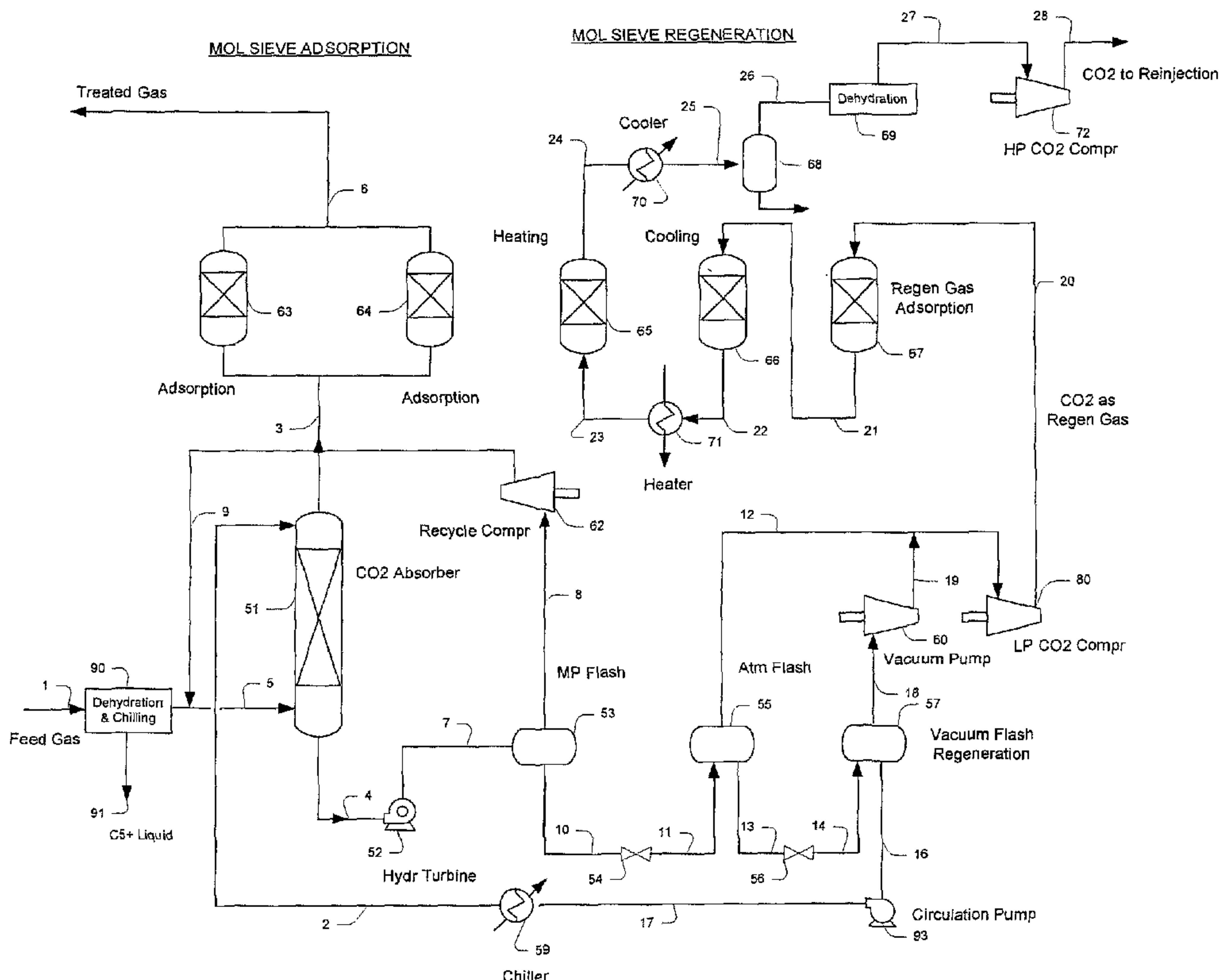


(86) Date de dépôt PCT/PCT Filing Date: 2010/09/29
(87) Date publication PCT/PCT Publication Date: 2011/04/07
(45) Date de délivrance/Issue Date: 2013/12/24
(85) Entrée phase nationale/National Entry: 2012/03/28
(86) N° demande PCT/PCT Application No.: US 2010/050649
(87) N° publication PCT/PCT Publication No.: 2011/041361
(30) Priorité/Priority: 2009/09/29 (US61/246,896)

(51) Cl.Int./Int.Cl. *B01D 53/52* (2006.01),
B01D 53/14 (2006.01), *B01D 53/62* (2006.01)


(72) Inventeurs/Inventors:
MAK, JOHN, US;
NIELSEN, RICHARD B., US

(73) Propriétaire/Owner:
FLUOR TECHNOLOGIES CORPORATION, US

(74) Agent: MILTONS IP/P.I.

(54) Titre : CONFIGURATIONS ET PROCEDES DE PURIFICATION DE GAZ

(54) Title: GAS PURIFICATION CONFIGURATIONS AND METHODS

(57) Abrégé/Abstract:

Acid gas is removed from a feed gas in an absorber that produces a treated feed gas and a rich solvent. The treated feed gas is passed through an H₂S scavenger bed, and the H₂S scavenger bed is regenerated using H₂S depleted acid gas flashed from the rich solvent. Most preferably, the offgas from the regenerating bed is injected into a formation.

WO 2011/041361 A1

SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, — *with amended claims (Art. 19(1))*
GW, ML, MR, NE, SN, TD, TG).

Published:

— *with international search report (Art. 21(3))*

GAS PURIFICATION CONFIGURATIONS AND METHODS

[0001]

Field of The Invention

5 [0002] The field of the invention is removal of acid gases from a feed gas, and particularly relates to acid gas removal from high pressure gases with high CO₂ and H₂S content and the production of a pipeline quality product gas and a concentrated CO₂ stream for re-injection.

Background of The Invention

10 [0003] As low sulfur natural gas fields are being depleted, gas production from sour gas fields has become increasingly common to meet today's energy demands. Acid gas removal from these sour gas fields, and especially removal of highly sour gas fields, requires significant capital investments and operating costs. While these plants must demonstrate their economics, they must also comply with today's gas pipeline specifications with increasing stringent requirements on energy efficiency and emissions standards. Compounding these 15 challenges is that the acid gas content of these gas fields often increases over time, which often renders conventional acid gas removal plants ineffective to produce a product that complies with current consumer gas pipeline specifications.

20 [0004] Acid gases can be removed using a conventional amine process, however, such process is typically not economical as the amine solvent circulation must be increased proportionally with the feed gas acid gas content, requiring higher steam heating duty in solvent regeneration, and hence higher greenhouse gas emissions. Moreover, there is also an upper limit in the acid gas loading capacity (*i.e.*, mol of acid gas per mole of amine) which is predominantly controlled by the chemical equilibrium between amine and the acid gases. To overcome at least some of these problems, physical solvents may be employed that operate 25 on the principal of Henry's law in which acid gas loading of the solvent increases with the acid gas content and partial pressure. Thus, and at least conceptually, physical solvent absorption of acid gas is relatively attractive for high acid gas fields. Solvent regeneration can be accomplished, to at least some extent, by flash regeneration that eliminates the need for heating and so reduces greenhouse gas emissions. However, without external heating, 30 physical solvent can only be partially regenerated and is therefore often unsuitable for treatment of sour gases to produce a product that meets pipeline gas specifications (*e.g.*, 1

WO 2011/041361

PCT/US2010/050649

mol% CO₂, 4 ppmv H₂S). For example, when conventional physical solvent processes are used for treatment of a feed gas with high H₂S content (e.g., \geq 100 ppmv), they typically exceed H₂S limits for the treated gas. To improve the gas quality, a sulfur scavenger bed can be used to adsorb H₂S in the feed gas or product. However, such solution is temporary, and 5 in most cases requires the presence of a sulfur plant. Moreover, disposal and handling of the spent sulfur contaminated beds is often environmentally unacceptable.

[0005] Thus, although various configurations and methods are known to remove acid gases from a feed gas, all or almost all of them suffer from one or more disadvantages. Among other things, H₂S levels in the treated gases are often high, and the use of physical solvent, 10 without heat application, would not be suitable to produce treated gas that meets gas pipeline specifications. Therefore, there is still a need to provide improved methods and configurations for acid gas removal.

Summary of the Invention

[0005A] In one aspect of the present invention, there is provided a method of treating a feed 15 gas that includes CO₂ and H₂S, comprising: removing in an absorber CO₂ from a feed gas using a flashed lean physical solvent to so form a treated gas and a rich solvent; removing H₂S from the treated gas using a molecular sieve bed to thereby form an H₂S loaded 20 molecular sieve bed; flashing the rich solvent to produce the flashed lean solvent and a CO₂-rich stream; and regenerating the H₂S loaded molecular sieve bed using the CO₂-rich stream to thereby form an H₂S-enriched CO₂ product.

[0005B] In another aspect of the present invention, there is provided a method of 25 regenerating an H₂S loaded molecular sieve bed, comprising: contacting a molecular sieve bed with a treated feed gas from which CO₂ has been removed to so form the H₂S loaded molecular sieve bed; and contacting the H₂S loaded molecular sieve bed with the CO₂ to thereby regenerate the molecular sieve bed and form an H₂S-enriched CO₂ product.

[0005C] In yet another aspect of the present invention, there is provided an acid gas treatment plant comprising: an absorber configured to allow absorption of CO₂ and H₂S from a feed 30 gas using a lean flashed physical solvent to thereby allow production of a treated gas and a rich solvent; a first vessel comprising a molecular sieve bed and coupled to the absorber to allow adsorption of H₂S and water from the treated gas; a flash vessel coupled to the absorber and configured to receive the rich solvent and to produce a CO₂-rich stream and the

flashed lean solvent; and a second vessel comprising an H₂S loaded molecular sieve bed and fluidly coupled to the flash vessel to receive the CO₂-rich stream, thereby producing an H₂S-enriched CO₂ product and a regenerated molecular sieve bed.

[0006] The present inventive subject matter is drawn to systems, configurations, and methods of acid gas removal from a feed gas in which a physical solvent absorption process is used to produce a treated gas and a CO₂-rich stream. H₂S is removed from the treated gas with one or more molecular sieves that are then regenerated using the CO₂-rich stream to so produce an H₂S-enriched CO₂ product, which is preferably dehydrated and re-injected.

[0007] In especially preferred aspects of the inventive subject matter, a method of treating a CO₂ and H₂S-containing feed gas includes one step of removing CO₂ from a feed gas in an absorber using a flashed lean physical solvent to form a treated gas and a rich solvent. In another step, H₂S is removed from the treated gas using a molecular sieve bed to form an H₂S loaded molecular sieve bed, and in yet another step, the rich solvent is flashed to produce the flashed lean solvent that is reintroduced into the absorber and to further produce a CO₂-rich stream. The H₂S loaded molecular sieves are then regenerated using the CO₂-rich stream to thereby form an H₂S-enriched CO₂ product.

[0008] Most typically, H₂S is removed from the CO₂-rich stream prior to the step of regenerating the H₂S loaded molecular sieves using an additional molecular sieve bed, and/or water is removed from the H₂S-enriched CO₂ product. It is further generally preferred that the H₂S-enriched CO₂ product is compressed and re-injected into a formation or other suitable location for sequestration or enhanced oil recovery. Additionally, it is preferred that

the CO₂-rich stream is heated for the step of regenerating the H₂S loaded molecular sieve bed.

[0009] In contemplated methods it is generally preferred that the step of flashing the rich solvent comprises a step of vacuum flashing, and/or that the step of flashing the rich solvent is performed over multiple flashing stages, wherein at least one of the multiple flashing stages produces a hydrocarbon-enriched vapor, which is most preferably compressed and combined with the feed gas. While not limiting to the inventive subject matter, it is generally preferred that substantially all (i.e., at least 80%, more typically at least 90%, and most typically at least 95%) of the CO₂-rich stream is formed from the rich solvent without heating the rich solvent. Similarly, it is preferred that the feed gas is dehydrated and chilled to condense and remove C₅+ hydrocarbons from the feed gas.

[0010] Viewed from a different perspective, a method of regenerating an H₂S loaded molecular sieve bed is therefore contemplated in which in one step a molecular sieve bed is contacted with a treated feed gas from which CO₂ has been removed to so form the H₂S loaded molecular sieve bed. In another step, the H₂S loaded molecular sieve bed is contacted with the CO₂ to thereby regenerate the molecular sieve bed and form an H₂S-enriched CO₂ product. In such methods, it is typically preferred that the H₂S has been removed from the CO₂ using an additional molecular sieve bed prior to the step of contacting the H₂S loaded molecular sieve bed with the CO₂, and/or that water is condensed and removed from the H₂S-enriched CO₂ product. Where desired, the H₂S-enriched CO₂ product is re-injected into a formation or other suitable location.

[0011] In view of the foregoing, the inventor also contemplate an acid gas treatment plant that includes an absorber in which a lean flashed physical solvent adsorbs CO₂ and H₂S from a feed gas to produce a treated gas and a rich solvent. A first vessel comprising a molecular sieve bed is coupled to the absorber to allow adsorption of H₂S and water from the treated gas, while a flash vessel is coupled to the absorber and is configured to receive the rich solvent and to produce a CO₂-rich stream and the flashed lean solvent. A second vessel comprising an H₂S loaded molecular sieve bed is fluidly coupled to the flash vessel to receive the CO₂-rich stream, thereby producing an H₂S-enriched CO₂ product and a regenerated molecular sieve bed.

[0012] Contemplated plants will preferably further include a heater fluidly coupled between the flash vessel and the second vessel and to heat the CO₂-rich stream, and/or a medium pressure flash vessel fluidly coupled between the absorber and the flash vessel to produce a hydrocarbon recycle stream. It is still further preferred that a recycle conduit is provided to 5 allow combining the hydrocarbon recycle stream with the feed gas. Most typically, contemplated plants will also include a third vessel with an additional molecular sieve bed and to remove H₂S from the CO₂-rich stream. Where desired or otherwise needed, a chiller is fluidly coupled upstream of the absorber to chill the feed gas to a temperature for condensation and removal of water and C₅+ hydrocarbons from the feed gas.

10 [0013] Various objects, features, aspects and advantages of the present invention will become more apparent from the following detailed description of preferred embodiments of the invention.

Brief Description of the Drawing

[0014] Figure 1 is an exemplary schematic for acid gas removal using a physical solvent for a 15 plant according to the inventive subject matter.

Detailed Description

[0015] The present invention is directed to configurations and methods of removing CO₂ and H₂S from a feed gas using a two stage removal process in which an acid gas is removed in a first step using a conventional physical solvent absorption process, and in which residual acid 20 gas, and particularly H₂S and water are removed from the treated gas in a second step using one or more molecular sieve beds.

[0016] Most preferably, the H₂S loaded molecular sieve bed is regenerated using a CO₂-rich stream that is produced from the first removal step. Thus, it should be appreciated that two different contaminants can be removed from a feed gas where one contaminant is adsorbed in 25 the molecular sieve bed and where the other contaminant is used to regenerate the molecular sieve bed, thereby forming an offgas with both contaminants and a treated gas with desirable characteristics (e.g., treated gas conforms to pipeline specifications).

[0017] In one particularly preferred aspect of the inventive subject matter, a physical solvent unit is used to remove of the bulk of the acid gases from a feed gas, and the so formed rich 30 physical solvent is preferably regenerated in multi-stage flash regeneration separators, while

recovering and recycling hydrocarbons content. Preferably, hydrocarbon losses are reduced by the recycling loop to less than 5%, more preferably less than 4%, and most preferably less than 2%, while allowing for production of an acid gas from the last flash stage(s) that is used for regeneration of the molecular sieve bed. The acid gas from the last flash stage(s) is most preferably subjected to an H₂S removal step, typically using an additional molecular sieve bed.

[0018] In especially preferred aspects, the molecular sieve adsorption stage includes at least two adsorption beds, preferably four, or even more adsorption beds that adsorb the residual H₂S content of the treated gas from the physical solvent absorption step, producing a treated gas with an H₂S and/or water content of less than 4 ppmv, and more preferably less than 2 ppmv. As noted above, at least a portion of the CO₂-rich stream from the flash regeneration stage(s) is passed through one or more molecular sieve beds to produce an H₂S depleted CO₂ stream that is then used for regenerating H₂S loaded molecular sieve bed, typically using a cooling and heating cycle (e.g., at 400 to 600°F and 400 to 600 psig).

[0019] One exemplary plant configuration according to the inventive subject matter is shown in **Figure 1**. Feed gas stream 1, typically with 12 mol% CO₂ and about 100 ppmv H₂S, at about 100 °F and about 1200 psig is dried and chilled in unit 90, producing a C5+ liquid stream 91. The term "about" where used herein in conjunction with a numeral refers to a +/- 10% range (inclusive) of that numeral. The drying step is typically necessary to avoid hydrate formation in the CO₂ absorber 51. Additionally, the drying and chilling step also allows for recovery of a C5+ hydrocarbons product. The dried gas is then mixed with the recycle gas stream 9 forming stream 5 and is counter-currently scrubbed by flashed lean solvent stream 2 at about -15°F producing a treated gas stream 3 at about -10°F and a rich solvent stream 4 at about -1°F. Most typically, the absorber contains contacting devices, including packings or trays, or other suitable media for acid gas absorption. The treated gas stream 3 contains about 2 mol% CO₂ and about 6 to 10 ppmv H₂S (or even higher) and is fed to molecular sieve beds 63 and 64 to further reduce its H₂S content to below 4 ppmv (preferably below 1 ppmv) and water content to below 2 ppmv to meet sales gas pipeline specifications as product stream 6.

[0020] The rich solvent stream 4 is letdown in pressure via hydraulic turbine 52 to about 350 to 750 psig forming stream 7, at -8°F. The letdown stream is then separated in separator 53, producing a flashed hydrocarbon-enriched vapor stream 8 and a flashed liquid stream 10. The hydrocarbon-enriched vapor stream 8 is compressed by recycle gas compressor 62 to feed gas

pressure at about 1200 psig forming stream 9 prior to mixing with the feed gas. The flashed liquid 10 is letdown in pressure via JT valve 54 to atmospheric pressure, forming stream 11. It should be noted that the multi-stage flash drums can be used to reduce energy consumption by the recycle compressor. The letdown stream 11 is separated in atmospheric flash drum 55, producing a flashed vapor stream 12 and a flashed liquid stream 13. The flashed solvent stream 13 is finally letdown in pressure in JT valve 56 to about 2 to 5 psia, thus forming stream 14 at about -10°F. The letdown stream 14 is separated in separator 57, producing a vacuum flashed vapor stream 18 and a vacuum flashed liquid stream 16 (which is now a lean solvent), which is pumped by solvent circulation pump 93 as stream 17 to the solvent chiller 59 to so form chilled flashed lean solvent 2. The vacuum pressure in separator 57 is maintained by the vacuum pump/compressor 60. Stream 18 is compressed by the vacuum pump 60 to about 20-200 psig forming stream 19 that is combined with stream 12 from the atmospheric flash drum 55. The combined stream is further compressed by the LP CO₂ compressor 80 forming stream 20 at about 200 psig to 600 psig; the optimum pressure will typically depend on the molecular sieves chemical characteristics.

[0021] CO₂-rich stream 20 is then treated in an additional molecular sieve bed 67 for H₂S adsorption producing an H₂S depleted CO₂-rich stream 21, which is used for cooling the molecular sieve bed 66 producing heated CO₂-rich stream 22 that is further heated in heater 71 to about 500 to 600°F to so form stream 23, that is then used for the regeneration of H₂S loaded molecular sieve bed 65. The H₂S-enriched CO₂ product stream 24 is cooled in cooler 70 to about 90°F forming stream 25. Water condensate of stream 25 is separated and removed in separator 68, while the vapor 26 is dried in dehydration unit 69 producing a dried gas 27 that is further compressed by HP CO₂ compressor 72 to about 4000 psig forming stream 28 that is used for CO₂ re-injection.

[0022] Thus, it should be appreciated that methods of treating a CO₂ and H₂S-containing feed gas are contemplated in which CO₂ is removed from the feed gas in an absorber using a flashed lean physical solvent to so form a treated gas and a rich solvent. H₂S is then removed from the treated gas using a molecular sieve bed to thereby form an H₂S loaded molecular sieve bed that is regenerated using at least a portion of the CO₂-rich stream to thereby form an H₂S-enriched CO₂ product, wherein the CO₂-rich stream is produced by flashing the rich solvent.

[0023] Of course, it should be recognized that numerous variations of the exemplary plant of Figure 1 can be implemented without departing from the inventive concept presented herein. For example, while all molecular sieve beds in Figure 1 are depicted as fixed installations, it should be noted that configurations and methods are contemplated where input and output of the molecular sieve beds can be switched in a fully automated manner using control units, valves, and conduits as suitable. Thus, H₂S can be removed from the treated gas stream in a continuous manner such that one bed is fluidly coupled to the absorber to receive the treated gas while the other bed is fluidly coupled to the outlet of the additional molecular sieve bed. Consequently, especially preferred configurations are those in which at least one of the molecular sieve beds in the adsorption section (e.g., replacing, in parallel, or in series to 63 or 64) can be fluidly coupled to at least one position (e.g., replacing, in parallel, or in series to 65, 66, or 67) in the regeneration section. Therefore, redundant molecular sieve beds are preferably arranged and coupled to allow continuous flow of treated gas and/or H₂S-enriched CO₂ product (not shown) while changing a H₂S loaded molecular sieve bed to a regenerated molecular sieve bed. Alternatively, flow can be manually switched between various vessels. In still further contemplated configurations, one or more vessels can be physically exchanged to replace regenerated and/or saturated vessels.

[0024] With respect to suitable feed gases it should be appreciated that the pressure of such gases may vary considerably, and that the nature of the gas will at least in part determine the pressure. It is particularly preferred, however, that the feed gas has a pressure of at least 400 psig, more typically at least 1000 psig, and most typically at least 1200 psig. Similarly, numerous feed gas compositions are deemed suitable for use in conjunction with the teachings presented herein. However, it is especially preferred that the feed gas comprises at least 10 mol%, and most preferably 30 mol% and higher CO₂, and at least 100 ppmv and most preferably at least 1000 ppmv H₂S, while the treated gas from the physical solvent unit typically contains 2% CO₂ and 10 ppmv or higher H₂S. After passing the treated gas through the H₂S scavenger bed(s), it is preferred that the H₂S concentration is equal or less than 5 ppmv, more preferably equal or less than 3 ppmv, and most preferably equal or less than 1 ppmv.

[0025] It should also be recognized that the nature of the solvent may vary considerably, and that all physical solvents and mixtures thereof are deemed appropriate for use herein. There are numerous physical solvents known in the art, and exemplary preferred physical solvents

5 include FLUOR SOLVENT™ (propylene carbonate), NMP (normal-methyl pyrrolidone), SELEXOL™ (dimethyl ether of polyethylene glycol), and TBP (tributyl phosphate), and/or various polyethylene glycol dialkyl ethers. Alternatively, other solvents including enhanced tertiary amine (*e.g.*, piperazine) or other solvent or a mixture of solvents may be employed having similar behavior as physical solvent.

[0026] Flashing of the rich solvent may be performed using numerous devices, and it is generally contemplated that all pressure reduction devices are suitable for use herein. However, with respect to the amount of pressure reduction it is typically preferred that the rich solvent (after providing work and/or cooling) is first let down in pressure to a pressure 10 sufficient to release flashed vapors with methane content of about 20 to 70%. These vapors are most preferably recycled to the absorber minimizing methane losses to less than 5% and most preferably less than 1%. After such pressure reduction, the pressure of the solvent is then preferably reduced to atmospheric pressure or sub-atmospheric pressure, most typically in at least two stages. The CO₂ stream so produced from the (vacuum) flash stages typically 15 contains C₄+ hydrocarbons at less than 5 mol %, and more typically of less than 2.5 mol%, which renders such H₂S-enriched CO₂ product suitable for EOR. Where desirable, water is removed from the H₂S-enriched CO₂ product using condensation and/or known dehydration units.

[0027] It should be noted that in contemplated configurations and methods the hydraulic 20 turbine operates an energy efficient device as it generates refrigeration cooling by expansion and flashing of the acid gas content while providing shaft work to provide work (*e.g.*, drive the solvent circulation pump or generate electric power). It should also be recognized that the multi-stage separators can be used to further improve efficiency and may be configured as stacked separators to minimize the plot space footprint and equipment cost, resulting in an 25 even more efficient design.

[0028] Consequently, it is contemplated that the configurations according to the inventive 30 subject matter will significantly reduce overall energy consumption and capital cost for high acid gas removal as compared to conventional acid gas removal processes including amine or other physical solvents, or membranes. Moreover, contemplated configurations and processes will typically not require an external heat source, and heat, if required, will be supplied by the feed gas or heat of compression either from refrigeration and/or feed gas compression system to so further reduce energy consumption and adverse impact on the environment. Still further,

WO 2011/041361

PCT/US2010/050649

enhanced oil recovery projects will frequently encounter an increase in acid gas concentration in the feed gas, typically from 10% up to as high as 60%. Contemplated configurations and processes can accommodate these changes with essentially the same solvent circulation.

[0029] Another advantage of contemplated methods and configurations is their simplicity requiring less supporting offsite and utility systems, such as handling of spent solid waste of conventional sulfur scavenger beds, thereby greatly reducing environment impacts. Further aspects, methods, and configurations suitable for use herein are described in our commonly owned U.S. Patent No. 7,192,468, co-pending U.S. patent application published as U.S. Pat. App. No. 2005/0172807, and our International patent application with the serial number PCT/US10/49058.

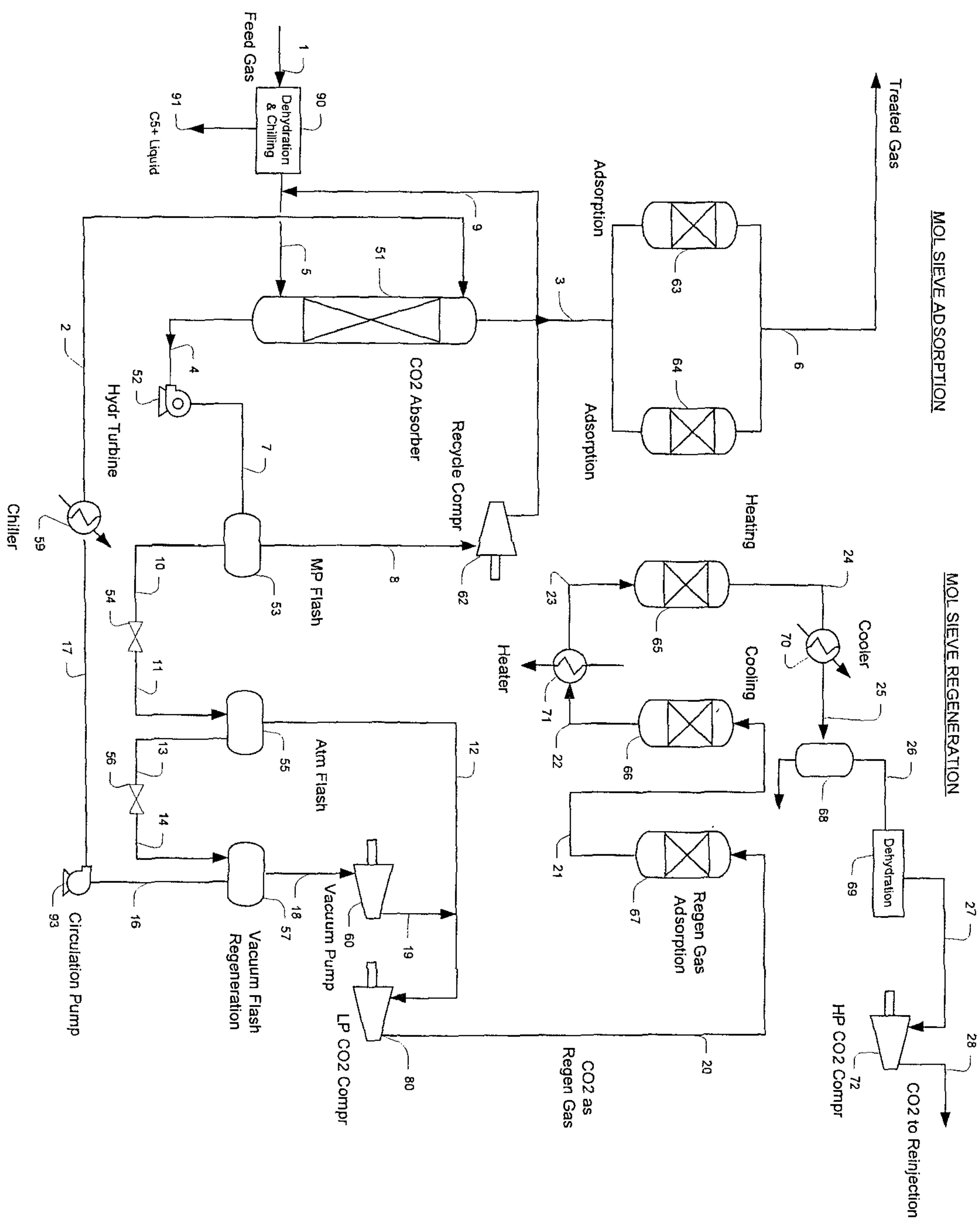
[0030] Thus, specific compositions and methods of acid gas removal have been disclosed. It should be apparent, however, to those skilled in the art that many more modifications besides those already described are possible without departing from the inventive concepts herein. Moreover, in interpreting both the specification and the claims, all terms should be interpreted in the broadest possible manner consistent with the context. In particular, the terms "comprises" and "comprising" should be interpreted as referring to elements, components, or steps in a non-exclusive manner, indicating that the referenced elements, components, or steps may be present, or utilized, or combined with other elements, components, or steps that are not expressly referenced.

CLAIMS

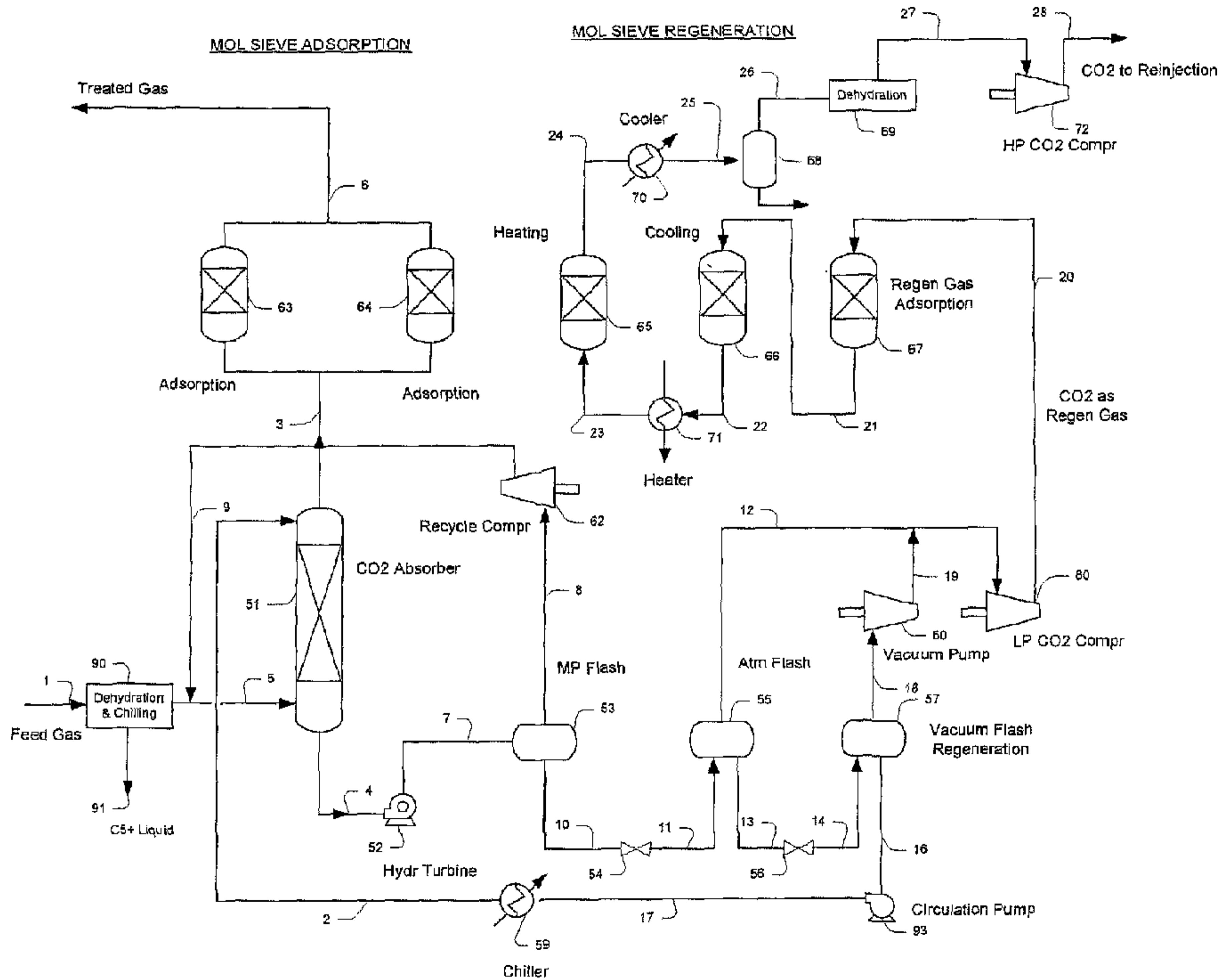
What is claimed is:

1. A method of treating a feed gas that includes CO₂ and H₂S, comprising:
removing in an absorber CO₂ from a feed gas using a flashed lean physical solvent to
so form a treated gas and a rich solvent;
removing H₂S from the treated gas using a molecular sieve bed to thereby form an
H₂S loaded molecular sieve bed;
flashing the rich solvent to produce the flashed lean solvent and a CO₂-rich stream;
and
regenerating the H₂S loaded molecular sieve bed using the CO₂-rich stream to
thereby form an H₂S-enriched CO₂ product.
2. The method of claim 1 wherein H₂S is removed from the CO₂-rich stream prior to the
step of regenerating the H₂S loaded molecular sieve bed using an additional
molecular sieve bed.
3. The method of claim 1 further comprising a step of removing water from the H₂S-
enriched CO₂ product.
4. The method of claim 3 further comprising a step of compressing and re-injecting the
H₂S-enriched CO₂ product.
5. The method of claim 1 further comprising a step of heating the CO₂-rich stream for
the step of regenerating the H₂S loaded molecular sieve bed.
6. The method of claim 1 wherein the step of flashing the rich solvent comprises a step
of vacuum flashing.
7. The method of claim 1 wherein the step of flashing the rich solvent is performed over
multiple flashing stages, and wherein at least one of the multiple flashing stages
produces a hydrocarbon-enriched vapor.
8. The method of claim 7 further comprising a step of compressing the hydrocarbon-
enriched vapor and combining the compressed hydrocarbon-enriched vapor with the
feed gas.

WO 2011/041361


PCT/US2010/050649

9. The method of claim 1 wherein substantially all of the CO₂-rich stream is formed from the rich solvent without heating the rich solvent.
10. The method of claim 1 wherein the feed gas is dehydrated and chilled to condense and remove C₅₊ hydrocarbons from the feed gas.
11. A method of regenerating an H₂S loaded molecular sieve bed, comprising:
contacting a molecular sieve bed with a treated feed gas from which CO₂ has been removed to so form the H₂S loaded molecular sieve bed; and
contacting the H₂S loaded molecular sieve bed with the CO₂ to thereby regenerate the molecular sieve bed and form an H₂S-enriched CO₂ product.
12. The method of claim 11 wherein H₂S has been removed from the CO₂ using an additional molecular sieve bed prior to the step of contacting the H₂S loaded molecular sieve bed with the CO₂.
13. The method of claim 11 further comprising a step of condensing and removing water from the H₂S-enriched CO₂ product.
14. The method of claim 11 further comprising a step of re-injecting the H₂S-enriched CO₂ product
15. An acid gas treatment plant comprising:
an absorber configured to allow absorption of CO₂ and H₂S from a feed gas using a lean flashed physical solvent to thereby allow production of a treated gas and a rich solvent;
a first vessel comprising a molecular sieve bed and coupled to the absorber to allow adsorption of H₂S and water from the treated gas;
a flash vessel coupled to the absorber and configured to receive the rich solvent and to produce a CO₂-rich stream and the flashed lean solvent; and
a second vessel comprising an H₂S loaded molecular sieve bed and fluidly coupled to the flash vessel to receive the CO₂-rich stream, thereby producing an H₂S-enriched CO₂ product and a regenerated molecular sieve bed.


WO 2011/041361

PCT/US2010/050649

16. The acid gas treatment plant of claim 15 further comprising a heater fluidly coupled between the flash vessel and the second vessel and configured to allow heating the CO₂-rich stream.
17. The acid gas treatment plant of claim 15 further comprising a medium pressure flash vessel fluidly coupled between the absorber and the flash vessel and configured to produce a hydrocarbon recycle stream.
18. The acid gas treatment plant of claim 17 further comprising a recycle conduit that is configured to allow combining the hydrocarbon recycle stream with the feed gas.
19. The acid gas treatment plant of claim 15 further comprising a third vessel comprising an additional molecular sieve bed and configured to remove H₂S from the CO₂-rich stream.
20. The acid gas treatment plant of claim 15 further comprising a chiller fluidly coupled upstream of the absorber and configured to chill the feed gas to a temperature that allows condensation and removal of water and C₅₊ hydrocarbons from the feed gas.

Figure 1

