The invention relates to a method for obtaining at least one useful product, which product may be a material product or energy, from landfill waste, wherein the method comprises: obtaining waste from a landfill; acquiring data on the qualitative and quantitative composition of the waste, which data in particular include data on the moisture content, on the metal content, on the content of carbon compounds and on the particle size distribution of the waste; selecting method steps for obtaining the useful product on the basis of the data thus obtained; and carrying out the selected method steps, which method steps comprise separating the waste into a plurality of material fractions, in particular a metal fraction, a carbon compound fraction and a rest-material fraction, and subjecting one or more of said material fractions to further treatment, whereby the useful product is obtained.
ENHANCED LANDFILL MINING PROCESS

The invention relates to a method for obtaining a useful product from a landfill and to a useful product obtainable by the method.

A growing interest exists in using waste-materials as substitutes for natural raw materials in applications. For fresh waste-streams it is often possible to separate the waste-streams into different reusable material fractions - such as various inorganic fractions (e.g. glass, metal, ceramics) and into various organic fractions (e.g. plastics, paper, compostable waste) and/or to produce energy from the waste. Recycling of materials may be done where the waste has been generated or stored without the different fractions having been mixed or at professional waste treatment facilities, where also more complex waste, comprising a plurality of different kinds of materials, may be processed. For these streams it has become feasible to recover a considerable portion of re-useable materials from the waste streams. For instance, US 4,624,417 describes a method for processing solid municipal or industrial waste into a chemical intermediate substrate for production of energy sources and non-energy related by-products.

However, for existing land-fills, in which waste of a complex composition may have been stored for decades, it is already a challenge to recover a minor part of the materials for re-use. The composition of the waste is generally rather heterogeneous (comprising varying materials of varying qualities, in varying quantities, usually having a wide particle size distribution) and highly variable. The composition varies with the type of waste that has been dumped on a specific spot, the age of the waste and the extent to which it has aged over time. Aging can significantly affect the composition and the physical properties of certain waste types. In that sense, register information (landfill inventory) on what has been dumped alone is insufficient to assess the way the landfill-waste should be processed as register information tells little about the actual conditions of the waste. Additional conditions that hamper the processing of the waste are e.g. a high moisture content, whereby it becomes very difficult to separate fractions, and a high level of fines caused by the landfilling process (e.g. compaction of the landfill, adding intermediate or closing layers e.g. sand or soil).
Further, often, a large part of the waste that is to be recovered from the landfill is already a mixture of residues that originate from often processes wherein as many as possible valuable materials have been recovered, which means that it is rather difficult to recover further materials with an sufficiently high intrinsic economic value. This is especially the case for the wastes that have been land-filled during the last decades. New process flows will be needed to separate and clean the various fractions in such a way that they can be recuperated. The term 'recuperation' is used herein in general for any activity wherein from landfill-waste, a fraction thereof, or an area in or on which landfill-waste has been stored something useful is made. Recuperation in particular includes recycling of a material from the landfill-waste to prepare the same or a similar material (e.g. glass-recycling, ceramics-recycling, paper-recycling, metal-recycling), other forms of valorisation of the landfill-waste or a fraction thereof, such as conversion into fuel, a construction material, or into energy, and renovation of the landfill area, e.g. to provide nature, a recreational area, urban or industrial zone.

In general; a plurality of distinct separation steps and other treatments are needed to recover a product of interest. In processing of solid waste it is common practice to design and optimise each treatment separately. Such an optimisation neglects interdependencies between neighbouring treatments and in many cases does not allow optimisation of the entire process flow.

WO 2009/111791 relates to a method of remediating landfill waste which aims to efficiently recycle and reuse substantially valuable waste constituents in existing landfills. The method comprises mining the waste from a landfill; screening the waste; shredding the waste; magnetically separating ferrous metals from the waste; performing a solid distillation de-polymerisation process on the waste to produce hydrocarbon gas, water vapour, and dry solid waste; distilling the hydrocarbon gas to produce hydrocarbon liquid; recycling hydrocarbon gas to produce heat to operate the solid distillation process; and cracking and hydrotreating the hydrocarbon liquid to produce synthetic fuel. In paragraph [0004] it is stated that a process is provided that effectively extracts and recycles substantially all valuable constituents from landfills. After treatment, a considerable part of solid waste remains, commonly about 20-40 % of the original mass (paragraph [0017]). This remaining waste is landfilled, i.e. not converted into a useful product from landfill-waste. The inventors contemplate that this technology is less suitable for highly
heterogeneous wastes, in particular in that a relatively large portion of the waste may be left unused for the preparation of a useful product.

WO 2009/011588 relates to a device and process for in situ processing of waste. The device comprises a sorting device, a fermenting device, a fluidized bed gasifier and a pyrolysis device. Pyrolysis can only partly convert waste material into a useful product, as considerable amounts of residuals remain (such as fly ash and bottom ash) after pyrolysis. It is not disclosed how these can be converted into a useful product. In particular no use is apparent for bottom ash formed during pyrolysis, other than returning it to a landfill.

It would be desirable to provide a method that allows for an increased portion of the waste to be used for providing a useful product, in particular a method wherein also waste material that is conventionally not considered valuable is used for providing a useful product.

Further, it would be desirable to provide a method that allows a robust method, for processing landfill wastes, in particular a method that is more robust, also if a highly heterogeneous landfill waste is processed.

In particular it would be desirable to provide a method that also allows the production of a gaseous fuel from (highly heterogeneous) landfill waste, in particular a highly heterogeneous landfill waste.

It is an object of the present invention to provide a novel method for obtaining a useful product from landfill-waste, that may be used as an alternative to known technology, such as the technology referred to in the above cited document.

Further it is an object to provide a novel product obtainable from landfill waste.

It is in particular an object to address one or more of the drawbacks of the above cited document.

More in particular it is an object to address one or more of the above desires.

One or more further objects that may be addressed will be apparent from the description below.

It has been realised by the present inventors that one or more said objects are addressed by processing landfill waste in a specific way.
Accordingly, the present invention relates to a method for obtaining at least one product, which product may be a material product or energy, from landfill-waste, wherein the method comprises
- obtaining waste from a landfill;
- acquiring data on the qualitative and quantitative composition of the waste, which data in particular include data on the moisture content, on the metal content, on the content of carbon compounds and on the particle size distribution of the waste;
- selecting method steps for obtaining the product on the basis of the data thus obtained; and
- carrying out the selected method steps,
which method steps comprise separating the waste into a plurality of material fractions, in particular a metal fraction, a carbon compound fraction and a rest-material fraction, and subjecting one or more of said material fractions to further treatment, whereby the product is obtained.

Further, the invention relates to a method for obtaining a product from landfill-waste, preferably a method according to the previous paragraph, the method comprising
- obtaining the waste from a landfill;
- separating the waste into a plurality of material fractions, thereby obtaining a metal fraction, a carbon compound fraction for forming syngas and a rest-material fraction;
- forming syngas and a slag from the carbon compound fraction; and
- preparing a construction material (e.g. building aggregate or cement replacement) from the slag.

The present invention in particular provides a comprehensive, stable and robust method to direct landfill waste streams to the right technologies (Waste-to-Energy and/or Waste-to-Material) at the right times, with respect to the technical and, in general also, economic feasibility and the sustainability of the landfill mining activities.

'Stability' as meant herein refers to tendency of fluctuations in output (product) in case of a constant input (land-fill waste of specific composition). The lower the fluctuation, the higher the stability.

'Robustness' as meant herein refers to the tendency of being able to provide an output (product) of a specific (satisfactory) quality under changing input
conditions (waste composition). The larger the allowable fluctuations in order to maintain a satisfactory output, the more robust the system is.

A method according to the invention allows proper processing of the landfill-waste, and in particular of the waste streams (various material fractions) generated in a method according to the invention.

In particular, the invention allows an increase in quality of one or more useful products prepared in accordance with the invention. This is in particular accomplished by applying the Waste-to-Energy and Waste-to-Material technologies (see below for details) on the landfill-waste in a specific way, namely through a tailoring of the individual process steps based on the analysis of the landfill-waste.

The invention allows the processing of landfill-waste such that a high portion of the waste is actually used for obtaining a useful product, also if the waste is highly heterogeneous. In particular, the invention allows the use of more than 85 wt. %, more in particular at least 90 wt. %, at least 92 wt. %, at least 95 wt. %, or at least 98 wt. %, i.e. in accordance with the present invention it is possible to reduce the waste in particular to 15 wt. % or less, more in particular to less than 10 wt. %, less than 8 wt. %, less than 5 wt. % or less than 2 wt. % of its original mass. It is contemplated that - if desired - essentially all the waste material can be used for obtaining a useful product, whereby in general it is possible to avoid the need to dump (a substantial amount of) residual waste that could not be processed.

In accordance with the invention it is possible to determine the technical and, if desired, economic boundaries by assessing a number of scenarios (e.g. maximum materials recovery, maximum energy recovery, maximum economic gains under current conditions, maximum environmental benefits under changing legislation, hybrid scenarios of materials recovery & energy recovery, materials and/or energy recovery and environmental benefits, etc.), and selecting specific method steps on the basis of one or more of said scenarios. Separate scenarios can be used for separate fractions of the materials, which scenarios may be combined in the overall-method for obtaining product(s) from the waste.

It is an advantageous aspect of a method of the invention that it allows changes in the method steps over time, e.g. as the composition of the landfill-waste that is used as a raw material for the method of the invention changes or as the demand for a specific product changes. For example, in particular for carbon-containing materials one may choose to use the carbon-containing material for
providing a material product, e.g. use a fraction rich in cellulose (such as paper, wood, cotton or the like) for making paper or a fraction rich in plastics to make recycled plastic (i.e. a Waste-to-Material scenario) or one may choose to convert the waste material into energy (i.e. a Waste-to-Energy) scenario. Over time, the invention allows swapping from one scenario to another, or adapting a hybrid scenario of the two.

Another example is a granulate that has a negative value (requiring a cost to dispose it) or for which a low value can be obtained, when recuperated in a conventional manner. Such materials can increase their value through e.g. mineral carbonation where CO2 is captured by the granulate. This way CO2 emission costs can be avoided or at least reduced, generating a positive value or a strong value for the granulate.

The term "or" as used herein is defined as "and/or" unless specified otherwise.

The term "a" or "an" as used herein is defined as "at least one" unless specified otherwise.

When referring to a physical state (gas, liquid, solid) of a substance (e.g. a fuel), the state at 25 °C is meant, unless specified otherwise.

When referring to a noun (e.g. a compound, an additive, etc.) in the singular, the plural is meant to be included.

Further, when referring to 'the fraction', 'the material' or another noun in combination with a definite article (the), this should generally be understood as at least part of that noun, unless specified otherwise. Usually it will mean a major part or all of that noun, in particular at least 25 %, at least 50 %, at least 75 % or at least 90 %.

As follows from the above, the term 'product' is used herein in a broad sense. The product may be material (composed of matter) or immaterial. Typically, the useful product is produced from the waste by physical effort. Typically, it has added value compared to the waste, in particular in that the product can be used for a different purpose than landfilling.

Material products include chemical substances, materials, or objects. Preferred examples of material products obtainable in accordance with the invention include water (clean water, i.e. suitable for potable reuse or process water application), landfill gas, restored nature, glass, ceramics, fine fractions, aggregate
fractions, ferrous metals, non-ferrous metals, plastics, paper, wood, textiles, refuse derived fuel, hydrogen, syngas (also known as synthesis gas, a gas mixture comprising carbon monoxide and hydrogen), vitrified slag, CO2, building materials. Evidently, waste material (that is only suitable or disclosed for landfill, other waste storage or discarding into the environment) is not considered a useful product within the context of the present disclosure.

A process for obtaining a material product from waste is also referred to as Waste-to-Material (WtM).

Energy is an immaterial product. In particular, an immaterial product may be selected from power (electricity) and heat. The immaterial product may be provided in or on a carrier for it, such as a heat carrier (e.g. steam, hot air are examples of energy with a carrier). A process for obtaining energy from waste is also referred to as Waste-to-Energy (WtE).

The landfill waste may be obtained in any way from any kind of landfill. The landfill is generally first opened, it has been closed, e.g. with a layer of earth or other geological material. Then the waste is taken from the landfill (mined). The excavated area, once all the waste has been removed, may be restored into a useful area, e.g. nature, which may be used for recreational purposes if desired.

The composition of the landfill waste is not critical. It generally is heterogeneous in composition, i.e. it generally comprises a plurality of different materials. In particular, the waste usually comprises in particular one or more metals (metal fraction) and materials based on carbonaceous materials (carbon compound fraction). Further, one or more materials selected from mineral materials of a geological origin (soil, sand and other fines, aggregate), glass, ceramics and other waste materials may be present in landfill waste. Herein after the term 'material fraction' will be used for a specific (group of) material(s) of a specific kind, e.g. the metal fraction is the material fraction for the metals present in the waste, or obtained from the waste. The fractions may be subdivided - and separated - in a method according to the invention.

As will be understood by the skilled person, in practice, a fraction of a specific material obtained from the waste may still comprise some material of a different kind, especially before further refining a fraction taken from the waste. In general though such material fraction, when recovered from the waste, is enriched in the specific material compared to the content in the waste material from which it has
been taken. The enrichment (and thus the final content) of a specific material in a
specific material fraction may be chosen within wide limits, as desired. In general, in
an upstream part of the method of the invention the level of enrichment may still be
relatively low, whereas the level of enrichment will be relatively high downstream in
the method (in particular where a product of interest is obtained). Usually, when
referred to a specific material fraction, the fraction will consist for more than 50 % of
that specific type of material. In particular a specific material fraction may consist for
80-100 wt. %, more in particular at least 85 wt. %, at least 90 wt. %, at least 92 wt.
%, at least 93 wt. %, at least 95 wt. % or at least 98 wt. % of that specific material. A
specific material fraction may essentially consist of that specific material. In practice,
depending on the intended purpose, a significant amount of one or more other
materials may be present. Thus, the content of the enriched material in a specific
fraction may be 99 wt. % or less, 96 wt. % or less or 93 wt. % or less.

The metal fraction is enriched in metals present in or taken from the
waste. It may be subdivided in ferrous-metals (iron and alloys of iron that are
ferromagnetic; ferrous-metals may be recovered magnetically) and non-ferrous
materials (which are not recovered magnetically).

Carbon compounds are all compounds comprising carbon. Such
compounds are also known as organic compounds. It should be noted that organic
compounds include biological compounds (such as natural carbohydrates, e.g.
cellulose, lignans etc.) and synthetic organic compounds (such as carbon based
polymers). The carbon compound fraction is enriched in materials based on such
compounds. Preferred examples of such materials are plastics, paper and textiles, and
biological waste material (other than wood e.g. waste material from plants). The
carbon compound fraction may be subdivided in plastics, a paper, a textile, and a
residual fraction (if any). In an embodiment, this fraction is subdivided based on
differences in density. A carbon compound fraction may be used in particular for
recycling purposes (e.g. recycled paper, recycled plastic and the like), for preparing a
different type of material product (e.g. syngas, a hydrocarbon, an alcohol) or for WtE.

Glass and ceramics may be enriched in one glass&ceramics fraction or
be subdivided in separate fractions. These materials may in particular be used for
recycling purposes, or a secondary filler, e.g. for concrete.

The mineral materials of a geological origin may be enriched in a single
fraction. If desired, the fraction is subdivided in more fractions, in particular based on
differences in size. E.g. it may be subdivided in one or more fines fractions and one or more aggregate fractions. Fines in particular have an average size of 4 mm or less. Aggregates in particular have an average size of more than 4 mm. Aggregate may in particular be separated in a fraction having an average size of more than 4 mm but less than 10 mm and a fraction having an average size of 10 mm or more. A mineral material fraction may in particular be used for preparing a construction material.

The term 'rest-material fraction' is used herein for the fraction that remains after recovering one or more material fractions from the waste-material. Thereby the content of the rest-material depends on the method steps performed on the waste-material. As will be understood by the skilled person, the rest-material will have a reduced content of a specific kind of material of which a material fraction has been recovered from the waste. In an advantageous embodiment, at the process-end of the method the rest-material fraction, if any, has a relatively low content of metals, organic compounds, glass and ceramics, compared to the waste-material.

In accordance with the invention, data are acquired on the qualitative and quantitative composition of the waste, which data in particular include data on one or more of the following: the moisture content, the metal content, the content of carbon compounds, the glass content, the ceramics content, the content of mineral materials of geological nature, the particle size distribution of the waste. Such data can be obtained making use of analytical techniques known per se. See e.g. the BAT (Best available techniques) Reference Document (BREF) entitled "Waste Treatment Industries" as published by European Commission in August 2006 (http://www.emis.vito.be/sites/default/files/pagina/BREF_waste_treatment.pdf)

As mentioned above, a method according to the invention comprises acquiring data on the composition of the waste. This is advantageous in that efficiency is improved. Further, this is advantageous in that the part of the land-fill waste that is recuperable is increased. In particular, the acquisition of data in combination with selecting the method steps, optionally taking into account a predetermined scenario, which may be changed over time, allows for a relatively constant quality of the obtained product(s) or allows for the preparation of one or more products with increased quality compared to comparable products obtained from landfill-waste obtained by a method known in the art. For instance, a fuel may be obtained with increased caloric value or a product may be obtained with reduced levels of undesired components.
In an embodiment, the acquisition of data comprises field tests. The acquisition of data may in particular be based on a number of trial excavations and the examination of the waste samples both visually, as well as through manual sorting tests. For example, during these sorting tests the samples can be screened (sieved) after drying at a specific cut-off size, \((e.g. \text{ at a cut-off of } 10 \text{ mm})\) and weighed. The amount of different material fractions, in particular carbon compound fraction (which may be subdivided in wood, paper/cardboard, textile, plastics), metal fraction (which may be subdivided in ferrous and non-ferrous), glass fraction, ceramics fraction (which may be combined with the glass fraction), stone fraction and "unidentified" fraction are determined for every fraction larger than the cut-off \((e.g. > 10 \text{ mm})\). The individual fractions are subsequently sampled and further analyzed.

In particular, data acquisition may include determination of the caloric value, the ash content and the elementary composition (in particular C, H, N, S, Cl, F and Br) in the different material fractions (based on selected samples of the fraction). This allows to identify the valorisation potential, through Waste-to-Material or Waste-to-Energy, of the separated fractions.

Preferably, a representative number of samples is taken before mining the land-fill waste, in such a way that at least 75% of the land-fill waste is assessed for both quantitative and qualitative composition (quantity and nature of the various fractions).

Further, it is preferred that information is acquired on the level of ageing of the landfill-waste, making use of a calibrated aging model. Such information can be obtained by comparing the total organics content (TOC) in the landfill waste and compare it with the TOC content in the landfill waste at the time of dumping the waste, if such information is available, or by determining the TOC decay curve.

The average decay (aging) can be described reasonably well with a first order decay curve \(\left[C(t) = C_0 e^{-kt} \right]\). The factor ‘Co’ represents the concentration of TOC in the waste at the time of burial; ‘k’ is the first order rate constant and reflects the rate at which the degradation of carbon-rich material occurs. The estimated value can be compared to the first order rate constant often used in models to predict methane recovery from landfills.

Thereafter, method steps are selected for obtaining the useful product on the basis of the data thus obtained. For this, depending on the intended product(s) and the acquired data, use may be made of a predetermined scenario (see also above...
when referring to the scenarios), an existing scenario may be modified, or a new scenario may be designed.

Figure 1 illustrates how different aspects can be taken into account when selecting the method steps. In particular these aspects comprise:

- materials: composition of the landfill-waste (land-fill waste quality)
- additional materials and energy (not originating from the waste, if any), that may be needed in order to obtain the desired useful product(s), in view of the composition and a selection of method steps that is considered
- emission-levels (such as flue gas) for a selection of method steps that is considered
- percentage of waste that is not recuperable for a selection of method steps that is considered (rest-waste)

On the basis of such aspects, it can be determined which material and/or immaterial products are obtainable by a specific selection of method steps, in a satisfactory quantity and quality, and with a satisfactory low level of emissions and non-recuperable waste. For commercial reasons, in practice required investments and expected added value to the product will usually also be taken into account.

If desired the selected method steps or the scenario may be changed over time, in particular as a result of a change in composition of the landfill-waste and/or product demand in the market. For instance, one may change from a WtE scenario to a WtM scenario, or change the part of the waste that is used for WtM relatively to the part that is used for WtE.

Next, examples of scenarios that can be followed are given. Several of these are illustrated by a Figure. If desired, one or more of the mentioned steps can be omitted or one or more steps can be added, in particular, the subject-matter of two or more of these scenarios or part(s) thereof may be combined.

Figure 2 shows a scenario, wherein syngas is made and a building material. The syngas may be used for power, heat and CO2 production. The 'Fine fractions' and 'aggregate fractions' are rich in mineral materials from geological origin. RDF is Refuse Derived Fuel, CHP is Combined Heat Power, ELFM building materials are building aggregates, gravel replacement and cement replacement, CCS is Carbon Capture and Storage, APC is Air Pollution Control. In particular, the capturing of the landfill effluent and extraction of landfill gas, as well as method steps
downstream thereof, are usually carried out before completion of the landfill mining, and discontinued at the start or at the completion of the mining.

Figure 3 shows yet another example of a scenario for a carbon compound fraction.

Next, an example is given of a scenario wherein the type of recuperation for a specific kind of material is selected depending on the purity in which that material is obtained after recovering it from the waste. The purity that is obtainable may depend on the initial composition of the waste and the separation technology that is practically available (if only use is made of a certain existing separation facility).

The example is given for PET, but may be applied for other plastics or other kinds of materials, mutatis mutandis. This scenario takes into account that a choice can be made to use the material for primary recuperation (recycling to obtain essentially the same kind of product, in this example PET that can be used to make a plastic product, e.g. by re-extrusion), for secondary recuperation (use it without substantial chemical modification for a purpose for which the product specifications are less demanding, e.g. PET as a filler in concrete), for tertiary recuperation (conversion into a different material/compound, e.g. converting PET into a hydrocarbon (olefin) or syngas), or for quaternary recuperation (burning and obtaining energy). Primary recuperation generally requires the highest purity, secondary the next highest purity, tertiary the next highest purity and quaternary recuperation the lowest purity in order to obtain satisfactory results. Specific minimally required purities depend on the specific material to be recuperated, the available technology (if only use is made of existing technology, product specifications, government regulations and the like). A suitable minimum purity can be determined based on the information disclosed herein including in the cited references, common general knowledge, and optionally a limited amount of routine testing.

After selecting the method steps these are carried out. Each step may independently be selected from continuous method steps (continuous input, continuous output), semi-continuous method steps (examples of semi-continuous methods steps are methods with continuous input of material or intermediary product and batch-wise output of (intermediary) product; methods with batchwise input of raw material or intermediary product and continuous output of (intermediary) product; methods with intermittent input of raw material or intermediary product and/or intermittent output of (intermediary) product), and batch method steps.
As mentioned above, the method at least comprises separating the waste into a plurality of material fractions. Parts of the landfill-waste that can be identified by the naked eye, usually (largely intact) macroscopic objects such as tyres, electronic equipment, vehicles and recognisable parts thereof, may conveniently be separated from the bulk of the landfill-waste before further treatment, making use of a visual screening technique. *E.g.* they can be picked out manually by machine.

Advantageously, the landfill-waste, from which large pieces of materials may already have been recovered, is subjected to one or more pre-treatment steps prior to (further) separating the waste into a plurality of material fractions. These pre-treatment steps may in particular be selected from the group of visual screening, washing, pre-drying, drying, and size-reduction treatments, such shredding, milling (*e.g.* with cascade ball mill), or crushing. One or more of said steps may further be carried out at any-point down stream of the process to one or more of the fractions obtained from the waste. Suitable conditions may be based upon methodology known *per se* in the art (*see e.g.* BAT (Best available techniques) Reference Document (BREF) entitled "Waste Treatment Industries" as published by European Commission in August 2006).

Usually, at least a metal fraction and a carbon compound fraction are obtained, as well as a rest-material fraction (containing the remainder of the waste material). Advantageously, one or more further material fractions are obtained and/or the material fractions are further separated in subdivided fractions (*e.g.* a ferrous metal fraction and a non-ferrous metal fraction, in particular such as mentioned herein above. Suitable conditions may be based upon methodology known *per se* in the art and the information disclosed herein (*see e.g.* BAT (Best available techniques) Reference Document (BREF) entitled "Waste Treatment Industries" as published by European Commission in August 2006.)

In an advantageous embodiment, the waste is separated into a metal fraction, a carbon compound fraction, a rest-material fraction, and further into a glass and/or ceramics fraction.

Separating may in particular comprise one or more of the following techniques, size-based separations (*e.g.* drum-screening, sieving), magnetic separations (*e.g.* using a band magnet), density-based separations, eddy current separations. A plurality of steps can be carried out in order to obtain a specific material fraction with a high content of the specific material and/or to obtain a high
recovery degree of the material from the waste, such that little or no material is left as residual waste.

The ferrous metal fraction may in particular by obtained using a magnetic separation.

A density based separation (which may make use of air or another gas or a liquid, in particular water). A gas based density based separator may in particular be used to separate carbon compounds, especially paper and optionally plastics with a relatively low density, from materials having a higher density (metals, wood, textiles, relatively dense plastics, glass, ceramics, relatively coarse mineral particles).

A liquid based density separator is for instance very suitable to recover textiles, wood, paper, (most) plastics from mineral materials (fine and coarse).

The landfill-waste material or any of the fractions may be subjected to one or more treatments selected from the group of physical treatments, chemical treatments, biological treatment, and combinations thereof, in particular, thermochemical treatments, physicochemical and biochemical treatments.

Examples of treatments that may be solely physical are heat-treatments and irradiation with electromagnetic waves.

Thermochemical treatments include pyrolysis, torrefaction, gasification, liquefaction.

Physicochemical treatments include extraction and distillation.

Esterification is an example of a chemical process. Esterification may in particular be used for the production of a liquid fuel, such as biodiesel. It is in particular suitable as an additional treatment, after a carbon compound fraction has been subjected to a physicochemical process wherein an alcohol or organic acid has been formed.

Biochemical treatments include fermentation (anaerobic digestion) and other ways of converting a material making use of a micro-organism. Figure 3, shows an overview from which one or more techniques may be selected in order to obtain one or more of the products shown in the Figure 3. Other techniques include microwave-heating and photochemical conversion.

Such techniques are known in the art, see e.g. BAT (Best available techniques) Reference Document (BREF) entitled "Waste Incineration" as published by European Commission in August 2006.);
for the preparation of material products:
for obtaining energy:

Both pyrolysis and gasification differ from incineration in that they may
be used for recovering the chemical value from the waste, rather than its energetic
value, whereby the residual waste after treatment by pyrolysis or gasification is
generally reduced compared to treatment by incineration.

In a preferred embodiment, one or more of said treatments selected
from the group of physical treatments, chemical treatments, biological treatments,
thermochemical treatments, physicochemical and biochemical treatments are used for
treating a carbon compound fraction. The carbon compound fraction may in particular
subjected to plasma treatment, gasification or the like, in order to prepare syngas.

The preparation of syngas in accordance with the invention is
particularly preferred, because it can be used to make a gaseous fuel, in particular
synthetic natural gas (methane), synthetic petroleum (via the Fischer-Tropsch
process), or another chemical of industrial interest, e.g. ammonia or methanol.
Further, hydrogen may be recovered from syngas. In a convenient method, CO in the
syngas is converted into CO2 after which the hydrogen is separated. This conversion
and separation can be accomplished in a manner known per se.

In accordance with the invention, syngas is usually prepared using a
thermochemical process, in particular a slag-forming process, e.g. a plasma treatment
or a gasification treatment. In a specific embodiment, the slag-forming process
comprises both a plasma treatment and a gasification treatment. A slag-forming
process in a method according to the invention is in particular advantageous in that
no or low levels of ash are formed (in contrast to pyrolysis, wherein depending on the
composition, of the material to be pyrolysed substantial amounts of ashes, including
bottom ashes, are formed). Further, the inventors realised that the slag obtained in
accordance with the invention, in particular a vitrified slag, may be used for (the
manufacture of) a construction material.

For gasification a fluid bed gasifier is particularly suitable.

In a particularly preferred method of the invention for preparing
syngas, the carbon compound fraction is subjected to a plasma treatment and a
gasification treatment. For instance, use may be made of a fluid bed gasifier in combination with a plasma converter.

The provision of (syngas for) a gaseous fuel is in particular advantageous over the provision of liquid or solid fuel for providing a fuel which can be converted into energy with a high efficiency and with reduced emission of compounds that are considered detrimental to the environment. Further, flue gas formation tends to be reduced when gaseous fuel is combusted, whereby the provision of (syngas for) gaseous fuel.

Further, anaerobic digestion may be used to convert carbon compound fraction into biogas. The preparation of a gaseous fuel is particularly preferred in accordance with the invention, in order to provide a particularly robust method. However, if desired, the carbon compound fraction may be used to make a solid or liquid chemical compound or composition, e.g. for use as a fuel, e.g. using any of the technologies shown in Figure 3. A particularly suitable method to obtain syngas has already been outlined above.

For the preparation of both syngas and slag, a plasma treatment is in particular suitable.

Microwave-heating or photochemical conversion may be used to improve the quality of especially the syngas. Such treatment may further be used to improve the quality of the slag. Microwave-heating or photochemical conversion may further be used to improve the effectiveness or efficiency of the plasma treatment.

In an advantageous method of the invention, in particular a method wherein a gaseous useful product, such as syngas and/or a gaseous fuel (in particular a fuel comprising methane) is obtained, the carbon compound fraction is obtained by

- if desired, subjecting the waste to a size reduction treatment;
- removing ferrous metals from the waste;
- separating the (size-reduced) waste to a size-fractionation step, thereby separating the waste into a first size-fraction comprising large waste-material particles, a second size-fraction comprising small waste-material particles and - if desired - a third size-fraction comprising waste-material particles of an intermediate size; and
- recovering the carbon compound fraction from one or more of the size-fractions, wherein - if the carbon compound fraction is recovered from more than one size-fraction, these recovered fractions may be combined before further use.
In particular, the recovery of the carbon compound fraction may comprises
subjecting one or more of said size-fractions to a density-based separation wherein
carbon compound materials having a relatively low density (such as paper and low-
density plastics) are separated from materials having a relatively high density (such
as metals, high-density plastics, wood). In such a method, the carbon compound
materials may in particular be recovered from the materials having a relatively high
density.

In a method wherein the landfill-waste has been subjected to a size-
fractionation step, as indicated above, the metals may in particular recovered from
the second size-fraction comprising small waste-material particles, and the remainder
of said second size-fraction is subjected to a separation step wherein inorganic
materials (such as sand and coarser inorganic materials) are removed from the second
size-fraction, which separation comprises a density separation step wherein a fraction
enriched in carbon compound materials and a fraction enriched in the inorganic
materials is obtained.

A water-based separation technique is particular suitable as a density
separation step wherein the fraction enriched in carbon compound materials is
obtained. Suitable water-based separation techniques are known in the art. These
include sink-and-float method, jiggng, water drums, aqua-motors and the coal spiral.

The fraction enriched in carbon compound materials, obtained by the water-based
separation step is advantageously subjected to a size-separation step, thereby
obtaining an organics-rich sludge and a carbon compound fraction. The organic sludge
may be used to obtain methane, ethanol or another useful compound by using is as a
substrate for a micro-organism capable of converting it into a useful compound. For
instance, the organics-rich sludge may be subjected to anaerobic fermentation,
thereby obtaining methane or ethanol.

The invention is further particularly suitable to prepare a slag-based
construction material is prepared comprises mixing at least part of the slag with at
least part of the rest-material fraction. The construction material may in particular be
selected from building aggregate (filling material) through physic chemical cleaning of
the fines and aggregate material or as cement replacement through alkali activation.
A slag-based construction material has a basic composition that allows it to be
activated by alkali-activation. In particular the alkali-activated slag-based material
can be used as a cement placement, optionally together with one or more other rest fractions.

A slag-based construction material is highly inert, in that it is highly resistant against deterioration by influences from the environment, in particular against deterioration by contact with ground/soil water, contact with chemicals, or weather influences.

A slag-based material of the invention can suitably be granulated, to provide a product with a satisfactory granulometry for use as a filling material.

"The slag material possesses, although being inert by itself making it an ideal candidate if processed in the correct granulometry to be used as a filling material, the necessary and essential basic chemical composition allowing it to be processed by alkali-activation either or not together with other rest fractions to a cement replacement.

The invention will now be illustrated by the following example.

Example

This example illustrates a method according to the invention, within the so-called Closing the Circle (CtC) project. To the best of the inventors'knowledge it is the first concrete Enhanced Landfill Mining (ELFM) project. The example elaborates on the analysis and testing carried out to demonstrate its feasibility. This includes a characterisation of the landfilled waste, a feasibility study on Gasplasma™ technology for the thermal valorisation technology within CtC, a feasibility study on material recuperation, a detailed study on the transformation of the landfill site into natural area and a carbon footprint analysis. The results from these validation tests and analyses show that the Closing the Circle project is feasible, using the methodology according to the present invention.

This example is based on activities carried out on the Remo Milieubeheer NV landfill site of Group Machiels in Houthalen-Helchteren (Belgium), which contains both municipal solid waste and industrial waste. Specific for the CtC project is that the reclaimed land will be transformed into a natural zone. For CtC the economic profits are thus only based on the valorisation of the mined materials and
energy from the landfill. Therefore, an integrated approach using different and highly efficient techniques for valorisation is required.

Figure 1 illustrates method steps carried out in this example of a method according to the invention. It starts with the capturing and the valorisation of the landfill gas, and the processing of the leachate offering clean water to the site and its environment. After re-opening the landfill, waste is mined and fed to the material recuperation process. Data are acquired on the qualitative and quantitative composition of the recuperated waste. Based on the data regarding the composition of a recuperated waste it is decided whether a recuperated fraction goes towards the Waste-to-Material (WtM) or towards the Waste-to-Energy (WtE) process. WtM targets to recuperate glass, ceramics, ferrous and non-ferrous metals, plastics, paper, wood, textiles, aggregate fractions and fines. The latter two are processed to ELFM building materials through a combination of processes. WtE valorises the recycling residue from the material recuperation process, the so called Refused Derived Fuel (RDF), containing mostly organics. After screening several potential thermochemical conversion technologies, a plasma treatment technology (the Gasplasma™ technology) was selected for further trial runs.

This example demonstrates the feasibility of a method according to the invention and elaborates on important feasibility analyses and validation tests, i.e. characterisation of the landfilled waste, validation of the envisaged material recuperation and thermal valorisation technologies, a sustainable nature conservation analysis and the establishment of the project's carbon footprint.

Characterisation of landfilled waste

The goal of this characterisation study is to validate a number of assumptions made during the concept phase of the Close the Circle (CtC) project - which forms a basis of the present invention - concerning the landfilled waste based on the available landfill inventory and associated data. These assumptions include:

- Type, amount and location of the landfilled waste;
- Potential for material recuperation;
- Potential for energetic valorisation.
The validation of this concept analysis was performed with the primary objectives:

- To establish the reliability of the existing reports of the waste inventory;
- To establish more accurately the potential of the different waste streams for material recuperation or energetic valorisation;
- To define routes for research to elaborate on or improve the valorisation potential of certain waste streams.

The characterisation is based on a number of trial excavations and the examination of the waste samples both visually as well as through manual sorting tests. During these sorting tests the samples were, after drying, screened at 10 mm and weighed. The amount of wood, paper/cardboard, textile, plastics, metal, glass, ceramics, stone and 'unidentified' were determined for every fraction > 10 mm. The individual fractions were subsequently sampled and further analysed. The calorific value, the ash content, the elementary composition (C, H and N) and the halogens (S, Cl, F and Br) were determined for a well chosen selection of samples.

To obtain samples of the landfilled waste as representative as possible, both as a function of waste type (municipal and industrial waste) and as a function of the storage period, a well chosen number of excavations were conducted. This sampling methodology secured that at least 75% of the landfilled waste was assessed both in type and age.

Based on the inventory, the total amount of stored waste at the landfill site is estimated at 11.3 million ton of dry matter. This includes a correction for the moisture content of the initially stored waste and the degradation of the municipal waste over time. The total amount of waste stored at the Remo landfill site ads up to 16.5 million ton (including moisture) as established from the weighing bridge data. The total amount of dry waste is estimated at 12.8 million ton, taking into account average moisture contents of municipal and industrial waste as per the Phyllis database on the composition of biomass and waste. The degradation of the municipal waste is estimated based on a TOC degradation model and results in a remaining 11.3 million ton of dry matter. Hence, this validation calculation matches well with the estimate established during the concept phase.
The characteristics, relevant to the material and energetic valorisation of the mined waste were calculated based on the chemical and energetic characterisation of the individual fractions. The amount of fines (< 10 mm) is 44 ± 12% for municipal waste and 64 ± 16% for industrial waste. The fines fraction (< 10 mm) forms a major part of the total amount of stored waste. Their valorisation possibilities (material, energy) are being further researched.

A summary of the mass balance of the landfilled waste as a function of the valorisation possibilities, which have been identified so far, is shown in Table 1. The first column shows the assumptions of the concept phase. The second column lists the results of the characterisation study. The results match well for both WtM (38% versus 44.7%) and WtE (55% versus 47.1%). The difference between the fractions without any valorisation opportunity yet identified is negligible (7% versus 8.2%).

Table 1: Summary of the mass balance of the Remo landfill site as a function of the valorisation possibilities

<table>
<thead>
<tr>
<th>Concept phase estimates</th>
<th>Characterisation study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct material recuperation</td>
<td>16%</td>
</tr>
<tr>
<td>Recuperation of material after further treatment</td>
<td>22%</td>
</tr>
<tr>
<td>Energetic valorisation</td>
<td>55%</td>
</tr>
<tr>
<td>Fraction without a valorisation possibility identified so far</td>
<td>7%</td>
</tr>
</tbody>
</table>

The average gross calorific value of the fraction intended for energetic valorisation was determined to be 19.4 MJ/kg (15.5 - 21.6 MJ/kg) dry matter which is very similar to the initial estimate of 16 MJ/kg as calculated at a moisture level of 12%. The validation analysis takes account of a correction for the material not suited for thermal valorisation.

Conclusions

An important objective of this characterisation study was to validate the reliability of the existing landfill inventory. The characterisation study corroborated the accuracy of the inventory, allowing it to be used as the basis for the conceptual analysis of the material and energy recuperation potential and hence for the
elaboration of the business plan. The valorisation potential of the available fractions, for both material recuperation and thermal valorisation, was established more precisely. The estimates of the concept phase and the characterisation study performed are in line and exhibit promising opportunities towards both material and thermal valorisation.

Material recuperation

The goal of this validation study was to assess if an implementation of the proposed material recuperation flow sheet, based on the characterisation test as discussed above, is able to perform the material recuperation process as envisaged. This material recuperation flow sheet is shown in Figure 3. The material recuperation testing establishes a full mass balance with the physical and chemical characteristics of the separated fractions, including the fraction for thermal valorisation. Finally, this material recuperation test also intended to produce a high calorific recycling residue (RDF) for a Gasplasma™ test, which is discussed in the next section.

The material mined from the landfill consisted of a batch of municipal waste and a batch of industrial waste and originates from the same zones where the samples for the characterisation study were taken. Both batches of waste were processed separately in a commercial facility, which implemented the required process steps as depicted in Figure 4.

These processes include:

- Drum screen;
- Screen;
- Wind shifter;
- Washer;
- Dense medium barrel.

The results from the material recuperation tests are summarised in Table 2.
Table 2: Results* of material recuperation tests compared with characterisation

<table>
<thead>
<tr>
<th>Fraction for thermal valorisation</th>
<th>Material recuperation test</th>
<th>Characterisation study of landfilled waste</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recuperated materials (metals, plastics)</td>
<td>37.6%</td>
<td>36.7%</td>
</tr>
<tr>
<td>Recuperated materials (inerts)</td>
<td>6.0%</td>
<td>3.4%</td>
</tr>
<tr>
<td>Fines (0-4 mm, 0-10 mm)</td>
<td>17.1%</td>
<td>9.4%</td>
</tr>
</tbody>
</table>

*This table is based on the sorted fractions as generated by the material recuperation test. Therefore, it can't be directly compared with Table 1, as it already implements a scenario for all fractions. Instead, intermediate results from the characterisation study have been used to compare the results with the results from the material recuperation test.

This table compares the results from the material recuperation on the industrial waste with the results from a mass balance of the characterisation study of the landfilled waste. The results show that the fraction designated for thermal valorisation is almost identical. The gross calorific value of the fraction intended for energetic valorisation is estimated at 21.0 MJ/kg dry matter for the particular zones, which were mined to generate input material for the material recuperation test. The average gross calorific value of the total fraction intended for thermal valorisation of all zones was calculated at 19.4 MJ/kg (15.5 - 21.6 MJ/kg) dry matter. The analysis of the recycling residue (Refuse Derived Fuel), used during the plasma tests, showed a gross calorific value of 24.6 MJ/kg dry matter. This indicates that the recycling residue will probably supersede the average value of the characterisation study and that upper limit values are likely to be obtained.

The amount of fines, as determined during the material recuperation tests, is lower than the amount in the characterisation study. The main reason for this is that the material recuperation tests screened at 0-4 mm while the characterisation study screened at 0-10 mm. This also clarifies why more materials (inerts, metals and plastics) have been recuperated. It can be concluded that the fraction 4-10 mm contains material that is a proper candidate for material recuperation. The material recuperation tests showed that it is feasible to recuperate materials from this fraction.
Conclusions

It is evident from the material recuperation tests that the mined waste can successfully be separated into fractions with promising valorisation potential. The results of the material recuperation test (mass balance, energetic potential, characterisation of separated fractions) are in line with the characterisation study of the landfilled waste. The recycling residue was used during a thermal valorisation test, as discussed in the next section.

Energy Recuperation

A theoretical analysis and testing programme has been undertaken to assess if the Gasplasma™ technology of Advanced Plasma Power Ltd. (Swindon, UK) was chosen for the thermal valorisation technology within the CtC project. Figure 5 shows the summary flow sheet of the Gasplasma™ process. A theoretical model was developed to assess the behaviour of the Gasplasma™ system on the recycling residue of the mined waste. The theoretical model uses the HSC Chemistry for Windows supplied by Outokumpu Research Oy, Finland. This modelling package uses proven metallurgic data, chemical reactions and equilibrium conditions. For certain inputs required by the model, real test plant data was used, e.g. presence and behaviour of trace species.

This allowed the construction of a full mass and energy balance over the process as a whole, which are the two main elements in the analysis of the application potential of the technology within CtC.

To validate and verify this theoretical model, a test was defined. This test consisted of two sets of trials (campaign 1 and campaign 2). For those two sets of trials two different kinds of recycling residues (RDF) were used. Both constitute the recycling residue from material recuperation tests on municipal waste and industrial waste. The characteristics of both types of RDF are representative for the fraction intended for thermal valorisation as indicated by the characterisation study of the landfilled waste. The first trial run (campaign 1) only uses RDF1, while the second trial run (campaign 2) uses a mixture of both RDF types.

Based on several measurements of the Net Calorific Value (NCV) of the recycling residues, the NCV is established to be 19.36 ± 1.15 MJ/kg (RDF 1) and 21.49 MJ/kg (RDF 2), both at a moisture content of 12 wt%. The net electrical efficiency takes into account the parasitic load of the Gasplasma™ components.
The full scale theoretical model predicted a net electrical efficiency ranging from 25% (based on conditions of campaign 1) to 30% (based on conditions of campaign 2). During the pilot trial runs, net electrical efficiencies of 20% (campaign 1) and 23.0% (campaign 2) were measured. Given a number of operational and measurement constraints of the pilot plant, the measured values are established to be representative for the full scale modelling. Even higher energy conversion efficiencies are expected to be possible in future plasma converter designs currently being elaborated.

Table 3 shows the complete mass balance of the Gasplasma™ process for the current design. Approximately 90% of the ash in the RDF will be melted, tapped from the plasma converter and cooled to form a vitrified slag. This 90% capture efficiency by the plasma converter is based on CFD (Computational Fluid Dynamics) modelling. From the analysis of the vitrified slag, through e.g. leaching tests, it can be concluded that the material is a proper candidate for use as building aggregate or gravel replacement for the construction industry.
Table 3: Mass balance of the current design of the Gasplasma™ process

<table>
<thead>
<tr>
<th>Process stage</th>
<th>Mass in (tons)</th>
<th>Mass out (tons)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gasplasma</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Refuse derived fuel</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>Oxygen</td>
<td>0.549</td>
<td></td>
</tr>
<tr>
<td>Water for steam</td>
<td>0.272</td>
<td></td>
</tr>
<tr>
<td>Nitrogen</td>
<td>0.043</td>
<td></td>
</tr>
<tr>
<td>Natural gas</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>Plasmarok</td>
<td></td>
<td>0.183</td>
</tr>
<tr>
<td>Metals</td>
<td></td>
<td>0.005</td>
</tr>
<tr>
<td>Gas clean up</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sodium bicarbonate</td>
<td>0.004</td>
<td></td>
</tr>
<tr>
<td>Activated carbon</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>Nitrogen</td>
<td>0.009</td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td>0.002</td>
<td></td>
</tr>
<tr>
<td>Gas clean-up reagents</td>
<td>0.011</td>
<td></td>
</tr>
<tr>
<td>APC residue</td>
<td></td>
<td>0.024</td>
</tr>
<tr>
<td>Aqueous off-take</td>
<td></td>
<td>0.401</td>
</tr>
<tr>
<td>Power generation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air</td>
<td>9.142</td>
<td></td>
</tr>
<tr>
<td>Urea</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>Exhaust</td>
<td></td>
<td>10.421</td>
</tr>
<tr>
<td>Total</td>
<td>11.034</td>
<td>11.034</td>
</tr>
</tbody>
</table>

The stability of the Gasplasma™ technology for the intended application within the CtC project was demonstrated by a number of long runs of up to 75 hours. During those runs, both batches of RDF were used. The alternating feeding of the two types of RDF during the test runs demonstrated the satisfactory level of robustness.

Conclusions

It is established that the Gasplasma™ technology is suitable for the thermal valorisation technology within the CtC project. Mass and energy balance were validated based on theoretical models and pilot tests performed, using the recycling residue from the material recuperation tests performed on mined waste.
Multiple pilot tests have demonstrated that the Gasplasma™ technology operates in a stable way. The vitrified slag from the plasma converter is a promising material for aggregate or gravel replacement.

Recovery of natural land

A feasibility study was conducted to validate if the CTC project is able to meet the applicable nature conservation goals for the area.

It was examined if the local conservation goals after realisation of the project can be met in a sustainable way based on the current abiotic conditions of the landfill cover. This feasibility study also proposed a presumptive phasing of the mining activities in the project. This phasing enabled a screening on the impact of the habitat distribution in the project area, as well as the impact on the conservation goals of the proposed vision during and after the realisation of the project.

The methodology focused on the potential for recovery of dry heath land and dry siliceous grasslands, which was present on the site in the 1950s and 1960s. Deciduous and coniferous woodland as well as brushwood were present at that time. The potential for realisation of the intended conservation goals during and after mining of the landfill was judged based on the abiotic conditions of the nature target types or the habitats which were indicated in the target map. Soil variables such as texture, pH, organic matter and nutrients (NO₃, NF₄⁺, and P-PO₄³⁻) and ground water level were used to evaluate the potential for habitat rehabilitation. Soil analysis was carried out on the current top cover of the landfills to determine the potential of the soils for habitat rehabilitation after Enhanced Landfill Mining. This cover has a minimal thickness of 1 meter. The soil characteristics of the top layer, freatic ground water and the seedbank present determine the recovery of the nature target types.

In total 23 soil samples were taken of the cover layer spread over the different landfill zones. Five soil samples were taken as reference in the environment in areas of heath or on land dunes. The organic matter content was determined besides pH-FkO and pH-KCl. Ammonium and levels of nitrate were determined with FIA after extraction with KC1 and NaHCO₃ extractable phosphor was used as an indicator of phosphate in the soil. The feasibility of the intended habitats was judged based on these abiotic variables. The current top layer in areas with dry heath and dry siliceous grasslands vegetation, offers the required potential to restore the habitat type psammofilic heath, dry heath or dry siliceous grasslands in the mined landfills.
Table 4 shows the difference in area, expressed in hectares, per habitat type in the different phases of the project (from year 1 to year 20) compared with the target. This exercise shows that besides the temporary loss of habitat, the ecotope balance can be secured, resulting in a net increase of more than 9 hectare at the end of the project compared to the current situation.

The feasibility study additionally evaluated a possible location ('searching zone') for the temporary Enhanced Landfill Mining installations at the Remo landfill site. The criteria for the choice of this location for the construction and operation of the ELFM installations are:

- Limit the influence on the environment and the surrounding inhabitants;
- Limit the transport distance.

Table 4: Difference in area (ha) per habitat type in the different phases (years) of the project based on the nature conservation vision

<table>
<thead>
<tr>
<th>Target type (column below)/ Years (row on the right)</th>
<th>1-2</th>
<th>3-4</th>
<th>5-7</th>
<th>8-9</th>
<th>10-11</th>
<th>12-13</th>
<th>14-15</th>
<th>16-17</th>
<th>18-19</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acidophous oak woods dominated by birch</td>
<td>-10.6</td>
<td>-7.64</td>
<td>-3.78</td>
<td>-9.16</td>
<td>-7.05</td>
<td>-7.05</td>
<td>-6.51</td>
<td>-1.42</td>
<td>-9.08</td>
<td>1.05</td>
</tr>
<tr>
<td>Wooded heathland</td>
<td>-1.23</td>
<td>-2.71</td>
<td>1.29</td>
<td>-1.65</td>
<td>-1.62</td>
<td>-1.07</td>
<td>-2.71</td>
<td>-1.21</td>
<td>-1.21</td>
<td>1.79</td>
</tr>
<tr>
<td>Agrostis grassland</td>
<td>0.00</td>
<td>-6.21</td>
<td>-0.21</td>
<td>2.09</td>
<td>2.09</td>
<td>2.09</td>
<td>2.09</td>
<td>2.09</td>
<td>2.09</td>
<td>2.09</td>
</tr>
<tr>
<td>Dry heath/ Nardo-Galian grassland</td>
<td>0.00</td>
<td>0.00</td>
<td>-1.41</td>
<td>-0.06</td>
<td>-0.06</td>
<td>-2.34</td>
<td>-2.34</td>
<td>-2.34</td>
<td>-2.34</td>
<td>0.66</td>
</tr>
<tr>
<td>Water/swamp</td>
<td>1.72</td>
<td>1.72</td>
<td>2.59</td>
<td>5.33</td>
<td>-0.4</td>
<td>2.69</td>
<td>0.39</td>
<td>0.39</td>
<td>-4.64</td>
<td>1.56</td>
</tr>
<tr>
<td>Woods</td>
<td>-0.22</td>
<td>-0.22</td>
<td>-0.22</td>
<td>-0.22</td>
<td>-0.22</td>
<td>-0.39</td>
<td>-0.39</td>
<td>-0.39</td>
<td>-0.39</td>
<td>1.61</td>
</tr>
<tr>
<td>Roughs</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>-0.22</td>
<td>-1.23</td>
<td>-1.49</td>
<td>-1.65</td>
<td>-1.65</td>
<td>-1.65</td>
<td>0.35</td>
</tr>
<tr>
<td>Open sand</td>
<td>0.00</td>
<td>-0.48</td>
<td>-0.48</td>
<td>-0.48</td>
<td>-0.48</td>
<td>-1.98</td>
<td>-2.47</td>
<td>-2.47</td>
<td>-2.92</td>
<td>0.08</td>
</tr>
<tr>
<td>Total</td>
<td>-10.4</td>
<td>-14.9</td>
<td>-14.9</td>
<td>-4.38</td>
<td>-8.96</td>
<td>-10.7</td>
<td>-7.01</td>
<td>-7.01</td>
<td>-20.1</td>
<td>9.19</td>
</tr>
</tbody>
</table>
The 'searching zone' resulting from this exercise is situated towards the eastern direction of the landfill areas and is shown in Figure 5. This location fits best with the landfill zones and would probably cause the least impact on the local community.

Conclusions

This feasibility study indicated that nature conversation goals can be met based on the current abiotic situation and the developed plan for the project phases. During the course of the project an impact on the ecotope balance and the nature conservation goals can occur. However, those impacts can be mitigated by restoring hectares of dry heathland and acidophous oak woods in the surrounding area. The feasibility study also evaluated a searching zone for the material and energy recuperation installations. This location fits best with the landfill site, limits the transport movements and would probably cause the least impact on the surrounding environment and its inhabitants.

Carbon footprint

The goal of the carbon footprint study was to quantitatively investigate if the CtC project would have a significant net CO2 benefit, compared to a 'do-nothing scenario'. This was done using the Bilan Carbone approach, which compared the CO2 balance of the 'do-nothing scenario' with the CtC scenario. The Bilan Carbone method is designed to estimate the greenhouse gases (described as CO2-equivalent (CO2e) taking the global warming potential of the different gases into account) linked to the physical processes necessary for the activity, wherever these emissions occur. The place of emission is ignored, because of the length of time that greenhouse gases remain in the atmosphere. Naturally, the first emissions taken into account are those that occur directly within the legal boundaries of the entity itself, for example emissions due to combustion of gas or fuel oil in a boiler owned by the entity. But this method also encompasses emissions that occur elsewhere, as a result of processes that are required by the company. Figure 6 shows the emissions that are taken into account in this approach. The method implies that the difference in energy and materials that are not produced by the CtC scenario will be produced on the market in
the do-nothing scenario. Comparing the footprints of both scenarios gives an idea which scenario is more beneficial towards greenhouse gas mitigation.

The final conclusion of the study is that, to produce the same amount of energy and materials, the total level of greenhouse gas emissions from the Closing the Circle scenario using a method according to the invention is significantly lower than for the do-nothing scenario: i.e. 5.3 Mton CO₂e compared to 6.3 Mton CO₂e, or 15 percent less greenhouse gas emissions. The sensitivity analysis revealed that this conclusion remains valid upon varying most of the examined parameters. The benefit is achieved by avoiding the burning of primary fossil fuels both for electricity and heat generation, and for the production of various materials that are recycled in the CtC scenario. Furthermore, this result is reached without taking into account any form of carbon capture and sequestration (CCS), which could further reduce the carbon dioxide footprint.
Claims

1. Method for obtaining at least one useful product, which product may be a material product or energy, from landfill-waste, wherein the method comprises
 - obtaining waste from a landfill;
 - acquiring data on the qualitative and quantitative composition of the waste, which data in particular include data on the moisture content, on the metal content, on the content of carbon compounds and on the particle size distribution of the waste;
 - selecting method steps for obtaining the useful product on the basis of the data thus obtained; and
 - carrying out the selected method steps, which method steps comprise separating the waste into a plurality of material fractions, in particular a metal fraction, a carbon compound fraction and a rest-material fraction, and subjecting one or more of said material fractions to further treatment, whereby the useful product is obtained, in which method more than 85 wt. % of the waste is used for obtaining the useful product.

2. Method according to claim 1, wherein the acquiring of data comprises a combination of a field tests and the use of a calibrated aging model.

3. Method according to any of the preceding claims, wherein the selected method steps further comprise one or more pre-treatment steps of the landfill-waste material or a part thereof, which pre-treatment steps are selected from the group of visual screening (for removing large material pieces), pre-drying, drying, size-reduction treatments, shredding, milling (e.g. with cascade ball mill, and crushing.

4. Method according to any of the preceding claims, wherein the selected method steps further comprise one or more treatment steps selected from the group of physical treatments, chemical treatments, biological treatments, thermochemical treatments, physicochemical treatment, biochemical treatments, in particular from the group of, drying, size-based separations, magnetic separations, density-based separations, eddy current separations, heat-
treatments, irradiation with electromagnetic waves, plasma treatments, pyrolysis, torrefaction, gasification, liquefaction, fermentation.

5. Method according to any of the preceding claims, wherein the separating of the waste into a plurality of material fractions, comprises separating the waste into a metal fraction, a carbon compound fraction, a rest-material fraction, and further into a glass and/or ceramics fraction.

6. Method according to any of the preceding claims, wherein the rest-material fraction is subdivided in a fine rest-material fraction and an aggregate rest-material fraction.

7. Method according to any of the preceding claims, wherein the useful product is selected from the group of water, power, heat, landfill gas, restored nature, glass, ceramics, fine fractions, aggregate fractions, ferrous metals, non-ferrous metals, plastics, paper, wood, textiles, refuse derived fuel, syngas, vitrified slag, C02, building materials.

8. Method according to claim 7, wherein a slag-based construction material is prepared comprises mixing at least part of the slag with at least part of the rest-material fraction.

9. Method for obtaining a useful product from landfill-waste, preferably a method according to any of the preceding claims, the method comprising - obtaining the waste from a landfill;
- separating the waste into a plurality of material fractions, thereby obtaining a metal fraction, a carbon compound fraction for forming syngas and a rest-material fraction;
- forming syngas and a slag from the carbon compound fraction; and
- preparing a construction material, in particular building aggregate or cement replacement, from the slag,
in which method more than 85 wt. % of the waste is used for obtaining the useful product.

10. Method according to claim 7, 8 or 9, wherein the syngas is formed using a plasma treatment, which plasma treatment optionally includes at least one treatment selected from the group of microwave-heating and photochemical conversion.

11. Method according to any of the preceding claims, wherein the carbon compound fraction is obtained by
- if desired, subjecting the waste to a size reduction treatment;
- removing ferrous metals from the waste;
- separating the (size-reduced) waste to a size-fractionation step, thereby
 separating the waste into a first size-fraction comprising large waste-material
 particles, a second size-fraction comprising small waste-material particles and -
 if desired - a third size-fraction comprising waste-material particles of an
 intermediate size; and
- recovering the carbon compound fraction from one or more of the size-fractions,
 wherein - if the carbon compound fraction is recovered from more than one size-
 fraction, these recovered fractions may be combined before further use.
12. Method according to claim 11, wherein recovering the carbon
 compound fraction comprises subjecting the size-fraction to a density-based
 separation wherein carbon compound materials having a relatively low density
 (such as paper and low-density plastics) are separated from materials having a
 relatively high density (such as metals, high-density plastics, wood), thereby
 forming a fraction of materials having a relatively high density and a fraction of
 materials having a relatively low density.
13. Method according to claim 12, wherein carbon compound materials
 are recovered from said fraction of materials having a relatively high density.
14. Method according to claim 12 or 13, wherein metals are recovered
 from the second size-fraction comprising small waste-material particles, and the
 remainder of said second size-fraction is subjected to a separation step wherein
 inorganic materials (such as sand and coarser inorganic materials) are removed
 from the second size-fraction, which separation comprises a density separation
 step wherein a fraction enriched in carbon compound materials and a fraction
 enriched in the inorganic materials is obtained.
15. Method according to claim 14, wherein the density separation step
 wherein the fraction enriched in carbon compound materials is obtained is a
 water-based separation technique and wherein the fraction enriched in carbon
 compound materials is subjected to a size-separation step, thereby obtaining an
 organics-rich sludge and a carbon compound fraction.
16. Method according to claim 15, wherein the organics-rich sludge is
 subjected to fermentation, thereby obtaining methane.
17. Method according to any of the preceding claims, wherein the method
 steps are selected on the basis of a predetermined method scenario.
18. Method according to any of the preceding claims, wherein at least 90 wt. % of the waste, in particular at least 92 wt. %, more in particular at least 95 wt. % of the waste is used for obtaining the useful product.

19. Product, in particular a construction material, obtainable by a method according to any of the preceding claims.

20. Product according to claim 19, wherein the product is a slag-based granulated construction material.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
INV. B03B9/06 B09B1/00
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED
Minimum documentation searched (classification system followed by classification symbols)

B03B B09B CIOL

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>wo 2009/011588 AI (MPI MAN B V [NL]; KOENS ANTONIUS DOROTHEUS [NL]) 22 January 2009 (2009-01-22) cited in the application on the whole document</td>
<td>1-20</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:
 - "A" document defining the general state of the art which is not considered to be of particular relevance
 - "E" earlier document but published on or after the international filing date
 - "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 - "O" document referring to an oral disclosure, use, exhibition or other means
 - "P" document published prior to the international filing date but later than the priority date claimed
 - "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 - "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 - "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 - "Z" document member of the same patent family

Date of the actual completion of the international search: 3 February 2012

Date of mailing of the international search report: 14/02/2012

Name and mailing address of the ISA:
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040,
Fax: (+31-70) 340-3016

Authorized officer:
Lei tner, Josef
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>Kl aus Wiemer, Bri gitte Bartsch, Helge Schmeisky: "Deponen als Rohstoff lagerstatten von morgen"</td>
<td>1-20</td>
</tr>
<tr>
<td></td>
<td>In: K. Wiemer, M. Kern: "Bio- und Sekundarroststoffverwertung IV"</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2009, Wi tenhausen-Insti tut, Wi tenhausen, XP002626349</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ISBN: 3-928673-54-8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>pages 685-716, the whole document</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>REINHARD GÖSCHL: "Deponierückbau im Emirat Sharjah", \ TIEFBAU, vol. 118, no. 2, 2006, pages 66-71 \ XP002626350, \ ISSN: 0944-8780</td>
<td>1-20</td>
</tr>
<tr>
<td></td>
<td>page 66, last paragraph</td>
<td></td>
</tr>
<tr>
<td></td>
<td>page 67, last paragraph</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>DE 43 11 769 A1 (THERMOSELECT AG [LI])</td>
<td>7-9</td>
</tr>
<tr>
<td></td>
<td>13 October 1994 (1994-10-13)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>claims</td>
<td></td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>WO 2009011588 A1</td>
<td>22-01-2009</td>
<td>AT 535322 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2693381 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 101801550 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2167247 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NL 2000759 C2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2010304356 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2009011588 A1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>WO 2009111791 A2</td>
<td>11-09-2009</td>
<td>NONE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>DE 4311769 A1</td>
<td>13-10-1994</td>
<td>NONE</td>
</tr>
</tbody>
</table>