

(51) International Patent Classification:

C10G 75/00 (2006.01) *C10G 47/32* (2006.01)
C10G 31/08 (2006.01) *C10G 9/16* (2006.01)
C10G 45/26 (2006.01) *C10G 45/72* (2006.01)
C10G 49/00 (2006.01) *C10L 10/04* (2006.01)

c/o Saudi Arabian Oil Company, Post Office Box 5000, Dhahran 31311 (SA). **ALABDULHADI, Abdullah T.**; c/o Saudi Arabian Oil Company, Post Office Box 5000, Dhahran 31311 (SA).

(21) International Application Number:

PCT/US2016/066132

(74) Agents: **MOLLOY, Matthew A.** et al.; Dinsmore & Shohl LLP, One South Main Street, Fifth Third Center - Suite 1300, Dayton, Ohio 45402 (US).

(22) International Filing Date:

12 December 2016 (12.12.2016)

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(25) Filing Language:

English

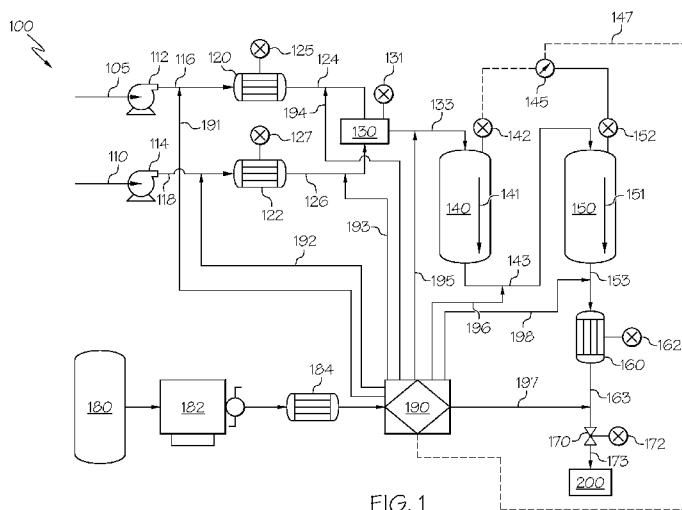
(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, ZA, ZM, ZW).

(26) Publication Language:

English

(30) Priority Data:

62/267,401 15 December 2015 (15.12.2015) US


(71) Applicant: **SAUDI ARABIAN OIL COMPANY** [SA/SA]; Post Office Box 5000, Dhahran 31311 (SA).

(71) Applicant (for AG only): **ARAMCO SERVICES COMPANY** [US/US]; 9009 West Loop Road, Houston, Texas 77210-4535 (US).

(72) Inventors: **CHOI, Ki-Hyouk**; c/o Saudi Arabian Oil Company, Post Office Box 5000, Dhahran 31311 (SA). **ALQARZOUH, Muneef F.**; c/o Saudi Arabian Oil Company, Post Office Box 5000, Dhahran 31311 (SA). **LEE, Joo-Hyeong**; c/o Saudi Arabian Oil Company, Post Office Box 5000, Dhahran 31311 (SA). **AL-OTAIBI, Bader M.**;

[Continued on next page]

(54) Title: SUPERCritical WATER PROCESSES FOR UPGRADING A PETROLEUM-BASED COMPOSITION WHILE DECREASING PLUGGING

(57) Abstract: Embodiments of processes for upgrading a petroleum-based composition while decreasing plugging comprise mixing a supercritical water stream with a pressurized, heated petroleum-based composition in a mixing device to create a combined feed stream, and introducing to a supercritical upgrading reactor system are provided. The processes also comprise cooling the upgraded product in a cooling device, and decreasing the pressure of the cooled upgraded product in a pressure reducer. To reduce plugging, the processes also comprises injecting plug remover solution into one or more of the following injection locations: an injection port on a process line connecting the mixing device with the upgrading reactor system; an injection port on a process line connecting the upgrading reactor system with the cooling device; or an injection port on a process line connecting the cooling device with the pressure reducer.

SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17(iii))

Declarations under Rule 4.17:

- as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii))

Published:

— with international search report (Art. 21(3))

**SUPERCRITICAL WATER PROCESSES FOR UPGRADING A PETROLEUM-BASED
COMPOSITION WHILE DECREASING PLUGGING**

CROSS REFERENCE TO RELATED APPLICATIONS

[0001] This application claims priority to U.S. Provisional Application 62/267,401, filed December 15, 2015, which is incorporated by reference in its entirety.

TECHNICAL FIELD

[0002] Embodiments of the present disclosure generally relate to supercritical water processes for upgrading petroleum-based compositions, and more specifically relate to supercritical water upgrading processes which reduce plugging, especially plugging in process lines.

BACKGROUND

[0003] Systems for upgrading petroleum-based compositions often experience plugging in the process lines from coke or other sludge material. Plugging refers to a stoppage or sharp decrease of flow in the process line, which may slow or stop the upgrading process. Additionally, if, due to the formation of coke and plugging material in the process line, the process flow stops or slows down, the delayed or stalled flow may further exacerbate the formation of plugging material.

[0004] Plugging material is not limited to coke. Highly viscous material can also cause plugging. Supercritical water reactor effluent, which may be a mixture of water, converted heavy oil, and unconverted heavy oil, is often in an emulsion state. The viscosity of the water-hydrocarbon emulsion decreases with high temperature. Thus, such emulsions may not cause any problems in a reactor operating at a high temperature. However, after leaving the reactor, the effluent is cooled down by a heat exchanger, which increases viscosity. This increased viscosity mixture may cause plugging in the process lines and may slow or interrupt the upgrading process.

SUMMARY

[0005] Accordingly, ongoing needs exist for processes for upgrading petroleum-based compositions while reducing plugging in process lines. The present embodiments address these needs by injection plug remover solution into various locations of the supercritical reactor system to reduce and remove plugging in the process lines.

[0006] According to one embodiment, a process for upgrading a petroleum-based composition while decreasing plugging is provided. The process comprises mixing a supercritical water stream with a pressurized, heated petroleum-based composition in a mixing device to create a combined feed stream, and introducing the combined feed stream to an upgrading reactor system to produce an upgraded product, where the upgrading reactor system operates at a temperature greater than a critical temperature of water and a pressure greater than a critical pressure of water, and where the upgrading reactor system comprises one or more upgrading reactors. The process also comprises passing the upgraded product out of the upgrading reactor system, cooling the upgraded product with a cooling device to create a cooled upgraded product having a temperature less than 200°C, and decreasing the pressure of the cooled upgraded product with a pressure reducer to create a cooled, depressurized stream having a pressure from 0.05 megapascals (MPa) to 2.2 MPa. Moreover, the process comprises injecting plug remover solution into one or more injection locations at a temperature within 200°C of a temperature of an internal fluid at the injection location and a pressure of 100% to 120% of the pressure of the internal fluid at the injection location, where the plug remover solution comprises an aromatic solvent and less than 500 parts per million (ppm) of water, and where the injection locations include one or more of: an injection port on a process line connecting the mixing device with the upgrading reactor system; an injection port on a process line connecting the upgrading reactor system with the cooling device or an injection port on a process line connecting the cooling device with the pressure reducer.

[0007] Additional features and advantages of the described embodiments will be set forth in the detailed description which follows, and in part will be readily apparent to those skilled in the art from that description or recognized by practicing the described embodiments,

including the detailed description which follows, the claims, as well as the appended drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0008] FIG. 1 is a schematic depiction of supercritical water systems for upgrading petroleum-based compositions, while reducing plugging in accordance with one or more embodiments of the present disclosure;

[0009] FIG. 2 is another schematic depiction of supercritical water systems for upgrading petroleum-based compositions, while reducing plugging in accordance with one or more embodiments of the present disclosure;

[0010] FIG. 3 is a further schematic depiction of supercritical water systems for upgrading petroleum-based compositions, while reducing plugging in accordance with one or more embodiments of the present disclosure; and

[0011] FIG. 4 is a graphical illustration of the pressure over time for comparative simulations provided in the Examples as follows, wherein plug remover is not injected into the upgrading reactor systems.

DETAILED DESCRIPTION

[0012] Embodiments of the present disclosure are directed to improving operation stability and performance of supercritical water processes for processing heavy oil. As stated previously, plugging by low solubility materials is commonly encountered when heavy oil is subjected to supercritical water processes. Embodiments of this disclosure are directed to removing such plugging materials by injecting plug remover solution into various process line locations under certain conditions.

[0013] Supercritical water has been proven to be an effective solvent or diluent in the thermal processing of heavy oil to reduce overcracking or coking. As used throughout the

disclosure, "supercritical" refers to a substance at a pressure and a temperature greater than that of its critical pressure and temperature of water, such that distinct phases do not exist and the substance may exhibit the diffusion of a gas while dissolving materials like a liquid. At a temperature and pressure greater than the critical temperature and pressure, the liquid and gas phase boundary of water disappears, and the fluid has characteristics of both liquid and gaseous substances. Supercritical water is able to dissolve organic compounds like an organic solvent and has excellent diffusibility like a gas. Regulation of the temperature and pressure allows for continuous "tuning" of the properties of the supercritical water to be more liquid or more gas like. Supercritical water has reduced density and lesser polarity, as compared to liquid-phase sub-critical water, thereby greatly extending the possible range of chemistry, which can be carried out in water.

[0014] Without being bound by theory, supercritical water has various unexpected properties as it reaches supercritical boundaries. Supercritical water has very high solubility toward organic compounds and has an infinite miscibility with gases. Furthermore, radical species can be stabilized by supercritical water through the cage effect (that is, a condition whereby one or more water molecules surrounds the radical species, which then prevents the radical species from interacting). The stabilization of radical species may help prevent inter-radical condensation and thereby reduces the overall coke production in the current embodiments. For example, coke production can be the result of the inter-radical condensation. In certain embodiments, supercritical water generates hydrogen gas through a steam reforming reaction and water-gas shift reaction, which is then available for the upgrading reactions.

[0015] In the supercritical water process, thermal cracking reactions may be controlled by the presence of supercritical water to avoid overcracking and coking. Supercritical water has a very low dielectric constant which makes it compatible with common organic solvents such as toluene and dichloromethane. While supercritical water can dissolve a wide range of hydrocarbons, the high temperature conditions of supercritical water can cause other side reactions before the supercritical water dissolves hydrocarbons. For example, the exposure of benzopyrene to water in high temperature conditions for a longer period than desirable can cause the formation of coke.

[0016] Referring to FIGS. 1-3, embodiments of a process **100** for upgrading a petroleum-based composition **105** in the presence of supercritical water are provided. The petroleum-based composition **105** may refer to any hydrocarbon source derived from petroleum, coal liquid, or biomaterials. Exemplary hydrocarbon sources for petroleum-based composition **105** may include whole range crude oil, distilled crude oil, residue oil, topped crude oil, product streams from oil refineries, product streams from steam cracking processes, liquefied coals, liquid products recovered from oil or tar sands, bitumen, oil shale, asphaltene, biomass hydrocarbons, and the like. In one embodiment, the petroleum-based composition **105** may include atmospheric residue oil.

[0017] As shown in FIGS. 1-3, the petroleum-based composition **105** may be pressurized in a pump **112** to create a pressurized, petroleum-based composition **116**. The pressure of pressurized, petroleum-based composition **116** may be at least 22.1 MPa, which is approximately the critical pressure of water. Alternatively, the pressure of the pressurized, petroleum-based composition **116** may be between 22.1 MPa and 32 MPa, or between 23 MPa and 30 MPa, or between 24 MPa and 28 MPa. In some embodiments, the pressure of the pressurized petroleum-based composition **116** may be between 25 MPa and 29 MPa, 26 MPa and 28 MPa, 25 MPa and 30 MPa, 26 MPa and 29 MPa, or 23 MPa and 28 MPa.

[0018] Referring again to FIGS. 1-3, the pressurized, petroleum-based composition **116** may then be heated in one or more petroleum pre-heaters **120** to form a pressurized, heated petroleum-based stream **124**. In one embodiment, the pressurized, heated petroleum-based stream **124** has a pressure greater than the critical pressure of water as described previously and a temperature greater than 75°C. Alternatively, the temperature of the pressurized, heated petroleum-based stream **124** is between 10°C and 300°C, or between 50°C and 250°C, or between 75°C and 200°C, or between 50°C and 150°C, or between 50°C and 100°C. In some embodiments, the temperature of the pressurized, heated petroleum-based stream **124** may be between 75°C and 225°C, or between 100°C and 200°C, or between 125°C and 175°C, or between 140°C and 160°C.

[0019] Embodiments of the petroleum pre-heater **120** may include a natural gas fired heater, heat exchanger, or an electric heater. For example, the pressurized, heated petroleum-based stream **124** may be heated in a double pipe heat exchanger or shell tube heat exchanger.

[0020] As shown in FIGS. 1-3, the water stream **110** may be any source of water, for example, a water stream having a conductivity of less than 1 microsiemens (μS)/centimeters (cm), such as less than 0.5 $\mu\text{S}/\text{cm}$ or less than 0.1 $\mu\text{S}/\text{cm}$. Exemplary water streams **110** include demineralized water, distilled water, boiler feed water (BFW), and deionized water. In at least one embodiment, water stream **110** is a boiler feed water stream. Water stream **110** is pressurized by pump **114** to produce a pressurized water stream **118**. The pressure of the pressurized water stream **118** is at least 22.1 MPa, which is approximately the critical pressure of water. Alternatively, the pressure of the pressurized water stream **118** may be between 22.1 MPa and 32 MPa, or between 22.9 MPa and 31.1 MPa, or between 23 MPa and 30 MPa, or between 24 MPa and 28 MPa. In some embodiments, the pressure of the pressurized water stream **118** may be 25 MPa and 29 MPa, 26 MPa and 28 MPa, 25 MPa and 30 MPa, 26 MPa and 29 MPa, or 23 MPa and 28 MPa.

[0021] Referring again to FIGS. 1-3, the pressurized water stream **118** may then be heated in water pre-heater **122** to create a supercritical water stream **126**. The temperature of the supercritical water stream **126** is greater than about 374°C, which is approximately the critical temperature of water. Alternatively, the temperature of the supercritical water stream **126** may be between 374°C and 600°C, or between 400°C and 550°C, or between 400°C and 500°C, or between 400 °C and 450°C, or between 450°C and 500°C. In some embodiments, the maximum temperature of the supercritical water stream **126** may be 600°C, as the mechanical parts in the supercritical reactor system may be affected by temperatures greater than 600°C.

[0022] Similar to the petroleum pre-heater **120**, suitable water pre-heaters **122** may include a natural gas fired heater, a heat exchanger, and an electric heater. As shown, the

water pre-heater **122** may be a unit separate and independent from the petroleum pre-heater **120**.

[0023] As mentioned, supercritical water has various unexpected properties as it reaches its supercritical boundaries of temperature and pressure. For instance, supercritical water may have a density of 0.123 grams per milliliter (g/mL) at 27 MPa and 450°C. In comparison, if the pressure was reduced to produce superheated steam, for example, at 20 MPa and 450°C, the steam would have a density of only 0.079 g/mL. At that density, the hydrocarbons may react with superheated steam to evaporate and mix into the liquid phase, leaving behind a heavy fraction that may generate coke upon heating. The formation of coke or coke precursor may plug the lines and must be removed. Therefore, supercritical water is superior to steam in some applications.

[0024] Referring again to FIGS. 1-3, the supercritical water stream **126** and the pressurized, heated petroleum-based stream **124** may be mixed in a mixing device **130** to produce a combined feed stream **133**. The mixing device **130** can be any type of equipment capable of mixing the supercritical water stream **126** and the pressurized, heated petroleum-based stream **124**. In one embodiment, mixing device **130** may be a mixing tee, homogenizing mixer, an ultrasonic mixer, a small continuous stir tank reactor (CSTR), or any other suitable mixer.

[0025] The volumetric flow ratio of supercritical water to hydrocarbons fed to the mixing device may vary. In one embodiment, the volumetric flow ratio may be from 10:1 to 1:1, or 5:1 to 1:1, or 4:1 to 1:1 at standard ambient temperature and pressure (SATP).

[0026] Referring to FIGS. 1-3, the combined feed stream **133** may then be introduced to a supercritical upgrading reactor system configured to upgrade the combined feed stream **133**. As shown in FIGS. 1 and 3, the supercritical reactor system may include at least one upgrading reactor **140** (referred to as a first reactor as follows), but optionally may also include a second reactor **150**. FIG. 2 depicts an embodiment having only one supercritical upgrading reactor, specifically first reactor **140**. The combined feed stream **133** is fed through an inlet port of the first reactor **140**. The first reactor **140** depicted in FIG. 1 is a downflow

reactor where the inlet port is disposed near the top of the first reactor **140** and the outlet port is disposed near the bottom of the first reactor **140**. Alternatively as shown in FIGS. 2 and 3, it is contemplated that the first reactor **140** may be an upflow reactor where the inlet port is disposed near the bottom of the reactor. As shown by flow arrow **141** in FIG. 1, a downflow reactor is a reactor where the petroleum upgrading reactions occur as the reactants travel downward through the reactor. Conversely as shown by flow arrow **241** in FIGS. 2 and 3, an upflow reactor is a reactor where the petroleum upgrading reactions occur as the reactants travel upward through the reactor.

[0027] The first reactor **140** operates at a first temperature greater than the critical temperature of water and a first pressure greater than the critical pressure of water. In one or more embodiments, the first reactor **140** may have a temperature of between 400°C to 500°C, or between 420°C to 460°C. The first reactor **140** may be an isothermal or nonisothermal reactor. The reactor may be a tubular-type vertical reactor, a tubular-type horizontal reactor, a vessel-type reactor, a tank-type reactor having an internal mixing device, such as an agitator, or a combination of any of these reactors. Moreover, additional components, such as a stirring rod or agitation device may also be included in the first reactor **140**.

[0028] The first reactor **140** may have dimensions defined by the equation L/D, where L is a length of the first reactor **140** and D is the diameter of the first reactor **140**. In one or more embodiments, the L/D value of the first reactor **140** may be sufficient to achieve a superficial velocity of fluid greater than 0.5 meter(m)/minute(min), or an L/D value sufficient to achieve superficial velocity of fluid between 1 m/min and 5 m/min. In some embodiments, a low L/D dimension may be utilized, as the plug remover may be more effective for low L/D reactors, which may additionally be more cost-effective than high L/D reactors. The L/D may vary based on the flow rate and superficial velocity. In some embodiments, a “low” L/D dimension may be less than 10, such as less than 8, less than 5, less than 2, or less than 2 for a process producing between 500 barrels per day (BPD) and 5,000 BPD. The fluid flow may be defined by a Reynolds number greater than about 5000.

[0029] The first reactor **140**, and optionally, the second reactor **150** are both supercritical water reactors that employ supercritical water as the reaction medium for upgrading reactions in the absence of externally-provided hydrogen gas and in the absence of a catalyst. In certain embodiments, hydrogen gas may be generated through a steam reforming reaction and a water-gas shift reaction, which is then available for the upgrading reactions. Without being bound by any particular theory, hydrogen gas (H₂) may be stable and may require use of catalysts to “activate” the H₂ in order to be utilized in hydrogenation reactions. However, hydrogen generated from the steam reforming and water-gas shift reactions of the present embodiments may produce “active” hydrogen as an intermediate, which may be used in upgrading reactions without requiring the use of external catalysts. In some embodiments, at least one of the one or more upgrading reactors may generate hydrogen. For instance, the first reactor **140**, the second reactor **150**, or in some embodiments both, may generate hydrogen.

[0030] Referring again to FIGS. 1 and 3, the first reactor product **143** may then optionally be introduced to a second reactor **150**. Various reactor types are contemplated for the second reactor **150**. For example as shown in FIGS. 1 and 3, the second reactor **150** may be a downflow reactor as depicted by flow line **151**. Conversely, the second reactor **150** may also be an upflow reactor, where reactant, such as the combined feed stream **133** is fed through a bottom port of the reactor **150** and upgraded product **153** is discharged through a top port of the reactor **150**. In one or more embodiments, the second reactor **150** may utilize the same or similar operating temperature and pressure as the first reactor **140**. Alternatively, the second reactor **150** may operate at a second temperature less than the temperature of the first reactor **140** but greater than the critical temperature of water, while maintaining the pressure greater than the critical pressure of water. Moreover, it is also contemplated that the second reactor **150** operates at a temperature greater than the operating temperature of the first reactor **140**. The second reactor **150** also has a second pressure greater than the critical pressure of water. In one or more embodiments, the second reactor **150** may have a temperature of from 380°C to 500°C, or from 400°C to 450°C.

[0031] Referring again to FIGS. 1 and 3, the upgraded product **153** from the second reactor **150** may then be passed to a cooling device **160**. The cooling device **160** may reduce

the temperature of the upgraded product **153** to create a cooled upgraded product **163** having a temperature less than 200°C. In further embodiments, the temperature of the cooled upgraded product **163** may be cooled to from 10°C to 150°C, or from 20°C to 100°C. Various types of cooling devices may be utilized, for example, double tube or double pipe cooling devices.

[0032] Further as shown in FIGS. 1 and 3, the pressure of the cooled upgraded product **163** may be reduced by a pressure reducer **170** to create a cooled, depressurized stream **173**. Without being limited to specific pressure ranges, the pressure reducer **170** may reduce the pressure to a pressure from 0.05 MPa to 2.2 MPa. At which point, the cooled, depressurized stream **173** may be fed to gas liquid separation units **200**. These gas liquid separation units may separate the depressurized stream in a gas-liquid separator (not shown) into a gas-phase stream and a liquid-phase stream, and then separate the liquid-phase stream in an oil-water separator into a water stream and an oil product stream. For further separation, it is contemplated to introduce the oil product stream into other separator units, for example, a solvent extraction unit.

[0033] As stated previously, plugging can occur at various points throughout the process or system. Without being limited to theory, the plug remover solution is injected proximate the location where plugging happens to decrease viscosity of the fluid in the process lines and prevent further plugging reactions (for example, coking). Thus, as shown in FIGS. 1 and 2, plug remover solution may be injected into one or more injection locations at a temperature within 200°C of a temperature of an internal fluid at the injection location and a pressure of 100% to 120% of the pressure of the internal fluid at the injection location. In this disclosure, “internal fluid” means any of the flowing fluids in the present upgrading systems, for example, the reactant streams or product streams in the process lines, reactors, or components of the present upgrading systems.

[0034] Without being limited to theory, the plug remover solution may be injected into one or more of the injection locations if there is a pressure gradient above a threshold detected. The pressure difference between locations can indicate where plugging has

occurred. As shown in the FIGS., pressure measuring devices including, but not limited to, pressure gauges, pressure transducers, pressure sensors, and combinations thereof, may be installed at locations where plugging can happen. Depending on the process conditions (for example, temperature, pressure, and flow rate), in some embodiments the pressure difference should not exceed 10% of operating pressure (such as 2.5 MPa at 25 MPa or 360 psig at 3611 psig operating pressure). In some embodiments, the pressure difference should not exceed 8% of operating pressure, or should not exceed 5% of operating pressure, or should not exceed 3% of operating pressure, or should not exceed 1% of operating pressure. In some embodiments, the pressure difference should not exceed 1.5% of operating pressure or should not exceed 0.5% of operating pressure.

[0035] During operation, some pressure drop may be expected in the process **100** due to various factors, including long process lines, which may experience a drop in pressure even when no plugging has occurred. Therefore, in some embodiments, the process **100** may have an “offset” pressure drop value, which may be calculated by running the process **100** with water to determine the pressure drop experienced before plugging occurs. The “offset” pressure drop value may then be subtracted from the operating pressure to determine the baseline pressure drop experienced by the process **100**. For example, if the operating pressure is 3600 psig, and during operation the pressure drop through the heat exchanger is about 10 psig and increases as much as 20 psig, (a net difference of 10 psig offset pressure) when the overall pressure drop increases to 46 psig or more (1% of 3600 + 10 psig) the plug remover injection pumps may be triggered to inject plug remover into the process lines.

[0036] In one or more embodiments, plug remover solution may be injected when there is a pressure drop of at least 1% in one or more sections of the process line. In the FIGS., generally one injection port is depicted on a process line. However, it is contemplated to include multiple ports across the process line. For example, if a process line location characterized by a pressure gradient is detected, plug remover solution may be injected on the process line upstream and downstream of that location. This may ensure there is sufficient flow even if there is an area of plugging within the process line. While plug remover solution may be injected at locations where the outlet port is connected to the process line, the present

embodiments do not position these injection ports at the process line “ends.” The present injection port may be located 10 to 90% of the distance of the process lines. Thus, if the process line extends 10 meters (m) from end to end, the injection port(s) may be positioned anywhere from the 1 m mark to the 9 m mark, thereby providing a 1 meter gap at each end of the process line. The plug remover solution may be injected near the process line ends to allow the plug remover solution to be mixed with fluid to improve the efficiency of the plug remover solution. Without intent to be bound by any theory, leaving greater than or equal to 1 m of space at each end of the 10 m process line may allow sufficient space and sufficient time to mix the plug remover solution with fluid, such as internal fluid.

[0037] In some embodiments, it is contemplated to gradually increase the flow rate of plug remover solution in stepwise fashion. For example, it is contemplated that plug remover solution may be injected into an injection port at a first flow rate for a first duration (for example, 0.1 milliliters (mL)/minute (min) for 1 minute). Then, the plug remover solution may be injected into the injection port at a second flow rate for a second duration (for example, 0.5 mL/min for 1 minute). With this stepwise process, the system can reduce a pressure gradient in a process line while minimizing the delivery of excess plug remover solution to the system.

[0038] Stepwise injection is also contemplated to be included in multiple ports along a process line. As a non-limiting example, if plugging occurred at the cooling device **160**, one of many possible remedies may include injecting purging fluid at process line **198** at 0.01% of the total internal fluid flow rate. The fluid may be gradually increased to a flow rate of 0.05% of the total internal fluid flow rate over a five minute interval. If the plug has still not subsided, purging fluid may be injected at process line **197** at 0.005% of the total internal fluid flow rate, increasing to 0.01% over a five minute interval. After the pressure drop through the cooling device **160** returns to normal, indicating that the plug was cleared, the fluid flow rate of process line **198** may be decreased from 0.05% to 0% over a ten minute interval. After the ten minute interval, the fluid flow rate of process line **197** may be decreased from 0.05% to 0% over a ten minute interval to return the system back to the original pre-plugging state.

[0039] The plug remover solution may comprise an aromatic solvent and less than 500 ppm of water and less than 5,000 ppm of sulfur, nitrogen, oxygen, and metal content, respectively. In specific embodiments, the aromatic solvent may comprise at least one phenyl ring, and at least one substituted alkyl, cycloalkyl, or alkenyl group having less than 10 carbons attached to the phenyl ring. In one or more embodiments, the aromatic solvent may include alkyl substituted phenyl compounds such as toluene, hexylbenzene or combinations thereof. Alternatively, the aromatic solvent may include cycloalkyl substituted phenyl compounds such as tetralin. In embodiments in which the petroleum-based composition **105** comprises hydrocarbons with a boiling point above about 370°C, such as atmospheric residue, toluene may not be present in the combined feed stream **133**. Therefore, in some embodiments, the plug remover may be obtained from the plug remover storage tank **180**, which may not be produced from unreacted product from the combined feed stream **133**, as may be seen in other conventional methods. This may save time and costs required to separate and purify plug remover solution from the combined feed stream **133**.

[0040] Without being bound by theory, the aromatic solvent may be selected based on boiling point. For example, toluene has a boiling point of 110.6°C, while tetralin with a boiling point at 207°C and hexylbenzene has a boiling point on 226°C. Consequently, in some embodiments, lower boiling point solvents, such as toluene, may be more suitable for injection in lower temperature process lines or components, whereas higher boiling point solvents, such as tetralin, may be more suitable for injection in higher temperature process lines or components, such as the supercritical reactors. In some embodiments, the process **100** may have multiple plug remover solvents injected at various ports. In some embodiments, low boiling point aromatic solvents may be more suitable to handle plugs occurring at low temperatures (such as process line **197** as shown in FIG. 1), while high boiling point aromatics may be more suitable for high temperature sections (such as process line **195**, as shown in FIG. 1).

[0041] In embodiments in which multiple ports and multiple solvents may be used, the process **100** may utilize two or more storage tanks to accommodate two solvents, such as, for example, toluene and tetralin. Likewise, multiple and independent metering pumps may be

utilized for the various ports, which may, in some embodiments, have separate individual heaters **184**. In other embodiments, a single metering pump may be used. In some embodiments, a single pump may be used with a splitter to supply plug remover to multiple ports. Any splitter known in the industry may be suitable, for example a tee or cross-fitting. In some embodiments, the splitter may be a controllable splitter, which may have a flow controller such as an electro-pneumatic control valve for controlling the flow rate of the purging fluid.

[0042] As stated previously, the temperature and pressure at which the plug remover solution is injected is dependent on the injection location, specifically the temperature, pressure, and flow rate of the injection location. In one or more embodiments, the temperature of the plug remover solution may be within 200°C of the internal fluid temperature of the injection point, or within 150°C of the internal fluid temperature of the injection point, or within 100°C of the internal fluid temperature of the injection point, or within 50°C of the internal fluid temperature of the injection point, or within 25°C of the internal fluid temperature of the injection point. For example, if plug remover solution is injected into a heat exchanger inlet which is operating at 300°C at normal unplugged condition, the plug remover fluid may be in the range of 100°C to 500°C, which is within 200°C of the operating temperature of the heat exchanger inlet.

[0043] Moreover, the pressure of the plug remover solution may be a pressure of from 100% to 120% of the pressure of the internal fluid at the injection location. In this case, if plug remover solution is injected into a heat exchanger inlet which is operating at approximately 25 MPa at normal unplugged condition, the plug remover fluid may be injected at a pressure in the range of 25 to 30 MPa, which is 100% to 120%, respectively, of the pressure of the internal fluid at the injection location.

[0044] Furthermore, the flow rate of the plug remover solution may be injected at a flow rate of 0.001% to 10% of the flow rate of internal fluid temperature at the injection point. For example, if the flow rate of internal fluid is 100 liters per hour (L/hr) at standard ambient temperature and pressure (SATP), the flow rate of the plug remover solution should be in the

range of 0.001 to 10 L/hr, which is 0.001% to 10% of the flow rate of the internal fluid. While 0.001% may seem minuscule, disruption and perturbation of the process **100** should be minimized and avoided at all costs, thus, a rate of 0.001% of the internal fluid flow rate is a practical minimum flow to begin the injection process.

[0045] Referring to the embodiments of FIGS. 1-3, the system embodiments for injecting plug remover solution may include one or more components such as a plug remover storage tank **180**, a metering pump **182** in fluid communication with plug remover storage tank **180**, and a heat exchanger **184** which can adjust the temperature of the plug remover solution to be injected. Further as shown in FIGS. 1 and 2, the process **100** may include a plug remover distributor **190**, which is directed to controlling the flow of plug remover solution into one or more injection ports. It is contemplated that the plug remover distributor **190** may include various components, which help ensure that the plug remover solution is injected into the injection ports at the desired temperature, pressure, and flow rate. Thus, the plug remover distributor **190** may include various temperature sensors, pressure sensors, pressure transducers, valves, and flow rate sensors. Moreover, the plug remover distributor **190** may be communicatively coupled to the previously described plug remover components as well as the pressure sensors, pressure gauges, or pressure transducers disposed at various locations within the upgrading system. Thus, the plug remover distributor **190** may include a control system comprised of a controller, such as a programmable logic controller (PLC), a processor, for example, a microprocessor, or similar control mechanisms. The control mechanism, such as a programmable logic controller, may determine the injection time (start time, end time, or both), injection rate (such as the volumetric rate of the purging fluid), or both. The PLC may, in some embodiments, have a proportional-integral-derivative (PID) controller to minimize the disruption or perturbation of the process **100**. This may allow the PLC controller to determine the temperature, flow rate, and pressure of the plug remover.

[0046] In some embodiments, the temperature of the plug remover may be controlled by a controller, such as a PLC, the heater **184**, or both. When the plug remover is processing, the temperature of the internal fluid may begin to deviate. To restore or otherwise alter the internal fluid temperature, the temperature of the plug remover fluid may be controlled. In

some embodiments, plugging in the heat exchanger may decrease the temperature of the internal fluid due to a decreased flow rate into the heat exchanger. Too low of a temperature can alter the viscosity of the internal fluid, which may perpetuate another pressure drop through control valve **170**. Therefore, in some embodiments, the plug remover solution may have a higher temperature than the temperature of the internal fluid. In other embodiments, such as if the internal temperature is higher than desired, the temperature of the plug remover solution may have a lower temperature than that of the temperature of the internal fluid to reduce the temperature of the internal fluid.

[0047] As stated previously, injection ports may be disposed in various locations of the upgrading system. For example as shown in FIGS. 1-3, at least one injection port may be disposed on the process line connecting the pump **112** (which pressurizes the petroleum-based composition **105**) with the petroleum pre-heater **120** (which heats the pressurized, petroleum-based composition **116**). As shown in FIGS. 1-3, the plug remover injection line **191** delivers plug remover solution to the one or more injection ports along the process line with the head of arrow **191** indicating the location of an injection port.

[0048] Similarly, at least one injection port may be disposed on the process line connecting the pump **114** (which pressurizes water stream **110**) with the water pre-heater **122** (which heats the pressurized water stream **118**). As shown in FIGS. 1-3, the plug remover injection line **192** delivers plug remover solution to the one or more injection ports along the process line with the head of arrow **192** indicating the location of an injection port.

[0049] As shown, the petroleum pre-heater **120** and the water pre-heater **122** may include pressure measuring devices **125** and **127**, respectively, which detect pressure gradients or pressure drops across the flow path within the petroleum pre-heater **120** and the water pre-heater **122**. While not shown, it is contemplated that additional pressure measuring devices may be coupled to pumps **112** and **114** and the process lines adjacent therewith. Various suitable pressure measuring devices are contemplated, for example, pressure sensors, pressure gauges, pressure transducers, and the like. As will be described in detail as follows, the pressure measuring device may be communicatively coupled to the plug remover

distributor **190**, and as such may transmit the pressure readings or pressure gradient to the plug remover distributor **190**. Based on these pressure readings, the plug remover distributor **190** may require the injection of plug remover solution at an injection port proximate a process line location where a pressure drop is detected.

[0050] As shown in FIGS. 1-3, the pressure gradient between the first reactor **140** and the second reactor **150** may be detected by pressure sensors **142** and **152**, respectively. In the embodiment of FIG. 1, there may be a processor **145** in communication with pressure sensors **142** and **152** that calculates the difference between pressure sensors **142** and **152**. As shown in FIG. 1, the processor **145** may transmit the pressure reading to the plug remover distributor **190** as shown by dotted line **147**. Alternatively, as shown in FIG. 2, the readings from pressure sensors **142** and **162** transmit pressure readings directly to the plug remover distributor **190** as shown by dotted lines **148** and **164**, respectively.

[0051] Referring again to FIGS. 1-3, the plug remover solution may also be delivered to at least one injection port on a process line connecting the petroleum pre-heater **120** with the mixing device **130**. As shown, the plug remover injection line **194** may deliver plug remover solution to the one or more injection ports along the process line with the head of arrow **194** indicating the location of an injection port. Similarly, as shown, plug remover solution may also be delivered to at least one injection port on a process line connecting the water pre-heater **122** with the mixing device **130**. The plug remover injection line **193** may deliver plug remover solution to the one or more injection ports along the process line with the arrow of **193** indicating the location of an injection port. As shown, the mixing device **130** may include a pressure sensor **131** used to detect plugging within the mixing device **130**. If an unacceptable pressure reading or pressure gradient is detected by pressure sensor **131**, the plug remover distributor **190** may trigger the injection of plug remover solution through either or both of plug remover injection lines **193** and **194**.

[0052] Further, as shown in FIGS. 1-3, one or more injection ports may also be located on a process line connecting the mixing device **130** with the first reactor **140**, where the plug remover solution is delivered by plug remover injection line **195** upstream of the first reactor

140. For the two supercritical upgrading reactor systems of FIGS. 1 and 3, it is also contemplated to deliver plug remover solution through plug remover injection line **196** at an injection port downstream of the first reactor **140** but upstream of second reactor **150**. Referring to FIGS. 1 and 3, the possibility of coke formation within the first reactor **140** makes it beneficial to include pressure sensors **142** proximate the first reactor **140**. Similarly as shown in FIGS. 1 and 3, a pressure sensor **152** may also be included proximate the second reactor **150**.

[0053] Furthermore, as shown in FIGS. 1-3, an injection port may be disposed on a process line connecting the first reactor **140** or second reactor **150** with the cooling device **160**. The plug remover solution may be injected through plug remover injection line **198**. As shown, the cooling device **160** may also include one or more proximate pressure sensors **162**, which may detect pressure gradients within the cooling device **160**. Moreover, an injection port may also be disposed on a process line connecting the cooling device **160** with the pressure reducer **170**. The plug remover solution may be injected through plug remover injection line **197**. As shown, the pressure reducer **170** may also include one or more proximate pressure sensors **172**.

[0054] In one or more embodiments, the plug remover solution may be injected into two or more, or three or more of the injection locations.

EXAMPLES

[0055] Referring to FIG. 3, the following experimental examples illustrate one or more features of the embodiments of the present disclosure. Specifically, there are two examples, one Comparative Example which does not include plug remover injection and a Present Example, wherein plug remover solution is injected to reduce plugging, were simulated. With the exception of the plug remover, both examples undergo a similar upgrading process. Referring to FIG. 3, the feed oil (that is, petroleum-based composition **105**) was atmospheric residue from Arabian Medium crude oil having an American Petroleum Institute (API) Gravity of 12.8, and a total sulfur content of 4.1 wt%. Furthermore, the petroleum-based

composition **105** has a vacuum residue fraction of 43 wt% as estimated by SIMDIS, based on the American Society for Testing and Materials (ASTM) 7169 method.

[0056] The petroleum-based composition **105** and water stream **110** were pumped to 27 MPa with high pressure metering pumps, **112** and **114**, respectively. The flow rates of the petroleum-based composition **105** and the water stream **110** were 0.2 L/hr and 0.8 L/hr, respectively. The pressurized, petroleum-based composition **116** and the pressurized water stream **118** were heated to 110°C and 380°C with pre-heaters **120** and **122**, respectively. Referring again to FIG. 3, the supercritical water stream **126** and the pressurized, heated petroleum-based stream **124** may be mixed in a tee fitting mixing device **130** to produce a combined feed stream **133**. The combined feed stream **133** was injected into reactors **140** and **150** which were connected in series. The first reactor **140** was upflow and the second reactor **150** was downflow. The upgraded product **153** from the second reactor **150** was cooled down by double tube type cooling device **160**, where cold water having a temperature of 15°C flows in the outside tube. The cooled upgraded product **163** was released to atmospheric pressure by a back pressure regulator pressure reducer **170**. The cooled, depressurized stream **173** from the back pressure regulator **170** underwent further separation operations through the gas liquid separation units **200**. Specifically, the cooled, depressurized stream **173** having a temperature of less than 75°C was separated to gas and liquid by a gas-liquid separator which was a 500 milliliter (mL) vessel having three ports (top, middle and bottom). Gas from the top port was measured by a wet test meter and analyzed by gas chromatography. The wet test meter used was a Ritter Drum-type Gas Meter, used to measure gas flow rate utilizing a positive displacement based on a rotating drum and liquid in a housing. Liquid product was separated to oil and water by a centrifuge unit.

[0057] In the Present Example, the plug remover solution was toluene with less than 0.03 wt% (300 ppm) water. The threshold pressure difference was set to 1 MPa. The pressure difference occurred between the first reactor **140** and the cooling device **160**. The pressure readings from pressure sensors **142** and **162** were 28 MPa and 27 MPa. After detecting a pressure difference between these pressure sensors **142** and **162**, the metering pump **182** injected plug remover fluid through injection line **199**. The temperature of the injection line

was set to 100°C, and the metering pump **182** pressure was set to produce a plug remover pressure equal or slightly higher than the pressure of the 28 MPa pressure detected by pressure sensor **162**. The flow rate of the plug remover solution was programmed to gradually increase.

[0058] Specifically, the plug remover solution was injected in line **199** at a flow rate of 3 mL/hr at 60 seconds and then had a flow rate of 6 mL/hr after 120 seconds. Additionally, plug remover solution was injected in line **197** at a flow rate of 3 mL/hr at 60 seconds, and then had a flow rate of 6 mL/hour after 120 seconds. After the pressure difference between pressure sensors **142** and **162** decreased below 0.1 MPa, both injections were stopped.

[0059] In the Comparative Example where no plug remover solution was utilized, the process experienced large pressure difference between the first reactor **140** and the cooling device **160**, specifically reaching a pressure difference of 2 MPa. After reaching pressure gradient of 2 MPa, the system was shut down. Without the addition of plug remover solution, the total operation time before undesirable plugging was less than 16 hours.

[0060] In contrast, by injecting plug remover solution as in the previous example, the process of the Present Example ran for over 120 hours, and shut down was a voluntary weekend shutdown, not a shutdown caused by unsuitable pressure gradients.

[0061] The effect of plugging is illustrated in the graphical illustration of FIG. 4, which shows the system pressure over the first 1,000 minutes of operation. The illustrated data in FIG. 4 for the failed run was obtained from pressure sensors **142** and **162**, which detected pressure gradients in the first reactor **140** and the cooling device **160**, respectively. As shown, the P(140) curve started to increase due to some plug in the outlet port of reactor **140**. The sharp decrease of the P(140) and (P160) curves is shown at around 960 min due to pressure control valve failure caused by plugging of a valve seat. After a sharp decrease, the pressure increased again and then decreased. Such sharp fluctuations were caused by the valve failure.

[0062] The product of the present example after 120 hours operation had an API gravity of 20.8, a total sulfur content of 3.3 wt%, and a vacuum residue fraction of 21 wt% (estimated by Simulated Distillation (SIMDIS)), based on ASTM 7169 method.

[0063] It should be apparent to those skilled in the art that various modifications and variations can be made to the described embodiments without departing from the spirit and scope of the claimed subject matter. Thus it is intended that the specification cover the modifications and variations of the various described embodiments provided such modification and variations come within the scope of the appended claims and their equivalents.

CLAIMS

1. A process for upgrading a petroleum-based composition while decreasing plugging comprising:

mixing a supercritical water stream with a pressurized, heated petroleum-based composition in a mixing device to create a combined feed stream;

introducing the combined feed stream to an upgrading reactor system to produce an upgraded product, where the upgrading reactor system operates at a temperature greater than a critical temperature of water and a pressure greater than a critical pressure of water, and where the upgrading reactor system comprises one or more upgrading reactors;

passing the upgraded product out of the upgrading reactor system;

cooling the upgraded product with a cooling device to create a cooled upgraded product having a temperature less than 200°C;

decreasing the pressure of the cooled upgraded product with a pressure reducer to create a cooled, depressurized stream having a pressure from 0.05 megapascals (MPa) to 2.2 MPa; and

injecting plug remover solution into one or more injection locations at a temperature within 200°C of a temperature of an internal fluid at the injection location and a pressure of 100% to 120% of the pressure of the internal fluid at the injection location, where the plug remover solution comprises an aromatic solvent and less than 500 parts per million (ppm) of water, and where the injection locations include one or more of:

an injection port on a process line connecting the mixing device with the upgrading reactor system;

an injection port on a process line connecting the upgrading reactor system with the cooling device; or

an injection port on a process line connecting the cooling device with the pressure reducer.

2. The process of claim 1, where plug remover solution is injected into at least two of the injection locations.

3. The process of any of the preceding claims, where the supercritical water stream is produced by feeding water to a first pump and a first heating device downstream of the first pump, and the pressurized, heated petroleum-based composition is produced by feeding the pressurized, heated petroleum-based composition to a second pump and a second heating device downstream of the second pump, where the pressurized, heated petroleum-based composition is at a temperature greater than 50°C.

4. The process of claim 3, further comprising injecting plug remover solution at one or more of the following injection locations:

at least one injection port on a process line connecting the first pump with the first heating device;

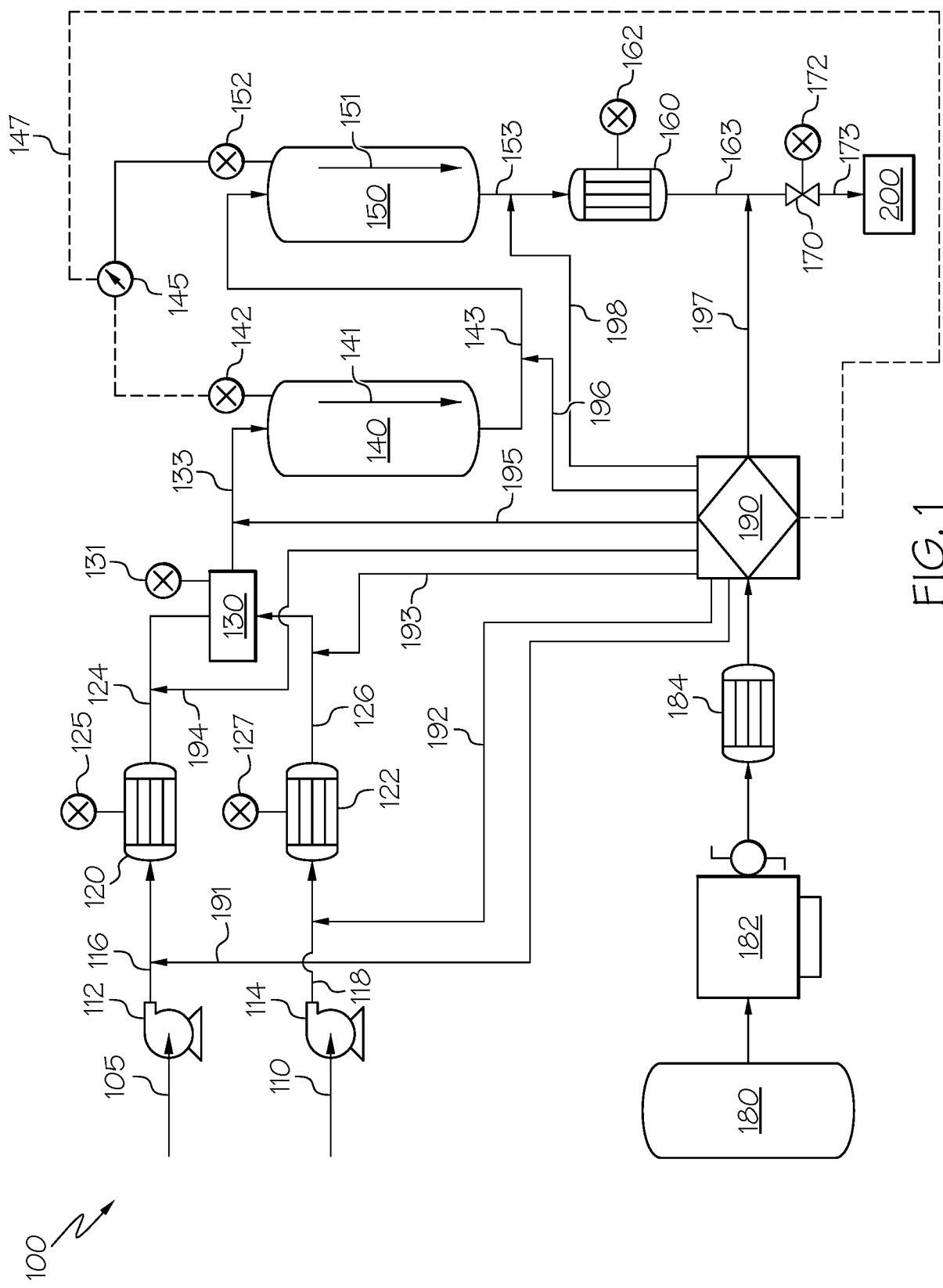
at least one injection port on a process line connecting the second pump with the second heating device;

at least one injection port on a process line connecting the first heating device with the mixing device;

- at least one injection port on a process line connecting the second heating device with the mixing device; or
- at least one injection port on a process line connecting the second pump with the second heating device.

5. The process of claim 4, where the plug remover solution is injected into one or more of the injection locations if there is a detected pressure gradient above a threshold level, where the threshold level is a pressure drop of at least 1% in one or more sections of the process line.
6. The process of any of the preceding claims, where the process lines include multiple injection ports.
7. The process of any of the preceding claims, where the plug remover solution is injected in stepwise fashion, such that a flow rate of the plug remover solution is gradually increased.
8. The process of any of the preceding claims, where plug remover solution is injected at injection locations upstream and downstream of a pressure gradient on the process line.
9. The process of any of the preceding claims, where at least one of the one or more upgrading reactors generates hydrogen.

10. The process of any of the preceding claims, further comprising injecting plug remover solution into an injection port on a process line connecting a first reactor and a second reactor downstream of the first reactor.


11. The process any of the preceding claims, where the plug remover solution is heated prior to injection.

12. The process any of the preceding claims, where the plug remover solution is injected when there is a pressure gradient between the upgrading reactor system and the cooling device.

13. The process any of the preceding claims, further comprising one or more pressure measuring devices.

14. The process any of the preceding claims, where the plug remover solution comprises toluene.

15. The process of any of the preceding claims, where the upgrading reactor system lacks an external supply of hydrogen gas and catalyst.

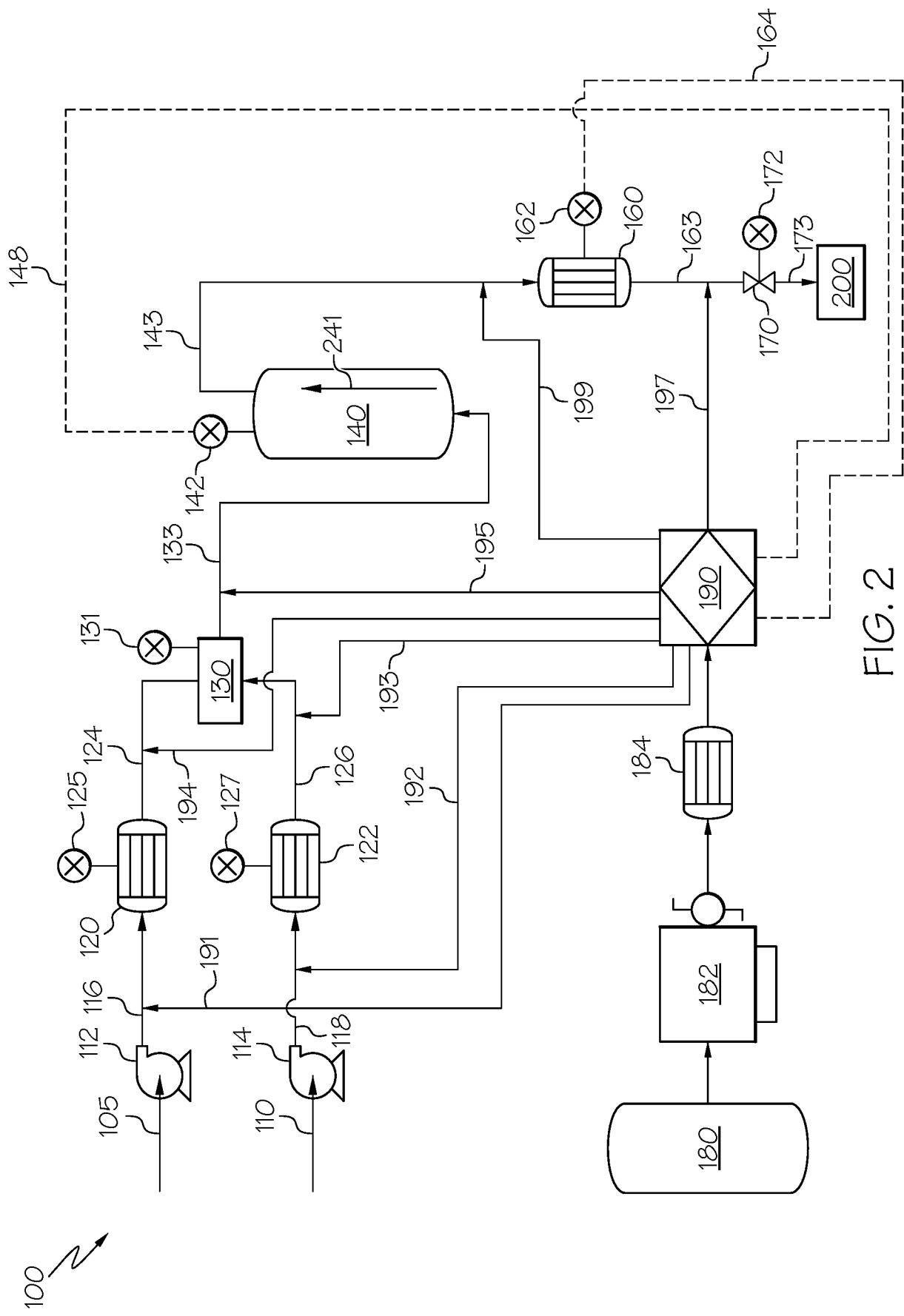
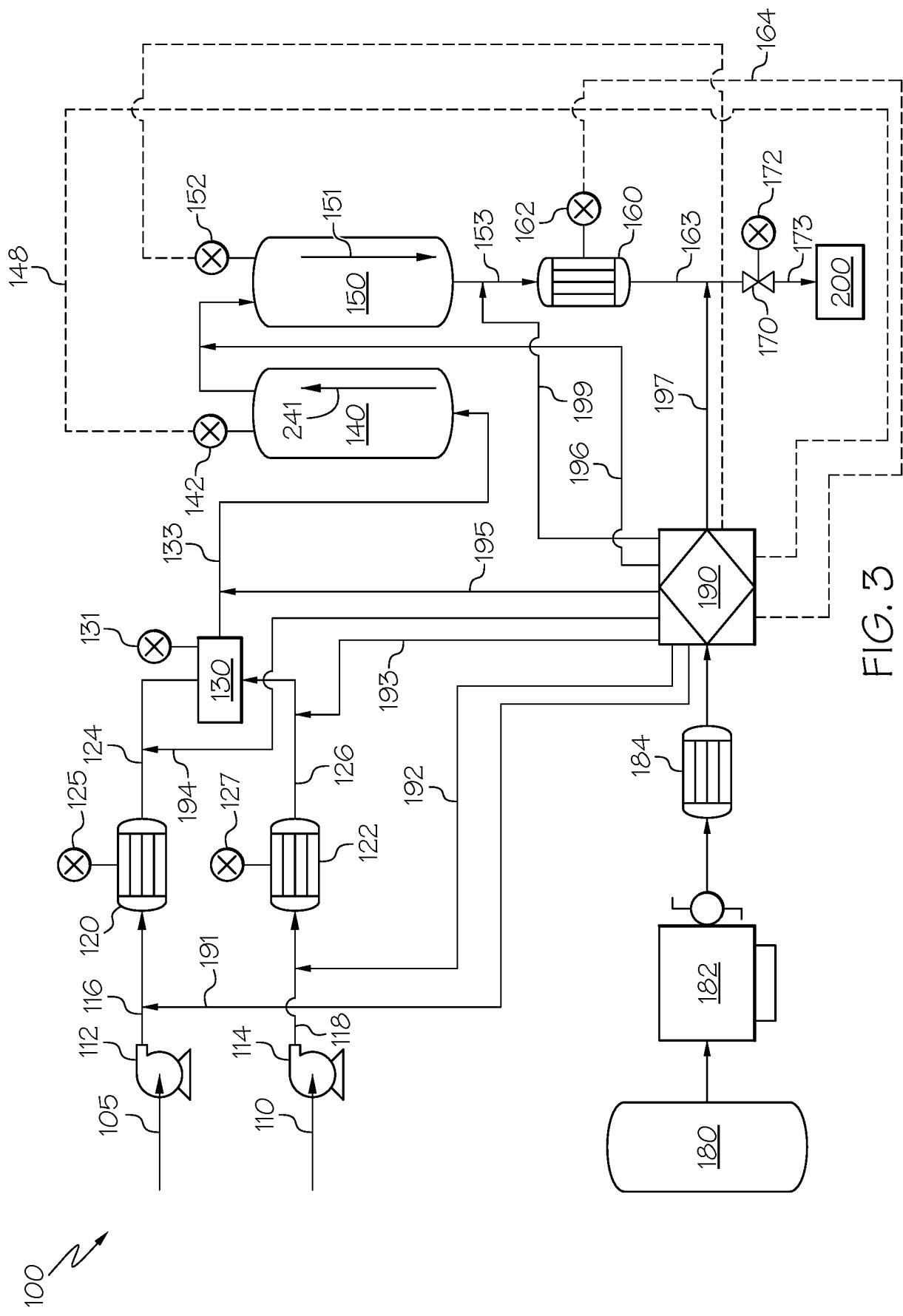



FIG. 2

4 / 4

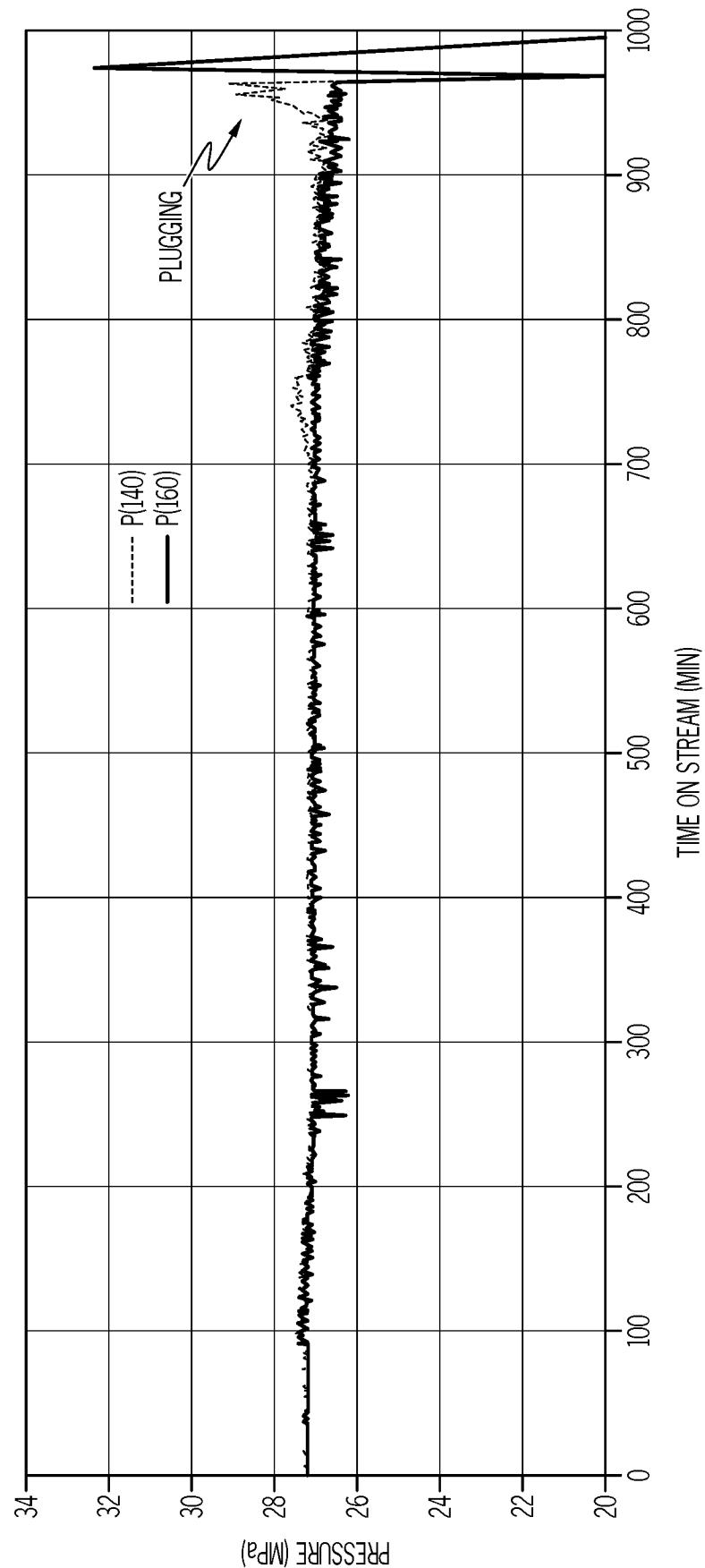


FIG. 4

INTERNATIONAL SEARCH REPORT

International application No
PCT/US2016/066132

A. CLASSIFICATION OF SUBJECT MATTER	INV.	C10G75/00	C10G31/08	C10G45/26	C10G49/00	C10G47/32
		C10G9/16	C10G45/72	C10L10/04		

ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

C10G C10L

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US 2015/321975 A1 (CHOI KI-HYOUK [SA] ET AL) 12 November 2015 (2015-11-12) paragraphs [0010], [0021], [0027], [0028], [0029], [0030] claim 1 figures 1, 2, 3 ----- -/- -----	1-15

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier application or patent but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search	Date of mailing of the international search report
8 March 2017	21/03/2017

Name and mailing address of the ISA/
 European Patent Office, P.B. 5818 Patentlaan 2
 NL - 2280 HV Rijswijk
 Tel. (+31-70) 340-2040,
 Fax: (+31-70) 340-3016

Authorized officer

Ruiz Martínez, C

INTERNATIONAL SEARCH REPORT

International application No
PCT/US2016/066132

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	AYAD A ABDULRAZAK ET AL: "Problems of Heavy Oil Transportation in Pipelines And Reduction of High Viscosity", IRAQI JOURNAL OF CHEMICAL AND PETROLEUM ENGINEERING, vol. 16, no. 3, 1 September 2015 (2015-09-01), pages 1-9, XP055351997, ISSN: 1997-4884 page 2, column 1, lines 12-17 page 3, column 2, line 42 page 5, column 1, lines 24-26 -----	1-15
A	EP 1 696 019 A1 (TONENGENERAL SEKIYU KABUSHIKI [JP]) 30 August 2006 (2006-08-30) paragraphs [0016], [0018] -----	1-15
A	CA 2 938 409 A1 (BAKER HUGHES INC [US]) 13 August 2015 (2015-08-13) figure 1 claim 1 -----	1-15
A	P Gateau ET AL: "Heavy Oil Dilution INTRODUCTION", Oil & Gas Science and Technology - Rev. IFP Oil & Gas Science and Technology - Rev. IFP, 1 January 2004 (2004-01-01), pages 503-509, XP055098597, Retrieved from the Internet: URL: http://ogst.ifpenergiesnouvelles.fr/articles/ogst/pdf/2004/05/gateau_v0159n5.pdf page 505, column 2, lines 13-15 page 507, column 1, lines 8-11 page 508, column 2, lines 1-16 -----	1-15

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2016/066132

Patent document cited in search report	Publication date	Patent family member(s)			Publication date
US 2015321975	A1	12-11-2015	CN 106459772 A		22-02-2017
			EP 3143103 A1		22-03-2017
			KR 20160149298 A		27-12-2016
			SG 11201608564P A		29-11-2016
			US 2015321975 A1		12-11-2015
			WO 2015175458 A1		19-11-2015
EP 1696019	A1	30-08-2006	AT 396245 T		15-06-2008
			CA 2537886 A1		28-08-2006
			EP 1696019 A1		30-08-2006
			JP 2006241181 A		14-09-2006
			US 2007007178 A1		11-01-2007
CA 2938409	A1	13-08-2015	CA 2938409 A1		13-08-2015
			CN 105960448 A		21-09-2016
			EP 3102654 A1		14-12-2016
			US 2015218468 A1		06-08-2015
			WO 2015119850 A1		13-08-2015