1

3,250,612
HIGH TEMPERATURE ALLOYS
Amedee Roy, Birmingham, and Frederick A. Hagen, Detroit, Mich., assignors to Chrysler Corporation, Highland Park, Mich., a corporation of Delaware No Drawing. Filed Jan. 11, 1965, Ser. No. 424,809 7 Claims. (Cl. 75—126)

This is a continuation-in-part of application Serial No. 119,902, filed June 27, 1961, now Patent No. 3,165,400. 10

This invention relates to austenitic alloys for high temperature applications of the general character disclosed and claimed in the copending application of Amedee Roy, one of the present applicants, and Walter E. Jominy, Serial No. 119,902, filed June 27, 1961, which by this cross reference is made a part hereof, and especially to such composition made to include or exclude trace amounts of certain elements in order to improve the elevated temperature properties of the compositions and/or minimize variations in the properties between heats of apparently the same composition.

Early work with alloys of the above type had often shown a wide range in properties between heats of apparently the same composition (insofar as the elements thereof could be readily analyzed by conventional techniques). It was theorized that trace elements picked up either from the raw materials or the melting crucible were strongly influencing elevated temperature properties and preventing consistent properties from being attained. Their effect often was to lower the property values expected of the alloy in the absence of these effects.

Extensive investigations were conducted to investigate the effects of various beneficial or detrimental trace elements that could possibly be present in the alloy. To this end small melts (approximately 3600 gms.) were prepared of the purest raw materials (commercial grades) available plus small additions of one of the following elements: B, Zr, Ti, Ta, P, S, and Al. For example, six heats of pure materials were prepared with Zr additions ranging from 0.005 to 1% by weight and similar heats $\,40$ were prepared with the others. In some cases two of the trace elements, for instance Zr and B were added together to determine if their effects were complimentary or additive. Moreover similar melts were prepared in four different types of melting crucibles: Al₂O₃, MgO, Zircon (Zr₂O₃·SIO₂) and graphite. The small heats were cast into investment molds (both solid and shell type) containing approximately ten test bar cavities (1/4" dia. gage section). These cast to size test bars were utilized to determine the elevated temperature properties of the heats.

Table I shows the composition of the alloys tested and the amounts of trace elements included. The amount of iron (Fe) is not shown, it constituting essentially the remainder thereof.

Table II shows the stress rupture life under various loads and the stress for a rupture life of 100 hours, at

2

the indicated temperature to provide a convenient basis for comparison.

The composition of a typical heat before adding any of the trace elements may be seen from heat No. 267D.

With respect to zirconium (Zr) it will be noted from heats 293D, 272D, 273D, 277D, 320D, and 321D in Tables I and II for example, representing compositions containing respectively 0.005, 0.01, 0.1, 0.25, 0.5 and 1.0 weight percent zirconium added to the base composition 267D that best results were obtained with heat 273D containing 0.1 zirconium. It was noted too that single additions of zirconium up to 1.0% did not substantially adversely affect the basic composition property. In Table II the letter A appearing after the heat number means that the as-cast alloy was solution heat treated at 2250° F. for ½ hour and aged at 1400° F. for 20 hours after air cooling.

With respect to boron (B), it will be noted from heats. 292D, 285D, 268D, 286D and 269D in Tables I and II, for example, representing compositions containing respectively 0.002, 0.005, 0.01, 0.025 and 0.05 weight percent boron added to the base composition 267D that the optimum properties in the A (solution treated and aged) condition as shown in Table II was obtained with heat 285D containing 0.005 boron. The properties of heats 286D and 269D containing 0.025 and 0.05 boron were adversely affected by these amounts of boron. It would appear that up to about 0.025% boron may be safely used in the base composition 267D preferably up to about 0.01%. For the same heats in as cast condition those containing 0.025% and above were inferior to those containing less than this amount of boron. The use of boron is especially desirable because it appears to promote an optimum distribution of the precipitates and an optimum structure. With respect to a combination of boron and zirconium heats 274D, 275D, 278D and 279D it appeared that the combination in the optimum amount used separately did not produce any improved properties in the base alloy containing single additions of these elements.

With respect to trace elements phosphorous, sulfur, titanium, tantalum and aluminum as reported by heats 290D, 291D, 322D, 323D, 299D, 301D, 295D, 296D, 297D and 324D, 388D, 389D and 391D, it appears that trace amounts of these elements are not detrimental. However, 2% or more titanium is detrimental and phosphorous additions at 0.5% and above produced alloys which did not respond to heat treatment.

With respect to the crucibles used for melting the heats it was found that part of all of the trace elements given above may be picked up therefrom. Heats 243D, 246D, 247D and 248D were, for example, prepared using respectively graphite, alumina, zircon, and zircon crucibles and picked up at least some of the trace elements therefrom. Most of the other heats were prepared in magnesia crucibles which are less likely to impart the trace elements to the heats.

Table I.—Chemical compositions of heat (nominal weight percent)

Alloy	C	Cr	Si	w	Мо	Cb	Ni	Mn	N	В	Others
243D	1.0	18.0	0.5	2.0	2.0	2.0	5. 0	5.0	0.3		Graphite crucible.
246D	1.0	18.0	0.5	2.0	2.0	2.0	5.0	5.0	0.3		Alumina
247D	1.0	18.0	0.5	.2.0	2.0	2.0	5.0	5.0	0.3		crucible. Zirconia
248D 263D 265D 267D	1.0 1.0 1.0 1.0	18. 0 18. 0 18. 0 18. 0	0.5 0.5 0.5 0.5	2.0 2.0 2.0 1.0	2.0 2.0 2.0 1.0	2. 0 2. 0 2. 0 1. 0	5. 0 5. 0 5. 0 5. 0	5. 0 5. 0 5. 0 5. 0	0.3 0.3 0.3		crucible. Do. 0.1 Ti. 0.5 Ti. MgO
2012	7.0	20.0	0.0	0	1.0	1.0	0.0	0.0			crucible

3
Table I—Continued

					35	<i>α</i> ,	٠ ا	3.6		- n	045
Alloy	C	Cr	Si	W	Мо	Cb	Ni	$\mathbf{M}\mathbf{n}$	N	В	Others
268D	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	18. 0 18. 0	0.555555555555555555555555555555555555	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.	5.		.01 0.5 	.01 Zr1 Zr01 Zr1 Zr25 Zr1 Zr1 Zr25 Zr1 Zr005 P02 P005 Zr005 Ti5 Ti01 S05 S5 Zr. 1 Zr0.5 P1 Zr01 P2 Ti. AlO ₃ crucible01 Zr.
327D 328D	1.0	18.0 18.0	0.5	1.0 1.0	1.0 1.0	1.0 1.0	5.0 5.0	5. 0 5. 0			0.1 Zr. 0.2 Zr.
329D	1.0	18.0	0.5	1.0	1.0	1.0	5.0	5.0			0.4 Zr.
388D	1.0	18.0	0.5	1.0	1.0	1.0	5.0	5.0			1.1 Zr. 01 Al.
389D	1.0	18.0	0.5	1.0	1.0	1.0	5.0	5.0			1.1 Zr. 1.05 Al.
390D	1.0	18.0	0.5	1.0	1.0	1.0	5.0	5.0			1.1 Ti. 1.1 Zr.
391D	1.0	18.0	0.5	1.0	1.0	1.0	5.0	5.0			(.1 Zr. (.1 Ta.

Table II.—Mechanical Properties of Heats

Alloy	St	ress-rupture d	ata at 1,500° F	•	35		Stress-rupture data at 1,500° F.					
	Stress	Time	Elong., percent	100 hr. life		Alloy	Stress	Time	Elong., percent	100 hr. life		
43D 43D 43D	27, 000 25, 000 22, 500	39. 4 58. 7 109. 9	20 20 20	23, 000	40	273D 273D 273D 273D 273DA	30, 000 27, 000 25, 000 35, 000	16. 1 72. 4 162. 7 10. 8 60. 7	16 15 12 12	26, 500 30, 000		
16D 16D	27, 000 25, 000 22, 500	49. 6 93. 3 212. 3	13 23 25	24, 500		273DA 273DA	32, 000 30, 000	103.3	12 2 3	o v 000		
47D47D47D	27, 500 25, 000 22, 500	46. 1 76. 6 199. 2	24 12 15	24, 500	45	274D	30, 000 27, 000 25, 000 32, 000 30, 000	7. 2 42. 3 75. 5 23. 1 45. 0	16 20 15 2 5	25, 000 27, 000		
48D	27, 000 25, 000 22, 500 22, 500 20, 000	44. 4 40. 7 94. 3 219. 0 453. 3	20 14 14 15 16	24, 000		275D 275D 275D	27, 000 27, 000 30, 000 25, 000	92. 2 39. 9 13. 9 121. 8	20 17 16	25, 000 29, 000		
63D63D	27, 000 27; 000 25, 000	65. 8 93. 4 162. 5	19 20 17	26, 000	50	275DA 275DA 275DA	35, 000 32, 000 30, 000	16. 3 30. 6 82. 7	5 6 4	29,000		
63D 65D 65D 65D	22, 000 27, 000 25, 000 22, 500	343. 5 51. 8 78. 4 126. 3	22 13 20 24	23,500	55	277D	30, 000 27, 000 25, 000 32, 000 30, 000 27, 000	13. 5 44. 9 190. 3 34. 7 68. 0 238. 8	17 19 7 6: 5 4 2: 5	25, 500 29, 000		
67D	27, 000 25, 000 22, 500 30, 000	58. 9 88. 6 271. 6 101. 6	19 13	25, 000 27, 500		278D 278DA	27, 000 32, 000	31. 6 32. 1	20 7	25, 000 30, 000		
67DA	30, 000 27, 000 27, 000 25, 000	28. 6 54. 0 35. 7 238. 4	6 5 10 5		60	279D	27, 000 30, 000 27, 000 25, 000 32, 000	31. 6 5. 8 29. 6 126. 0 13. 4 34. 3	20 19 15 14 5	25, 200 27, 500		
68D	30, 000 27, 000 25, 000 32, 000 30, 000 27, 000	8. 4 49. 5 130. 5 22. 2 112. 2 286. 7	$egin{array}{c} 24 \\ 20 \\ 11 \\ 11 \\ 6 \\ 5 \\ \end{array}$	25, 500 29, 500	65	279DA 279DA 285D 285D 285D 285D 285D	30, 000 30, 000 27, 000 25, 000 30, 000	34. 3 6. 9 37. 0 139. 9 10. 3	5 23 15 12	25, 500		
69D	30, 000 27, 000	9. 5 25. 0	23 16 24	23, 500		285DA 285DA 285DA	35, 000 32, 000 30, 000	1. 6 43. 5 140. 6	19 1 6 3.5	30,000		
69D	25, 000 22, 500 27, 000 27, 000 25, 000	57. 6 233. 3 18. 1 0. 6 82. 4	19 1.5 1 3	24, 500	70	286D 286D 286D 286DA 286DA	30,000 27,000 25,000 30,000	6. 9 14. 4 54. 0 22. 1	23 23 16. 5	23, 500 26, 50		
72D 72D 72D 72DA	30, 000 27, 000 25, 000 35, 000 32, 000	14. 0 39. 6 93. 4 10. 9	20 16 15 8 3	24, 500 31, 000		286DA 286DA 290D	27, 000 27, 000 30, 000 27, 000	0 6. 8 9. 7 55. 3	1 1 17 14	26, 20		

Table II—Continued

	Table	II—Contin	nued	· · · · · · · · · · · · · · · · · · ·		-	Strass Funtura data at 1 5000 TB				
	St	ress-rupture d	ata at 1,500° F.	•	Allo	Alloy	Stress-rupture data at 1,500° F.				
Alloy	Stress	Time	Elong., percent	100 hr. life			Stress	Time	Elong., percent	100 hr. life	
290DA 290DA 290DA 290DA 290DA	32, 000 30, 000 30, 000 27, 000 27, 000	53. 7 47. 1 5. 0 0. 2 9. 9	4.5 7 1.5 1	29,000	10		25, 000 35, 000 32, 000 30, 000 30, 000	241. 6 53. 0 98. 8 93. 1 192. 0	10 3 3 4 2	32, 500	
291D 291D 291D 291D 291DA	30, 000 27, 000 25, 000 35, 000	14. 2 33. 0 139. 5	17 22 15	25, 200 31, 000		326D	30, 000 25, 000 27, 000 35, 000 32, 000	11. 4 216. 0 89. 6 30. 7 63. 8	20 9 13 4 3	26, 500 31, 500	
291DA 291DA 291DA	35, 000 32, 000 30, 000	2. 5 2. 3 103. 9 102. 5	1 2 5 7		15	327D 327D	30, 000 30, 000 27, 000	165. 2 31. 1 136. 3	2 16 14	27, 500	
292D	32, 000 30, 000 27, 000 25, 000 32, 000	2.6 11.0 66.8 124.7	26 27 18 16 1	26, 000 27, 000	20	327D 327DA 327DA 327DA 327DA	25, 000 35, 000 32, 000 30, 000	256. 4 28. 3 87. 2 174. 8	5 4 3	31, 500	
292DA 292DA 293D	30, 000 27, 000 32, 000	5.8 21.9 75.6	1 0 2 2 22 15	26, 000		328D	30, 000 27, 000 25, 000 32, 000	16.3 69.8 271.0 2.2	18 17 7 1	26, 500 29, 000	
293D	27, 000 25, 000 32, 000 30, 000 30, 000	66. 4 140. 1 10. 4 42. 7 94. 7	14 2 1	28, 500	25	328DA	30, 000 30, 000 30, 000 27, 000	65. 0 69. 7 25. 7 73. 1	3 2 16 12	26,000	
293D.A	30, 000 30, 000 27, 000 25, 000	10. 0 52. 3 126. 8	28 19 23	26,000		329D	25, 000 35, 000 32, 000 32, 000 30, 000	152. 9 2. 2 22. 6 15. 4 61. 5	8 1 3 3 2,5	29, 000	
295DA 295DA 295DA 295DA	35, 000 32, 000 30, 000 30, 000	7. 3 77. 7 119. 4	14 5 5	31,000	30	388D 388D 388D 388D	27, 000 30, 000 25, 000	53. 6 12. 3 188. 1	13 19	26, 000	
296D	27, 000 25, 000 35, 000 32, 000	8.7 72.0 107.8 11.1 59.6	26 18 26 8 2 3	25, 500 30, 000	35	388DA	30, 000 32, 000 27, 000 25, 000	105. 2 45. 5 332. 2 83. 4	9 3 3 2	30, 500 26, 500	
296DA 296DA 297D 297D	30, 000 30, 000 30, 000 27, 000	73. 2 74. 2 5. 2 62. 8 107. 8	13 15	25, 500		389D 389D 389D 389DA 389DA	27, 000 30, 000 25, 000 30, 000 27, 000	113. 3 4. 7 153. 1 59. 5 218. 9	8 14 10 3 3	29, 000	
297D 297DA 297DA	25, 000 35, 000 32, 000 30, 000	18. 1 70. 4 119. 3	15 5 3 3	30, 500	40	390D 390D 390D 390DA	25, 000 27, 000 22, 500 30, 000	97. 7 18. 7 402. 3 76. 4	14 16 9 3	24, 500 29, 000	
299D	30, 000 27, 000 25, 000 35, 000 32, 000	9. 4 36. 7 64. 6 22. 6 61. 1	21 17 15 7 3.5	24, 500 30, 500	45	391D	27, 000 25, 000 27, 000 30, 000	154. 9 208. 6 37. 8 85. 4	2 8 13 3 2	25, 800 29, 500	
299DA 301D 301D	30, 000 30, 000 27, 000 25, 000	108. 8 6. 6 37. 2 119. 4	3 19 15 12	25, 500		39IDA	27, 000	238. 3	² į	,	
301DA 301DA 301DA 301DA	25, 000 25, 000 35, 000 32, 000 30, 000	133. 8 25. 7 49. 2 137. 5	12 7 7 4	30,000	50		n: on base casti nplex shape				
320D 320D 320DA	30, 000 27, 000 25, 000 32, 000 30, 000	24. 7 41. 7 165. 5 23. 9	14 10 4	25, 500 28, 000		resistance a	and high stre ed by a stru ic phase em	ngth at elev cture havin	vated tempe g a networ	erature and k outlining	
321D 321D 321D 321D	30, 000 30, 000 27, 000 25, 000	43. 5 8. 4 56. 8 146. 1	3 19 16 13	25, 800p	55	about 0.6 t	consisting e o 1.6% carb to 2.5% sil	on; about :	12 to 35%	chromium;	
321 DA 321 DA 321 DA	35, 000 32, 000 30, 000	10. 2 33. 3 49. 7	3 2.5 2	28, 500	60	plurality of consisting of	f carbide for of tungsten in the range 0.1	rming elem n the range	nents from e 0.1 to 10	the group %, molyb-	
322D	30, 000 27, 000 25, 000 30, 000 27, 000	41. 6 96. 6 233. 5 12. 3 4. 5	10 5 5 2 0	27, 500 24, 000		said colum range 0.1 t	bium and to 5%, up to of, nickel in	antalum co	mbined be metal from	ing in the the group	
322DA	27, 000 30, 000 27, 000 25, 000	48. 0 87. 5 204. 2	0 10 11 8	27, 000	65	in the range of to 0.6%	ge 0 to 15% nitrogen; a exceeding 0.	, cobalt in small but	the range effective	0 to 8%; amount of	
323DA 323DA 323DA	30, 000 27, 000 25, 000	25. 9 51. 9 82. 1	1 1 1	24, 500		content bei	tates; the baing at least when said m	40%, said nanganese is	nickel bei s less than	ng at least about 1%,	
324D	20, 000 25, 000 25, 000 25, 000 22, 500 20, 000	73. 8 0. 6 82. 1 0. 5 0. 4 0. 9	7 2 1 6 4	19, 500 24, 500	70	said manga the nickel i between ab is present a	nese being a s less than 29 out 5 to 109 and the nick	at least bety % and nitro % when sub el is less th	ween 2 to ogen is prese ostantially r nan about 2	10% when ent, at least no nitrogen	
325D 325D	30, 000 27, 000	19. 6 79. 8	19 16	26, 500	75	least about	10% when on base allo	the nickel i	s zero.		

a test bar thereof ½" in diameter exposed to 1500° F. for 100 hours is generally characterized by a structure having an interdendritic network of substantially lederburite phases outlining an austenitic phase embedding relatively fine dot-like precipitates randomly distributed therein.

3. An iron base casting type alloy for producing products of complex shape and having substantial oxidation resistance and high strength at elevated temperature, said alloy consisting essentially of by weight percent, about 10 0.6 to 1.6% carbon; about 12 to 35% chromium; between 0 to 2.5% silicon; between 0.2 to 12% of a plurality of carbide forming elements from the group consisting of tungsten in the range 0.1 to 10%, molybdenum in the range 0.1 to 9%, columbium and tantalum, said colum- 15 bium and tantalum combined being in the range 0.1 to 5%, up to 15% of metal from the group consisting of, nickel in the range 0 to 15%, manganese in the range 0 to 15%, cobalt in the range 0 to 8%; 0 to 0.6% nitrogen; a small but effective amount of zirconium not ex- 20 zero. ceeding 1.0% to promote the 100 hour stress rupture strength at 1500° F. of the alloy when heat treated; the balance essentially iron, said iron content being at least 40%, said nickel being at least about 2% when said manganese is less than about 1%, said manganese being at least between 2 to 10% when the nickel is less than 2% and nitrogen is present, at least between about 5 to 10% when substantially no nitrogen is present and the nickel is less than about 2%, and at least about 10% when the nickel is zero.

4. An iron base casting type alloy for producing products of complex shape and having substantial oxidation resistance and high strength at elevated temperature, said alloy consisting essentially of, by weight percent, about 0.6 to 1.6% carbon; about 12 to 35% chromium; between 0 to 2.5% silicon; between 0.2 to 12% of a plurality of carbide forming elements from the group consisting of tungsten in the range 0.1 to 10%, molybdenum in the range 0.1 to 9%, columbium and tantalum, said columbium and tantalum combined being in the range 0.1 to 5%, up to 15% of metal from the group consisting of, nickel in the range 0 to 15%, manganese in the range 0 to 15%, cobalt in the range 0 to 8%; 0 to 0.6% nitrogen; about 0.001 to 0.025% boron; about 0.005 to 0.1% zirconium; the balance essentially iron, said iron content being at least 40%, said nickel being at least about 2% when said manganese is less than about 1%, said manganese being at least between 2 to 10% when the nickel is less than 2% and nitrogen is present, at least between about 5 to 10% when substantially no nitrogen is present and the nickel is less than about 2%, and at least about 10% when the nickel is zero.

5. An iron base casting type alloy for producing products of complex shape and having substantial oxidation resistance and high strength at elevated temperature, said alloy consisting essentially of, by weight percent, about 0.6 to 1.6% carbon; about 12 to 35% chromium; between 0 to 2.5% silicon; between 0.2 to 12% of a plurality of carbide forming elements from the group consisting of tungsten in the range 0.1 to 10%, molybdenum in the range 0.1 to 9%, columbium and tantalum, said columbium and tantalum combined being in the range 0.1 to 5%, up to 15% of metal from the group consisting of, nickel in the range 0 to 15%, manganese in the range 0 to 15%, cobalt in the range 0 to 8%; 0 to 0.6% nitrogen; about 0.001 to 0.025% boron; up to 2% titanium; up to 0.5 phosphorous; the balance essentially iron, said iron content being at least 40%, said nickel being at least about 2% when said manganese is less than about 1%, said manganese being at least between 2 to 10% when the nickel is less than 2% and nitrogen is present, at least between about 5 to 10% when substantially no nitrogen is present and the nickel is less than about 2%, and at least about 10% when the nickel is

6. An iron base alloy as claimed in claim 3 wherein a test bar thereof ½" in diameter exposed to 1500° F. for 100 hours is generally characterized by a structure having an interdendritic network of substantially lederburite phases outlining an austenitic phase embedding relatively fine dot-like precipitates randomly distributed therein.

7. An iron base casting type alloy for producing products of complex shape and having substantial oxidation resistance and high strength at elevated temperature, said alloy consisting essentially of, by weight percent, about 0.6 to 1.6% carbon; about 12 to 35% chromium, between 0 to 2.5% silicon; between 0.2 to 12% of a plurality of carbide forming elements from the group consisting of tungsten in the range 0.1 to 10%, molybdenum in the range 0.1 to 9%, columbium and tantalum, said columbium and tantalum combined being in the range 0.1 to 5%, up to 15% of metal from the group consisting of, nickel in the range 0 to 15%, manganese in the range 0 to 15%, cobalt in the range 0 to 8%, 0 to 0.6% nitrogen; about 0.001 to 0.01% boron; the balance essentially iron, said iron content being at least 40%, said nickel being at least about 2% when said manganese is less than about 1%, said manganese being at least be-45 tween 2 to 10% when the nickel is less than 2% and nitrogen is present, at least between about 5 to 10% when substantially no nitrogen is present and the nickel is less than about 2%, and at least about 10% when the nickel is zero.

References Cited by the Examiner UNITED STATES PATENTS

3,165,400 1/1965 Roy et al. _____ 75—126

DAVID L. RECK, Primary Examiner.