one nitrogen ring atom. In some embodiments, Wₐ is a bicyclic heteroaryl having at least two heteroatoms, e.g., a bicyclic heteroaryl having at least two nitrogen ring atoms. In some embodiments, Wₐ is a bicyclic heteroaryl having two heteroatoms in the ring which is connected to XY. In some embodiments, Wₐ is a bicyclic heteroaryl having two nitrogen ring atoms in the ring to which XY is connected. In some embodiments, Wₐ is a bicyclic heteroaryl having four heteroatoms, e.g., a bicyclic heteroaryl having four nitrogen ring atoms. In some embodiments, Wₐ is unsubstituted or substituted 4-amino-1H-pyrazolo[3,4-d]pyrimidin-1-yl, unsubstituted or substituted 7-amino-2-methyl-2H-pyrazolo[4,3-d]pyrimidin-3-yl, unsubstituted or substituted 6-methyl-9H-purin-6-yl, or unsubstituted or substituted 6-amino-9H-purin-9-yl.

[00227] In some embodiments Wₐ is one of the following:

\[
\text{\begin{align*}
&\text{\begin{array}{c}
\text{\begin{align*}
\text{N} & \text{N} & \text{N} \\
\text{R} & \text{N} & \text{R} \\
\text{R}^{11} & \text{R}^{12} & \text{R}^{12}
\end{align*}
\end{array}}
\text{\begin{array}{c}
\text{\begin{align*}
\text{N} & \text{N} & \text{N} \\
\text{N} & \text{N} & \text{N} \\
\text{R} & \text{N} & \text{R} \\
\text{R}^{11} & \text{R}^{12} & \text{R}^{12}
\end{align*}
\end{array}}
\text{\begin{array}{c}
\text{\begin{align*}
\text{N} & \text{N} & \text{N} \\
\text{N} & \text{N} & \text{N} \\
\text{N} & \text{N} & \text{N} \\
\text{R} & \text{N} & \text{R} \\
\text{R}^{11} & \text{R}^{12} & \text{R}^{12}
\end{align*}
\end{array}}
\end{align*}}
\end{align*}
\]

wherein R⁸ is hydrogen, halo, phosphate, urea, carbonate, alkyl, alkenyl, alkynyl, cycloalkyl, heteroalkyl, or heterocycloalkyl;

R¹¹ is H, alkyl, halo, amino, amido, hydroxy, or alkoxy, and
R^{12} is H, alkyl, cyano, alkynyl, alkenyl, halo, aryl, heteroaryl, heterocycloalkyl, cycloalkyl, amino, carboxylic acid, alkoxy carbonyl, or amido.

[00228] In some embodiments, Wd is:

![Chemical structure](image1)

5 [00229] In some embodiments, Wd is:

![Chemical structure](image2)

[00230] In some embodiments, Wd is:

![Chemical structure](image3)

[00231] In some embodiments, Wd is:

![Chemical structure](image4)

10 [00232] In some embodiments of Wd, R^3 is a member selected from the group consisting of hydrogen, halo, phosphate, urea, a carbonate, unsubstituted or substituted alkyl, unsubstituted or substituted alkeny, unsubstituted or substituted alkynyl, unsubstituted or substituted cycloalkyl, unsubstituted or substituted heteroalkyl, and unsubstituted or substituted heterocycloalkyl.

15 [00233] In some embodiments of Wd, when R^4 is alkyl, alkynyl, cycloalkyl, heteroalkyl, or heterocycloalkyl, it is substituted by phosphate, urea, or carbonate.

[00234] In some embodiments of the compound of Formula I, R^{11} is a member of the group consisting of hydrogen, unsubstituted or substituted alkyl, and halo, which includes –I, –F, –Cl, or –Br. In some embodiments, R^{11} is unsubstituted or substituted amino, unsubstituted or substituted amido, hydroxy, or unsubstituted or substituted alkoxy. In some embodiments, R^{11} is phosphate, unsubstituted or substituted urea, or carbonate.

[00235] In some embodiments, when R^{11} is alkyl, amino, amido, hydroxy, or alkoxy, it is substituted by phosphate, urea, or carbonate.

[00236] In some embodiments of the compound of Formula I, X-Y-Wd is one of the following moieties:
[00237] In some embodiments of the compound of Formula I, R₁² is a member of the group consisting of hydrogen, cyano, halo, unsubstituted or substituted alkyl, and unsubstituted or substituted alkynyl unsubstituted or substituted alkenyl. In some embodiments, R₁² is unsubstituted or substituted aryl. In some embodiments, R₁² is unsubstituted or substituted heteroaryl, which includes but is not limited to heteroaryl having a 5 membered ring, heteroaryl having a six membered ring, heteroaryl with at least one nitrogen ring atom, heteroaryl with two nitrogen ring atoms, monocyclic heteroaryl, and bicyclic heteroaryl. In some embodiments, R₁² is unsubstituted or substituted heterocycloalkyl, which includes but is not limited to heterocycloalkyl with one nitrogen ring atom, heterocycloalkyl with one oxygen ring atom, R₁² is heterocycloalkyl with one sulfur ring atom, 5 membered heterocycloalkyl, 6 membered heterocycloalkyl,
saturated heterocycloalkyl, unsaturated heterocycloalkyl, heterocycloalkyl having an unsaturated moiety connected to the heterocycloalkyl ring, heterocycloalkyl substituted by oxo, and heterocycloalkyl substituted by two oxo. In some embodiments, R12 is unsubstituted or substituted cycloalkyl, including but not limited to cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloalkyl substituted by one oxo, cycloalkyl having an unsaturated moiety connected to the cycloalkyl ring. In some embodiments, R12 is unsubstituted or substituted amido, carboxylic acid, unsubstituted or substituted acyloxy, or unsubstituted or substituted alkoxy carbonyl.

[00238] In some embodiments, when R12 is alkyl, alkynyl, alkenyl, aryl, heteroaryl, heterocycloalkyl, or cycloalkyl, it is substituted with phosphate. In some embodiments, when R12 is alkyl, alkynyl, alkenyl, aryl, heteroaryl, heterocycloalkyl, or cycloalkyl, it is substituted with urea. In some embodiments, when R12 is alkyl, alkynyl, alkenyl, aryl, heteroaryl, heterocycloalkyl, or cycloalkyl, it is substituted with carbonate.

[00239] In some embodiments, when R12 is alkyl, alkynyl, alkenyl, aryl, heteroaryl, heterocycloalkyl, cycloalkyl, alkoxy carbonyl, amido, or acyloxy, it is substituted with one or more of alkyl, heteroalkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, alkoxy, amido, amino, acyl, acyloxy, alkoxy carbonyl, sulfonamido, halo, cyano, hydroxy or nitro, each of which alkyl, heteroalkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, alkoxy, amido, amino, acyl, acyloxy, alkoxy carbonyl, or sulfonamido may itself be substituted.

[00240] In some embodiments, R12 of W\textsubscript{d} is one of the following moieties:
In some embodiments, \(W_d \) is a pyrazolopyrimidine of Formula III:

Formulas III

wherein \(R^{11} \) is H, alkyl, halo, amino, amido, hydroxy, or alkoxy, and \(R^{12} \) is H, alkyl, alkynyl, alkenyl, halo, aryl, heteroaryl, heterocycloalkyl, or cycloalkyl. In some embodiments, \(R^{11} \) is amino and \(R^{12} \) is H, alkyl, alkynyl, alkenyl, halo, aryl, heteroaryl, heterocycloalkyl, or cycloalkyl. In some embodiments, \(R^{11} \) is amino and \(R^{12} \) is alkyl, halo, aryl, heteroaryl, heterocycloalkyl, or cycloalkyl. In some embodiments, \(R^{11} \) is amino and \(R^{12} \) is monocyclic heteroaryl. In some embodiments, \(R^{11} \) is amino and \(R^{12} \) is bicyclic heteroaryl. In some embodiments, \(R^{11} \) is amino and \(R^{12} \) is cyano, amino, carboxylic acid, acyloxy, alkoxy carbonyl, or amido.

In some embodiments of the invention, the compound of Formula I is a compound having a structure of Formula IV:
In some embodiments of the compound of Formula IV, R11 is H, alkyl, halo, amino, amido, hydroxy, or alkoxy, and R12 is H, alkyl, alkynyl, alkenyl, halo, aryl, heteroaryl, heterocycloalkyl, or cycloalkyl. In another embodiment, R11 is amino and R12 is alkyl, alkenyl, heteroaryl, aryl, or heterocycloalkyl. In some embodiments, R11 is amino and R12 is cyano, amino, carboxylic acid, alkoxy carbonyl, or amido.

In some embodiments, the compound of Formula IV is a compound of Formula IV-A:

[Diagram of Formula IV-A]

10 [00243] The invention also provides compounds of Formula I having a structure of any of Formulae V, V-A, V-B, VI, or VI-A:

[Diagram of Formula V, V-A, V-B]

15 [00244] Any of the disclosed elements and their substituents for the compounds of Formula I can be used in any combination.

[00245] In one aspect, R\textsubscript{3} is H, CH\textsubscript{3}, CF\textsubscript{3}, Cl, or F; B is a moiety of Formula II;
wherein \(W_2 \) is aryl, heteroaryl, heterocycloalkyl, or cycloalkyl; \(R^1 \) is H, -F, -Cl, -CN, -CH₃, isopropyl, -CF₃, -OCH₃, nitro, or phosphate; \(R^2 \) is halo, hydroxy, cyano, or nitro; q is an integer of 0, 1, 2, 3, or 4; \(R^5, R^6, R^7, \) and \(R^8 \) are H; X is absent or (CH₂)ₖ; z is 1; Y is absent or -N(R¹⁶)⁻; \(R^9 \) is hydrogen, C₁₋C₁₅alkyl, C₂₋C₁₀cycloalkyl, or C₂₋C₁₀heteroalkyl; and \(W_d \) is pyrazolopyrimidine or purine.

[00246] In another aspect, \(R_3 \) is H, CH₃, CF₃, Cl, or F; B is a moiety of Formula II which is aryl, heteroaryl, heterocycloalkyl, or cycloalkyl, \(R^1 \) is H, -F, -Cl, -CN, -CH₃, isopropyl, -CF₃, -OCH₃, nitro, or phosphate; \(R^2 \) is halo, hydroxy, cyano, or nitro; q is 0, 1 or 2; \(R^5, R^6, R^7, \) and \(R^8 \) are H; X is absent or (CH₂)ₖ; z is 1; Y is absent or -N(R¹⁶)⁻; \(R^9 \) is hydrogen, methyl, or ethyl; \(W_d \) is:

[00247] In another aspect, \(R_3 \) is H, CH₃, CF₃, Cl, or F; B is a moiety of Formula II, which is aryl, heteroaryl, heterocycloalkyl, or cycloalkyl, \(R^1 \) is H, -F, -Cl, -CN, -CH₃, isopropyl, -CF₃, -OCH₃, nitro, or phosphate; \(R^2 \) is halo, hydroxy, cyano, or nitro; q is 0, 1 or 2; X is (CH₂)ₖ; z is 1; \(R^5, R^6, R^7, \) and \(R^8 \) are H; Y is absent and \(W_d \) is:

[00248] In another aspect, \(R_3 \) is H, CH₃, CF₃, Cl, or F; B is aryl, heteroaryl, heterocycloalkyl, or cycloalkyl, \(R^1 \) is H, -F, -Cl, -CN, -CH₃, isopropyl, -CF₃, -OCH₃, nitro, or phosphate; \(R^2 \) is halo, hydroxy, cyano, or nitro; q is 0, 1 or 2; \(R^5, R^6, R^7, \) and \(R^8 \) are H; X is (CH₂)ₖ; z is 1; X is (CH₂)ₖ; z is 1; Y is -N(R¹⁶)⁻; \(R^9 \) is hydrogen, methyl, or ethyl; and \(W_d \) is:

[00249] \(R^{11} \) is amino; and \(R^{12} \) is H, alkyl, alkynyl, alkenyl, halo, aryl, heteroaryl, heterocycloalkyl, or cycloalkyl.

[00250] In another aspect, \(R_3 \) is aryl, heteroaryl, H, CH₃, CF₃, Cl, or F; B is alkyl or a moiety of Formula II;
[00251] wherein W₁ is aryl, heteroaryl, heterocycloalkyl, or cycloalkyl, and q is an integer of 0, 1, 2, 3, or 4; R¹ is H, -F, -Cl, -CN, -CH₃, isopropyl, -CF₃, -OCH₃, nitro, or phosphate; R² is halo, hydroxy, cyano, nitro, or phosphate; q is 0, 1 or 2; R³, R⁴, R⁵, and R⁶ are H; X is absent or (CH(R⁶))₂; z is an integer of 1, 2, 3, or 4; Y is absent, -N(R⁸)⁻, or -N(R⁸)⁻CH(R⁹)⁻; R⁹ is hydrogen, alkyl, cycloalkyl, or heteroalkyl; and Wₐ is pyrazolopyrimidine or purine.

[00252] In another aspect, R₁ is aryl, heteroaryl, H, CH₃, CF₃, Cl, or F; B is alkyl or a moiety of Formula II which is aryl, heteroaryl, heterocycloalkyl, or cycloalkyl; R⁴ is H, -F, -Cl, -CN, -CH₃, isopropyl, -CF₃, -OCH₃, nitro, or phosphate; R⁷ is halo, hydroxy, cyano, nitro, or phosphate; q is 0, 1 or 2; R⁵, R⁶, R⁷, and R⁸ are H; X is absent or (CH(R⁹))₂; z is an integer of 1, 2, 3, or 4; Y is absent, -N(R⁸), or -N(R⁸⁻CH(R⁹⁻); R⁹ is hydrogen, methyl, or ethyl; and Wₐ is heteroaryl, heterocycloalkyl, cycloalkyl, cyano, amino, carboxylic acid, alkoxy carbonyl, or amido.

[00253] In another aspect, R₁ is H, CH₃, CF₃, Cl, or F; B is alkyl or a moiety of Formula II which is aryl, heteroaryl, heterocycloalkyl, or cycloalkyl; R⁴ is H, -F, -Cl, -CN, -CH₃, isopropyl, -CF₃, -OCH₃, nitro, or phosphate; R⁷ is halo, hydroxy, cyano, nitro, or phosphate; q is 0, 1 or 2; R⁵, R⁶, R⁷, and R⁸ are H; X is (CH(R⁹))₂; z is an integer of 1; Y is absent, or -N(R⁸)⁻CH(R⁹⁻; R⁹ is hydrogen, methyl, or ethyl; Wₐ is: ; R¹ is amino; and R¹ is H, alkyl, alkynyl, alkenyl, halo, aryl, alkyl, alkynyl, alkenyl, halo, aryl, heteroaryl, heterocycloalkyl, cycloalkyl, cyano, amino, carboxylic acid, alkoxy carbonyl, or amido.

[00254] In another aspect, R₁ is aryl, heteroaryl, H, CH₃, CF₃, Cl, or F; B is a moiety of Formula II which is aryl, heteroaryl, heterocycloalkyl, or cycloalkyl; R⁴ is H, -F, -Cl, -CN, -CH₃, isopropyl, -CF₃, -OCH₃, nitro, or phosphate; R⁷ is halo, hydroxy, cyano, nitro, or phosphate; q is 0, 1 or 2; R⁵, R⁶, R⁷, and R⁸ are H; X is absent or (CH(R⁹))₂; z is an integer of 1, 2, 3, or 4; Y is absent, -N(R⁸)⁻, or -N(R⁸⁻CH(R⁹⁻; R⁹ is hydrogen, methyl, or ethyl; and Wₐ is:

[00255] In another aspect, R₁ is aryl, heteroaryl, H, CH₃, CF₃, Cl, or F; B is a moiety of Formula II which is aryl, heteroaryl, heterocycloalkyl, or cycloalkyl; R⁴ is H, -F, -Cl, -CN, -CH₃, isopropyl, -CF₃, -OCH₃, nitro, or phosphate; R⁷ is halo, hydroxy, cyano, nitro, or phosphate; q is 0, 1 or 2; R⁵, R⁶, R⁷, and R⁸ are H; X is absent; Y is -N(R⁸)

CH(R⁹⁻; R⁹ is hydrogen, methyl, or ethyl; and Wₐ is:

[00256] Additional exemplary compounds of the present invention are disclosed having a sub-structure of Formula IV-A.
Some illustrative compounds of the present invention having a structure of Formula IV-A include those in which R^3 is -H, -Cl, -F, or -CH$_3$ in combination with any B moiety described in Table 1, and any R^{12} as described in Table 2. A compound of Formula IV-A includes any combination of R^3, B, and R^{12}.

Additional exemplary compounds of Formula IV-A are illustrated in Table 4.

Table 1. Illustrative B moieties of the compounds of Formula I.

<table>
<thead>
<tr>
<th>Sub-class #</th>
<th>B</th>
<th>Sub-class #</th>
<th>B</th>
<th>Sub-class #</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-1</td>
<td></td>
<td>B-2</td>
<td></td>
<td>B-3</td>
<td>-CH(CH$_3$)$_2$</td>
</tr>
<tr>
<td>B-4</td>
<td></td>
<td>B-5</td>
<td></td>
<td>B-6</td>
<td></td>
</tr>
<tr>
<td>B-7</td>
<td></td>
<td>B-8</td>
<td></td>
<td>B-9</td>
<td></td>
</tr>
<tr>
<td>B-10</td>
<td></td>
<td>B-11</td>
<td></td>
<td>B-12</td>
<td></td>
</tr>
<tr>
<td>B-13</td>
<td></td>
<td>B-14</td>
<td></td>
<td>B-15</td>
<td></td>
</tr>
<tr>
<td>B-16</td>
<td></td>
<td>B-17</td>
<td></td>
<td>B-18</td>
<td></td>
</tr>
<tr>
<td>B-19</td>
<td></td>
<td>B-20</td>
<td></td>
<td>B-21</td>
<td></td>
</tr>
<tr>
<td>B-22</td>
<td></td>
<td>B-23</td>
<td></td>
<td>B-24</td>
<td></td>
</tr>
<tr>
<td>B-25</td>
<td>B-26</td>
<td>B-27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B-28</th>
<th>B-29</th>
<th>B-30</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B-31</th>
<th>B-32</th>
<th>B-33</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B-34</th>
<th>B-35</th>
<th>B-36</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B-37</th>
<th>B-38</th>
<th>B-39</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B-40</th>
<th>B-41</th>
<th>B-42</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B-43</th>
<th>B-44</th>
<th>B-45</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B-46</th>
<th>B-47</th>
<th>B-48</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B-49</th>
<th>B-50</th>
<th>B-51</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B-52</th>
<th>B-53</th>
<th>B-54</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B-55</th>
<th>B-56</th>
<th>B-57</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B-58</th>
<th>B-59</th>
<th>B-60</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B-61</th>
<th>B-62</th>
<th>B-63</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-64</td>
<td>B-65</td>
<td>B-66</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-67</td>
<td>B-68</td>
<td>B-69</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-70</td>
<td>B-71</td>
<td>B-72</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-73</td>
<td>B-74</td>
<td>B-75</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-76</td>
<td>B-77</td>
<td>B-78</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-79</td>
<td>B-80</td>
<td>B-81</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-82</td>
<td>B-83</td>
<td>B-84</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-85</td>
<td>B-86</td>
<td>B-87</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-88</td>
<td>B-89</td>
<td>B-90</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-91</td>
<td>B-92</td>
<td>B-93</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-94</td>
<td>B-95</td>
<td>B-96</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-97</td>
<td>B-98</td>
<td>B-99</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2. Illustrative R^{12} of compounds of Formula I.

<table>
<thead>
<tr>
<th>Sub-class #</th>
<th>R^{12}</th>
<th>Sub-class #</th>
<th>R^{12}</th>
<th>Sub-class #</th>
<th>R^{12}</th>
</tr>
</thead>
<tbody>
<tr>
<td>12-1</td>
<td>-CN</td>
<td>12-2</td>
<td>-Br</td>
<td>12-3</td>
<td>-Cl</td>
</tr>
<tr>
<td>12-4</td>
<td>-CH$_3$CH$_3$</td>
<td>12-5</td>
<td>-CH$_3$</td>
<td>12-6</td>
<td>-CH(CH$_3$)$_2$</td>
</tr>
<tr>
<td>12-7</td>
<td></td>
<td>12-8</td>
<td></td>
<td>12-9</td>
<td></td>
</tr>
<tr>
<td>12-10</td>
<td></td>
<td>12-11</td>
<td></td>
<td>12-12</td>
<td></td>
</tr>
<tr>
<td>12-13</td>
<td></td>
<td>12-14</td>
<td></td>
<td>12-15</td>
<td></td>
</tr>
<tr>
<td>12-16</td>
<td></td>
<td>12-17</td>
<td></td>
<td>12-18</td>
<td></td>
</tr>
<tr>
<td>12-19</td>
<td></td>
<td>12-20</td>
<td></td>
<td>12-21</td>
<td></td>
</tr>
<tr>
<td>12-22</td>
<td></td>
<td>12-23</td>
<td></td>
<td>12-24</td>
<td></td>
</tr>
<tr>
<td>12-25</td>
<td></td>
<td>12-26</td>
<td></td>
<td>12-27</td>
<td></td>
</tr>
<tr>
<td>12-28</td>
<td></td>
<td>12-29</td>
<td></td>
<td>12-30</td>
<td></td>
</tr>
<tr>
<td>12-31</td>
<td></td>
<td>12-32</td>
<td></td>
<td>12-33</td>
<td></td>
</tr>
<tr>
<td>12-34</td>
<td></td>
<td>12-35</td>
<td>-H</td>
<td>12-36</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-----------------------------</td>
<td>-------</td>
<td>----</td>
<td>-------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>12-37</td>
<td></td>
<td>12-38</td>
<td></td>
<td>12-39</td>
<td></td>
</tr>
<tr>
<td>12-40</td>
<td></td>
<td>12-41</td>
<td></td>
<td>12-42</td>
<td></td>
</tr>
<tr>
<td>12-43</td>
<td></td>
<td>12-44</td>
<td></td>
<td>12-45</td>
<td></td>
</tr>
<tr>
<td>12-46</td>
<td></td>
<td>12-47</td>
<td></td>
<td>12-48</td>
<td></td>
</tr>
<tr>
<td>12-49</td>
<td></td>
<td>12-50</td>
<td></td>
<td>12-51</td>
<td></td>
</tr>
<tr>
<td>12-52</td>
<td></td>
<td>12-53</td>
<td></td>
<td>12-54</td>
<td></td>
</tr>
<tr>
<td>12-55</td>
<td></td>
<td>12-56</td>
<td></td>
<td>12-57</td>
<td></td>
</tr>
<tr>
<td>12-58</td>
<td></td>
<td>12-59</td>
<td></td>
<td>12-60</td>
<td></td>
</tr>
<tr>
<td>12-61</td>
<td>-I</td>
<td>12-62</td>
<td></td>
<td>12-63</td>
<td></td>
</tr>
<tr>
<td>12-64</td>
<td></td>
<td>12-65</td>
<td></td>
<td>12-66</td>
<td></td>
</tr>
<tr>
<td>12-67</td>
<td></td>
<td>12-68</td>
<td></td>
<td>12-69</td>
<td></td>
</tr>
</tbody>
</table>
Other illustrative compounds of the present invention have a structure of Formula V-A, in which B is a moiety described in Table 2, in combination with R³, which is –H, -Cl, -F, or CH₃, and R⁹, which is –H, -CH₃, or -CH₂CH₃.

Formula V-A
Other illustrative compounds of the present invention have a structure of Formula VI-B, in which B is a moiety described in Table 2, in combination with R³, which is -H, -Cl, -F, or CH₃, and R⁹, which is -H, -CH₃, or -CH₂CH₃.

Other illustrative compounds of the present invention have a structure of Formula VI-A, in which B is a moiety described in Table 2, in combination with R³, which is -H, -Cl, -F, or CH₃, and R⁹, which is -H, -CH₃, or -CH₂CH₃.

Additional exemplary compounds of the present invention include but are not limited to the following:
The chemical entities described herein can be synthesized according to one or more illustrative schemes herein and/or techniques well known in the art.

Unless specified to the contrary, the reactions described herein take place at atmospheric pressure, generally within a temperature range from -10 °C to 200 °C. Further, except as otherwise specified, reaction times and conditions are intended to be approximate, e.g., taking place at about atmospheric pressure within a temperature range.
of about -10 °C to about 110 °C over a period of about 1 to about 24 hours; reactions left to run overnight average a period of about 16 hours.

[00264] The terms "solvent," "organic solvent," and "inert solvent" each mean a solvent inert under the conditions of the reaction being described in conjunction therewith including, for example, benzene, toluene, acetonitrile, tetrahydrofuran ("THF"), dimethylformamide ("DMF"), chloroform, methylene chloride (or dichloromethane), diethyl ether, methanol, N-methylpyrrolidone ("NMP"), pyridine and the like. Unless specified to the contrary, the solvents used in the reactions described herein are inert organic solvents. Unless specified to the contrary, for each gram of the limiting reagent, one cc (or mL) of solvent constitutes a volume equivalent.

[00265] Isolation and purification of the chemical entities and intermediates described herein can be effected, if desired, by any suitable separation or purification procedure such as, for example, filtration, extraction, crystallization, column chromatography, thin-layer chromatography or thick-layer chromatography, or a combination of these procedures. Specific illustrations of suitable separation and isolation procedures can be had by reference to the examples hereinbelow. However, other equivalent separation or isolation procedures can also be used.

[00266] When desired, the (R)- and (S)-isomers of the compounds of the present invention, if present, may be resolved by methods known to those skilled in the art, for example by formation of diastereoisomeric salts or complexes which may be separated, for example, by crystallization; via formation of diastereoisomeric derivatives which may be separated, for example, by crystallization, gas-liquid or liquid chromatography; selective reaction of one enantiomer with an enantiomer-specific reagent, for example enzymatic oxidation or reduction, followed by separation of the modified and unmodified enantiomers; or gas-liquid or liquid chromatography in a chiral environment, for example on a chiral support, such as silica with a bound chiral ligand or in the presence of a chiral solvent. Alternatively, a specific enantiomer may be synthesized by asymmetric synthesis using optically active reagents, substrates, catalysts or solvents, or by converting one enantiomer to the other by asymmetric transformation.

[00267] The compounds described herein can be optionally contacted with a pharmaceutically acceptable acid to form the corresponding acid addition salts.

[00268] Many of the optionally substituted starting compounds and other reactants are commercially available, e.g., from Aldrich Chemical Company (Milwaukee, WI) or can be readily prepared by those skilled in the art using commonly employed synthetic methodology.

[00269] The compounds of the invention can generally be synthesized by an appropriate combination of generally well known synthetic methods. Techniques useful in synthesizing these chemical entities are both readily apparent and accessible to those of skill in the relevant art, based on the instant disclosure.

[00270] The compounds of the invention can be synthesized by an appropriate combination of known synthetic methods in the art. The discussion below is offered to illustrate certain of the diverse methods available for use in making the compounds of the invention and is not intended to limit the scope of reactions or reaction sequences that can be used in preparing the compounds of the present invention.
[00271] Referring to Scheme 1, Step 1, a compound of Formula 101, wherein X is N or CR², is converted to a compound of Formula 103, for example, via a two step process of Heck coupling with a compound of Formula 102, followed by acid catalyzed cyclization in methanol. The product, a compound of Formula 103, is isolated. Referring to Scheme 1, Step 2, a compound of Formula 103 is converted to a compound of Formula 404, for example, via reaction with an appropriately substituted aniline. The product, a compound of Formula 104, is isolated. Referring to Scheme 1, Step 3, a compound of Formula 104 is converted to a compound of Formula 105, for example, though reduction with lithium aluminum hydride. The product, a compound of Formula 105, is isolated. Referring to Scheme 1, Step 4, a compound of Formula 105 is converted to a compound of Formula 106, for example, via reaction with thionyl chloride. The product, a compound of Formula 106, is isolated. Referring to Scheme 1, Step 5, a compound of Formula 106 is converted to a compound of Formula 107, for example, via alkylation with a pyrazolopyrimidine using a base such as potassium carbonate. The product, a compound of Formula 107, is isolated. Referring to Scheme 1, Step 6, a compound of Formula 107 is converted to a compound of Formula 108, for example, via a Suzuki reaction. The product, a compound of Formula 108, is isolated and optionally purified.

Reaction Scheme 2:
[00272] Referring to Scheme 2, Step 1, a compound of Formula 201, wherein X is N or CR7, is converted to a compound of Formula 202, for example, with a reagent suitable for introduction of an acid chloride, for example, oxalyl chloride. The product, a compound of Formula 202, is optionally isolated. Referring to Scheme 2, Step 2, a compound of Formula 202 is converted to a compound of Formula 503 for example, reaction with, for example, an an aryl amine. The product, a compound of Formula 203, is isolated. Referring to Scheme 2, Step 3, a compound of Formula 203 is converted to a compound of Formula 204, for example, via a Stille coupling using an appropriate vinyl-stannane. The product, a compound of Formula 204, is isolated. Referring to Scheme 2, Step 4, a compound of Formula 204 is converted to a tertiary amide, a compound of Formula 205, via reaction with chloroethyl acetate and sodium hydride base. The compound of Formula 205 is isolated. Referring to Scheme 2, Step 5, a compound of Formula 205 is oxidized to an aldehyde, using, for example, osmonium tetroxide and sodium periodinate. The product, a compound of Formula 206, is isolated. Referring to Scheme 2, Step 6, a compound of Formula 206 is converted to a compound of Formula 104, for example, though aldol reaction in ethanol with a base, such as cesium carbonate. The product, a compound of Formula 104, is isolated. Referring to Scheme 2, Step 7, a compound of Formula 104 is reduced to a primary alcohol via reduction with, for example, lithium aluminum hydride, to produce a compound of Formula 105, which is isolated. Referring to Scheme 2, Step 8, a compound of Formula 105 is converted to a compound of Formula 207 via reaction with carbon tetrabromide and triphenylphosphine. The compound of Formula 207 is isolated. This compound can be a central intermediate in the synthesis of the compounds of the invention.

Reaction Scheme 3:

![Reaction Scheme 3 diagram]

[00273] Referring to Scheme 3, Step 9, a compound of Formula 207, wherein X is N or CR7, is synthesized as described in Reaction Scheme 2 and is converted to a compound of Formula 107 via coupling with the compound of Formula 208 in the presence of base, for example, potassium tert-butoxide. The compound of Formula 107 is isolated. Referring to Scheme 3, Step 10, a compound of Formula 107 is converted to a compound of Formula 108 via coupling with, for example, an aryl boronic acid, in the presence of coupling catalysts and base, for example, palladium acetate, triphenylphosphine and sodium carbonate, for example. The compound of Formula 108 is isolated.
Referring to Reaction Scheme 4, Step 1, iodo ester 401, is reacted with an alkyne in the presence of a palladium catalyst, copper iodide and triethylamine (TEA) to couple the alkyne to the aryl core of compound 401 to produce a compound of Formula 402. The compound of Formula 402 is optionally isolated. Referring to Reaction Scheme 4, Step 2, a compound of Formula 402 is treated with potassium hydroxide base to obtain the carboxylic acid, a compound of Formula 403, if the reaction product is acidified, or its salt. The compound of Formula 403 is optionally isolated. Referring to Reaction Scheme 4, Step 3, a compound of Formula 403 is treated with bis(acetonitrile)dichoropalladium (II) and TEA to effect intramolecular ring closure to produce a compound of Formula 404. The compound of Formula 404 is isolated. Referring to Reaction Scheme 4, Step 4, a compound of Formula 404 is reacted with a primary amine to produce a compound of Formula 405. The compound of Formula 405 is optionally isolated. Referring to Reaction Scheme 4, Step 5, a compound of Formula 405 is treated with hydrochloric acid, removing the protecting group on nitrogen, and to obtain a compound of Formula 406. The compound of Formula 406 is optionally isolated. Referring to Reaction Scheme 4, Step 6, a compound of Formula 406 is reacted with a compound of Formula 407, to produce a compound of Formula 408. The compound of Formula 408 is isolated.

Reaction Scheme 5:
Referring to Reaction Scheme 5, Step 1, iodo ester 401 is reacted with alkyne 501 in the presence of palladium coupling catalyst, copper iodide, and TEA, to obtain a compound of Formula 502. The compound of Formula 502 is optionally isolated. Referring to Reaction Scheme 5, Step 2, the compound of Formula 502 is treated with potassium hydroxide base to obtain the carboxylate or free acid of a compound of Formula 503. Referring to Reaction Scheme 5, Step 3, the compound of Formula 503 is treated with bis (acetonitrile)dichloropalladium (II) and TEA to effect intramolecular ring closure to produce a compound of Formula 504. The compound of Formula 504 is optionally isolated. Referring to Reaction Scheme 5, Step 4, the compound of Formula 504 is treated with a primary amine to produce a compound of Formula 505. The compound of Formula 505 is isolated.

Referring to Reaction Scheme 6, Step 1, iodo ester 401 is reacted with alkyne 601 in the presence of palladium coupling catalyst, copper iodide, and TEA, to obtain a compound of Formula 602. The compound of Formula 602 is optionally isolated. Referring to Reaction Scheme 6, Step 2, the compound of Formula 602 is treated with potassium hydroxide base to obtain the carboxylate or free acid of a compound of Formula 603. Referring to Reaction Scheme 6, Step 3, the compound of Formula 603 is treated with bis (acetonitrile)dichloropalladium (II) and TEA to effect intramolecular ring closure to produce a compound of Formula 604. The compound of Formula 604 is optionally isolated. Referring to Reaction Scheme 6, Step 4, the compound of Formula 604 is treated with a primary amine to produce a compound of Formula 605. The compound of Formula 605 is isolated.
Scheme 6, Step 5, the compound of Formula 605 is treated with acid to remove the THP protecting group to obtain a compound of Formula 606. The compound of Formula 606 is isolated.

Reaction Scheme 7:
Referring to Reaction Scheme 7, Step 1 the compound of Formula 701 is synthesized by a variety of synthetic routes, including variations of Schemes 1 or 2 where, for example, a benzyl amine is used in the step of converting a compound of Formula 103 to a compound of Formula 104. The benzyl protecting group of the amine may be removed by standard deprotection chemistry to produce a compound of 701. Another example of a conversion of a compound of Formula 103 to a compound of Formula 701, treatment of the compound of Formula 103 with ammonia produces the compound of Formula 701. The compound of Formula 701 is converted to a compound of Formula 702 by alkylation of the amide nitrogen with a number of 2-carbon containing synthons which can be deprotected, oxidized and reprotected as the respective ketal, the compound of Formula 702. Referring to Reaction Scheme 7, Step 2-1, the compound of Formula 702 is transformed by, for example, reductive amination of the ester moiety to introduce the purinyl moiety of a compound of Formula 703, or alternatively, is alkylated to so introduce a purinyl moiety and obtain a compound of Formula 703. Referring to Reaction Scheme 7, Step 3-1, the compound of Formula 703 is treated with acid to remove the ketal protecting group to produce a compound of Formula 704. The compound of Formula 704 is isolated. Referring to Reaction Scheme 7, Step 4-1, the compound of Formula 704 is reductively aminated with an amine to produce a compound of Formula 705. The compound of Formula 705 is isolated. Referring to Reaction Scheme 7, Step 2-2, the compound of Formula 702 is transformed by, steps 7 and 8 of Scheme 2 and step 9 of Scheme 3 to introduce the pyrazolopyrimidine moiety of a compound of Formula 706. The compound of Formula 706 is isolated. Referring to Reaction Scheme 7, Step 3-2, the compound of Formula 706 is treated with acid to remove the ketal protecting group to produce a compound of Formula 707. The compound of Formula 707 is isolated.

Referring to Reaction Scheme 7, Step 4-2, the compound of Formula 707 is reductively aminated with an amine to produce a compound of Formula 708. The compound of Formula 708 is isolated.

Reaction Scheme 8:
Referring to Reaction Scheme 8, Step 1, the compound of Formula 701 is synthesized as described in Scheme 7 or any other generally known chemistry. The compound of Formula 701 is transformed by alkylation of the amide nitrogen with a number of 2-carbon containing synthons which can be deprotected, and converted to the alkoxy protected species as shown in the compound of Formula 801, which can be isolated. Referring to Reaction Scheme 8, Step 2, the compound of Formula 801 is converted via chemistry described in Step 2-1 of Scheme 7 to introduce a purinyl moiety, and that resultant compound is transformed by deprotection, activation and amination with an amine to produce a compound of Formula 802, which is isolated.

Referring to Reaction Scheme 8, Step 3, the compound of Formula 801 is converted via chemistry described in Step 2-2 of Scheme 7 to introduce a pyrazolopyrimidine moiety, and that resultant compound is transformed by deprotection, activation and amination with an amine to produce a compound of Formula 803, which is isolated.
[00281] Referring to Reaction Scheme 9, Step 1, the compound of Formula 901 is treated with an amine to produce a compound of Formula 902. The compound of Formula 902 is isolated. Referring to Reaction Scheme 9, Step 2, the compound of Formula 902 is treated with phosphorus oxychloride to generate a compound of Formula 903. The compound of Formula 903 is isolated. Referring to Reaction Scheme 9, Step 3, the compound of Formula 903 is reacted with an amino purine of Formula 904 to obtain a compound of Formula 905. The compound of Formula 905 is isolated. Referring to Reaction Scheme 9, Step 4, the compound of Formula 905 is treated with hydrochloric acid to remove the protecting group at nitrogen on the purine moiety to produce a compound of Formula 906. The compound of 906 is isolated.

Reaction Scheme 10:

![Chemical structure](image)

[00282] Referring to Reaction Scheme 10, Step 1, the compound of Formula 1001 is treated with vinylogous ester 1002 using, for example a Heck reaction with subsequent cyclization, to produce a compound of Formula 1003. The compound of Formula 1003 is isolated. Referring to Reaction Scheme 10, Step 2, the compound of Formula 1003 is reacted with 4-amino N-Boc piperidine to produce a compound of Formula 1004. The compound of Formula 1004 is isolated. The compound of Formula 1004 can be used as an intermediate in the synthesis of the compounds of the invention.

Reaction Scheme 11:

![Chemical structure](image)

[00283] Referring to Reaction Scheme 11, Step 1, the compound of Formula 1101 is treated with an alkynyl alcoho, for example, of Formula 1102, the presence of copper iodide and palladium on carbon catalyst, to produce a compound of Formula 1103. The compound of Formula 1103 is isolated. Referring to Reaction Scheme 11, Step 1, the compound of Formula 1102 is reacted with 4-amino N-Boc piperidine to produce a compound of Formula 1103. The compound of Formula 1103 is isolated. The compound of Formula 1103 can be used as an intermediate in the synthesis of the compounds of the invention.

[00284] Compounds of Formula I can be synthesized using the reaction schemes as disclosed herein or variants of these processes.

[00285] The chemical entities can be synthesized by an appropriate combination of generally well known synthetic methods.

[00286] In some embodiments, the compounds of the present invention exhibits one or more functional characteristics disclosed herein. For example, one or more subject compounds bind specifically to a PI3 kinase. In some embodiments, the IC50 of a subject compound for p110α, p110β, p110γ, or p110δ is less than about 1 μM, less than
about 100 nM, less than about 50 nM, less than about 10 nM, less than about 1 nM, less than about 0.5 nM, less than about 100 pM, or less than about 50 pM.

[00287] In some embodiments, one or more of the subject compound may selectively inhibit one or more members of type I or class I phosphatidylinositol 3-kinases (PI3-kinase) with an IC50 value of about 100 nM, 50 nM, 10 nM, 5 nM, 100 pM, 10 pM or 1 pM, or less as measured in an in vitro kinase assay.

[00288] In some embodiments, one or more of the subject compound may selectively inhibit one or two members of type I or class I phosphatidylinositol 3-kinases (PI3-kinase) consisting of PI3-kinase α, PI3-kinase β, PI3-kinase γ, and PI3-kinase δ. In some aspects, some of the subject compounds selectively inhibit PI3-kinase δ as compared to all other type I PI3-kinases. In other aspects, some of the subject compounds selectively inhibit PI3-kinase δ and PI3-kinase γ as compared to the rest of the type I PI3-kinases. In yet other aspects, some of the subject compounds selectively inhibit PI3-kinase α and PI3-kinase β as compared to the rest of the type I PI3-kinases. In still yet some other aspects, some of the subject compounds selectively inhibit PI3-kinase δ and PI3-kinase α as compared to the rest of the type I PI3-kinases. In still yet some other aspects, some of the subject compounds selectively inhibit PI3-kinase δ and PI3-kinase β as compared to the rest of the type I PI3-kinases, or selectively inhibit PI3-kinase δ and PI3-kinase α as compared to the rest of the type I PI3-kinases, or selectively inhibit PI3-kinase α and PI3-kinase γ as compared to the rest of the type I PI3-kinases, or selectively inhibit PI3-kinase γ and PI3-kinase β as compared to the rest of the type I PI3-kinases.

[00289] In yet another aspect, an inhibitor that selectively inhibits one or more members of type I PI3-kinases, or an inhibitor that selectively inhibits one or more type I PI3-kinase mediated signaling pathways, alternatively can be understood to refer to a compound that exhibits a 50% inhibitory concentration (IC50) with respect to a given type I PI3-kinase, that is at least at least 10-fold, at least 20-fold, at least 50-fold, at least 100-fold, at least 1000-fold, at least 10,100-fold, or lower, than the inhibitor’s IC50 with respect to the rest of the other type I PI3-kinases.

Pharmaceutical Compositions

[00290] The invention provides pharmaceutical compositions comprising one or more compounds of the present invention.

[00291] In some embodiments, the invention provides pharmaceutical compositions for treating diseases or conditions related to an undesirable, over-active, harmful or deleterious immune response in a mammal. Such undesirable immune response can be associated with or result in, e.g., asthma, emphysema, bronchitis, psoriasis, allergy, anaphylaxis, auto-immune diseases, rheumatoid arthritis, graft versus host disease, and lupus erythematosus. The pharmaceutical compositions of the present invention can be used to treat other respiratory diseases including but not limited to diseases affecting the lobes of lung, pleural cavity, bronchial tubes, trachea, upper respiratory tract, or the nerves and muscle for breathing.

[00292] In some embodiments, the invention provides pharmaceutical compositions for the treatment of disorders such as hyperproliferative disorder including but not limited to cancer such as acute myeloid leukemia, thymus, brain, lung, squamous cell, skin, eye, retinoblastoma, intraocular melanoma, oral cavity and oropharyngeal, bladder, gastric, stomach, pancreatic, bladder, breast, cervical, head, neck, renal, kidney, liver, ovarian, prostate, colorectal, esophageal, testicular, gynecological, thyroid, CNS, PNS, AIDS related AIDS-Related (e.g. Lymphoma and Kaposi's Sarcoma) or Viral-Induced cancer. In some embodiments, said pharmaceutical composition is for the treatment of a non-cancerous hyperproliferative disorder such as benign hyperplasia of the skin (e.g., psoriasis), restenosis, or prostate (e.g., benign prostatic hypertrophy (BPH)).

[00293] The invention also provides compositions for the treatment of liver diseases (including diabetes), pancreatitis or kidney disease (including proliferative glomerulonephritis and diabetes- induced renal disease) or pain in a mammal.
The invention further provides a composition for the prevention of blastocyte implantation in a mammal.

The invention also relates to a composition for treating a disease related to vasculogenesis or angiogenesis in a mammal which can manifest as tumor angiogenesis, chronic inflammatory disease such as rheumatoid arthritis, inflammatory bowel disease, atherosclerosis, skin diseases such as psoriasis, eczema, and scleroderma, diabetes, diabetic retinopathy, retinopathy of prematurity, age-related macular degeneration, hemangioma, glioma, melanoma, Kaposi’s sarcoma and ovarian, breast, lung, pancreatic, prostate, colon and epidermoid cancer.

The subject pharmaceutical compositions are typically formulated to provide a therapeutically effective amount of a compound of the present invention as the active ingredient, or a pharmaceutically acceptable salt, ester, prodrug, solvate, hydrate or derivative thereof. Where desired, the pharmaceutical compositions contain pharmaceutically acceptable salt and/or coordination complex thereof, and one or more pharmaceutically acceptable excipients, carriers, including inert solid diluents and fillers, diluents, including sterile aqueous solution and various organic solvents, permeation enhancers, solubilizers and adjuvants.

The subject pharmaceutical compositions can be administered alone or in combination with one or more other agents, which are also typically administered in the form of pharmaceutical compositions. Where desired, the subject compounds and other agent(s) may be mixed into a preparation or both components may be formulated into separate preparations to use them in combination separately or at the same time.

In some embodiments, the concentration of one or more of the compounds provided in the pharmaceutical compositions of the present invention is less than 100%, 90%, 80%, 70%, 60%, 50%, 40%, 30%, 20%, 19%, 18%, 17%, 16%, 15%, 14%, 13%, 12%, 11%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.5%, 0.4%, 0.3%, 0.2%, 0.1%, 0.09%, 0.08%, 0.07%, 0.06%, 0.05%, 0.04%, 0.03%, 0.02%, 0.01%, 0.009%, 0.008%, 0.007%, 0.006%, 0.005%, 0.004%, 0.003%, 0.002%, 0.001%, 0.0009%, 0.0008%, 0.0007%, 0.0006%, 0.0005%, 0.0004%, 0.0003%, 0.0002%, or 0.0001% w/w, w/v or v/v.

In some embodiments, the concentration of one or more of the compounds of the present invention is greater than 90%, 80%, 70%, 60%, 50%, 40%, 30%, 20%, 19.75%, 19.50%, 19.25% 19%, 18.75%, 18.50%, 18.25% 18%, 17.75%, 17.50%, 17.25% 17%, 16.75%, 16.50%, 16.25% 16%, 15.75%, 15.50%, 15.25% 15%, 14.75%, 14.50%, 14.25% 14%, 13.75%, 13.50%, 13.25% 13%, 12.75%, 12.50%, 12.25% 12%, 11.75%, 11.50%, 11.25% 11%, 10.75%, 10.50%, 10.25% 10%, 9.75%, 9.50%, 9.25% 9%, 8.75%, 8.50%, 8.25% 8%, 7.75%, 7.50%, 7.25% 7%, 6.75%, 6.50%, 6.25% 6%, 5.75%, 5.50%, 5.25% 5%, 4.75%, 4.50%, 4.25%, 4%, 3.75%, 3.50%, 3.25%, 3%, 2.75%, 2.50%, 2.25%, 2%, 1.75%, 1.50%, 1.25%, 1%, 0.5%, 0.4%, 0.3%, 0.2%, 0.1%, 0.09%, 0.08%, 0.07%, 0.06%, 0.05%, 0.04%, 0.03%, 0.02%, 0.01%, 0.009%, 0.008%, 0.007%, 0.006%, 0.005%, 0.004%, 0.003%, 0.002%, or 0.001% w/w, w/v or v/v.

In some embodiments, the concentration of one or more of the compounds of the present invention is in the range from approximately 0.0001% to approximately 50%, approximately 0.001% to approximately 40%, approximately 0.01% to approximately 30%, approximately 0.02% to approximately 29%, approximately 0.03% to approximately 28%, approximately 0.04% to approximately 27%, approximately 0.05% to approximately 26%, approximately 0.06% to approximately 25%, approximately 0.07% to approximately 24%, approximately 0.08% to approximately 23%, approximately 0.09% to approximately 22%, approximately 0.1% to approximately 21%, approximately 0.2% to approximately 20%, approximately 0.3% to approximately 19%, approximately 0.4% to approximately 18%, approximately 0.5% to approximately 17%, approximately 0.6% to approximately 16%, approximately 0.7% to approximately 15%, approximately 0.8% to approximately 14%, approximately 0.9% to approximately 12%, approximately 1% to approximately 10% w/w, w/v or v/v.
In some embodiments, the concentration of one or more of the compounds of the present invention is in the range from approximately 0.001% to approximately 10%, approximately 0.01% to approximately 5%, approximately 0.02% to approximately 4.5%, approximately 0.03% to approximately 4%, approximately 0.04% to approximately 3.5%, approximately 0.05% to approximately 3%, approximately 0.06% to approximately 2.5%, approximately 0.07% to approximately 2%, approximately 0.08% to approximately 1.5%, approximately 0.09% to approximately 1%, approximately 0.1% to approximately 0.9% w/w, w/v or v/v.

In some embodiments, the amount of one or more of the compounds of the present invention is equal to or less than 10 g, 9.5 g, 9.0 g, 8.5 g, 8.0 g, 7.5 g, 7.0 g, 6.5 g, 6.0 g, 5.5 g, 5.0 g, 4.5 g, 4.0 g, 3.5 g, 3.0 g, 2.5 g, 2.0 g, 1.5 g, 1.0 g, 0.95 g, 0.9 g, 0.85 g, 0.8 g, 0.75 g, 0.7 g, 0.65 g, 0.6 g, 0.55 g, 0.5 g, 0.45 g, 0.4 g, 0.35 g, 0.3 g, 0.25 g, 0.2 g, 0.15 g, 0.1 g, 0.09 g, 0.08 g, 0.07 g, 0.06 g, 0.05 g, 0.04 g, 0.03 g, 0.02 g, 0.01 g, 0.009 g, 0.008 g, 0.007 g, 0.006 g, 0.005 g, 0.004 g, 0.003 g, 0.002 g, 0.001 g, or 0.0001 g.

In some embodiments, the amount of one or more of the compounds of the present invention is more than 0.0001 g, 0.0002 g, 0.0003 g, 0.0004 g, 0.0005 g, 0.0006 g, 0.0007 g, 0.0008 g, 0.0009 g, 0.001 g, 0.0015 g, 0.002 g, 0.0025 g, 0.003 g, 0.0035 g, 0.004 g, 0.0045 g, 0.005 g, 0.0055 g, 0.006 g, 0.0065 g, 0.007 g, 0.0075 g, 0.008 g, 0.0085 g, 0.009 g, 0.0095 g, 0.01 g, 0.015 g, 0.02 g, 0.025 g, 0.03 g, 0.035 g, 0.04 g, 0.045 g, 0.05 g, 0.055 g, 0.06 g, 0.065 g, 0.07 g, 0.075 g, 0.08 g, 0.085 g, 0.09 g, 0.095 g, 0.1 g, 0.15 g, 0.2 g, 0.25 g, 0.3 g, 0.35 g, 0.4 g, 0.45 g, 0.5 g, 0.55 g, 0.6 g, 0.65 g, 0.7 g, 0.75 g, 0.8 g, 0.85 g, 0.9 g, 0.95 g, 1 g, 1.5 g, 2 g, 2.5 g, 3 g, 3.5 g, 4 g, 4.5 g, 5 g, 5.5 g, 6 g, 6.5 g, 7 g, 7.5 g, 8 g, 8.5 g, 9 g, 9.5 g, or 10 g.

In some embodiments, the amount of one or more of the compounds of the present invention is in the range of 0.0001-10 g, 0.0005-9 g, 0.001-8 g, 0.005-7 g, 0.01-6 g, 0.05-5 g, 0.1-4 g, 0.5-4 g, or 1-3 g.

The compounds according to the invention are effective over a wide dosage range. For example, in the treatment of adult humans, dosages from 0.01 to 1000 mg, from 0.5 to 100 mg, from 1 to 50 mg per day, and from 5 to 40 mg per day are examples of dosages that may be used. An exemplary dosage is 10 to 30 mg per day. The exact dosage will depend upon the route of administration, the form in which the compound is administered, the subject to be treated, the body weight of the subject to be treated, and the preference and experience of the attending physician.

Described below are non-limiting exemplary pharmaceutical compositions and methods for preparing the same.

Pharmaceutical compositions for oral administration. In some embodiments, the invention provides a pharmaceutical composition for oral administration containing a compound of the present invention, and a pharmaceutical excipient suitable for oral administration.

In some embodiments, the invention provides a solid pharmaceutical composition for oral administration containing: (i) an effective amount of a compound of the present invention; optionally (ii) an effective amount of a second agent; and (iii) a pharmaceutical excipient suitable for oral administration. In some embodiments, the composition further contains: (iv) an effective amount of a third agent.

In some embodiments, the pharmaceutical composition may be a liquid pharmaceutical composition suitable for oral consumption. Pharmaceutical compositions of the invention suitable for oral administration can be presented as discrete dosage forms, such as capsules, cachets, or tablets, or liquids or aerosol sprays each containing a predetermined amount of an active ingredient as a powder or in granules, a solution, or a suspension in an aqueous or non-aqueous liquid, an oil-in-water emulsion, or a water-in-oil liquid emulsion. Such dosage forms can be prepared by any of the methods of pharmacy, but all methods include the step of bringing the active ingredient into association with the carrier, which constitutes one or more necessary ingredients. In general, the compositions are prepared by
uniformly and intimately admixing the active ingredient with liquid carriers or finely divided solid carriers or both, and then, if necessary, shaping the product into the desired presentation. For example, a tablet can be prepared by compression or molding, optionally with one or more accessory ingredients. Compressed tablets can be prepared by compressing in a suitable machine the active ingredient in a free-flowing form such as powder or granules, optionally mixed with an excipient such as, but not limited to, a binder, a lubricant, an inert diluent, and/or a surface active or dispersing agent. Molded tablets can be made by molding in a suitable machine a mixture of the powdered compound moistened with an inert liquid diluent.

[00310] This invention further encompasses anhydrous pharmaceutical compositions and dosage forms comprising an active ingredient, since water can facilitate the degradation of some compounds. For example, water may be added (e.g., 5%) in the pharmaceutical arts as a means of simulating long-term storage in order to determine characteristics such as shelf-life or the stability of formulations over time. Anhydrous pharmaceutical compositions and dosage forms of the invention can be prepared using anhydrous or low moisture containing ingredients and low moisture or low humidity conditions. Pharmaceutical compositions and dosage forms of the invention which contain lactose can be made anhydrous if substantial contact with moisture and/or humidity during manufacturing, packaging, and/or storage is expected. An anhydrous pharmaceutical composition may be prepared and stored such that its anhydrous nature is maintained. Accordingly, anhydrous compositions may be packaged using materials known to prevent exposure to water such that they can be included in suitable formulary kits. Examples of suitable packaging include, but are not limited to, hermetically sealed foils, plastic or the like, unit dose containers, blister packs, and strip packs.

[00311] An active ingredient can be combined in an intimate admixture with a pharmaceutical carrier according to conventional pharmaceutical compounding techniques. The carrier can take a wide variety of forms depending on the form of preparation desired for administration. In preparing the compositions for an oral dosage form, any of the usual pharmaceutical media can be employed as carriers, such as, for example, water, glycols, oils, alcohols, flavoring agents, preservatives, coloring agents, and the like in the case of oral liquid preparations (such as suspensions, solutions, and elixirs) or aerosols; or carriers such as starches, sugars, micro-crystalline cellulose, diluents, granulating agents, lubricants, binders, and disintegrating agents can be used in the case of oral solid preparations, in some embodiments without employing the use of lactose. For example, suitable carriers include powders, capsules, and tablets, with the solid oral preparations. If desired, tablets can be coated by standard aqueous or nonaqueous techniques.

[00312] Binders suitable for use in pharmaceutical compositions and dosage forms include, but are not limited to, corn starch, potato starch, or other starches, gelatin, natural and synthetic gums such as acacia, sodium alginate, alginic acid, other alginates, powdered tragacanth, guar gum, cellulose and its derivatives (e.g., ethyl cellulose, cellulose acetate, carboxymethyl cellulose calcium, sodium carboxymethyl cellulose), polyvinyl pyrrolidone, methyl cellulose, pre-gelatinized starch, hydroxypropyl methyl cellulose, microcrystalline cellulose, and mixtures thereof.

[00313] Examples of suitable fillers for use in the pharmaceutical compositions and dosage forms disclosed herein include, but are not limited to, talc, calcium carbonate (e.g., granules or powder), microcrystalline cellulose, powdered cellulose, dextrates, kaolin, mannitol, silicic acid, sorbitol, starch, pre-gelatinized starch, and mixtures thereof.

[00314] Disintegrants may be used in the compositions of the invention to provide tablets that disintegrate when exposed to an aqueous environment. Too much of a disintegrant may produce tablets which may disintegrate in the bottle. Too little may be insufficient for disintegration to occur and may thus alter the rate and extent of release of the active ingredient(s) from the dosage form. Thus, a sufficient amount of disintegrant that is neither too little nor too much to detrimentally alter the release of the active ingredient(s) may be used to form the dosage forms of the compounds disclosed herein. The amount of disintegrant used may vary based upon the type of formulation and mode
of administration, and may be readily discernible to those of ordinary skill in the art. About 0.5 to about 15 weight
percent of disintegrant, or about 1 to about 5 weight percent of disintegrant, may be used in the pharmaceutical
composition. Disintegrants that can be used to form pharmaceutical compositions and dosage forms of the invention
include, but are not limited to, agar-agar, alginic acid, calcium carbonate, microcrystalline cellulose, croscarmellose
sodium, crospovidone, polacrilin potassium, sodium starch glycolate, potato or tapioca starch, other starches, pre-
gelatinized starch, other starches, clays, other algin, other celluloses, gums or mixtures thereof.
[00315] Lubricants which can be used to form pharmaceutical compositions and dosage forms of the invention
include, but are not limited to, calcium stearate, magnesium stearate, mineral oil, light mineral oil, glycerin, sorbitol,
mannitol, polyethylene glycol, other glycols, stearic acid, sodium lauryl sulfate, talc, hydrogenated vegetable oil (e.g.,
peanut oil, cottonseed oil, sunflower oil, sesame oil, olive oil, corn oil, and soybean oil), zinc stearate, ethyl oleate,
ethyloleate, agar, or mixtures thereof. Additional lubricants include, for example, a silicon dioxide gel, a coagulated
aerosol of synthetic silica, or mixtures thereof. A lubricant can optionally be added, in an amount of less than about 1
weight percent of the pharmaceutical composition.

[00316] When aqueous suspensions and/or elixirs are desired for oral administration, the essential active ingredient
therein may be combined with various sweetening or flavoring agents, coloring matter or dyes and, if so desired,
emulsifying and/or suspending agents, together with such diluents as water, ethanol, propylene glycol, glycerin and
various combinations thereof.

[00317] The tablets can be uncoated or coated by known techniques to delay disintegration and absorption in the
gastrointestinal tract and thereby provide a sustained action over a longer period. For example, a time delay material
such as glycercyl monostearate or glycercyl distearate can be employed. Formulations for oral use can also be presented
as hard gelatin capsules wherein the active ingredient is mixed with an inert solid diluent, for example, calcium
carbonate, calcium phosphate or kaolin, or as soft gelatin capsules wherein the active ingredient is mixed with water or
an oil medium, for example, peanut oil, liquid paraffin or olive oil.

[00318] Surfactant which can be used to form pharmaceutical compositions and dosage forms of the invention
include, but are not limited to, hydrophilic surfactants, lipophilic surfactants, and mixtures thereof. That is, a mixture
of hydrophilic surfactants may be employed, a mixture of lipophilic surfactants may be employed, or a mixture of at
least one hydrophilic surfactant and at least one lipophilic surfactant may be employed.

[00319] A suitable hydrophilic surfactant may generally have an HLB value of at least 10, while suitable lipophilic
surfactants may generally have an HLB value of or less than about 10. An empirical parameter used to characterize
the relative hydrophilicity and hydrophobicity of non-ionic amphiphilic compounds is the hydrophilic-lipophilic
balance ("HLB" value). Surfactants with lower HLB values are more lipophilic or hydrophobic, and have greater
solubility in oils, while surfactants with higher HLB values are more hydrophilic, and have greater solubility in
aqueous solutions. Hydrophilic surfactants are generally considered to be those compounds having an HLB value
greater than about 10, as well as anionic, cationic, or zwitterionic compounds for which the HLB scale is not generally
applicable. Similarly, lipophilic (i.e., hydrophobic) surfactants are compounds having an HLB value equal to or less
than about 10. However, HLB value of a surfactant is merely a rough guide generally used to enable formulation of
industrial, pharmaceutical and cosmetic emulsions.

[00320] Hydrophilic surfactants may be either ionic or non-ionic. Suitable ionic surfactants include, but are not
limited to, alkylammonium salts; fusidic acid salts; fatty acid derivatives of amino acids, oligopeptides, and
polypeptides; glyceride derivatives of amino acids, oligopeptides, and polypeptides; lecithins and hydrogenated
lecithins; lyssolecithins and hydrogenated lyssolecithins; phospholipids and derivatives thereof; lysophospholipids and
derivatives thereof; carnitine fatty acid ester salts; salts of alkylsulfates; fatty acid salts; sodium docusate;
acylactylates; mono- and di-acylated tartaric acid esters of mono- and di-glycerides; succinylated mono- and di-glycerides; citric acid esters of mono- and di-glycerides; and mixtures thereof.

[00321] Within the aforementioned group, ionic surfactants include, by way of example: lecithins, lysolecithin, phospholipids, lysophospholipids and derivatives thereof; carnitine fatty acid ester salts; salts of alkylsulfates, fatty acid salts; sodium docucate; acetylated; mono- and di-acylated tartaric acid esters of mono- and di-glycerides; succinylated mono- and di-glycerides; citric acid esters of mono- and di-glycerides; and mixtures thereof.

[00322] Ionic surfactants may be the ionized forms of lecithin, lysolecithin, phosphatidylycholine, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinerine, lysophosphatidylcholine, lysophosphatidylethanolamine, lysophosphatidylglycerol, lysophosphatidic acid, lysophosphatidylerine, PEG-phosphatidylethanolamine, PVP-phosphatidylethanolamine, lactyl esters of fatty acids, stearoyl-2-lactylate, stearoyl lactylate, succinylated mono/glycerides, mono/diacetylated tartaric acid esters of mono/diglycerides, citric acid esters of mono/diglycerides, cholyesacrocine, caproate, caprylate, caprate, laurate, myristate, palmitate, oleate, ricinoleate, linoleate, linolenate, stearate, lauryl sulfate, teraceyl sulfate, docucate, lauroyl carnitine, palmitoyl carnitine, myristoyl carnitines, and salts and mixtures thereof.

[0033] Hydrophilic non-ionic surfactants may include, but not limited to, alkylglucosides; alkylmaltoisides; alkylthioglucosides; lauryl macrogolglycerides; polyoxyalkylene alkyl ethers such as polyethylene glycol alkyl ethers; polyoxyalkylene alkylphenols such as polyethylene glycol alkyl phenols; polyoxyalkylene alkyl phenol fatty acid esters such as polyethylene glycol fatty acids monoesters and polyethylene glycol fatty acids diesters; polyethylene glycol glycerol fatty acid esters; polyglycerol fatty acid esters; poloxaldehyde sorbitan fatty acid esters such as polyethylene glycol sorbitan fatty acid esters; hydrophilic transterification products of a polyol with at least one member of the group consisting of glycerides, vegetable oils, hydrogenated vegetable oils, fatty acids, and sterols; poloxamers, polyoxyethylene sterols, derivatives, and analogues thereof; poloxamers, poloxamers, polyoxyethylene glycol sorbitan fatty acid esters and hydrophilic transterification products of a polyol with at least one member of the group consisting of triglycerides, vegetable oils, and hydrogenated vegetable oils. The polyol may be glycerol, ethylene glycol, poloxamers, poloxamers, propylene glycol, hexaerythritol, or a saccharide.

[00324] Other hydrophilic non-ionic surfactants include, without limitation, PEG-10 laurate, PEG-12 laurate, PEG-20 laurate, PEG-32 laurate, PEG-32 dilaurate, PEG-12 oleate, PEG-15 oleate, PEG-20 oleate, PEG-20 dioleate, PEG-32 oleate, PEG-200 oleate, PEG-400 oleate, PEG-15 stearate, PEG-32 distearate, PEG-40 stearate, PEG-100 stearate, PEG-20 dilaurate, PEG-25 glyceryl tristearate, PEG-32 dioleate, PEG-20 glyceryl laurate, PEG-30 glyceryl laurate, PEG-20 glyceryl stearate, PEG-20 glyceryl oleate, PEG-30 glyceryl oleate, PEG-30 glyceryl laurate, PEG-40 glyceryl laurate, PEG-40 palm kernel oil, PEG-50 hydrogenated castor oil, PEG-40 castor oil, PEG-35 castor oil, PEG-60 castor oil, PEG-40 hydrogenated castor oil, PEG-60 hydrogenated castor oil, PEG-60 corn oil, PEG-6 caprate/caprylate glycerides, PEG-8 caprate/caprylate glycerides, polyglyceryl-10 laurate, PEG-30 cholesterol, PEG-30 phytosterol, PEG-30 soyab sterol, PEG-20 trioleate, PEG-40 sorbitan oleate, PEG-80 sorbitan laurate, polysorbate 20, polysorbate 80, POE-9 lauryl ether, POE-23 lauryl ether, POE-10 oleyl ether, POE-20 oleyl ether, POE-20 stearyl ether, tocopheryl PEG-100 succinate, PEG-24 cholesterol, polyglyceryl-10oleate, Tween 40, Tween 60, sucrose monostearate, sucrose monolaurate, sucrose monopalmitate, PEG 10-100 nonyl phenol series, PEG 15-100 octyl phenol series, and poloxamers.

[00325] Suitable lipophilic surfactants include, by way of example only: fatty alcohols; glycerol fatty acid esters; acetylated glycerol fatty acid esters; lower alcohol fatty acids esters; propylene glycol fatty acid esters; sorbitan fatty acid esters; polyethylene glycol sorbitan fatty acid esters; sterols and sterol derivatives; polyoxyethylated sterols and
sterol derivatives; polyethylene glycol alkyl ethers; sugar esters; sugar ethers; lactic acid derivatives of mono- and diglycerides; hydrophobic transesterification products of a polyol with at least one member of the group consisting of glycerides, vegetable oils, hydrogenated vegetable oils, fatty acids and sterols; oil-soluble vitamins/vitamin derivatives; and mixtures thereof. Within this group, preferred lipophilic surfactants include glycerol fatty acid esters, propylene glycol fatty acid esters, and mixtures thereof, or are hydrophobic transesterification products of a polyol with at least one member of the group consisting of vegetable oils, hydrogenated vegetable oils, and triglycerides.

In one embodiment, the composition may include a solubilizer to ensure good solubilization and/or dissolution of the compound of the present invention and to minimize precipitation of the compound of the present invention. This can be especially important for compositions for non-oral use, e.g., compositions for injection. A solubilizer may also be added to increase the solubility of the hydrophilic drug and/or other components, such as surfactants, or to maintain the composition as a stable or homogeneous solution or dispersion.

Examples of suitable solubilizers include, but are not limited to, the following: alcohols and polyols, such as ethanol, isopropanol, butanol, benzyl alcohol, ethylene glycol, propylene glycol, butanediols and isomers thereof, glycerol, pentaerythritol, sorbitol, mannitol, transcutol, dimethyl isosorbide, polyethylene glycol, polypropylene glycol, polyvinylalcohol, hydroxypropyl methylcellulose and other cellulose derivatives, cyclodextrins and cyclodextrin derivatives; ethers of polyethylene glycols having an average molecular weight of about 200 to about 6000, such as tetrahydrofurfuryl alcohol PEG ether (glycofurol) or methoxy PEG; amides and other nitrogen-containing compounds such as 2-pyrrolidine, 2-piperidine, epsilon-caprolactam, N-alkylpyrrolidone, N-hydroxyalkylpyrrolidone, N-alkylpiperidone, N-alkylcaprolactam, dimethylacetamide and polyvinylpyrrolidone; esters such as ethyl propionate, tributylcitrate, acetyl triethylcitrate, acetyl tributyl citrate, triethylcitrate, ethyl oleate, ethyl caprylate, ethyl butyrate, triacetin, propylene glycol monoacetate, propylene glycol diacetate, ε-caprolactone and isomers thereof, δ-valerolactone and isomers thereof, β-butyrrolactone and isomers thereof; and other solubilizers known in the art, such as dimethyl acetamide, dimethyl isosorbide, N-methyl pyrrolidones, monoctanoin, diethylene glycol monoethyl ether, and water.

Mixtures of solubilizers may also be used. Examples include, but not limited to, triacetin, triethylcitrate, ethyl oleate, ethyl caprylate, dimethylacetamide, N-methylpyrrolidone, N-hydroxyethylpyrrolidone, polyvinylpyrrolidone, hydroxypropyl methylcellulose, hydroxypropyl cyclodextrins, ethanol, polyethylene glycol 200-100, glycofurol, transcutol, propylene glycol, and dimethyl isosorbide. Particularly preferred solubilizers include sorbitol, glycerol, triacetin, ethyl alcohol, PEG-400, glycofurol and propylene glycol.

The amount of a given solubilizer that can be included is not particularly limited. The amount of a given solubilizer may be limited to a bioacceptable amount, which may be readily determined by one of skill in the art. In some circumstances, it may be advantageous to include amounts of solubilizers far in excess of bioacceptable amounts, for example to maximize the concentration of the drug, with excess solubilizer removed prior to providing the composition to a patient using conventional techniques, such as distillation or evaporation. Thus, if present, the solubilizer can be in a weight ratio of 10%, 25%, 50%, 100%, or up to about 200% by weight, based on the combined weight of the drug, and other excipients. If desired, very small amounts of solubilizer may also be used, such as 5%, 2%, 1% or even less. Typically, the solubilizer may be present in an amount of about 1% to about 100%, more typically about 5% to about 25% by weight.

The composition can further include one or more pharmaceutically acceptable additives and excipients. Such additives and excipients include, without limitation, detackifiers, anti-foaming agents, buffering agents, polymers, antioxidants, preservatives, chelating agents, viscomodulators, toniciflers, flavorants, colorants, odorants, opacifiers, suspending agents, binders, fillers, plasticizers, lubricants, and mixtures thereof.
In addition, an acid or a base may be incorporated into the composition to facilitate processing, to enhance stability, or for other reasons. Examples of pharmaceutically acceptable bases include amino acids, amino acid esters, ammonium hydroxide, potassium hydroxide, sodium hydroxide, sodium hydrogen carbonate, aluminum hydroxide, calcium carbonate, magnesium hydroxide, magnesium aluminum silicate, synthetic aluminum silicate, synthetic hydroxalate, magnesium aluminum hydroxide, diisopropylethylamine, ethanolamine, ethylenediamine, triethanolamine, triethylamine, trisopropylamine, trimethylamine, tris(hydroxymethyl)aminomethane (TRIS) and the like. Also suitable are bases that are salts of a pharmaceutically acceptable acid, such as acetic acid, acrylic acid, adipic acid, alginic acid, alkanesulfonic acid, amino acids, ascorbic acid, benzoic acid, boric acid, butyric acid, carbonic acid, citric acid, fatty acids, formic acid, fumaric acid, gluconic acid, hydroquinosulfonic acid, isoascorbic acid, lactic acid, maleic acid, oxalic acid, para-bromophenylsulfonic acid, propionic acid, p-toluensulfonic acid, salicylic acid, stearic acid, succinic acid, tannic acid, tartaric acid, thioglycolic acid, toluenesulfonic acid, uric acid, and the like. Salts of polyprotic acids, such as sodium phosphate, disodium hydrogen phosphate, and sodium dihydrogen phosphate can also be used. When the base is a salt, the cation can be any convenient and pharmaceutically acceptable cation, such as ammonium, alkali metals, alkaline earth metals, and the like. Example may include, but not limited to, sodium, potassium, lithium, magnesium, calcium and ammonium.

Suitable acids are pharmaceutically acceptable organic or inorganic acids. Examples of suitable inorganic acids include hydrochloric acid, hydrobromic acid, hydriodic acid, sulfuric acid, nitric acid, boric acid, phosphoric acid, and the like. Examples of suitable organic acids include acetic acid, acrylic acid, adipic acid, alginic acid, alkanesulfonic acids, amino acids, ascorbic acid, benzoic acid, boric acid, butyric acid, carbonic acid, citric acid, fatty acids, formic acid, fumaric acid, gluconic acid, hydroquinosulfonic acid, isoascorbic acid, lactic acid, maleic acid, methanesulfonic acid, oxalic acid, para-bromophenylsulfonic acid, propionic acid, p-toluensulfonic acid, salicylic acid, stearic acid, succinic acid, tannic acid, tartaric acid, thioglycolic acid, toluenesulfonic acid, uric acid, and the like.

Pharmaceutical compositions for injection. In some embodiments, the invention provides a pharmaceutical composition for injection containing a compound of the present invention and a pharmaceutical excipient suitable for injection. Components and amounts of agents in the compositions are as described herein.

The forms in which the novel compositions of the present invention may be incorporated for administration by injection include aqueous or oil suspensions, or emulsions, with sesame oil, corn oil, cottonseed oil, or peanut oil, as well as elixirs, mannitol, dextrose, or a sterile aqueous solution, and similar pharmaceutical vehicles.

Aqueous solutions in saline are also conventionally used for injection. Ethanol, glycerol, propylene glycol, liquid polyethylene glycol, and the like (and suitable mixtures thereof), cyclodextrin derivatives, and vegetable oils may also be employed. The proper fluidity can be maintained, for example, by the use of a coating, such as lecithin, for the maintenance of the required particle size in the case of dispersion and by the use of surfactants. The prevention of the action of microorganisms can be brought about by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, thimerosal, and the like.

Sterile injectable solutions are prepared by incorporating the compound of the present invention in the required amount in the appropriate solvent with various other ingredients as enumerated above, as required, followed by filtered sterilization. Generally, dispersions are prepared by incorporating the various sterilized active ingredients into a sterile vehicle which contains the basic dispersion medium and the required other ingredients from those enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, certain desirable methods of preparation are vacuum-drying and freeze-drying techniques which yield a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof.
[00337] Pharmaceutical compositions for topical (e.g., transdermal) delivery. In some embodiments, the invention provides a pharmaceutical composition for transdermal delivery containing a compound of the present invention and a pharmaceutical excipient suitable for transdermal delivery.

[00338] Compositions of the present invention can be formulated into preparations in solid, semi-solid, or liquid forms suitable for local or topical administration, such as gels, water soluble jellies, creams, lotions, suspensions, foams, powders, slurries, ointments, solutions, oils, pastes, suppositories, sprays, emulsions, saline solutions, dimethylsulfoxide (DMSO)-based solutions. In general, carriers with higher densities are capable of providing an area with a prolonged exposure to the active ingredients. In contrast, a solution formulation may provide more immediate exposure of the active ingredient to the chosen area.

[00339] The pharmaceutical compositions also may comprise suitable solid or gel phase carriers or excipients, which are compounds that allow increased penetration of, or assist in the delivery of, therapeutic molecules across the stratum corneum permeability barrier of the skin. There are many of these penetration-enhancing molecules known to those trained in the art of topical formulation. Examples of such carriers and excipients include, but are not limited to, humectants (e.g., urea), glycols (e.g., propylene glycol), alcohols (e.g., ethanol), fatty acids (e.g., oleic acid), surfactants (e.g., isopropyl myristate and sodium lauryl sulfate), pyrrolidones, glycerol monolaurate, sulfonates, terpenes (e.g., menthol), amines, amides, alkanes, alkanols, water, calcium carbonate, calcium phosphate, various sugars, starches, cellulose derivatives, gelatin, and polymers such as polyethylene glycols.

[00340] Another exemplary formulation for use in the methods of the present invention employs transdermal delivery devices ("patches"). Such transdermal patches may be used to provide continuous or discontinuous infusion of a compound of the present invention in controlled amounts, either with or without another agent.

[00341] The construction and use of transdermal patches for the delivery of pharmaceutical agents is well known in the art. See, e.g., U.S. Pat. Nos. 5,023,252, 4,992,445 and 5,001,139. Such patches may be constructed for continuous, pulsatile, or on demand delivery of pharmaceutical agents.

[00342] Pharmaceutical compositions for inhalation. Compositions for inhalation or insufflation include solutions and suspensions in pharmaceutically acceptable, aqueous or organic solvents, or mixtures thereof, and powders. The liquid or solid compositions may contain suitable pharmaceutically acceptable excipients as described supra. Preferably the compositions are administered by the oral or nasal respiratory route for local or systemic effect. Compositions in preferably pharmaceutically acceptable solvents may be nebulized by use of inert gases. Nebulized solutions may be inhaled directly from the nebulizing device or the nebulizing device may be attached to a face mask tent, or intermittent positive pressure breathing machine. Solution, suspension, or powder compositions may be administered, preferably orally or nasally, from devices that deliver the formulation in an appropriate manner.

Administration of the compounds or pharmaceutical composition of the present invention can be effected by any method that enables delivery of the compounds to the site of action. These methods include oral routes, intraduodenal routes, parenteral injection (including intravenous, intraarterial, subcutaneous, intramuscular, intravascular, intraperitoneal or infusion), topical (e.g. transdermal application), rectal administration, via local delivery by catheter or stent or through inhalation. Compounds can also be administered intraadiposally or intrathecally.

The amount of the compound administered will be dependent on the mammal being treated, the severity of the disorder or condition, the rate of administration, the disposition of the compound and the discretion of the prescribing physician. However, an effective dosage is in the range of about 0.001 to about 100 mg per kg body weight per day, preferably about 1 to about 35 mg/kg/day, in single or divided doses. For a 70 kg human, this would amount to about 0.05 to 7 g/day, preferably about 0.05 to about 2.5 g/day. In some instances, dosage levels below the lower limit of the aforesaid range may be more than adequate, while in other cases still larger doses may be employed without causing any harmful side effect, e.g. bydividing such larger doses into several small doses for administration throughout the day.

In some embodiments, a compound of the invention is administered in a single dose. Typically, such administration will be by injection, e.g., intravenous injection, in order to introduce the agent quickly. However, other routes may be used as appropriate. A single dose of a compound of the invention may also be used for treatment of an acute condition.

In some embodiments, a compound of the invention is administered in multiple doses. Dosing may be about once, twice, three times, four times, five times, six times, or more than six times per day. Dosing may be about once a month, once every two weeks, once a week, or once every other day. In another embodiment a compound of the invention and another agent are administered together about once per day to about 6 times per day. In another embodiment the administration of a compound of the invention and an agent continues for less than about 7 days. In yet another embodiment the administration continues for more than about 6, 10, 14, 28 days, two months, six months, or one year. In some cases, continuous dosing is achieved and maintained as long as necessary.

Administration of the agents of the invention may continue as long as necessary. In some embodiments, an agent of the invention is administered for more than 1, 2, 3, 4, 5, 6, 7, 14, or 28 days. In some embodiments, an agent of the invention is administered for less than 28, 14, 7, 6, 5, 4, 3, 2, or 1 day. In some embodiments, an agent of the invention is administered chronically on an ongoing basis, e.g., for the treatment of chronic effects.

An effective amount of a compound of the invention may be administered in either single or multiple doses by any of the accepted modes of administration of agents having similar utilities, including rectal, buccal, intranasal and transdermal routes, by intra-arterial injection, intravenously, intraperitoneally, parenterally, intramuscularly, subcutaneously, orally, topically, or as an inhalant.

The compositions of the invention may also be delivered via an impregnated or coated device such as a stent, for example, or an artery-inserted cylindrical polymer. Such a method of administration may, for example, aid in the prevention or amelioration of restenosis following procedures such as balloon angioplasty. Without being bound by theory, compounds of the invention may slow or inhibit the migration and proliferation of smooth muscle cells in the arterial wall which contribute to restenosis. A compound of the invention may be administered, for example, by local delivery from the struts of a stent, from a stent graft, from grafts, or from the cover or sheath of a stent. In some embodiments, a compound of the invention is admixed with a matrix. Such a matrix may be a polymeric matrix, and may serve to bond the compound to the stent. Polymeric matrices suitable for such use, include, for example, lactone-based polymers or copolymers such as polylactide, polycaprolactonglycolide, polyorthoesters, polyanhydrides.
polyaminoacids, polysaccharides, polyphosphazenes, poly (ether-ester) copolymers (e.g. PEO-PLLA); polydimethylsiloxane, poly(ethylene-vinylacetate), acrylate-based polymers or copolymers (e.g. polyhydroxyethyl methylmethacrylate, polyvinyl pyrrolidinone), fluorinated polymers such as polytetrafluoroethylene and cellulose esters. Suitable matrices may be nondegrading or may degrade with time, releasing the compound or compounds.

5 Compounds of the invention may be applied to the surface of the stent by various methods such as dip/spin coating, spray coating, dip-coating, and/or brush coating. The compounds may be applied in a solvent and the solvent may be allowed to evaporate, thus forming a layer of compound onto the stent. Alternatively, the compound may be located in the body of the stent or graft, for example in microchannels or micropores. When implanted, the compound diffuses out of the body of the stent to contact the arterial wall. Such stents may be prepared by dipping a stent manufactured to contain such micropores or microchannels into a solution of the compound of the invention in a suitable solvent, followed by evaporation of the solvent. Excess drug on the surface of the stent may be removed via an additional brief solvent wash. In yet other embodiments, compounds of the invention may be covalently linked to a stent or graft. A covalent linker may be used which degrades in vivo, leading to the release of the compound of the invention. Any biolabile linkage may be used for such a purpose, such as ester, amide or anhydride linkages. Compounds of the invention may additionally be administered intravascularly from a balloon used during angioplasty. Extravascular administration of the compounds via the pericard or via advential application of formulations of the invention may also be performed to decrease restenosis.

[00351] A variety of stent devices which may be used as described are disclosed, for example, in the following references: U.S. Pat. No. 5451233; U.S. Pat. No. 5040548; U.S. Pat. No. 5061273; U.S. Pat. No. 5496346; U.S. Pat. No. 5292331; U.S. Pat. No. 5674278; U.S. Pat. No. 3657744; U.S. Pat. No. 4739762; U.S. Pat. No. 5195984; U.S. Pat. No. 5292331; U.S. Pat. No. 5674278; U.S. Pat. No. 5879382; U.S. Pat. No. 6344053.

[00352] The compounds of the invention may be administered in dosages. It is known in the art that due to intersubject variability in compound pharmacokinetics, individualization of dosing regimen is necessary for optimal therapy. Dosing for a compound of the invention may be found by routine experimentation in light of the instant disclosure.

[00353] When a compound of the invention, is administered in a composition that comprises one or more agents, and the agent has a shorter half-life than the compound of the invention unit dose forms of the agent and the compound of the invention may be adjusted accordingly.

[00354] The subject pharmaceutical composition may, for example, be in a form suitable for oral administration as a tablet, capsule, pill, powder, sustained release formulations, solution, suspension, for parenteral injection as a sterile solution, suspension or emulsion, for topical administration as an ointment or cream or for rectal administration as a suppository. The pharmaceutical composition may be in unit dosage forms suitable for single administration of precise dosages. The pharmaceutical composition will include a conventional pharmaceutical carrier or excipient and a compound according to the invention as an active ingredient. In addition, it may include other medicinal or pharmaceutical agents, carriers, adjuvants, etc.

[00355] Exemplary parenteral administration forms include solutions or suspensions of active compound in sterile aqueous solutions, for example, aqueous propylene glycol or dextrose solutions. Such dosage forms can be suitably buffered, if desired.

[00356] The activity of the compounds of the present invention may be determined by the following procedure, as well as the procedure described in the examples below. The activity of the kinase is assessed by measuring the incorporation of γ-32P-phosphate from γ-32P-ATP onto N-terminal His tagged substrate, which is expressed in E. coli
and is purified by conventional methods, in the presence of the kinase. The assay is carried out in 96-well polypropylene plate. The incubation mixture (100, μL) comprises of 25 mM Heps, pH 7.4, 10 mM MgCl₂, 5 mM β-glycerophosphate, 100 μM Na-orthovanadate, 5 mM DTT, 5 mM kinase, and 1 μM substrate. Inhibitors are suspended in DMSO, and all reactions, including controls are performed at a final concentration of 1% DMSO.

Reactions are initiated by the addition of 10 μM ATP (with 0.5 μCi γ³²P- ATP/well) and incubated at ambient temperature for 45 minutes. Equal volume of 25% TCA is added to stop the reaction and precipitate the proteins. Precipitated proteins are trapped onto glass fiber B filterplates, and excess labeled ATP washed off using a Tomtec MACH III harvester. Plates are allowed to air-dry prior to adding 30 μL/well of Packard Microscint 20, and plates are counted using a Packard TopCount.*

[0357] The invention also provides kits. The kits include a compound or compounds of the present invention as described herein, in suitable packaging, and written material that can include instructions for use, discussion of clinical studies, listing of side effects, and the like. Such kits may also include information, such as scientific literature references, package insert materials, clinical trial results, and/or summaries of these and the like, which indicate or establish the activities and/or advantages of the composition, and/or which describe dosing, administration, side effects, drug interactions, or other information useful to the health care provider. Such information may be based on the results of various studies, for example, studies using experimental animals involving in vivo models and studies based on human clinical trials. The kit may further contain another agent. In some embodiments, the compound of the present invention and the agent are provided as separate compositions in separate containers within the kit. In some embodiments, the compound of the present invention and the agent are provided as a single composition within a container in the kit. Suitable packaging and additional articles for use (e.g., measuring cup for liquid preparations, foil wrapping to minimize exposure to air, and the like) are known in the art and may be included in the kit. Kits described herein can be provided, marketed and/or promoted to health providers, including physicians, nurses, pharmacists, formulary officials, and the like. Kits may also, in some embodiments, be marketed directly to the consumer.

METHODS

[0358] The invention also provides methods of using the compounds or pharmaceutical compositions of the present invention to treat disease conditions, including but not limited to diseases associated with malfunctioning of one or more types of PI3 kinase. A detailed description of conditions and disorders mediated by p110δ kinase activity is set forth in Sadu et al., WO 01/81346.

[0359] The treatment methods provided herein comprise administering to the subject a therapeutically effective amount of a compound of the invention. In one embodiment, the present invention provides a method of treating an inflammation disorder, including autoimmune diseases in a mammal. The method comprises administering to said mammal a therapeutically effective amount of a compound of the present invention, or a pharmaceutically acceptable salt, ester, prodrug, solvate, hydrate or derivative thereof. Examples of autoimmune diseases includes but is not limited to acute disseminated encephalomyelitis (ADEM), Addison's disease, antiphospholipid antibody syndrome (APS), aplastic anemia, autoimmune hepatitis, coeliac disease, Crohn's disease, Diabetes mellitus (type 1), Goodpasture's syndrome, Graves' disease, Guillain-Barré syndrome (GBS), Hashimoto's disease, lupus erythematosus, multiple sclerosis, myasthenia gravis, otopooclusal myoclonus syndrome (OMS), optic neuritis, Ords thyroiditis, ophthalmia, polyarthritis, primary biliary cirrhosis, psoriasis, rheumatoid arthritis, Reiter's syndrome, Takayasu's arteritis, temporal arteritis (also known as "giant cell arteritis"), warm autoimmune hemolytic anemia, Wegener's granulomatosis, alopecia universalis, Chagas' disease, chronic fatigue syndrome, dysautonomia, endometriosis,

*trademark
hidradenitis suppurativa, interstitial cystitis, neuromyotonia, sarcoidosis, scleroderma, ulcerative colitis, vitiligo, and vulvodynia. Other disorders include bone-resorption disorders and thrombosis.

[00360] In some embodiments, the method of treating inflammatory or autoimmune diseases comprises administering to a subject (e.g. a mammal) a therapeutically effective amount of one or more compounds of the present invention that selectively inhibit PI3K-δ and/or PI3K-γ as compared to all other type I PI3 kinases. Such selective inhibition of PI3K-δ and/or PI3K-γ may be advantageous for treating any of the diseases or conditions described herein. For example, selective inhibition of PI3K-δ may inhibit inflammatory responses associated with inflammatory diseases, autoimmune disease, or diseases related to an undesirable immune response including but not limited to asthma, emphysema, allergy, dermatitis, rheumatoid arthritis, psoriasis, lupus erythematosus, or graft versus host disease.

Selective inhibition of PI3K-δ may further provide for a reduction in the inflammatory or undesirable immune response without a concomitant reduction in the ability to reduce a bacterial, viral, and/or fungal infection. Selective inhibition of both PI3K-δ and PI3K-γ may be advantageous for inhibiting the inflammatory response in the subject to a greater degree than that would be provided for by inhibitors that selectively inhibit PI3K-δ or PI3K-γ alone. In one aspect, one or more of the subject methods are effective in reducing antigen specific antibody production in vivo by about 2-fold, 3-fold, 4-fold, 5-fold, 7.5-fold, 10-fold, 25-fold, 50-fold, 100-fold, 250-fold, 500-fold, 750-fold, or about 1000-fold or more. In another aspect, one or more of the subject methods are effective in reducing antigen specific IgG3 and/or IgGM production in vivo by about 2-fold, 3-fold, 4-fold, 5-fold, 7.5-fold, 10-fold, 25-fold, 50-fold, 100-fold, 250-fold, 500-fold, or about 1000-fold or more.

[00361] In one aspect, one or more of the subject methods are effective in ameliorating symptoms associated with rheumatoid arthritis including but not limited to a reduction in the swelling of joints, a reduction in serum anti-collagen levels, and/or a reduction in joint pathology such as bone resorption, cartilage damage, pannus, and/or inflammation. In another aspect, the subject methods are effective in reducing ankle inflammation by at least about 2%, 5%, 10%, 15%, 20%, 25%, 30%, 50%, 60%, or about 75% to 90%. In another aspect, the subject methods are effective in reducing knee inflammation by at least about 2%, 5%, 10%, 15%, 20%, 25%, 30%, 50%, 60%, or about 75% to 90% or more. In still another aspect, the subject methods are effective in reducing serum anti-type II collagen levels by at least about 10%, 12%, 15%, 20%, 24%, 25%, 30%, 35%, 50%, 60%, 75%, 80%, 86%, 87%, or about 90% or more. In another aspect, the subject methods are effective in reducing ankle histopathology scores by about 5%, 10%, 15%, 20%, 25%, 30%, 40%, 50%, 60%, 75%, 80%, 90% or more. In still another aspect, the subject methods are effective in reducing knee histopathology scores by about 5%, 10%, 15%, 20%, 25%, 30%, 40%, 50%, 60%, 75%, 80%, 90% or more.

[00362] In other embodiments, the present invention provides methods of using the compounds or pharmaceutical compositions to treat respiratory diseases including but not limited to diseases affecting the lobes of lung, pleural cavity, bronchial tubes, trachea, upper respiratory tract, or the nerves and muscle for breathing. For example, methods are provided to treat obstructive pulmonary disease. Chronic obstructive pulmonary disease (COPD) is an umbrella term for a group of respiratory tract diseases that are characterized by airflow obstruction or limitation. Conditions included in this umbrella term are: chronic bronchitis, emphysema, and bronchiectasis.

[00363] In another embodiment, the compounds described herein are used for the treatment of asthma. Also, the compounds or pharmaceutical compositions described herein may be used for the treatment of endotoxemia and sepsis. In one embodiment, the compounds or pharmaceutical compositions described herein are used to for the treatment of rheumatoid arthritis (RA). In yet another embodiment, the compounds or pharmaceutical compositions described herein is used for the treatment of contact or atopic dermatitis. Contact dermatitis includes irritant dermatitis, phototoxic dermatitis, allergic dermatitis, photoallergic dermatitis, contact urticaria, systemic contact-type
dermatitis and the like. Irritant dermatitis can occur when too much of a substance is used on the skin or when the skin is sensitive to certain substance. Atopic dermatitis, sometimes called eczema, is a kind of dermatitis, an atopic skin disease.

[00364] The invention also relates to a method of treating a hyperproliferative disorder in a mammal that comprises administering to said mammal a therapeutically effective amount of a compound of the present invention, or a pharmaceutically acceptable salt, ester, prodrug, solvate, hydrate or derivative thereof. In some embodiments, said method relates to the treatment of cancer such as acute myeloid leukemia, thymus, brain, lung, squamous cell, skin, eye, retinoblastoma, intraocular melanoma, oral cavity and oropharyngeal, bladder, gastric, stomach, pancreatic, bladder, breast, cervical, head, neck, renal, kidney, liver, ovarian, prostate, colorectal, esophageal, testicular, gynecological, thyroid, CNS, PNS, AIDS-related (e.g. Lymphoma and Kaposi's Sarcoma) or viral-induced cancer. In some embodiments, said method relates to the treatment of a non-cancerous hyperproliferative disorder such as benign hyperplasia of the skin (e. g., psoriasis), restenosis, or prostate (e. g., benign prostatic hypertrophy (BPH)).

[00365] The invention also relates to a method of treating diseases related to vasculogenesis or angiogenesis in a mammal that comprises administering to said mammal a therapeutically effective amount of a compound of the present invention, or a pharmaceutically acceptable salt, ester, prodrug, solvate, hydrate or derivative thereof. In some embodiments, said method is for treating a disease selected from the group consisting of tumor angiogenesis, chronic inflammatory disease such as rheumatoid arthritis, atherosclerosis, inflammatory bowel disease, skin diseases such as psoriasis, eczema, and scleroderma, diabetes, diabetic retinopathy, retinopathy of prematurity, age-related macular degeneration, hemangioma, glioma, melanoma, Kaposi's sarcoma and ovarian, breast, lung, pancreatic, prostate, colon and epidermoid cancer.

[00366] Patients that can be treated with compounds of the present invention, or pharmaceutically acceptable salt, ester, prodrug, solvate, hydrate or derivative of said compounds, according to the methods of this invention include, for example, patients that have been diagnosed as having psoriasis; restenosis; atherosclerosis; BPH; breast cancer such as a ductal carcinoma in duct tissue in a mammary gland, medullary carcinomas, colloid carcinomas, tubular carcinomas, and inflammatory breast cancer; ovarian cancer, including epithelial ovarian tumors such as adenocarcinoma in the ovary and an adenocarcinoma that has migrated from the ovary into the abdominal cavity; uterine cancer; cervical cancer such as adenocarcinoma in the cervix epithelial including squamous cell carcinoma and adenocarcinomas; prostate cancer, such as a prostate cancer selected from the following: an adenocarcinoma or an adenocarcinoma that has migrated to the bone; pancreatic cancer such as epitheliod carcinoma in the pancreatic duct tissue and an adenocarcinoma in a pancreatic duct; bladder cancer such as a transitional cell carcinoma in urinary bladder, urothelial carcinomas (transitional cell carcinomas), tumors in the urothelial cells that line the bladder, squamous cell carcinomas, adenocarcinomas, and small cell cancers; leukemia such as acute myeloid leukemia (AML), acute lymphocytic leukemia, chronic lymphocytic leukemia, chronic myeloid leukemia, hairy cell leukemia, myelodysplasia, myeloproliferative disorders, acute myelogenous leukemia (AML), chronic myelogenous leukemia (CML), mastocytosis, chronic lymphocytic leukemia (CLL), multiple myeloma (MM), and myelodysplastic syndrome (MDS); bone cancer; lung cancer such as non-small cell lung cancer (NSCLC), which is divided into squamous cell carcinomas, adenocarcinomas, and large cell undifferentiated carcinomas, and small cell lung cancer; skin cancer such as basal cell carcinoma, melanoma, squamous cell carcinoma and actinic keratosis, which is a skin condition that sometimes develops into squamous cell carcinoma; eye retinoblastoma; cutaneous or intraocular (eye) melanoma; primary liver cancer (cancer that begins in the liver); kidney cancer; thyroid cancer such as papillary, follicular, medullary and anaplastic; AIDS-related lymphoma such as diffuse large B-cell lymphoma, B-cell immunoblastic lymphoma and small non-cleaved cell lymphoma; Kaposi's Sarcoma; viral-induced cancers including hepatitis B virus.
(HBV), hepatitis C virus (HCV), and hepatocellular carcinoma; human lymphotropic virus-type 1 (HTLV-1) and adult T-cell leukemia/lymphoma; and human papilloma virus (HPV) and cervical cancer; central nervous system cancers (CNS) such as primary brain tumor, which includes gliomas (astrocytoma, anaplastic astrocytoma, or glioblastoma multiforme), Oligodendroglioma, Ependymoma, Meningioma, Lymphoma, Schwannoma, and Medulloblastoma; peripheral nervous system (PNS) cancers such as acoustic neuromas and malignant peripheral nerve sheath tumor (MPNST) including neurofibromas and schwannomas, malignant fibrous cytomata, malignant fibrous histiocytoma, malignant meningioma, malignant mesothelioma, and malignant mixed Müllerian tumor; oral cavity and oropharyngeal cancer such as, hypopharyngeal cancer, laryngeal cancer, nasopharyngeal cancer, and oropharyngeal cancer; stomach cancer such as lymphomas, gastric stromal tumors, and carcinoid tumors; testicular cancer such as germ cell tumors (GCTs), which include seminomas and nonseminomas, and gonadal stromal tumors, which include Leydig cell tumors and Sertoli cell tumors; thymus cancer such as to thymomas, thymic carcinomas, Hodgkin disease, non-Hodgkin lymphomas carcinoids or carcinoid tumors; rectal cancer; and colon cancer.

[00367] The invention also relates to a method of treating diabetes in a mammal that comprises administering to said mammal a therapeutically effective amount of a compound of the present invention, or a pharmaceutically acceptable salt, ester, prodrug, solvate, hydrate or derivative thereof.

[00368] In addition, the compounds described herein may be used to treat acne.

[00369] In addition, the compounds described herein may be used for the treatment of arteriosclerosis, including atherosclerosis. Arteriosclerosis is a general term describing any hardening of medium or large arteries. Atherosclerosis is a hardening of an artery specifically due to an atheromatous plaque.

[00370] Further the compounds described herein may be used for the treatment of glomerulonephritis. Glomerulonephritis is a primary or secondary autoimmune renal disease characterized by inflammation of the glomeruli. It may be asymptomatic, or present with hematuria and/or proteinuria. There are many recognized types, divided in acute, subacute or chronic glomerulonephritis. Causes are infectious (bacterial, viral or parasitic pathogens), autoimmune or paraneoplastic.

[00371] Additionally, the compounds described herein may be used for the treatment of bursitis, lupus, acute disseminated encephalomyelitis (ADEM), addison's disease, antiphospholipid antibody syndrome (APS), aplastic anemia, autoimmune hepatitis, coeliac disease, crohn's disease, diabetes mellitus (type 1), goodpasture's syndrome, graves' disease, guillain-barré syndrome (GBS), hashimoto's disease, inflammatory bowel disease, lupus erythematosus, myasthenia gravis, opsoclonus myoclonus syndrome (OMS), optic neuritis, ord's thyroiditis, osteoarthritis, uveoretinitis, pemphigus, polyarthritis, primary biliary cirrhosis, reiter's syndrome, takayasu's arteritis, temporal arteritis, warm autoimmune hemolytic anemia, wegener's granulomatosis, alopecia universalis, chagas' disease, chronic fatigue syndrome, dysautonomia, endometriosis, hidradenitis suppurativa, interstitial cystitis, neuromyotonia, sarcoidosis, scleroderma, ulcerative colitis, vitiligo, vulvodynia, appendicitis, arteritis, arthritis, blepharitis, bronchiolitis, bronchitis, cervicitis, cholangitis, cholecystitis, chorioamnionitis, colitis, conjunctivitis, cystitis, dacryoadenitis, dermatomyositis, endocarditis, endometritis, enteritis, enterocolitis, epicondylitis, epididymitis, fasciitis, fibrositis, gastritis, gastroenteritis, gingivitis, hepatitis, hidradenitis, ileitis, iritis, laryngitis, mastitis, meningitis, myelitis, myocarditis, myositis, nephritis, oophoritis, orchitis, osteitis, otitis, pancretatitis, parotitis, pericarditis, peritonitis, pharyngitis, pleuritis, phlebitis, pneumonitis, proctitis, prostatitis, pyelonephritis, rhinitis, salpingitis, sinusitis, stomatitis, synovitis, tendinitis, tonsillitis, uveitis, vaginitis, vulvitis, or volume.

[00372] The invention also relates to a method of treating a cardiovascular disease in a mammal that comprises administering to said mammal a therapeutically effective amount of a compound of the present invention, or a
pharmaceutically acceptable salt, ester, prodrug, solvate, hydrate or derivative thereof. Examples of cardiovascular conditions include, but are not limited to, atherosclerosis, restenosis, vascular occlusion and carotid obstructive disease.

[00373] In another aspect, the present invention provides methods of disrupting the function of a leukocyte or disrupting a function of an osteoclast. The method includes contacting the leukocyte or the osteoclast with a function disrupting amount of a compound of the invention.

[00374] In another aspect of the present invention, methods are provided for treating ophthalmic disease by administering one or more of the subject compounds or pharmaceutical compositions to the eye of a subject.

[00375] Methods are further provided for administering the compounds of the present invention via eye drop, intraocular injection, intravitreal injection, topically, or through the use of a drug eluting device, microcapsule, implant, or microfluidic device. In some cases, the compounds of the present invention are administered with a carrier or excipient that increases the intracellular penetration of the compound such as an oil and water emulsion with colloid particles having an oily core surrounded by an interfacial film.

[00376] In some cases, the colloid particles include at least one cationic agent and at least one non-ionic surfactant such as a poloxamer, tyloxapol, a polysorbate, a polyoxyethylene castor oil derivative, a sorbitan ester, or a polyoxyl stearate. In some cases, the cationic agent is an alkylamine, a tertiary alkyl amine, a quaternary ammonium compound, a cationic lipid, an amino alcohol, a biguanidine salt, a cationic compound or a mixture thereof. In some cases the cationic agent is a biguanidine salt such as chlorhexidine, polyaminopropyl biguanidine, phenformin, alkylbiguanidine, or a mixture thereof. In some cases, the quaternary ammonium compound is a benzalkonium halide, lauralkonium halide, cetrimide, hexadecyltrimethylammonium halide, tetradecyltrimethylammonium halide, dodecyltrimethylammonium halide, cetrimonium halide, benzethonium halide, behenalkonium halide, cetalkonium halide, cetethylidimonium halide, cetylpyridinium halide, benzododecinium halide, chlorallyl methenamine halide, myristylalkonium halide, stearamonium halide or a mixture of two or more thereof. In some cases, cationic agent is a benzalkonium chloride, lauralkonium chloride, benzododecinium bromide, benzethonium chloride, hexadecyltrimethylammonium bromide, tetradecyltrimethylammonium bromide, dodecyltrimethylammonium bromide or a mixture of two or more thereof. In some cases, the oil phase is mineral oil and light mineral oil, medium chain triglycerides (MCT), coconut oil; hydrogenated oils comprising hydrogenated cottonseed oil, hydrogenated palm oil, hydrogenate castor oil or hydrogenated soybean oil; polyoxyethylene hydrogenated castor oil derivatives comprising poloxyl-40 hydrogenated castor oil, polyoxyl-60 hydrogenated castor oil or polyoxyl-100 hydrogenated castor oil.

[00377] The invention further provides methods of modulating kinase activity by contacting a kinase with an amount of a compound of the invention sufficient to modulate the activity of the kinase. Modulate can be inhibiting or activating kinase activity. In some embodiments, the invention provides methods of inhibiting kinase activity by contacting a kinase with an amount of a compound of the invention sufficient to inhibit the activity of the kinase. In some embodiments, the invention provides methods of inhibiting kinase activity in a solution by contacting said solution with an amount of a compound of the invention sufficient to inhibit the activity of the kinase in said solution. In some embodiments, the invention provides methods of inhibiting kinase activity in a cell by contacting said cell with an amount of a compound of the invention sufficient to inhibit the activity of the kinase in said cell. In some embodiments, the invention provides methods of inhibiting kinase activity in a tissue by contacting said tissue with an amount of a compound of the invention sufficient to inhibit the activity of the kinase in said tissue. In some embodiments, the invention provides methods of inhibiting kinase activity in an organism by contacting said organism with an amount of a compound of the invention sufficient to inhibit the activity of the kinase in said organism. In some embodiments, the invention provides methods of inhibiting kinase activity in an animal by contacting said
animal with an amount of a compound of the invention sufficient to inhibit the activity of the kinase in said animal. In some embodiments, the invention provides methods of inhibiting kinase activity in a mammal by contacting said mammal with an amount of a compound of the invention sufficient to inhibit the activity of the kinase in said mammal. In some embodiments, the invention provides methods of inhibiting kinase activity in a human by contacting said human with an amount of a compound of the invention sufficient to inhibit the activity of the kinase in said human. In some embodiments, the % of kinase activity after contacting a kinase with a compound of the invention is less than 1, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 95, or 99% of the kinase activity in the absence of said contacting step.

In some embodiments, the kinase is a lipid kinase or a protein kinase. In some embodiments, the kinase is selected from the group consisting of PI3 kinase including different isoforms such as PI3 kinase α, PI3 kinase β, PI3 kinase γ, PI3 kinase δ; DNA-PK; mTor; Abl, VEGFR, Ephrin receptor B4 (EphB4); TEK receptor tyrosine kinase (TIE2); FMS-related tyrosine kinase 3 (FLT-3); Platelet derived growth factor receptor (PDGFR); RET; ATM; ATR; hSmg-1; Hck; Src; Epidermal growth factor receptor (EGFR); KIT; Insulin Receptor (IR) and IGFR.

The invention further provides methods of modulating PI3 kinase activity by contacting a PI3 kinase with an amount of a compound of the invention sufficient to modulate the activity of the PI3 kinase. Modulate can be inhibiting or activating PI3 kinase activity. In some embodiments, the invention provides methods of inhibiting PI3 kinase activity by contacting a PI3 kinase with an amount of a compound of the invention sufficient to inhibit the activity of the PI3 kinase. In some embodiments, the invention provides methods of inhibiting PI3 kinase activity. Such inhibition can take place in solution, in a cell expressing one or more PI3 kinases, in a tissue comprising a cell expressing one or more PI3 kinases, or in an organism expressing one or more PI3 kinases. In some embodiments, the invention provides methods of inhibiting PI3 kinase activity in an animal (including mammal such as humans) by contacting said animal with an amount of a compound of the invention sufficient to inhibit the activity of the PI3 kinase in said animal.

COMBINATION TREATMENT

The present invention also provides methods for combination therapies in which an agent known to modulate other pathways, or other components of the same pathway, or even overlapping sets of target enzymes are used in combination with a compound of the present invention, or a pharmaceutically acceptable salt, ester, prodrug, solvate, hydrate or derivative thereof. In one aspect, such therapy includes but is not limited to the combination of the subject compound with chemotherapeutic agents, therapeutic antibodies, and radiation treatment, to provide a synergistic or additive therapeutic effect.

In one aspect, the compounds or pharmaceutical compositions of the present invention may present synergistic or additive efficacy when administered in combination with agents that inhibit IgE production or activity. Such combination can reduce the undesired effect of high level of IgE associated with the use of one or more PI3Kδ inhibitors, if such effect occurs. This may be particularly useful in treatment of autoimmune and inflammatory disorders (AID) such as rheumatoid arthritis. Additionally, the administration of PI3Kδ or PI3Kδ/γ inhibitors of the present invention in combination with inhibitors of mTOR may also exhibit synergy through enhanced inhibition of the PI3K pathway.

In a separate but related aspect, the present invention provides a combination treatment of a disease associated with PI3Kδ comprising administering to a PI3Kδ inhibitor and an agent that inhibits IgE production or activity. Other exemplary PI3Kδ inhibitors are applicable and they are described, e.g., US Patent No. 6,800,620. Such
combination treatment is particularly useful for treating autoimmune and inflammatory diseases (AIDD) including but not limited to rheumatoid arthritis.

[00383] Agents that inhibit IgE production are known in the art and they include but are not limited to one or more of TEI-9874, 2-(4-(6-cyclohexyloxy-2-naphthoxy)phenylaceticamide)benzoic acid, rapamycin, rapamycin analogs (i.e. rapalogs), TORC1 inhibitors, TORC2 inhibitors, and any other compounds that inhibit mTORC1 and mTORC2. Agents that inhibit IgE activity include, for example, anti-IgE antibodies such as for example Omalizumab and TNX-901.

[00384] For treatment of autoimmune diseases, the subject compounds or pharmaceutical compositions can be used in combination with commonly prescribed drugs including but not limited to Enbrel®, Remicade®, Humira®, Avoset®, and Rebiq®. For treatment of respiratory diseases, the subject compounds or pharmaceutical compositions can be administered in combination with commonly prescribed drugs including but not limited to Xolair®, Advair®, Singularair®, and Spiriva®.

[00385] The compounds of the invention may be formulated or administered in conjunction with other agents that act to relieve the symptoms of inflammatory conditions such as ecephalomyelitis, asthma, and the other diseases described herein. These agents include non-steroidal anti-inflammatory drugs (NSAIDs), e.g. acetylsalicylic acid; ibuprofen; naproxen; indomethacin; nabumetone; tolmetin; etc. Corticosteroids are used to reduce inflammation and suppress activity of the immune system. The most commonly prescribed drug of this type is Prednisone. Chloroquine (Aralen) or hydroxychloroquine (Plaquenil) may also be very useful in some individuals with lupus. They are most often prescribed for skin and joint symptoms of lupus. Azathioprine (Imuran)® and cyclophosphamide (Cytoxan)® suppress inflammation and tend to suppress the immune system. Other agents, e.g. methotrexate and cyclosporin are used to control the symptoms of lupus. Anticoagulants are employed to prevent blood from clotting rapidly. They range from aspirin at very low dose which prevents platelets from sticking, to heparin/coumadin.

[00386] In another aspect, this invention also relates to a pharmaceutical composition for inhibiting abnormal cell growth in a mammal which comprises an amount of a compound of the present invention, or a pharmaceutically acceptable salt, ester, prodjug, solvate, hydrate or derivative thereof, in combination with an amount of an anti-cancer agent (e.g. a chemotherapeutic agent). Many chemotherapeutics are presently known in the art and can be used in combination with the compounds of the invention.

[00387] In some embodiments, the chemotherapeutic is selected from the group consisting of mitotic inhibitors, alkylating agents, anti-metabolites, intercalating antibiotics, growth factor inhibitors, cell cycle inhibitors, enzymes, topoisomerase inhibitors, biological response modifiers, anti-hormones, angiogenesis inhibitors, and anti-androgens. Non-limiting examples are chemotherapeutic agents, cytotoxic agents, and non-peptide small molecules such as Gleevec® (imatinib Mesylate), Velcade® (bortezomib), Casodex® (bicalutamide), Iressa® (gefitinib), and Adriamycin® as well as a host of chemotherapeutic agents. Non-limiting examples of chemotherapeutic agents include alkylating agents such as thiopeta and cyclophosphamide (CYTOXAN®); alkyl sulfonates such as busulfan, imposulfan and piposulfan; aziridines such as beznodopa, carboquone, meturedopa, and uredopa; ethylenimines and methylamines including altretamine, triethyleneimine, triethylene phosphoramid, triethylenethiophosphoramide and trimethylolomamine; nitrogen mustards such as chlorambucil, chlorphosphazine, chloroprophamide, estramustine, ifosfamide, mechlotherapy, methlotherapy oxide hydrochloride, melphalan, novomycin, pheusterine, prednimustine, trofosfamide, uracil mustard; nitrosoureas such as carmustine, chlorozottocin, fotemustine, lamustine, nimustine, ranimustine; antibiotics such as aclacinomycin, actinomycin, anthramycin, azaerine, bleomycins, caetcinomyins, calicheamicin, carabicin, carminomycin, carzinophilin, Casodex®, chromomycin, daunomycin, daunorubicin, detorubicin, 6-diaz-5-oxo-L-norleucine, doxorubicin, epirubicin, tradmark
esorubicin, idarubicin, marcellomycin, mitomycins, mycophenolic acid, nogalamycin, olimomycins, peplomycin, potfiromycin, puromycin, quelamycin, rodorubicin, streptonigrin, streptozocin, tubercidin, ubenimex, zinostatin, zorubicin; anti-metabolites such as methotrexate and 5-fluorouracil (5-FU); folic acid analogues such as denopterin, methotrexate, pteropterin, trimetrexate; purine analogs such as fludarabine, 6-mercaptopurine, thiamiprine, thioguanine; pyrimidine analogs such as ancitabine, azacitidine, 6-azauridine, carmofur, cytarabine, dideoxyuridine, doxifuridine, enocitabine, floxuridine, androgens such as calusterone, dromostanolone propionate, epitiostanol, mepitiostane, testolactone; anti-adenals such as aminoglutethimide, mitotane, triostalone; folic acid replenisher such as frolinic acid; aceglatone; aldophosphamide glycoside; aminolevulinic acid; amsacrine; bestrabucil; bisantrene; edatraxate; defofamine; demecolcine; diaziquone; elfomithine; elliptinium acetate; etogolucid; gallium nitrate; hydroxyurea; lentinan; lonidamine; mitoguazone; mitoxantrone; mepidamol; nitracrine; pentostatin; phenamet; pirarubicin; podophyllinic acid; 2-ethylhydradizide; procarbazine; P5K; razoxane; sizofiran; spirogermanium; tenuazonic acid; triaziquone; 2',2'-trichlorotriethylamine; urethan; vindesine; dacarbazine; mannomustine; mitobronitol; mitolactol; pipobroman; gacytosine; arabinoside ("Ara-C"); cyclophosphamide; thiotepa; taxanes, e.g. paclitaxel (TAXOL, Bristol-Myers Squibb Oncology, Princeton, N.J.) and docetaxel (TAXOTERE, Rhone-Poulenc Rorer, Antony, France); retinoic acid; esperamicins; capecitabine; and pharmaceutically acceptable salts, acids or derivatives of any of the above. Also included as suitable chemotherapeutic cell conditioners are anti-hormonal agents that act to regulate or inhibit hormone action on tumors such as anti-estrogens including for example tamoxifen (Nolvadex), raloxifene, aromatase inhibiting 4(5)-imidazoles, 4-hydroxytamoxifen, trioxifene, keoxifene, LY 117018, onapristone, and toremifene (Faremson); and anti-androgens such as flutamide, nilutamide, bicalutamide, leuprolide, and goserelin; chlorambucil; gemcitabine; 6-thioguanine; mercaptopurine; methotrexate; platinum analogs such as cisplatin and carboplatin; vinblastine; platinum; etoposide (VP-16); ifosfamide; mitomycin C; mitoxantrone; vincristine; vinorelbine; navelbine; novantrone; teniposide; daunomycin; aminopterin; xeloda; ibandronate; camptothecin-11 (CPT-11); topoisomerase inhibitor RFS 2000; difluoromethylornithine (DMFO). Where desired, the compounds or pharmaceutical composition of the present invention can be used in combination with commonly prescribed anti-cancer drugs such as Herceptin®, Avastin®, Erbitux®, Rituxan®, Taxol®, Arimidex®, Taxotere®, and Velcade®.

[00388] This invention further relates to a method for using the compounds or pharmaceutical composition in combination with radiation therapy in inhibiting abnormal cell growth or treating the hyperproliferative disorder in the mammal. Techniques for administering radiation therapy are known in the art, and these techniques can be used in the combination therapy described herein. The administration of the compound of the invention in this combination therapy can be determined as described herein.

[00389] Radiation therapy can be administered through one of several methods, or a combination of methods, including without limitation external-beam therapy, internal radiation therapy, implant radiation, stereotactic radiosurgery, systemic radiation therapy, radiotherapy and permanent or temporary interstitial brachytherapy. The term “brachytherapy,” as used herein, refers to radiation therapy delivered by a spatially confined radioactive material inserted into the body or near a tumor or other proliferative tissue disease site. The term is intended without limitation to include exposure to radioactive isotopes (e.g. At-211, T-131, I-125, Y-90, Re-186, Re-188, Sm-153, Bi-212, P-32, and radioactive isotopes of Lu). Suitable radiation sources for use as a cell conditioner of the present invention include both solids and liquids. By way of non-limiting example, the radiation source can be a radionuclide, such as I-125, I-131, Yb-169, Ir-192 as a solid source, I-125 as a solid source, or other radionuclides that emit photons, beta particles, gamma radiation, or other therapeutic rays. The radioactive material can also be a fluid made from any solution of radionuclide(s), e.g., a solution of I-125 or I-131, or a radioactive fluid can be produced using a slurry of a
suitable fluid containing small particles of solid radionuclides, such as Au-198, Y-90. Moreover, the radionuclide(s) can be embodied in a gel or radioactive microspheres.

[00390] Without being limited by any theory, the compounds of the present invention can render abnormal cells more sensitive to treatment with radiation for purposes of killing and/or inhibiting the growth of such cells. Accordingly, this invention further relates to a method for sensitizing abnormal cells in a mammal to treatment with radiation which comprises administering to the mammal an amount of a compound of the present invention or pharmaceutically acceptable salt, ester, prodrug, solvate, hydrate or derivative thereof, which amount is effective in sensitizing abnormal cells to treatment with radiation. The amount of the compound, salt, or solvate in this method can be determined according to the means for ascertaining effective amounts of such compounds described herein.

[00391] The compounds or pharmaceutical compositions of the present invention can be used in combination with an amount of one or more substances selected from anti-angiogenesis agents, signal transduction inhibitors, and antiproliferative agents.

[00393] The invention also relates to a method of and to a pharmaceutical composition of treating a cardiovascular disease in a mammal which comprises an amount of a compound of the present invention, or a pharmaceutically acceptable salt, ester, prodrug, solvate, hydrate or derivative thereof, and an amount of one or more therapeutic agents use for the treatment of cardiovascular diseases.

[00394] Examples for use in cardiovascular disease applications are anti-thrombotic agents, e.g., prostacyclin and salicylates, thrombolytic agents, e.g., streptokinase, urokinase, tissue plasminogen activator (TPA) and anisoylated plasminogen-streptokinase activator complex (APSAC), anti-platelet agents, e.g., acetyl-salicylic acid (ASA) and clopidogrel, vasodilating agents, e.g., nitrates, calcium channel blocking drugs, anti-proliferative agents, e.g., colchicine and alkylating agents, intercalating agents, growth modulating factors such as interleukins, transformation growth factor-beta and congeners of platelet derived growth factor, monoclonal antibodies directed against growth factor-beta and congeners of platelet derived growth factor, monoclonal antibodies directed against growth...
factors, anti-inflammatory agents, both steroidal and non-steroidal, and other agents that can modulate vessel tone, function, arteriosclerosis, and the healing response to vessel or organ injury post intervention. Antibiotics can also be included in combinations or coatings comprised by the invention. Moreover, a coating can be used to effect therapeutic delivery focally within the vessel wall. By incorporation of the active agent in a swellable polymer, the active agent will be released upon swelling of the polymer.

[00395] The compounds describe herein may be formulated or administered in conjunction with liquid or solid tissue barriers also known as lubricants. Examples of tissue barriers include, but are not limited to, polysaccharides, polyglycans, sepraflim, interceed and hyaluronic acid.

[00396] Medicaments which may be administered in conjunction with the compounds described herein include any suitable drugs usefully delivered by inhalation for example, analgesics, e.g. codeine, dihydromorpheine, ergotamine, fentanyl or morphine; anginal preparations, e.g. diltiazem; antiallergics, e.g. cromoglycate, ketotifen or nedocromil; anti-infectives, e.g. cephalosporins, penicillins, streptomycin, sulphonamides, tetracyclines or pentamidine; antihistamines, e.g. methapyrine; anti-inflammatories, e.g. beclomethasone, flunisolide, budesonide, tipredane, triamcinolone acetonide or fluticasone; antitussives, e.g. noscapine; bronchodilators, e.g. ephedrine, adrenaline, fenoterol, formoterol, isoprrenaline, metaproterenol, phenylephrine, phenylpropanolamine, pibuterol, reproterol, rimeterol, salbutamol, salmeterol, terbutalin, isethanore, tulobuterol, orcoprenaline or (-)-4-aminom-3,5-dichloro-α-[[6-[2-(pyridinyl)ethoxy]hexyl]-amino]benzenemethanol; diuretics, e.g. amiloride; anticholinergics e.g. ipratropium, atropine or oxitropium; hormones, e.g. cortisone, hydrocortisone or prednisolone; xanthines e.g. aminophylline, choline theophyllinate, lysine theophyllinate or theophylline; and therapeutic proteins and peptides, e.g. insulin or glucagon. It will be clear to a person skilled in the art that, where appropriate, the medicaments may be used in the form of salts (e.g. as alkali metal or amine salts or as acid addition salts) or as esters (e.g. lower alkyl esters) or as solvates (e.g. hydrates) to optimize the activity and/or stability of the medicament.

[00397] Other exemplary therapeutic agents useful for a combination therapy include but are not limited to agents as described above, radiation therapy, hormone antagonists, hormones and their releasing factors, thyroid and antithyroid drugs, estrogens and progestins, androgens, adrenocorticotropic hormone; adrenocortical steroids and their synthetic analogs; inhibitors of the synthesis and actions of adrenocortical hormones, insulin, oral hypoglycemic agents, and the pharmacology of the endocrine pancreas, agents affecting calcification and bone turnover: calcium, phosphate, parathyroid hormone, vitamin D, calcitomin, vitamins such as water-soluble vitamins, vitamin B complex, ascorbic acid, fat-soluble vitamins, vitamins A, K, and E, growth factors, cytokines, chemokines, muscarinic receptor agonists and antagonists; anticholinesterase agents; agents acting at the neuromuscular junction and/or autonomic ganglia; catecholamines, sympathomimetic drugs, and adrenergic receptor agonists or antagonists; and 5-hydroxytryptamine (5-HT, serotonin) receptor agonists and antagonists.

[00398] Therapeutic agents can also include agents for pain and inflammation such as histamine and histamine antagonists, bradykinin and bradykinin antagonists, 5-hydroxytryptamine (serotonin), lipid substances that are generated by biotransformation of the products of the selective hydrolysis of membrane phospholipids, eicosanoids, prostaglandins, thromboxanes, leukotrienes, aspirin, nonsteroidal anti-inflammatory agents, analgesic-antipyretic agents, agents that inhibit the synthesis of prostaglandins and thromboxanes, selective inhibitors of the inducible cyclooxygenase, selective inhibitors of the inducible cyclooxygenase-2, autacoids, paracrine hormones, somatostatin, gastrin, cytokines that mediate interactions involved in humoral and cellular immune responses, lipid-derived autacoids, eicosanoids, β-adrenergic agonists, ipratropium, glucocorticoids, methylxanthines, sodium channel blockers, opioid receptor agonists, calcium channel blockers, membrane stabilizers and leukotriene inhibitors.
Additional therapeutic agents contemplated herein include diuretics, vasopressin, agents affecting the renal conservation of water, rennin, angiotensin, agents useful in the treatment of myocardial ischemia, anti-hypertensive agents, angiotensin converting enzyme inhibitors, \(\beta \)-adrenergic receptor antagonists, agents for the treatment of hypercholesterolemia, and agents for the treatment of dyslipidemia.

Other therapeutic agents contemplated include drugs used for control of gastric acidity, agents for the treatment of peptic ulcers, agents for the treatment of gastroesophageal reflux disease, prokinetic agents, anticonvulsants, agents used in irritable bowel syndrome, agents used for diarrhea, agents used for constipation, agents used for inflammatory bowel disease, agents used for biliary disease, agents used for pancreatic disease. Therapeutic agents used to treat protozoan infections, drugs used to treat Malaria, Amebiasis, Giardiasis, Trichomoniasis, Trypanosomiasis, and/or Leishmaniasis, and/or drugs used in the chemotherapy of helminthiasis. Other therapeutic agents include antimicrobial agents, sulfonamides, trimethoprim-sulfamethoxazole quinolones, and agents for urinary tract infections, penicillins, cephalosporins, and other, \(\beta \)-Lactam antibiotics, an agent comprising an aminoglycoside, protein synthesis inhibitors, drugs used in the chemotherapy of tuberculosis, mycobacterium avium complex disease, and leprosy, antifungal agents, antiviral agents including nonnucleoside agents and antiretroviral agents.

Examples of therapeutic antibodies that can be combined with a subject compound include but are not limited to anti-receptor tyrosine kinase antibodies (etuximab, panitumumab, trastuzumab), anti CD20 antibodies (rituximab, tositumomab), and other antibodies such as alemtuzumab, bevacizumab, and gemtuzumab.

Moreover, therapeutic agents used for immunomodulation, such as immunomodulators, immunosuppressive agents, tolerogens, and immunostimulants are contemplated by the methods herein. In addition, therapeutic agents acting on the blood and the blood-forming organs, hematopoietic agents, growth factors, minerals, and vitamins, anticoagulant, thrombolytic, and antiplatelet drugs.

Further therapeutic agents that can be combined with a subject compound may be found in Goodman and Gilman’s “The Pharmacological Basis of Therapeutics” Tenth Edition edited by Hardman, Limbird and Gilman or the Physician’s Desk Reference.

The compounds described herein can be used in combination with the agents disclosed herein or other suitable agents, depending on the condition being treated. Hence, in some embodiments the compounds of the invention will be co-administer with other agents as described above. When used in combination therapy, the compounds described herein may be administered with the second agent simultaneously or separately. This administration in combination can include simultaneous administration of the two agents in the same dosage form, simultaneous administration in separate dosage forms, and separate administration. That is, a compound described herein and any of the agents described above can be formulated together in the same dosage form and administered simultaneously. Alternatively, a compound of the present invention and any of the agents described above can be simultaneously administered, wherein both the agents are present in separate formulations. In another alternative, a compound of the present invention can be administered just followed by and any of the agents described above, or vice versa. In the separate administration protocol, a compound of the present invention and any of the agents described above may be administered a few minutes apart, or a few hours apart, or a few days apart.

The examples and preparations provided below further illustrate and exemplify the compounds of the present invention and methods of preparing such compounds. It is to be understood that the scope of the present invention is not limited in any way by the scope of the following examples and preparations. In the following examples molecules with a single chiral center, unless otherwise noted, exist as a racemic mixture. Those molecules with two or more chiral centers, unless otherwise noted, exist as a racemic mixture of diastereomers. Single enantiomers/diastereomers may be obtained by methods known to those skilled in the art.
EXAMPLES

Example 1: Synthesis of 3-((4-amino-3-(3-hydroxyphenyl)-1H-pyrazolo[3,4-d]pyrimidin-1-yl)methyl)-8-methyl-2-o-tolylisoquinolin-1(2H)-one (Compound 1613) (method A).

Scheme 12. Synthesis of 3-((4-amino-3-(3-hydroxyphenyl)-1H-pyrazolo[3,4-d]pyrimidin-1-yl)methyl)-8-methyl-2-o-tolylisoquinolin-1(2H)-one (Compound 1613).

[00406] A solution of 2-amino-6-methylbenzoic acid (1601) (106.5 g, 705 mmol) in H₂O (200 mL) was cooled to 0-5 °C, con. HCl (250 mL) was added slowly. The solution was stirred for 15 min at 0-5 °C. A solution of sodium nitrite (58.4 g, 6.85 mol) in H₂O (120 mL) was added dropwise at 0-5 °C, and the resulting mixture was stirred for 30 min.

Then above solution was added to a solution of KI (351 g, 2.11 mol) in H₂O (200 mL), and the resulting mixture was stirred at RT for 16 h. The solution was poured into ice water (2000 mL) and extracted with ethyl acetate (3 x 1000 mL). The combined organic layer was washed with aqueous NaOH (15%, 3 x 200 mL). The aqueous layer was acidified to pH = 1, and extracted with ethyl acetate (3 x 1000 mL). The combined organic layer was dried over
Na$_2$SO$_4$ and filtered. The filtrate was concentrated in vacuo to afford the desired product, 2-ido-6-methylbenzoic acid (1602) (145 g, 79% yield) as a yellow solid.

[00407] To a stirred mixture of 2-ido-6-methylbenzoic acid (1602) (105 g, 400 mmol), Pd(OAc)$_2$ (27 g, 120 mmol) and PPh$_3$ (63 g, 240 mol) in THF (1000 mL) at RT, tributyl(vinyl)tin (152 g, 480 mmol) was added. The resulting mixture was heated to reflux overnight. The mixture was allowed to cool to RT, filtered through silica gel (10 g), and then concentrated in vacuo. The residue was poured into ice water (1000 mL) and extracted with ethyl acetate (3 x 1000 mL). The combined organic layer was washed with aqueous NaOH (15%, 5 x 200 mL). The combined aqueous layer was acidified to pH = 1, extracted with ethyl acetate (3 x 1000 mL). The combined organic layer was dried over Na$_2$SO$_4$ and filtered. The filtrate was concentrated in vacuo to afford the desired product, 2-methyl-6-vinylbenzoic acid (1603) (61 g, 95% yield) as a yellow solid.

[00408] A mixture of 2-methyl-6-vinylbenzoic acid (1603) (56 g, 350 mmol) and thionyl chloride (208 g, 1750 mmol) in toluene (400 mL) was stirred at reflux for 2 h. The mixture was concentrated in vacuo to afford the desired product, 2-methyl-6-vinylbenzyl chloride (1604) (63 g, 95% yield) as a yellow oil. The product obtained was used directly in the next step without purification.

[00409] A mixture of o-toluidine (45 g, 420 mmol) and Triethylamine (71 g, 70 mmol) in CH$_2$Cl$_2$ (300 mL) was stirred for 10 min at RT. To this mixture, 2-methyl-6-vinylbenzyl chloride (1604) (63 g, 35 mmol) was added, and the resulting mixture was stirred at RT for 30 min. The solution was poured into water (300 mL) and extracted with CH$_2$Cl$_2$ (3 x 200 mL), dried over Na$_2$SO$_4$ and filtered. The filtrate was concentrated in vacuo to afford the crude product. The crude product was suspended in IPE (isopropyl ether) (300 mL), stirred at reflux for 30 min, and then cooled to 0 - 5°C. The precipitate was collected by filtration and further dried in vacuo to afford the desired product, 2-methyl-N-o-tolyl-6-vinylbenzamide (1605) (81 g, 80% yield) as a yellow solid.

[00410] To a solution of 2-methyl-N-o-tolyl-6-vinylbenzamide (1605) (80 g, 320 mmol) in DMF (250 mL) at RT, NaH (60% in mineral oil, 25.6 g, 640 mmol) was slowly added and the resulting mixture was stirred at RT for 30 min. To this mixture, ethyl chloroacetate (78 g, 640 mmol) was added and the resulting mixture was stirred at RT for 2 h.

The solution was poured into water (500 mL) and extracted with ethyl acetate (3 x 200 mL), dried over Na$_2$SO$_4$ and filtered. The filtrate was concentrated in vacuo. The crude product was suspended in MeOH (160 mL), stirred at reflux for 10 min, and then cooled to 0 - 5°C. The precipitate was collected by filtration and further dried in vacuo to afford the desired product, ethyl 2-(2-methyl-N-o-tolyl-6-vinylbenzamido) acetate (1606) (67 g, 62% yield) as a white solid.

[00411] To a stirred mixture of ethyl 2-(2-methyl-N-o-tolyl-6-vinylbenzamido) acetate (1606) (67 g, 200 mmol) in 1,4-dioxane (300 mL) and H$_2$O (100 mL) at RT, Osmium tetroxide (20 mg) was added and stirred at RT for 30 min. To this mixture, sodium periodate (86 g, 400 mmol) was added and the resulting mixture was stirred at RT for 16 h. The reaction mixture was filtered through silica gel (10 g), the filtrate was extracted with ethyl acetate (3 x 200 mL). The combined organic layers were washed with brine (100 mL), dried over Na$_2$SO$_4$ and filtered. The filtrate was concentrated in vacuo and the residue was further dried in vacuo to afford the desired product, ethyl 2-(formyl-6-methyl-N-o-tolylbenzamido) acetate (1607) (38 g, 57% yield) as a yellow solid.

[00412] To a stirred solution of ethyl 2-(formyl-6-methyl-N-o-tolylbenzamido) acetate (1607) (38 g, 112 mmol) in EtOH (200 mL) and ethyl acetate (100 mL) at RT, cesium carbonate (22 g, 112 mmol) was added. The resulting mixture was degassed and back-filled with argon three times and then stirred at 50°C for 5 h. The mixture was allowed to cool to RT, filtered through silica gel (10 g), and the filtrate was concentrated in vacuo. The residue was poured into H$_2$O (200 mL), extracted with ethyl acetate (3 x 200 mL). The combined organic layer was washed with brine (50 mL), dried over Na$_2$SO$_4$ and filtered. The filtrate was concentrated in vacuo. The crude product was
suspended in IPE (120 mL), heated to reflux for 10 min, and then cooled to 0 - 5°C. The precipitate was collected by filtration and further dried in vacuo to afford the desired product, ethyl 8-methyl-1-oxo-2-o-tolyl-1,2-dihydroisooquinoline-3-carboxylate (1608) (28 g, 77% yield) as a white solid.

[00413] To a stirred solution of lithium aluminum hydride (8.28 g, 218 mol) in anhydrous THF (500 mL) at -78°C under a nitrogen atmosphere, ethyl 8-methyl-1-oxo-2-o-tolyl-1,2-dihydroisooquinoline-3-carboxylate (1608) (28 g, 87 mmol) was slowly added over a 10 min period of time. The resulting mixture was allowed to warm to -30°C, stirred for 30 min and TLC showed the completion of the reaction. Then the mixture was cooled to -78°C, and water (50 mL) was slowly added. The mixture was allowed to warm to RT, filtered through silica gel (10 g), and the filtrate was concentrated in vacuo. The crude product was poured into H2O (200 mL) and extracted with ethyl acetate (3 x 200 mL). The combined organic layer was washed with brine (50 mL), dried over Na2SO4 and filtered. The filtrate was concentrated in vacuo. The crude product was suspended in ethyl acetate (30 mL) and stirred for 10 min. The solid was collected by filtration and further dried in vacuo to afford the desired product, 3-(hydroxymethyl)-8-methyl-2-o-tolylisooquinolin-1(2H)-one (1609) (22 g, 92% yield) as a white solid.

[00414] PBr3 (25.6 g, 95 mmol) was slowly added to a stirred solution of DMF (11.5 g, 158 mol) in acetonitrile (200 mL) at 0°C, and the resulting mixture was stirred at 0°C for 30 min. 3-(Hydroxymethyl)-8-methyl-2-o-tolylisooquinolin-1-(2H)-one (1609) (22 g, 78.8 mmol) was slowly added. Then the reaction mixture was allowed to warm to RT and stirred for 30 min. Saturated aqueous NaHCO3 solution (50 mL) was slowly added and extracted with ethyl acetate (3 x 200 mL). The combined organic layer was washed with brine, dried over Na2SO4 and filtered. The filtrate was concentrated in vacuo. The crude product was suspended in IPE (50 mL) and then stirred for 10 min. The precipitate was collected by filtration and further dried in vacuo to afford the desired product, 3-(bromomethyl)-8-methyl-2-o-tolylisooquinolin-1(2H)-one (1610) (21 g, 80% yield) as a white solid.

[00415] 3-Iodo-1H-pyrazolo[3,4-d]pyrimidin-4-amine (108) (10.8 g, 41.4 mmol) and potassium tert-butoxide (4.4 g, 40 mmol) were dissolved in anhydrous DMF (150 mL) and stirred at RT for 30 min. 3-(Bromomethyl)-8-methyl-2-o-tolylisooquinolin-1(2H)-one (1610) (13.7 g, 40 mmol) was added. The resulting mixture was stirred at RT for 30 min, poured into ice water (300 mL) and then extracted with ethyl acetate (3 x 200 mL). The combined organic layer was washed with brine (50 mL), dried over Na2SO4 and filtered. The filtrate was concentrated to about 100 mL in vacuo, the precipitate was collected by filtration to afford the first batch of desired product, 3-((4-amino-3-iolo-1H-pyrazolo[3,4-d]pyrimidin-1-yl)methyl)-8-methyl-2-o-tolylisooquinolin-1(2H)-one (1611) (12 g, 60% yield) as a white solid. The filtrate was concentrated in vacuo and the residue was purified by flash column chromatography on silica gel (2-20% MeOH/DCM) to afford the second batch of desired product, 3-((4-amino-3-iolo-1H-pyrazolo[3,4-d]pyrimidin-1-yl)methyl)-8-methyl-2-o-tolylisooquinolin-1(2H)-one (1611) (6 g, 30% yield) as a white solid.

[00416] 3-((4-amino-3-iolo-1H-pyrazolo[3,4-d]pyrimidin-1-yl)methyl)-8-methyl-2-o-tolylisooquinolin-1(2H)-one (1611) (13 g, 24.9 mmol) and 3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenol (1612) (6.6 g, 30 mmol) were dissolved in DMF-EtOH-H2O (120 mL, 40 mL, 40 mL). Pd(OAc)2 (1.684 g, 7.5 mmol), PPh3 (3.935 g 15 mmol) and Na2CO3 (13.25 g 125 mmol) were added sequentially. The resulting mixture was degassed and back-filled with argon three times and then stirred at 100°C for 1h. The mixture was allowed to cool to RT, filtered through silica gel (10 g) and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel (2-20% MeOH/DCM) to afford the product (1613) (9 g, 76% yield) as a slightly yellow solid. Then above product was suspended in EtOH (100 mL) and heated to reflux for 30 min. The mixture was allowed to cool to RT, and the solid was collected by filtration. The solid was then suspended in EA (100 mL) and stirred overnight. The precipitate was collected by filtration and further dried in vacuo to afford the desired product, 3-((4-amino-3-(3-hydroxyphenyl)-1H-
Example 2: Synthesis of 3-((4-amino-3-(3-hydroxyphenyl)-1H-pyrazolo[3,4-d]pyrimidin-1-yl)methyl)-8-methyl-2-o-tolylosoquinolin-1(2H)-one (1613) (8.4 g, 69% yield) as a white solid.

Scheme 13. Synthesis of 3-((4-amino-3-(3-hydroxyphenyl)-1H-pyrazolo[3,4-d]pyrimidin-1-yl)methyl)-8-methyl-2-o-tolylosoquinolin-1(2H)-one (Compound 1613) via method B is described.

[00417] 3-(3-Methoxyphenyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine (1701) (964 mg, 4 mmol) and potassium tert-butoxide (0.44 g, 4 mmol) were dissolved in anhydrous DMF (150 mL) and stirred at RT for 30 min. 3-(Bromomethyl)-8-methyl-2-o-tolylosoquinolin-1(2H)-one (1610) (1.37 g, 4.0 mmol) was added. The resulting mixture was stirred at RT for 30 min, poured into ice water (30 mL) and then extracted with ethyl acetate (3 x 50 mL). The combined organic layer was washed with brine (25 mL), dried over Na2SO4 and filtered. The filtrate was concentrated

in vacuo and the residue was purified by flash column chromatography on silica gel (2-20% MeOH/DCM) to afford the desired product, 3-((4-amino-3-(3-methoxyphenyl)-1H-pyrazolo[3,4-d]pyrimidin-1-yl)methyl)-8-methyl-2-o-tolylosoquinolin-1(2H)-one (1702) (1.4 g, 70% yield) as a white solid.

[00418] To a solution of 3-((4-amino-3-(3-methoxyphenyl)-1H-pyrazolo[3,4-d]pyrimidin-1-yl)methyl)-8-methyl-2-o-tolylosoquinolin-1(2H)-one (1702) (100 mg, 0.2 mmol) in CH2Cl2 (20 mL) at -78 °C under a nitrogen atmosphere, BBr3 (1 mL) was added and the resulting mixture was stirred at -78 °C for 3 h. The mixture was allowed to warm to RT, poured into ice-water (200 mL) and extracted with ethyl acetate (3 x 50 mL). The combined organic layer was washed with brine (20 mL), dried over Na2SO4 and filtered. The filtrate was concentrated

in vacuo and the residue was purified by flash column chromatography on silica gel (10-50% MeOH/CH2Cl2) to afford the desired product, 3-((4-amino-3-(3-hydroxyphenyl)-1H-pyrazolo[3,4-d]pyrimidin-1-yl)methyl)-8-methyl-2-o-tolylosoquinolin-1(2H)-one (1613) (87 mg, 91% yield) as a white solid.

Example 3: Synthesis of (R)-3-((4-amino-3-(3-hydroxybut-1-ynyl)-1H-pyrazolo[3,4-d]pyrimidin-1-yl)methyl)-8-methyl-2-o-tolylosoquinolin-1(2H)-one (Compound 1802).

Scheme 14. Synthesis of (R)-3-((4-amino-3-(3-hydroxybut-1-ynyl)-1H-pyrazolo[3,4-d]pyrimidin-1-yl)methyl)-8-methyl-2-o-tolylosoquinolin-1(2H)-one (Compound 1802) is described.
WO 2009/088986

[00419] 3-((4-amo-3-ido-1H-pyrazolo[3,4-d]pyrimidin-1-yl)methyl)-8-methyl-2-o-tolydisoquinolin-1(2H)-one (1611) (522 mg, 1 mmol) and (R)-but-3-yn-2-ol (84 mg, 1.2 mmol) were dissolved in anhydrous THF (40 mL). The mixture was degassed and back-filled with nitrogen three times. Pd(PPh3)4Cl2 (12 mg, 0.1 mmol), CuI (47 mg 0.25 mmol) and (i-Pr)2NH (505 mg, 5 mmol) were added sequentially. The resulting mixture was degassed and back-filled with argon three times and then stirred for reflux for 4h. The mixture was allowed to cool to RT, filtered through silica gel (10 g) and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel (2-20% MeOH/DCM) to afford the product, 3-(R)-3-((4-amo-3-3-hydroxybut-1-ynyl)-1H-pyrazolo[3,4-d]pyrimidin-1-yl)methyl)-8-methyl-2-o-tolydisoquinolin-1(2H)-one (1802) (324 mg, 70% yield) as a slightly yellow solid.

Scheme 15. Synthesis of 3-((6-amo-9H-purin-9-yl)methyl)-8-methyl-2-o-tolydisoquinolin-1(2H)-one (Compound 1902) is described.

[00420] 9H-Purin-6-amine (1901) (540 mg, 4.0 mmol) was dissolved in anhydrous DMF (20 mL). NaH (60% in mineral oil, 160 mg, 4.0 mmol) was added and the resulting mixture was stirred at RT for 30 min. 3-(Bromomethyl)-8-methyl-2-o-tolydisoquinolin-1(2H)-one (1610) (1.37 g, 4.0 mmol) was added. The reaction mixture was stirred at RT for 30 min, poured into ice-water (30 mL) and then extracted with ethyl acetate (3 x 50 mL). The combined organic layer was washed with brine (25 mL), dried over Na2SO4 and filtered. The filtrate was concentrated in vacuo and the residue was purified by flash column chromatography on silica gel (2-20% MeOH/DCM) to afford the desired product, 3-((6-amo-9H-purin-9-yl)methyl)-8-methyl-2-o-tolydisoquinolin-1(2H)-one (1902) (1.1 g, 70% yield) as a white solid.

Example 5: Synthesis of 3-((4-amo-3-(3-hydroxyphenyl)-1H-pyrazolo[3,4-d]pyrimidin-1-yl)methyl)-2-isopropyl-8-methylisoquinolin-1(2H)-one (Compound 2013).

Scheme 16. Synthesis of 3-((4-amo-3-(3-hydroxyphenyl)-1H-pyrazolo[3,4-d]pyrimidin-1-yl)methyl)-2-isopropyl-8-methylisoquinolin-1(2H)-one (Compound 2010) is described.
To a stirred mixture of 2-iodo-6-methylbenzoic acid (1602) (105 g, 400 mmol), Pd(OAc)$_2$ (27 g, 120 mmol) and PPh$_3$ (63 g 240 mol) in THF (1000 mL) at RT, tributyl(vinyl)tin (152 g, 480 mmol) was added. The resulting mixture was heated to reflux overnight. The mixture was allowed to cool to RT, filtered through silica gel (10 g), and then concentrated in vacuo. The residue was poured into ice water (1000 mL) and extracted with ethyl acetate (3 x 1000 mL). The combined organic layer was washed with aqueous NaOH (15%, 5 x 200 mL). The combined aqueous layer was acidified to pH = 1, extracted with ethyl acetate (3 x 1000 mL). The combined organic layer was dried over Na$_2$SO$_4$ and filtered. The filtrate was concentrated in vacuo to afford the desired product, 2-methyl-6-vinylbenzoic acid (1603) (61 g, 95% yield) as a yellow solid.

A mixture of 2-methyl-6-vinylbenzoic acid (1603) (56 g, 350 mmol) and thionyl chloride (208 g, 1750 mmol) in toluene (400 mL) was stirred at reflux for 2h. The mixture was concentrated in vacuo to afford the desired product, 2-methyl-6-vinylbenzoyl chloride (1604) (63 g, 95% yield) as a yellow oil. The product obtained was used directly in the next step without purification.

Propan-2-amine (2001)(59 g, 1.0 mol) and ethyl chloroacetate (122 g, 1.0 mol) were dissolved in toluene (200 mL) and the mixture was stirred at reflux for 2h. The reaction mixture was allowed to cool to RT, poured into ice-water (500 mL) and extracted with ethyl acetate (3 x 250 mL). The combined organic layer was washed with brine (50 mL), dried over Na$_2$SO$_4$ and filtered. The filtrate was concentrated in vacuo and the residue was purified by flash column chromatography on silica gel (10-50% EA/PE) to afford the product, ethyl 2-((isopropylamino)acetate (2002) (70 g, 51% yield) as an oil.

Ethyl 2-((isopropylamino)acetate (2002) (14.5 g, 100 mmol) and triethylamine (200 g, 200 mmol) were dissolved in CH$_2$Cl$_2$ (300 mL) and the mixture was stirred for 10 min at RT. 2-Methyl-6-vinylbenzoyl chloride (1604) (18 g, 100 mmol) was added, and the resulting mixture was stirred at RT for 30 min. The reaction mixture was poured into water (300 mL) and extracted with CH$_2$Cl$_2$ (3 x 200 mL). The combined organic layer was washed with brine (50 mL), dried over Na$_2$SO$_4$ and filtered. The filtrate was concentrated in vacuo to afford the crude product. The crude product was suspended in IPE (isopropyl ether) (300 mL), stirred at reflux for 30 min, and then cooled to 0-5°C. The precipitate was collected by filtration and further dried in vacuo to afford the desired product, ethyl 2-((N-isopropyl-2-methyl-6-vinylbenzamido)acetate (2003) (14.5 g, 50% yield) as a yellow solid.
[00425] To a stirred solution of ethyl 2-(N-isopropyl-2-methyl-6-vinylbenzamido)acetate (2003) (14.0 g, 48.0 mmol) in 1,4-dioxane (100 mL) and H₂O (30 mL), Osmium tetroxide (20 mg) was added and the resulting mixture was stirred at RT for 30 min. To this mixture, sodium periodate (22 g, 100 mmol) was added and then stirred at RT for 16 h. The reaction mixture was filtered through silica gel (10 g), the filtrate was extracted with ethyl acetate (3 x 200 mL). The combined organic layer was washed with brine (50 mL), dried over Na₂SO₄ and filtered. The filtrate was concentrated in vacuo and the residue was further dried in vacuo to afford the desired product, ethyl 2-(2-formyl-N-isopropyl-6-methylbenzamido)acetate (2004) (8.33 g, 57% yield) as a yellow solid.

[00426] To a stirred solution of ethyl 2-(2-formyl-N-isopropyl-6-methylbenzamido)acetate (2004) (8.3 g, 28.0 mmol) in EtOH (100 mL) and ethyl acetate (50 mL) at RT, cesium carbonate (5.9 g, 30 mmol) was added. The resulting mixture was degassed and back-filled with argon three times and then stirred at 50°C for 5 h. The mixture was allowed to cool to RT, filtered through silica gel (10 g), and the filtrate was concentrated in vacuo. The residue was poured into H₂O (200 mL), extracted with ethyl acetate (3 x 200 mL). The combined organic layer was washed with brine (50 mL), dried over Na₂SO₄ and filtered. The filtrate was concentrated in vacuo. The crude product was suspended in IPE (120 mL), stirred at reflux for 10 min, and then cooled to 0-5°C. The precipitate was collected by filtration and further dried in vacuo to afford the desired product, ethyl 2-isopropyl-8-methyl-1-oxo-1,2-dihydroisoquinoline-3-carboxylate (2005) (5.35 g, 70% yield) as a white solid.

[00427] To a stirred solution of lithium aluminum hydride (2.88 g, 76 mol) in anhydrous THF (200 mL) at -78°C under a nitrogen atmosphere, ethyl 2-isopropyl-8-methyl-1-oxo-1,2-dihydroisoquinoline-3-carboxylate (2005) (5.2 g, 19 mmol) was slowly added over a 10 min period of time. The resulting mixture was allowed to warm to -30°C, stirred for 30 min and TLC showed the completion of the reaction. Then the mixture was cooled to -78°C, and water (50 mL) was slowly added. The mixture was allowed to warm to RT, filtered through silica gel (10 g), and the filtrate was concentrated in vacuo. The crude product was poured into H₂O (200 mL) and extracted with ethyl acetate (3 x 200 mL). The combined organic layer was washed with brine (50 mL), dried over Na₂SO₄ and filtered. The filtrate was concentrated in vacuo. The crude product was suspended in ethyl acetate (30 mL) and stirred for 10 min. The solid was collected by filtration and further dried in vacuo to afford the desired product, 3-(hydroxymethyl)-2-isopropyl-8-methylisoquinolin-1(2H)-one (2006) (3.51 g, 80% yield) as a white solid.

[00428] To a solution of 3-(hydroxymethyl)-2-isopropyl-8-methylisoquinolin-1(2H)-one (2006) (1.61 g, 7.0 mmol) in CH₂Cl₂, PPh₃ (3.67 g, 14.0 mmol) was added and the mixture was stirred at RT for 30 min. The mixture was cooled to 0°C, and CBr₄ (4.64 g, 14.0 mmol) was added in portions. The resulting mixture was stirred from 0°C to RT for 30 min, and then concentrated in vacuo. The crude product was purified by flash column chromatography on silica gel (30-50% EA/PE) to afford the desired product, 3-(bromomethyl)-2-isopropyl-8-methylisoquinolin-1(2H)-one (2007) (1.65 g, 80% yield) as a white solid.

[00429] A mixture of 3-ido-1H-pyrazolo[3,4-d]pyrimidin-4-amine (108) (1.3 g, 5 mmol) and potassium tert-butoxide (0.55 g, 5 mmol) in anhydrous DMF (20 mL) was stirred at RT for 30 min and then 3-(bromomethyl)-2-isopropyl-8-methylisoquinolin-1(2H)-one (2007) (1.47 g, 5 mmol) was added. The resulting mixture was stirred at RT for 30 min, poured into ice-water (30 mL) and then extracted with ethyl acetate (3 x 50 mL). The combined organic layer was washed with brine (25 mL), dried over Na₂SO₄ and filtered. The filtrate was concentrated in vacuo, and the residue was purified by flash column chromatography on silica gel (2-20% MeOH/DCM) to afford the desired product, 3-((4-amino-3-ido-1H-pyrazolo[3,4-d]pyrimidin-1-yl)methyl)-2-isopropyl-8-methylisoquinolin-1(2H)-one (2008) (1.66 g, 70% yield) as a white solid.

[00430] To a stirred mixture of 3-((4-Amino-3-ido-1H-pyrazolo[3,4-d]pyrimidin-1-yl)methyl)-2-isopropyl-8-methylisoquinolin-1(2H)-one (2008) (95 mg, 0.2 mmol) and 3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenol (84)
FO 2009/088986

(66 mg, 0.3 mmol) in DMF-EtOH-H$_2$O (3:1:1, 20 mL), Pd(OAc)$_2$ (16 mg, 0.075 mmol), PPh$_3$ (39.3 mg 0.15 mmol) and Na$_2$CO$_3$ (132 mg, 1.25 mmol) were added sequentially. The resulting mixture was degassed and back-filled with argon three times and then stirred at 100 °C for 1 h. The mixture was allowed to cool to RT, filtered through silica gel (10 g) and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel (2-20% MeOH/DCM) to afford the product, 3-((4-amino-3-(3-hydroxyphenyl)-1H-pyrazolo[3,4-d]pyrimidin-1-yl)methyl)-2-isopropyl-8-methylisoquinolin-1(2H)-one (2009) (53 mg, 61% yield) as a slightly yellow solid.

Example 6: Synthesis of 8-methyl-3-(((methyl(9H-purin-6-yl)amo)methyl)-2-o-tolyisoquinolin-1(2H)-one.

Scheme 17. The synthesis of 8-methyl-3-(((methyl(9H-purin-6-yl)amo)methyl)-2-o-tolyisoquinolin-1(2H)-one (Compound 4004) is described.

[00431] 3-(Bromomethyl)-8-methyl-2-o-tolyisoquinolin-1(2H)-one (342 mg, 1.0 mmol) 1610 was dissolved in methylamine solution (100 mL) and stirred for 2 h. The mixture was poured into ice-water (200 mL) and extracted with ethyl acetate (3 x 50 mL). The combined organic layer was washed with brine (20 mL), dried over Na$_2$SO$_4$ and filtered. The filtrate was concentrated in vacuo to afford the desired product, 8-methyl-3-(((methylamino)methyl)-2-o-tolyisoquinolin-1(2H)-one (4001) (250 mg, 86% yield) as a yellow solid. The product obtained was used directly in the next step without purification.

[00432] 8-Methyl-3-(((methylamino)methyl)-2-o-tolyisoquinolin-1(2H)-one (233 mg, 0.8 mmol) (4001) and 6-chloro-9-(tetrahydro-2H-pyran-2-yl)-9H-purine (4002) (238 mg, 1.0 mmol) were dissolved in EtOH (50 mL) and the resulting mixture was stirred at reflux for 2 h. The mixture was allowed to cool to RT, and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel (2-20% MeOH/DCM) to afford the product, 8-Methyl-3-(((methyl(9-(tetrahydro-2H-pyran-2-yl)-9H-purin-6-yl)amo)methyl)-2-o-tolyisoquinolin-1(2H)-one (4003) (200 mg, 51% yield) as a slight yellow solid.

[00433] 8-Methyl-3-(((methyl(9-(tetrahydro-2H-pyran-2-yl)-9H-purin-6-yl)amo)methyl)-2-o-tolyisoquinolin-1(2H)-one (4003) (180 mg 0.36 mmol) was dissolved in MeOH (HCl) (50 mL) and the mixture was stirred at RT for 2 h. Aqueous NaHCO$_3$ solution was added to the reaction mixture and the pH value was adjusted to 9. The mixture was
filtered and the filtrate was concentrated *in vacuo* to afford the desired product, 8-methyl-3-((methyl(9H-purin-6-yl)amino)methyl)-2-o-tolylisoquinolin-1(2H)-one (4004) (80 mg, 54% yield) as a yellow solid.

Example 7: Synthesis of 3-(1H-purin-6-ylamino)ethyl)-8-methyl-2-o-tolylisoquinolin-1(2H)-one.

Scheme 18. The synthesis of 3-(1H-purin-6-ylamino)ethyl)-8-methyl-2-o-tolylisoquinolin-1(2H)-one (Compound 4106) is described.

[00434] To a stirred solution of 3-(hydroxymethyl)-8-methyl-2-o-tolylisoquinolin-1(2H)-one 1609 (2.79 g, 10 mmol) in CH₂Cl₂ (200 mL), MnO₂ (5 g) was added and the resulting mixture was stirred at reflux for 3 h. The mixture was allowed to cool to RT, and concentrated *in vacuo*. The residue was purified by flash column chromatography on silica gel (10-50% EA/PE) to afford the product, 8-methyl-1-oxo-2-o-tolyl-1,2-dihydroisoquinoline-3-carbaldehyde 4101 (2.5 g, 90% yield) as a white solid.

[00435] 8-Methyl-1-oxo-2-o-tolyl-1,2-dihydroisoquinoline-3-carbaldehyde 4101 (2.4 g, 8.6 mmol) was dissolved in anhydrous THF (280 mL) and cooled to -78°C under a nitrogen atmosphere. Methyl MgBr (2 M, 5 mL, 10 mmol) was added slowly, and the resulting mixture was stirred at -78°C for 2 h. H₂O (5 mL) was added and then the solution was poured into ice-water (200 mL) and extracted with ethyl acetate (3 x 50 mL). The combined organic layer was washed with brine, dried over Na₂SO₄ and filtered. The filtrate was concentrated *in vacuo*, and the residue product was purified by flash column chromatography on silica gel (10-50% EA/PE) to afford the product, 3-(1-hydroxyethyl)-8-methyl-2-o-tolylisoquinolin-1(2H)-one 4102 (1.8 g, 71% yield) as a white solid.

[00436] To a solution of 3-(1-hydroxyethyl)-8-methyl-2-o-tolylisoquinolin-1(2H)-one 4102 (1.6 g, 5.5 mmol) in CH₂Cl₂, PPh₃ (2.88 g, 11.0 mmol) was added and the resulting mixture was stirred at RT for 30 min. Then CBr₄ (3.64 g, 11.0 mmol) was added in portions to the mixture at 0°C. The resulting mixture was allowed to warm to RT, stirred for 30 min, and concentrated *in vacuo*. The crude product was purified by flash column chromatography on silica gel (30-50% EA/PE) to afford the desired product, 3-(1-bromoethyl)-8-methyl-2-o-tolylisoquinolin-1(2H)-one 4103 (1.8 g, 91% yield) as a white solid.

[00437] To a stirred solution of 9-(tetrahydro-2H-pyran-2-yl)-9H-purin-6-amine 4103 (436 mg 2mmol) in anhydrous DMF (10 mL), NaH (60% in mineral oil, 77 mg, 2 mmol) was added and the mixture was stirred for 30 min. 3-(1-Bromoethyl)-8-methyl-2-o-tolylisoquinolin-1(2H)-one 4104 (700 mg, 2 mmol) was added. The mixture was stirred for 2 h, poured into ice-water (200 mL) and extracted with ethyl acetate (3 x 50 mL). The combined organic layer was...
washed with brine (20 mL), dried over Na₂SO₄ and filtered. The filtrate was concentrated in vacuo and the residue was purified by flash column chromatography on silica gel (10-50% MeOH/DCM) to afford the product, 8-methyl-3-((9-(tetrahydro-2H-pyran-2-yl)-9H-purin-6-ylamino)ethyl)-2-o-tolylisoquinolin-1(2H)-one 4105 (500 mg, 51% yield) as a white solid.

5. 8-Methyl-3-((9-(tetrahydro-2H-pyran-2-yl)-9H-purin-6-ylamino)ethyl)-2-o-tolylisoquinolin-1(2H)-one 4105 (180 mg, 0.36 mmol) was dissolved in MeOH (HCl) (50 mL) and stirred for 2 h. Aqueous NaHCO₃ solution was added to the reaction mixture and the pH value was adjusted to 9. The mixture was then filtered and the filtrate was concentrated in vacuo to afford the desired product, 3-(1-(9H-purin-6-ylamino)ethyl)-8-methyl-2-o-tolylisoquinolin-1(2H)-one 4106 (80 mg, 54% yield) as a yellow solid.

10. Example 8: Synthesis of 3-(4-amino-1-((8-methyl-1-oxo-2-o-tolyl-1,2-dihydroisoquinolin-3-yl)methyl)-1H-pyrazol[3,4-d]pyrimidin-3-yl)-5-fluorophenyl dihydrogen phosphate.

Scheme 19. The synthesis of 3-(4-amino-1-((8-methyl-1-oxo-2-o-tolyl-1,2-dihydroisoquinolin-3-yl)methyl)-1H-pyrazol[3,4-d]pyrimidin-3-yl)-5-fluorophenyl dihydrogen phosphate (Compound 4303) is described.

15. 3-(4-Amino-3-((3-fluoro-5-hydroxyphenyl)-1H-pyrazol[3,4-d]pyrimidin-1-yl)methyl)-8-methyl-2-o-tolylisoquinolin-1(2H)-one 4301 (250 mg, 0.5 mmol) was dissolved in anhydrous THF (15 mL) in a round bottom flask in dark (covered by aluminum foil) and cooled to 0°C under an argon atmosphere. CBr₄ (498 mg, 1.5 mmol) was added followed by diethylphosphate (129 µL, 1.0 mmol) and triethylamine (417 µL, 1.5 mmol). The resulting mixture was stirred in dark from 0°C to RT for 16 h. The mixture was then partitioned between ethyl acetate and brine. The organic layer was dried over Na₂SO₄, filtered and concentrated in vacuo. The residue was purified by column chromatography on silica gel eluting with methanol and dichloromethane to afford the desired product, 3-(4-amino-1-((8-methyl-1-oxo-2-o-tolyl-1,2-dihydroisoquinolin-3-yl)methyl)-1H-pyrazol[3,4-d]pyrimidin-3-yl)-5-fluorophenyl diethyl phosphate 4302 (200 mg, 62% yield) as an off-white solid.

20. 3-(4-Amino-1-((8-methyl-1-oxo-2-o-tolyl-1,2-dihydroisoquinolin-3-yl)methyl)-1H-pyrazol[3,4-d]pyrimidin-3-yl)-5-fluorophenyl diethyl phosphate 4302 (170 mg, 0.26 mmol) was dissolved in anhydrous CH₃CN (5 mL) and cooled to 0°C under an argon atmosphere. TMSBr (0.34 mL, 2.64 mmol) was slowly added via a syringe and the resulting mixture was stirred from 0°C to RT for 16 h. LC-MS showed small amount of staRT ing material left, additional amount of TMSBr (0.1 mL) was added and stirred at RT for 5 h. LC-MS showed the complete conversion. The mixture was concentrated in vacuo, and the residue was dissolved in Et₂O (10 mL) and H₂O (0.5 mL) and stirred for 30 min. The mixture was concentrated in vacuo to afford the desired product, 3-(4-amino-1-((8-methyl-1-oxo-2-o-tolyl-1,2-dihydroisoquinolin-3-yl)methyl)-1H-pyrazol[3,4-d]pyrimidin-3-yl)-5-fluorophenyl dihydrogen phosphate 4303 (140 mg, 91% yield).
Example 9: IC50 Values for Selected Compounds.

Table 3. *In Vitro* IC₅₀ data for selected compounds.

<table>
<thead>
<tr>
<th>IC₅₀(nM)</th>
<th>+ (greater than 10 microMolar)</th>
<th>++ (less than 10 microMolar)</th>
<th>+++ (less than 1 microMolar)</th>
<th>++++ (less than 100 nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1, 4, 5, 18, 38, 43, 60, 69, 169, 172, 192, 193, 194</td>
<td>2, 8, 9, 10, 11, 14, 15, 20, 22, 27, 28, 39, 41, 46, 47, 49, 51, 55, 58, 66, 70, 71, 73, 76, 78, 80, 93, 98, 99, 100, 103, 105, 107</td>
<td>3, 6, 7, 12, 13, 16, 19, 21, 23, 24, 25, 26, 29, 30, 31, 33, 36, 44, 45, 48, 50, 52, 53, 54, 56, 59, 62, 63, 64, 67, 68, 80</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>--------------</td>
<td></td>
<td>--------------</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>--------------</td>
<td></td>
<td>--------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8, 9, 10, 11, 14, 21, 22, 24, 26, 27, 28, 29, 34, 35, 36, 37, 38, 39, 40, 41, 42</td>
<td></td>
<td>3, 7, 63, 66, 84, 86, 89, 90, 97, 108, 113, 115, 152, 168, 171, 173, 185, 190</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B cell proliferation EC<sub>50</sub> (nM)</td>
<td>Compound No.</td>
<td>Compound No.</td>
<td>Compound No.</td>
<td>Compound No.</td>
</tr>
<tr>
<td>---</td>
<td>--------------</td>
<td>--------------</td>
<td>--------------</td>
<td>--------------</td>
</tr>
</tbody>
</table>
Table 4. Structures of the Compounds for the IC50 results described in Table 3.

<table>
<thead>
<tr>
<th>Structure</th>
<th>Structure</th>
<th>Structure</th>
<th>Structure</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compound 1</td>
<td>Compound 2</td>
<td>Compound 3</td>
<td>Compound 4</td>
<td>Compound 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compound 6</td>
<td>Compound 7</td>
<td>Compound 8</td>
<td>Compound 9</td>
<td>Compound 10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compound 11</td>
<td>Compound 12</td>
<td>Compound 13</td>
<td>Compound 14</td>
<td>Compound 15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compound 16</td>
<td>Compound 17</td>
<td>Compound 18</td>
<td>Compound 19</td>
<td>Compound 20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compound 21</td>
<td>Compound 22</td>
<td>Compound 23</td>
<td>Compound 24</td>
<td>Compound 25</td>
</tr>
<tr>
<td>Structure</td>
<td>Structure</td>
<td>Structure</td>
<td>Structure</td>
<td>Structure</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compound 51</td>
<td>Compound 52</td>
<td>Compound 53</td>
<td>Compound 54</td>
<td>Compound 55</td>
</tr>
<tr>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compound 56</td>
<td>Compound 57</td>
<td>Compound 58</td>
<td>Compound 59</td>
<td>Compound 60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compound 61</td>
<td>Compound 62</td>
<td>Compound 63</td>
<td>Compound 64</td>
<td>Compound 65</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compound 66</td>
<td>Compound 67</td>
<td>Compound 68</td>
<td>Compound 69</td>
<td>Compound 70</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compound 71</td>
<td>Compound 72</td>
<td>Compound 73</td>
<td>Compound 74</td>
<td>Compound 75</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structure</td>
<td>Structure</td>
<td>Structure</td>
<td>Structure</td>
<td>Structure</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structure</td>
<td>Compound 101</td>
<td>Compound 102</td>
<td>Compound 103</td>
<td>Compound 104</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>--------------</td>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Structure</th>
<th>Compound 106</th>
<th>Compound 107</th>
<th>Compound 108</th>
<th>Compound 109</th>
<th>Compound 110</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Structure</th>
<th>Compound 111</th>
<th>Compound 112</th>
<th>Compound 113</th>
<th>Compound 114</th>
<th>Compound 115</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Structure</th>
<th>Compound 116</th>
<th>Compound 117</th>
<th>Compound 118</th>
<th>Compound 119</th>
<th>Compound 120</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Structure</th>
<th>Compound 121</th>
<th>Compound 122</th>
<th>Compound 123</th>
<th>Compound 124</th>
<th>Compound 125</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structure</td>
<td>Structure</td>
<td>Structure</td>
<td>Structure</td>
<td>Structure</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structure</td>
<td>Structure</td>
<td>Structure</td>
<td>Structure</td>
<td>Structure</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td></td>
</tr>
</tbody>
</table>
|
Compound 151 |
Compound 152 |
Compound 153 |
Compound 154 |
Compound 155 |
|
Compound 156 |
Compound 157 |
Compound 158 |
Compound 159 |
Compound 160 |
|
Compound 161 |
Compound 162 |
Compound 163 |
Compound 164 |
Compound 165 |
|
Compound 166 |
Compound 167 |
Compound 168 |
Compound 169 |
Compound 170 |
|
Compound 171 |
Compound 172 |
Compound 173 |
Compound 174 |
Compound 175 |
|
Compound 176 |
Compound 177 |
Compound 178 |
Compound 179 |
Compound 180 |
Example 10: Expression and Inhibition Assays of p110α/p85α, p110β/p85α, p110δ/p85α, and p110γ.

Class I P13-Ks can be either purchased (p110α/p85α, p110β/p85α, p110δ/p85α from Upstate, and p110γ from Sigma) or expressed as previously described (Knight et al., 2004). IC50 values are measured using either a standard TLC assay for lipid kinase activity (described below) or a high-throughput membrane capture assay. Kinase reactions are performed by preparing a reaction mixture containing kinase, inhibitor (2% DMSO final concentration), buffer (25 mM HEPES, pH 7.4, 10 mM MgCl2), and freshly sonicated phosphatidylinositol (100 µg/ml). Reactions are initiated by the addition of ATP containing 10 µCi of γ-32P-ATP to a final concentration 10 or 100 µM and allowed to proceed for 5 minutes at room temperature. For TLC analysis, reactions are then terminated by the addition of 105 µl 1N HCl followed by 160 µl CHCl3:MeOH (1:1). The biphasic mixture is vortexed, briefly centrifuged, and the organic phase is transferred to a new tube using a gel loading pipette tip precoated with CHCl3. This extract is spotted on TLC plates and developed for 3 – 4 hours in a 65:35 solution of n-propanol:1M acetic acid. The TLC plates are then dried, exposed to a phosphorimager screen (Storm, Amersham), and quantitated. For each compound, kinase activity is measured at 10 – 12 inhibitor concentrations representing two-fold dilutions from the highest concentration tested (typically, 200 µM). For compounds showing significant activity, IC50 determinations are repeated two to four times, and the reported value is the average of these independent measurements.

Other commercial kits or systems for assaying P13-K activities are available. The commercially available kits or systems can be used to screen for inhibitors and/or agonists of P13-Ks including but not limited to PI 3-Kinase

Example 11: Expression and Inhibition Assays of Abl

The cross-activity or lack thereof of one or more compounds of the present invention against Abl kinase can be measured according to any procedures known in the art or methods disclosed below. For example, the compounds described herein can be assayed in triplicate against recombinant full-length Abl or Abl (T315I) (Upstate) in an assay containing 25 mM HEPES, pH 7.4, 10 mM MgCl2, 200 μM ATP (2.5 μCi of γ-32P-ATP), and 0.5 mg/mL BSA. The optimized Abl peptide substrate EAIYAAPFKKK is used as phosphoacceptor (200 μM). Reactions are terminated by spotting onto phosphocellulose sheets, which are washed with 0.5% phosphoric acid (approximately 6 times, 5-10 minutes each). Sheets are dried and the transferred radioactivity quantitated by phosphorimaging.

Example 12: Expression and Inhibition Assays of Hck

The cross-activity or lack thereof of one or more compounds of the present invention against Hck kinase can be measured according to any procedures known in the art or methods disclosed below. The compounds described herein can be assayed in triplicate against recombinant full-length Hck in an assay containing 25 mM HEPES, pH 7.4, 10 mM MgCl2, 200 μM ATP (2.5 μCi of γ-32P-ATP), and 0.5 mg/mL BSA. The optimized Src family kinase peptide substrate EIYGEFKKK is used as phosphoacceptor (200 μM). Reactions are terminated by spotting onto phosphocellulose sheets, which are washed with 0.5% phosphoric acid (approximately 6 times, 5-10 minutes each). Sheets are dried and the transferred radioactivity quantitated by phosphorimaging.

Example 13: Expression and Inhibition Assays of Insulin Receptor (IR)

The cross-activity or lack thereof of one or more compounds of the present invention against IR receptor kinase can be measured according to any procedures known in the art or methods disclosed below. The compounds described herein can be assayed in triplicate against recombinant insulin receptor kinase domain (Upstate) in an assay containing 25 mM HEPES, pH 7.4, 10 mM MgCl2, 10 mM MnCl2, 200 μM ATP (2.5 μCi of γ-32P-ATP), and 0.5 mg/mL BSA. Poly E-Y (Sigma; 2 mg/mL) is used as a substrate. Reactions are terminated by spotting onto nitrocellulose, which is washed with 1M NaCl/1% phosphoric acid (approximately 6 times, 5-10 minutes each). Sheets are dried and the transferred radioactivity quantitated by phosphorimaging.

Example 14: Expression and Inhibition Assays of Src

The cross-activity or lack thereof of one or more compounds of the present invention against Src kinase can be measured according to any procedures known in the art or methods disclosed below. The compounds described herein can be assayed in triplicate against recombinant full-length Src or Src (T338I) in an assay containing 25 mM HEPES, pH 7.4, 10 mM MgCl2, 200 μM ATP (2.5 μCi of γ-32P-ATP), and 0.5 mg/mL BSA. The optimized Src family kinase peptide substrate EIYGEFKKK is used as phosphoacceptor (200 μM). Reactions are terminated by
spotting onto phosphocellulose sheets, which are washed with 0.5% phosphoric acid (approximately 6 times, 5-10 minutes each). Sheets were dried and the transferred radioactivity quantitated by phosphorimaging.

Example 15: Expression and Inhibition Assays of DNA-PK (DNAK)

[00447] The cross-activity or lack thereof of one or more compounds of the present invention against DNAK kinase can be measured according to any procedures known in the art. DNA-PK can be purchased from Promega and assayed using the DNA-PK Assay System (Promega) according to the manufacturer’s instructions.

Example 16: Expression and Inhibition Assays of mTOR

[00448] The cross-activity or lack thereof of one or more compounds of the present invention against mTOR can be measured according to any procedures known in the art or methods disclosed below. The compounds described herein can be tested against recombinant mTOR (Invitrogen) in an assay containing 50 mM HEPES, pH 7.5, 1 mM EGTA, 10 mM MgCl2, 2.5 mM, 0.01% Tween, 10 μM ATP (2.5 μCi of μ-32P-ATP), and 3 μg/mL BSA. Rat recombinant PHAS-1/4EBP1 (Calbiochem; 2 mg/mL) is used as a substrate. Reactions are terminated by spotting onto nitrocellulose, which is washed with 1M NaCl/1% phosphoric acid (approximately 6 times, 5-10 minutes each). Sheets are dried and the transferred radioactivity quantitated by phosphorimaging.

[00449] Other kits or systems for assaying mTOR activity are commercially available. For instance, one can use Invitrogen’s Lanthascreen™ Kinase assay to test the inhibitors of mTOR disclosed herein. This assay is a time resolved FRET platform that measures the phosphorylation of GFP labeled 4EBP1 by mTOR kinase. The kinase reaction is performed in a white 384 well microtitre plate. The total reaction volume is 20μl per well and the reaction buffer composition is 50mM HEPES pH7.5, 0.01% Polysorbate 20, 1mM EGTA, 10mM MnCl2, and 2mM DTT. In the first step, each well receives 2μl of test compound in 20% dimethylsulphoxide resulting in a 2% DMSO final concentration. Next, 8μl of mTOR diluted in reaction buffer is added per well for a 60ng/ml final concentration. To start the reaction, 10μl of an ATP/GFP-4EBP1 mixture (diluted in reaction buffer) is added per well for a final concentration of 10μM ATP and 0.5μM GFP-4EBP1. The plate is sealed and incubated for 1 hour at room temperature. The reaction is stopped by adding 10μl per well of a Tb-anti-pT46 4EBP1 antibody/EDTA mixture (diluted in TR-FRET buffer) for a final concentration of 1.3nM antibody and 6.7mM EDTA. The plate is sealed, incubated for 1 hour at room temperature, and then read on a plate reader set up for Lanthascreen™ TR-FRET. Data is analyzed and IC50s are generated using GraphPad Prism 5.

Example 17: Expression and Inhibition Assays of Vascular endothelial growth receptor

[00450] The cross-activity or lack thereof of one or more compounds of the present invention against VEGF receptor can be measured according to any procedures known in the art or methods disclosed below. The compounds described herein can be tested against recombinant KDR receptor kinase domain (Invitrogen) in an assay containing 25 mM HEPES, pH 7.4, 10 mM MgCl2, 0.1% BME, 10 μM ATP (2.5 μCi of μ-32P-ATP), and 3 μg/mL BSA. Poly E-Y (Sigma; 2 mg/mL) is used as a substrate. Reactions are terminated by spotting onto nitrocellulose, which is washed with 1M NaCl/1% phosphoric acid (approximately 6 times, 5-10 minutes each). Sheets are dried and the transferred radioactivity quantitated by phosphorimaging.

Example 18: Expression and Inhibition Assays of Ephrin receptor B4 (EphB4)

[00451] The cross-activity or lack thereof of one or more compounds of the present invention against EphB4 can be measured according to any procedures known in the art or methods disclosed below. The compounds described herein can be tested against recombinant Ephrin receptor B4 kinase domain (Invitrogen) in an assay containing 25 mM HEPES, pH 7.4, 10 mM MgCl2, 0.1% BME, 10 μM ATP (2.5 μCi of μ-32P-ATP), and 3 μg/mL BSA. Poly E-Y (Sigma; 2 mg/mL) is used as a substrate. Reactions are terminated by spotting onto nitrocellulose, which is washed
with 1 M NaCl/1% phosphoric acid (approximately 6 times, 5-10 minutes each). Sheets are dried and the transferred radioactivity quantitated by phosphorimaging.

Example 19: Expression and Inhibition Assays of Epidermal growth factor receptor (EGFR)
[00452] The cross-activity or lack thereof of one or more compounds of the present invention against EGFR kinase can be measured according to any procedures known in the art or methods disclosed below. The compounds described herein can be tested against recombinant EGF receptor kinase domain (Invitrogen) in an assay containing 25 mM HEPES, pH 7.4, 10 mM MgCl2, 0.1% BME, 10 μM ATP (2.5 μCi of μ-32P-ATP), and 3 μg/mL BSA. Poly E-Y (Sigma; 2 mg/mL) is used as a substrate. Reactions are terminated by spotting onto nitrocellulose, which is washed with 1 M NaCl/1% phosphoric acid (approximately 6 times, 5-10 minutes each). Sheets are dried and the transferred radioactivity quantitated by phosphorimaging.

Example 20: Expression and Inhibition Assays of KIT Assay
[00453] The cross-activity or lack thereof of one or more compounds of the present invention against KIT kinase can be measured according to any procedures known in the art or methods disclosed below. The compounds described herein can be tested against recombinant KIT kinase domain (Invitrogen) in an assay containing 25 mM HEPES, pH 7.4, 10 mM MgCl2, 1 mM DTT, 10 mM MnCl2, 10 μM ATP (2.5 μCi of μ-32P-ATP), and 3 μg/mL BSA. Poly E-Y (Sigma; 2 mg/mL) is used as a substrate. Reactions are terminated by spotting onto nitrocellulose, which is washed with 1 M NaCl/1% phosphoric acid (approximately 6 times, 5-10 minutes each). Sheets are dried and the transferred radioactivity quantitated by phosphorimaging.

Example 21: Expression and Inhibition Assays of RET
[00454] The cross-activity or lack thereof of one or more compounds of the present invention against RET kinase can be measured according to any procedures known in the art or methods disclosed below. The compounds described herein can be tested against recombinant RET kinase domain (Invitrogen) in an assay containing 25 mM HEPES, pH 7.4, 10 mM MgCl2, 2.5 mM DTT, 10 μM ATP (2.5 μCi of μ-32P-ATP), and 3 μg/mL BSA. The optimized Abl peptide substrate EAIYAAPFAKKK is used as phosphoacceptor (200 μM). Reactions are terminated by spotting onto phosphocellulose sheets, which are washed with 0.5% phosphoric acid (approximately 6 times, 5-10 minutes each). Sheets are dried and the transferred radioactivity quantitated by phosphorimaging.

Example 22: Expression and Inhibition Assays of Platelet derived growth factor receptor (PDGFR)
[00455] The cross-activity or lack thereof of one or more compounds of the present invention against PDGFR kinase can be measured according to any procedures known in the art or methods disclosed below. The compounds described herein can be tested against recombinant PDG receptor kinase domain (Invitrogen) in an assay containing 25 mM HEPES, pH 7.4, 10 mM MgCl2, 2.5 mM DTT, 10 μM ATP (2.5 μCi of μ-32P-ATP), and 3 μg/mL BSA. The optimized Abl peptide substrate EAIYAAPFAKKK is used as phosphoacceptor (200 μM). Reactions are terminated by spotting onto phosphocellulose sheets, which are washed with 0.5% phosphoric acid (approximately 6 times, 5-10 minutes each). Sheets are dried and the transferred radioactivity quantitated by phosphorimaging.

Example 23: Expression and Inhibition Assays of FMS-related tyrosine kinase 3 (FLT-3)
[00456] The cross-activity or lack thereof of one or more compounds of the present invention against FLT-3 kinase can be measured according to any procedures known in the art or methods disclosed below. The compounds described herein can be tested against recombinant FLT-3 kinase domain (Invitrogen) in an assay containing 25 mM HEPES, pH 7.4, 10 mM MgCl2, 2.5 mM DTT, 10 μM ATP (2.5 μCi of μ-32P-ATP), and 3 μg/mL BSA. The optimized Abl peptide substrate EAIYAAPFAKKK is used as phosphoacceptor (200 μM). Reactions are terminated by spotting onto phosphocellulose sheets, which are washed with 0.5% phosphoric acid (approximately 6 times, 5-10 minutes each). Sheets are dried and the transferred radioactivity quantitated by phosphorimaging.
Example 24: Expression and Inhibition Assays of TEK receptor tyrosine kinase (TIE2)

The cross-activity or lack thereof of one or more compounds of the present invention against TIE2 kinase can be measured according to any procedures known in the art or methods disclosed below. The compounds described herein can be tested against recombinant TIE2 kinase domain (Invitrogen) in an assay containing 25 mM HEPES, pH 7.4, 10 mM MgCl2, 2 mM DTT, 10 mM MnCl2, 10 μM ATP (2.5 μCi of [γ-32P]-ATP), and 3 μg/ml BSA. Poly E-Y (Sigma; 2 μg/ml) is used as a substrate. Reactions are terminated by spotting onto nitrocellulose, which is washed with 1 M NaCl/1% phosphoric acid (approximately 5 times, 5-10 minutes each). Sheets are dried and the transferred radioactivity quantitated by phosphorimaging.

Example 25: B Cell Activation and Proliferation Assay

The ability of one or more subject compounds to inhibit B cell activation and proliferation is determined according to standard procedures known in the art. For example, an in vitro cellular proliferation assay is established that measures the metabolic activity of live cells. The assay is performed in a 96 well microtiter plate using Alamar Blue reduction. Balb/c splenic B cells are purified over a Ficoll-Paque™ PLUS gradient followed by magnetic cell separation using a MACS B cell Isolation Kit (Miltenyi). Cells are plated in 90μl at 50,000 cells/well in B Cell Media (RPMI + 10%FBS + Pen/Strep + 50μM bME + 5mM HEPES). A compound dissolved herein is diluted in B Cell Media and added in a 10μl volume. Plates are incubated for 30min at 37°C and 5% CO2 (0.2% DMSO final concentration). A 50μl B cell stimulation cocktail is then added containing either 10μg/ml LPS or 5μg/ml P(ab)2 Donkey anti-mouse IgM plus 2ng/ml recombinant mouse IL4 in B Cell Media. Plates are incubated for 72 hours at 37°C and 5% CO2. A volume of 15μL of Alamar Blue reagent is added to each well and plates are incubated for 5 hours at 37°C and 5% CO2. Alamar Blue fluorescence is read at 560Ex/590Em, and IC50 or EC50 values are calculated using GraphPad Prism 5.

Example 26: Tumor Cell Line Proliferation Assay

The ability of one or more subject compounds to inhibit tumor cell line proliferation is determined according to standard procedures known in the art. For instance, an in vitro cellular proliferation assay can be performed to measure the metabolic activity of live cells. The assay is performed in a 96 well microtiter plate using Alamar Blue reduction. Human tumor cell lines are obtained from ATCC (e.g., MCF7, U-87 MG, MDA-MB-468, PC-3), grown to confluency in T75 flasks, trypsinized with 0.25% trypsin, washed one time with Tumor Cell Media (DMEM + 10%FBS), and plated in 90μl at 5,000 cells/well in Tumor Cell Media. A compound dissolved herein is diluted in Tumor Cell Media and added in a 10μl volume. Plates are incubated for 72 hours at 37°C and 5% CO2. A volume of 10μL of Alamar Blue reagent is added to each well and plates are incubated for 3 hours at 37°C and 5% CO2. Alamar Blue fluorescence is read at 560Ex/590Em, and IC50 values are calculated using GraphPad Prism 5.

Example 27: Antitumor Activity In Vivo

The compounds described herein can be evaluated in a panel of human and murine tumor models.

Paclitaxel-refractory Tumor Models

1. Clinically-derived Ovarian Carcinoma Model.

This tumor model is established from a tumor biopsy of an ovarian cancer patient. Tumor biopsy is taken from the patient.

The compounds described herein are administered to nude mice bearing staged tumors using an every 2 days x 5 schedule.

A2780 Tax Human Ovarian Carcinoma Xenograft (Mutated Tubulin).
A2780Tax is a paclitaxel-resistant human ovarian carcinoma model. It is derived from the sensitive parent A2780 line by co-incubation of cells with paclitaxel and verapamil, an MDR-reversal agent. Its resistance mechanism has been shown to be non-MDR related and is attributed to a mutation in the gene encoding the beta-tubulin protein.

The compounds described herein can be administered to mice bearing staged tumors on an every 2 days x 5 schedule.

3. HCT116/VM46 Human Colon Carcinoma Xenograft (Multi-Drug Resistant).

HCT116/VM46 is an MDR-resistant colon carcinoma developed from the sensitive HCT116 parent line. In vivo, grown in nude mice, HCT116/VM46 has consistently demonstrated high resistance to paclitaxel.

The compounds described herein can be administered to mice bearing staged tumors on an every 2 days x 5 schedule.

5. M5076 Murine Sarcoma Model

M5076 is a mouse fibrosarcoma that is inherently refractory to paclitaxel in vivo.

The compounds described herein can be administered to mice bearing staged tumors on an every 2 days x 5 schedule.

One or more compounds of the invention can be used in combination other therapeutic agents in vivo in the multidrug resistant human colon carcinoma xenografts HCT/VM46 or any other model known in the art including those described herein.

Example 28: Microsome stability assay

The stability of one or more subject compounds is determined according to standard procedures known in the art. For example, stability of one or more subject compounds is established by an in vitro assay. In particular, an in vitro microsome stability assay is established that measures stability of one or more subject compounds when reacting with mouse, rat or human microsomes from liver. The microsome reaction with compounds is performed in 1.5 mL Eppendorf tube. Each tube contains 0.1 μL of 10.0 mg/ml NADPH; 75 μL of 20.0 mg/ml mouse, rat or human liver microsome; 0.4 μL of 0.2 M phosphate buffer, and 425 μL of ddH2O. Negative control (without NADPH) tube contains 75 μL of 20.0 mg/ml mouse, rat or human liver microsome; 0.4 μL of 0.2 M phosphate buffer, and 525 μL of ddH2O. The reaction is started by adding 1.0 μL of 10.0 mM tested compound. The reaction tubes are incubated at 37°C. 100 μL sample is collected into new Eppendorf tube containing 300 μL cold Methanol at 0, 5, 10, 15, 30 and 60 minutes of reaction. Samples are centrifuged at 15,000 rpm to remove protein. Supernatant of centrifuged sample is transferred to new tube. Concentration of stable compound after reaction with microsome in the supernatant is measured by Liquid Chromatography/Mass Spectrometry (LC-MS).

Example 29: Plasma stability assay

The stability of one or more subject compounds in plasma is determined according to standard procedures known in the art. See, e.g., Rapid Commun. Mass Spectrom., 10: 1019-1026. The following procedure is an HPLC-MS/MS assay using human plasma; other species including monkey, dog, rat, and mouse are also available. Frozen, heparinized human plasma is thawed in a cold water bath and spun for 10 minutes at 2000 rpm at 4°C prior to use. A subject compound is added from a 400 μM stock solution to an aliquot of pre-warmed plasma to give a final assay volume of 400 μL (or 800 μL for half-life determination), containing 5 μM test compound and 0.5 % DMSO. Reactions are incubated, with shaking, for 0 minutes and 60 minutes at 37°C, or for 0, 15, 30, 45 and 60 minutes at 37°C for half life determination. Reactions are stopped by transferring 50 μL of the incubation mixture to 200 μL of ice-cold acetonitrile and mixed by shaking for 5 minutes. The samples are centrifuged at 6000 x g for 15 minutes at 4°C and 120 μL of supernatant removed into clean tubes. The samples are then evaporated to dryness and submitted for analysis by HPLC-MS/MS.
[00477] Where desired, one or more control or reference compounds (5 μM) are tested simultaneously with the test compounds: one compound, propoxyxaine, with low plasma stability and another compound, propantheline, with intermediate plasma stability.

[00478] Samples are reconstituted in acetonitrile/methanol/water (1/1/2, v/v/v) and analyzed via (RP)HPLC-MS/MS using selected reaction monitoring (SRM). The HPLC conditions consist of a binary LC pump with autosampler, a mixed-mode, C12, 2 x 20 mm column, and a gradient program. Peak areas corresponding to the analytes are recorded by HPLC-MS/MS. The ratio of the parent compound remaining after 60 minutes relative to the amount remaining at time zero, expressed as percent, is reported as plasma stability. In case of half-life determination, the half-life is estimated from the slope of the initial linear range of the logarithmic curve of compound remaining (%) vs. time, assuming first order kinetics.

Example 30: Chemical Stability

[00479] The chemical stability of one or more subject compounds is determined according to standard procedures known in the art. The following details an exemplary procedure for ascertaining chemical stability of a subject compound. The default buffer used for the chemical stability assay is phosphate-buffered saline (PBS) at pH 7.4; other suitable buffers can be used. A subject compound is added from a 100 μM stock solution to an aliquot of PBS (in duplicate) to give a final assay volume of 400 μL, containing 5 μM test compound and 1% DMSO (for half-life determination a total sample volume of 700 μL is prepared). Reactions are incubated, with shaking, for 0 minutes and 24 hours at 37°C; for half-life determination samples are incubated for 0, 2, 4, 6, and 24 hours. Reactions are stopped by adding immediately 100 μL of the incubation mixture to 100 μL of acetonitrile and vortexing for 5 minutes. The samples are then stored at -20°C until analysis by HPLC-MS/MS. Where desired, a control compound or a reference compound such as chlorambucil (5 μM) is tested simultaneously with a subject compound of interest, as this compound is largely hydrolyzed over the course of 24 hours. Samples are analyzed via (RP)HPLC-MS/MS using selected reaction monitoring (SRM). The HPLC conditions consist of a binary LC pump with autosampler, a mixed-mode, C12, 2 x 20 mm column, and a gradient program. Peak areas corresponding to the analytes are recorded by HPLC-MS/MS. The ratio of the parent compound remaining after 24 hours relative to the amount remaining at time zero, expressed as percent, is reported as chemical stability. In case of half-life determination, the half-life is estimated from the slope of the initial linear range of the logarithmic curve of compound remaining (%) vs. time, assuming first order kinetics.

Example 31: Akt Kinase Assay

[00480] Cells comprising components of the Akt/mTOR pathway, including but not limited to L6 myoblasts, B-ALL cells, B-cells, T-cells, leukemia cells, bone marrow cells, p190 transduced cells, Philadelphia chromosome positive cells (Ph+), and mouse embryonic fibroblasts, are typically grown in cell growth media such as DMEM supplemented with fetal bovine serum and/or antibiotics, and grown to confluency.

[00481] In order to compare the effect of one or more compounds disclosed herein on Akt activation, said cells are serum starved overnight and incubated with one or more compounds disclosed herein or about 0.1% DMSO for approximately 1 minute to about 1 hour prior to stimulation with insulin (e.g. 100 nM) for about 1 minutes to about 1 hour. Cells are lysed by scraping into ice cold lysis buffer containing detergents such as sodium dodecyl sulfate and protease inhibitors (e.g., PMSF). After contacting cells with lysis buffer, the solution is briefly sonicated, cleared by centrifugation, resolved by SDS-PAGE, transferred to nitrocellulose or PVDF and immunoblotted using antibodies to phospho- Akt S473, phospho- Akt T308, Akt, and β-actin (Cell Signaling Technologies).

[00482] The results demonstrate that one or more compounds of the present disclosure inhibit insulin stimulated phosphorylation of Akt at S473. Alternatively, some compounds disclosed herein additionally inhibit insulin
stimulated phosphorylation of Akt at T308. Such class of compounds can inhibit Akt more effectively than rapamycin and may be indicative of mTORC2 inhibitors or inhibitors of upstream kinases such as PI3K or Akt.

Example 32: Kinase Signaling in Blood

[00483] PI3K/ Akt /mTor signaling is measured in blood cells using the phosflow method (Methods Enzymol. 2007;434:131-54). The advantage of this method is that it is by nature a single cell assay so that cellular heterogeneity can be detected rather than population averages. This allows concurrent distinction of signaling states in different populations defined by other markers. Phosflow is also highly quantitative. To test the effects of one or more compounds disclosed herein, unfractionated splenocytes, or peripheral blood mononuclear cells are stimulated with anti-CD3 to initiate T-cell receptor signaling. The cells are then fixed and stained for surface markers and intracellular phosphoproteins. It is expected that inhibitors disclosed herein inhibit anti-CD3 mediated phosphorylation of Akt - S473 and S6, whereas rapamycin inhibits S6 phosphorylation and enhances Akt phosphorylation under the conditions tested.

[00484] Similarly, aliquots of whole blood are incubated for 15 minutes with vehicle (e.g. 0.1%DMSO) or kinase inhibitors at various concentrations, before addition of stimuli to crosslink the T cell receptor (TCR) (anti-CD3 with secondary antibody) or the B cell receptor (BCR) using anti-kappa light chain antibody (Fab'2 fragments). After approximately 5 and 15 minutes, samples are fixed (e.g. with cold 4% paraformaldehyde) and used for phosflow. Surface staining is used to distinguish T and B cells using antibodies directed to cell surface markers that are known to the art. The level of phosphorylation of kinase substrates such as Akt and S6 are then measured by incubating the fixed cells with labeled antibodies specific to the phosphorylated isoforms of these proteins. The population of cells are then analyzed by flow cytometry.

Example 33: Colony Formation Assay

[00485] Murine bone marrow cells freshly transformed with a p190 BCR-Abl retrovirus (herein referred to as p190 transduced cells) are plated in the presence of various drug combinations in M3630 methylcellulose media for about 7 days with recombinant human IL-7 in about 30% serum, and the number of colonies formed is counted by visual examination under a microscope.

[00486] Alternatively, human peripheral blood mononuclear cells are obtained from Philadelphia chromosome positive (Ph+) and negative (Ph-) patients upon initial diagnosis or relapse. Live cells are isolated and enriched for CD19+/CD34+ B cell progenitors. After overnight liquid culture, cells are plated in methocult GF+ H4435, Stem Cell Technologies) suplemented with cytokines (IL-3, IL-6, IL-7, G-CSF, GM-CSF, CF, Flt3 ligand, and erythropoietin) and various concentrations of known chemotherapeutic agents in combination with either compounds of the present disclosure. Colonies are counted by microscopy 12-14 days later. This method can be used to test for evidence of additive or synergistic activity.

Example 34: In Vivo Effect of Kinase Inhibitors on Leukemic Cells

[00487] Female recipient mice are lethally irradiated from a γ source in two doses about 4 hr apart, with approximately 5Gy each. About 1hr after the second radiation dose, mice are injected i.v. with about 1x10⁶ leukemic cells (e.g. Ph+ human or murine cells, or p190 transduced bone marrow cells). These cells are administered together with a radioprotective dose of about 5x10⁶ normal bone marrow cells from 3-5 week old donor mice. Recipients are given antibiotics in the water and monitored daily. Mice who become sick after about 14 days are euthanized and lymphoid organs are harvested for analysis. Kinase inhibitor treatment begins about 10 days after leukemic cell injection and continues daily until the mice become sick or a maximum of approximately 35 days post-transplant. Inhibitors are given by oral lavage.
Peripheral blood cells are collected approximately on day 10 (pre-treatment) and upon euthanization (post treatment), contacted with labeled anti-hCD4 antibodies and counted by flow cytometry. This method can be used to demonstrate that the synergistic effect of one or more compounds disclosed herein in combination with known chemotherapeutic agents significantly reduce leukemic blood cell counts as compared to treatment with known chemotherapeutic agents (e.g. Gleevec) alone under the conditions tested.

Example 35: Treatment of Lupus Disease Model Mice

Mice lacking the inhibitory receptor FcγRIIB that opposes PI3K signaling in B cells develop lupus with high penetrance. FcγRIIB knockout mice (R2KO, Jackson Labs) are considered a valid model of the human disease as some lupus patients show decreased expression or function of FcγRIIB (S. Bolland and J.V. Ravetch 2000. *Immunity* 12:277-285).

The R2KO mice develop lupus-like disease with anti-nuclear antibodies, glomerulonephritis and proteinurea within about 4-6 months of age. For these experiments, the rapamycin analogue RAD001 (available from LC Laboratories) is used as a benchmark compound, and administered orally. This compound has been shown to ameliorate lupus symptoms in the B6.Sle1z.Sle32 model (T. Wu et al. *J. Clin Invest.* 117:2186-2196).

Lupus disease model mice such as R2KO, BXSB or MLR/lpr are treated at about 2 months old, approximately for about two months. Mice are given doses of: vehicle, RAD001 at about 10mg/kg, or compounds disclosed herein at approximately 1 mg/kg to about 500 mg/kg. Blood and urine samples are obtained at approximately throughout the testing period, and tested for antinuclear antibodies (in dilutions of serum) or protein concentration (in urine). Serum is also tested for anti-ssDNA and anti-dsDNA antibodies by ELISA. Animals are euthanized at day 60 and tissues harvested for measuring spleen weight and kidney disease. Glomerulonephritis is assessed in kidney sections stained with H&E. Other animals are studied for about two months after cessation of treatment, using the same endpoints.

This model established in the art can be employed to demonstrate that the kinase inhibitors disclosed herein can suppress or delay the onset of lupus symptoms in lupus disease model mice.

Example 36: Murine Bone Marrow Transplant Assay

Female recipient mice are lethally irradiated from a γ ray source. About 1hr after the radiation dose, mice are injected with about 1x106 leukemic cells from early passage p190 transduced cultures (e.g. as described in *Cancer Genet Cytogenet*. 2005 Aug;161(1):51-6). These cells are administered together with a radioprotective dose of approximately 5x106 normal bone marrow cells from 3-5wk old donor mice. Recipients are given antibiotics in the water and monitored daily. Mice who become sick after about 14 days are euthanized and lymphoid organs harvested for flow cytometry and/or magnetic enrichment. Treatment begins on approximately day 10 and continues daily until mice become sick, or after a maximum of about 35 days post-transplant. Drugs are given by oral gavage (p.o.). In a pilot experiment a dose of chemotherapeutic that is not curative but delays leukemia onset by about one week or less is identified; controls are vehicle-treated or treated with chemotherapeutic agent, previously shown to delay but not cure leukemogenesis in this model (e.g. imatinib at about 70mg/kg twice daily). For the first phase p190 cells that express eGFP are used, and postmortem analysis is limited to enumeration of the percentage of leukemic cells in bone marrow, spleen and lymph node (LN) by flow cytometry. In the second phase, p190 cells that express a tailless form of human CD4 are used and the postmortem analysis includes magnetic sorting of hCD4+ cells from spleen followed by immunoblot analysis of key signaling endpoints: p Akt -T308 and S473; pS6 and p4EBP-1. As controls for immunoblot detection, sorted cells are incubated in the presence or absence of kinase inhibitors of the present disclosure inhibitors before lyss. Optionally, “phosflow” is used to detect p Akt -S473 and pS6-S235/236 in hCD4-gated cells without prior sorting. These signaling studies are particularly useful if, for example, drug-treated mice have
not developed clinical leukemia at the 35 day time point. Kaplan-Meier plots of survival are generated and statistical analysis done according to methods known in the art. Results from p190 cells are analyzed separately as well as cumulatively.

[00494] Samples of peripheral blood (100-200μl) are obtained weekly from all mice, starting on day 10 immediately prior to commencing treatment. Plasma is used for measuring drug concentrations, and cells are analyzed for leukemia markers (eGFP or hCD4) and signaling biomarkers as described herein.

[00495] This general assay known in the art may be used to demonstrate that effective therapeutic doses of the compounds disclosed herein can be used for inhibiting the proliferation of leukemic cells.

Example 37: TNP-Ficoll T-cell Independent B-cell Activation Assay

[00496] To test the effects of the compounds of the present invention in suppressing T cell independent antibody production, the TNP-Ficoll B-cell activation assay was used as described herein. Compounds of the present invention were dissolved in an appropriate vehicle (e.g. 5% 1-methyl-2-pyrrolidinone, 85% polyethylene glycol 400, 10% Soluto). Compounds were administered orally approximately 1hr before TNP-Ficoll treatment to 4-10 week old mice. To study the effects of the compounds on B-cell activation, one set of mice were grouped according to the following table:

<table>
<thead>
<tr>
<th>Group#</th>
<th>Mice/ group</th>
<th>Comp treated</th>
<th>Group</th>
<th>Antigen injection at day-1</th>
<th>Compound Administration from day-1 to day-7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TNP-F Route (mg/kg) Route Regimen</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>Vehicle</td>
<td>Antigen only</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>-</td>
<td>Antigen only</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>Compound #7</td>
<td>reference</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>Compound #53</td>
<td>Antigen + cmp</td>
<td>200 μL (0.5 mg/ml) ip</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td></td>
<td></td>
<td>3</td>
<td>Po</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td></td>
<td></td>
<td>10</td>
<td>BID for 7 days</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td></td>
<td></td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
<td>60</td>
<td></td>
</tr>
</tbody>
</table>

[00497] Four animals in group 1, and eight animals in groups 2 to 7 were euthanized in CO₂ 2 hours after the last compound administration on day 7. Blood was immediately collected by cardio-puncture and kept at 37°C for 1hr to clot followed by overnight incubation at 4°C to allow the clot to contract. The following day, serum was collected by decanting and centrifugation at 3000 rpm for 10 min. The collected serum was then frozen at -80°C for future analysis.

[00498] Serum samples were analyzed for anti-TNP antibody titers by ELISA as described herein. TNP-BSA was coated onto a Nunc Maxisorb microtiter plate with 100μl/well at a concentration of 10μg/ml in phosphate buffered saline (PBS). The Maxisorb plate was incubated for 1.5 hours at room temperature and the solution was removed. 200 μl/well of blocking buffer (e.g. 1% BSA in PBS) was added to each well and incubated 1hr at room temperature. The plate was washed once with 200 μl/well of PBS 0.05% Tween-20 (wash buffer). A 1:2 dilution of serum from each mouse in blocking buffer was added to each well in the first column (1) of the microtiter plate. The serum in each well of column 1 was then diluted 3-fold in blocking buffer and added to column 2. The serum in each well of column 2 was diluted 3-fold in blocking buffer and added to column 3. The procedure was repeated across the twelve columns of the microtiter plate. The microtiter plate was incubated 1 hr at room temperature. Serum was removed from the plate and the plate was washed three times with wash buffer. 100 μl/well of goat anti-mouse IgG3-HRP diluted 1:250
in blocking buffer was added to each well and incubated 1hr at room temperature. The anti-mouse IgG3-HRP was removed from the microtiter plate and the plate was washed six times with wash buffer. HRP substrate (200 μl ABTS solution + 30% H2O2 + 10ml citrate buffer) was added to each well at 100 μl/well, incubated 2-20 minutes in the dark and the amount of anti-TNP IgG3 was determined spectrophotometrically at 405nm. Similarly, anti-TNP IgM and total anti-TNP Ab were determined using anti-mouse IgM-HRP and anti-mouse Ig-HRP respectively.

The results as shown in Figure 2 further show that under the conditions tested compounds #7 and #53 exhibit 3.4 and 6.5-fold reductions respectively in IgG3 levels relative to vehicle control mice at a 30mg/kg dose level. Figure 2 further shows that compound #53 exhibits 29.9-fold reduction in IgG3 levels relative to vehicle control mice at a 60mg/kg dose level under the conditions tested.

Example 38: Rat Developing Type II Collagen Induced Arthritis Assay

In order to study the effects of the compounds of the present invention on the autoimmune disease arthritis, a collagen induced developing arthritis model was used. Female Lewis rats were given collagen injections at day 0. Bovine type II collagen was prepared as a 4mg/ml solution in 0.01N acetic acid. Equal volumes of collagen and Freund's incomplete adjuvant were emulsified by hand mixing until a bead of the emulsified material held its form in water. Each rodent received a 300 μl injection of the mixture at each injection time spread over three subcutaneous sites on the back.

Oral compound administration began on day 0 and continued through day 16 with vehicle (5% NMP, 85% PEG 400, 10% Solutol) or compounds of the present invention in vehicle or control (e.g. methotrexate) at 12 hour intervals daily. Rats were weighed on days 0,3,6,9-17 and caliper measurements of ankles taken on days 9-17. Final body weights were taken, and then the animals were euthanized on day 17. After euthanization, blood was drawn and hind paws and knees were removed. Blood was further processed for pharmacokinetics experiments as well as an anti-type II collagen antibody ELISA assay. Hind paws were weighed and then with the knees preserved in 10% formalin. The paws and knees were subsequently processed for microscopy. Livers, spleen and thymus were also weighed. Sciatric nerves were prepared for histopathology.

Knee and Ankle Inflammation

0=Normal

1=Minimal infiltration of inflammatory cells in synovium/periarticular tissue
2=Mild infiltration
3=Moderate infiltration with moderate edema
4=Marked infiltration with marked edema
5=Severe infiltration with severe edema

Ankle Pannus

0=Normal

1=Minimal infiltration of pannus in cartilage and subchondral bone
2=Mild infiltration (<1/4 of tibia or tarSals at marginal zones)
3=Moderate infiltration (1/4 to 1/3 of tibia or small tarSals affected at marginal zones)
4=Marked infiltration (1/2-3/4 of tibia or tarSals affected at marginal zones)
5=Severe infiltration (>3/4 of tibia or tarSals affected at marginal zones, severe distortion of overall architecture)

Knee Pannus
0=Normal
1=Minimal infiltration of pannus in cartilage and subchondral bone
2=Mild infiltration (extends over up to 1/4 of surface or subchondral area of tibia or femur)
3=Moderate infiltration (extends over >1/4 but < 1/2 of surface or subchondral area of tibia or femur)
4=Marked infiltration (extends over 1/2 to 3/4 of tibial or femoral surface)
5=Severe infiltration (covers > 3/4 of surface)

Cartilage Damage (Ankle, emphasis on small tarsals)

0=Normal
1=Minimal= minimal to mild loss of toluidine blue staining with no obvious chondrocyte loss or collagen disruption
2=Mild= mild loss of toluidine blue staining with focal mild (superficial) chondrocyte loss and/or collagen disruption
3=Moderate= moderate loss of toluidine blue staining with multifocal moderate (depth to middle zone) chondrocyte loss and/or collagen disruption, smaller tarsals affected to 1/2-3/4 depth
4=Marked= marked loss of toluidine blue staining with multifocal marked (depth to deep zone) chondrocyte loss and/or collagen disruption, 1 or more small tarsals have full thickness loss of cartilage
5=Severe= severe diffuse loss of toluidine blue staining with multifocal severe (depth to tide mark) chondrocyte loss and/or collagen disruption

Cartilage Damage (Knee, emphasis on femoral condyles)

0=Normal
1=Minimal= minimal to mild loss of toluidine blue staining with no obvious chondrocyte loss or collagen disruption
2=Mild= mild loss of toluidine blue staining with focal mild (superficial) chondrocyte loss and/or collagen disruption
3=Moderate= moderate loss of toluidine blue staining with multifocal to diffuse moderate (depth to middle zone) chondrocyte loss and/or collagen disruption
4=Marked= marked loss of toluidine blue staining with multifocal to diffuse marked (depth to deep zone) chondrocyte loss and/or collagen disruption or single femoral surface with total or near total loss
5=Severe= severe diffuse loss of toluidine blue staining with multifocal severe (depth to tide mark) chondrocyte loss and/or collagen disruption on both femurs and/or tibias

Bone Resorption (Ankle)

0=Normal
1=Minimal= small areas of resorption, not readily apparent on low magnification, rare osteoclasts
2=Mild= more numerous areas of resorption, not readily apparent on low magnification, osteoclasts more numerous, <1/4 of tibia or tarsals at marginal zones resorbed
3=Moderate= obvious resorption of medullary trabecular and cortical bone without full thickness defects in cortex, loss of some medullary trabeculae, lesion apparent on low magnification, osteoclasts more numerous, 1/4 to 1/3 of tibia or tarsals affected at marginal zones
4=Marked= Full thickness defects in cortical bone, often with distortion of profile of remaining cortical surface, marked loss of medullary bone, numerous osteoclasts, 1/2-3/4 of tibia or tarsals affected at marginal zones
5=Severe= Full thickness defects in cortical bone, often with distortion of profile of remaining cortical surface, marked loss of medullary bone, numerous osteoclasts, >3/4 of tibia or tarsals affected at marginal zones, severe distortion of overall architecture

Bone Resorption (Knee)

0=Normal
1=Minimal= small areas of resorption, not readily apparent on low magnification, rare osteoclasts
2=Mild=more numerous areas of resorption, definite loss of subchondral bone involving 1/4 of tibial or femoral surface (medial or lateral)
3=Moderate=obvious resorption of subchondral bone involving >1/4 but <1/2 of tibial or femoral surface (medial or lateral)
5=Marked= obvious resorption of subchondral bone involving ≥1/2 but <3/4 of tibial or femoral surface (medial or lateral)
5=Severe= distortion of entire joint due to destruction involving ≥3/4 of tibial or femoral surface (medial or lateral)

[00503] Statistical analysis of body/paw weights, paw AUC parameters and histopathologic parameters were evaluated using a Student’s t-test or other appropriate (ANOVA with post-test) with significance set at the 5% significance level. Percent inhibition of paw weight and AUC was calculated using the following formula:

\[\text{% Inhibition} = \frac{A - B}{A} \times 100 \]

A=Mean Disease Control – Mean Normal
B=Mean Treated – Mean Normal

[00504] The results as shown in Figure 3 demonstrate the effect of compound #53 at 10, 30, and 60 mg/kg dosages at 12 hour intervals on mean ankle diameter over time in a rat developing type II collagen induced arthritis model under the conditions tested. Relative to the vehicle alone control or to the methotrexate control, the compounds of the present invention exhibited a significant reduction in arthritis induced ankle diameter increase over time.

[00505] The results as shown in Figure 4 demonstrate the effect of compounds #7 and #53 on ankle histopathology in the categories of inflammation, pannus, cartilage damage, and bone resorption as previously described under the conditions tested. The results show a significant reduction in one or more categories by one of the compounds of the present invention (i.e. compound #53) under the conditions tested. Figure 4 further shows that at 60mg/kg, there is a statistically significant reduction in all categories of ankle histopathology for one of the compounds of the present invention (i.e. compound #53) under the conditions tested. This suggests that one or more compounds of the present invention may be useful for the treatment and reduction of arthritis disease symptoms.

[00506] The results as shown in Figure 5 demonstrate the effect of compounds #7 and #53 on knee histopathology under the conditions tested. The results demonstrate a dose dependent reduction in knee histopathology. This suggests that one or more compounds of the present invention may be useful for the treatment and reduction of arthritis disease symptoms.

[00507] The results as shown in Figure 6 demonstrate the effect of the compounds #7 and #53 on serum anti-type II collagen levels under the conditions tested. The results further show a significant reduction at 10, 20, and 60mg/kg dosage levels of serum anti-type II collagen levels for compound #53, suggesting that one or more compounds of the present invention may not only be useful for the treatment and reduction of arthritis disease symptoms, but may also be useful for the inhibition of the autoimmune reaction itself.

[00508] The results as shown in Figure 7 demonstrate the effect of compound #7 at 10, 30, and 60 mg/kg dosages at 12 hour intervals on mean ankle diameter over time under the conditions tested. Relative to the vehicle alone control or to the methotrexate control, the compound exhibited a reduction in arthritis induced ankle diameter increase over time under the conditions tested.

Example 39: Rat Established Type II Collagen Induced Arthritis Assay

[00509] In order to examine the dose responsive efficacy of the compounds of the present invention in inhibiting the inflammation, cartilage destruction and bone resorption of 10 day established type II collagen induced arthritis in rats, compounds were administered orally daily or twice daily for 6 days.
Female Lewis rats were anesthetized and given collagen injections prepared and administered as described previously on day 0. On day 6, animals were anesthetized and given a second collagen injection. Caliper measurements of normal (pre-disease) right and left ankle joints were performed on day 9. On days 10-11, arthritis typically occurred and rats were randomized into treatment groups. Randomization was performed after ankle joint swelling was obviously established and there was good evidence of bilateral disease.

After an animal was selected for enrollment in the study, treatment was initiated by the oral route. Animals were given vehicle, control (Enbrel) or compound doses, twice daily or once daily (BID or QD respectively). Dosing was administered on days 1-6 using a volume of 2.5ml/kg (BID) or 5ml/kg (QD) for oral solutions. Rats were weighed on days 1-7 following establishment of arthritis and caliper measurements of ankles taken every day. Final body weights were taken on day 7 and animals were euthanized.

The results as shown in Figure 8 shows a significant reduction in mean ankle diameter increase over time for compound #53 with a once daily dosage under the conditions tested. The results in Figure 9 further demonstrate a significant reduction in mean ankle diameter increase over time for compound #53 with a twice daily dosage under the conditions tested. This suggests that the compounds of the present invention may be useful for the treatment of autoimmune diseases such as arthritis.

Example 40: Adjuvant Induced Arthritis Assay

Intrathecal Catheterization of Rats

Isoflurane-anesthetized Lewis rats (200–250 g) were implanted with an intrathecal (IT) catheter. After a 6 d recovery period, all animals except those that appeared to have sensory or motor abnormalities (fewer than 5% of the total number) were used for experiments. For IT administration, 10 μl of drug or saline followed by 10 μl of isotonic saline was injected through the catheter.

Adjuvant Arthritis and Drug Treatment

Lewis rats were immunized at the base of the tail with 0.1 ml of complete Freund’s adjuvant (CFA) on day 0 several days after catheter implantation (n=6/group). Drug (e.g. one or more compounds of the present invention or vehicle) treatment was generally started on day 8 and continued daily until day 20. Clinical signs of arthritis generally begin on day 10, and paw swelling was determined every second day by water displacement plethysmometry.

The results as depicted in Figure 10 by the average change in paw volume under the dosage regimes indicated show that under the conditions tested, compound #53 shows a dose dependent reduction in the average paw volume increase as measured in this adjuvant induced arthritis model system. These results suggest that one or more of the compounds of the present invention may be useful for the treatment of one or more of the diseases or conditions described herein.

The results as depicted in Figure 11 show that compound #53 does not exhibit toxicity or other adverse reaction under the conditions tested as measured by a lack of weight loss.

Example 41: Rodent Pharmacokinetic Assay

In order to study the pharmacokinetics of the compounds of the present invention a set of 4-10 week old mice are grouped according to the following table:

<table>
<thead>
<tr>
<th>Group#</th>
<th>Mice/group</th>
<th>Compound Administration from day-1 to day-7 (mg/kg)</th>
<th>Route</th>
<th>Regimen</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>1</td>
<td>Po</td>
<td>BID for 7 days</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
[00517] Compounds of the present invention are dissolved in an appropriate vehicle (e.g. 5% 1-methyl-2-pyrrolidinone, 85% polyethylene glycol 400, 10% Solutor) and administered orally at 12 hour intervals daily. All animals are euthanized in CO₂ 2 hours after the final compound is administered. Blood is collected immediately and kept on ice for plasma isolation. Plasma is isolated by centrifuging at 5000 rpm for 10 minutes. Harvested plasma is frozen for pharmacokinetic detection.

[00518] The results are expected to demonstrate the pharmacokinetic parameters such as absorption, distribution, metabolism, excretion, and toxicity for the compounds of the present invention.

[00519] Example 42: Basotest assay

[00520] The basotest assay is performed using Orpegen Pharma Basotest reagent kit. Heparinized whole blood is pre-incubated with test compound or solvent at 37°C for 20min. Blood is then incubated with assay kit stimulation buffer (to prime cells for response) followed by allergen (dust mite extract or grass extract) for 20min. The degranulation process is stopped by incubating the blood samples on ice. The cells are then labeled with anti-IgE-PE to detect basophilic granulocytes, and anti-gp53-FITC to detect gp53 (a glycoprotein expressed on activated basophils). After staining red blood cells are lysed by addition of Lysing Solution. Cells are washed, and analyzed by flow cytometry. Compounds 7 and 53 when tested in this assay inhibit allergen induced activation of basophilic granulocytes at sub micromolar range.

[00521] Example 43: Combination use of PI3Kδ inhibitors and agents that inhibit IgE production or activity

[00522] The compounds of the present invention may present synergistic or additive efficacy when administered in combination with agents that inhibit IgE production or activity. Agents that inhibit IgE production include, for example, one or more of TEI-9874, 2-((4-(6-cyclohexyloxy-2-napthoxy)phenylacetamido)benzoic acid, rapamycin, rapamycin analogs (i.e. rapalog), TORC1 inhibitors, TORC2 inhibitors, and any other compounds that inhibit mTORC1 and mTORC2. Agents that inhibit IgE activity include, for example, anti-IgE antibodies such as Omalizumab and TNX-901.

[00523] One or more of the subject compounds capable of inhibiting PI3Kδ are efficacious in treatment of autoimmune and inflammatory disorders (AIID) for example rheumatoid arthritis. If any of the compounds causes an undesired level of IgE production, one may choose to administer it in combination with an agent that inhibits IgE production or IgE activity. Additionally, the administration of PI3Kδ or PI3Kδ/γ inhibitors of the present invention in combination with inhibitors of mTOR may also exhibit synergy through enhanced inhibition of the PI3K pathway.

[00524] Various in vivo and in vitro models may be used to establish the effect of such combination treatment on AIID including but not limited to (a) in vitro B-cell antibody production assay, (b) in vivo TNP assay, and (c) rodent collagen induced arthritis model.

(a) B-cell Assay

[00524] Mice are euthanized, and the spleens are removed and dispersed through a nylon mesh to generate a single-cell suspension. The splenocytes are washed (following removal of erythrocytes by osmotic shock) and incubated with anti-CD43 and anti-Mac-1 antibody-conjugated microbeads (Miltenyi Biotec). The bead-bound cells are separated from unbound cells using a magnetic cell sorter. The magnetized column retains the unwanted cells and the resting B cells are collected in the flow-through. Purified B-cells are stimulated with lipopolysaccharide or an anti-CD40 antibody and interleukin 4. Stimulated B-cells are treated with vehicle alone or with PI3Kδ inhibitors of the present
invention such as compound 53 with and without mTOR inhibitors such as rapamycin, rapalogs, or mTORC1/C2 inhibitors. The results are expected to show that in the presence of mTOR inhibitors (e.g., rapamycin) alone, there is little to no substantial effect on IgG and IgE response. However, in the presence of PI3Kδ and mTOR inhibitors, the B-cells are expected to exhibit a decreased IgG response as compared to the B-cells treated with vehicle alone, and the B-cells are expected to exhibit a decreased IgE response as compared to the response from B-cells treated with PI3Kδ inhibitors alone.

(b) TNP Assay

[00525] Mice are immunized with TNP-Ficoll or TNP-KHL and treated with: vehicle, a PI3Kδ inhibitor, for example, compound 53 of the present invention, an mTOR inhibitor, for example rapamycin, or a PI3Kδ inhibitor in combination with an mTOR inhibitor such as rapamycin. Antigen-specific serum IgE is measured by ELISA using TNP-BSA coated plates and isotype specific labeled antibodies. It is expected that mice treated with an mTOR inhibitor alone exhibit little or no substantial effect on antigen specific IgG3 response and no statistically significant elevation in IgE response as compared to the vehicle control. It is also expected that mice treated with both PI3Kδ inhibitor and mTOR inhibitor exhibit a reduction in antigen specific IgG3 response as compared to the mice treated with vehicle alone. Additionally, the mice treated with both PI3Kδ inhibitor and mTOR inhibitor exhibit a decrease in IgE response as compared to the mice treated with PI3Kδ inhibitor alone.

(c) Rat Collagen Induced Arthritis Model

[00526] Female Lewis rats are anesthetized and given collagen injections prepared and administered as described previously on day 0. On day 6, animals are anesthetized and given a second collagen injection. Caliper measurements of normal (pre-disease) right and left ankle joints are performed on day 9. On days 10-11, arthritis typically occurs and rats are randomized into treatment groups. Randomization is performed after ankle joint swelling is obviously established and there is good evidence of bilateral disease.

[00527] After an animal is selected for enrollment in the study, treatment is initiated. Animals are given vehicle, PI3Kδ inhibitor, or PI3Kδ inhibitor in combination with rapamycin. Dosing is administered on days 1-6. Rats are weighed on days 1-7 following establishment of arthritis and caliper measurements of ankles taken every day. Final body weights are taken on day 7 and animals are euthanized.

[00528] It is expected that the combination treatment using PI3Kδ inhibitor and rapamycin provides greater efficacy than treatment with PI3Kδ inhibitor alone.

[00529] While preferred embodiments of the present invention have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the invention.
CLAIMS

1. A compound of Formula I:

 ![Formula I]

 or a pharmaceutically acceptable salt thereof, wherein
 B is a moiety of Formula II;

 ![Formula II]

 wherein \(W_c \) is aryl, heteroaryl, heterocycloalkyl, or cycloalkyl, and
 \(q \) is an integer of 0, 1, 2, 3, or 4;
 \(X \) is absent or \(-\text{CH}(R^3)\);;
 \(Y \) is \(-\text{N}(R^3)\);

 \(W_d \) is:

 \(R^1 \) is hydrogen, \(C_1\text{-}C_6 \)alkyl, or halo;

 \(R^2 \) is \(C_1\text{-}C_6 \)alkyl or halo;

 \(R^3 \) is hydrogen or \(C_1\text{-}C_6 \)alkyl; and

 each instance of \(R^3 \) is independently hydrogen or \(C_1\text{-}C_6 \)alkyl,
 wherein alkyl, heteroaryl, heterocycloalkyl, or cycloalkyl are unsubstituted.

2. The compound of claim 1, wherein \(q \) is 0.
3. The compound of claim 2, wherein R¹ is halo.

4. The compound of claim 2, wherein R¹ is C₁₋₆alkyl.

5. The compound of claim 4, wherein R¹ is methyl.

6. The compound of claim 1, wherein R³ is C₁₋₆alkyl.

7. The compound of claim 6, wherein R³ is methyl.

8. The compound of claim 1, wherein R⁹ is hydrogen.

9. The compound of claim 1, wherein X is -CH₂-, -CH(CH₂CH₃)-, or -CH(CH₃)-.

10. The compound of claim 1, wherein X-Y is -CH₂-N(CH₃)-, -CH₂-N(CH₂CH₃)-, -CH(CH₂CH₃)-NH-, or -CH(CH₃)-NH-.

11. The compound of claim 1, wherein the compound is:

or a pharmaceutically acceptable salt thereof.
12. The compound of claim 1, wherein the compound is:

\[
\text{[Chemical structures]}
\]

or a pharmaceutically acceptable salt thereof.

13. A pharmaceutical composition comprising a pharmaceutically acceptable excipient and a compound of any one of claims 1-12.

14. The composition of claim 13, wherein the composition is a liquid, solid, semi-solid, gel, or an aerosol form.

15. Use of a compound of any one of claims 1-12 for manufacture of a medicament for inhibiting a catalytic activity of a PI3 kinase present in a cell.

16. The use of claim 15, wherein the cell is selected from a T cell, a B cell, a mast cell, a dendritic cell, and a neutrophil.

17. The use of claim 15, wherein the inhibition is to take place in a subject suffering from a disorder which is cancer, bone disorder, inflammatory disease, immune disease, nervous system disease, metabolic disease, respiratory disease, thrombosis, or cardiac disease.
18. The use of claim 17, wherein the inhibition is to take place in a subject suffering from cancer.

19. The use of claim 17, wherein the cancer is lymphoma or leukemia.

20. The use of claim 19, wherein the leukemia is acute myelogenous leukemia (AML), acute lymphocytic leukemia, chronic lymphocytic leukemia (CLL), chronic myelogenous leukemia (CML), hairy cell leukemia, myelodysplasia, a myeloproliferative disorder, mastocytosis, multiple myeloma (MM), or myelodysplastic syndrome (MDS).

22. The use of claim 17, wherein the disorder is an inflammatory disease or immune disease, wherein the inflammatory or immune disease is asthma, emphysema, allergy, dermatitis, rheumatoid arthritis, psoriasis, lupus erythematosus, graft versus host disease, inflammatory bowel disease, eczema, scleroderma, Crohn's disease, or multiple sclerosis.

23. Use of a compound of any one of claims 1-12 for the manufacture of a medicament for treating a disorder, wherein the disorder is a cancer, a bone disorder, an inflammatory disease, an immune disease, a nervous system disease, a metabolic disease, a respiratory disease, thrombosis, or a cardiac disease.
Figure 1

TNP-Ficoll assay description

BDA-1, female

First dose

D-1 D-2 D-3 D-4 D-5 D-6 D-7

TNP-Fip Injection

Collect serum

Last dose

ELISA assay to measure antibody level
Figure 2

Fold Reduction in IgG3 Response
(Compared to Vehicle + Ag Control)

Group 1 (Vehicle + Ag)
Group 2 (Ag control)
Group 3 (compound 7 30mg/kg)
Group 4 (compound 53 1mg/kg)
Group 5 (compound 53 3mg/kg)
Group 6 (compound 53 10mg/kg)
Group 7 (compound 53 30mg/kg)
Group 8 (compound 53 60mg/kg)
Figure 3

RTTC-IK-1_Ank_BID_Preventive

- Normal
- Vehicle
- 1049-178(10mg/kg, PO, BID)
- 1049-178(30mg/kg, PO, BID)
- 1049-178(60mg/kg, PO, BID)
- MTX (0.0375mg/kg, PO, BID)

Mean±SE Ankle Diameter Over Time (mm)

Study Day

0.26 0.28 0.30 0.32 0.34 0.36

10 12 14 16 18
Figure 4

![Graph showing mean ankle histopathology scores with error bars. The x-axis represents different treatment groups including Vehicle, 1103-83 (60 mg/kg), 1049-178 (10 mg/kg), 1049-178 (30 mg/kg), 1049-178 (60 mg/kg), and MTX (0.0375 mg/kg). The y-axis represents the mean ankle histopathology scores (scored 0-5). Symbols indicate significance levels (* for p<0.05 compared to Vehicle).]
Figure 5

![Graph showing mean and standard error of knee histopathology scores for different treatment groups compared to vehicle.](image)

BolderBioPATH, Inc
n=10 rats/treatment group

* p≤0.05 t-test to Vehicle

- Inflammation
- Panus
- Cartilage Damage
- Bone Resorption

Treatment Group:
- Vehicle
- 1105-83 (60 mg/kg)
- 1049-178 (10 mg/kg)
- 1049-178 (30 mg/kg)
- 1049-178 (60 mg/kg)
- MTX (0.6375 mg/kg)
Figure 6

Serum Anti-Type II Collagen Levels (pg/ml)

Vehicle 1103-83 (60 mg/kg) 1049-178 (10 mg/kg) 1049-178 (50 mg/kg) 1649-178 (60 mg/kg) MTX (9.0475 mg/kg)

* p<0.05 t-test to Vehicle

Bolder BioPATH, Inc.

n=10 rats/treatment group
Figure 7

RTTC-IK-1_Ank_BiD_Preventive

- Normal
- Vehicle
- 1103-83 (10mg/kg, PO, BiD)
- 1103-83 (30mg/kg, PO, BiD)
- 1103-83 (60mg/kg, PO, BiD)
- MTX (0.0375mg/kg, PO, BiD)

Mean±SE Ankle Diameter Over Time (in)

Study Day
Figure 8
Figure 9

RTTC-I K-2 Ank Curative
Figure 10

Average Delta Paw Volume with PI3Kγ6 Inhibitor Treatment

![Graph showing average delta paw volume over days with different doses of PI3Kγ6 inhibitor treatment. The x-axis represents days, and the y-axis represents average delta paw volume in mL. The graph includes lines for mg/kg 60, mg/kg 30, mg/kg 10, and vehicle control. The data points are connected by lines, and error bars indicate variability.]
Figure 11

Average Weight

Day

mg/kg 60 mg/kg 30 mg/kg 10 Vehicle
TNP-Ficoll assay description

BDA-1, female

First dose

Days: 0, 2, 5, 7

TNP-F ip Injection

Last dose

Collect serum

ELISA assay to measure antibody level