（54）发明名称
用于细胞或组织培养的设备

（57）摘要
一种用于细胞或组织培养的设备，包含底板（1）、中间面（2）和顶板（3）。所述中间面（2）可移除地设置在底板（1）和顶板（3）之间。所述底板（1）具有周壁（13）、底面（14）和顶壁（16）。所述底板（1）的顶壁（16）包含多个凹部（12），所述凹部（12）排列为n行，其中n为从1到约25的整数。各凹部（12）的范围为从第一个凹部到最后一个凹部。各凹部具有凹部周壁（15），该凹部周壁（15）具有一个凹部入口和一个凹部出口（40，41）。所述周壁（13）包含数目为2n的端口（11）。每个端口（11）连接至单行凹部（12）上。各行凹部的凹部（12）i相互之间通过所述凹部入口和所述凹部出口（40，41）流体连通；(ii)与2n个端口的第一端口和第二端口（11）流体连通；由此，各行凹部的第一个凹部连接至所述第一端口，各行凹部的最后一个凹部连接至所述第二端口。所述中间面（2）含有多个凹部（21）。所述凹部（21）排列为m行，这些凹部被装配到所述底板（13）的顶壁（16）的多个凹部（12）中。m为从1到约25的整数，且m等于或小于n。所述中间面（2）的凹部（21）具有透水性。将所述顶板（3）可逆地密封至中间面（2），并将中间面（2）可逆地密封至底板（1）。由此，所述底板（1）的顶壁（16）的凹部（12）限定了培养腔。每个培养腔具有由凹部壁（15）限
1. 用于细胞或组织培养的设备，所述设备包含底板 (1)、中间面 (2) 和顶板 (3)，所述中间面 (2) 可移除地设置在所述底板 (1) 和所述顶板 (3) 之间，其中所述底板 (1) 具有周壁 (13)、底面 (14) 和顶壁 (16)，其中所述底板 (1) 的顶壁 (16) 包含多个凹部 (12)，所述凹部 (12) 排列为 n 行，其中 n 为从 1 到约 25 的整数，其中各凹部 (12) 的范围为从第一个凹部到最后一个凹部，所述各凹部具有凹部周壁 (15)，其中所述各凹部 (12) 的凹部周壁 (15) 具有一个凹部入口和一个凹部出口 (40, 41)。

其中所述底板 (1) 的周壁 (13) 包含数目为 2n 的端口 (11)，所述各端口 (11) 连结至所述 n 行中的单行凹部 (12)，其中各凹部的凹部 (12): (i) 相互之间通过所述凹部入口和所述凹部出口 (40, 41) 流体连通；(ii) 与所述 2n 个端口的第一端口和第二端口 (11) 流体连通，由此，各凹部的所述第一个凹部连结至所述第一端口，各凹部的所述最后一个凹部连结至所述第二端口。

其中所述中间面 (2) 含有多个凹部 (21)，所述凹部 (21) 排列为 m 行，所述凹部被装配到所述底板 (13) 的顶壁 (16) 的多个凹部 (12) 中，其中 m 为从 1 到约 25 的整数，且 m 等于或小于 n，并且其中所述中间面 (2) 的凹部 (21) 具有透水性。

其中所述顶板 (3) 被可逆地密封至所述中间面 (2)，并且所述中间面 (2) 被可逆地密封至所述底板 (1)。

由此，所述底板 (1) 的顶壁 (16) 的凹部 (12) 限定了培养腔，各培养腔具有由所述凹部壁 (15) 限定的周壁和由所述顶板 (3) 的一部分限定的可移除的顶部。

2. 如权利要求 1 所述的设备，其中，所述顶板 (3) 是至少基本上不透水的材料。

由此，所述底板 (1) 的顶壁 (16) 的凹部 (12) 限定了培养腔仅通过所述底板 (1) 的顶壁 (16) 中的所述凹部入口和所述凹部出口 (40, 41) 与周围环境流体连通。

3. 如权利要求 1 或 2 所述的设备，其中，通过所述中间面 (2) 的凹部 (21) 中分别包含的孔隙提供所述中间面 (2) 的凹部 (21) 的透水性。

4. 如权利要求 1-3 任一项所述的设备，其中，所述中间面 (2) 的凹部 (21) 为透气性材料。

5. 如权利要求 1-4 任一项所述的设备，其中，所述中间面 (2) 的 m 行凹部中的至少一行的凹部 (12) 数目与所述底板的顶壁的 n 行凹部中的至少一行的凹部数目相等，由此，所述底板 (1) 的顶壁 (16) 的凹部 (12) 限定的各培养腔含有被装配到所述培养腔中的所述中间面 (2) 的凹部 (21)。

6. 如权利要求 1-5 任一项所述的设备，其中，所述中间面 (2) 的一个或多个凹部 (21) 具有与所述底板的顶壁的凹部 (12) 的内部形状和内部规格相对应的外部形状和外部规格，所述中间面 (2) 的凹部 (21) 被装配到所述底板的顶壁的凹部 (12) 中。

7. 如权利要求 1-6 任一项所述的设备，其中，所述中间面 (2) 具有与所述底板的顶壁的形状和规格匹配的形状和规格。

8. 如权利要求 1-7 任一项所述的设备，其中，所述中间面具有以如下方式与所述底板的顶壁的形状和规格匹配的形状和规格：所述中间面的至少一行的凹部装配到所述底板的顶壁的具有相等数目的凹部的至少一行的凹部中。

9. 如权利要求 1-8 任一项所述的设备，其中，所述顶板 (3) 具有一个或多个凹部 (31)，
所述顶板 (3) 的凹部 (31) 被置于所述中间面 (2) 的凹部 (21) 的位置，由此，所述底板 (1) 的顶壁 (16) 的凹部 (12) 限定的一个或多个培养腔具有由所述凹部壁 (15) 限定的周壁和由所述顶板 (3) 的一部分限定的可移除的顶部，所述顶板 (3) 的一部分包含所述顶板的凹部 (31)。

10. 如权利要求 1～9 任一项所述的设备，其中，所述顶板 (3) 具有与所述中间面的形状和规格匹配的形状和规格。

11. 如权利要求 1～10 任一项所述的设备，其中，所述底板 (1) 的顶壁 (16) 的各凹部 (12) 具有独立选择的数目为 p 的凹部，其中 p 为从 1 到约 100 的整数。

12. 如权利要求 1～11 任一项所述的设备，其中，所述底板 (1) 的顶壁 (16) 中的各凹部 (12) 的整数 p 是相等的。

13. 如权利要求 1～12 任一项所述的设备，其中，所述中间面 (2) 中的各凹部 (21) 具有独立选择的数目为 p 的凹部，其中 p 为从 1 到约 100 的整数。

14. 如权利要求 1～13 任一项所述的设备，其中，所述中间面 (2) 中的各凹部 (21) 的凹部数目 p 与所述底板 (1) 的顶壁 (16) 中的凹部数目相等，所述中间面 (2) 的凹部 (21) 行被装配到所述底板 (1) 的顶壁 (16) 的凹部中。

15. 如权利要求 1～14 任一项所述的设备，其中，所述中间面 (2) 中的各凹部 (21) 的数目 p 是相等的。

16. 培养细胞的方法，所述方法包括下列步骤：

(a) 设置底板 (1)，

其中所述底板 (1) 具有周壁 (13)、底面 (14) 和顶壁 (16)，

其中所述底板 (1) 的顶壁 (16) 包含多个凹部 (12)，所述凹部 (12) 排列为 n 行，其中 n 为从 1 到约 25 的整数，其中所述各凹部 (12) 的范围为从第一个凹部到最后一个凹部，所述各凹部具有凹部周壁 (15)，其中所述各凹部 (12) 的凹部周壁 (15) 具有一个凹部入口和一个凹部出口 (40, 41)，

其中所述底板 (1) 的凹部 (13) 包含多个凹部 (21)，所述凹部 (21) 排列为 m 行，所述凹部 (21) 能装配到所述底板 (13) 的顶壁 (16) 的多个凹部 (12) 中，其中 m 为从 1 到约 25 的整数，且 m 等于或小于 n。其中所述中间面 (2) 的凹部 (21) 具有透水性；

(b) 设置中间面 (2)，

其中所述中间面 (2) 含有多个凹部 (21)，所述凹部 (21) 排列为 m 行，所述凹部 (21) 能装配到所述底板 (13) 的顶壁 (16) 的多个凹部 (12) 中，其中 m 为从 1 到约 25 的整数，且 m 等于或小于 n。其中所述中间面 (2) 的凹部 (21) 具有透水性；

(c) 将所述中间面 (2) 安装到所述底板 (1) 的顶壁 (16) 上，由此，所述中间面 (2) 的凹部 (21) 装配到所述底板 (13) 的所述顶壁 (16) 的凹部 (21) 中；

(d) 将细胞接种至所述中间面 (2) 的多个凹部 (21) 中；

(e) 设置顶板 (3)；

(f) 将所述顶板 (3) 安装到所述中间面 (2) 上，由此，所述中间面 (2) 可移除地设置在所述底板 (1) 和所述顶板 (3) 之间；以及
(g) 将所述顶板 (3) 可逆地密封至所述中间面 (2)，并将所述中间面 (2) 可逆地密封至所述底板 (1)，

由此，所述底板 (1) 的顶壁 (16) 的凹部 (12) 限定培养腔，各培养腔含由凹部壁 (15) 限定的周壁和由所述顶板 (3) 的一部分限定的可移除的顶部。

17. 如权利要求 16 所述的方法，所述方法进一步包括以下步骤：使介质流能够穿过由置于所述底板 (1) 中的凹部 (12) 限定的 n 行培养腔，其中，所述介质能够进入连结至各行培养腔的所述第一端口，并能够流出连结至各行培养腔的所述第二端口。

18. 如权利要求 16 或 17 所述的方法，其中，所述细胞包含肝细胞和皮肤细胞中的一种。
用于细胞或组织培养的设备

相关应用的交叉引用

本申请援引并要求于 2009 年 3 月 26 日提交至新加坡知识产权局的申请号为 No.200902107-2 的“96-well perfusion bioreactor for in vitro drug screening（用于体外药物筛选的 96 孔灌注生物反应器）”的申请的优先权，依据 PCT 规则第 4 条第 18 款，将 2009 年 3 月 26 日提交的所述申请的内容整体援引加入，包括援引 PCT 规则第 20 条第 5 款第 (a) 项中所提及的未包含在本文中的说明书、权利要求书或附图的任意要素或部分。

技术领域

本发明涉及用于细胞或组织培养的设备，还提供了基于使用所述设备培养细胞的方法。

背景技术

为维持原代肝细胞培养物中的细胞存活力和肝功能，灌注生物反应器的应用已是不可缺少的。已有研究表明，灌注生物反应器增强了溶解氧和营养物质向细胞培养物

【0007】因此，仍然存在对解决现存的体外药物测试生物反应器设计中的现有缺点的培养平台的需求。

【0008】因此，本发明的目的在于提供一种装置或设备以克服这些缺点中的至少一部分。通过提供根据权利要求1所述的装置来实现这一目的。

发明内容

【0009】本发明的设备可称为灌注生物反应器。它也可用作细胞培养系统（也可称为生物反应器系统）中的模块。该设备可用作体外培养平台，并将已知的表面改性的微加工三明治培养整合至这样的设备架构（architecture）中；该设备克服了上述的在细胞存活力和组织特异性功能方面的困难。所述设备进一步允许使用标准分析规格的多孔板，甚至还允许细胞在这些标准的多孔板设计和本发明的设备之间转移。该设备含有多个细胞培养腔，其中至少有一些培养腔包含具有透水性的并且例如可以是膜的可移除的嵌入物（inset）。将多个细胞培养腔的具有透水性的嵌入物整合入该设备的中间面。该中间面可逆地密封于该设备中，以使它能转移至另一个相似的设备或转移至常规的分析平台。

【0010】第一方面，本发明提供了用于细胞或组织培养的设备。该设备包含底板、中间面和顶板。所述设备的中间面可移除地设置在所述底板和所述顶板之间。所述底板具有周壁、底面和顶壁。所述底板的顶壁包含多个凹部，这些凹部排列为n行。数值n为从1到约25的整数。各行凹部的范围为从第一个凹部到最后一个凹部。各凹部都具有凹部周壁。各行凹部的周壁具有一个凹部入口和一个凹部出口。所述底板的周壁包含数目为2n的端口（port）。各端口连结（coupled）至所述n行凹部中的单行凹部。所述多个凹部排列在这n行中。各行凹部的凹部相互之间通过所述凹部入口和所述凹部出口流体连通（fluid communication）。各行凹部的凹部也与包含于底板的周壁中的2n个端口中的第一端口和第二端口流体连通。因此，各行凹部的所述第一个凹部连结至第一端口，各行凹部的所述最后一个凹部连结至第二端口。所述设备的中间面具有多个凹部。这些凹部排列成m行。数值m为从1到约25的整数，并且m等于或小于n（上文中的n）。将该设备的中间面的凹部装配到该设备的底板顶壁的多个凹部中。所述中间面的凹部具有透水性。该设备的顶板可逆地密封至该设备的中间面。该设备的中间面可逆地密封至该设备的底板。因此，该设备底板顶壁的凹部限定了培养腔。这些培养腔中的各培养腔具有周壁，该周壁由该设备底板顶壁的相应的凹部的凹部壁限定。各培养腔进一步具有可移除的顶部。该顶部由所述设备的顶板的一部限定。

【0011】第二方面，本发明提供了一种培养细胞的方法。所述方法包括设置底板。所述底板具有周壁、底面和顶壁。所述底板的顶壁包含多个凹部。这些凹部排列成n行。数值n为从1到约25的整数。各行凹部的范围为从第一个凹部到最后一个凹部。各凹部都具有凹部周壁。各凹部的凹部周壁具有一个凹部入口和一个凹部出口。所述底板的周壁包含数
目为2n的端口。各端口连结至n行凹部中的单行凹部。各行凹部的凹部通过凹部入口和凹部出口相互之间流体连通。各行凹部的凹部进一步与2n个端口中的第一端口和第二端口流体连通。因此，各行凹部的第一个凹部连结至所述第一端口，各行凹部的最后一个凹部连结至所述第二端口。该方法还包括设置中间面。该中间面具有多个凹部，并所述凹部排列为m行。数值m为从1到约25的整数，并且m等于或小于n。所述中间面的凹部具有透水性。该中间面的多个凹部能够装配到所述底板顶壁的多个凹部中。该方法进一步包括将所述中间面安装到所述底板的顶板上。结果，所述所述中间面的凹部装配到所述底板顶壁的凹部中。进一步地，该方法包括将细胞接种到所述中间面的多个凹部中。所述方法还包括设置顶板。所述方法包括将所述顶板安装到所述中间面上。结果，所述中间面可移除地设置在所述底板和所述顶板之间。进一步地，该方法包括将所述顶板可逆地密封至所述中间面。该方法还包括将所述中间面可逆地密封至所述底板。结果，所述顶板顶壁的凹部限定了培养腔。这些培养腔中的各培养腔具有由凹部壁限定的周壁以及可移除的顶部。所述培养腔的顶部由所述顶板的一部分限定。

附图说明
[0012] 当与非限制性实施例和附图结合考虑时，参考具体的说明，将更好地理解本发明。
[0013] 图1表示通过用固定化有半乳糖的多孔Si₃N₄膜覆盖面进行的底板的组装测试，所述底板上接种了细胞(A,B)以及顶板的组装(C)限定了培养腔(D)，所述培养腔被放置在合适的容器中(E,F)。原代大鼠肝细胞接种至固定化有半乳糖的PET膜(底板)上并在上面培养24h。
[0014] 图2通过SEM图像表示了在整个6天的培养中，在固定化有半乳糖的PET膜(A-C)上、固定化有半乳糖的Si₃N₄膜(D-F)上，以及三明治结构的Si₃N₄-SC膜(对应于主发明的设备中所使用的结构)(G-I)中培养的肝细胞形态的稳定性测试。组装过程参见图1。
[0016] 图4表示示范性的底板(1)的以下视图：从底板的端口看到的横截面视图(A)，沿凹部的直行侧向看到的横截面视图(B)，透视图(C)(11:端口，12:底板的凹部，13:底板的周壁)和俯视图(D)。
[0017] 图5表示示范性的中间面(2)的以下视图：从凹部的直行方向看到的横截面视图(A)，沿凹部的直行侧向看到的横截面视图(B)，透视图(C)(21:中间面的凹部，22:中间面的凹部的开口)和俯视图(D)。
[0018] 图6表示示范性的顶板(3)的以下视图：从凹部的直行方向看到的横截面视图(A)，沿凹部的直行侧向看到的横截面视图(B)，透视图(C)(31:顶板的凹部)和俯视图(D)。
图7示意性地表示置于常规的多孔板（60）上的本发明的设备的两个中间间面（2，2’）。
图8表示在0.1ml/min（A）、0.06ml/min（B）、0.03ml/min（C）和0.015ml/min（D）的
流速下，本发明的96孔设备中的壁剪切应力分布。
图9表示在0.1ml/min（A）、0.06ml/min（B）、0.03ml/min（C）和0.015ml/min（D）的
流速下，本发明的96孔设备中的速度分布。
图10表示在0.015ml/min（A）、0.03ml/min（B）、0.06ml/min（C）和0.1ml/min（D）的
流速下，培养6天后通过活细胞（绿色）和死细胞（红色）染色示出的细胞存活图。图10A至10D代表了既有红色信号又有绿色信号（全光谱）的各幅图像。图10E至10H为只显示红色信号的图像，黄色、蓝色、紫色和青绿色通道的饱和度变为零。图10I-10L为只显示红色信号的图像，黄色、绿色、蓝色、紫色和青绿色通道的饱和度变为零。
图11表示在6天的培养期中利用不同方法（如所指示的）的原代肝细胞的尿素产生。
图12表示在利用静态胶原凝胶三明治（■），静态SiN$_3$-SC（□）和流速为0.015ml/
min的SiN$_3$-SC灌注（□）进行培养的12天培养期中原代肝细胞的尿素生产。
图13表示在利用静态胶原凝胶三明治（■），静态SiN$_3$-SC（□）和流速为0.015ml/
min的SiN$_3$-SC灌注（□）进行培养的12天培养期中原代肝细胞的CYP450酶促活性。
图14表示本发明的96孔设备的不同孔中培养的细胞在传质效率（A）和细胞存活力（B）方面的均一性。
图15表示暴露至APAP的SiN$_3$-SCP中的原代大鼠肝细胞的较高的药物敏感性
（■：在静态条件下的胶原凝胶三明治，□：在静态条件下的SiN$_3$-SC，□：SiN$_3$-SC灌注）。
图16显示了通过机器人液体处理系统测定的SiN$_3$-SCP中对APAP-诱导的肝细
胞毒性的响应的较低的IC$_{50}$值。在C3A细胞中测定APAP-诱导的肝细胞毒性（IC$_{50}$值：
SiN$_3$-SCP为71mM（■），SiN$_3$-SC为80mM（□），胶原凝胶三明治为84.6mM（□））。

具体实施方式
本发明提供了一种用于细胞或组织培养的设备。该设备包含底板、中间面和顶
板。典型地，这三个元件可移除地组装，以提供水密封（water-tight seal）和气密密封
（gas-tight seal）。该设备可具有任意期望的规格。典型地，跨越所述设备的内横截面的最大
距离（即，它的最大宽度）选自如下范围：约1cm到约500cm，约2cm到约250cm，约2cm到
约100cm或约2cm到约50cm（如，约2.5cm到约25cm，约4cm到约25cm，约2cm到约15cm，
约4cm到约15cm或约2cm到约10cm）。
该设备包含多个培养腔。这些培养腔可具有相同、相似或不同的几何形状和规格。典
型地，所述设备的培养腔的规格具有至少基本上相同的尺寸和几何形状。所述培养腔由
周壁和可移除的顶部限定。在某些实施方式中，所述培养腔具有底面。培养腔的底面和顶
壁可以被布置为至少基本上相互平行。如下文中进一步详述的，各培养腔的周壁和底面（如
果存在的话）由设备底板中的凹部限定。培养腔的内横截面具有任意期望的轮廓，如卵形、
环形、矩形、字母V形或U形、三角形、长方形、正方形或任意多角形（polyhedron）。在培养
腔的底面和顶壁相互平行布置的一个实施方式中，培养腔限定了至少基本上为圆柱形的内
腔（interior）。

[0031] 所述培养腔可为任意容量。典型地，各培养腔具有内腔，所述内腔可提供的容量范围为从约 0.1ml 到约 10ml，如约 0.2ml 到约 10ml 或约 0.2ml 到约 5ml，包括约 0.5ml 到约 10ml，0.5ml 到约 5ml 或 0.25ml 到约 2.5ml，诸如例如 0.35ml 或 0.5ml。培养腔的内腔表示在任意入口或出口（例如开口）被密封时，与装入该培养腔中的流体直接接触的任意空间或实体。它也指可包含在与所述流体接触的空间或实体内的任意空间或实体。作为示例性的例子，典型地，具有透水性的中间面的壁面（参见下文）可移除地包含在培养腔内，由此成为培养腔的内腔的一部分。因此，当术语“内面”分别用于与培养腔和底板的凹部相关的场合时，尤其是当任一开口被密封时，该术语“内面”表示的是朝向培养腔内腔的内侧区域（表面区域在培养腔的内腔能够接触装入培养腔的内腔的流体）。然后，培养腔能接收流体和/或样品，例如细胞悬浮液、血液或血浆以及可选的其它物质。因此，在某些实施方式中，培养腔中填充着介质，例如用于培养细胞的含水介质，如现有技术中可用的熟知的细胞培养基之一（“生长培养基”），在此仅举几个例子，例如 LB 培养基；含有单糖的液体，例如，可能包括例如汉克氏盐（Hank’s Salts）；伊格尔氏（Eagle’s）基本成分培养基（包括例如 Dulbecco’s 改良的伊格尔培养基）；RPMI（Roswell Park Memorial Institute）培养基；HyClone 培养基；Ham’s 组织培养培养基；Chee’s 培养基；YM 肉汤；或 Murashige 和 Skoog 培养基，或血液。在另外的实施方式中，需要在培养腔中装入上述介质以培养细胞或利用培养腔中的细胞使所述介质去毒。

[0032] 所述培养腔可被设计为能容纳任意的期望的流体（同样参见下文）。所述流体可具有任意性质，无论是极性的或非极性的。典型地，所述流体是如细胞培养基、血液或血浆这样的含水液体。所述流体可通过周壁中的入口注入或进入培养腔中。所述流体通过周壁中的出口可流出培养腔。

[0033] 在培养腔的内腔中，可设置有其它元件，如例如用于检测温度或氧气水平的一个或多个传感器（如纳米传感器），或一个或多个供氧元件。供氧元件例如可被设置为包含与外部的氧气供应流体接触的毛细管。这些元件与装入培养腔中的流体直接接触，并因此包含在培养腔的内腔中。然而，与这些元件相连的其它实体，如管道（tubing）或配线（wiring），典型地并不与装入培养腔中的流体直接接触，因而不是培养腔内腔的一部分。

[0034] 因此，像这样的培养腔的周壁、底面（如果存在的话）和可移除的顶壁用于防止装入培养腔的流体和周围环境的任何联系。通常，所述的底面、周壁和可移除的顶壁（如果存在的话）由此防止培养腔的内腔与周围环境的任何流体连通。元件（如传感器或供氧元件）被设计成通过膜或一个或多个壁防与所述培养腔的内腔流体连通。在供氧元件具有膜且气体等流体能够通过该膜接触装入腔中的流体并溶入流体的情况下，由膜提供的屏障防止各流体间的任何直接接触。因此，术语“流体连通”被理解为不包含跨越屏障的扩散或渗透。因此，这些元件可具有的例如用于供应流体的任意入口或出口均不与装入培养腔中的流体发生流体连通，因而不是所述培养腔的内腔的一部分。

[0035] 然而，如上所述的，培养腔的周壁具有入口和出口。通过该入口和该出口并且通常只通过该入口和该出口（因为一般不存在额外的入口或出口），培养腔的内腔与外界流体连通。所述入口和出口可相互独立地包含任意部件或由任意部件组成。各个部件例如可为开口、通道或阀门。各个通道的轮廓和各个开口可为任意尺寸和形状。例子包括但不限于
环形、长方型或正方型或三角型。在某些实施方式中，所述设备的外壳 (housing) 的入口和
或出口可完全密封。
[0036] 如上所述，所述设备的培养腔可通过放置并可逆地密封设备的底板和顶板而组装
或拆卸。此外，通过组装面包含中间面，所述中间面位于所述设备的底板和顶板之间。
[0037] 所述设备的底板具有周壁、底面和顶壁。所述底板可包含任意一种的材料。典型地，它
为固体并能够在该设备中进行的整个培养过程中保持完整无损。作为几个示例性的例子，所述底板
或其部分或其元件可包含玻璃、聚丙烯 (PP) 或聚四氟乙烯 (PTFE, 特氟龙)。在某些实施方式中，所述底板
可包含弹性体或由弹性体组成，如硅聚合物（例如聚二甲基硅氧烷）、聚丙甲基硅氧烷、聚三氟甲基硅氧烷
或聚苯甲基硅氧烷。期望弹性体的使用可使所述底板更易于可逆密封至所述中间面。如作适当变动，上述弹性体
的使用也适用于所述设备的顶板。
[0038] 在某些实施方式中，所述底板的至少一部分（例如周壁、底面和 / 或顶壁）是允许
光进入该设备的内腔中的实体，所述设备的内腔包含例如包含于该设备中的培养腔。术语
“光” 可被理解为包括任意波长的电磁辐射（包括电磁波谱的某一明确的波长、一组明显的波
长或任意区域）。电磁波谱区域的两个例子为可见光和紫外光，所述可见光对应于约 400 nm
到 700 nm 的波长范围，所述紫外光对应于约 300 nm 到约 400 nm 的波长范围。在某些实施方
式中，所述周壁、底面和 / 或顶壁的至少一部分是允许光从该设备的内腔（包含培养腔）
中射出的实体。允许光射出的各个壁部分（包括底面）可与允许光进入培养腔的壁部分（包
括底面）相同、部分相同或不同。壁部分例如可为透明的或半透明的。允许光穿过的壁
部分的合适材料的例子包括但不限于玻璃、石英和塑料材料。构建各个壁部分的合适的塑
料材料包括但不限于聚甲基丙烯酸甲酯类（例如聚甲基丙烯酸甲酯 (PMMA) 或基于咔唑的
甲基丙烯酸酯类和二甲基丙烯酸酯类）、聚苯乙烯、聚碳酸酯和多环烯烃类。对于壁部分
的制造而言，进一步适合于只在一定程度上允许光透过材料的示例性的例子为全氟乙丙烯
(FEP)。
[0039] 底板的底面和顶壁都可具有任意的内部和外部几何形状，并可包含任意希望的材
料。在某些实施方式中，所述底面和 / 或顶壁例如可为弯曲的、圆形的、笔直的或平坦的。在
某些实施方式中，所述底面和 / 或顶壁可为具有例如长方型、正方型、三角型、卵形或环形
轮廓的平面。所述底面和 / 或顶壁可为弧形（如凹面或凸面）、波形或包含凹痕 (dent)、凹
角 (nook) 或任意其他几何形状的元件。在典型的实施方式中，所述底面和顶壁均为固体，并
能在其中进行的整个培养过程中保持完整无损。在某些实施方式中，设备底板的底面、
周壁和顶壁中的任一个可分别为另一个通常为较大的壁或底面的一部分。在某些实施方
式中，底板的底面、顶壁和周壁包含一种或多种相同的材料。在一个实施方式中，所述底板的
底面、顶壁和周壁由相同材料制成。所述底面和顶壁相互之间可按照任意希望的方向布置。
在某些实施方式中，所述底板的底面、顶壁中的一部分或三分之二基本上与所述底板的周壁
垂直地布置。在一个实施方式中，所述底板的底面和顶壁至少基本上相互平行地布置。
[0040] 所述底板的周壁可为固体底板的表面或特定厚度的壁，在后一种情况下，它可具
有任意的厚度 / 强度，只要组装后它能在所述设备的细胞培养期间至少基本上保持完整无
损。在某些实施方式中，本发明设备的外部形状的几何形状可在很大程度上由底板决定，从
而主要由底板的周壁决定。
所述底板的底面通常设置有与周围环境的接触表面，该设备放置于所述周围环境（例如，桌子的表面）之上。因此，该底板的底面可设计成具有非常适于将该设备放置于希望的表面上的几何形状和表面性质。在某些实施方式中，所述底板的底面因此为平的表面。

当本发明的设备以述方式取向时，本文使用的术语“水平的”、“垂直的”、“下面”、“上面”、“下部”、“上部”、“顶部”及“在顶部”表示方位。该设备的多个培养腔在至少基本上垂直于地球重力方向的平面中取向。在上述取向中，相对于培养腔内腔而言，该设备的顶板被置于至少基本上与地球重力方向相反的位置。在这一点上，所述培养腔排列成行（同样见下文）。这样的一行培养腔通常被置于设备内的一个平面中，该平面至少最大程度上（如果不是至少本质上）与地球重力的方向垂直地被取向。典型地，由培养板的布置限定的该平面至少大体上平行于地面。在上述取向中，相对于培养板而言，所述培养腔的入口和出口被置于所述培养板的平面内，并指向这样的方向；该方向至少很大程度上垂直于地球重力起作用的方向。在上述取向中，设备底板的周围通常沿至少大体上约为地球重力的方向延伸。

所述设备底板的顶面包含多个凹部，各凹部可具有自己单独的构形（topography）和几何形状。所述多个凹部中的凹部的尺寸和规格可分别选择。所述多个凹部中的每个凹部都具有凹部周壁。所述凹部的内可由该周壁限定。在某些实施方式中，一个或多个（包括每个）凹部具有凹部周壁和凹部底面。如果设备被置于使得底板朝向大约垂直于重力方向的位置，则顶板的凹部在该垂直于重力方向的平面内具有特定的最大宽度。在该平面中的凹部的内横截面具有任意对应的轮廓，如半椭圆、半圆形、字母V形或U形、三角形、长方形、正方形或任意多角形。

在某些实施方式中，所述底板的底面（可被来限定底板的上表面）至少基本上是平坦的。底板的这种平坦的顶面还可按照如下取向布置在组装的设备中：当所述设备被置于地面、桌子等上并在运行中时，所述取向限定了垂直于重力方向的平面。当所述设备在运行时，可将所述平面置于至少基本上平行于地球表面的位置。在这些实施方式中，上述大约垂直于重力方向上的凹部最大宽度为设备顶板底面的平面中的最大宽度。

所述凹部周壁和所述凹部底面（如果存在的话）可具有任意表面性质，只要它们允许介质（尤其是液体）的储存。所述凹部周壁和所述凹部底部（如果存在的话）的表面性质和材料可经选择，以满足将在所述设备中进行培养的细胞的需要。在某些实施方式中，凹部的任意表面或表面部分可转化为亲水的或疏水的。如果需要，凹部的不同部分可提供不同的表面性质。

对凹部、底板的其它部分或设备的任何其它部分所进行的实现表面性质改变的处理可为任意的能够改变各表面性质的处理，所述改变能够在接下来的与待作用的流体（如细胞培养基）或待作用的细胞接触的过程中持续足够长的时间。典型地，该处理并不影响接触各表面区域的流体的组成。在某些实施方式中，所述处理并不影响接触各表面区域的任意流体的组成。

可用于改变表面性质的处理可包括多种手段，如机械手段、热学手段、电学手段或化学手段。现有技术中常用的方法为用对所述流体样品具有不同水平亲和力的化学试剂来处理。举例来说，可通称用稀盐酸或稀硝酸处理，将塑料材料的表面转化为亲水性表面。再例如，可通过氧气或空气等离子体氧化，将聚二甲基硅氧烷（PDMS）表面转化为亲水性表面。
面。可选地，可通过用亲水性聚合物涂覆或通过在表面活性剂处理，将任何疏水性表面的表面性质转化为较为亲水。化学表面处理的实例包括但不限于暴露至下列物质中：六甲基二硅烷烷、甲基氯硅烷、二甲基氯硅烷、丙基氯硅烷、四乙氧基硅烷、缩水甘油醚氧丙基三甲基氯硅烷、3-氨丙基三乙氧基硅烷、2-(3,4-环氧-环己基) 乙基三甲氧基硅烷、3-(2,3-环氧丙氧基) 丙基三甲氧基硅烷、聚二甲基硅氧烷 (PDMS)、γ-(3,4-环氧环己基) 乙基三甲氧基硅烷、(甲基丙烯酸甲酯)、甲基丙烯酸酯共聚物、氨基甲酸乙酯、聚氨基甲酸乙酯、含氟聚丙烯酸酯、聚 (甲基聚乙烯醇甲丙烯酸酯)、聚 (乙二胺二硫代氨基甲酸酯) - 十一烷基三 MAAm- 寝环共聚物 (见 Matsuda, T. 等, Biomaterials(2003), 24, 24, 4517-4527)。聚 (3,4-环氧-环己基甲基丙烯酸酯)、2,2-双 [4-(2,3-环氧氧基) 苯基] 丙烯酸酯、3,4-环氧-环己基甲基丙烯酸酯、(3',4'-环氧环己基甲基) 3,4-环氧环己基甲基丙烯酸酯、二 (3,4-环氧环己基甲基) 乙二胺酯、双酚 A (2,2-双 (p-2,3-环氧氧基) 苯基) 丙烯酸酯) 或 2,3-环氧-1-丙烯酸酯。

[0048] 通过入口和出口，一些培养腔以及设备底板顶壁中的相应数目的四部相互之间流体连通。培养腔例如可通过导管 (conduit) 的方法连接，例如连接 (connect) 两个相邻的培养腔。所述导管可连结 (例如连接) 第一个培养腔的出口与第二个培养腔的出口。在某些实施方式中，各导管 (例如导管门) 可具有跨越其横截面的最大宽度，该最大宽度选自动地约 0.2mm 到约 6mm 的范围内，如约 0.5mm 到约 6mm、约 1mm 到约 5mm、约 2mm 到约 5mm 或约 1mm 到约 4mm。

[0049] 培养腔以及底板顶壁中的四部 (培养腔与底板顶壁中的四部相互间流体连通) 排列为 n 行。整数 n 表示包含在所述设备的底板顶壁中的这些行的数目。所述整数 n 通常选自从 1 到约 30 的范围内，从 1 到约 25、从 1 到约 20、从 1 到约 15、从 1 到约 12、从 1 到约 9 或从 1 到约 5，如例如 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 或 16 行。每一行培养腔和底板顶壁中的每一行四部的范围为从第一个四部 / 培养腔到最后一个四部 / 培养腔。在第一个四部 / 培养腔和最后一个四部 / 培养腔之间，可布置若干额外的培养腔 / 四部，所述培养腔 / 四部串联地连结在一起。各个额外的培养腔因此置于两个培养腔 / 四部之间，并通过各自周壁中的四部入口和四部出口与相邻的培养腔 / 四部连接。第一个四部和最后一个四部之间的培养腔的数目选自 0 到约 100 的范围内，如 0 到约 50,0 到约 40,0 到约 30,0 到约 25,0 到约 20,0 到约 15,0 到约 10 或 0 到约 5。在 n 大于 1 的实施方式中，即在所述底板的顶壁中布置了多行四部的实施方式中，这些行的四部可按照任意合适的阵列布置。正如上文所进一步解释的，该阵列可相当于标准的多孔格式 (format)，如 6-孔、12-孔、24-孔、48-孔、96-孔、384-孔，或 1536-孔格式。如上所示，一行培养腔 / 四部中的培养腔 / 四部布置于共同的平面中。在某些实施方式中，该平面至少本质上平行于由该设备的底板的底面限定的平面。

[0050] 各行培养腔 / 四部的第一个四部 / 培养腔和最后一个四部 / 培养腔连结至 (包括连接至) 端口，所述端口包含在该设备底板的周壁中。通常每个这样的端口仅连接至一个培养腔 / 四部，并因此仅连接至一行为培养腔 / 四部。因此，各行培养腔 / 四部与两个相应的端口相连接，一个端口连接至 (包括连接至) 该行的第一个四部 / 培养腔，一个端口连接至 (包括连接至) 该行的最后一个四部 / 培养腔。各个端口例如可通过导管分别连接至第
一个凹部/培养腔或最后一个凹部/培养腔。因此，所述设备底板的周壁包含总共2n个端口。

[0051] 如上所示，典型地，所述设备的培养腔/凹部包含具有透水性的嵌入物。所述嵌入物可用作筛子。通过孔隙（aperture）（如开口）提供透水性。该开口可具有选自从约0.1mm到约0.6mm范围内的最大宽度；如从约0.2mm到约0.5mm，例如约0.5mm、约0.4mm、约0.3mm、约0.2mm、约0.1mm或约0.05mm。各个开口可选为具有足够小的规格，以防止所选择的细胞从该开口中穿过。也可将各个开口布置在这样的位置：即所述嵌入物的开口朝向所述底板顶壁的凹部的周壁的没有入口或出口的部分。因此，所述底板顶壁的凹部的入口和出口与所述嵌入物的出口被置于不相重叠的位置。在这样的实施方式中，所述嵌入物的开口与所述底板中的凹部的入口和/或出口不能限定连续的通路（即通道）。通常，由所述嵌入物的周壁和底板中的凹部的周壁之间的最大距离决定是否能够防止所选细胞从所述嵌入物的开口通过底板中的各凹部的入口和/或出口。如果这些周壁是紧密配合的，通常可防止大多数的细胞类型从该嵌入物中流出。在某些实施方式中，该嵌入物是透水性的，该嵌入物中具有透水性材料。在某些实施方式中，该嵌入物是透水性材料并具有孔隙。

[0052] 在预先选定的某种程度上，该嵌入物允许流体通过。在运行中，该设备可提供通过n多个凹部/培养腔的连续的流体流。相应地，该流体流能够穿过所述流体透过的嵌入物并由此对培养腔进行灌注。由该流体流提供的特化可允许例如代谢产物、营养物质和溶解氧扩散入及扩散出培养腔。该嵌入物也可用作细胞依附性细胞（anchorage-dependent cells）的支架或粘附基底。该嵌入物例如为可为多孔的。它可具有为改进的传质而选择的预定孔尺寸和预定孔间距。该嵌入物例如可通过径迹蚀刻膜（track-etch membrane）限定，该膜可包含以下聚合物；如聚对苯二甲酸乙二酯（PET）、聚偏二氟乙烯（PVDF）、聚丙烯（PP）、聚醚亚胺（CR-39）或聚碳酸酯（PC）。这样的膜中的孔的形状可由孔径形状控制，例如圆柱形、圆锥形、漏斗形或雪茄形。对径迹蚀刻工艺的概述例如已由Apel（Radiation Measurements（2001）34, 559-566）给出。在某些实施方式中，所述嵌入物可为透水性材料，如聚（1-三甲基硅烷基-1-丙炔）或芳香族聚乙炔，例如聚[1-苯基-2-[p-(三苯基硅烷基)苯基]-1-乙炔]或2-[[p-(三苯基甲硅烷基)苯基]-1-乙炔]。

[0053] 该嵌入物可具有篮形或半球形的形状。该嵌入物被装配到所述培养腔/凹部中，并且具有与培养腔/凹部的周壁和底面（如果存在的话）的形状和规格相匹配的形状和规格。各个嵌入物内是本发明的设备的中间面的凹部。因此，该中间面的凹部可具有与所述底板顶壁的相应凹部的内部形状和内部规格相符合的外部形状和外部规格，该中间面的凹部被装配到该底板顶壁的凹部中。所述中间面面在设备的底板和顶板之间的距离（即厚度）方向上具有提供足够机械稳定性的最大宽度，从而使所述中间面在设备运行过程中能够基本上保持完整无损。该厚度通常选择为足够小以至少基本上不影响、不干扰或至少不阻碍该设备的灌注操作。因此，该中间面的确切厚度通常将取决于该设备的其他规格和参数并取决于该中间面的材料。作为示例性的例子，所述厚度可选自从约0.1mm到约2mm的范围内，如从约0.2mm到约1mm，从约0.3mm到约0.8mm，从约0.1mm到约0.8mm或从约0.3mm到约0.6mm，例如0.4mm或0.5mm。

[0054] 在中间面的凹部使用透水性材料的情况下，本领域技术人员在设计该中间面的时候将会考虑毛细管力的作用。如果整个中间面都是透水性材料，培养基可经由中间面的凹
所述中间面的凹部也可选择为比其所要插入的底板中的凹部具有更小的深度，即在重力方向上（参见上文）具有更小的规格。同样地，所述中间面的凹部也可选择为比其所要插入的底板中的凹部具有更小的宽度，即在与重力方向垂直的方向上（参见上文）具有更小的规格。在这样的实施方式中，空隙可保留在所述培养腔/凹部的周壁与所述中间面的凹部限定的嵌入物之间和/或所述培养腔/凹部的底面（如果存在的话）与所述中间面的凹部限定的嵌入物之间。如下所述，通过将细胞接种于该中间面的凹部上以对细胞进行培养。因此，本发明设置的框架包含可设置的孔深度，从而使得能够对细胞表面上的流体导致的剪切应力进行微调。通过选择所述中间面凹部的希望的深度和宽度（相对于底板顶壁的凹部的深度和宽度），可调节其中培养有细胞的孔的有效孔深度和孔直径。这种调节使得能够对在培养腔中培养的细胞的细胞表面上的流体所导致的剪切应力进行操控和微调。为了这样的调节以及在这方面的比较，可使用和/或评价具有不同中间面的相同底板或具有不同底板的相同中间面。

该设备的中间面具有多个凹部，所述凹部被装配到所述底板顶壁的多个凹部中。在一个实施方式中，该设备中间面中的凹部数目与底板顶壁中的凹部数目相等。在该实施方式中，底板顶壁的各凹部都包含一个装配在其中的中间面的凹部。如上所示，所述中间面的凹部的规格大约等于或小于所述底板顶壁中的凹部的规格。在某些实施方式中，该设备中间面中的凹部数目少于底板顶壁中的凹部数目。在该实施方式中，底板顶壁只有凹部（少于底板顶壁的凹部总数）包含中间面的凹部。所述中间面的凹部被布置为m行，m为等于或小于n（上文中的n）的整数。因此，根据n的值，m可选自从1到约30的范围内，如从1到约25、从1到约20、从1到约15、从1到约12、从1到约9或从1到约5，如例如1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16行。

包含有所述底板顶壁的中间面凹部的行可具有在从1到约200的范围内选择的凹部数目。如上所述，通常各凹面具有连续至底板顶壁中的第一端口的第一个凹面和连续至该端口的第二个凹面。只要第一个凹面和第二个凹面为不同的凹面，各个凹面的凹面数为2个或更多个。在某些实施方式中，一行凹部中的凹部数目因此可选自从2到约200的范围内。在某些实施方式中，所述底板顶壁的各凹面中间的凹面数具有独立选择的数目为o的凹面，其中o为整数。各整数例如可被区分为o、o’、o”等。该整数o可为1、2或更大。举例来说，o可独立地选自从1到约200的范围内，包括2到约200、2到约150、2到约150、2到约120、2到约100、2到约100、2到约80、2到约60、2到约50、2到约50、2到约40、2到约40、2到约30、2到约30、2到约25、1到约25、2到约20、2到约20、2到约20、2到约12或1到约12。在一个实施方式中，底板顶壁中的所有行凹面的整数o是相等的。

中间面的各凹面凹面数可以等于或小于底板顶壁的相应行凹面凹面数，并且中间面的各凹面凹面数被装配到所述相应行的凹面凹面中。在某些实施方式中，中间面的m行凹面的至少一凹面凹面数与底板顶壁的n行凹面中的至少一行凹面凹面数相等。在一个实施方式中，中间面的至少一凹面凹面数与底板顶壁的相应行凹面中的凹面凹面数相等，并且中间面的该行凹面被装配到所述相应行的凹面凹面中。在该实施方式中,
所有由所述底板顶壁的该至少一指示图所限定的培养腔都具有嵌入物，所述嵌入物是由中间面的相应凹部所限定。包含有所述中间面中的劣势凹部的行并具有为从 1 到约 200 的范围内的选择的凹部数目。在某些实施方式中，在中间面中的劣势凹部具有独立选择的数目为 p 的凹部，其中 p 为整数。各整数例如可被区分 p、p’、p”等。该整数 p 可为 1、2、3 或更大。举例来说，p 可独立地选从 1 到约 200 的范围，包括 2 到约 200、2 到约 150、1 到约 150、2 到约 120、2 到约 100、1 到约 100、2 到约 80、2 到约 60、2 到约 50、1 到约 50、2 到约 40、1 到约 40、2 到约 30、1 到约 30、2 到约 25、1 到约 25、2 到约 20、1 到约 20、2 到约 12 或 1 到约 12。在一个实施方式中，中间面中的所有凹部的整数 p 是相等的。在一个实施方式中，中间面中的所有凹部的整数 p 与底板顶壁中的所有行凹部的整数 o 相等，所述中间面凹部被装配到所述底板顶壁的凹部中。

[0059] 当该设备中间面的凹部通常为透水性材料和透气性材料时，中间面上的剩余部分（即不是凹部并且不包含凹部的局部）可为任意希望的材料。在某些实施方式中，该剩余部分同样为透水性材料和透气性材料，在一个实施方式中，该剩余部分的材料与中间面凹部的材料相同。在另外的实施方式中，该剩余部分是至少基本上不是透水性和透气性的固体材料。然而，中间面的任意部分通常是在该设备中将要进行的整个培养过程期间能够保持完整无损的材料。

[0060] 在一个实施方式中，中间面的捕凹部都是相同的材料。在这些实施方式中的一些实施方式中，整个中间面都是相同的材料。作为示例性的例子，中间面或至少其凹部可包含氮化硅 (Si₃N₄) 或由氮化硅 (Si₃N₄) 形成的，所述氮化硅 (Si₃N₄) 例如是如前所述的超薄膜加工的多孔氮化硅膜（Zhang 等，2008，上文中）的形式。该中间面的表面，或至少其凹部的表面可通过所选的处理方式进行表面改性。作为示例性的例子，例如为了提供增强的细胞附着，可用半乳糖配体对相应的微加工的氮化硅 (Si₃N₄) 膜进行表面改性。

[0061] 只要该设备的中间面的形状和规格允许以将所述中间面位于该设备的底板顶壁和顶板之间的层叠形式紧密组装，该设备的中间面便可具有任何希望的形状和规格。该中间面例如具有与底板顶壁的形状和规格匹配的形状和规格。在某些实施方式中，在由培养腔的行限定的平面中，中间面具有比底板小的规格。在某些实施方式中，中间面可具有以下述方式与底板顶壁的形状和规格相适应（例如相匹配）的形状和规格；所述中间面的所有凹部装配到底板顶壁的凹部中。在所述中间面的至少一行凹部被装配到具有相等数目凹部的底板顶壁的至少一行凹部中的实施方式中，该中间可具有以下述方式与所述底板顶壁的形状和规格相适应（例如相匹配）的形状和规格；使所述中间面的凹部能够装配到其将要插入的底板顶壁的至少一行的凹部中。

[0062] 与中间面中的凹部不同的中间面的一部分或多部分可具有与各凹部相同的材料或不同的材料。在中间面中包含多个凹部的实施方式中，所述与中间面中的凹部不同的中间面的一部分或多部分可包含该中间面的单个凹部间的区域。在某些实施方式中，所述与中间面中的凹部不同的中间面的一部分或多部分至少基本上是平坦的。该平坦的中间面可进一步以如下的取向被布置在组装的设备中：当所述设备被置于地面、桌子等上并在运行中时，所述取向限定了垂直于重力方向的平面。当所述设备在运行中时，该平面可置于至少基本上平行于地面表面的位置。

[0063] 中间面凹部的材料通常被选择为使得细胞能够在所述底板的凹部中生长。该中
间面的凹部对于水、营养物质和气体来说是可透过的。因此，一旦设备在使用中并且流体（如血浆或细胞培养基）流过该设备的底板上的凹部，保持（kept）在这些凹部中的细胞可与连续供应的营养物质和氧气相接触。另一方面，该中间面的凹部的材料能够将细胞维持在凹部。作为示例性的例子，当中间面的凹部为多孔材料时，通常选择足够小的孔尺寸，以防止细胞被冲地穿过中间面。因此，该中间面的凹部材料和/或对其进行的任何处理（包括例如涂层）亦可被选用来防止所选细胞类型的细胞主动地迁移通过所述中间面。因为不存在通过开口或出口可能将细胞冲洗出相应的细胞培养腔的风险，这使得所述底板凹部的开口或出口可为任意期望的设计。

【0064】本发明设备的具有可移除的中间面的凹部的设计使该中间面能够被设置为该设备的可重复使用的组件或一次性使用的组件。该设计也使得能够将细胞从本发明的设备转移至具有相应孔架构的任意其它平台，如可商购的分析或测试工作站，例如液体处理机器人或自动机器人式液体处理/分析系统。如在自动筛选系统中（例如在HTS和HTS中）常规使用的一样，各个平台可以基于具有96孔、384孔、1536孔或3456孔的微孔板的架构。因此本发明的设备可用来培养细胞和以随时可测的模式提供培养的细胞，而不必在物理上分别转移细胞。这防止了对培养物的干扰和对它们存储能力的削弱。该中间面非常适合于发明的设备中的串行及并行流动灌注。当所述凹部/培养腔如匹配常规的96孔板的位置时，该中间面可被转移至机器人系统上的普通96孔板或进一步的评价。利用各机器人系统可进行任意的冲洗或孵育步骤，使得在进行分析前不需要可能削弱细胞存活能力的额外时间。因此，该中间面可用于提供可商购的系统和本发明的设备之间的纽带。

【0065】如上所述，顶板可逆地密封至该设备的中间面。为了该目的，密封流体（如凝胶或液体）例如如在例如由温度驱动的反应中硬化（cured）或经过其它的处理。密封材料可包含由光敏和/或热敏聚合物前体衍生而得的聚合物。中间面和顶板之间的密封及底板和中间面之间的密封是可逆的，因为所述密封可被解除。也可通过中间面和顶板的规格及表面几何形状的足够精确的匹配来实现所述密封。相适应地，中间面和底板间也适用于利用上述相同的匹配方式实现密封。如上所述，在某些实施方式中，可通过适当选择包含于中间面和/或顶板中的材料而实现所述密封。在某些实施方式中，可将诸如垫圈（例如O形圈）等密封工具形式的其它实体置于外壳中。这样的密封工具可用以提供合适的刚性或半刚性材料。在某些实施方式中，密封材料可用来提供希望的紧紧密封，例如，可硬化以形成或维持紧密密封的例如凝胶或液体形式的密封流体。作为示例性的例子，密封材料可包含由光敏和/或热敏聚合物前体衍生而得的聚合物。因此，将各自的前体置于顶板和中间面之间的接触面后，可通过聚合作用形成所述密封材料。只要所述密封本身可被解除，相应的密封过程才具有可逆性或不可逆性。作为例子，不经氧化处理，PDMS形成具有平滑表面的非共价可逆密封。在某些实施方式中，各密封可通过粘合剂进行。可使用与该设备在细胞培养中希望的用途相容的任意粘着剂。

【0066】顶板可具有任意的内部或外部几何形状并包含任意希望的材料。例如，它可为弯曲的、圆的、平的或平坦的。它可为弧形（如凹面或凸面）、波形，或包含凹痕、凹角或其他几何形状的元件。在典型的实施方式中，至少与设备的中间面相接触的顶板下表面至少基本上为平的（包括平面）并可用来限定直壁。通常，顶板至少是基本上不透水的材料。在某些实施方式中，该顶板至少是基本上不透水且不透气的材料。该顶板的尺寸
和规格使它能以如下程度接触中间面：所述顶板覆盖并封闭了中间面的所有凹部。通常，所述顶板的尺寸和规格使它能以如下程度置于底板上方：所述顶板覆盖并封闭了底板的所有凹部。因此，由于底板的所有凹部通常包含于培养腔内，底板凹部的所有周壁通常限定了培养腔的周壁。

[0067] 所述顶板通常具有朝向周围环境的顶壁和朝向中间面的底壁，所述顶壁可作为上表面，所述底壁可作为下表面。在某些实施方式中，该设备的顶板（通常为可移除的）具有一个或多个凹部。这样的一个或多个凹部可被置于所述顶板的底壁（下表面）中。当设备处于组装状态时，所述凹部通常朝向中间面。该凹部可具有周壁。各个凹部也可具有底面。在某些实施方式中，当设备被布置在底板朝向重力方向（参见上文）的位置时，该凹部典型地位于大约与重力相反的方向上跨越顶板最大宽度的约 1/2、约 2/3、约 3/4 或更多。在某些实施方式中，顶板中的凹部的各个底面可由顶板的顶壁限定。在这些实施方式中，顶板中凹部的底面可为透气性材料。

[0068] 在某些实施方式中，这些凹部被置于与中间面中凹部的位置相对应的位置，所述中间面中的凹部被装配到底板的凹部中（上述中）。在某些实施方式中，包含于顶板中的所有凹部被置于与底板中凹部的位置相对应的位置。在某些实施方式中，顶板中的凹部数目与中间面中的凹部数目相等。在一个实施方式中，顶板中的凹部数目与中间面中的凹部数目和底板中的凹部数目是相等的。如果该设备被置于顶板朝向大约垂直于重力方向的位置，顶板的凹部在垂直于重力方向的该平面中具有特定的最大宽度。在某些实施方式中，该凹部的最大宽度可约等于或小于在该平面中的底板中的凹部的最大宽度。底板中的相应凹部的周壁、顶板中的相应凹部的周壁、以及底板中的凹部的底面和顶板中的凹部的底面（如果存在的话）可用于限定如上所述的培养腔。由设备顶板中的凹部限定的该培养腔的部可用于限定培养腔的可移除的顶板。在各个培养腔中，该设备的中间面的凹部可按照如下方式进行装配：中间面的凹部被装配到底板顶壁的凹部中。因此中间面的凹部限定了培养腔中的嵌入物（上文中）。

[0069] 在某些实施方式中，顶板的底壁（下表面）至少基本上是平坦的。该顶板的这种平坦的底壁可进一步以如下取向被布置在组装的设备中：当该设备位于地面、桌子等上并在运行中时，所述取向限定了垂直于重力方向的平面。当该设备在运行中时，可将该平面被置于至少基本上平行于地球表面的位置。在这些实施方式中，上述在大约垂直于重力方向上的凹部的最大宽度是指该设备顶板的底壁平面中的最大宽度。在一个实施方式中，底板的顶壁和顶板的底壁至少基本上是平坦的并限定了平行布置的平面。在该实施方式中，所述中间面是平坦的并且设置在底板的顶壁和顶板的底壁之间。因此，在该实施方式中，所述中间面同样至少基本上是平坦的并限定了与顶板的底壁和底板的顶壁的平面平行布置的平面。

[0070] 如上所述，对于细胞或组织培养，在中间面的多个凹部中接枝细胞或放置组织。如上所述的，中间面的这些凹部可被用来限定设备的培养腔的嵌入物。通常在通过将顶板密封至中间面上面将设备完全组装之前，将细胞接种到这些嵌入物中或将组织放置到这些嵌入物中。例如，可通过分配（dispensing）接种细胞，这可通过使用分配机器人或移液机器人来完成。在组织样品被放置到凹部中的情况下，该组织样品的规格可被选为至少基本上与其将要放入的凹部的规格匹配。
因此，培养细胞和/或组织的方法包括设置如上所述的底板。设置如上所述的中间面，并将该中间面安装到上述底板的顶壁上。通过将中间面安装到底板的顶壁上，中间面的凹部被装配到底板的顶壁的凹部中。可提供细胞/组织的培养基，并将其置于由中间面的多个凹部中接种细胞的凹部限定的孔中。可将任意希望的细胞或组织类型接种/置于所述孔中。细胞例如如可为细胞系的细胞或分离自周围环境的细胞。该细胞可从生物体中得到。在某些实施方式中，所述细胞是从生物体分离而得。在某些实施方式中，所述细胞是从生物体直接分离而得，而在另外的实施方式中，将所述细胞从生物体分离后进行了培养生长，然后才将它们置于本发明的设备中。在某些实施方式中，所述细胞为动物细胞，例如哺乳动物种（包括哺乳动物种）的细胞；两栖动物（例如包括青蛙、蟾蜍、火蜥蜴（salamanders）或蝾螈（newts））的细胞；无脊椎动物种的细胞或植物细胞。哺乳动物的实例包括但不限于大鼠、小鼠、兔子、豚鼠、仓鼠、刺猬、鸭嘴兽、美国鼠兔、猕猴、狗、狐猴、山羊、猪、负鼠、马、大象、蝙蝠、美洲旱獭、猩猩（orang-utan）、恒河猴、绒毛猴（woolly monkey）、猕猴、黑猩猩、猕猴（tamarin）（绒须猴梢猴（saguinus oedipus）、指猴（marmoset）或人类。所述细胞例如如可为组织（如器官或其中的部分）的细胞。各器官的实例包括但不限于肾上腺组织、骨骼、膀胱、脑、软骨、结肠、眼、心脏、肾脏、肝脏、肺脏、肌肉、神经、卵巢、胰腺、前列腺、皮肤、小肠、脾脏、胃、睾丸、胸腺、肿瘤、血管或子宫组织、或结缔组织。在某些实施方式中，所述细胞包含肝细胞。可被接种的细胞包括贴壁依赖性细胞和悬浮生长的细胞。在某些实施方式中，用于贴壁依赖性细胞的合适的贴壁基底沉积于培养腔内腔的一部分。为维持细胞与细胞培养基的充分接触，预先测试在选定的中间面凹部中可耐受多大含量的贴壁基底是有利的，所述含量的贴壁基底不会显著地影响营养物质/氧气供应或不会在超出可接受水平外影响细胞的存活力。通常，在接种细胞前首先沉积贴壁基底。如上所述，贴壁依赖性细胞也可与配体（如半乳糖配体）一块提供，以支持细胞附着。这些配体可被直接固定在中间面内，从而免除了任意贴壁基底的使用（参见上文中的Zhang等，2008）。在某些实施方式中，将相同类型的细胞接种到所有接种细胞的孔中。在某些实施方式中，将不同的细胞接种到不同的孔中。

为避免细胞培养基的流失，底板的周壁中的端口可以是闭合的。可将细胞接种于或将组织放置于中间面的任意希望数目的凹部中（包括中间面的所有凹部）。可设置如上所述的顶板并将其安装到中间面上。因此，如上所述的那样，中间面可移除地设置在底板和顶板之间。如上所述的那样，顶板可被可逆地密封至中间面。同样地，该中间面可被可逆地密封至底板。从而可组装成如上所述的设备。如上所述的那样，顶板的一部分和底板顶壁的凹部限定了培养腔。各培养腔具有由凹部限定的周壁以及由顶板的一部分限定的可移除的顶部。

底板周壁的端口可被连接至流体储存器。所述端口也可被连接至泵（如蠕动泵），从而例如通过提供连续的营养物质流和氧气流以维持细胞和/或组织。

各个设备可进一步包含提供希望的功能（如在例如温度、大气成分和湿度方面维持合适的周围环境）的装置。因此，所述设备中可包含用于监测如pH、温度、氧气水平或所选代谢物水平的相关数据的传感器，包括纳米传感器或微传感器。也可将该设备包含于细胞培养系统中，该系统还可包含用于机械性血液过滤（包括通过例如吸附作用，血液过滤和/或渗滤进行的血液纯化）的装置。作为示例性的例子，该系统可包含用于连续血过滤的透
析模块。

[0075] 一旦该设备完成组装，介质流便可通过该设备。该介质能够通过底板的周壁端口（上文中）进入该设备。如上所述，该设备的底板端口可流体连接至流体源（如介质源）。由于底板顶壁中的凹部是成行排列并通过入口和出口彼此连结，所述凹部是串联连结的。因此，利用本发明的设备，能够使带有介质的串行流从一个凹部/培养腔流至后续的凹部/培养腔。在 n 大于 1（参见上文）的实施方式中，底板的顶壁中平行地布置着若干行凹部/培养腔。这种设计使介质能够在不同的凹部/培养腔的凹部/培养腔中并行流动。底板的顶壁中的各凹部和各凹培养腔具有连接至第一端口的第凹部及连接至第二端口的最后一个凹部（上文中）。如果允许介质进入第一端口，它将由此流过该行培养腔并第三端口流出设备。因此，对于所述 n 行中的各凹，可允许并单独控制穿过 n 行培养腔的介质流，所述培养腔置于底板中的凹部限定。因此，在各行凹部/培养腔中的流速，包括流动方向可被单独控制，并可独立于可于该设备中的其他行凹部/培养腔的流速。因此，可为本发明的设备的中间面凹部中培养的细胞提供连续的体外灌注。

[0076] 为了更容易的理解本发明并产生实际效果，现在将通过下面的非限制性实施例描述具体的实施方式。可以理解，可进行细节的改变而不脱离本发明的范围。

[0077] 实施方式

[0078] 基于微加工的多孔 SiNx 膜的三明治 (Si,Nx-SC) 中的肝细胞形态稳定性

[0079] 将原代大鼠肝细胞接种至固定化有半乳糖的 PET 膜上，培养 24h 后用固定化有半乳糖的多孔 SiNₓ膜覆盖（图 1）（Zhang, S, Xia, L 等, Biomaterials (2008) 29, 2993-4002）。在整个 6 天的培养期间，在固定化有半乳糖的基底上培养的细胞（图 2A-图 2C 和图 2D-图 2F）相比，在当前的三明治结构中培养的肝细胞维持了更为稳定的形态（图 2G-图 2I）。稳定的细胞形态允许对细胞功能进行更精确、更一致的分析，并允许在不同的培养时间点进行药物测试。

[0080] 96 孔生物反应器装置的设计和制造

[0081] 利用 SolidWork 对 96 孔生物反应器装置建模，该装置具有三个部分（compartment），用于灌注路径连接的底部灌注生物反应器，用于细胞培养的筛板和用于密封整个组装片的上部锁定板（图 4-图 6）。在筛板和上部锁定板之间放置有氧透过性膜，从而使足够的氧气能够到达各孔中的肝细胞。底部灌注生物反应器以及筛板中的孔通过 3mm 直径的孔相连接，该孔洞用作介质灌注通道。可通过蠕动泵的抽吸作用将培养基从介质储存器中串行或并行地灌注到各孔（图 3）。

[0082] 不同流速下生物反应器中的流型（flow profile）和氧气体图

[0083] 为选择用于在 96 孔生物反应器中运行的灌注的最佳流速，我们模拟了在 0.1、0.06、0.03 和 0.015ml/min 的不同流速下反应器中的流型（速度分布和壁面剪切应力分布）（图 8 和图 9）。模拟的结果显示出在所有流速下产生的壁剪切应力都比临界值（0.033Pa）低得多。因此，在所有 4 个被测流速下产生的壁剪切应力对细胞存活活力是无害的。

[0084] 用于灌注培养的流速的优化

[0085] 为进一步优化灌注培养中的流速，在不同流速（0.015, 0.03, 0.06 和 0.1ml/min）下进行灌注达 6 天，在灌注结束时研究细胞存活活力。以下简要地描述活细胞和死细胞染色
的过程，用 PBS 溶液漂洗细胞，并根据供应商提供的标准方法，用钙黄素 AM (Molecular Probes, USA) 和 PI 在 37℃ 下孵育细胞 30 min。然后用 PBS 溶液漂洗细胞并用封片剂 (Dako, Denmark) 封片，以用于共聚焦观察。在 6 天的灌注后，除在 0.1 ml/min 的流速下灌注的细胞培养物外，在其它流速下灌注的细胞培养物仍是存活的（图 10）。

96 孔生物反应器中的大鼠肝细胞的细胞功能

比较在 0.015 ml/min, 0.03 ml/min 和 0.06 ml/min 的流速下的培养的肝特异性功能，以筛选用于灌注培养的最佳流速。图 11 显示出在不同流速下的 96 孔生物反应器中培养的肝细胞的尿素生产。将静置条件下的胶原三明治 (sc-s) 和静置条件下的 SiN Microsoft Word Font SC (sg-s) 作为对照。该结果显示出灌注下培养的肝细胞的尿素生产比静置条件下培养的肝细胞的尿素生产高很多。目前的研究显示出，经过 6 天的培养，在 0.015 ml/min 的流速下的灌注肝细胞培养中观察到的尿素生产水平始终比在其它流速下的灌注肝细胞培养中的尿素生产水平高。

在优化的灌注培养中的肝细胞的长期功能维持

优化实验的结果显示，在 6 天的培养期中，在 0.015 ml/min 的流速下的灌注肝细胞培养中观察到的尿素生产水平始终比在其它流速下的灌注肝细胞培养中的尿素生产水平高，此进，进一步的实验都是在 0.015 ml/min 流速的灌注下完成。将培养期延长至 12 天，利用静置的胶原凝胶三明治和静置的 SiN Microsoft Word Font SC 作为对照研究肝特异性功能（包括尿素生产 CYP450 (1 相) 酶促活性）。从第 2 天到第 6 天，SiN Microsoft Word Font SC 灌注中的原代肝细胞的尿素生产为～200 μg/百万细胞/天，在第 8 天和第 10 天尿素生产有所降低，但是在第 12 天再次恢复至～200 μg/百万细胞/天（图 12）。而在整个培养期内，静置的胶原三明治和静置的 SiN Microsoft Word Font SC 中肝细胞产生的尿素低于 50 μg/百万细胞/天，在第 12 2 天恢复至～200 μg/百万细胞/天。通过与代谢底物 3- 氯基-7- 乙氧基香豆素 (CCE) (Molecular Probes, OR, USA) 进行孵育，对肝 CYP1A2 酶促活性”CYP1A2 酶促活性”。(CHC) 来测定 CYP450 酶促活性。SiN Microsoft Word Font SC 灌注中的肝细胞的 CHC 生产为～40 μmol/百万细胞，随后降至～15 μmol/百万细胞，但又恢复至～40 μmol/百万细胞。在第 8 天，CHC 的生产显著提高，并在以后的灌注培养期维持在～100 μmol/百万细胞的水平（图 13）。而对照组的 CHC 生产处在低于～20 μmol/百万细胞的水平。这显示出肝特异性功能（尤其是 CYP1A1 和 CYP1A2 酶促活性）在 SiN Microsoft Word Font SC 灌注中维持在较高的水平。

96 孔生物反应器的不同孔间培养的细胞均一性

对生物反应器的不同孔间培养的细胞均一性进行了研究。因为所述孔是串联连接的，分析了在不同孔中培养的细胞在营养物质传输和存活能力上是否显示出任何梯度效应。

通过向介质中灌注荧光探针研究了串联的不同孔中的质传效率（图 14A）。通过各细胞面积的荧光强度指示所述质传效率。数据显示各孔间在质传效率方面无显著的差异。因此，通过灌注入培养物的荧光探针标记细胞的荧光强度测定的质传效率在所有不同的孔间都是相似的。在 2 天的灌注培养后，通过对细胞进行 MTS 分析研究了在串联的不同孔中培养的细胞的细胞存活率（图 14B）。数据显示出各孔间在细胞存活率方面无显著性差异。因此，不同孔中的细胞存活率是可比的。这显示出所述生物反应器是均一的。对于如药物测试目的各种应用而言，细胞的均一性使得能够对不同孔间的结果进行比较。
为检验串联连接的不同孔中传质的均一性，首先，用20 μM的CellTracker Orange（Invitrogen）（红色通道）对在生物反应器中培养的所有细胞进行标记。然后将所述细胞转移至生物反应器中，并用含有3 μM的CellTracker Green（Invitrogen）（绿色通道）的介质进行灌注培养。在3 h后，将来自于不同孔的细胞固定，并利用Olympus FV300共聚焦显微镜获得Z-stack图像。然后进行图像处理以对传质效率进行定量。为鉴定各图中细细胞占据的阳性面积，将红色通道提取至单独的文件夹中并利用低通滤波器去除噪音。随后，通过阈值算法根据各图生成掩模(mask)。一个Z-stack图像的总面积被定义为掩模图像中的所有阳性面积的总和。通过在细胞中发现的对应于绿色通道的总强度的CellTracker Green的量标示营养物质传质。总强度被定义为原始图像的阳性面积中的所有像素强度的总和。然后，将各孔中的传质效率定义为（总的绿色通道强度/总的红色通道面积）。

为检验不同孔间的细胞存活率的均一性，将细胞在生物反应器中培养2 d。之后，将它们从生物反应器中移出，并转移至标准的96孔板。利用CellTiter 96 Aqueous One Solution Reagent（Promega, USA），通过MTS分析测定各孔的细胞存活率。

药物诱导的肝细胞毒性测试

利用在本发明的设备中培养的暴露于APAP的Si₃N₄-SC中的原代大鼠肝细胞进行药物诱导的肝细胞毒性测试。观察到Si₃N₄-SC灌注对药物诱导的肝细胞毒性显示出较高的敏感性（图15）。

用对乙酰氨基酚（APAP）（Sigma）处理在Si₃N₄-SC中培养的肝细胞，以评价它们对药物诱导的肝细胞毒性的不同响应，并以在静置的胶原凝胶三明治或静置的Si₃N₄-SC中培养的肝细胞作为对照。将Si₃N₄-SC中的肝细胞和两种静置三明治结构中的肝细胞暴露至药物48 h，利用CellTiter 96 Aqueous One Solution Reagents（Promega, USA），通过MTS分析测定细胞存活率。

机器人液体处理器中IC₅₀值的测定

利用在上述生物反应器中培养的人类肝癌细胞系C3A，利用机器人液体处理器测定IC₅₀值（图16）。结果显示Si₃N₄-SC灌注中应答APAP诱导的肝细胞毒性的IC₅₀值较低。更显著地，这套结果证实了本发明的生物反应器设计适合于标准的机器人液体处理器的使用，后者常用于对具有希望的药学活性的候选药物进行高通量筛选。它也证实了其他细胞类型（如人类肝细胞系）可在本发明的生物反应器中进行培养。

结果

壁剪切应力

图11列表显示了肝细胞培养的表面（该模型的上、下表面）上的平均壁剪切应力水平和最大壁剪切应力水平。将肝细胞培养允许的≤0.033 Pa的值作为临界阈值（Park, J等., Biotechnol Bioeng (2008) 99, 2, 55–67），由1ml/min和5ml/min的流速生成的壁剪切应力水平都在可接受的范围内。另一方面，由10ml/min的流速在细胞表面生成的最大剪切应力水平对肝细胞培养可能是有害的。图7显示出在1ml/min时跨越两个培养板之间的流的表面的壁剪切应力的等值线图。当流体进入和流出流容量时在流模型的入口和出口区分别都观察到了大约0.0048 Pa的提高的壁剪切应力。当流体在两个板之间流动时，所述壁剪切水平降低至约0.0016 Pa。
【0103】肝细胞的存活能力和功能

【0104】在本研究中，通过对大鼠肝细胞进行 2.12ml/min 下（相当于 0.0042Pa 的壁
剪应力）的 10 天的灌注培养，评价本发明的叠板 (stack-plate) 设备。已说明
这个剪应力水平远低于不利于长期维持肝细胞培养的临界阈值 (上文中的 Park 等,
2008)。考虑到生物反应器的串流结构和肝细胞的高氧消耗率，将所述生物反应器中的
入口氧分压保持在～466mmHg 的提高的水平 (上文中的 Park, 等, 2008; Curcio E 等,
9 显示出在 24h 的预灌注静置稳定化后，胶原原层覆盖前的 2D 单层肝细胞的形态。

【0105】图 10 中显示了经 10 天灌注后的肝细胞的活细胞染色和死细胞染色。通过钙黄绿
素 AM 对活细胞进行染色并以明亮色调 (绿色) 示出，同时通过 PI 对死细胞的细胞核进行
染色并以红色示出 ; 静置培养 (A), 灌注培养中的底层 (B), 灌注培养中的中间层 (C) 和灌
注培养中的顶层 (D)。经 10 天的灌注后，生物反应器中 3 个不同位置的所有的肝细胞几乎
都能存活。图 14 显示出在 10 天的灌注后，通过 MTS 分析所监测的肝细胞的线粒体脱氢酶
活性 (%)。利用静置培养的活性对该生物反应器中的三明治灌注培养的活性进行标准化。
MTS 分析常被用作细胞存活力的指示物。与静态培养的存活力 (100%) 相比，灌注培养显
示出 194% 的存活力。这些结果证实了，与静置培养中的细胞存活力相比，如所述生物反应
器的本发明的系统中的灌注肝细胞培养可维持高的细胞存活力。图 15 显示出经 10 天的
灌注后，在生物反应器中的各三明治培养的脱氢酶活性。由此可看出，各灌注培养板具有比在
静置培养中观察到的更高的存活力。

【0106】在目前的研究中，用尿素的合成作为灌注培养中的肝细胞的代表性的区别功能。
图 16 比较了灌注培养和静置培养的每日尿素合成速度。已表明灌注培养的标准化的尿
素合成速度始终比静置培养的尿素合成速度高。在灌注培养的前两天，观察到尿素合成从
73 μg/×10^6 细胞/天到 31 μg/×10^6 细胞/天的显著降低，随后从第二天到第四天缓慢降
低，最终从第五天到第十天稳定在 10-20 μg/×10^6 细胞/天。对于静置培养，在第五天后，
尿素合成速度低于 5 μg/×10^6 细胞/天。

【0107】结论

【0108】公开了一种将表面改性的微加工三明治培养技术与新型的 96 孔灌注装置整合到
一起的独特和灌注生物反应器系统，该系统非常适合于在药物测试应用中使用。上述数据
证实了所述三明治灌注系统为原代肝细胞或其他上皮细胞的培养提供了类似于体内的环
境，以增强并长期维持所述细胞的性能和存活力。

【0109】本领域技术人员很容易理解，本发明非常适于实现其目的并得到上述结果和优点
及其固有的结果和优点。此外，对本领域技术人员来说显而易见的是，可对本文公开的发明
进行各种取代和改变而不脱离本发明的范围和精神。本文所述的组合物、方法、程序、处理、
分子和特定的化合物是目前优选的实施方式的代表，均为示例性的，并不旨在用于限制本
发明的范围。本领域技术人员能够想到其变化和其它用途，这些变化和用途包含在权利要
求书的范围所限定的本发明的精神内。在本申请文件中所列举或讨论的先前公开的文件无
需被认为是承认该文件是本领域现有技术的一部分或是公知常识。

【0110】本文所述的发明可适宜地在缺少本文未特别公开的任意单个要素或多个要素、单个限制因素或多个限制因素时加以实施。因此，例如，术语“包含 / 包括 / 含
有”(comprising/including/containing) 等应该开放地及非限制性地理解。此外，本文使用的术语和表述被用作描述性的术语，而非限制性的术语，所使用的术语和表述的使用并不旨在排除这些术语和表述显示或记载的特征的任何等同特征或其一部分。但是应该认识到，在本发明请求保护的范围内的任何修改都是可以的。因此，应当明白，尽管已通过优选的实施方式和可选的特征具体公开了本发明，本领域技术人员仍可以采用此处所公开的其包含的本发明的修改和变化，并且这些修改和变化被视为落入本发明的范围内。

【0111】本文已经对本发明进行了宽泛和一般性的描述。落入该一般性公开内容的每种范围较窄的形式和下位群组也构成本发明的一部分。这包括了利用但书和否定式限定从大类中排除任何主题的本发明的上位说明，无论本文中是否对所排除的材料进行了具体叙述。

【0112】其它实施方式也落入下述权利要求和非限制性实施例内。此外，一旦本发明的特征和方面是以矩阵列举的方式进行描述，本领域技术人员将认识到，本发明也因此将以矩阵列举中任意的单个成员或成员亚组的方式进行描述。
图 1
图 7

图 8

剪切应力（等值线 1）[Pa]
图 9
图 10
图 10
图 13

图 14A
图 14B
图 15
图 16