FELINE BITTER TASTE RECEPTORS AND METHODS

Applicant: Applied Food Biotechnology, Inc., St. Charles, MO (US)

Inventors: Michelle M. Sandau, Saint Charles, MO (US); Nancy E. Rawson, Chesterfield, MO (US)

Assignee: APPLIED FOOD BIOTECHNOLOGY, INC., St. Charles, MO (US)

Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.

Filed: Mar. 6, 2014

Prior Publication Data

References Cited
U.S. PATENT DOCUMENTS
7,537,944 B2 5/2009 Li
7,541,158 B2 6/2009 Li
8,158,442 B2 4/2012 Buje et al.
8,187,822 B2 5/2012 Brunet et al.
8,273,542 B2 9/2012 Li et al.
8,309,314 B2 11/2012 Behrens et al.
8,309,701 B2 11/2012 Drayna et al.
8,334,367 B2 12/2012 Adler
2012/0015841 A1 1/2012 Shekdar
2013/0030059 A1 1/2013 Li et al.

FOREIGN PATENT DOCUMENTS
WO 0118050 A2 3/2001
WO 2006053771 A2 5/2006

OTHER PUBLICATIONS
International Search Report; International Application No. PCT/US2014/021110; Filing Date: Mar. 6, 2014; Mailing Date: Jul. 11, 2014, 7 pgs.
Multikin JC et al.; "Light whole genome sequence for SNP discovery across domestic cat breeds" BMC Genomics;2010; 11:406; 8 pages.
NCBI Reference Sequence: XP_003988467.1; Nov. 6, 2012; Predicted, Low quality protein: taste receptor type 2 member 20-like [Felis catus]; 1 pg.
XP002725495; NCBI Reference Sequence: XP_003981606.1; Nov. 6, 2012; Predicted: taste receptor type 2 member 1-like [Felis catus]; 1 pg.
XP002725979; NCBI Reference Sequence: XP_003982855.1; Nov. 6, 2012; Predicted: taste receptor type 2 member 7-like [Felis catus]; 1 pg.
XP002725980; NCBI Reference Sequence: XP_003983201.1; Nov. 6, 2012; Predicted: taster receptor type 2 member 3-like [Felis catus]; 1 pg.
XP002725981; NCBI Reference Sequence: XP_003983202.1; Nov. 6, 2012; Predicted: taste receptor type 2 member 4-like [Felis catus]; 1 pg.

Primary Examiner — John Ulm

Attorney, Agent, or Firm — Cantor Colburn LLP

ABSTRACT
A family of novel feline bitter taste receptors, referred to as feline TAS2R (FTAS2R), are disclosed herein. Isolated nucleotides encoding the novel feline bitter taste receptors and chimeric polypeptides are also disclosed, as are expression vectors and host cells for expression of the novel feline bitter taste receptors. Methods of identifying compounds that bind to the novel feline bitter taste receptors and modulate their activity are disclosed.

17 Claims, 2 Drawing Sheets
REFERENCES CITED

OTHER PUBLICATIONS

XP002725982, NCBI Reference Sequence: XP_003988846.1; Nov. 6, 2012; Predicted: taste receptor type 2 member 7-like [Felis catus]; 1 pg.

XP002725983, NCBI Reference Sequence: XP_003988514.1; Nov. 6, 2012; Predicted: taste receptor type 2 member 9-like [Felis catus]; 1 pg.

XP002725984, NCBI Reference Sequence: XP_003988465.1; Nov. 6, 2012; Predicted: taste receptor type 2 member 10-like [Felis catus]; 1 pg.

XP002725985, NCBI Reference Sequence: XP_003988515.1; Nov. 6, 2012; Predicted: taste receptor type 2 member 7-like [Felis catus]; 1 pg.

XP002725986, NCBI Reference Sequence: XP_003983168.1; Nov. 6, 2012; Predicted: taste receptor type 2 member 38-like [Felis catus]; 1 pg.

XP002725987, NCBI Reference Sequence: XP_003988470.1; Nov. 6, 2012; Predicted: taste receptor type 2 member 42-like [Felis catus]; 1 pg.

XP002725988, NCBI Reference Sequence: XP_003988466.1; Nov. 6, 2012; Predicted: taste receptor type 2 member 46-like [Felis catus]; 1 pg.

XP002725989; NCBI Reference Sequence: XP_003988469.1; Nov. 6, 2012; Predicted: taste receptor type 2 member 42-like [Felis catus]; 1 pg.

XP002725990; retrieved from EBI Database accession No. ENSFCAP00000024300; Jan. 2013; 1 pg.

FELINE BITTER TASTE RECEPTORS AND METHODS

CROSS REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application No. 61/798,528, filed Mar. 15, 2013, the disclosure of which is incorporated herein by reference.

SEQUENCE LISTING

This application includes a sequence listing, incorporated herein by-reference in its entirety, submitted electronically with the application via EFS-Web as an ASCII text file of 65 kilobytes named 714409002 and created Feb. 18, 2014.

BACKGROUND

The taste system provides sensory information about the chemical composition of the external world. Mammals are believed to have at least five basic taste modalities: sweet, bitter, sour, salty, and umami. Each taste modality is thought to be mediated by a distinct protein receptor or receptors that are expressed in taste receptor cells found on the surface of the tongue. The taste receptors that recognize bitter, sweet, and umami taste stimuli belong to the G-protein-coupled receptor (GPCR) superfamily. Subtle differences in a receptor may alter which ligands bind and what signal is generated once the receptor is stimulated.

Various members of the GPCR superfamily mediate many other physiological functions, such as endocrine function, exocrine function, heart rate, lipolysis, and carbohydrate metabolism. The biochemical analysis and molecular cloning of a number of such receptors has revealed many basic principles regarding the domain structure and function of these receptors.

The ability of mammals to taste the five primary modalities is thought to be largely similar, however due to diet and environmental differences, taste receptors have evolved to be somewhat different across mammalian species. For example, the gene encoding the TAS1R2 protein, a component of the receptor for sweet compounds, has mutated to a nonfunctional pseudogene in felines and several other obligate carnivores, while aquatic mammals such as dolphins have lost most functional taste receptors.

The bitter taste modality is usually described as disagreeable. Many natural and synthetic toxins have been characterized as bitter tastants. As a result, it is hypothesized that bitter taste perception has evolved as a means to discourage the consumption of toxic compounds often found in plants. Estimates for the number of bitter tasting compounds are in the tens of thousands. However, only 550 compounds have been identified thus far as bitter tastants for humans. Compounds that block bitter taste perception have also been identified, for example p-(dipropylsulfonyl)benzoic acid (probenecid) which acts on a subset of TAS2Rs.

The perception of bitter taste is mediated by TAS2R proteins, a family of monomeric G-protein-coupled receptors, embedded in the surface of taste cells.

Research has shown that molecular diversity in the TAS2Rs of humans and other primates leads to functional differences in individuals’ bitter taste perception (Imai et al., 2012, Biol. Lett. 8(4): 652-656; I. et al., 2011, Human biology 83: 363-377). The exposure to the specific flora of a geographic region is thought to be a major driving force of selection on TAS2Rs.

Humans encode about 26 functional TAS2Rs, allowing for the detection of an enormous number of compounds. A subset of human TAS2Rs (hTAS2Rs) are currently believed to be promiscuous, i.e., activated by multiple ligands belonging to several chemical classes, while other hTAS2Rs bind ligands of only particular chemical classes. Additionally, several hTAS2Rs are orphan receptors, with no compounds identified as yet that stimulate them.

Signal transduction of bitter stimuli is accomplished via the α-subunit of gustducin. This G protein subunit activates a taste phosphodiesterase and decreases cyclic nucleotide levels. Further steps in the transduction pathway are still unknown. The βγ-subunit of gustducin also mediates taste by activating IP3 (inositol triphosphate) and DAG (diglyceride).

This second messengers may open gated ion channels or may cause release of internal calcium. Though all TAS2Rs are located in gustducin-containing cells, knockout of gustducin does not completely abolish sensitivity to bitter compounds, suggesting a redundant mechanism for bitter tasting.

hTAS2R38 is the most extensively studied bitter taste receptor. Early in the twentieth century a dichotomy in the perception of phenylthiocarbamide (PTC), a bitter tasting compound, was observed in a sample of people. Most people could taste PTC, but about 25% could not. Researchers noticed the taster/non-taster phenotype had a degree of heritability. Later it was determined that the difference in phenotype between the two groups could be ascribed to a difference in genotype, more specifically single nucleotide polymorphisms (SNPs) at three positions within the hTAS2R38 DNA.

Other species display a TAS2R repertoire much different from that of humans. For example, the mouse has 34 full-length TAS2Rs encoded in its genome, while the chicken has only 3 (Go, et al. Genetics. 2005 May; 170(1):313-26). Although some compounds can be detected by multiple TAS2Rs, it is almost certain that differences in TAS2R repertoire across species result in differences in bitter taste perception.

The feline genome has been sequenced with minimal coverage. (Mullikin et al. BMC Genomics 2010 11: 406; Pontius et al., Genome Research 2007 17: 1675-1689). As a result, major gaps exist in the feline genome sequence and only slightly over 2000 feline genes have been annotated to date. As a comparison, the human genome has about 25,000 genes annotated. The sequences prior to a gap in the genomic assembly are of poor quality, so in addition to information that is missing, a large portion of the data present is of poor quality. Consequently, there is much to be discovered within feline genomics and in determining the molecular basis of feline taste perception. Not a single feline TAS2R (fTAS2R) has been annotated in the feline genome or investigated biochemically to our knowledge. Additionally, with many feline breeds originating in a particular geographic region and therefore being exposed to unique flora, breed specific TAS2R differences may exist.

There is therefore a need in the art for the identification and characterization of the feline TAS2R bitter receptors in order to understand the taste profile of felines and its modulation.

SUMMARY

Disclosed herein is an isolated polynucleotide encoding a TAS2R receptor.

In an embodiment, the isolated polynucleotide comprises the nucleotide sequence of SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:11, SEQ ID NO:13, SEQ ID NO:15, SEQ ID NO:17, SEQ ID NO:19, SEQ ID NO:21, SEQ ID NO:23, or SEQ ID NO:25;
a nucleotide sequence encoding the amino acid sequence of SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24, or SEQ ID NO:26; a nucleotide sequence substantially complementary to the nucleotide sequence of SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:11, SEQ ID NO:13, SEQ ID NO:15, SEQ ID NO:17, SEQ ID NO:19, SEQ ID NO:21, SEQ ID NO:23, or SEQ ID NO:25; or a nucleotide sequence that hybridizes to the complement of the polynucleotide having SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:11, SEQ ID NO:13, SEQ ID NO:15, SEQ ID NO:17, SEQ ID NO:19, SEQ ID NO:21, SEQ ID NO:23, or SEQ ID NO:25 under high stringency conditions.

An isolated TAS2R receptor polypeptide encoded by the polynucleotide, and expression vectors and host cells for expressing the encoded TAS2R receptor are also disclosed.

In an embodiment, the isolated TAS2R receptor polypeptide comprises at least one extracellular domain of a feline TAS2R receptor; at least one transmembrane domain of a feline TAS2R receptor; or at least one intracellular domain of a feline TAS2R receptor, wherein the feline TAS2R receptor comprises the amino acid sequence of SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24, or SEQ ID NO:26.

In an embodiment, the isolated TAS2R receptor polypeptide comprises the amino acid sequence of SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24, or SEQ ID NO:26.

Also disclosed herein is a chimeric polypeptide comprising an extracellular domain or a transmembrane region of a feline TAS2R receptor polypeptide linked to a heterologous polypeptide.

In an embodiment, the chimeric polypeptide comprises an extracellular domain of a feline TAS2R receptor polypeptide comprising amino acids 1, 68-84; 146-179; or 249-257 of SEQ ID NO:2; amino acids 1-10; 73-88; 151-186; or 256-264 of SEQ ID NO:4; amino acids 1-8; 72-88; 150-186; or 256-265 of SEQ ID NO:6; amino acids 1-2; 69-87; 151-183; or 253-261 of SEQ ID NO:8; amino acids 1-8; 72-88; 150-187; or 257-265 of SEQ ID NO:10; amino acids 1-6; 72-88; 150-183; or 253-262 of SEQ ID NO:12; amino acids 1; 69-87; 150-181; or 251-260 of SEQ ID NO:14; amino acids 1-8; 69-88; 150-185; or 252-261 of SEQ ID NO:16; amino acids 1-17; 83-98; 161-184; or 268-277 of SEQ ID NO:18; amino acids 1-18; 69-88; 150-185; or 255-264 of SEQ ID NO:20; amino acids 1-2; 69-87; 149-181; or 251-260 of SEQ ID NO:22; amino acids 1-2; 69-87; 149-181; or 251-259 of SEQ ID NO:24; or amino acids 1-8; 72-88; 150-185; or 254-263 of SEQ ID NO:26; or a transmembrane region of the feline TAS2R receptor polypeptide comprising amino acids 2-22, 47-67, 85-105, 125-145, 180-200, 228-248, or 258-278 of SEQ ID NO:2; amino acids 11-31, 52-72, 89-109, 130-150, 187-207, 235-255, or 265-285 of SEQ ID NO:4; amino acids 9-29, 51-71, 89-109, 129-149, 187-207, 235-255, or 266-286 of SEQ ID NO:6; amino acids 3-23, 48-68, 88-108, 130-150, 184-204, 232-252, or 262-282 of SEQ ID NO:8; amino acids 9-29, 51-71, 89-109, 129-149, 187-207, 235-255, or 266-286 of SEQ ID NO:10; amino acids 7-27, 51-71, 89-109, 129-149, 184-204, 232-252, or 263-283 of SEQ ID NO:12; amino acids 2-22, 48-68, 88-108, 129-149, 182-202, 230-250, or 261-281 of SEQ ID NO:14; amino acids 9-29, 48-68, 89-109, 129-149, 186-206, 231-251, or 262-282 of SEQ ID NO:16; amino acids 18-38, 62-82, 99-119, 140-160, 199-219, 247-267, or 278-298 of SEQ ID NO:18; amino acids 2-22, 48-68, 89-109, 129-149, 186-206, 234-254, or 265-285 of SEQ ID NO:20; amino acids 3-23, 48-68, 88-108, 128-148, 182-202, 230-250, or 261-281 of SEQ ID NO:22; amino acids 3-23, 48-68, 88-108, 128-148, 182-202, 230-250, or 265-280 of SEQ ID NO:24; or amino acids 9-29, 51-71, 89-109, 129-149, 186-206, 233-253, or 264-284 of SEQ ID NO:26; linked to a heterologous polypeptide.

Antibodies and kits for detecting the fTAS2R8 receptor or the polynucleotide encoding the fTAS2R8 receptor are also disclosed.

Also disclosed herein are methods for identifying compounds that interact with a fTAS2R receptor.

In an embodiment, the method comprises contacting a fTAS2R receptor herein with a test compound, and detecting interaction between the receptor and the compound.

In an embodiment, the method comprises contacting a fTAS2R receptor with a receptor ligand in the presence or absence of a test compound, and determining whether the test compound modulates binding of the ligand to the receptor or activation of the receptor by the ligand.

In an embodiment, the method comprises contacting a fTAS2R receptor herein with a test compound, and detecting an increase in biological activity of the receptor in the presence of the compound relative to biological activity of the polypeptide in the absence of the compound.

In an embodiment, the method comprises contacting a fTAS2R receptor herein with a test compound, and detecting a decrease in biological activity of the receptor in the presence of the compound relative to biological activity of the polypeptide in the absence of the compound.

These and other advantages, as well as additional inventive features, will be apparent from the following Drawings, Detailed Description, Examples, and Claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a sequence alignment displaying the 3rd through the 7th transmembrane (TM) region (transmembrane regions in grey) of several human and feline bitter receptors: human TAS2R16 (SEQ ID NO:30), TAS2R4 (SEQ ID NO:27), TAS2R9 (SEQ ID NO:28), TAS2R10 (SEQ ID NO:29) AND TAS2R38 (SEQ ID NO:31); and feline bitter receptors, TAS2R4 (SEQ ID NO:8), 9 (SEQ ID NO:12), 10 (SEQ ID NO:16), 12 (SEQ ID NO:16), and 38 (SEQ ID NO:18).

FIG. 2 shows a sequence alignment for human TAS2R38 polypeptide (SEQ ID NO:31) and feline TAS2R38 polypeptide (SEQ ID NO:18) determined from sequencing of genomic DNA of five individual cats.

DETAILED DESCRIPTION

A family of novel feline bitter taste receptors, referred to as fTAS2R (fTAS2R), are disclosed herein. These G-protein coupled receptors (GPCRs) are components of the feline taste transduction pathway, specifically, part of the bitter taste transduction pathway, and are involved in feline taste detection of bitter substances such as 6-n-propylthiouracil, sucrose octoate, raffinose undecasacte, cycloheximide, denatonium, copper glycinate, and quinine isolated polynucleotides encoding the novel feline bitter taste receptors are also disclosed, as are expression vectors and host cells for expression.
of the novel feline bitter taste receptors. Methods of expressing and isolating the nucleic acids and encoded polypeptides are also disclosed.

The nucleic acids provide probes for identification of cells in which the nucleic acids are expressed, e.g., taste cells. For example, probes for expression of TAS2R polypeptides can be used to identify taste cells present in foliate, circumvallate, and fungiform papillae. In particular, the TAS2R probes are useful to identify bitter sensing cells and can serve as tools for the generation of anatomical maps that elucidate the relationship between the bitter sensing cells and their projections into the central nervous system. Methods of identifying compounds that bind to the novel feline bitter taste receptors and modulate their activity are disclosed. In the methods, members of the IA/TAS2R family act as direct or indirect reporter molecules to identify modulators of taste receptor expressing cellular activity. Such compounds that modulate feline bitter taste receptor activity are useful for modulation of feline bitter taste receptor activity. Modulators can be activators, inhibitors, enhancers, agonists, and/or antagonists of the feline bitter receptors. These modulatory compounds can be used in the food and pharmaceutical industries to customize taste of foods or drugs, for example, to decrease the bitter taste of foods or drugs. Thus, the methods disclosed herein are useful for designing formulations of feline food, feline food palatants, feline treats, and feline medications in which aversive compounds are avoided or blocked.

Bitter taste perception is mediated by G protein-coupled receptors (GPCRs) of the taste receptor 2 family (TAS2R). The TAS2R genes encode a family of related seven transmembrane G-protein coupled receptors involved in taste transduction, which interact with a G-protein to mediate taste signal transduction. In particular, TAS2Rs interact in a ligand-specific manner with the G protein Gustducin.

To date, much work has been done to characterize human TAS2Rs (hTAS2Rs). The human genome encodes about 26 functional TAS2Rs that are glycoproteins. All hTAS2Rs share a conserved site for Asn-linked glycosylation within the center of the second extracellular loop. The hTAS2Rs also have the ability to form homo- and hetero-oligomers with other GPCR when expressed in vitro, however at present no evidence exists that TAS2R receptor oligomerization has functional implications.

Bitter taste receptor cells represent a distinct subpopulation of chemosensory cells characterized by the expression of TAS2R genes and completely segregated from those receptor cells devoted to the detection of other taste stimuli. Each bitter taste receptor cell expresses multiple bitter taste receptors, although the extent of co-expression is still a matter of debate.

In addition to their expression in the gustatory system, TAS2Rs are found in non-gustatory tissues. Among these extragut sites are the respiratory epithelia, gastrointestinal tissues, reproductive organs, and brain. Bitter taste receptors are implicated in differentiation or maturation of sperm in mice. The non-gustatory expression of TAS2Rs is known to be used to regulate digestion and respiration.

Activation of TAS2R receptors in an enteroendocrine cell line (STC-1 cells) results in release of the peptide hormone cholecystokinin (CCK), which can reduce gut motility. Consequently, intake of a potential toxin that activates the TAS2R pathway may decrease the rate at which food passes through the stomach and lower the drive for continued eating. The release of CCK also excites sensory nerve processes of the vagus nerve to carry the signal to the brain, suggesting that regulation of food intake involves both peripheral and central controls. Activation of the TAS2R signaling network may also or alternatively indirectly increase elimination of absorbed toxins from gut epithelium before the toxins can enter circulation since some data suggest that the CCK-secreting enteroendocrine cells are involved in a paracrine signaling system that reduces transfer of toxic substances from the gut into the circulation. Lower in the gut, activation of TAS2R receptors has a different effect. When some bitter-tasting ligands are applied to the colonic epithelium, they induce the secretion of anions, which leads to fluid secretion by the epithelium which may flush out any noxious irritant from the colon.

Solitary chemosensory cells (SCCs) are also present throughout the upper respiratory system and express the entire suite of taste-related signaling molecules, including TAS2R receptors, PLCβ2, gustducin, and the transduction channel TrpM5. The SCCs synapse onto polymodal pain fibers of the trigeminal nerve. Inhalation of a toxin that activates TAS2R receptors of the SCCs will be irritating and evoke trigeminally-mediated reflex changes in respiration. Additionally, the activated trigeminal nerve fibers release peptide modulators that result in local neurogenic inflammation of the respiratory epithelium, activating the immune system in response to the presence of the toxins.

Ligands of a mammalian TAS2R1 can include adhumulone, adulpulone, amarogetn, arborescin, cascarillln, chlorampheric, cis-cisosecomulone, cis-ISOLODHUMULONE, cohumulone, colupulone, dextromerthorphan, diphenicol (diphenylthioure, sulfocarbonanide, sym-diphenylthioure, or diocarbonanide), humulon (humulone), isoxanthohumol, lupulon, lupulone, parthenolide, picrotoxinin, sodium cyclamate, sodium thiocyanate, thiamine, trans-ISOLOOHUMULONE, trans-ISOLOOHUMULONE, xanthohoulmol, and yohimbine. The mammalian TAS2R1 can be from a human, a rodent, a canine, or a feline. In an embodiment, the mammalian TAS2R1 is a feline TAS2R1.

Ligands of a mammalian TAS2R3 can include chloroquine. The mammalian TAS2R3 can be from a human, a rodent, a canine, or a feline. In an embodiment, the mammalian TAS2R3 is a feline TAS2R3.

Ligands of a mammalian TAS2R4 can include amargogen, arborescin, arteomin, azathioprine, brucine, camphor, chloropheniramine, colchicine, dapsone, denatonium benzoate, diphenicol, parthenolide, quassin, quinine, and yohimbine. The mammalian TAS2R4 can be from a human, a rodent, a canine, or a feline. In an embodiment, the mammalian TAS2R4 is a feline TAS2R4.

Ligands of a mammalian TAS2R7 can include caffeine, chlorpheniramine, crotyol, diphenicol, papaverine, and quinine. The mammalian TAS2R7 can be from a human, a rodent, a canine, or a feline. In an embodiment, the mammalian TAS2R7 is a feline TAS2R7.

Ligands of a mammalian TAS2R9 can include oxoacaxin, pirezazapin, and proceanamid. The mammalian TAS2R9 can be from a human, a rodent, a canine, or a feline. In an embodiment, the mammalian TAS2R9 is a feline TAS2R9.

Ligands of a mammalian TAS2R10 can include (-)-alpha thujone, absinthin, arborescin, argabin, arteomin, azathio- prine, benzo, caffeine, camphor, cascarillln, chloramphericol, chloroquine, chlorpheniramine, coumarin, curcubicita b, curcubicita e, cucurbitacins, cycloheximid, cycloheximide, dapsone, denatonium benzoate, dextromerthorphan, diphenicol, erythromycin, famotidine, haloperidol, papaverine, parthenolide, picrotoxinin, quassin, quinine, strychnine, and yohimbine. The mammalian TAS2R10 can be from a human, a rodent, a canine, or a feline. In an embodiment, the mammalian TAS2R10 is a feline TAS2R10.

Ligands of a mammalian TAS2R38 can include 6-methyl-2-thiouracil, acetyltioure, allyl isothioceyanate, caproac-
tam, chlorpheniramine, dimethyldithioformamide, diphenidol, (diphenylthiourea, sulfocarbanilide, sym-diphenylthiourea, thiocarbanilide), ethylene thiourea, n,n-ethylene thiourea, ethylpyrazine, limonin, methimazole, n-ethylthiourea, n-methylthiourea, phenethyl isothiocyanate, phenylthiocarbamide (ptc), propylthiouracil, sinigrin, sodium cyclamate, sodium thiocyanate, and yohimbine. The mammalian TAS2R38 can be from a human, a rodent, a canine, or a feline. In an embodiment, the mammalian TAS2R38 is a feline TAS2R38.

Ligands of a mammalian TAS2R43 can include aceasulfame K, alol, amarogetin, arborescin, argabini, aristolochic acid, caffeine, chloramphenicol, cronomyl, denatonium benzoate, diphenidol, falcarradiol, gosheimin (gossheimin), helicin, quinine, and saccharin. The mammalian TAS2R43 can be from a human, a rodent, a canine, or a feline. In an embodiment, the mammalian TAS2R43 is a feline TAS2R43.

Ligands of a mammalian TAS2R44 can include aceasulfame K, alol, aristolochic acid, diphenidol, fumotidine, parthenolide, quinine, and saccharin. The mammalian TAS2R44 can be from a human, a rodent, a canine, or a feline. In an embodiment, the mammalian TAS2R44 is a feline TAS2R44.

The human bitter taste receptors, hTAS2R2, hTAS2R41, hTAS2R42, hTAS2R45, hTAS2R48, and hTAS2R60 are still considered orphan GPCRs since ligands have not yet been identified for these receptors.

Until recently, hTAS2R2 was annotated as a pseudogene due to a base deletion at codon 160 found in sequences collected from 10 human populations (Kuritaiana, Surui, Waorani Indians from South America, Russians from Eastern Europe, Druze from the Middle East, Atayal, Chinese, Japanese from Eastern Asia, and Khmers and Melanesians from Southeast Asia) and from GenBank resources. hTAS2R2 has been found to be polymorphic with respect to that deletion, with the intact gene found in the Adyghe (Eastern European), Mbuti (African Pygmies), and Biaka (African Pygmies) (Go Y et al., Genetics May 1, 2005, 170 (1): 313-326).

Human TAS2R (hTAS2R) gene and pseudogene nucleotide sequences were used as references to identify, via a bioinformatics approach, previously unknown feline TAS2R (fTAS2R) genes. Subsequently, isolated feline genomic DNA was used to clone the fTAS2R genes. The nucleotide sequence of the cloned fTAS2R genes of several felines was then determined by sequencing, e.g., Sanger sequencing, and used to establish a consensus nucleotide sequence for the gene, and to identify any variant sites in the sequence.

An isolated polynucleotide encoding a fTAS2R receptor is disclosed. The isolated polynucleotide can comprise the nucleotide sequence of SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:11, SEQ ID NO:13, SEQ ID NO:15, SEQ ID NO:17, SEQ ID NO:19, SEQ ID NO:21, SEQ ID NO:23, or SEQ ID NO:25; a nucleotide sequence encoding the amino acid sequence of SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24, or SEQ ID NO:26; a nucleotide sequence substantially complementary to the nucleotide sequence of SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:11, SEQ ID NO:13, SEQ ID NO:15, SEQ ID NO:17, SEQ ID NO:19, SEQ ID NO:21, SEQ ID NO:23, or SEQ ID NO:25; or a nucleotide sequence that hybridizes to the complement of the polynucleotide having SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:11, SEQ ID NO:13, SEQ ID NO:15, SEQ ID NO:17, SEQ ID NO:19, SEQ ID NO:21, SEQ ID NO:23, or SEQ ID NO:25 under high stringency conditions.

Further disclosed is a polynucleotide comprising a sequence having at least 90%, at least 95%, at least 97%, at least 98%, at least 99% homology with SEQ ID NO:1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, or the complement of SEQ ID NO:1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25.

A single nucleotide polymorphism in the nucleic acid sequence encoding hTAS2R38 was identified at nucleotide 220 from sequencing amplified feline genomic DNA from multiple subjects. The two alleles observed at the nucleotide 220 were G and A. The G220A nucleic acid variation corresponds to an amino acid variation D74N in the hTAS2R38 protein sequence.

In another aspect, an isolated fTAS2R receptor polypeptide is disclosed.

In an embodiment, the isolated fTAS2R polypeptide is encoded by a polynucleotide disclosed herein.

In an embodiment, the isolated fTAS2R polypeptide can comprise the amino acid sequence of SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24, or SEQ ID NO:26; or an amino acid sequence having at least 90%, at least 95%, at least 97%, at least 98%, at least 99% homology with the amino acid sequence of SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24, or SEQ ID NO:26.

Sensory GPCRs, such as the TAS2R bitter taste receptors, have a domain structure including an “N-terminal domain”; “extracellular domains”; a “transmembrane domain” comprising seven transmembrane regions, cytoplasmic, and extracellular loops; “cytoplasmic domains”; and a “C-terminal domain”. These domains can be structurally identified using methods known in the art, such as sequence analysis programs that identify hydrophobic and hydrophilic domains. Such domains are useful for making chimeric proteins and for in vitro assays disclosed herein, e.g., ligand binding assays.

The term “extracellular domains” refers to the domains of TAS2R polypeptides that protrude from the cellular membrane and are exposed to the extracellular face of the cell. Such domains would include the “N terminal domain” that is exposed to the extracellular face of the cell, as well as the extracellular loops of the transmembrane domain that are exposed to the extracellular face of the cell, i.e., the loops between transmembrane regions 2 and 3, and between transmembrane regions 4 and 5.

The “N terminal domain” region starts at the N-terminus and extends to a region close to the start of the transmembrane domain. These extracellular domains are useful for in vitro ligand binding assays, both soluble and solid phase.

The “transmembrane domain,” which comprises the seven transmembrane regions, refers to the domain of TAS2R polypeptides that lies within the plasma membrane, and may also include the corresponding cytoplasmic (intracellular) and extracellular loops, also referred to as transmembrane domain “regions.” Transmembrane regions can also bind ligand either in combination with the extracellular domain or alone, and are therefore also useful for in vitro ligand binding assays.

The seven transmembrane regions and extracellular and cytoplasmic loops can be identified using standard methods known in the art. For example, transmembrane regions of the hTAS2R proteins can be identified using software, TOP-
CONS, available on the internet from the Stockholm Bioinformatics Center, Stockholm University (Andreas Bernsel, et al. 2009 Nucleic Acids Research 37 (Webserver issue), W463-8). The seven transmembrane regions and extracellular and cytoplasmic loops of the fTAS2R identified by TOPCONS are shown in the following table:

<table>
<thead>
<tr>
<th>Protein</th>
<th>Transmembrane domains</th>
<th>Extracellular domain</th>
<th>Intracellular domain</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1: 68-84; 146-179; 249-257</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>23-46; 106-124; 201-227; 279-298</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>fTAS2R2 (SEQ ID NO: 4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1-10; 73-88; 131-166; 256-294</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>32-51; 110-129; 208-234; 236-304</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>fTAS2R3 (SEQ ID NO: 6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1-8; 72-88; 150-186; 256-265</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>30-50; 110-128; 208-234; 287-316</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>fTAS2R4 (SEQ ID NO: 8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1-2; 69-87; 151-183; 253-261</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>24-47; 109-129; 205-231; 283-306</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>fTAS2R5 (SEQ ID NO: 10)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1-8; 72-88; 150-187; 257-265</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>30-50; 110-128; 209-235; 287-311</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>fTAS2R6 (SEQ ID NO: 12)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1-6; 72-88; 150-183; 253-262</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>28-50; 110-128; 205-231; 284-337</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>fTAS2R10 (SEQ ID NO: 14)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1: 69-87; 150-181; 251-260</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>23-48; 109-129; 203-229; 282-300</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>fTAS2R12 (SEQ ID NO: 16)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1-8; 69-88; 150-185; 252-261</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>30-47; 110-128; 207-230; 283-309</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>fTAS2R13 (SEQ ID NO: 18)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1-17; 83-98; 161-198; 268-277</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>39-61; 120-139; 220-246; 299-334</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>fTAS2R42 (SEQ ID NO: 20)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1: 69-88; 150-185; 255-264</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>23-47; 110-128; 207-233; 286-322</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>fTAS2R43 (SEQ ID NO: 22)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1-2; 69-87; 149-181; 251-260</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>24-47; 109-127; 203-229; 282-299</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>fTAS2R44 (SEQ ID NO: 24)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1-2; 69-87; 149-181; 251-259</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>24-47; 109-127; 203-229; 281-308</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>fTAS2R46 (SEQ ID NO: 26)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1-8; 72-88; 150-185; 254-263</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>30-50; 110-128; 207-232; 285-312</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The term “transmembrane region” as used herein denotes a three-dimensional protein structure which is thermodynamically stable in a membrane, e.g., a single transmembrane alpha helix or a transmembrane beta barrel.

“Cytoplasmic domains” refers to the domains of TAS2R proteins that face the inside of the cell, e.g., the “C terminal domain” and the intracellular loops of the transmembrane domain, e.g., the intracellular loops between transmembrane regions 1 and 2, the intracellular loops between transmembrane regions 3 and 4, and the intracellular loops between transmembrane regions 5 and 6.

“C terminal domain” refers to the region that spans the end of the last transmembrane domain and the C-terminus of the protein, and which is normally located within the cytoplasm.

In an embodiment, the isolated TAS2R receptor polypeptide can comprise at least one extracellular domain of a feline TAS2R receptor; at least one transmembrane domain of a feline TAS2R receptor; or at least one intracellular domain of a feline TAS2R receptor, wherein the feline TAS2R receptor comprises the amino acid sequence of SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24; or SEQ ID NO:26; or an amino acid sequence having at least 90% homology, specifically at least 95% homology, more specifically at least 97% homology with the amino acid sequence of SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24; or SEQ ID NO:26.

The extracellular domain of the fTAS2R polypeptide can comprise amino acids 1, 68-84; 146-179; or 249-257 of SEQ ID NO:2; amino acids 1-10, 73-88; 151-186; or 256-264 of SEQ ID NO:4; amino acids 1-8; 72-88; 150-186; or 256-264 of SEQ ID NO:6; amino acids 1-2; 69-87; 150-181; or 253-261 of SEQ ID NO:8; amino acids 1-8; 72-88; 150-187; or 257-265 of SEQ ID NO:10; amino acids 1-6; 72-88; 150-183; or 253-262 of SEQ ID NO:12; amino acids 1-6; 69-87; 150-181; or 251-260 of SEQ ID NO:14; amino acids 1-8; 69-88; 150-185; or 252-261 of SEQ ID NO:16; amino acids 1-17; 83-98; 161-198; or 268-277 of SEQ ID NO:18; amino acids 1-6; 69-87; 149-181; or 251-260 of SEQ ID NO:22; amino acids 1-2; 69-87; 149-181; or 251-259 of SEQ ID NO:24; or amino acids 1-8; 72-88; 150-185; or 254-263 of SEQ ID NO:26.

The intracellular domain of the fTAS2R polypeptide can comprise amino acids 23-46; 106-124; or 279-298 of SEQ ID NO:2; amino acids 32-51; 110-129; 208-234; or 286-304 of SEQ ID NO:4; amino acids 30-50; 110-128; 208-234; or 287-316 of SEQ ID NO:6; amino acids 24-47; 109-129; 205-231; or 283-306 of SEQ ID NO:8; amino acids 30-50; 110-128; 209-235; or 287-311 of SEQ ID NO:10; amino acids 28-50; 110-128; 205-231; or 284-337 of SEQ ID NO:12; amino acids 23-48; 109-128; 203-229; or 292-300 of SEQ ID NO:14; amino acids 30-47; 110-128; 207-230; or 283-309 of SEQ ID NO:16; amino acids 39-61; 120-139; 220-246; or 299-334 of SEQ ID NO:18; amino acids 23-47; 110-128; 207-233; or 286-322 of SEQ ID NO:20; amino acids 24-47; 109-127; 203-229; or 282-299 of SEQ ID NO:22; amino acids 24-47; 109-127; 203-229; or 281-308 of SEQ ID NO:24; or amino acids 30-50; 110-128; 207-232; or 285-312 of SEQ ID NO:26.

Also disclosed is a polynucleotide encoding the polypeptide comprising at least one extracellular domain of a feline TAS2R receptor; at least one transmembrane domain of a feline TAS2R receptor; or at least one intracellular domain of a feline TAS2R receptor.

In another aspect, a chimeric polypeptide comprising an extracellular domain or a transmembrane region of a feline TAS2R receptor polypeptide linked to a heterologous polypeptide is disclosed. The extracellular domain or the transmembrane region of the feline TAS2R receptor polypeptide can be any of those disclosed herein.

The heterologous polypeptide can be any suitable polypeptide known in the art. The heterologous polypeptide can be, for example, a sequence to determine cellular localization and expression, to permit proper folding of the chimeric polypeptide in an expression system, and/or to facilitate isolation of the chimeric polypeptide. The heterologous polypeptide can be linked to the amino terminal end or the carboxy terminal end of the fTAS2R sequence. For example, the heterologous polypeptide can be the first 45 amino acids of rat somatostatin, the FLAG® tag, a 6x histidine (his) tag, MYC, a fluorescent protein tag, V5, and/or glutathione S-transferase (GST). When the heterologous polypeptide is the first 45 amino acids of rat somatostatin, it is typically placed at the amino terminal end of the chimeric polypeptide to permit membrane targeting. When the heterologous polypeptide is a tag to permit easier isolation of the chimeric polypeptide, e.g., a 6x histidine tag, it can be placed at the amino terminus of the chimeric polypeptide. Determination of a suitable location for the heterologous polypeptide in the chimeric polypeptide relative to the amino end or the carboxy end of the fTAS2R sequence to obtain a particular functional aspect of the heterologous polypeptide on the chimeric polypeptide can be made by one of skill in the art.

Also disclosed is a polynucleotide encoding the chimeric polypeptide.

The terms “polypeptide,” “peptide,” and “protein” are used interchangeably herein to refer to a molecule formed from the linking, in a defined order, of at least two amino acids. The
link between one amino acid residue and the next is an amide bond and is sometimes referred to as a peptide bond. A polypeptide can be obtained by a suitable method known in the art, including isolation from natural sources, expression in a recombinant expression system, chemical synthesis, or enzymatic synthesis. The terms also apply to amino acid polymers in which one or more amino acid residues is an artificial chemical mimic of a corresponding naturally occurring amino acid, as well as to naturally occurring amino acid polymers and non-naturally occurring amino acid polymer.

The term “amino acid” refers to naturally occurring and synthetic amino acids, as well as amino acid analogs and amino acid mimetics that function in a manner similar to the naturally occurring amino acids. Naturally occurring amino acids are those encoded by the genetic code, as well as those amino acids that are later modified, e.g., hydroxyproline, gamma-carboxyglutamate, and O-phosphoserine. Amino acid analogs refer to compounds that have the same basic chemical structure as a naturally occurring amino acid, i.e., a carbon that is bound to a hydrogen, a carbonyl group, an amino group, and an R group, e.g., homoserine, norleucine, methionine sulfoxide, methionine methyl sulfonium. Such analogs have modified R groups (e.g., norleucine) or modified peptide backbones, but retain the same basic chemical structure as a naturally occurring amino acid. Amino acid mimetics means chemical compounds that have a structure that is different from the general chemical structure of an amino acid, but that functions in a manner similar to a naturally occurring amino acid.

Amino acids may be referred to herein by either their commonly known three letter symbols or by the one-letter symbols recommended by the IUPAC-IUB Biochemical Nomenclature Commission.

Unless otherwise indicated, a particular polypeptide sequence also implicitly encompasses conservatively modified variants thereof. A conservative amino acid substitution in a polypeptide sequence includes the substitution of an amino acid in one class by an amino acid of the same class, where a class is defined by common physicochemical amino acid side chain properties and high substitution frequencies in homologous proteins found in nature, as determined, for example, by a standard Dayhoff frequency exchange matrix or BLOSUM matrix. Six general classes of amino acid side chains have been categorized and include: Class I (Cys); Class II (Ser, Thr, Pro, Ala, Gly); Class III (Asn, Asp, Gln, Glu); Class IV (His, Arg, Lys); Class V (Ile, Leu, Val, Met); and Class VI (Phe, Tyr, Trp). For example, substitution of an Asp for another class I residue such as Asn, Gln, or Glu, is a conservative substitution. One of skill in the art can readily determine regions of the molecule of interest that can tolerate change by reference to Hopp/Woods and Kyte-Doolittle plots.

Macromolecular structures such as polypeptide structures can be described in terms of various levels of organization. “Primary structure” refers to the amino acid sequence of a particular polypeptide. “Secondary structure” refers to locally ordered, three dimensional structures within a polypeptide. These structures are commonly known as domains. Domains are portions of a polypeptide that form a compact unit of the polypeptide and are typically 50 to 350 amino acids long. Typical domains are made up of sections of lesser organization such as stretches of beta-sheet and alpha-helices. “Tertiary structure” refers to the complete three dimensional structure of a polypeptide monomer. “Quaternary structure” refers to the three dimensional structure formed by the non-covalent association of independent tertiary units.

The term “chimeric polypeptide” refers to a molecule, which does not occur in isolated form in nature, in which all or a portion of an ITAS2R polypeptide sequence is part of the linear chimeric polypeptide sequence. The portion of an ITAS2R polypeptide sequence can be the amino acid sequence of one or more domains of the complete ITAS2R polypeptide. For example, the portion can be an extracellular domain of a ITAS2R polypeptide. The chimeric polypeptide can be made by any method known in the art. For example, the chimeric polypeptide can be made by a recombinant expression system or can be synthesized.

The terms “isolated” or “purified”, used interchangeably herein, refers to a nucleic acid, a polypeptide, or other biological moiety that is removed from components with which it is naturally associated. The term “isolated” can refer to a polypeptide that is separate and discrete from the whole organism with which the molecule is found in nature or is present in the substantial absence of other biological macromolecules of the same type. The term “isolated” with respect to a polynucleotide can refer to a nucleic acid molecule devoid, in whole or in part, of sequences normally associated with it in nature; or a sequence, as it exists in nature, but having heterologous sequences in association therewith; or a molecule disassociated from the chromosome. Purity and homogeneity are typically determined using analytical chemistry techniques, for example polyacrylamide gel electrophoresis or high performance liquid chromatography. A protein that is the predominant species present in a preparation is substantially purified. In particular, an isolated ITAS2R nucleic acid is separated from open reading frames that flank the ITAS2R gene and encode proteins other than a ITAS2R.

In some embodiments, the term “purified” means that the nucleic acid or protein is at least 85% pure, specifically at least 90% pure, more specifically at least 95% pure, or yet more specifically at least 99% pure.

The term “nucleic acid” or “polynucleotide” includes DNA molecules and RNA molecules. A polynucleotide may be single-stranded or double-stranded. Polynucleotides can contain known nucleotide analogs or modified backbone residues or linkages, which are synthetic, naturally occurring, and non-naturally occurring, which have similar binding properties as the reference nucleic acid. Examples of such analogs include, without limitation, phosphorothioates, phosphoramidates, methyl phosphonates, chiral-methyl phosphonates, 2-O-methyl ribonucleotides, peptide-nucleic acids (PNAs). A polynucleotide can be obtained by a suitable method known in the art, including isolation from natural sources, chemical synthesis, or enzymatic synthesis. Nucleotides may be referred to by their commonly accepted single-letter codes.

Unless otherwise indicated, a particular nucleic acid sequence also implicitly encompasses conservatively modified variants thereof (e.g. degenerate codon substitutions) and complementary sequences, as well as the sequence explicitly indicated. Specifically, degenerate codon substitutions may be achieved by generating sequences in which the third position of one or more selected (or all) codons is substituted with mixed-base and/or deoxyinosine residues (Batzer et al., Nuclear Acid Res. 19:5081 (1991); Ohkuma et al., J. Biol. Chem. 260:2605-2608 (1985); Rossolini et al., Mol. Cell. Probes 8:91-98 (1994)).

“Homology” refers to the percent identity between two polynucleotide or two polypeptide moieties. Two DNA, or two polypeptide sequences are “substantially homologous” to each other when the sequences exhibit at least about 50%, specifically at least about 75%, more specifically at least about 80%-85%, at least about 90%, and most specifically at
least about 95%-98% sequence identity over a defined length of the molecules. As used herein, substantially homologous also refers to sequences showing complete identity to the specified DNA or polypeptide sequence.

In general, “identity” refers to an exact nucleotide-to-nucleotide or amino acid-to-amino acid correspondence of two polynucleotides or polypeptide sequences, respectively. Percent identity can be determined by a direct comparison of the sequence information between two molecules by aligning the sequences, counting the exact number of matches between the two aligned sequences, dividing by the length of the shorter sequence, and multiplying the result by 100. Readily available computer programs can be used to aid in the analysis, such as ALIGN (Dayhoff, M. O. in Atlas of Protein Sequence and Structure M. O. Dayhoff ed., 5 Suppl. 3:353-358, National Biomedical Research Foundation, Washington, D.C.) which adapts the local homology algorithm of Smith and Waterman 1981 Advances in Appl Math 2:482-489, for peptide analysis. Programs for determining nucleotide sequence identity are available in the Wisconsin Sequence Analysis Package, Version 8 (available from Genetics Computer Group, Madison, Wis.) for example, the BESTFIT, FASTA and GAP programs, which also rely on the Smith and Waterman algorithm. These programs are readily utilized with the default parameters recommended by the manufacturer and described in the Wisconsin Sequence Analysis Package referred to above. For example, percent identity of a particular nucleotide sequence to a reference sequence can be determined using the homology algorithm of Smith and Waterman with a default scoring table and a gap penalty of six nucleotide positions.

Alternatively, nucleotide homology can be determined by hybridization of polynucleotides under conditions that form stable duplexes between homologous regions, followed by digestion with single-stranded-specific nucleases (and size determination of the digested fragments). DNA sequences that are substantially homologous can be identified in a Southern hybridization experiment under, for example, stringent conditions, as defined for that particular system. Defining appropriate hybridization conditions is within the skill of the art. See, e.g., Sambrook et al. Molecular Cloning: A Laboratory Manual (2d ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1989)).

The term “recombinant” can be used to describe a nucleic acid molecule and refers to a polynucleotide of genomic, RNA, DNA, cDNA, viral, semisynthetic, or synthetic origin which, by virtue of its origin or manipulation is not associated with all or a portion of the polynucleotide with which it is associated in nature.

The term “recombinant” as used with respect to a protein or polypeptide can refer to a polypeptide produced by expression of a recombinant polynucleotide. In general, the gene of interest is cloned and then expressed in transformed organisms, by a method known in the art. The host organism expresses the foreign gene to produce the protein under expression conditions. Disclosed herein is an expression vector comprising a polynucleotide encoding a feline TAS2R polypeptide disclosed herein. In an embodiment, the recombinant vector comprises a polynucleotide consisting of SEQ ID NO:1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, or 25; a polynucleotide consisting of the complement of SEQ ID NO:1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, or 25; or a polynucleotide consisting of a sequence having at least 90%, at least 95%, at least 97%, at least 98%, at least 99% homology with SEQ ID NO:1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, or the complement of SEQ ID NO:1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, or 25. Also disclosed is an expression vector comprising a polynucleotide encoding a chimeric polypeptide disclosed herein.

The term “vector” means a nucleic acid sequence to express a target gene in a host cell. Examples include a plasmid vector, a cosmid vector, a bacteriophage vector, and a viral vector. Examples of viral vectors include a bacteriophage vector, an adeno-associated virus vector.

For example, the vector may be an expression vector including a membrane targeting or secretion signaling sequence or a leader sequence, in addition to an expression control element such as promoter, operator, initiation codon, termination codon, polyadenylation signal, and enhancer.

The vector may be manufactured in various ways known in the art depending on the purpose. An expression vector may include a selection marker for selecting a host cell containing the vector. Further, a replicable expression vector may include an origin of replication.

The term “recombinant vector” or “expression vector” means a vector operably linked to a heterologous nucleotide sequence for the purpose of expression, production, and isolation of the heterologous nucleotide sequence. The heterologous nucleotide sequence can be a nucleotide sequence encoding all or part of a fTAS2R receptor or a chimeric polypeptide disclosed herein.

The recombinant vector may be constructed for use in prokaryotic or eukaryotic host cells. For example, when a prokaryotic cell is used as a host cell, the expression vector used generally includes a strong promoter capable of initiating transcription (for example, pLA promoter, trp promoter, lac promoter, tac promoter, T7 promoter), a ribosome binding site for initiating translation, and a transcription/translation termination sequence. When a eukaryotic cell is used as a host cell, the vector used generally includes the origin of replication acting in the eukaryotic cell, for example F1 origin of replication, SV40 origin of replication, pMB1 origin of replication, adeno origin of replication, AAV origin of replication, or BBV origin of replication, but is not limited thereto.

A promoter in an expression vector for a eukaryotic host cell may be a promoter derived from the genomes of mammalian cells (for example, a metallothionein promoter or an EF-1 alpha promoter) or a promoter derived from mammalian viruses (for example, an adenosine late promoter, a vaccinia virus 7.5K promoter, a Sindbis promoter, a SV40 promoter, a cytomegalovirus promoter, and a tk promoter of HSV). A transcription termination sequence in an expression vector for a eukaryotic host cell may be, in general, a polyadenylation sequence.

The term “operably linked” refers to a nucleic acid sequence placed into a functional relationship with another nucleic acid sequence. For example, DNA for a presequence or secretory leader is operably linked to DNA for a polypeptide if it is expressed as a preprotein that participates in the secretion of the polypeptide; a promoter or enhancer is operably linked to a coding sequence if it affects the transcription of the sequence; or a ribosome binding site is operably linked to a coding sequence if it is positioned so as to facilitate translation. Generally, “operably linked” means that the DNA sequences being linked are contiguous, and, in the case of a secretory leader, contiguous and in reading phase. However, enhancers do not have to be contiguous. Linking is accomplished by ligation at convenient restriction sites. If such sites do not exist, the synthetic oligonucleotide adaptors or linkers are used in accordance with conventional practice. A nucleic acid is “operably linked” when it is placed into a functional relationship with another nucleic acid sequence. For instance,
a promoter or enhancer is operably linked to a coding sequence if it affects the transcription of the sequence. With respect to transcription regulatory sequences, operably linked means that the DNA sequences being linked are contiguous and, where necessary, to join two protein coding regions, contiguous and in reading frame.

Further disclosed is a host cell comprising an expression vector or a polynucleotide disclosed herein. A suitable host cell can be transformed with at least one of the recombinant vectors or at least one polynucleotide disclosed herein, for example a polynucleotide consisting of SEQ ID NO:1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, or 25.

The host cell of the vector may be any cell that can be practically utilized by the expression vector. For example, the host cell may be a higher eukaryotic cell, such as a mammalian cell, or a lower eukaryotic cell, such as a yeast cell. Further, the host cell may be a prokaryotic cell, such as a bacterial cell. A prokaryotic host cell may be a Bacillus genus bacterium, such as E. coli JM109, E. coli BI.21, E. coli RR1, E. coli LE392, E. coli B, E. coli X 1776, E. coli W3110, Bacillus subtilis, and Bacillus thuringiensis; or an intestinal bacterium, such as Salmonella typhimurium, Serriata marcescens, and various Pseudomonas species. A eukaryotic host cell may be a yeast (e.g., Saccharomyces cerevisiae), an insect cell, a plant cell, or an animal cell, for example, mouse Sp2/0, CHO (Chinese hamster ovary) K1, CHO DG44, PER.C6, W138, BHK, COS-7, 293, HepG2, Huh7, 3T3, RIN, HeLa, HEK-293, or a MDCK cell line.

The polynucleotide or recombinant vector including the polynucleotide may be transferred into the host cell using a method known in the art. For example, when a prokaryotic cell is used as the host cell, the transfer may be performed using a CaCl₂ method or an electroporation method, and when an eukaryotic cell is used as the host cell, the transfer may be performed by microinjection, calcium phosphate precipitation, electroporation, liposome-mediated transfection, LIPOFECTAMINE® (Life Technologies Corporation) transfection, or gene bombardment, but is not limited thereto.

After the expression vector is introduced into the cells, the transfected cells can be cultured under conditions favoring expression of the αTAS2R. The αTAS2R can be recovered from the culture using standard techniques known in the art.

Antibodies to the αTAS2R receptors and the chimeric polypeptides are also disclosed.

An “anti-αTAS2R” or “αTAS2R” antibody is an antibody or antibody fragment that specifically binds a polypeptide encoded by a TAS2R gene, cDNA, or a subsequence thereof.

“Antibody” refers to a polypeptide that specifically binds and recognizes an antigen. The term “antibody” or “immunoglobulin,” as used interchangeably herein, includes whole antibodies and any antigen binding fragment (antigen-binding portion) or single chain constitutes thereof. An “antibody” comprises at least one heavy (H) chain and one light (L) chain. In naturally occurring IgGs, for example, these heavy and light chains are inter-connected by disulfide bonds and there are two paired heavy and light chains; these two are also inter-connected by disulfide bonds. Each heavy chain is comprised of a heavy chain variable region (abbreviated herein as VH) and a heavy chain constant region. The heavy chain constant region is comprised of three domains, CH1, CH2, and CH3. Each light chain is comprised of a light chain variable region (abbreviated herein as VL) and a light chain constant region. The light chain constant region is comprised of one domain, CL. The VH and VL regions can be further subdivided into regions of hypervarability, termed complementarity determining regions (CDR), interspersed with regions that are more conserved, termed framework regions (FR) or joining (J) regions (JH or JL in heavy and light chains respectively). Each VH and VL is composed of three CDRs three FRs and a J domain, arranged from amino-terminals to carboxy-terminals in the following order: FR1, CDR1, FR2, CDR2, FR3, CDR3, J. The variable regions of the heavy and light chains bind with an antigen. The constant regions of the antibodies may mediate the binding of the immunoglobulin to host tissues or fragments, including various cells of the immune system (e.g., effector cells) or humoral factors such as the first component (C₁q) of the classical complement system.

The term “antigen-binding portion” or “antigen-binding fragment” of an antibody, as used herein, refers to one or more fragments of an antibody that retain the ability to specifically bind to an antigen. It has been shown that certain fragments of a full-length antibody can perform the antigen-binding function of an antibody. Examples of binding fragments denoted as an antigen-binding portion or fragment of an antibody include (i) a Fab fragment, a monovalent fragment consisting of the VH, CH₂, and CH₃ domains; (ii) a (Fab′)₂ fragment, a bivalent fragment comprising two Fab fragments linked by a disulfide bridge at the hinge region; (iii) a Fd fragment consisting of the VH and CH₃ domains; (iv) a Fv fragment consisting of the VL and VH domains of a single arm of an antibody, (v) a Fab containing VH and VL domains; (vi) a dAb fragment (Ward et al. (1989) Nature 341, 544-546), which consists of a VH domain; (vii) a dAb which consists of a VH or a VL domain; and (viii) an isolated complementarity determining region (CDR) or (ix) a combination of two or more isolated CDRs which may optionally be joined by a synthetic linker. Furthermore, although the two domains of the Fab fragment, VH, and VL, are coded for by separate genes, they can be joined, using recombinant methods, by a synthetic linker that enables them to be made as a single protein chain in which the VH and VL regions are paired to form monovalent molecules (such as a single chain cognate of an immunoglobulin fragment is known as a single chain Fv (scFv). Such single chain antibodies are also encompassed within the term “antibody fragment.” Antibody fragments are obtained using conventional techniques known to those with skill in the art, and the fragments are screened for utility in the same general manner as are intact antibodies. Antigen-binding fragments can be produced by recombinant DNA techniques, or by enzymatic or chemical cleavage of intact immunoglobulins.

The term “monoclonal antibody” means an antibody obtained from a population of substantially homogeneous antibodies, i.e., the individual antibodies comprising the population are identical except for possible naturally occurring mutations that may be present in minor amounts. In some embodiments, the term “monoclonal antibody” refers to an antibody derived from a single cell clone.

For preparation of monoclonal or polyclonal antibodies, any technique known in the art can be used. Techniques for the production of single chain antibodies (U.S. Pat. No. 4,546,778) can be adapted to produce antibodies to polypeptides disclosed herein. Also, transgenic mice, or other organisms such as other mammals, may be used to express humanized antibodies. Alternatively, phage display technology can be used to identify antibodies and heteromeric Fab fragments that specifically bind to selected antigens.

Methods of production of polyclonal antibodies are known to those of skill in the art. For example, inbred mice (e.g., BALB/C mice) or rabbits are immunized with the αTAS2R, or fragment thereof, using a standard adjuvant, such as Freund’s adjuvant, and a standard immunization protocol. The animal’s immune response to the immunogen preparation is monitored by taking test bleeds and determining the titer of reactivity to the αTAS2R. When appropriately high titers of
antibody to the immunogen are obtained, blood is collected from the animal and antisera are prepared. Further fractionation of the antisera to enrich for antibodies reactive to the protein can be done if desired.

Monoclonal antibodies may be obtained by various techniques familiar to those skilled in the art. Briefly, spleen cells from an animal immunized with a desired antigen are immortalized, commonly by fusion with a myeloma cell. Alternative methods of immortalization include transformation with Epstein Barr Virus, oncogenes, or retroviruses, or other methods well known in the art. Colonies arising from single immortalized cells are screened for production of antibodies of the desired specificity and affinity for the antigen, and yield of the monoclonal antibodies produced by such cells may be enhanced by various techniques, including injection into the peritoneal cavity of a vertebrate host. Alternatively, one may isolate DNA sequences which encode a monoclonal antibody or a binding fragment thereof by screening a DNA library from human B cells according to the general protocol outlined by Huse et al., Science 246:1275-1281 (1989).

Monoclonal antibodies and polyclonal sera are collected and titrated against the immunogen protein in an immunosassay, for example, a solid phase immunosassay with the immunogen immobilized on a solid support. Typically, polyclonal antisera with a titer of 104 or greater are selected and tested for their cross reactivity against non-TAS2R proteins, or even other TAS2R family members or other related proteins from other organisms, using a competitive binding immunosassay. Specific polyclonal antisera and monoclonal antibodies will usually bind with a Kd of at least about 0.1 mM, more usually at least about 1 μM, specifically at least about 0.1 μM or better, and more specifically 0.01 μM or better.

The term “immunosassay” is an assay that uses an antibody to specifically bind an antigen. The immunosassay is characterized by the use of specific binding properties of a particular antibody to isolate, target, and/or quantify the antigen.

The phrase “specifically (or selectively) binds” to an antibody or “specifically (or selectively) immunoreactive with,” when referring to a protein or peptide, refers to a binding reaction that is quantitative in the presence of the protein in a heterogeneous population of proteins and other biologicals. Thus, under designated immunosassay conditions, the specified antibodies bind to a particular protein at least two times the background and do not substantially bind in a significant amount to other proteins present in the sample. Specific binding to an antibody under such conditions may require an antibody that is selected for its specificity for a particular protein. For example, polyclonal antibodies raised to a TAS2R can be selected to obtain those polyclonal antibodies that are specifically immunoreactive with the TAS2R protein or an immunogen portion thereof and not with other proteins, except for orthologs or polymorphic variants and alleles of the TAS2R protein. This selection may be achieved by subtracting out antibodies that cross-react with TAS2R molecules from other species or other TAS2R molecules.

Antibodies can also be selected that recognize only TAS2R GPCR family members but not other GPCRs. A variety of immunosassay formats may be used to select antibodies specifically immunoreactive with a particular protein. For example, solid-phase ELISA immunosassays are routinely used to select antibodies specifically immunoreactive with a protein (see, e.g., Harlow & Lane, Antibodies, A Laboratory Manual (1988)), for a description of immunosassay formats and conditions that can be used to determine specific immunoreactivity. Typically a specific or selective reaction will be at least twice background signal or noise and more typically more than 10 to 100 times background.

Immunosassays can be used to detect, qualitatively or quantitatively, a TAS2R, e.g., to identify taste receptor cells, especially bitter taste receptor cells, and variants of TAS2R family members.

The anti-TAS2R antibodies can also be used to isolate feline taste cells from a mixed population of cells obtained from a feline. In an embodiment, isolation of the feline taste cells bound to the anti-TAS2R antibody can be achieved by flow cytometry. Other methods known in the art can also be used.

Herein a “tastant” means a ligand that can bind to a specific TAS2R receptor or set of receptors. Means to infect/express the nucleic acids and vectors, either individually or as libraries, are well known in the art. A variety of individual cell, organ, or whole animal parameters can be measured by a variety of means. The disclosed TAS2R sequences can be expressed, for example, in animal taste tissues by delivery with a vector, e.g., adenovirus expression vector.

As known in the art, taste behavior can be determined in a short term assay which directly measures taste preferences by counting licking responses of an animal, e.g., a mouse, using a multi-channel gustometer (e.g., the Davis MS160-Mouse gustometer, Dilog instruments, Tallahassee, Fla.). The mean rate that a mouse will lick a tastant relative to their sampling of an appropriate control (ratio defined as lick rate relative to control) indicates whether the stimulus is appetitive, neutral or aversive. In addition, the change in intake of a palatable stimulus can be evaluated in the presence of the test stimulus to assess enhancement or suppression of the palatable stimulus.

In a further embodiment, animals can be trained to discriminate qualitatively distinct stimuli using operant testing methods known in the art. These animals can then be used to determine qualitative similarity between two stimuli, regardless of palatability or preference.

Alternatively, noninvasive methods such as positron emission tomography (PET) or electroencephalography may be used to monitor neural activity in these preparations. Such preparations may also be used to evaluate the impact of various factors such as age, experience or nutritional state on neural activity elicited by stimuli identified in cell-based experiments to modify receptor function.

Also provided are kits comprising at least one composition,opolypeptide, or nucleic acid disclosed herein, optionally contained in a single unit, and may optionally include, e.g., instructions for use in detecting a TAS2R receptor or a polynucleotide encoding a TAS2R receptor.

In an embodiment, the kit comprises at least one anti-TAS2R antibody disclosed herein and reagents for detecting a complex between the antibody and the TAS2R antigen. For example, the kit can include a buffer that enables binding reaction between the antibody and the TAS2R antigen in a biological sample, or components for producing the buffer.

The activity of TAS2R polypeptides can be assessed using a variety of in vitro and in vivo assays to determine functional, chemical, and physical effects, e.g., measuring ligand binding (e.g., radioactive ligand binding), second messengers (e.g., cAMP, cGMP, IP3, DAG, or Ca2+), ion flux, phosphorylation levels, transcription levels, neurotransmitter levels, and the like. Furthermore, such assays can be used to test for inhibitors and activators of TAS2R family members. Such modulators of taste transduction activity are useful for customizing taste, for example to modify the detection of bitter tastes.

The TAS2R protein of the ass will typically be selected from a polypeptide having a sequence of SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO:18,
SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24, or SEQ ID NO:26; a conservatively modified variant of SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24, or SEQ ID NO:26; or a sequence that is at least 90%, at least 95%, at least 97%, at least 98%, at least 99% identical to SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24, or SEQ ID NO:26.

In some embodiments, the polypeptide of the assays will comprise a domain of a TAS2R protein, such as an extracellular domain, transmembrane region, cytoplasmic domain, ligand binding domain, subunit association domain, active site, and the like. Either the TAS2R protein or a domain thereof can be covalently linked to a heterologous protein to create a chimeric protein used in the assays described herein.

Modulators of TAS2R receptor activity are tested using TAS2R polypeptides as described above, either recombinant or naturally occurring. The protein can be isolated, expressed in a cell, expressed in a membrane derived from a cell, expressed in tissue or in an animal, either recombinant or naturally occurring. For example, transformed cells or membranes can be used. Modulation is tested using one of the in vitro or in vivo assays described herein. Tact transduction can also be examined in vitro with soluble or solid state reactions, using a full-length TAS2R-GPCR or a chimeric molecule such as an extracellular domain or transmembrane region, or combination thereof, of a TAS2R receptor covalently linked to a heterologous signal transduction domain, or a heterologous extracellular domain and/or transmembrane region covalently linked to the transmembrane and/or cytoplasmic domain of a TAS2R receptor. Furthermore, ligand-binding domains of the protein of interest can be used in vivo in soluble or solid state reactions to assay for ligand binding. In numerous embodiments, a chimeric receptor will be made that comprises all or part of a TAS2R polypeptide as well as an additional sequence that facilitates the localization of the TAS2R to the membrane, such as rhodopsin, e.g., an N-terminal fragment of a rhodopsin protein.

Ligand binding to a TAS2R protein, a domain, or chimeric protein can be tested in solution, in a bilayer membrane, attached to a solid phase, in a lipid monolayer, or in vesicles. Binding of a modulator can be tested using, e.g., changes in spectroscopic characteristics (e.g., fluorescence, absorbance, refractive index), hydrodynamic (e.g., shape), chromatographic, or solubility properties.

Receptor-G-protein interactions can also be examined. For example, binding of the G-protein to the receptor or its release from the receptor can be examined. For example, in the absence of GTP, an activator will lead to the formation of a tight complex of a G protein (all three subunits) with the receptor. This complex can be detected in a variety of ways, as noted above. Such an assay can be modified to search for inhibitors, e.g., by adding an activator to the receptor and G protein in the absence of GTP, which form a tight complex, and then screen for inhibitors by looking at dissociation of the receptor-G protein complex. In the presence of GTP, release of the alpha subunit of the G protein from the other two G protein subunits serves as a criterion of activation.

In some embodiments, TAS2R-Gustducin interactions are monitored as a function of TAS2R receptor activation. Ligand dependent coupling of TAS2R receptors with Gustducin can be used as a marker to identify modifiers of any member of the TAS2R family.

An activated or inhibited G-protein will in turn alter the properties of target enzymes, channels, and other effector proteins. The classic examples are the activation of cGMP phosphodiesterase by transducin in the visual system, adenylate cyclase by the stimulatory G-protein, phospholipase C by Gi and other G proteins, and modulation of diverse channels by Gi and other G proteins. Downstream consequences can also be examined such as generation of diacylglycerol and IP3 by phospholipase C, and in turn, for calcium mobilization by IP3.

In an embodiment, a TAS2R polypeptide is expressed in a eukaryotic cell as a chimeric receptor with a heterologous, chaperone sequence that facilitates its maturation, targeting through the secretory pathway or membrane localization. In a preferred embodiment, the heterologous sequence is a rhodopsin sequence, such as an N-terminal fragment of a rhodopsin. Such chimeric TAS2R receptors can be expressed in any eukaryotic cell, such as ATCC #CRL-11268 cells. Preferably, the cells comprise a functional G protein, e.g., G[alpha]15, that is capable of coupling the chimeric receptor to an intracellular signaling pathway or to a signaling protein such as phospholipase C. Activation of such chimeric receptors in such cells can be detected using any standard method, such as by detecting changes in intracellular calcium by detecting FURA-2 dependent fluorescence in the cell.

Activated GPCR proteins become substrates for kinases that phosphorylate the C-terminal tail of the receptor (and possibly other sites as well). Thus, activators will promote the transfer of 32P from gamma-labeled GTP to the receptor, which can be assayed by a scintillation counter. The phosphorylation of the C-terminal tail will promote the binding of arrestin-like proteins and will interfere with the binding of G-proteins. The kinase/arrestin pathway plays a key role in the desensitization of many GPCR proteins. For example, compounds that modulate the duration a taste receptor stays active would be useful as a means of prolonging a desired taste or cutting off an unpleasant one.

Samples or assays that are treated with a potential TAS2R protein inhibitor or activator are compared to control samples without the test compound, to examine the extent of modulation. Such assays may be carried out in the presence of a bitter tastant that is known to activate the particular receptor, and modulation of the bitter-tastant-dependent activation monitored. Control samples (untreated with activators or inhibitors) are assigned a relative TAS2R activity value of 100. Inhibition of a TAS2R protein is achieved when the TAS2R activity value relative to the control is about 90%, optionally 50%, optionally 25-0%. Activation of a TAS2R protein is achieved when the TAS2R activity value relative to the control is 110%, optionally 150%, 200-500%, or 1000-2000%.

Changes in ion flux may be assessed by determining changes in polarization (i.e., electrical potential) of the cell or membrane expressing a TAS2R protein. One means to determine changes in cellular polarization is by measuring changes in current (thereby measuring changes in polarization) with voltage-clamp and patch-clamp techniques, e.g., the "cell-attached" mode, the "inside-out" mode, and the "whole cell" mode. Whole cell currents are conveniently determined using standard methodology known in the art. Other known assays include: radio labeled ion flux assays and fluorescence assays using voltage-sensitive dyes. Generally, the compounds to be tested are present in the range from 1 μM to 100 nM.

The effects of the test compounds upon the function of the polypeptides can be measured by examining any of the parameters described above. Any suitable physiological change that affects GPCR activity can be used to assess the
influence of a test compound on the polypeptides disclosed herein. When the functional consequences are determined using intact cells or animals, one can also measure a variety of effects such as transmitter release, hormone release, transcriptional changes to both known and uncharacterized genetic markers (e.g., Northern blots), changes in cell metabolism such as cell growth or pH changes, and changes in intracellular second messengers such as Ca\(^{2+}\), IP₃, cGMP, or cAMP.

In an embodiment, assays for G-protein coupled receptors include cells that are loaded with ion or voltage sensitive dyes to report receptor activity. Assays for determining activity of such receptors can also use known agonists and antagonists for other G-protein coupled receptors as negative or positive controls to assess activity of tested compounds. In assays for identifying modulatory compounds (e.g., agonists, antagonists), changes in the level of ions in the cytoplasm or membrane voltage will be monitored using an ion sensitive or membrane voltage fluorescence indicator, respectively. Ion-sensitive indicators and voltage probes that may be employed are commercially available from a variety of sources. For G-protein coupled receptors, promiscuous G-proteins such as Gt\(_{15}\) and G\(_{16}\) can be used in the assay of choice. Such promiscuous G-proteins allow coupling of a wide range of receptors.

Receptor activation typically initiates subsequent intracellular events, e.g., increases in second messengers such as IP₃, which releases intracellular stores of calcium ions. Activation of some G-protein coupled receptors stimulates the formation of inositol triphosphate (IP₃) through phospholipase C-mediated hydrolysis of phosphatidylinositol (Berridge & Irvine, Nature 312:315-21 (1984)). IP₃ in turn stimulates the release of intracellular calcium ion stores. Thus, a change in cytoplasmic calcium ion levels, or a change in second messenger levels such as IP₃ can be used to assess G-protein coupled receptor function. Cells expressing such G-protein coupled receptors may exhibit increased cytoplasmic calcium levels as a result of contribution from both intracellular stores and via activation of ion channels, in which case it may be desirable although not necessarily to conduct such assays in calcium-free buffer, optionally supplemented with a chelating agent such as EGTA, to distinguish fluorescence response resulting from calcium release from internal stores.

Other assays can involve determining the activity of receptors which, when activated, result in a change in the level of intracellular cyclic nucleotides, e.g., cAMP or cGMP, by activating or inhibiting enzymes such as adenylate cyclase.

There are cyclic nucleotide-gated ion channels, e.g., rod photoreceptor cell channels and olfactory neuron channels that are permeable to cations upon activation by binding of cAMP or cGMP (see, e.g., Altenhofen et al., Proc. Natl. Acad. Sci. U.S.A., 88:9868-9872 (1991) and Dhallan et al., Nature 347:184-187 (1990)). In cases where activation of the receptor results in a decrease in cyclic nucleotide levels, it may be preferable to expose the cells to agents that increase intracellular cyclic nucleotide levels, e.g., forskolin, prior to adding a receptor-activating compound to the cells in the assay. Cells for this type of assay can be made by co-transfection of a host cell with DNA encoding a cyclic nucleotide-activated ion channel, GPCR phosphatase and DNA encoding a receptor (e.g., certain glutamate receptors, muscarinic acetylcholine receptors, dopamine receptors, serotonin receptors, and the like), which, when activated, causes a change in cyclic nucleotide levels in the cytoplasm.

In an embodiment, TAS2R protein activity is measured by expressing a TAS2R gene in a heterologous cell with a promiscuous G-protein that links the receptor to a phospholipase C signal transduction pathway (see Offermanns & Simon, J. Biol. Chem. 270:15175-15180 (1995)). Optionally the cell line is a eukaryotic cell line which does not naturally express TAS2R genes and the promiscuous G-protein is Gt\(_{15}\) (Offermanns & Simon, supra). Modulation of taste transduction is assayed by measuring changes in intracellular Ca\(^{2+}\) levels, which change in response to modulation of the TAS2R signal transduction pathway via administration of a molecule that associates with a TAS2R protein. Changes in Ca\(^{2+}\) levels are optionally measured using fluorescent Ca\(^{2+}\) indicator dyes and fluorometric imaging.

In one embodiment, the changes in intracellular cAMP or cGMP can be measured using immunoassays. The method described in Offermanns & Simon, J. Biol. Chem. 270:15175-15180 (1995) may be used to determine the level of cAMP. Also, the method described in Felley-Bosco et al., Am. J. Resp. Cell and Mol. Biol. 10:159-166 (1994) may be used to determine the level of cGMP. Further, an assay kit for measuring cAMP and/or cGMP is described in U.S. Pat. No. 4,115,538, herein incorporated by reference.

In another embodiment, phosphatidyl inositol (PI) hydrolysis can be analyzed according to U.S. Pat. No. 5,436,128, herein incorporated by reference. Briefly, the assay involves labeling of cells with 3H-myoinositol for 48 or more hours. The labeled cells are treated with a test compound for one hour. The treated cells are lysed and extracted in chloroform-methanol-water after which the inositol phosphates were separated by ion exchange chromatography and quantified by scintillation counting. Fold stimulation is determined by calculating the ratio of cpm in the presence of agonist to cpm in the presence of buffer control. Likewise, fold inhibition is determined by calculating the ratio of cpm in the presence of antagonist to cpm in the presence of buffer control (which may or may not contain an agonist).

In another embodiment, transcription levels can be measured to assess the effects of a test compound on signal transduction. A host cell containing a TAS2R protein of interest is contacted with a test compound for a sufficient time to effect any interactions, and then the level of gene expression is measured. The amount of time to effect such interactions may be empirically determined, such as by running a time course and measuring the level of transcription as a function of time. The amount of transcription may be measured by using any method known to those of skill in the art to be suitable. For example, mRNA expression of the protein of interest may be detected using Northern blots or their polypeptide products may be identified using immunoassays. Alternatively, transcription based assays using reporter gene may be used as described in U.S. Pat. No. 5,436,128, herein incorporated by reference. Reporter genes may be, e.g., chloramphenicol acetyltransferase, luciferase, β-galactosidase and alkaline phosphatase. Furthermore, the protein of interest can be used as an indirect reporter via attachment to a second reporter such as green fluorescent protein (see, e.g., Mistili & Spector, Nature Biotechnology 15:961-964 (1997)).

The amount of transcription is then compared to the amount of transcription in either the same cell in the absence of the test compound, or it may be compared with the amount of transcription in a substantially identical cell that lacks the protein of interest. A substantially identical cell may be derived from the same cells from which the recombinant cell was prepared but which had not been modified by introduction of heterologous DNA. Any difference in the amount of transcription indicates that the test compound has in some manner altered the activity of the protein of interest.
The compounds tested as modulators of a TAS2R family member can be any small chemical compound, or a biological entity, such as a protein, sugar, nucleic acid or lipid. Alternatively, modulators can be genetically altered versions of a TAS2R gene. Typically, test compounds will be small chemical molecules and peptides. Essentially any chemical compound can be used as a potential modulator or ligand in the assays and methods disclosed herein, although most often compounds can be dissolved in aqueous or organic (especially DMSO-based) solutions are used. The assays are designed to screen large chemical libraries by automating the assay steps and providing compounds from any convenient source to assays, which are typically run in parallel (e.g., in microtiter formats on microtiter plates in robotic assays). There are many suppliers of chemical compounds, including Sigma-Aldrich (St. Louis, Mo.), Fluka Chemical Biochemica Analytica (Switzerland) and the like.

Methods to identify compounds that bind and/or modulate TAS2R receptors are disclosed. A “TAS2R binding partner” is a compound that directly or indirectly binds a TAS2R polypeptide disclosed herein. In an embodiment, the method comprises contacting TAS2R receptor with a test compound suspected of binding TAS2R receptor; and detecting binding between the compound and the TAS2R receptor. In one variation, a composition comprising a cell expressing TAS2R receptor on its surface is used in the method. In another variation, isolated TAS2R receptor or cell membranes comprising TAS2R receptor are employed. The binding may be measured directly, e.g., by using a labeled compound, or may be measured indirectly. Compounds identified as binding a TAS2R receptor may be further tested in other assays including TAS2R activity assays and/or in vivo models, in order to confirm or quantitate their activity.

“Substantially the same” biological activity refers to a polypeptide fragment, derivative, homolog, analog, or variant retaining at least about 50%, 55%, 60%, 65%, 70%, preferably at least about 75%, 80%, 85%, 90%, more preferably at least about 91%, 92%, 93%, 94%, 95%, and most preferably at least about 95%, 97%, 98%, 99% or greater biological activity of the parent polypeptide. The extent to which a polypeptide fragment, derivative, homolog, analog, or variant retains the biological activity of the parent polypeptide may be assessed by any means available in the art, including, but not limited to, the assays listed or described herein.

Specific binding molecules, including natural ligands and synthetic compounds, can be identified or developed using isolated or recombinant TAS2R products, TAS2R variants, or cells expressing such products. Binding partners are useful for purifying TAS2R products and detection or quantification of TAS2R proteins in fluid and tissue samples using known immunological procedures. Binding molecules are also useful in modulating (i.e., blocking, inhibiting or stimulating) biological activities of TAS2R, especially those activities involved in signal transduction. Binding molecules also are useful in methods for predicting the taste perception of an organism such as a mammal by detecting a TAS2R polypeptide in a biological sample of a feline.

The term “taste perception” as used herein refers to a response (e.g., biochemical, behavioral) or sensitivity of a TAS2R receptor to a taste stimulus. Modification of taste perception includes an alteration of (enhancement of, reduction of, or change to) a biochemical response, an ingestive response, a taste preference, or a general behavior of a mammal in response to a compound. “Taste perception” does not require, though it may include, transmission of a neural signal resulting in the in vivo sensation of taste by a mammal.

The nucleic acid and amino acid sequence information disclosed herein also makes possible identification of binding partner compounds with which a TAS2R polypeptide or polynucleotide will interact. Methods to identify binding partner compounds include solution assays, in vitro assays wherein TAS2R polypeptides are immobilized, and cell-based assays. Methods for identifying TAS2R-binding partners are disclosed herein. In solution assays, the methods can comprise the steps of (a) contacting a TAS2R receptor with one or more candidate binding partner compounds and (b) identifying the compounds that bind to the TAS2R receptor. Identification of the compounds that bind the TAS2R receptor can be achieved by isolating the TAS2R polypeptide/binding partner complex, and separating the binding partner compound from the TAS2R polypeptide. In one aspect, the TAS2R polypeptide/binding partner complex is isolated using an antibody immunospecific for either the TAS2R receptor or the candidate binding partner compound.

In still other embodiments, either the TAS2R receptor or the candidate binding partner compound comprises a label or tag that facilitates its isolation, and methods to identify binding partner compounds include a step of isolating the TAS2R polypeptide/binding partner complex through interaction with the label or tag. An exemplary tag of this type is a poly-histidine sequence, generally around six histidine residues, that permits isolation of a compound so labeled using nickel chelation. Other labels and tags, such as the FLAG tag (Eastman Kodak, Rochester, N.Y.), are well known and routinely used in the art.

In one variation of an in vitro assay, the method comprises the steps of (a) contacting an immobilized TAS2R receptor with a candidate binding partner compound and (b) detecting binding of the candidate compound to the TAS2R receptor. In an alternative embodiment, the candidate binding partner compound is immobilized and binding of TAS2R receptor is detected. Immobilization is accomplished using any of the methods well known in the art, including covalent bonding to a support, a bead, or a chromatographic resin, as well as non-covalent, high affinity interactions such as antibody binding, or use of streptavidin/biotin binding wherein the immobilized compound includes a biotin moiety. The support may, for example, be formulated into a feline-specific electronic tongue or biosensor.

Detection of binding can be accomplished (i) using a radioactive label on the compound that is not immobilized, (ii) using a fluorescent label on the non-immobilized compound, (iii) using an antibody immunospecific for the non-immobilized compound, (iv) using a label on the non-immobilized compound that excites a fluorescent support to which the immobilized compound is attached, as well as other techniques well known and routinely practiced in the art.

In another embodiment, cell-based assays are used to identify binding partner compounds of a TAS2R receptor. In one embodiment, the method comprises the steps of contacting a TAS2R receptor expressed on the surface of a cell with a candidate binding partner compound and detecting binding of the candidate binding partner compound to the TAS2R receptor. In some embodiments, the detection comprises detecting physiological event in the cell caused by the binding of the molecule.

Methods of identifying compounds that bind to either TAS2R receptor or nucleic acid molecules encoding TAS2R receptor are also disclosed. In an embodiment, the method comprises contacting TAS2R receptor, or a nucleic acid molecule encoding the same, with a compound, and determining whether the compound binds TAS2R receptor or a nucleic acid molecule encoding the same. Binding can be determined
by any binding assay known to the skilled artisan, including gel-shift assays, Western blots, radiolabeled competition assay, phage-based expression cloning, co-fractionation by chromatography, co-precipitation, cross-linking, interaction trap/two-hybrid analysis, southwestern analysis, and ELISA.

The methods may also use ligands that are attached to a label, such as a radiolabel (e.g., 125I, 35S, 32P, 33P, 38P), a fluorescence label, a chemiluminescent label, an enzymic label, and an immunogenic label.

Modulators can include non-peptide molecules such as non-peptide mimetics, non-peptide allosteric effectors, and peptides.

The TAS2R polypeptide or polynucleotide employed in such a test may either be free in solution, attached to a solid support, borne on a cell surface, located intracellularly, or associated with a portion of a cell. One skilled in the art can, for example, measure the formation of complexes between TAS2R receptor or polynucleotide and the compound being tested. Alternatively, one skilled in the art can examine the diminution in complex formation between TAS2R receptor or polynucleotide and its substrate caused by the compound being tested. In some embodiments, the recognition sites of the TAS2R receptor or polynucleotide are coupled with a monitoring system, either electrical or optical. An appropriate chemical stimulus can bind to the receptor’s ligand binding domain, changing the receptor conformation to a degree that the coupled electronics or optical changes can be observed on a read-out. In an embodiment, the solid support is formulated into a feline-specific electronic tongue or biosensor.

The term “solid support” refers to a material or group of materials having a rigid or semi-rigid surface or surfaces. Examples of materials include plastics (e.g., polycarbonate), complex carbohydrates (e.g., agarose and sepharose), acrylic resins (e.g., polyacrylamide and latex beads), nitrocellulose, glass, silicon wafers, and positively charged nylon. In some aspects, at least one surface of the solid support can be substantially flat, although in some aspects it may be desirable to physically separate regions for different molecules with, for example, wells, raised regions, pins, etched trenches, or the like. In certain aspects, the solid support(s) will take the form of beads, resins, gels, microspheres, or other geometric configurations.

In another embodiment, high throughput screening (HTS) for compounds having suitable binding affinity to TAS2R receptor is employed. Briefly, large numbers of different small peptide test compounds are synthesized on a solid substrate. The peptide test compounds are contacted with TAS2R receptor and washed. Bound TAS2R receptor is then detected by methods well known in the art. Purified polypeptides of the invention can also be coated directly onto plates for use in the aforementioned drug screening techniques. In addition, non-neutralizing antibodies can be used to capture the protein and immobilize it on the solid support.

Generally, an expressed TAS2R receptor can be used for HTS binding assays in conjunction with a ligand, such as an amino acid or carbohydrate. The identified peptide is labeled with a suitable radioisotope, including 125I, 33P, 32P, 38P, or 35S, by methods that are well known to those skilled in the art. Alternatively, the peptides may be labeled by well-known methods with a suitable fluorescent derivative (Baindur et al., Drug Dev. Res., 1994, 33, 373-398; Rogers, Drug Discovery Today, 1997, 2, 156-160). Radioactive ligand specifically bound to the receptor in membrane preparations made from the cell line expressing the recombinant protein can be detected in HTS assays in one of several standard ways, including filtration of the receptor-ligand complex to separate bound ligand from unbound ligand. Alternative methods include a scintillation proximity assay (SPA) or a FlashPlate format in which such separation is unnecessary. Binding of fluorescent ligands can be detected in various ways, including fluorescence energy transfer (FRET), direct spectrophotofluorometric analysis of bound ligand, or fluorescence polarization.

Other assays may be used to identify specific ligands of a TAS2R receptor, including assays that identify ligands of the target protein through measuring direct binding of test ligands to the target, as well as assays that identify ligands of target proteins through affinity ultracentrifugation with ion spray mass spectroscopy/HPLC methods or other physical and analytical methods. Alternatively, such binding interactions are evaluated indirectly using a yeast two-hybrid system, a genetic assay for detecting interactions between two proteins or polypeptides.

Also disclosed are methods of identifying compounds that modulate (i.e., increase or decrease) activity of TAS2R receptor comprising contacting TAS2R receptor with a compound, and determining whether the compound modifies activity of TAS2R receptor. The activity in the presence of the test compound is compared to the activity in the absence of the test compound. Where the activity of the sample containing the test compound is higher than the activity in the sample lacking the test compound, the compound is an agonist. Similarly, where the activity of the sample containing the test compound is lower than the activity in the sample lacking the test compound, the compound is an antagonist.

Agents that modulate (i.e., increase, decrease, or block) TAS2R receptor activity or expression also may be identified, for example, by incubating a putative modulator with a cell containing a TAS2R polypeptide or polynucleotide and determining the effect of the putative modulator on TAS2R receptor activity or expression. The selectivity of a compound that modulates the activity of TAS2R receptor can be evaluated by comparing its effects on TAS2R receptor to its effect on other TAS2R receptors. Selective modulators may include, for example, antibodies and other proteins, peptides, or organic molecules that specifically bind to a TAS2R polypeptide or a TAS2R receptor-encoding nucleic acid. Compounds identified as modulating TAS2R receptor activity may be further tested in other assays including in vivo models, in order to confirm or quantitate their activity.

TAS2R polynucleotides and polypeptides, and their homologs, are useful tools for identifying taste receptor expressing cells, and for examining taste transduction. TAS2R family member-specific reagents that specifically hybridize to TAS2R nucleic acids, such as TAS2R probes and primers, and TAS2R specific reagents that specifically bind to a TAS2R protein, e.g., TAS2R antibodies are used to examine taste cell expression and taste transduction regulation. For example, a TAS2R antibody can be used to identify and/or isolate feline taste cells expressing the particular TAS2R from a mixed feline cell population. For example, polynucleotide probes disclosed herein may be used in tissue distribution studies and diagnostic assays.

Nucleic acid assays for the presence of DNA and RNA for a TAS2R family member in a sample include numerous techniques known to those skilled in the art, such as Southern analysis, Northern analysis, dot blots, RNase protection, S1 analysis, amplification techniques such as polymerase chain reaction (PCR) and ligase chain reaction (LCR), and in situ hybridization. In addition, a TAS2R protein can be detected with the various immunoassay techniques known in the art. The test sample is typically compared to both a positive control (e.g., a sample expressing a recombinant TAS2R protein) and a negative control.
Also provided are kits for screening for modulators of TAS2R family members. Such kits can be prepared from readily available materials and reagents. For example, such kits can comprise any one or more of the following materials: TAS2R nucleic acids or proteins, reaction tubes, and instructions for testing TAS2R activity. Optionally, the kit contains a biologically active TAS2R receptor. A wide variety of kits and components can be prepared, depending upon the intended user of the kit and the particular needs of the user.

Other embodiments of the present invention are described in the following non-limiting Examples.

EXAMPLES

Example 1

Determining Feline Bitter Taste Receptor (TAS2R) Gene and Polypeptide Sequences

In this example, feline TAS2R genes were identified, by querying the NCBI *Felis catus* whole genome shotgun contigs database with human bitter receptor gene sequences. Human gene sequences used are identified by NCBI Gene IDs in Table 2.

TABLE 2

<table>
<thead>
<tr>
<th>Human Bitter Receptor gene</th>
<th>Gene ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Functional Genes</td>
<td></td>
</tr>
<tr>
<td>TAS2R1 (TAS2R1; TRB7)</td>
<td>50834</td>
</tr>
<tr>
<td>TAS2R3 (TAS2R3)</td>
<td>50831</td>
</tr>
<tr>
<td>TAS2R4 (TAS2R4)</td>
<td>50832</td>
</tr>
<tr>
<td>TAS2R5 (TAS2R5)</td>
<td>54429</td>
</tr>
<tr>
<td>TAS2R7 (TAS2R7; TRB4)</td>
<td>50837</td>
</tr>
<tr>
<td>TAS2R8 (TAS2R8; TRB5)</td>
<td>50836</td>
</tr>
<tr>
<td>TAS2R9 (TAS2R9; TRB6)</td>
<td>50835</td>
</tr>
<tr>
<td>TAS2R10 (TRB2; TAS2R10)</td>
<td>50839</td>
</tr>
<tr>
<td>TAS2R13 (TRB3; TAS2R13)</td>
<td>50838</td>
</tr>
<tr>
<td>TAS2R14 (TRB1; TAS2R14)</td>
<td>50840</td>
</tr>
<tr>
<td>TAS2R16 (TAS2R16)</td>
<td>50833</td>
</tr>
<tr>
<td>TAS2R19 (TAS2R19; TAS2R23)</td>
<td>259294</td>
</tr>
<tr>
<td>TAS2R48; MISTP085; TAS2R23;</td>
<td></td>
</tr>
<tr>
<td>TAS2R48)</td>
<td></td>
</tr>
<tr>
<td>TAS2R20 (TAS2R20; TAS2R49);</td>
<td></td>
</tr>
<tr>
<td>TAS2R56; TAS2R49)</td>
<td></td>
</tr>
<tr>
<td>TAS2R30 (TAS2R30; TA2047)</td>
<td>259293</td>
</tr>
<tr>
<td>TAS2R47)</td>
<td></td>
</tr>
<tr>
<td>TAS2R51 (TAS2R51; TAS2R44);</td>
<td></td>
</tr>
<tr>
<td>TAS2R53; TAS2R44)</td>
<td></td>
</tr>
<tr>
<td>TAS2R58 (PTC; TAS2R38; TAS2R61)</td>
<td>5726</td>
</tr>
<tr>
<td>TAS2R39 (TAS2R39; TAS2R57)</td>
<td>259285</td>
</tr>
<tr>
<td>TAS2R40 (GPR96; TAS2R46)</td>
<td>259266</td>
</tr>
<tr>
<td>TAS2R58)</td>
<td></td>
</tr>
<tr>
<td>TAS2R41 (TAS2R41; TAS2R59)</td>
<td>259287</td>
</tr>
<tr>
<td>TAS2R42 (TAS2R24; TAS2R55;</td>
<td>353164</td>
</tr>
<tr>
<td>hTAS2R55; TAS2R55)</td>
<td></td>
</tr>
<tr>
<td>TAS2R43 (TAS2R43; TAS2R52)</td>
<td>259289</td>
</tr>
<tr>
<td>TAS2R45 (GPR95; TAS2R45; ZG24P)</td>
<td>259291</td>
</tr>
<tr>
<td>TAS2R46 (TAS2R46; TAS2R54)</td>
<td>259292</td>
</tr>
<tr>
<td>TAS2R50 (TAS2R50; TAS2R51;</td>
<td>259206</td>
</tr>
<tr>
<td>TAS2R51)</td>
<td></td>
</tr>
<tr>
<td>TAS2R60 (TAS2R26; TAS2R60)</td>
<td>338398</td>
</tr>
</tbody>
</table>

Pseudogenes

<table>
<thead>
<tr>
<th>Human Bitter Receptor gene</th>
<th>Gene ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAS2R2P (PS8; TAS2R2; TAS2R20);</td>
<td>338396</td>
</tr>
<tr>
<td>TAS2R2)</td>
<td></td>
</tr>
<tr>
<td>TAS2R12P (PS10; TAS2R12; TAS2R12);</td>
<td>266656</td>
</tr>
<tr>
<td>TAS2R12)</td>
<td></td>
</tr>
<tr>
<td>TAS2R15P (PS8; TAS2R15)</td>
<td>266657</td>
</tr>
<tr>
<td>TAS2R18 (PS4; TAS2R18)</td>
<td>338414</td>
</tr>
<tr>
<td>TAS2R65; TAS2R65; TAS2R65P)</td>
<td></td>
</tr>
</tbody>
</table>

Individual contigs among the hits were downloaded for manual identification of start (ATG) and stop (TAA, TGA, or TAG) codons and to determine if the gene is likely full length. When sequences from both feline genome assemblies were obtained, they were compared.

Predicted functional genes were identified based on a set of rules selected to include a protein which is approximately 300 amino acids in length, the start site and stop site are in similar locations as the human protein when the blasted sequences are aligned, then the sequence was compared to the sequence of the orthologous canine bitter gene to verify that similarity was reasonable. Table 3 identifies canine bitter gene sequences used.

TABLE 3

<table>
<thead>
<tr>
<th>Canine Bitter Receptor gene</th>
<th>Gene ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Functional Genes</td>
<td></td>
</tr>
<tr>
<td>TAS2R1 (CATA-TAS2R1)</td>
<td>100271742</td>
</tr>
<tr>
<td>TAS2R2</td>
<td>100271741</td>
</tr>
<tr>
<td>TAS2R3 (CATA-TAS2R3)</td>
<td>100271736</td>
</tr>
<tr>
<td>TAS2R4</td>
<td>100088996</td>
</tr>
<tr>
<td>TAS2R5 (CATA-TAS2R5)</td>
<td>100271743</td>
</tr>
<tr>
<td>TAS2R7 (CATA-TAS2R7)</td>
<td>100271739</td>
</tr>
<tr>
<td>TAS2R10 (CATA-TAS2R10)</td>
<td>100271754</td>
</tr>
<tr>
<td>CAF-TAS2R12</td>
<td>100271738</td>
</tr>
<tr>
<td>CAF-TAS2R38</td>
<td>100271735</td>
</tr>
<tr>
<td>CAF-TAS2R39</td>
<td>100271753</td>
</tr>
<tr>
<td>CAF-TAS2R55</td>
<td>100271731</td>
</tr>
<tr>
<td>CAF-TAS2R43</td>
<td>100271744</td>
</tr>
<tr>
<td>TAS2R62-like</td>
<td>608741</td>
</tr>
<tr>
<td>CAF-TAS2R67</td>
<td>100271740</td>
</tr>
</tbody>
</table>

Table 4 below summarizes the full length feline genes identified. The % protein similarity between the feline gene and closest human homologue is presented in the table.
Cloning of each of the feline bitter genes to confirm the DNA sequence was performed after amplifying the desired gene by polymerase chain reaction (PCR) using the genomic DNA of a single cat. Potential primers to amplify each feline gene were designed using commercial software. Sets of primers were selected from among those designed based on predicted annealing temperature, fidelity, potential for dimerization and mispriming, and location of the desired sequence in order to amplify the feline gene sequence and determine the DNA sequence from isolated feline genomic DNA.

The process of amplification and cloning of a representative gene, TAS2R38, is briefly described. The hTAS2R38 sequence was amplified via PCR using Easy A High Fidelity PCR Cloning Enzyme (Agilent, Santa Clara Calif.), custom primers, and feline genomic DNA as a template.

The resulting PCR product was ligated into the pGEM-T Easy Vector (Promega, Madison Wis.). DH5-α bacterial cells (Life Technologies, Carlsbad, Calif.) were transformed with the vector. Plasmids were purified from cultures of the transformed DH5-α cells using the Plasmid Miniprep Kit (Omega BioTec, Norcross, Ga.). Sequencing of the gene using the purified plasmid DNA was performed by the Core DNA Sequencing Facility at the University of Illinois, Champaign-Urbana. The sequencing data was analyzed with SeqMan Pro (DNASTar, Madison Wis.) to determine the quality of the data and to edit the data.

The gene sequence determined from the isolated feline genomic DNA sequencing was compared against the sequences obtained from the whole genome shotgun contigs and analyzed to identify specific nucleotide differences, predicted protein sequence, and protein structure. Sequences disclosed in the sequence listing for each of the feline bitter taste receptor gene cDNAs and polypeptides are identified by the SEQ ID NOs shown in Table 5.

<table>
<thead>
<tr>
<th>SEQ ID NO.</th>
<th>Feline TAS2R Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>R1 cDNA</td>
</tr>
<tr>
<td>2</td>
<td>R1 polypeptide</td>
</tr>
<tr>
<td>3</td>
<td>R2 cDNA</td>
</tr>
<tr>
<td>4</td>
<td>R2 polypeptide</td>
</tr>
<tr>
<td>5</td>
<td>R3 cDNA</td>
</tr>
<tr>
<td>6</td>
<td>R3 polypeptide</td>
</tr>
<tr>
<td>7</td>
<td>R4 cDNA</td>
</tr>
<tr>
<td>8</td>
<td>R4 polypeptide</td>
</tr>
<tr>
<td>9</td>
<td>R7 cDNA</td>
</tr>
</tbody>
</table>

A sequence alignment of the 3rd through the 7th transmembrane (TM) regions of several human and feline bitter receptors is shown in FIG. 1. The sequence alignment illustrates the substantial degree of homology of this region in bitter taste receptors of the two species.

A sequence alignment of human TAS2R38 polypeptide (SEQ ID NO.: 31) and feline TAS2R38 polypeptide (SEQ ID NO.: 18) determined from sequencing genomic DNA of five individual cats is shown in FIG. 2. Amino acids in hTAS2R38 that differ from those in fTAS2R38 are boxed in FIG. 2. The positions of the human polymorphisms known to affect taste perception of 6-n-propylthiouracil (PROP), A49P, V262A, 1293V (where AVI is a non-taster and PAV is a taster) are shaded grey in FIG. 2. The residues known to be important for phenylthiocarbamide (PTC) binding to the human TAS2R38...
receptor are denoted in FIG. 2 by a thick black box (residues 99-100, 103, 255, and 259). These amino acids either directly bind PTC, contribute to the binding pocket, or are involved in receptor activation by associating with other amino acids.

TOPCONS was used to identify the seven transmembrane regions and the extracellular and cytoplasmic loops of each fTAS2R polypeptide. Results of this analysis are presented in Table 1.

Example 2

Expression Systems for Feline TAS2R

A. Generation of Expression Vectors for Feline TAS2R

This example describes generation of an expression vector for the representative feline bitter receptor, TAS2R38.

The full length gene of feline TAS2R38 was amplified by polymerase chain reaction (PCR) using gene-specific primers that span the entire coding region.

The TAS2R38 cDNA was subcloned into an expression cassette based on the plasmid expression vector pcDNA3.1D-V5His (Life Technologies, Carlsbad, Calif., US), which contains within its multiple cloning sites the nucleotide sequence coding for the FLAG epitope to allow surface detection of the receptor, then the first 45 amino acids of the rat somatostatin receptor subtype 3 (RSS tag) to facilitate cell surface targeting of the transgene, and the nucleotide sequence coding for the herpes simplex virus (HSV) glycoprotein D epitope (HSV epitope) for facilitating immunocytochemical detection (HSV Tag) on the carboxy terminus.

The nucleic acid sequences encoding FLAG, the RSS tag, TAS2R38, and the HSV tag are fused, in that order, in frame to create a construct to allow insertion into the receptor protein. The resulting receptor cDNA in the expression vector encodes the joined amino acid sequences of TAS2R38 proceeded by the RSS tag and followed by the HSV tag.

The expression vector including the construct is called pcDNA3.1D-FLAGV5His-TAS2R38 and allows for expression of the TAS2R38 protein (SEQ ID NO:18).

Generation of an expression vector for the other fTAS2Rs disclosed herein is analogous. The restriction enzymes used are adapted accordingly.

B. Generation of Cell Lines Transiently Expressing fTAS2R

Cell lines that transiently express a desired fTAS2R disclosed herein are generated by transfecting the appropriate expression vector, e.g., pcDNA3.1D-FLAGV5His-TAS2R38, constructed as described above in Ex. 2A into cells of a eukaryotic cell line (e.g., ATCC nCRL-11268 or Life Technologies, Carlsbad, Calif.)

On day 0, 60,000 cells per well are plated on poly lysine coated, black 96 well plates with clear bottoms (Costar). The following day the cells are transfected with 150 ng TAS2R38 expression vector, e.g., pcDNA3.1D-FLAGV5His (Invitrogen) along with 45 ng of Gctf6 chimera containing the last 44 amino acids of rat gustducin (Gctf6gust44) with 0.5 ul Lipofectamine 2000 (Invitrogen) per well. Cells are then incubated 22-44 hours at 37° C. 5% CO2.

The expression of fTAS2R38 is evaluated by testing for the presence of a functional response to a known hTAS2R38 ligand (e.g., PTC), determined via automated calcium imaging using a Fluo-4AM (Life Technologies Corporation) Calcium Assay. Fluo-4AM is a fluorescent indicator of intracellular calcium dynamics (change in concentration) and allows monitoring changes in the calcium concentration, particularly an increase in response to receptor activation occurring after agonist exposure.

Generation of cell lines transiently expressing the other fTAS2Rs disclosed herein is analogous.

Expression of the fTAS2Rs in the various cell lines generated is evaluated by flow cytometry. The extracellular FLAG tag was detected with a FLAG-specific antibody conjugated to fluorescein isothiocyanate (FITC). The percentage of cells expressing a given fTAS2R is determined by percent of cells positive for the FITC signal. The level of fTAS2R expression is determined by the geometric mean of the fluorescence intensity measured. The results for each of the expressed fTAS2R are shown in Table 7.

<table>
<thead>
<tr>
<th>fTAS2R</th>
<th>% of cells expressing fTAS2R</th>
<th>Relative fTAS2R Expression level (Geometric Mean of fluorescence intensity)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Untransfected cells</td>
<td>0</td>
<td>8,029</td>
</tr>
<tr>
<td>TAS2R1</td>
<td>38</td>
<td>231,625</td>
</tr>
<tr>
<td>TAS2R2</td>
<td>37</td>
<td>295,625</td>
</tr>
<tr>
<td>TAS2R3</td>
<td>24</td>
<td>201,000</td>
</tr>
<tr>
<td>TAS2R4</td>
<td>36</td>
<td>331,125</td>
</tr>
<tr>
<td>TAS2R7</td>
<td>27</td>
<td>144,375</td>
</tr>
<tr>
<td>TAS2R9</td>
<td>24</td>
<td>113,250</td>
</tr>
<tr>
<td>TAS2R10</td>
<td>30</td>
<td>298,500</td>
</tr>
<tr>
<td>TAS2R12</td>
<td>32</td>
<td>258,625</td>
</tr>
<tr>
<td>TAS2R38</td>
<td>31</td>
<td>268,750</td>
</tr>
<tr>
<td>TAS2R42</td>
<td>25</td>
<td>133,375</td>
</tr>
<tr>
<td>TAS2R43</td>
<td>24</td>
<td>246,375</td>
</tr>
<tr>
<td>TAS2R44</td>
<td>9</td>
<td>125,750</td>
</tr>
<tr>
<td>TAS2R67</td>
<td>12</td>
<td>118,000</td>
</tr>
</tbody>
</table>

Testing for a functional response of fTAS2R38 to the known hTAS2R38 ligands, PTC and PROP, and of fTAS2R43 to the known hTAS2R43 ligands, aloin, denatonium and saccharin), was determined via automated calcium imaging using the Fluo-4AM (Life Technologies Corporation) Calcium Assay.

The fTAS2R38 was activated 81% over baseline by 100 µM PTC, but was not stimulated by 30 µM PROP. The fTAS2R43 was activated 45% over baseline by 300 µM aloin, and 17% over baseline by 1 mM denatonium, but was not stimulated by 6.7 mM saccharin. Furthermore, the responses to PTC, denatonium and aloin were inhibited by 1 mM probenecid.

Testing for a functional response of each of the other fTAS2Rs disclosed herein is performed by analogous methods using known ligands to a corresponding homolog of each fTAS2R.

C. Generation of Cell Lines Stably Expressing fTAS2R

Cell lines stably expressing fTAS2R are also obtained.

For these experiments, the fTAS2R38 cDNA is subcloned into an expression cassette based on the plasmid expression vector pcDNA3.1Zeo (Life Technologies, Carlsbad, Calif., US), which contains within its multiple cloning sites the nucleotide sequence coding for the first 45 amino acids of the rat somatostatin receptor subtype 3 (RSS tag) to facilitate cell surface targeting of the transgene, and the nucleotide sequence coding for the herpes simplex virus (HSV) glycoprotein D epitope (HSV epitope) for facilitating immunocytochemical detection (HSV Tag).
The nucleic acid sequences encoding the RSS tag, TAS2R38, and the HSV tag are fused, in that order, in frame to create a construct to allow translation into the receptor protein. The resulting receptor cDNA in the expression vector encodes the joined amino acid sequences of TAS2R38 preceded by the RSS tag and followed by the HSV tag.

In a variation, the nucleic acid sequences encoding the RSS tag, HSV tag, and ITAS2R38 are fused, in that order, in frame to create a construct to allow translation into the receptor protein. The resulting receptor cDNA in the expression vector encodes the joined amino acid sequences of ITAS2R38 preceded by the RSS tag and the HSV tag.

The expression vector including the construct encoding the RSS tag, HSV tag, and ITAS2R38 in that order is called pDNA3.1-Zeo-TAS2R38 and allows for expression of the ITAS2R38 protein (SEQ ID:18).

An alternative expression vector for the other ITAS2Rs disclosed herein is analogous. The restriction enzymes used are adapted accordingly.

Cell lines that stably express a desired ITAS2R disclosed herein are generated by transfecting the appropriate expression vector, e.g., pDNA3.1-Zeo-TAS2R38, constructed as described above into an endo karyotic host cell line (Life Technologies Cat# R7000-07) transformed with the Gtx16 chimera containing the last 44 amino acids of rat gustducin, Gtx16-gustducin 44 cells, formed as described in WO2004/055048.

On day 0, the Gtx16-gustducin 44 cells are plated in a 6-well plate at a density of 900,000 cells per well and grown overnight in a selective growth media (DMEM with 10% (v/v) heat-inactivated fetal bovine serum, 2 mM L-glutamine, 100 units/ml penicillin, 100 μg/ml streptomycin).

On day 1, the medium is exchanged with 2 ml of antibiotic-free and serum-free growth medium. 10 μL of Lipofectamine 2000 (Life Technologies Corporation) is dissolved in 250 μL of DMEM and incubated for 5 minutes at room temperature. In parallel, 4 μg of pDNA3.1-Zeo-TAS2R38 DNA is dissolved in 250 μL of DMEM. These two resulting solutions are mixed and incubated for 20 minutes at room temperature before they are added to the cells in the cell culture medium. After 4 hours, the medium is replaced with antibiotic-free, serum-containing growth medium. The cells are incubated in humidified atmosphere (37°C, 5% CO2).

After 24 hours, the cells are re-plated in selective growth medium (DMEM with 10% (v/v) heat-inactivated fetal bovine serum, 2 mM L-glutamine, 100 units/ml penicillin, 100 μg/ml streptomycin, 200 μg/ml G418 and 200 μg/ml zeocin) and are further incubated in a humidified atmosphere (37°C, 5% CO2).

After 2 to 4 weeks of culture (replacing medium as necessary), zeocin-resistant colonies are selected and expanded.

The expression of ITAS2R38 is evaluated by testing for the presence of a functional response to a known hTAS2R38 ligand (e.g., PTC and PROP), determined via automated calcium imaging using the Fluo-4AM (Life Technologies Corporation) Calcium Assay. Fluo-4AM is a fluorescein indicator of intracellular calcium dynamics (change in concentration) and allows monitoring changes in the calcium concentration, particularly an increase in response to receptor activation occurring after agonist exposure. One clone is selected resulting in the Gtx16-gustducin 44/TAS2R38 cell line. The Gtx16-gustducin 44/TAS2R38 cell line was activated 90% over baseline in the presence of 100 μM PTC but was not activated with 30 μM PROP.

Generation of cell lines stably expressing the other ITAS2Rs disclosed herein is analogous.

Identification of agonists, antagonists and modulators of feline TAS2R38 receptor is performed by a cell-based screening assay in which the effect of a test compound on cells transfected with feline TAS2R38 and Gtx16-gustducin is compared against the effect of the test compound on untransfected cells.

Prior to the screening assay, the cells are loaded with the calcium sensitive dye Fluo-4AM (Life Technologies) for one hour at 37°C as described in Example 2B. The dye is washed out and the cells are assayed in Hank's Balanced Salt Solution (HBSS, Life Technologies) containing 20 mM HEPES in a Flexstation II (Molecular Devices). A 10 fold dilution series of 0.01 mM-1 mM of test compounds is used to stimulate the cells. PTC, a known human TAS2R38 agonist, is among the test compounds.

The stimuli are injected and monitored for 100-180 seconds. Data are analyzed and graphed as a percentage over the baseline signal, which is the reading prior to stimulation. Stimulation of the TAS2R38 expressing cell line by a particular test compound is considered to occur when the signal is greater than both the signal from the buffer alone in the receptor expressing cell line and the signal from the untransfected cell line sample injected with the test compound.

Cell based screening for agonists, antagonists, and modulators of the other ITAS2Rs disclosed herein is analogous.

The terms “a” and “an” do not denote a limitation of quantity, but rather denote the presence of at least one of the referenced item. The term “or” means “and/or.” The terms “comprising”, “having”, “including”, and “containing” are to be construed as open-ended terms (i.e., meaning “including, but not limited to”). The modifier “about” used in connection with a quantity is inclusive of the stated value and has the meaning dictated by the context (e.g., includes the degree of error associated with measurement of the particular quantity).

Recitation of ranges of values are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein. The endpoints of all ranges are included within the range and independently combinable.

Unless defined otherwise, technical and scientific terms used herein have the same meaning as is commonly understood by one of skill in the art to which this invention belongs.

All references are incorporated by reference herein.

Embodiments of this invention are described herein, including the best mode known to the inventors for carrying out the invention. Variations of these embodiments may become apparent to those of ordinary skill in the art upon reading the foregoing description. The inventors expect skilled artisans to employ such variations as appropriate, and the inventors intend for the invention to be practiced otherwise than as specifically described herein. Accordingly, this invention includes all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law. Moreover, any combination of the above-described elements in all possible variations thereof is encompassed by the invention unless otherwise indicated herein or otherwise clearly contradicted by context.
<160> NUMBER OF SEQ ID NOS: 31
<210> SEQ ID NO 1
<211> LENGTH: 897
<212> TYPE: DNA
<213> ORGANISM: Felis catus
</213>
<400> SEQUENCE: 1

atgctgaact ttatcctcttatctcattttttcttctcag ttataataagt tctctcagga 60
gttttagcag aagcagcagt ttgtgaacttt gaatggcacttt gaagcagcagt 120
atggtctcct ttgatctctct ttcttctctct ttgatctcttt ggaattgaaaag 180
tttatcttct tctttccttt tctttccttt tctttccttt tctttccttt 240
aatattccttt ctcttttcttt tcttttcttt tcttttcttt tcttttcttt 300
gttctctccttt aatgcaaaat ctcatcctctc tcttcttcttt ctcctttcttt 360
aggtatatccttt ctcttttcttt ctcctttcttt ctcctttcttt ctcctttcttt 420
ttttttttcttt cacttttcttt cacttttcttt cacttttcttt cacttttcttt 480
tctctctctct tctttctttct tctttctttct tctttctttct tctttctttct 540
agtattttcttt tcgcttcttt tcgctttcttt tcgctttcttt tcgctttcttt 600
gggagacgtt ctcggcacttt gagaacacttt ctcggcacttt gagaacacttt 660
gttctctcttt ctcgctttcttt tcgctttcttt tcgctttcttt tcgctttcttt 720
atgatgcttt tgtttctttct tgtttctttct tgtttctttct tgtttctttct 780
tgtctttttct tgtgtgctttctc ttcgctttctc tcagctttctc ttcgctttctc 840
cgtaacatc aacagaaatgc acaagaaatgc acaagaaatgc acaagaaatgc 897

<160> NUMBER OF SEQ ID NOS: 31
<210> SEQ ID NO 2
<211> LENGTH: 298
<212> TYPE: PRO
<213> ORGANISM: Felis catus
</213>
<400> SEQUENCE: 2

Met Leu Asp Phe Tyr Leu Ile Ile His Phe Leu Leu Pro Val Ile Gin 1 5 10 15
Cys Leu Ile Gly Val Leu Ala Asn Gly Ile Ile Val Ile Val Asn Gly 20 25 30
Thr Glu Leu Ile Lys Gin Arg Arg Val Met Pro Leu Asp Leu Leu Leu 35 40 45
Ser Cys Leu Ala Ile Ser Arg Ile Cys Leu Gin Ser Phe Ile Phe Tyr 50 55 60
Ile Asn Leu Val Leu Ser Leu Ile Asp Phe Leu Pro Leu Val Lys 65 70 75 80
Asn Phe Ala Val Phe Met Phe Val Asn Glu Thr Gly Leu Trp Leu Ala 85 90 95
Thr Trp Leu Gly Val Phe Tyr Cys Ala Lys Ile Ser Pro Ile Ala His 100 105 110
Pro Leu Phe Phe Trp Leu Lys Arg Arg Ile Ser Lys Leu Val Pro Trp 115 120 125
Leu Ile Ile Gly Ser Leu Leu Phe Ala Ser Ile Pro Leu Val Phe Tyr 130 135 140
Ser Lys His Thr Trp Val Leu Ser Gin Glu Val Leu Leu Arg Leu Phe 145 150 155 160
Ser Pro Asn Ala Thr Gin Lys Gin Thr Ser Ala Leu Gin Ile
-continued

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>165</td>
<td>170</td>
<td>175</td>
<td></td>
</tr>
</tbody>
</table>

Val Phe Leu Ala Arg Phe Ser Pro Pro Phe Ile Phe Leu Thr Ser
180 185 190

Thr Leu Leu Leu Val Phe Ser Leu Gly Arg His Thr Trp Gln Met Arg
195 200 205

Asn Thr Ala Thr Gly Thr Arg Asp Gly Ser Thr Gly Val His Val Ser
210 215 220

 Ala Leu Leu Ser Ile Leu Ser Phe Leu Val Leu Tyr Leu Ser His Tyr
225 230 235 240

Met Thr Ala Ala Leu Leu Ser His Ile Phe Glu Leu Arg Ser Phe
245 250 255

Met Phe Leu Phe Cys Ile Leu Val Phe Gly Ser Tyr Pro Ser Gly His
260 265 270

Ser Ile Ile Leu Ile Ser Gly Asn Arg Lys Leu Lys Gin Asn Ala Lys
275 280 285

Lys Phe Leu Leu His Gly Gin Cys Cys Gin
290 295

<210> SEQ ID NO 3
<211> LENGTH: 515
<212> TYPE: DNA
<213> ORGANISM: Felis catus

<400> SEQUENCE: 3

atggcctct ctctgctac gattctccta ctatcctcta tgtagcaga attatcaca 60

ggtagttac cgctattgatt ctctgaaac atcgacgta acagattgtt caaaagcaga 120

aagcataaac caaacacag cctttgtgata tgtatagaga tatacagatt tgggactggt 180

atgttgtaa ttttcttcct gttttcctcc cactctttta tagggtaaaa 240

atttattggt catcctaatgt gttttttgag gttttttttta gttttttgtgatc 300

gcctctgctc ttcttgctgt ttattttggc acatctctcgt ctccttttcc atctatattt 360

ccttgggct ctaggttagt cttaacagtt catgttggc gccgtggggg gagcaggttgct 420

gcctctttg gcctcttctg ttttggtgg ggtttggg ttcctcattattttttta catttttt 480

aatgtttt ccagattgag atacagcgtg tgggagag ggtttggtttg ttttgtttttttt 540

ggatgtgcttc tctgtggctc ggtttgagg ttttttcttc cttttttttttttttttttt 600

ttttataag ccaagcagct ctattgcttct ttttcttctctc ctcctcctcctctct 660

ggatgtgcttc tctgtggctc ggtttgagg ttttttcttc cttttttttttttttttttt 720

ttttataag ccaagcagct ctattgcttct ttttcttctctc ctcctcctcctctct 780

ggatgtgcttc tctgtggctc ggtttgagg ttttttcttc cttttttttttttttttttt 840

ggatgtgcttc tctgtggctc ggtttgagg ttttttcttc cttttttttttttttttttt 900

aaagacatc atagtaaa 915

<210> SEQ ID NO 4
<211> LENGTH: 304
<212> TYPE: PRT
<213> ORGANISM: Felis catus

<400> SEQUENCE: 4

Met Ala Ser Ser Leu Ser Ala Ile Pro His Leu Ile Ile Met Ser Ala
1 5 10 15

Glu Phe Ile Thr Gly Ile Thr Val Asn Gly Phe Leu Val Ile Ile Asn
20 25 30
Gly Lys Glu Leu Ile Lys Ser Arg Lys Leu Thr Pro Met Gln Leu Leu
 35 40 45
Cys Ile Cys Ile Gly Ile Ser Arg Phe Gly Leu Met Val Leu Met
 50 55 60
Val Gln Ser Phe Phe Ser Val Phe Pro Leu Phe Tyr Arg Val Lys
 65 70 75 80
Ile Tyr Gly Ala Ser Met Leu Phe Phe Trp Met Phe Ser Ser Val
 85 90 95
Ser Leu Trp Phe Ala Thr Cys Leu Ser Val Phe Tyr Cys Leu Lys Ile
 100 105 110
Ser Gly Phe Thr Glu Ser Tyr Phe Leu Trp Leu Lys Phe Arg Ile Ser
 115 120 125
Lys Leu Met Pro Trp Leu Leu Leu Gly Ser Leu Leu Ala Ser Met Ser
 130 135 140
Ile Ala Ala Val Ser Leu Asp Val Gly Tyr Pro Lys Asn Met Asn Ann
 145 150 155 160
Asn Asp Phe Leu Lys Ann Ala Thr Leu Lys Thr Glu Leu Lys Ile
 165 170 175
Gly Pro Ile Ann Gly Val Leu Val Ann Leu Ala Leu Leu Phe Pro
 180 185 190
Leu Ala Ile Phe Val Met Cys Thr Phe Met Leu Phe Ile Ser Leu Tyr
 195 200 205
Arg His Thr His Arg Met Gln Ann Arg Ser His Gly Val Arg Ann Ala
 210 215 220
Ser Thr Glu Ala His Ile Ann Ala Leu Lys Thr Val Ile Thr Phe Phe
 225 230 235 240
Cys Phe Phe Ile Ser Tyr Phe Ala Phe Met Ala Ann Met Thr Phe
 245 250 255
Ser Ile Pro Tyr Gly Ser Gln Cys Phe Phe Val Val Lys Asp Ile Met
 260 265 270
Ala Ala Phe Pro Ser Gly His Ser Val Ile Ile Leu Ann Ann Ser
 275 280 285
Lys Phe Gln Gln Pro Phe Arg Arg Leu Leu Cys Leu Lys Lys Ann Gln
 290 295 300

<210> SEQ ID NO 5
<211> LENGTH: 951
<212> TYPE: DNA
<213> ORGANISM: Felis catus

<400> SEQUENCE: 5
atgctagggc tocacaagtg ggtgcttctg gtctgtctcg caactcagtt cattctgggg
 1 2 3 4 5 6
atgctggagga atgttctcat agtggtgtgc aagtgcsca gttggtttaa gataagaca
 12 13 14 15 16 17
atctcttctgt gtcaacctac atgctcactct cgagactgct tccgtgctgg
 18 19 20 21 22 23
atctctgg tggtaggttg ctattatggct tccttctca aaptgcatg tgaagggata
 24 25 26 27 28 29
ataatgcaaa tattgtat ttttgaggca tttacaasacc acotgacacat tgggcttgc
 30 31 32 33 34 35
acotgctcata ggcacctcctct ccgcctctaa atgcggactgt tcttctca accaattaattctg
 36 37 38 39 40 41
atggtcagc aagcaggttc caggagtgtc gtacagatga tttgggtgc caggtgttta
 42 43 44 45 46 47
tcggtgacc atgcctctgtc tctatctaatc gattctgg gcattcctgct cctttggatgt
 48 49 50 51 52 53
atcctatatc ggaagagtc caggagtgtc gcctgagatga tttgggtgc caggtgttta
 54 55 56 57 58 59
atcctatattc ggttagtctgc tggctgactgt cggcctgttct cgtttctgct cctttggatgt
 60
<table>
<thead>
<tr>
<th>Sequence</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>tttctgctca tcgtctctct ccggagcacc acgcagcggga tggagcaaag ccggagcacc</td>
<td>660</td>
</tr>
<tr>
<td>tcgaggactc caagctcttg aagcagcacc acgcagcggga tggagcaaag ccggagcacc</td>
<td>720</td>
</tr>
<tr>
<td>tcggattc cctggtattc tcctctctct ctctctctct ctctctctct</td>
<td>780</td>
</tr>
<tr>
<td>gctctggact tggagtcatg aatgtagaag cctactctct ctctctctct ctctctctct</td>
<td>840</td>
</tr>
<tr>
<td>ccgattcatc ccattctctct ccggagcacc acgcagcggga tggagcaaag ccggagcacc</td>
<td>900</td>
</tr>
<tr>
<td>gctctggact tggagtcatg aatgtagaag cctactctct ctctctctct ctctctctct</td>
<td>960</td>
</tr>
</tbody>
</table>
<210> SEQ ID NO 7
<211> LENGTH: 921
<212> TYPE: DNA
<213> ORGANISM: Felis catus

<400> SEQUENCE: 7

atgcatacag tacctctcttt atctgctcct acgctgtcag cgtatgtttg aaatcaggg
 60
cggtgctgaa atctgttttt cggctgtcag gttggtcag accggctact tctgctgtct
 120
cctctctctt cagctgtcag cgtatgtttg attcattcttc tctctctctt tctctctct
 180
cggctgtctt cagctgtcag cgtatgtttg attcattcttc atgcatacag

<210> SEQ ID NO 8
<211> LENGTH: 306
<212> TYPE: PRT
<213> ORGANISM: Felis catus

<400> SEQUENCE: 8

Met His Gln Ile Leu Phe Leu Ser Ala Leu Thr Val Ser Ala Ile Leu
1 5 10 15
Aen Phe Val Gln Ile Lea Val Val Val Val Aen Tyr
20 25 30
Arg Thr Trp Val Gln Ser His Arg Ile Ser Ser Ser Aen Arg Ile Leu
35 40 45
Phe Ser Leu Gly Val Thr Arg Phe Ile Met Leu Gly Leu Phe Leu Leu
50 55 60
Aen Ile Ile Tyr Leu Phe Thr Ser Pro His Val Glu Arg Ser Val His
65 70 75 80
Leu Ser Thr Phe Phe Leu Leu Cys Trp Met Phe Leu Glu Ser Thr Ser
85 90 95
Leu Trp Leu Val Thr Leu Aen Ala Leu Tyr Cys Val Lys Ile Thr
100 105 110
Asp Phe Gln His Ser Val Phe Leu Leu Lys Arg Lys Leu Ser Pro
115 120 125
Lys Ile Pro Arg Leu Leu Ala Cys Val Leu Ile Ser Ala Phe Ser
130 135 140
Thr Leu Leu Tyr Val Val Leu Thr Gln Thr Ser Pro Phe Pro Glu Leu
145 150 155 160
<table>
<thead>
<tr>
<th>Position</th>
<th>Amino Acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>165</td>
<td>Leu</td>
</tr>
<tr>
<td>170</td>
<td>Thr</td>
</tr>
<tr>
<td>175</td>
<td>Gly</td>
</tr>
<tr>
<td>180</td>
<td>Ser</td>
</tr>
<tr>
<td>185</td>
<td>Leu</td>
</tr>
<tr>
<td>190</td>
<td>Ser</td>
</tr>
<tr>
<td>195</td>
<td>Val</td>
</tr>
<tr>
<td>200</td>
<td>Thr</td>
</tr>
<tr>
<td>205</td>
<td>Val</td>
</tr>
<tr>
<td>210</td>
<td>Gln</td>
</tr>
<tr>
<td>215</td>
<td>Lys</td>
</tr>
<tr>
<td>220</td>
<td>Ala</td>
</tr>
<tr>
<td>225</td>
<td>Met</td>
</tr>
<tr>
<td>230</td>
<td>Pro</td>
</tr>
<tr>
<td>235</td>
<td>Thr</td>
</tr>
<tr>
<td>240</td>
<td>Ser</td>
</tr>
<tr>
<td>245</td>
<td>Leu</td>
</tr>
<tr>
<td>250</td>
<td>Pro</td>
</tr>
<tr>
<td>255</td>
<td>Tyr</td>
</tr>
<tr>
<td>260</td>
<td>Met</td>
</tr>
<tr>
<td>265</td>
<td>Thr</td>
</tr>
<tr>
<td>270</td>
<td>Leu</td>
</tr>
<tr>
<td>275</td>
<td>Pro</td>
</tr>
<tr>
<td>280</td>
<td>Thr</td>
</tr>
<tr>
<td>285</td>
<td>Ser</td>
</tr>
<tr>
<td>290</td>
<td>Ala</td>
</tr>
<tr>
<td>295</td>
<td>Lys</td>
</tr>
<tr>
<td>300</td>
<td>Leu</td>
</tr>
</tbody>
</table>

Sequence 1:
```
<210> SEQ ID NO 9
<211> LENGTH: 936
<212> TYPE: DNA
<213> ORGANISM: Felis catus

<400> SEQUENCE:
```
```
atgctggata aagtggagag ctgctacgag cttgagaatt
atgggagag ctgctacgag cttgagaatt
atgggagag ctgctacgag cttgagaatt
```
```
<210> SEQ ID NO 10
<211> LENGTH: 311
<212> TYPE: PGT
<213> ORGANISM: Felis catus

<400> SEQUENCE:
```
```
```
Met Leu Asp Lys Val Glu Ser Thr Leu Met Leu Ile Ala Ala Gly Glu
1 5 10 15
Phe Ala Met Gly Ile Leu Gly Asn Ala Phe Ile Gly Leu Val Asn Cys
20 25 30
Met Asn Trp Ile Lys Asn Arg Lys Ala Ser Ile Asp Leu Ile Leu
35 40 45
Thr Ser Leu Ala Ile Ser Arg Ile Cys Leu Leu Cys Ile Ile Leu Leu
50 55 60
Asp Tyr Phe Ile Leu Gly Leu Tyr Pro Asp Val Tyr Thr Gly Lys
65 70 75 80
Lys Met Arg Ile Ile Asp Phe Phe Trp Thr Leu Thr Asn His Leu Asn
85 90 95
Val Trp Phe Ala Thr Cys Leu Ser Val Phe Tyr Phe Leu Lys Ile Ala
100 105 110
Asn Phe Phe His Pro Leu Phe Leu Trp Met Lys Trp Lys Ile Asp Ser
115 120 125
Ala Ile Pro Arg Ile Leu Leu Gly Cys Leu Ala Phe Ser Val Phe Ile
130 135 140
Ser Leu Val Val Ser Glu Asn Leu Asn Asp Phe Arg Ser Cys Val
145 150 155 160
Lys Val Lys Lys Thr Asn Ile Thr Val Lys Cys Arg Val Asn Lys
165 170 175
Ala Gln Tyr Ala Ser Val Lys Ile Cys Leu Asn Leu Leu Thr Leu Phe
180 185 190
Pro Phe Ser Val Ser Val Ile Ser Phe Leu Leu Leu Leu Ser Leu
195 200 205
Trp Arg His Thr Arg Gln Met Lys Ile Ser Ala Thr Gly Cys Arg Asp
210 215 220
Pro Ser Ile Glu Ala His Val Gly Ala Met Lys Ala Val Ile Ser Phe
225 230 235 240
Leu Leu Leu Phe Ile Ala Tyr Tyr Leu Ala Phe Leu Val Ala Thr Ser
245 250 255
Ser Tyr Phe Met Pro Glu Thr Glu Leu Ala Val Met Ile Gly Glu Leu
260 265 270
Ile Ala Leu Ile Tyr Pro Ser His Ser Leu Ile Leu Ile Leu Gly Asn
275 280 285
Asn Lys Leu Arg Gln Ala Ser Leu Arg Val Leu Trp Lys Val Lys Cys
290 295 300
Ile Leu Lys Arg Arg Asn His
305 310

<210> SEQ ID NO 11
<211> LENGTH: 1014
<212> TYPE: DNA
<213> ORGANISM: Felis catus
<400> SEQUENCE: 11
atgccaagtg cagttgaggt aataatatg gtcttgatgg ctgtttgaatt gactatagga 60
atcggagaa atggatttat tggagtctgg aatctggactg gtgtgttcca aagggagat 120
agctctggt ttgacatca cctttggtag tggccactt ccagatactg tgggtgtgtg 180
gttgtatcg cagagggtg tggctctgtg cttcttccac atgggtatgc tcgaatagag 240
aataatcaa cctttggtac ttcttggtaca ctagccacc atccaaagtt cttgtgttac 300
gtggctctca gcattttota cttgctga ctagccaaca tatccaccgg gtagttctcc 360
<table>
<thead>
<tr>
<th>Met</th>
<th>Pro</th>
<th>Ser</th>
<th>Ala</th>
<th>Val</th>
<th>Glu</th>
<th>Val</th>
<th>Ile</th>
<th>Ala</th>
<th>Gly</th>
<th>Glu</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>Thr</td>
<td>Ile</td>
<td>Gly</td>
<td>Ile</td>
<td>Trp</td>
<td>Gly</td>
<td>Asn</td>
<td>Gly</td>
<td>Phe</td>
<td>Ile</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Thr</td>
<td>Gly</td>
<td>Trp</td>
<td>Leu</td>
<td>Gln</td>
<td>Arg</td>
<td>Arg</td>
<td>Asp</td>
<td>Ser</td>
<td>Ser</td>
<td>Val</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>35</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>40</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>45</td>
<td>45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Val</td>
<td>Ser</td>
<td>Leu</td>
<td>Ala</td>
<td>Ile</td>
<td>Ser</td>
<td>Arg</td>
<td>Ile</td>
<td>Cys</td>
<td>Val</td>
<td>Leu</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Glu</td>
<td>Phe</td>
<td>Val</td>
<td>Leu</td>
<td>Val</td>
<td>Leu</td>
<td>Leu</td>
<td>Ser</td>
<td>Pro</td>
<td>His</td>
<td>Ala</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>65</td>
<td>65</td>
<td></td>
<td></td>
<td></td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Thr</td>
<td>Ile</td>
<td>Ann</td>
<td>Thr</td>
<td>Leu</td>
<td>Asp</td>
<td>Ala</td>
<td>Phe</td>
<td>Trp</td>
<td>Thr</td>
<td>Leu</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>85</td>
<td>85</td>
<td></td>
<td></td>
<td></td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>95</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Val</td>
<td>Trp</td>
<td>Phe</td>
<td>Thr</td>
<td>Ala</td>
<td>Cys</td>
<td>Leu</td>
<td>Ser</td>
<td>Ile</td>
<td>Phe</td>
<td>Tyr</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>105</td>
<td>105</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>110</td>
<td>110</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Ann</td>
<td>Ile</td>
<td>Ser</td>
<td>His</td>
<td>Pro</td>
<td>Val</td>
<td>Phe</td>
<td>Leu</td>
<td>Trp</td>
<td>Leu</td>
<td>Lys</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>115</td>
<td>115</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>120</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>125</td>
<td>125</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Val</td>
<td>Val</td>
<td>Leu</td>
<td>Gly</td>
<td>Leu</td>
<td>Phe</td>
<td>Leu</td>
<td>Ala</td>
<td>Ser</td>
<td>Phe</td>
<td>Leu</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>130</td>
<td>130</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>135</td>
<td>135</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Ser</td>
<td>Val</td>
<td>Phe</td>
<td>Leu</td>
<td>Lys</td>
<td>Glu</td>
<td>Gly</td>
<td>Ser</td>
<td>Trp</td>
<td>Gly</td>
<td>His</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>145</td>
<td>145</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>155</td>
<td>155</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>160</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Glu</td>
<td>Glu</td>
<td>Ann</td>
<td>Thr</td>
<td>Trp</td>
<td>Glu</td>
<td>Phe</td>
<td>Arg</td>
<td>Val</td>
<td>Ser</td>
<td>Lys</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>165</td>
<td>165</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>170</td>
<td>170</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>175</td>
<td>175</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Phe</td>
<td>Lys</td>
<td>Leu</td>
<td>Ile</td>
<td>Leu</td>
<td>Ann</td>
<td>Leu</td>
<td>Gly</td>
<td>Ala</td>
<td>Leu</td>
<td>Val</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>180</td>
<td>180</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>185</td>
<td>185</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>190</td>
<td>190</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Cys</td>
<td>Leu</td>
<td>Ile</td>
<td>Ser</td>
<td>Phe</td>
<td>Val</td>
<td>Leu</td>
<td>Leu</td>
<td>Phe</td>
<td>Ser</td>
<td>Phe</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>195</td>
<td>195</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>205</td>
<td>205</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Lys</td>
<td>Gln</td>
<td>Met</td>
<td>Gln</td>
<td>Leu</td>
<td>Tyr</td>
<td>Ala</td>
<td>Thr</td>
<td>Gly</td>
<td>Ser</td>
<td>Arg</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>210</td>
<td>210</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>215</td>
<td>215</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>220</td>
<td>220</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Ala</td>
<td>His</td>
<td>Met</td>
<td>Arg</td>
<td>Ala</td>
<td>Ile</td>
<td>Lys</td>
<td>Ala</td>
<td>Val</td>
<td>Thr</td>
<td>Ile</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>225</td>
<td>225</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>230</td>
<td>230</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>235</td>
<td>235</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>240</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>245</td>
<td>245</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>250</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

SEQ ID NO: 12
LENGTH: 337
ORGANISM: Felis catus
US 9,169,311 B2

-continued

Pro Gln Gly Arg Val Val Leu Met Phe Gly Gly Ile Val Thr Val Ile
260 265 270
Phe Pro Ser Ser His Ser Phe Ile Leu Ile Met Gly Aen Ser Lys Leu
275 280 285
Arg Glu Ala Phe Leu Lys Val Leu Arg Cys Val Lys Gly Phe His Lys
290 295 300
Arg Arg Lys Pro Leu Val Pro Gln Arg Ile Leu Asn Thr Gly Arg Lys
305 310 315 320
Lys Ser Thr Lys Asp Cys Leu Pro Ser Pro Arg Gly Leu His Ser Phe
325 330 335

Ala

53

<210> SEQ ID NO 13
<211> LENGTH: 903
<212> TYPE: DNA
<213> ORGANISM: Felis catus

<400> SEQUENCE: 13
atgtaagca tagtgaag ccccttcatt tttatatcag ttgatgaaat agtactgggg 60
gtttagagga atggatatt ttgcatatga acctgttagc acctgtgaa gactaatgaag 120
tttttctaga ttggtgctat ccagccgggc atgtcatctc cccagaattaag tttgatatag 180
atagtaaagg cagagtcttt tattatatata ctatctctct ctcctctctag 240
taatgatt atattagttt cttatgccag aattatccag ttcctctctc 300
acgaccctca gcacctcctt cttctcctag atgcctctct ctcctctctc 360
tggatgagga ctgacctctt tttttctatg tctctctctt gttgatattg 420
tggctcttta cttctctcttt atctctctctt acctctctctt 480
aacgcaacct ggcatcctcag caggtatcat tacattcttc catctctctct 540
acatagatgas ctctctctct cttctctcttt cttctctcttt cttctctcttt 600
tcctcctctc gaccacagag cccgctctcag tttacttcttc ctttctttcttc 660
acgagagagc atgagagagc atgagagagc atgagagagc atgagagagc 720
ccttttacag ccagccgcta gttccgcttt ccttttacag ccagccgcta gttccgcttt 780
tttatgtgg cagccgcttt ccttttacag ccagccgcta gttccgcttt ccttttacag 840
tccttcgagac ccagctctct ctgagctctct ctgagctctct ctgagctctct 900
ta 903

54

<210> SEQ ID NO 14
<211> LENGTH: 300
<212> TYPE: PRT
<213> ORGANISM: Felis catus

<400> SEQUENCE: 14
Met Leu Ser Ile Val Glu Gly Leu Leu Ile Phe Ile Ala Val Ser Glu
1 5 10 15
Ser Val Leu Gly Val Leu Gly Aen Gly Phe Ile Gly Leu Val Asn Cys
20 25 30
Met Asp Cys Val Lys Asn Lys Gly Phe Ser Met Ile Gly Phe Ile Phe
35 40 45
Thr Gly Leu Ala Thr Ser Arg Ile Cys Leu Ile Leu Ile Val Met Ala
50 55 60
Asp Gly Phe Ile Lys Ile Phe Ser Pro Asp Met Tyr Ser Ser Gly His
65 70 75 80
Leu Ile Asp Tyr Ile Ser Tyr Leu Trp Ile Ile Asn Gln Ser Asn 85 90 95
Ile Trp Phe Ala Thr Ser Leu Ser Thr Phe Tyr Phe Leu Lys Ile Ala 100 105 110
Asn Phe Ser His His Met Phe Leu Trp Leu Lys Gly Arg Ile Asn Trp 115 120 125
Val Leu Pro Leu Leu Met Gly Ser Leu Phe Ile Ser Trp Leu Phe Thr 130 135 140
Phe Pro Gln Ile Val Lys Ile Leu Ser Asp Ser Lys Val Gly Asn Gly 145 150 155 160
Asn Ala Thr Trp Gln Leu Amn Met Pro Lys Ser Glu Phe Leu Thr Lys 165 170 175
Gln Ile Leu Val Asn Ile Gly Val Leu Leu Phe Thr Leu Phe Leu 180 185 190
Ile Thr Cys Phe Leu Leu Ile Ile Ser Leu Trp Arg His Ser Arg Arg 195 200 205
Met Gln Leu Asn Val Thr Gly Phe Gln Asp Pro Ser Thr Glu Ala His 210 215 220
Met Lys Ala Met Lys Val Leu Ile Ser Phe Ile Ile Leu Phe Ile Leu 225 230 235 240
His Phe Ile Gly Leu Ala Ile Gln Ile Ala Cys Phe Thr Met Pro Glu 245 250 255
Lys Lys Leu Leu Phe Ile Phe Gly Met Thr Thr Thr Val Leu Tyr Pro 260 265 270
Trp Gly His Ser Phe Ile Leu Ile Leu Gly Asn Ser Lys Leu Lys Gln 275 280 285
Ala Ser Leu Arg Ala Leu Gln Gln Val Lys Cys Cys 290 295 300

<210> SEQ ID NO 15
<211> LENGTH: 930
<212> TYPE: DNA
<213> ORGANISM: Felis catus

<400> SEQUENCE: 15
atggcaagcg tattgaagaa tggatttact atactgtttg ctgggaatatt ctaatggygg 85
atatttggga atgttatctact tatattgtt aactgtgatt actgtatcag gaactggaa 90
ccagaatt atggtgtaa atcttgatc atctctctct 120
ttttctttgg taccataa atctgtctat gagaattt
US 9,169,311 B2

-continued

attttatgga ccagcacsatt gaaacaggtct tcctctctgtg tcctgagaat gccgaagtgc 900
cgtcactcata ggaaccccac acgccctaa 930

210> SEQ ID NO 16
211> LENGTH: 1095
212> TYPE: PRT
213> ORGANISM: Felis catus

<html>
</html>

240> SEQ ID NO 17
241> LENGTH: 1095
242> TYPE: DNA
243> ORGANISM: Felis catus

<html>
</html>

</html>
atgttgcttctaactctgcttcatctatagcttcagaagggtcattctatgcttcagatcttctgcctcaattttgcctttttttgccttttctgccctttttctgttctttctgccttttttttccttttttttttttctt
<table>
<thead>
<tr>
<th>Ser</th>
<th>Phe</th>
<th>Ile</th>
<th>Phe</th>
<th>Cys</th>
<th>Thr</th>
<th>Leu</th>
<th>Ala</th>
<th>Ser</th>
<th>Ile</th>
<th>Pro</th>
<th>Ser</th>
<th>Leu</th>
<th>Leu</th>
<th>Phe</th>
<th>Phe</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>Ile</td>
<td>Ser</td>
<td>Ser</td>
<td>Gly</td>
<td>Val</td>
<td>Leu</td>
<td>Ile</td>
<td>Val</td>
<td>Ser</td>
<td>Leu</td>
<td>Gly</td>
<td>Arg</td>
<td>His</td>
<td>Met</td>
<td>Arg</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Thr</td>
<td>Met</td>
<td>Arg</td>
<td>Ala</td>
<td>Lys</td>
<td>Thr</td>
<td>Lys</td>
<td>Asp</td>
<td>Ser</td>
<td>His</td>
<td>Asp</td>
<td>Pro</td>
<td>Ser</td>
<td>Leu</td>
<td>Glu</td>
<td>Ala</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>His</td>
<td>Ile</td>
<td>Lys</td>
<td>Ala</td>
<td>Leu</td>
<td>Arg</td>
<td>Ser</td>
<td>Leu</td>
<td>Val</td>
<td>Ser</td>
<td>Phe</td>
<td>Leu</td>
<td>Cys</td>
<td>Leu</td>
<td>Tyr</td>
<td>Val</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Val</td>
<td>Ser</td>
<td>Phe</td>
<td>Cys</td>
<td>Ala</td>
<td>Ala</td>
<td>Leu</td>
<td>Val</td>
<td>Ser</td>
<td>Val</td>
<td>Pro</td>
<td>Leu</td>
<td>Leu</td>
<td>Met</td>
<td>Leu</td>
<td>Trp</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>His</td>
<td>Asn</td>
<td>Lys</td>
<td>Ile</td>
<td>Gly</td>
<td>Val</td>
<td>Met</td>
<td>Ile</td>
<td>Cys</td>
<td>Val</td>
<td>Gly</td>
<td>Ile</td>
<td>Leu</td>
<td>Ala</td>
<td>Ala</td>
<td>Cys</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Pro</td>
<td>Ser</td>
<td>Ile</td>
<td>His</td>
<td>Ala</td>
<td>Ala</td>
<td>Ile</td>
<td>Ser</td>
<td>Gly</td>
<td>Asn</td>
<td>Ala</td>
<td>Lys</td>
<td>Leu</td>
<td>Arg</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Arg</td>
<td>Ala</td>
<td>Val</td>
<td>Glu</td>
<td>Thr</td>
<td>Ile</td>
<td>Leu</td>
<td>Leu</td>
<td>Trp</td>
<td>Val</td>
<td>Gin</td>
<td>Asn</td>
<td>Ser</td>
<td>Leu</td>
<td>Lys</td>
<td>Ile</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Gly</td>
<td>Ala</td>
<td>Asp</td>
<td>His</td>
<td>Lys</td>
<td>Ala</td>
<td>Asp</td>
<td>Ala</td>
<td>Arg</td>
<td>Thr</td>
<td>Pro</td>
<td>Gly</td>
<td>Leu</td>
<td>Cys</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<210> SEQ ID NO 19
<211> LENGTH: 969
<212> TYPE: DNA
<213> ORGANISM: Felis catus

<400> SEQUENCE: 19

atgtagcgg cactgtgtaaa aatctttttt acgctgtc aa acgccagaa tggtaattgga 60
atgtcgggga atgtgttttg ttgactggtg acagtcttctg atatctatgc aaaaaaagaa 120
atcttttttg ttgacttcat cctcaacctgc ttggtcctct cccgataatc cccgactgct 180
gtgcactg ggcaatcgtc ggtgtgtgtc ctttctcttc cttttctttcg tttttctttg 240
tactgttagt ccactgttgt ggtggtccttt ccacaaaaa ccaccttacta cccttactcct 300
acgctgtcga gcaatttctt tctctccctc ccccttctct cttttctttcct tttttctttc 360
tgtgtggttg cgcagcagaa cagagctggt gctgctttct tttttttttc tttttttttc 420
cgtgcttttg attcctggtg gcgatgcgtc ttgattgtc ttttttttct ttttttttttct 480
atggatgaa gcctgtgata cttctctcag ttaaagctct cttttttttt cttttttttttt 540
catttttt tttttttttt tttttttttt ttttttttttt cttttttttttt tttttttttttt 600
catttttt tttttttttt ttttttttttt ttttttttttt cttttttttttt tttttttttttt 660
agagagagag accagacci gacagccgc cctcagctggtc ctctctctct cttttttttttt 720
tttttt cttttttttt ctttttttttt ttttttttttt ttttttttttt tttttttttttt 780
aacacaaa ttcgggtg gggctgggtt ctttttttttt ttttttttttt tttttttttttt 840
cttaaacc ggtttttttt ggtttttttt ggttttttttt ttttttttttt tttttttttttt 900
tttttttttt tttttttttt ttttttttttt ttttttttttt tttttttttttt ttttttttttt 960
tttttttttt tttttttttt 969

<210> SEQ ID NO 20
<211> LENGTH: 322
<212> TYPE: PRT
<213> ORGANISM: Felis catus

<400> SEQUENCE: 20

Met | Leu | Ala | Gly | Leu | Asp | Lys | Ile | Phe | Leu | Thr | Leu | Ser | Thr | Ala | Glu |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

US 9,169,311 B2

-continued
<table>
<thead>
<tr>
<th>Start</th>
<th>End</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>63</td>
<td>64</td>
<td>Phe Val Ile Gly Met Ser Gly Asn Val Phe Val Gly Leu Val Asn Cys</td>
</tr>
<tr>
<td>65</td>
<td>70</td>
<td>Ser Glu Trp Ile Lys Asn Gln Lys Ile Ser Phe Val Asp Phe Ile Leu</td>
</tr>
<tr>
<td>71</td>
<td>75</td>
<td>Thr Cys Leu Ala Leu Ser Arg Ile Thr Gin Leu Val Ser Leu Trp</td>
</tr>
<tr>
<td>76</td>
<td>80</td>
<td>Gin Ser Phe Val Met Thr Leu Ser Pro Pro Phe Tyr Ser Thr Trp Lys</td>
</tr>
<tr>
<td>81</td>
<td>85</td>
<td>Ser Ala Lys Leu Ile Thr Leu Leu Trp Arg Ile Thr Asn His Thr Thr</td>
</tr>
<tr>
<td>86</td>
<td>90</td>
<td>Thr Trp Phe Thr Thr Cys Leu Ser Ile Phe Tyr Leu Leu Lys Ile Ala</td>
</tr>
<tr>
<td>91</td>
<td>95</td>
<td>His Phe Ser His Ser Phe Phe Leu Trp Leu Lys Trp Arg Thr Asn Arg</td>
</tr>
<tr>
<td>96</td>
<td>100</td>
<td>Val Val Leu Ala Ile Leu Val Leu Ser Leu Pro Phe Leu Leu Phe Asp</td>
</tr>
<tr>
<td>101</td>
<td>105</td>
<td>Phe Leu Val Leu Glu Ser Leu Asp Phe Phe Leu Leu Val Tyr Val</td>
</tr>
<tr>
<td>106</td>
<td>110</td>
<td>Met Asp Glu Ser Asn Leu Thr Leu His Thr Asn Arg Cys Lys Ser Leu</td>
</tr>
<tr>
<td>111</td>
<td>115</td>
<td>Tyr Ile Lys Thr Leu Ile Leu Leu Ser Phe Ser Tyr Thr Thr Thr Thr</td>
</tr>
</tbody>
</table>
ctcaagtgga gaggtaaaag cattagttcctt gtgattccttg tggggctcctt gttcttttgg

<210> SEQ ID NO 22
<211> LENGTH: 299
<212> TYPE: PRT
<213> ORGANISM: Felis catus

<400> SEQUENCE: 22

Met Val Thr Ala Leu Pro Ser Ile Phe Ser Ile Val Ile Ile Ile Glu
1 5 10 15
Phe Leu Leu Gly Asn Phe Ala Asn Gly Phe Ile Ala Leu Val Asn Phe
20 25 30
Ile Asp Thr Tyr Thr Tyr Arg Glu Arg Ser Ser Val Asp His Ile Leu
35 40 45
Thr Ala Leu Ala Val Ser Arg Ile Gly Leu Leu Trp Val Ile Leu Ile
50 55 60
Asn Trp Tyr Ala Thr Leu Phe Ser Pro Asp Phe Tyr Ser Leu Glu Val
65 70 75 80
Arg Ile Ile Phe Gln Thr Ala Trp Thr Val Ser Asn His Phe Ser Ile
85 90 95
Trp Leu Ala Thr Ser Leu Ser Leu Phe Tyr Leu Phe Lys Ile Ala Asn
100 105 110
Phe Ser Ser Leu Ile Phe Leu Arg Leu Lys Trp Arg Val Lys Ser Ile
115 120 125
Val Leu Val Ile Leu Leu Leu Gly Ser Leu Phe Phe Leu Val Cys His Val
130 135 140
Val Ala Val Ser Val Cys Gly Lys Val Gln Thr Asp Val Tyr Glu Gly
145 150 155 160
Asn Gly Thr Arg Lys Thr Lys Leu Arg Asp Ile Leu Gln Leu Ser Asn
165 170 175
Met Thr Ile Phe Thr Leu Ala Asn Phe Ile Pro Phe Gly Met Ser Leu
180 185 190
Thr Ser Phe Val Leu Leu Ile Phe Ser Leu Trp Lys His Leu Lys Arg
195 200 205
Met Gln Leu Cys Asp Lys Gly Ser Glu Ser Glu Pro Ser Thr Lys Val His
210 215 220
Ile Arg Ala Met Gln Thr Val Ser Phe Leu Leu Phe Ala Gly
225 230 235 240
Tyr Phe Phe Thr Leu Thr Ile Thr Trp Ser Ser Asn Trp Pro Gln
245 250 255
Asn Glu Phe Gly Phe Leu Leu Cys Gln Val Ile Gly Ile Leu Tyr Pro
260 265 270
Ser Ile His Ser Leu Met Leu Ile Arg Gly Asn Lys Lys Leu Arg Glu
<210> SEQ ID NO 23
<211> LENGTH: 927
<212> TYPE: DNA
<213> ORGANISM: Felis catus

<400> SEQUENCE: 23

atggtaagcg cgctaccalag ...

<210> SEQ ID NO 24
<211> LENGTH: 308
<212> TYPE: PRT
<213> ORGANISM: Felis catus

<400> SEQUENCE: 24

Met Val Ser Ala Leu Pro Ser Ile Phe Ser Ile Ala Val Ile Ile Glu
1 5 10 15

Phe Leu Leu Gly Arg Phe Ala Arg Gly Phe Ile Ala Leu Val Asn Phe
20 25 30

Ile Asp Trp Thr Lys Arg Gln Lys Ile Ser Ser Val Asp His Ile Leu
35 40 45

Ala Ala Leu Ala Val Ser Arg Ile Gly Leu Leu Trp Val Met Ile Ile
50 55 60

Asn Trp Tyr Ala Thr Trp Phe Ser Pro Asp Phe Lys Ser Leu Glu Val
65 70 75 80

Arg Ile Ile Phe Gln Thr Ala Thr Thr Val Ser Asn His Phe Ser Ile
85 90 95

Trp Leu Ala Thr Ser Leu Ser Ile Phe Tyr Leu Phe Lys Ile Ala Ann
100 105 110

Phe Ser Ser Leu Ile Phe Leu Arg Leu Lys Trp Arg Val Lys Ser Val
115 120 125

Val Leu Val Met Leu Leu Gly Ser Leu Phe Leu Leu Phe Ser His Val
130 135 140
 Ala Ala Val Ser Ile Tyr Glu Lys Val Gln Thr Lys Ala Tyr Glu Gly
145 150 155 160

Asn Val Thr Trp Arg Thr Lys Trp Thr Gln Pro Ser Ala Lys Ser
165 170 175

Met Thr Val Phe Thr Leu Ala Asn Phe Ile Pro Phe Ala Thr Ser Leu
180 185 190

Thr Ser Phe Val Leu Leu Ile Phe Ser Leu Trp Arg His Leu Lys Arg
195 200 205

Met Gln Leu Cys Gly Lys Gly Ser Gln Asp Pro Ser Thr Lys Val His
210 215 220

Ile Arg Ala Met Gln Val Val Ser Phe Leu Leu Phe Phe Ala Gly
225 230 235 240

Tyr Val Leu Asn Leu Ile Val Thr Val Thr Ser Phe Asn Gly Leu Gln
245 250 255

Lys Glu Leu Phe Met Phe Cys Gln Val Leu Ala Phe Val Tyr Pro Ser
260 265 270

Ile His Ser Leu Met Ile Trp Gly Asn Lys Leu Lys Gly Ala
275 280 285

Phe Leu Ser Val Leu Tyr Gln Glu Tyr Trp Leu Lys Glu Gln Lys
290 295 300

His Ser Thr Pro
305

<210> SEQ ID NO 25
<211> LENGTH: 939
<212> TYPE: DNA
<213> ORGANISM: Felis catus

<400> SEQUENCE: 25
atgcacattg gacctgaaaa tacatctgg taggaacctt atgaggttga
60
atggggggg atgttttatg cgcacctgct aactgttattt actgggtgaa gctcgggaag
120
cctcgcctg cgcgtcatttccccagc ctgtctggtg cccagactct ttctctcttg
180
atgacactat tcgatctttg ttaaggtgag tttgtgacc cattatatc cattctgaa
240
tcgtatct gtttactatt cttgcgtcgt cttgcgtcgt tttacctc
300
acctcctggt gtttctgcct ccaaccttt tctccccacc ctattacct
360
tttgctgtctg gaaagtttag ccggtgtctc cttggtctc cttggcctgtc tttatctt
420
tttgctcttt ctcataatc attagcctg tttttgact tttggctgc cattcaccac
480
aactagaa aacaccaca tccgcctcttc gatgtacgta aaacctgggtac tctacccac
540
tctttatctc tcaatcctct ccctctctctctctcctctc cctaccttgtc
600
tttttctc tctccggtat gacacatcct aagatctgc aactgaaactc tagctgtcag
660
gactcagcga cggaggcc aacaagggcc agaagacg ttagaatttt ctctctcctc
720
tctacggggt ctatcttttt cctcagctta caggtgggaga ttttcctcct ctagaagaa
780
catctgcca actgagcgcgt gagctgtcgg gggtccct ttgcctcttt ccctcctt
840
tctctcatt cttgacccct cagctgtgca cactcttact ggtgcctcctc
900
aattgccac cctggaatg gacaaactctta ctaatcctcctt ctttactttt ctctctcct
939

<210> SEQ ID NO 26
<211> LENGTH: 312
<212> TYPE: PRT
<213> ORGANISM: Felis catus
<400> SEQUENCE: 26
Met Pro Ser Gly Ile Glu Asn Thr Phe Leu Thr Ala Ala Val Gly Thr
1 5 10 15
Phe Met Ile Gly Met Leu Gly Asn Gly Phe Ile Ala Leu Val Asn Cys
20 25 30
Ile Asp Trp Val Lys His Arg Lys Leu Ser Pro Ala Asp Cys Ile Leu
35 40 45
Thr Ser Leu Ala Val Ser Arg Ile Ile Leu Leu Trp Met Ile Leu Phe
50 55 60
Asp Leu Leu Val Met Val Phe Trp Pro His Leu Tyr Asn Ile Glu Lys
65 70 75 80
Leu Ala Thr Ala Val Asn Ile Cys Trp Thr Leu Thr Asn His Leu Al
85 90 95
Thr Trp Phe Ala Thr Cys Leu Ser Val Phe Tyr Phe Phe Arg Ile Ala
100 105 110
Asn Phe Ser His Arg Tyr Phe Thr Trp Leu Arg Arg Arg Ile Ser Arg
115 120 125
Val Leu Pro Val Leu Pro Gly Ser Leu Phe Leu Leu Val Phe Ann
130 135 140
Tyr Lys Leu Leu Val Gly Phe Ser Asp Leu Trp Ala Thr Ile Tyr His
145 150 155 160
Asn Tyr Glu Arg Asn Ser Thr Arg Pro Leu Asp Val Ser Lys Thr Gly
165 170 175
Tyr Leu Asn Ser Leu Val Ile Leu Ser Phe Ile Tyr Leu Ile Pro Phe
180 185 190
Leu Leu Ser Leu Thr Ser Leu Leu Leu Phe Leu Ser Leu Met Arg
195 200 205
His Thr Arg Asn Val Gln Leu Asn Ser Ser Ser Arg Asp Phe Ser Thr
210 215 220
Glu Ala His Lys Arg Ala Met Lys Met Val Ile Ser Phe Leu Leu Leu
225 230 235 240
Ser Thr Val His Phe Ser Ile Gln Leu Thr Gly Trp Ile Phe Leu
245 250 255
Leu Leu Lys His His Asn Ala Leu Thr Val Thr Leu Thr Ser Ala
260 265 270
Leu Phe Pro Ser Gly His Ser Phe Ile Leu Ile Phe Gly Asn Ser Lys
275 280 285
Leu Arg Gln Thr Ala Leu Gly Leu Leu Trp His Leu Asn Cys His Leu
290 295 300
Lys Met Val Lys Pro Leu Ala Ser
305 310

<210> SEQ ID NO 27
<211> LENGTH: 299
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 27
Met Leu Arg Leu Phe Tyr Phe Ser Ala Ile Ile Ala Ser Val Ile Leu
1 5 10 15
Asn Phe Val Gly Ile Ile Met Asn Leu Phe Thr Val Val Asn Cys
20 25 30
Lys Thr Trp Val Lys Ser His Arg Ile Ser Ser Ser Asp Arg Ile Leu
35 40 45
Phe Ser Leu Gly Ile Thr Arg Phe Leu Met Leu Gly Leu Phe Leu Val
50 55 60
Asn Thr Ile Tyr Phe Val Ser Ser Asn Thr Glu Arg Ser Val Tyr Leu
45 70 75 80
Ser Ala Phe Phe Val Leu Cys Phe Met Phe Leu Asp Ser Ser Val
85 90 95
Trp Phe Val Thr Leu Leu Asn Ile Leu Tyr Cys Val Lys Ile Thr Asn
100 105 110
Phe Gln His Ser Ser Val Phe Leu Leu Leu Lys Arg Asn Ile Ser Pro Lys
115 120 125
Ile Pro Arg Leu Leu Ala Cys Val Leu Ile Ser Ala Phe Thr Thr
130 135 140
Cys Leu Tyr Ile Thr Leu Ser Glu Ala Ser Pro Phe Pro Glu Leu Val
145 150 155 160
Thr Thr Arg Asn Asn Thr Ser Phe Asn Ile Ser Glu Gly Ile Leu Ser
165 170 175
Leu Val Val Ser Leu Val Leu Ser Ser Ser Leu Glu Phe Ile Ile Asn
180 185 190
Val Thr Ser Ala Ser Leu Ile His Ser Leu Arg Arg His Ile Glu
195 200 205
Lys Met Glu Lys Asn Ala Thr Gly Phe Trp Asn Pro Glu Thr Glu Ala
210 215 220
His Val Gly Ala Met Lys Leu Met Val Tyr Phe Leu Ile Leu Tyr Ile
225 230 235 240
Pro Tyr Ser Val Ala Thr Leu Val Glu Tyr Leu Pro Phe Tyr Ala Gly
245 250 255
Met Asp Met Gly Thr Lys Ser Ile Cys Leu Ile Phe Ala Thr Leu Tyr
260 265 270
Ser Pro Gly His Ser Val Leu Ile Ile Thr His Pro Lys Leu Lys
275 280 285
Thr Thr Ala Lys Lys Ile Leu Cys Phe Lys Lys
290 295

<210> SEQ ID NO 28
<211> LENGTH: 312
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 28
Met Pro Ser Ala Ile Glu Ala Ile Tyr Ile Ile Leu Ile Ala Gly Glu
1 5 10 15
Leu Thr Ile Gly Ile Trp Gly Asn Gly Phe Ile Val Leu Val Asn Cys
20 25 30
Ile Asp Trp Leu Lys Arg Arg Asp Ile Ser Leu Ile Asp Ile Leu
35 40 45
Ile Ser Leu Ala Ile Ser Arg Ile Cys Leu Leu Cys Val Ile Ser Leu
50 55 60
Asp Gly Phe Phe Met Leu Leu Phe Pro Gly Thr Tyr Gly Asn Ser Val
65 70 75 80
Leu Val Ser Ile Val Asn Val Val Trp Thr Phe Ala Asn Asn Ser Ser
85 90 95
Leu Trp Phe Thr Ser Cys Leu Ser Ile Phe Tyr Leu Leu Lys Ile Ala
100 105 110
Asn Ile Ser His Pro Phe Phe Phe Trp Leu Lys Leu Lys Ile Asn Lys
Val Met Leu Ala Ile Leu Leu Gly Ser Phe Leu Ile Ser Leu Ile Ile
115 120 125
Ser Val Pro Lys Asn Asp Asp Met Trp Tyr His Leu Phe Lys Val Ser
130 135 140
His Glu Glu Asn Ile Thr Trp Lys Phe Lys Val Ser Ile Pro Gly
145 150 155 160
Thr Phe Lys Gln Leu Thr Leu Asn Leu Gly Val Met Val Pro Phe Ile
165 170 175
Leu Cys Leu Ile Ser Phe Leu Leu Leu Phe Ser Leu Val Arg His
180 185 190
Thr Lys Gln Ile Arg Leu His Ala Thr Gly Phe Arg Asp Pro Ser Thr
195 200 205
Glu Ala His Met Arg Ala Ile Lys Ala Val Ile Ile Phe Leu Leu Leu
210 215 220
Leu Ile Val Tyr Tyr Pro Val Phe Leu Val Met Thr Ser Ser Ala Leu
225 230 235 240
Ile Pro Gln Gly Lys Leu Val Leu Met Ile Gly Asp Ile Val Thr Val
245 250 255
Ile Phe Pro Ser Ser His Ser Phe Ile Leu Ile Met Gly Asn Ser Lys
260 265 270
Leu Arg Glu Ala Phe Leu Lys Met Leu Arg Phe Val Lys Cys Phe Leu
275 280 285
Arg Arg Arg Lys Pro Phe Val Pro
290 295 300
305 310

<210> SEQ ID NO 29
<211> LENGTH: 307
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 29

Met Leu Arg Val Val Glu Gly Ile Phe Ile Phe Val Val Val Ser Glu
1 5 10 15
Ser Val Phe Gly Val Leu Gly Asn Gly Phe Ile Gly Leu Val Asn Cys
20 25 30
Ile Asp Cys Ala Asn Leu Lys Ser Thr Ile Gly Phe Ile Leu Thr
35 40 45
Gly Leu Ala Ile Ser Arg Ile Phe Leu Ile Ile Thr Asp
50 55 60
Gly Phe Ile Glu Ile Phe Ser Pro Asn Ile Tyr Ala Ser Gly Asn Leu
65 70 75 80
Ile Glu Tyr Ile Ser Tyr Phe Trp Val Ile Gly Asn Glu Ser Ser Met
85 90 95
Trp Phe Ala Thr Ser Leu Ser Ile Phe Tyr Phe Leu Lys Ile Ala Asn
100 105 110
Phe Ser Asn Tyr Ile Phe Leu Trp Leu Lys Ser Arg Thr Asn Met Val
115 120 125
Leu Pro Phe Met Ile Val Phe Leu Leu Ile Ser Leu Leu Asn Phe
130 135 140
Ala Tyr Ile Ala Lys Ile Leu Asn Asp Tyr Lys Thr Lys Asn Asp Thr
145 150 155
Val Trp Asp Leu Asn Met Tyr Lys Ser Gly Tyr Phe Ile Lys Gln Ile
160 165 170 175
<table>
<thead>
<tr>
<th>Leu</th>
<th>Leu</th>
<th>Asn</th>
<th>Leu</th>
<th>Gly</th>
<th>Val</th>
<th>Ile</th>
<th>Phe</th>
<th>Phe</th>
<th>Thr</th>
<th>Leu</th>
<th>Ser</th>
<th>Leu</th>
<th>Ile</th>
<th>Thr</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>180</td>
<td></td>
<td>185</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>190</td>
</tr>
<tr>
<td>Cys</td>
<td>Ile</td>
<td>Phe</td>
<td>Leu</td>
<td>Ile</td>
<td>Ile</td>
<td>Ser</td>
<td>Leu</td>
<td>Trp</td>
<td>Arg</td>
<td>His</td>
<td>Asn</td>
<td>Arg</td>
<td>Gln</td>
<td>Met</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>195</td>
<td></td>
</tr>
<tr>
<td>Ser</td>
<td>Asn</td>
<td>Val</td>
<td>Thr</td>
<td>Gly</td>
<td>Leu</td>
<td>Arg</td>
<td>Asp</td>
<td>Ser</td>
<td>Asn</td>
<td>Thr</td>
<td>Glu</td>
<td>Ala</td>
<td>His</td>
<td>Val</td>
</tr>
<tr>
<td></td>
<td>210</td>
</tr>
<tr>
<td>Ala</td>
<td>Met</td>
<td>Lys</td>
<td>Val</td>
<td>Leu</td>
<td>Ile</td>
<td>Ser</td>
<td>Phe</td>
<td>Ile</td>
<td>Leu</td>
<td>Phe</td>
<td>Leu</td>
<td>Ile</td>
<td>Leu</td>
<td>Tyr</td>
</tr>
<tr>
<td></td>
<td>220</td>
</tr>
<tr>
<td>Ile</td>
<td>Gly</td>
<td>Met</td>
<td>Ala</td>
<td>Ile</td>
<td>Glu</td>
<td>Ile</td>
<td>Ser</td>
<td>Cys</td>
<td>Phe</td>
<td>Thr</td>
<td>Val</td>
<td>Arg</td>
<td>Glu</td>
<td>Asn</td>
</tr>
<tr>
<td></td>
<td>230</td>
</tr>
<tr>
<td>Leu</td>
<td>Leu</td>
<td>Leu</td>
<td>Met</td>
<td>Phe</td>
<td>Gly</td>
<td>Met</td>
<td>Thr</td>
<td>Thr</td>
<td>Thr</td>
<td>Ala</td>
<td>Ile</td>
<td>Tyr</td>
<td>Pro</td>
<td>Trp</td>
</tr>
<tr>
<td></td>
<td>245</td>
</tr>
<tr>
<td>His</td>
<td>Ser</td>
<td>Phe</td>
<td>Ile</td>
<td>Leu</td>
<td>Leu</td>
<td>Gly</td>
<td>Asn</td>
<td>Ser</td>
<td>Lys</td>
<td>Leu</td>
<td>Lys</td>
<td>Gln</td>
<td>Ala</td>
<td>Ser</td>
</tr>
<tr>
<td></td>
<td>250</td>
</tr>
<tr>
<td>Leu</td>
<td>Arg</td>
<td>Val</td>
<td>Leu</td>
<td>Gln</td>
<td>Gln</td>
<td>Leu</td>
<td>Lys</td>
<td>Cys</td>
<td>Glu</td>
<td>Lys</td>
<td>Arg</td>
<td>Asn</td>
<td>Leu</td>
<td></td>
</tr>
<tr>
<td></td>
<td>275</td>
<td></td>
</tr>
<tr>
<td>Arg</td>
<td>Val</td>
<td>Thr</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<210> SEQ ID NO 30
<211> LENGTH: 291
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 30

<table>
<thead>
<tr>
<th>Met</th>
<th>Ile</th>
<th>Pro</th>
<th>Ile</th>
<th>Gln</th>
<th>Leu</th>
<th>Thr</th>
<th>Val</th>
<th>Phe</th>
<th>Phe</th>
<th>Met</th>
<th>Ile</th>
<th>Ile</th>
<th>Tyr</th>
<th>Val</th>
<th>Leu</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Glu</td>
<td>Ser</td>
<td>Leu</td>
<td>Thr</td>
<td>Ile</td>
<td>Ile</td>
<td>Val</td>
<td>Gln</td>
<td>Ser</td>
<td>Ser</td>
<td>Leu</td>
<td>Ile</td>
<td>Val</td>
<td>Ala</td>
<td>Val</td>
<td>Leu</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25</td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>Gly</td>
<td>Arg</td>
<td>Glu</td>
<td>Trp</td>
<td>Leu</td>
<td>Gln</td>
<td>Val</td>
<td>Arg</td>
<td>Leu</td>
<td>Met</td>
<td>Pro</td>
<td>Val</td>
<td>Asp</td>
<td>Met</td>
<td>Ile</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>Ser</td>
<td>Leu</td>
<td>Gly</td>
<td>Ile</td>
<td>Ser</td>
<td>Ser</td>
<td>Arg</td>
<td>Phe</td>
<td>Cys</td>
<td>Leu</td>
<td>Gln</td>
<td>Trp</td>
<td>Ala</td>
<td>Ser</td>
<td>Met</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>Asn</td>
<td>Asn</td>
<td>Phe</td>
<td>Cys</td>
<td>Ser</td>
<td>Tyr</td>
<td>Phe</td>
<td>Aas</td>
<td>Leu</td>
<td>Asn</td>
<td>Tyr</td>
<td>Val</td>
<td>Leu</td>
<td>Cys</td>
<td>Asn</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>Thr</td>
<td>Ile</td>
<td>Thr</td>
<td>Trp</td>
<td>Glu</td>
<td>Phe</td>
<td>Aas</td>
<td>Leu</td>
<td>Ile</td>
<td>Thr</td>
<td>Thr</td>
<td>Phe</td>
<td>Trp</td>
<td>Leu</td>
<td>Asn</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ser</td>
<td>Leu</td>
<td>Leu</td>
<td>Thr</td>
<td>Val</td>
<td>Phe</td>
<td>Tyr</td>
<td>Cys</td>
<td>Ile</td>
<td>Lys</td>
<td>Val</td>
<td>Ser</td>
<td>Ser</td>
<td>Phe</td>
<td>Thr</td>
<td>His</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>His</td>
<td>Ile</td>
<td>Phe</td>
<td>Leu</td>
<td>Trp</td>
<td>Leu</td>
<td>Arg</td>
<td>Trp</td>
<td>Arg</td>
<td>Ile</td>
<td>Leu</td>
<td>Arg</td>
<td>Leu</td>
<td>Phe</td>
<td>Pro</td>
<td>Trp</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>115</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ile</td>
<td>Leu</td>
<td>Leu</td>
<td>Gly</td>
<td>Ser</td>
<td>Leu</td>
<td>Met</td>
<td>Ile</td>
<td>Thr</td>
<td>Cys</td>
<td>Val</td>
<td>Thr</td>
<td>Ile</td>
<td>Ile</td>
<td>Pro</td>
<td>Ser</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Ala</td>
<td>Ile</td>
<td>Gly</td>
<td>Asn</td>
<td>Tyr</td>
<td>Ile</td>
<td>Gln</td>
<td>Ile</td>
<td>Gln</td>
<td>Leu</td>
<td>Leu</td>
<td>Thr</td>
<td>Met</td>
<td>Glu</td>
<td>His</td>
<td>Leu</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Pro</td>
<td>Arg</td>
<td>Asn</td>
<td>Ser</td>
<td>Thr</td>
<td>Val</td>
<td>Thr</td>
<td>Asp</td>
<td>Lys</td>
<td>Leu</td>
<td>Gln</td>
<td>Asn</td>
<td>Phe</td>
<td>His</td>
<td>Gln</td>
<td>Tyr</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Gln</td>
<td>Phe</td>
<td>Gln</td>
<td>Ala</td>
<td>His</td>
<td>Thr</td>
<td>Val</td>
<td>Ala</td>
<td>Leu</td>
<td>Val</td>
<td>Ile</td>
<td>Pro</td>
<td>Phe</td>
<td>Ile</td>
<td>Leu</td>
<td>Phe</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>Ala</td>
<td>Ser</td>
<td>Thr</td>
<td>Ile</td>
<td>Phe</td>
<td>Leu</td>
<td>Met</td>
<td>Ala</td>
<td>Ser</td>
<td>Leu</td>
<td>Thr</td>
<td>Lys</td>
<td>Gln</td>
<td>Ile</td>
<td>Gln</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>His</td>
<td>His</td>
<td>Ser</td>
<td>Thr</td>
<td>Gly</td>
<td>His</td>
<td>Cys</td>
<td>Asn</td>
<td>Pro</td>
<td>Ser</td>
<td>Met</td>
<td>Lys</td>
<td>Ala</td>
<td>Arg</td>
<td>Phe</td>
<td>Thr</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Ala</td>
<td>Leu</td>
<td>Arg</td>
<td>Ser</td>
<td>Leu</td>
<td>Ala</td>
<td>Val</td>
<td>Leu</td>
<td>Phe</td>
<td>Ile</td>
<td>Val</td>
<td>Phe</td>
<td>Thr</td>
<td>Ser</td>
<td>Tyr</td>
<td>Phe</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

US 9,169,311 B2
Leu Thr Ile Leu Ile Thr Ile Ile Gly Thr Leu Phe Asp Lys Arg Cys
245 250 255
Trp Leu Trp Val Trp Glu Ala Phe Val Tyr Ala Phe Ile Leu Met His
260 265 270
Ser Thr Ser Leu Met Leu Ser Ser Pro Thr Leu Lys Arg Ile Leu Lys
275 280 285
Gly Lys Cys
290

<210> SEQ ID NO 31
<211> LENGTH: 333
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 31
Met Leu Thr Leu Thr Arg Ile Arg Thr Val Ser Tyr Glu Val Arg Ser
1 5 10 15
Thr Phe Leu Phe Ile Ser Val Leu Glu Phe Ala Val Gly Phe Leu Thr
20 25 30
Asn Ala Phe Val Phe Leu Val Asn Phe Trp Asp Val Val Lys Arg Gln
35 40 45
Ala Leu Ser Asn Ser Asp Cys Val Leu Leu Cys Leu Ser Ile Ser Arg
50 55 60
Leu Phe Leu His Gly Leu Leu Phe Leu Ser Ala Ile Gln Leu Thr His
65 70 75 80
Phe Gln Lys Leu Ser Glu Pro Leu Asn His Ser Tyr Gln Ala Ile Ile
85 90 95
Met Leu Trp Met Ile Ala Asn Gln Ala Asn Leu Trp Ala Ala Ala Cys
100 105 110
Leu Ser Leu Leu Tyr Cys Ser Lys Leu Ile Arg Phe Ser His Thr Phe
115 120 125
Leu Ile Cys Leu Ala Ser Trp Val Ser Arg Lys Ile Ser Gln Met Leu
130 135 140
Leu Gly Ile Ile Leu Cys Ser Cys Ile Cys Thr Val Leu Cys Val Trp
145 150 155 160
Cys Phe Phe Ser Arg Pro His Phe Thr Val Thr Thr Val Leu Phe Met
165 170 175
Asn Asn Thr Arg Leu Asn Trp Gln Ile Lys Asp Leu Asn Leu Phe
180 185 190
Tyr Ser Phe Leu Phe Cys Tyr Leu Trp Ser Val Pro Phe Leu Leu
195 200 205
Phe Leu Val Ser Ser Gly Met Leu Thr Val Ser Leu Gly Arg His Met
210 215 220
Arg Thr Met Lys Val Tyr Thr Arg Asn Ser Arg Asp Pro Ser Leu Glu
225 230 235 240
Ala His Ile Lys Ala Leu Lys Ser Leu Val Ser Phe Phe Cys Phe Phe
245 250 255
Val Ile Ser Ser Cys Val Ala Phe Ile Ser Val Pro Leu Leu Ile Leu
260 265 270
Trp Arg Asp Lys Ile Gly Val Met Val Cys Val Gly Ile Met Ala Ala
275 280 285
Cys Pro Ser Gly His Ala Ala Ile Leu Ile Ser Gly Asn Ala Lys Leu
290 295 300
Arg Arg Ala Val Met Thr Ile Leu Leu Trp Ala Gln Ser Ser Leu Lys
The invention claimed is:

1. A polypeptide comprising
 the amino acid sequence of SEQ ID NO:18, or
 an amino acid sequence having at least 95% homology to
 the sequence of SEQ ID NO:18;
 wherein the polypeptide is covalently bound to a label, a
 solid support, or a lipid monolayer.

2. The polypeptide of claim 1 comprising the amino acid
 sequence of SEQ ID NO:18.

3. The polypeptide of claim 1 comprising
 an amino acid sequence having at least 95% homology to
 SEQ ID NO:18.

4. The polypeptide of claim 1, wherein the polypeptide is
 covalently bound to a lipid monolayer.

5. The polypeptide of claim 1, wherein the polypeptide is
 covalently bound to a label.

6. The polypeptide of claim 5, wherein the label is a het-
 erologous polypeptide sequence.

7. The polypeptide of claim 6, wherein the heterologous
 polypeptide sequence is a membrane targeting sequence or a
 peptide tag sequence.

8. The polypeptide of claim 5, wherein the label is a radio-
 label, a fluorescence label, a chemiluminescent label, an
 enzymic label, or an immunogenic label.

9. The polypeptide of claim 1, wherein the polypeptide is
 covalently bound to a solid support.

10. A chimeric polypeptide comprising at least one extra-
 cellular domain of SEQ ID NO:18 covalently linked to a
 heterologous polypeptide sequence, wherein the extracellular
 domain comprises amino acids 1-17, 83-98; 161-198; or 268-
 277 of SEQ ID NO:18.

11. A chimeric polypeptide comprising at least one intra-
 cellular domain of SEQ ID NO:18 covalently linked to a
 heterologous polypeptide sequence, wherein the intracellular
 domain comprises 39-61; 120-139; 220-246; or 299-334 of
 SEQ ID NO:18.

12. A chimeric polypeptide comprising at least one trans-
 membrane domain of SEQ ID NO:18 covalently linked to a
 heterologous polypeptide sequence, wherein the transmem-
 brace domain comprises amino acids 18-38, 62-82, 99-119,
 140-160, 199-219, 247-267, or 278-298 of SEQ ID NO:18.

13. The chimeric polypeptide of claim 12 comprising the
 transmembrane domains comprising amino acids 99-119 of
 SEQ ID NO:18, amino acids 247-267 of SEQ ID NO:18, and
 amino acids 278-298 of SEQ ID NO:18.

14. The chimeric polypeptide of claim 12 comprising the
 transmembrane domains comprising amino acids 99-119 of
 SEQ ID NO:18, amino acids 199-219 of SEQ ID NO:18, amino
 acids 247-267 of SEQ ID NO:18, and amino acids 278-298 of SEQ ID NO:18.

15. The chimeric polypeptide of claim 12 comprising the
 transmembrane domains comprising amino acids 99-119 of
 SEQ ID NO:18, amino acids 140-160 of SEQ ID NO:18, amino

16. The chimeric polypeptide of claim 12 comprising the
 transmembrane domains comprising amino acids 18-38 of
 SEQ ID NO:18, amino acids 62-82 of SEQ ID NO:18, amino
 acids 99-119 of SEQ ID NO:18, amino acids 140-160 of SEQ ID NO:18, amino

17. The chimeric polypeptide of claim 16 further compris-
 ing amino acids 83-98 of SEQ ID NO:18.