Polyamide-based thermoplastic polymer compositions that exhibit a good balance among the properties thereof, in particular, their mechanical properties, and a high fluidity in the molten state; such compositions contain at least one high-fluidity polyamide and a shock modification agent having functional groups that react with the polyamide.
POLYAMIDE-BASED THERMOPLASTIC POLYMER COMPOSITIONS

[0001] The present invention relates to a polyamide-based thermoplastic polymer composition that exhibits a good balance between its properties, in particular its mechanical properties, and a high melt flow. The invention relates in particular to a composition comprising at least one high-fluidity polyamide and an impact modifier comprising functional groups that react with the polyamide, and to a method for preparing such a composition.

PRIOR ART

[0002] Among the properties that it is often desired to control in the case of a thermoplastic intended to be formed by techniques such as injection molding, gas injection molding, extrusion and extrusion-blow molding, mention may be made of stiffness, impact strength, dimensional stability, in particular at a relatively high temperature, low post-forming shrinkage, a capacity for coating by various processes, surface appearance and density. These properties can be controlled, within certain limits, through the choice of a polymer or through the addition to the polymer of compounds of various natures. In the latter case, the term polymeric compositions is used. The choice of a material for a given application is generally guided by the required level of performance with respect to certain properties and by its cost. The aim is always to obtain new materials that can meet a specification in terms of performance and/or cost. Polyamide is, for example, a material that is widely used, in particular in the sector of the automobile industry.

[0003] Polyamide is a polymer which is chemically resistant, which is stable at high temperatures and which can be mixed with other types of polymers in order to modify the properties thereof. It is, for example, possible to improve its resilience by adding an elastomeric polymer.

[0004] There are at least three major properties that it is desired to obtain for these polyamide-based compositions, in particular when they are used in these conversion processes.

[0005] The first of these properties lies in the fact that these thermoplastic compositions used should be characterized, in the melting state, by a fluidity and a rheological behavior compatible with the forming processes of interest, such as injection molding. Specifically, these thermoplastic compositions should be sufficiently fluid, when they are molten, for it to be possible to easily and rapidly convey and manipulate them in certain forming devices, such as, for example, injection molding devices.

[0006] It is also sought to increase the mechanical properties of these compositions. These mechanical properties are in particular the impact strength, the flexural or tensile modulus, the flexural strength or tensile strength, inter alia. Reinforcing fillers, such as glass fibers, are generally used to this effect.

[0007] Finally, in the case of components molded from these thermoplastic compositions, a clean and uniform surface appearance is desired. This constraint becomes a problem which is difficult to solve, particularly when a thermoplastic composition with a high load of glass fibers is used, these glass fibers detrimentally affecting the surface appearance of the molded components. It is known practice, in order to obtain an acceptable surface appearance, to use thermoplastic compositions that exhibit a high fluidity. However, this increase in fluidity results in a decrease in the mechanical properties of the articles obtained.

[0008] The result is thus that it is difficult to obtain these various properties for the same polyamide-based thermoplastic composition.

INVENTION

[0009] The applicant has developed a polyamide composition that exhibits an increased melt flow and equivalent or superior mechanical properties, in comparison with conventional polyamide compositions, and that makes possible the preparation of articles having an excellent surface appearance, in particular when they comprise a high level of fillers.

[0010] The subject of the invention is thus a composition comprising at least:

[0011] a) a polyamide of type 6 or 66 obtained by means of a process of polymerization of the monomers of the polyamide 6 or 66 in the presence, in addition, of monofunctional and/or difunctional compounds comprising carboxylic acid or amine functions; said polyamide having a melt flow index of greater than or equal to 10 g/10 min. according to the ISO1133 standard measured at a temperature of 275°C with a load of 325 g; and

[0012] b) an impact modifier comprising functional groups that react with the polyamide a).

DETAILED DISCLOSURE OF THE INVENTION

[0013] The polyamide a) may be a thermoplastic polyamide of type 66, i.e., a polyamide obtained at least from adipic acid and hexamethylenediamine, which may optionally comprise other polyamide monomers.

[0014] The term “polyamide of type 66” is intended in particular to mean a polyamide comprising at least 80 mol %, preferably at least 90 mol % of adipic acid and hexamethylenediamine monomer residues.

[0015] The polyamide a) may be a thermoplastic polyamide of type 6, i.e., a polyamide obtained at least from caprolactam, which may optionally comprise other polyamide monomers.

[0016] The term “polyamide of type 6” is intended in particular to mean a polyamide comprising at least 80 mol %, preferably at least 90 mol % of caprolactam monomer residues.

[0017] Preferably, the polyamide according to the invention has a molecular weight Mn of between 3000 and 25000 g/mol, more preferably between 5000 and 15000. It may have a polydispersity index (D = Mw/Mn) of less than or equal to 2.

[0018] The polymerization of the polyamide of the invention is in particular carried out according to the conventional operating conditions for the polymerization of polyamides, continuously or batchwise.

[0019] Such a polymerization process may comprise, briefly:

[0020] heating the mixture of monomers and water, with stirring and under pressure; and

[0021] maintaining the mixture at this temperature for a given period of time, followed by decompression and maintaining, for a given period of time, at a temperature above the melting point of the mixture, in particular under nitrogen or under vacuum, so as to thus continue the polymerization by removal of the water formed.
At the end of polymerization, the polymer can be cooled advantageously with water, and extruded in the form of rods. These rods are cut up so as to produce granules. According to the invention, the polyamide is produced by adding during polymerization, in particular at the beginning of the polymerization, monomers of the polyamides 6 or 66, in the presence, in addition, of difunctional and/or monofunctional compounds. These difunctional and/or monofunctional compounds have amine or carboxylic acid functions capable of reacting with the polyamide monomers. The difunctional compounds may have the same amine or carboxylic acid functionality.

The difunctional and/or monofunctional compounds used are agents for modifying the chain length of polyamides of type 6 or 66 and make it possible to obtain polyamides having a melt flow index of greater than or equal to 10 g/10 min. according to the ISO1133 standard measured at a temperature of 275°C. with a load of 325 g.

The polyamide-6 monomers are in particular adipic acid and hexamethylenediamine, or hexamethylenediamine adipate, also called nylon salt or N salt. The polyamide-6 monomers are caprolactam or derivatives thereof.

It is possible to use, at the beginning, during or at the end of polymerization, aliphatic or aromatic, monocarboxylic or dicarboxylic acids of any type or aliphatic or aromatic, monoamines or diamines of any type. It is in particular possible to use, as monofunctional compound, n-hexadecylamine, n-octadecylamine and n-dodecylamine, acetic acid, lactic acid, benzylation and benzoic acid. It is in particular possible to use, as difunctional compound, sucinic acid, terephthalic acid, isophthalic acid, sebacic acid, azelaic acid, dodecanedioic acid, fatty acid diamers, diphénylcyclohexanone, 5-methyl pentamethylenediamine, metaxyldenediamine, isophorone diamine and 1,4-cyclohexanedi-

It is also possible to use an excess of adipic acid or an excess of hexamethylenediamine for the production of a polyamide of type 66 that exhibits a high melt flow.

Preferably, the proportion of acid end groups is different than the proportion of amine end groups, in particular at least twice as many or half as many. The amounts of amine and/or acid end groups are determined by potentiometric assays after dissolution of the polyamide. A method is, for example, described in "Encyclopedia of Industrial Chemical Analysis", volume 17, page 293, 1973.

Preferably, the polyamide according to the invention has a melt flow index, according to the ISO1133 standard measured at a temperature of 275°C. with a load of 325 g. of between 10 and 50 g/10 min., more preferably between 20 and 40 g/10 min.

According to the invention, the term “impact modifier” is intended to mean a compound capable of modifying the impact strength of a polyamide composition. These impact-modifier compounds comprise functional groups that react with the polyamide a).

According to the invention, the expression “functional groups that react with the polyamide a)” is intended to mean groups capable of reacting or of interacting chemically with the acid or amine functions of the polyamide, in particular by covalence, ionic or hydrogen interaction or van der Walls bonding. Such reactive groups make it possible to provide good dispersion of the impact modifiers in the polyamide matrix. Good dispersion in the matrix is generally obtained with impact-modifier particles having a size of between 0.1 and 1 μm.

The impact modifiers may very well comprise, in themselves, functional groups that react with the polyamide a), for example as regards ethylene acrylic acid (EAA).

It is also possible to attach thereto functional groups that react with the polyamide a), generally by grafting or copolymerization, for example for ethylene-propylene-diene (EPDM) grafted with maleic anhydride.

According to the invention, use may be made of the impact modifiers, which are oligomeric or polymeric compounds, comprising at least one of the following monomers, or a mixture thereof: ethylene, propylene, butene, isoprene, diene, acrylate, butadiene, styrene, octene, acrylonitrile, acrylic acid, methacrylic acid, vinyl acetate, vinyl esters such as acryl and methacrylic esters, and glycidyl methacrylate.

The compounds according to the invention may also comprise, in addition, monomers other than those mentioned above.

The base of the impact-modifier compound, optionally referred to as elastomeric base, can be chosen from the group comprising: polyethylenes, polypropylenes, polybutenes, polyisoprenes, ethylene-propylene rubbers (EPR), ethylene-propylene-diene rubbers (EPDM), ethylene butene rubbers, ethylene acrylate rubbers, butadiene styrene rubbers, butadiene acrylate rubbers, ethylene octene rubbers, butadiene acrylonitrile rubbers, ethylene acrylic acids (EAAs), ethylene vinyl acetate (EVA), ethylene acrylic esters (EAE), acrylonitrile-butadiene-styrene (ABS) copolymers, styrene-ethylenel-butadiene-styrene (SBS) block copolymers, styrene-butadiene-styrene (SBS) copolymers, core-shell elastomers of methacrylate-butadiene-styrene (MBS) type, or blends of at least two elastomers listed above.

In addition to the groups listed above, these impact modifiers may also comprise, generally grafted or copolymerized, functional groups that react with the polyamide a), such as, in particular, functional groups as follows: acids, such as carboxylic acids, salified acids, esters, in particular acrylates and methacrylates, ionomers, glycidyl groups, in particular epoxy groups, of glycidyl esters, anhydrides, in particular maleic anhydrides, maleimides, or mixtures thereof.

Such functional groups on the elastomers are for example, obtained by using a comonomer during the preparation of the elastomer.

As impact modifiers comprising functional groups that react with the polyamide a), mention may in particular be made of ethylene/acyrlic ester/glycidyl methacrylate terpolymer, ethylene/butyl ester acrylic copolymers, ethylene/n-butyl acrylate/glycidyl methacrylate copolymers, ethylene/ maleic anhydride copolymers, maleic anhydride-grafted styrene/maleimide copolymers, copolymers of styrene/ethylene/butylene/styrene modified with maleic anhydride, maleic anhydride-grafted styrene/acrylonitrile copolymers, maleic anhydride-grafted acrylonitrile/butadiene/styrene copolymers, and hydrogenated versions thereof.

The proportion by weight of the elastomers b) of the invention in the total composition is in particular between 0.1% and 50%, preferably between 0.1% and 20%, in particular between 0.1% and 10%, in particular the values 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 or any ranges composed of said values, in particular between 1% and 6%.

In order to improve the mechanical properties of the composition according to the invention, it may be advanta-
geous to add thereto at least one reinforcing and/or bulking filler preferably chosen from the group comprising fibrous fillers such as glass fibers, inorganic fillers such as clays, kaolin, or reinforced nanoparticles or nanoparticles made of thermosetting material, and powder fillers such as talc. The degree of incorporation of reinforcing and/or bulking filler is in accordance with the standards in the composite material field. It may, for example, be a degree of filler of from 1% to 50% by weight, relative to the total weight of the composition.

The composition may comprise, in addition to the modified polyamide of the invention, one or more other polymers, preferably polyamides or copolyamides.

The composition according to the invention may also comprise additives normally used for the production of polyamide compositions. Thus, mention may be made of lubricants, flame retardants, plasticizers, nucleating agents, catalysts, agents for improving impact strength, such as optionally grafted elastomers, light and/or heat stabilizers, antioxidants, anitstatics, colorants, mattifying agents, molding aids or other conventional additives.

These fillers and additives can be added to the modified polyamide by standard means suited to each filler or additive, such as, for example, during melt blending or polymerization.

The thermoplastic compositions are generally obtained by mixing the various compounds that go to make up the composition, the thermoplastic compounds being in molten form. The process is carried out at or more or less high temperature, at more or less high shear force depending on the nature of the various compounds. The compounds can be introduced simultaneously or successively. An extrusion device in which the material is heated, subjected to a shear force and conveyed along, is generally used. Such devices are entirely known to those skilled in the art.

According to a first embodiment, all the compounds are melt blended during a single operation, for example during an extrusion operation. It is, for example, possible to blend granules of the polymeric materials, and to introduce them into the extrusion device in order to melt them and to subject them to a more or less large shear stress.

According to particular embodiments, it is possible to prepare pre-blends, which may or may not be melt pre-blends, of some of the compounds before preparation of the final composition.

The composition according to the invention, when it is prepared using an extrusion device, is preferably conditioned in the form of granules. The granules are intended to be formed by means of processes involving melting so as to obtain articles. The articles are thus made up of the composition. According to one customary embodiment, the modified polyamide is extruded in the form of rods, for example in a twin-extrusion device, and said rods are then cut into granules. The molded components are then prepared by melting the granules produced above and feeding the molten composition into injection molding devices.

The use of the compositions according to the invention is particularly advantageous in the context of the electrical industry, in particular for the molding of components of large sizes or with a complex geometry.

Specific terms are used in the description in such a way as to facilitate understanding of the principle of the invention. It should nevertheless be understood that no limitation of the scope of the invention is envisaged with the use of these specific terms. The term "and/or" includes the meanings and, or, and also all the other possible combinations of elements connected to this term.

Other details or advantages of the invention will emerge more clearly in view of the examples below, given only by way of indication.

EXPERIMENTAL SECTION

The following compounds are used:

PA1: Polyamide 66 having an MFI of 2.7 g/10 minutes (according to the ISO1133 standard measured at 275° C. with a load of 325 g) and an IV of 140. Contents of following end groups: amine end groups=40 meq/kg, carboxylic end groups=60 meq/kg.

PA2: Polyamide 66 having an MFI of 30 g/10 minutes (according to the ISO1133 standard measured at 275° C. with a load of 325 g) and an IV of 98. Contents of following end groups: amine end groups=25 meq/kg, carboxylic end groups=90 meq/kg. Obtained by adding 0.7 mol % of benzoic acid at the beginning of polymerization.

Glass fibers: Vetrotex 99B.

E1: ethylene/acylclester glycidyl methacrylate terpolymer elastomer (8% by weight of glycidyl methacrylate), sold under the name Lotus® AX8900 by the company Arkema.

E2: ethylene/butyl ester acrylate copolymer elastomer, sold under the name Lotryl® 30 BA 02 by the company Atofina.

E3: ethylene/a-acrylate glycidyl methacrylate copolymer elastomer, sold under the name Elvaloy® FTW by the company DuPont.

E4: ethylene/maleic anhydride copolymer elastomer, sold under the name Exxon® VA 1840 by the company Exxon Mobil.

E5: ethylene/maleic anhydride copolymer elastomer, sold under the name Fusibond® N MN493D by the company DuPont.

E6: ethylene/acid copolymer elastomer, sold under the name Primacor® E AA 449 by the company Dow.

E7: ethylene/vinyl acetate copolymer elastomer, sold under the name Escorene® UL 02528 by the company Exxon Mobil.

Additives: EBS wax, and nigrosine sold under the name 54/1033 by the company Ferroplast.

The compositions are prepared by melt blending, using a Werner and Pfleiderer ZSK twin-screw extruder, the polyamides, 5% by weight of elastomers, 30% by weight of glass fibers, and 1% by weight of additives. The extrusion conditions are the following: temperature between 240 and 280°C., rotation speed: between 200 and 300 rpm, flow rate between 25 and 60 kg/hour.

The various compositions prepared are shown in Table 1:

<table>
<thead>
<tr>
<th>Examples</th>
<th>Polymer</th>
<th>Elastomer</th>
<th>Spinal test (cm)</th>
<th>Unnotched Charpy impact (KJ/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>PA1</td>
<td>—</td>
<td>25</td>
<td>86.3</td>
</tr>
<tr>
<td>C2</td>
<td>PA1</td>
<td>E1</td>
<td>24</td>
<td>89.7</td>
</tr>
<tr>
<td>C3</td>
<td>PA2</td>
<td>—</td>
<td>46</td>
<td>58.2</td>
</tr>
<tr>
<td>1</td>
<td>PA2</td>
<td>E1</td>
<td>47</td>
<td>82.2</td>
</tr>
<tr>
<td>2</td>
<td>PA2</td>
<td>E3</td>
<td>45</td>
<td>84.4</td>
</tr>
</tbody>
</table>
TABLE 1-continued

<table>
<thead>
<tr>
<th>Examples</th>
<th>Polymer</th>
<th>Elastomer</th>
<th>Spiral test (cm)</th>
<th>Unnotched Charpy impact (KJ/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>PA2</td>
<td>E4</td>
<td>45</td>
<td>88.1</td>
</tr>
<tr>
<td>4</td>
<td>PA2</td>
<td>E5</td>
<td>44</td>
<td>88.8</td>
</tr>
<tr>
<td>5</td>
<td>PA2</td>
<td>E6</td>
<td>44</td>
<td>88.8</td>
</tr>
<tr>
<td>6</td>
<td>PA2</td>
<td>E7</td>
<td>46</td>
<td>80.8</td>
</tr>
<tr>
<td>7</td>
<td>PA2</td>
<td>E8</td>
<td>46</td>
<td>78.8</td>
</tr>
</tbody>
</table>

The unnotched Charpy impact strength is measured according to ISO standard 179/1/EU.

[0066] The spiral test makes it possible to quantitate the fluidity of the compositions by melting the granules and injecting them into a spiral shaped mold with a semicircular cross section of thickness 2 mm and of width 4 cm, in a BM-Biraghi 85T press at a barrel temperature of 275°C, and a mold temperature of 80°C, and with a maximum injection pressure of 130 bar, which corresponds to an injection time of approximately 0.4 seconds (the result is expressed as length of mold correctly filled by the composition).

[0067] It is thus observed that the compositions obtained exhibit excellent compatibility between the polyamide of the invention and the graft elastomers, thereby resulting in the obtaining of articles having an excellent balance between mechanical properties and melt flow. It is, moreover, observed that the articles of Examples 1-8 exhibit a good surface appearance.

1-13. (canceled)

14. A polymer composition comprising at least:
 a) a polyamide 6 or 66 obtained via a process of polymerization of the polyamide 6 or 66 monomers in the presence of non-functional and/or difunctional compounds comprising carboxylic acid or amine functional groups, said polyamide having a melt flow index of greater than or equal to 10 g/10 min. according to the ISO1133 standard measured at a temperature of 275°C, with a load of 325 g; and
 b) an impact modifier comprising functional groups that react with the polyamide a).

15. The polymer composition as defined by claim 14, wherein the molecular weight Mn of the polyamide ranges from 3,000 to 25,000 g/mol.

16. The polymer composition as defined by claim 14, wherein the polydispersity index of the polyamide is less than or equal to 2.

17. The polymer composition as defined by claim 14, wherein the polyamide is obtained by adding, at the beginning, during or at the end of polymerization, aliphatic or aromatic, monocarboxylic or dicarboxylic acids and/or aliphatic or aromatic, monamines or diamines.

18. The polymer composition as defined by claim 14, wherein the polyamide has a melt flow index ranging from 10 to 50 g/10 min.

19. The polymer composition as defined by claim 14, wherein the polyamide has a melt flow index ranging from 20 to 40 g/10 min.

20. The polymer composition as defined by claim 14, wherein the impact modifiers are oligomeric or polymeric compounds comprising at least one of the following monomers, or a mixture thereof: ethylene, propylene, butene, isoprene, diene, acrylate, butadiene, styrene, octene, acrylonitrile, acrylic acid, methacrylic acid, vinyl acetate, vinyl esters such as acrylic and methacrylic esters, and glycidyl methacrylate.

21. The polymer composition as defined by claim 14, wherein the impact modifiers comprise an elastomeric base selected from the group consisting of polyethylenes, polypropylenes, polybutenes, polyisoprenes, ethylene-propylene rubbers (EPRs), ethylene-propylene-diene rubbers (EPDMs), ethylene butene rubbers, ethylene acrylate rubbers, butadiene styrene rubbers, butadiene acrylate rubbers, ethylene octene rubbers, butadiene acrylonitrile rubbers, ethylene acrylic acids (EAs), ethylene vinyl acetate (EVAs), ethylene acrylic esters (EEAs), acrylonitrile-butadiene-styrene (ABS) copolymers, styrene-ethylene-butadiene-styrene (SEBS) block copolymers, styrene-butadiene-styrene (SBS) copolymers, core-shell elastomers of methacrylate-butadiene-styrene (MBS) type, or blends of at least two of the elastomers listed above.

22. The polymer composition as defined by claim 14, wherein the functional groups of the impact modifier, that are capable of reacting chemically with the polyamide a) are selected from the group consisting of acids, carboxylic acids, sialified acids, esters, acrylates and methacrylates, ionomers, glycidyl groups, epoxy groups, glycidyl esters, anhydrides, maleic anhydrides, maleimides, and mixtures thereof.

23. The polymer composition as defined by claim 14, wherein the impact modifiers are selected from the group consisting of ethylene/ acrylic ester glycidyl methacrylate terpolymers, ethylene/butyl ester acrylate copolymers, ethylene/n-butyl acrylate/glycidyl methacrylate copolymers, ethylene/maleic anhydride copolymers, maleic anhydride-grafted styrene/maleimide copolymers, copolymers of styrene/ethylene/butylene/styrene modified with maleic anhydride, maleic anhydride-grafted styrene/acylonitrile copolymers, maleic anhydride-grafted acrylonitrile/butadiene/styrene copolymers, and hydrogenated conjugates thereof.

24. The polymer composition as defined by claim 14, wherein the proportion of impact modifiers present therein ranges from 0.1% to 10% by weight.

25. The polymer composition as defined by claim 14, comprising at least one reinforcing and/or bulking filler.

26. A method for producing a polymer composition as defined by claim 14, comprising melt blending said polyamide a) and said impact strength modifiers b).

27. The polymer composition as defined by claim 14, comprising at least one polyamide 6.

28. The polymer composition as defined by claim 14, comprising at least one polyamide 66.

29. A shaped article product of reaction between the polyamide and the impact modifier as defined by claim 14.

30. A shaped article product of reaction between the constituents of the polymer composition as defined by claim 14.