

United States Patent [19]
Lamberson

[11] 3,914,902
[45] Oct. 28, 1975

[54] TURNSTILE

3,487,900 1/1970 Dahl..... 192/41 R X

[75] Inventor: Everett W. Lamberson, Los Angeles, Calif.

Primary Examiner—Philip C. Kannan

Attorney, Agent, or Firm—Fulwider Patton Rieber Lee & Utecht

[73] Assignee: Hardware Specialties Sales Co., Los Angeles, Calif.

[22] Filed: July 1, 1974

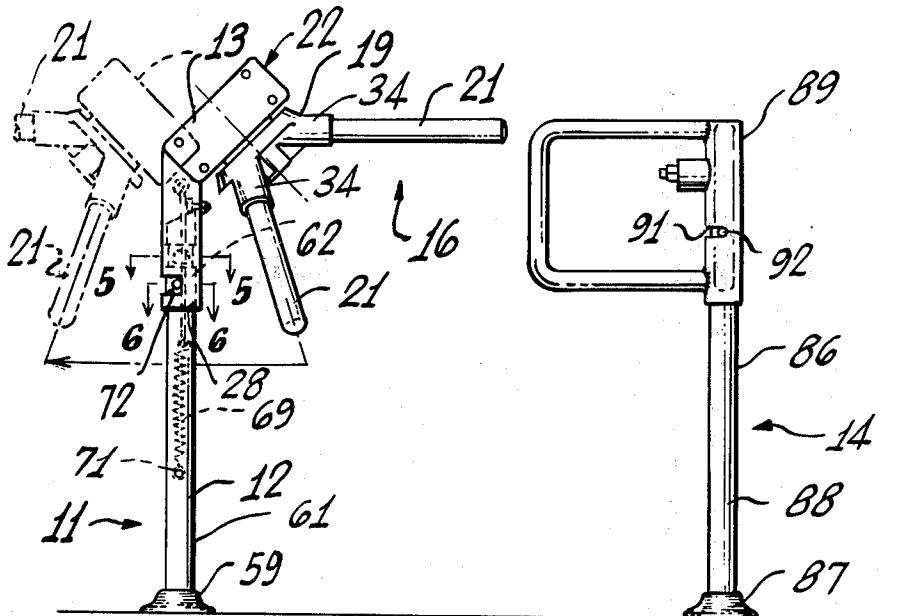
[57] ABSTRACT

[21] Appl. No.: 484,942

[52] U.S. Cl..... 49/47; 188/85

An improved turnstile comprising a turnstile head including a shaft, a rotatable hub mounted on the shaft carrying a plurality of extending arms and an improved spur and pinion gear assembly disposed within the turnstile head for one way rotation of the hub. The turnstile head is pivotally mounted on a support for rotation about an axis defined by the support. The improved turnstile cooperates with a barrier member to provide in one mode, a controlled passageway for the passage therethrough of individuals in a single direction and in a second mode wherein the turnstile head and barrier member are pivoted away from each other to provide an unobstructed passageway.

[51] Int. Cl.²..... E06B 11/08


[58] Field of Search..... 49/47, 46, 43, 44, 42, 49/45, 141; 74/333; 192/41 R; 235/93; 188/85

[56] References Cited

UNITED STATES PATENTS

1,969,414	8/1934	Odell 49/46
2,176,848	10/1939	Odell 49/47
2,618,085	11/1952	Gersbach 49/47
2,714,264	8/1955	Odell 49/47 X
2,988,185	6/1961	Pond 74/333 X

5 Claims, 7 Drawing Figures

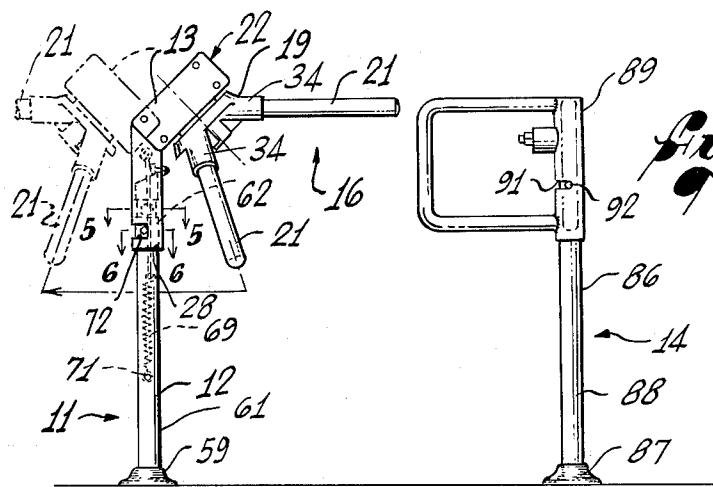


Fig. 1

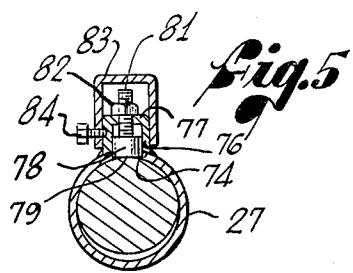


Fig. 5

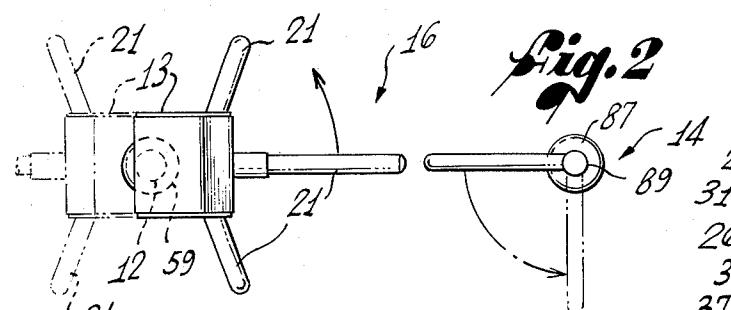


Fig. 2

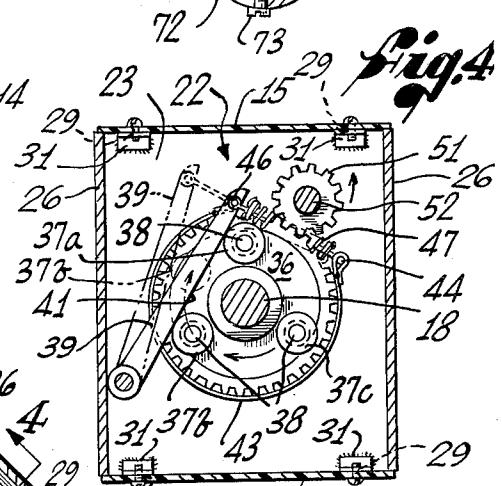


Fig. 4

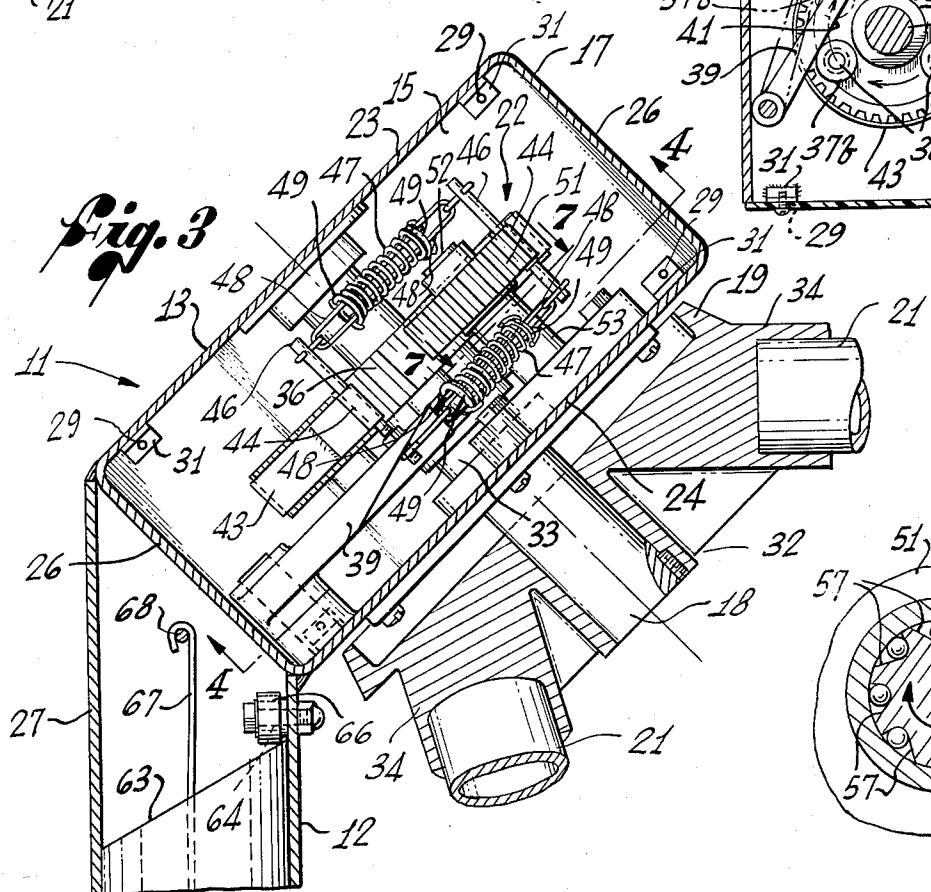


Fig. 3

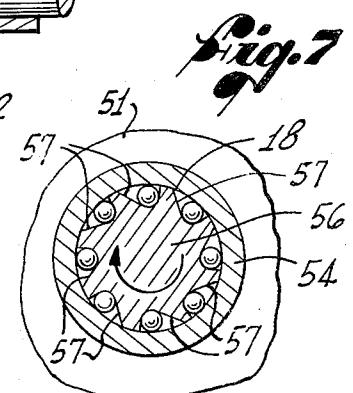


Fig. 7

TURNSTILE

BACKGROUND OF THE INVENTION

This invention relates generally to turnstiles and more particularly to improvements in turnstiles allowing for greater safety and convenience in connection with the use thereof.

The use of turnstiles in those situations where it is desired to keep accurate record of the number of persons entering a certain location or to provide means for selectively admitting persons with the price of admission are very well known in the art. Numerous types of turnstiles are available and generally comprise one or more arms which extend into a passageway and which are carried by a hub adapted for rotation in a single direction. Mechanism may be provided for counting the number of hub rotations and/or which are releasable only upon insertion of one or more coins of the proper denomination which represent the price of admission for passing through the turnstile.

A popular form of turnstile is the so-called "space saver" wherein the hub is mounted for rotation at an angle of approximately 45° from horizontal and the arms radiate outwardly from the hub in a cone type formation. In such a turnstile which normally utilizes three arms, one arm is in a substantially horizontal passage barring position while the remaining arms are in a generally vertical position. Such turnstiles utilize approximately half the space required for other types of turnstiles where the hub is mounted for rotation about a substantially vertical axis and the extending arms are contained in a horizontal plane of the hub.

Most turnstiles include a ratchet wheel which is carried by a shaft keyed to the hub and which rotates responsive to the rotation of the hub. A plurality of pawls are in engagement with the ratchet wheel to allow rotation in only a single direction. Means are provided for urging the ratchet wheel and associated rotating hub into the next succeeding "home" position. A pneumatic shock absorber is provided to prevent the hub from moving past its home position due to its inertia and for silencing the operation of the ratchet and pawl system.

In operation, conventional turnstiles have the annoying effect of the next succeeding arm striking an individual as he is passing through the turnstile. This is due to an increase in hub rotational speed which is caused by the mechanism urging the hub into its next succeeding home position. Moreover, in the event of emergencies, conventional turnstiles are normally provided with clutch means, shear pin means or the like to allow the arms and hub to rotate in an opposite direction if sufficient pressure is applied to overcome the clutch or shear pin. However, the arms of the turnstile continue to impede the passageway, and even though rotation of the arms in the opposite direction is afforded, the mere presence of the arms in the passageway represents a safety hazard in a panic situation.

In addition to the foregoing undesirable features of turnstiles, the ratchet and pawl mechanism, including the pneumatic shock absorber, is expensive to manufacture and raises the cost of manufacture and maintenance of the turnstile. Accordingly, prior art turnstiles can be said to be only partially successful in the provision of single directional passageways and other types of crowd control, particularly from the safety standpoint.

The present invention provides an improved turnstile wherein the extending arms can be removed from the passageway quickly and conveniently in the event of an emergency situation or the like. In addition the present

5 invention provides an improved gearing system for controlling the rotation of the arms and hub of the turnstile in a manner which avoids the annoying problem connected with the passage through conventional turnstiles. The gearing system of the present invention is 10 cheaper to manufacture and maintain and requires less space.

SUMMARY OF THE INVENTION

In accordance with the present invention, an improved turnstile, generally of the "space saver" type described above, includes a turnstile head pivotally mounted on a support for rotation about an axis defined by the support. A shaft is journaled in the turnstile head and a hub is keyed to the shaft for the rotation thereof responsive to the rotation of the hub. Arms carried by the hub radiate therefrom in a conical formation as is conventional with "space saver" type turnstiles, and when indexed in the home position, one of the arms is disposed in a substantially horizontal passage barring position while the remaining arms are disposed in a substantially vertical position. The improved gear assembly is disposed within the turnstile head.

More particularly, a spur gear is keyed to the shaft at the end thereof opposite the end portion to which the 30 hub is keyed and is in meshed relationship with a pinion gear which is journaled in the turnstile head and which is provided with a roller clutch which allows for rotation of the pinion gear in a single direction only. Three 35 depending roller cams are disposed about the periphery of the spur gear which is aligned on the shaft so that the roller cams are substantially radially aligned with the extending arms carried by the hub. A cam follower arm is pivotally mounted at one end for contact by the roller cams as the spur gear is rotated. Spring means cooperating with the cam follower arm urge the spur gear and the hub back into a home position.

Other aspects and advantages of the invention will become apparent from the following detailed description taken in conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a side elevational view of the turnstile of the present invention illustrated as being in cooperation with a barrier to provide a restricted one-way passage and further shown in broken line the turnstile of the present invention swung into an unobstructing position;

FIG. 2 is a top plan view of an embodiment of the present invention similar to that shown in FIG. 1 and further showing, in broken line, the barrier moved into an unobstructed position;

FIG. 3 is an enlarged side view, partially in section, of the turnstile of the present invention;

FIG. 4 is an enlarged sectional view taken along line 4-4 of FIG. 3;

FIG. 5 is a sectional view taken along line 5-5 of FIG. 1;

FIG. 6 is a sectional view taken along line 6-6 of FIG. 1; and

FIG. 7 is an enlarged sectional view, partially broken away for compactness of illustration, showing the roller clutch assembly utilized to impart one way rotation for

the gear assembly of the turnstile of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

As shown in the drawings, the invention is embodied in a barrier system and an improved turnstile shown generally as 11, comprising a support 12 and turnstile head 13 carried on the support for rotation about an axis defined thereby. A barrier shown generally as 14 is aligned with the turnstile 11 to cooperate therewith in defining a single direction passage, shown generally as 16. The barrier 14 is also rotatable so that it and the turnstile 11 can be swung into unobstructing position with respect to the passage 16.

In accordance with a primary aspect of the present invention, the turnstile head 13 includes a housing 17, a rotatable shaft 18 extending through one wall of the housing and journaled therein, and a hub 19 carrying extending arms 21 keyed to the shaft. An improved spur and pinion gear assembly, indicated generally as 22, is disposed within the housing 17 to allow for rotation of the hub 19 in a single direction between a plurality of home positions where one of the extending arms 21 is disposed in a passage barring position.

As is more specifically illustrated in FIGS. 3 and 4, the housing 17 comprises a generally rectangularly shaped hollow body having upper and lower walls, 23 and 24, and side walls 26. A depending tubular mounting sleeve 27 having an open end 28 is affixed to one of the side walls 26 by suitable means, such as welding, for mounting of the housing 17 on the support 12. As illustrated, the mounting sleeve 27 is disposed at an angle to the sidewall 26 to which it is affixed so that as mounted, the housing 17 is disposed at an angle to the horizontal, preferably about 45°. The housing 17 is completed by end plates 15, which are affixed to the housing by screws, not shown, threadably engaged in a threaded passage 29 provided in tabs 31 affixed to the inner surfaces of the upper and lower walls, 23 and 24.

The shaft 18 extends through the lower wall 24 of the housing 17 and is rotatably journaled therein by a conventional bushing, not shown. The shaft 18 defines an outer portion 32 which extends externally of the lower wall 24 and an inner portion 33 extending into the interior of the housing 17.

The hub 19 is keyed to the outer portion 32 of the shaft 18 for rotation therewith and the hub includes three socket members 34 in which are mounted the extending arms 21. The extending arms 21 radiate outwardly from the axis of the hub 19 in a generally conical formation. As illustrated, the hub 19 is in the home position with one of the extending arms 21 extending substantially horizontally in a passage barring position and the remaining arms extending downwardly in a non-obstructing attitude. As the hub 19 rotates, the arms 21 describe a conical path moving between a substantially horizontal position and the downward position.

A spur gear 36 is keyed to the inner portion 33 of the shaft 18 and rotates with the shaft responsive to the rotation of the hub 19. Three roller cams 37a, 37b and 37c are disposed about the periphery of the spur gear 36 and each roller cam is journaled on a depending shaft 38 carried by the spur gear for rotation about an axis defined by the depending shaft. Each roller cam 37a, 37b and 37c is disposed about the spur gear 36 in a position corresponding to the position of the extend-

ing arms 21 on the hub 19. Thus, the spur gear 36 is aligned on the shaft 18 so that a line extended through the axis of rotation of a roller cam 37 will intersect with a line extended through the longitudinal axis of a corresponding extending arm 21.

An elongated cam follower arm 39 having a camming surface 41 disposed toward the roller cams 37 is connected at one end to a shaft 42 extending normally from the lower wall 24 of the housing 17 for pivoting about an axis defined by the shaft responsive to the urging of the roller cams 37 against the camming surface. A friction band 43 is disposed about a major portion of the circumference of the spur gear 36. The friction band 43 is formed of spring steel or the like having a set so that the band clamps about the circumference of the spur gear 36. The ends of the friction band are turned back on themselves to define open ended cylindrical portions 44 through each of which extends an elongated pin 46, the lower extending end portion of one of the pins 46 being carried by the opposite free end of the cam follower arm 39. A normally expanded coil spring 47 is positioned between the extending upper end portions of the pins 46 and between the free end of the cam follower arm and the lower extending end portion of the other pin for urging follower arm 39 inwardly against the roller cams 37. The springs 46 are carried between the ends of the rods by elongated wire loops 48 extending laterally from each of the rods 46 and from the free end of the cam follower arm 39 and having U-shaped ends turned back over a cap 49 disposed at each end of each of the coil springs 47.

A pinion gear 51, in meshed relationship with the spur gear 36, is journaled on a shaft 52 for rotation about an axis defined by the shaft. The shaft 52 is carried in a boss 53 affixed to the lower wall 24 of the housing 17. As is more specifically shown in FIG. 7, the pinion gear 51 is adapted for one way rotation by a conventional roller clutch which includes an outer race 54 coaxially affixed to the pinion gear and an inner race 56 defined by the shaft 52. The inner race 56 is provided with a plurality of grooves and camming surfaces 57 defining a cage for a plurality of rollers 58 disposed between the inner race and the outer race. As illustrated, motion of the outer race 54 in a clockwise direction can freely occur, while motion of the outer race in a counterclockwise direction is prevented by the rollers 58 being cammed against the outer race 54. The camming action locks the inner race 56 and the outer race 54 preventing rotation in a counterclockwise direction.

In operation, the gear assembly 26 is normally indexed in the home position as shown in solid lines in FIG. 4 with the cam follower arm 39 at its innermost position and the camming surface 41 in contact with two of the roller cams, 37a and 37b. Rotation of the hub causes the spur gear 36 to rotate and the cam roller 37b to act against the camming surface 41 of the cam follower arm 39 causing it to pivot outwardly until it reaches its maximum point shown in broken line in FIG. 4. Outward pivoting of the cam follower arm compresses the normally expanded springs 47 and as roller cam 37b passes the point of maximum extention with respect to the cam follower arm 39, the spring 47 acting against the free end of the cam follower arm cause it to pivot inwardly and the camming surface 41 acts against the roller cam 37b to rotate the spur gear 36 until the cam roller 37b reaches the position formerly occupied by cam roller 37a at which point the energy

of the springs is expended. The roller cam 37c occupies the position formerly occupied by roller cam 37b adjacent the pivoted end of the cam follower arm 39 which effects a reindexing of the gear assembly 26 in the home position and aids in preventing inertial rotation of the spur gear 36 past the home position.

The friction band 43 exerts a substantially uniform drag on the spur gear 36 so that increased rotational speed during the inward pivoting of the cam follower arm 39 is prevented. Due to the resilient nature of the friction band 43, the end thereof carried by the cam follower arm 39 is free to move with the free end of the cam follower arm. Rotation of the gear assembly 26 in the opposite direction is prevented by pinion gear 51 as previously described.

Although the foregoing discussion relates to a space saver type turnstile, it will be evident that the gear assembly 22 may be utilized in other types of turnstiles such as when the axis of rotation of the hub is substantially vertical.

It will also be evident that conventional counter mechanisms may be utilized in the gear assembly 22 of the present invention. Thus, a counter may be mechanically linked with the cam follower arm 39 or otherwise engaged with the spur gear 36 or the pinion gear 51.

In accordance with the present invention, the turnstile head 13 is pivotally mounted on the support 12 for rotation about an axis defined by the support. In this manner the extending arms 21 can be moved between a passage barring position and a non-obstructing position. This feature of the invention is highly desirable, particularly in the case of an emergency when it is necessary to provide unobstructed passage for rapid movement therethrough.

As is more specifically shown in FIGS. 3, 5 and 6, the support 12 for the turnstile head 13 comprises a base 59 and upstanding hollow post 61 having an enlarged upper end portion 62 and a biased upper end 63. The upper end portion 62 is received within the mounting sleeve 27 of the housing 17. A laterally, inwardly extending shaft 64 is provided in the wall of the mounting sleeve 27 and a roller 66 is journeled on the inner end of the shaft for carrying the turnstile head 13 on the biased upper end 63 for rotation about an axis defined by the post 61. A downwardly depending connecting rod 67 is carried by a laterally extending pin 68 in the mounting sleeve 27 and is connected to a spring 69 carried by a laterally extending pin 71 in the post 61. The rod 67 and the spring 69 cooperate aid in preventing unintentional upward movement of the turnstile head 13 on the post 61.

A close ended slot 72 extends around a portion of the lower end of the mounting sleeve 27 and cooperates with a stop bolt 73 (FIG. 6) threadably engaged in the upper end portion 62 of the post 61 extending outwardly therefrom through the slot to limit rotation of the turnstile head 13 between a first position with the extending arms 21 barring the passage 16 and a second position with the turnstile head pivoted about the post so that the arms are in a non-obstructing position with respect to the passage.

The amount of force required to rotate the turnstile head about the post 61 is adjustable so that more or less force need be exerted in order to effect the pivoting of the turnstile head 13. As is most clearly shown in FIG. 5, an aperture 74 and a boss 76 having a threaded passage 77 communicating with the aperture are provided

on the mounting sleeve 27. A piston 78 having an interface 79 contoured to correspond with the curvature of the upper portion 62 of the post 61 is loosely carried in the aperture 74. A threaded shaft 81 is engaged in the threaded passage 77 for contacting the piston 78 to adjustably urge the interface 79 against the upper portion 62 of the post 61 and a lock nut 82 locks the shaft once it is adjusted. A cap 83 is provided over the boss 76 and is held in position by bolt 84.

When in the normal position with the extending arms 21 in the passage barring position, it is preferred that the roller 66 be located on the uppermost portion of the biased upper end 63 of the post 61. As the turnstile head 13 is pivoted, the roller 66 travels down the biased end 63, thus utilizing gravity to aid in the pivoting movement. The rod 67 and spring 69 pulling downwardly on the turnstile head 13 aid in maintaining the roller 66 in contact with the biased upper end 63 and in the pivoting movement.

As previously mentioned, the turnstile 11 of the present invention can be utilized in combination with a barrier 14 which can also be pivoted into a non-obstructing position. The combination allows for use of a passageway for a crowd controlling entrance when the turnstile 11 and the barrier 14 are in one position and as an unobstructed exit when the turnstile and barrier are swung into unobstructing positions.

As is more specifically shown in FIGS. 1 and 2, the barrier 14 comprises a support 86 including a base 87, an upstanding post 88 and a gate member 89 pivotally carried on the upper end of the post for swinging about an axis defined by the post. A slot 91 provided in the gate member 89 cooperates with a stop 92 carried by the post 88 to limit the pivoting movement of the gate member 89 to between a passage barring position where the gate member cooperates with the extending arms 21 of the turnstile 11 to define a controlled passageway and non-obstructing position, shown in broken line, where both the gate member 89 and the extending arms of the turnstile are moved into non-obstructing positions and the passageway is open.

I claim:

1. In a turnstile comprising turnstile means, a shaft journaled in said support means and including opposed extending ends, an armed hub mounted on one end of said shaft, a spur gear mounted on the opposite end of said shaft, said spur gear including cam means corresponding to the position of said hub arms; an elongated cam follower arm pivotally carried at one end thereof by said support means and means normally urging the opposite end of said arm into the path of said cam means, the improvement comprising:

a friction band disposed about a portion of the circumference of said spur gear in frictional engagement therewith; an extending pin carried by each end of said band, said pin extending parallel to the axis of rotation of said spur gear and defining an upper extending end portion and a lower extending end portion, said lower extending end portion of one of said pins being carried by said opposite end of said arm; and a coil spring carried between said upper extending end portion of said pins and a coil spring carried between said opposite end of said arm and said lower extending end portion of said other pin, whereby said coil springs act to urge said arm into the path of said cam means.

2. A turnstile comprising:

a turnstile head including a rotatable hub having three extending arms radiating outwardly therefrom in a conical formation, said hub being adapted for rotation about an axis disposed at an angle to the horizontal; and

an upstanding support including an upper end pivotally carrying said turnstile head whereby said turnstile head is swingable between a first position with at least one of said extending arms in a passage barring position and a second position with said extending arms clear of said passage.

3. The turnstile of claim 9 wherein said turnstile head comprises:

a generally rectangular housing including upper, 15 lower and side walls and a angularly disposed tubular, mounting sleeve affixed at one end to one of said side walls and open at the opposite end;

a shaft journaled in said lower wall and defining an outer extending portion carrying said hub and an 20 inner end portion disposed in said housing;

a spur gear carried at said inner end portion of said shaft for rotation in response to rotation of said hub and said shaft, said spur gear carrying three depending shafts, each of which rotatably carries a 25 roller cam for rotation about an axis defined by said shaft, said shafts being disposed about the periphery of said spur gear so that each of said roller cams are aligned with a corresponding extending arm whereby a line extended through the axis of rotation of each of said roller cams intersects a line extended through the longitudinal axis of each of said corresponding extending arms;

an elongated cam follower arm pivotally connect at one end to a shaft extending from said lower wall and having an opposite free end; said cam follower arm having a camming surface disposed towards said roller cams for contact therewith, said cam fol-

10

30

35

lower arm being pivoted between a home position with said camming surface contacting two of said roller cams and an intermediate position with said camming surface in contact with one of said roller cams responsive to the rotation of said hub and spur gear and urging of said one roller cam;

a friction band disposed about a portion of the circumference of said spur gear, said friction band having a set so that said band is urged into frictional engagement with said spur gear, said friction band defining two ends, one end being carried by said free end of said cam follower arm;

at least one coil spring disposed between said free end of said cam follower arm and the other end of said friction band for urging said cam follower arm to pivot from said intermediate position to said home position thereby acting against said one roller cam to rotate said spur gear and said hub into the home position; and

a pinion gear disposed between said ends of said friction band in meshed relation with said spur gear, said pinion gear being journaled on a shaft carried by said lower wall for rotation in a single direction thereby to allow rotation of said spur gear in one direction and for locking said spur gear to prevent rotation thereof in the opposite direction.

4. The turnstile of claim 2 wherein:

said upper end of said support is disposed in said mounting sleeve of said turnstile head; and

a roller is journaled in said mounting sleeve for engagement with said upper end and for travel about said upper end.

5. The turnstile of claim 4 further including means limiting travel of said roller about said upper end of said support whereby said turnstile head is limited to pivoting between said first position and said second position.

* * * * *

UNITED STATES PATENT OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 3,914,902

DATED : October 28, 1975

INVENTOR(S) : Everett W. Lamberson

It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:

Column 5, line 42 change "journeled" to -- journaled --;

line 49, after "cooperate" insert -- to --;

Column 7, line 34, change "connect" to read -- connected --.

Column 6, line 43, claim 1, change "tunstile" to -- turnstile --

line 64, change "potion" to -- portion --;

Column 7, line 13, change "9" to -- 2 --;

Column 8, line 27, change "2" to -- 1 --.

Signed and Sealed this
tenth Day of February 1976

[SEAL]

Attest:

RUTH C. MASON
Attesting Officer

C. MARSHALL DANN
Commissioner of Patents and Trademarks