
USOO82O1158B2

(12) United States Patent (10) Patent No.: US 8,201,158 B2
Inglis et al. (45) Date of Patent: *Jun. 12, 2012

(54) SYSTEMAND PROGRAM PRODUCT FOR 6,330,714 B1 12/2001 Hicks et al.
IMPLEMENTING SINGLE THREADED 3. A. R ES East 1
OPTIMIZATIONS IN A POTENTIALLY 883 : 388. R. metal
MULT-THREADED ENVIRONMENT 6.530,079 B1 3/2003 Choi et al.

6,665,865 B1 12/2003 Ruf
(75) Inventors: Derek B. Inglis, Markham (CA); Trent 6,757,891 B1 6/2004 AZagury et al.

A. Gray-Donald, Ottawa (CA); Kevin 2004/0221272 A1 11, 2004 Wu et al.
A. Stoodley, Richmond H11 (CA); Vijay 2004/O250240 A1 12, 2004 Stoodley et al.

Sundaresan, North York (CA) OTHER PUBLICATIONS

(73) Assignee: International Business Machines Jeff Bogda and Urs Holzle, “Removing Unnecessary Synchroniza
Corporation, Armonk, NY (US) tion in Java”, 1999, Proceedings of the 14 ACM SIGPLAN Confer

ence on Objected-Oriented Programming, Systems, Languages, and
(*) Notice: Subject to any disclaimer, the term of this Applications, United States, pp. 35-46.

patent is extended or adjusted under 35 Fitzgerald et al., “Marmot: An Optimizing Compiler for Java’, Mar.
U.S.C. 154(b) by 1046 days. 2000, Software—Practice & Experience, vol. 30, Issue 3, pp. 199

232.
This patent is Subject to a terminal dis- Erik Ruf, “Effective Synchronization Removal for Java”, 2000, Pro
claimer. ceedings of the ACM SIGPLAN 2000 Conference on Programming

Language Design and Implementation, pp. 208-218.
(21) Appl. No.: 12/100,035 Choi et al., "Stack Allocation and Synchronization Optimizations for

1-1. Java. Using Escape Analysis”, Nov. 2003, ACM Transactions on
(22) Filed: Apr. 9, 2008 Programming Languages and Systems, vol. 25, Issue 6, pp. 876-910.

(65) Prior Publication Data (Continued)

US 2008/O1896.92 A1 Aug. 7, 2008 Primary Examiner — Lewis A Bullock, Jr.

Related U.S. Application Data Assistant Examiner — Jue Wang
74) Att , Agent, or Firm - Nel d Nelson; Daniel (63) Continuation of application No. 10/930,032, filed on . E" NG." CSO 3C TYCSO 31

Aug. 30, 2004, now Pat. No. 7,395,530. s

(51) Int. Cl. (57) ABSTRACT
G06F 9/45 (2006.01) Under the present invention, program code is examined (stati

(52) U.S. Cl. ... T17/153 cally or dynamically) for characteristics indicative of a poten
(58) Field of Classification Search None tial to generate multiple threads. If none are found, single

See application file for complete search history. threaded optimization(s) such as desynchronization, optimi
Zation of globals, etc., can be implemented. In addition, if the

(56) References Cited program code is later revealed to have the potential to gener

U.S. PATENT DOCUMENTS

6,170,083 B1 1/2001 Adl-Tabatabai
6,289,506 B1 9/2001 Kwong et al.

100

N

ate multiple threads, the single threaded optimization(s) can
be corrected to avoid incorrect execution.

20 Claims, 2 Drawing Sheets

102

EXAMINE PROGRAMCODE FOR
CHARACTERISTICS INDICATIVE OF A POTENTIAL

TO GENERATE MULTIPLE THREADS

IMPLEMENTAT LEAST ONE SINGLE THREADED
OPTIMIZATION IF THE EXAMINATION REVEALS

THAT THE PROGRAMCODE DOES NOT HAVE THE
POTENTIAL TO GENERATE MULTIPLE THREADS

REMOVE THEAT LEAST ONE SINGLE THREADED
OPTIMIZATION IF THE PROGRAMCODE ISLATER

REVEALED TO HAVE THE POTENTIAL TO
GENERATE MULTIPLE THREADS

US 8,201,158 B2
Page 2

OTHER PUBLICATIONS Wang, U.S. Appl. No. 10/930,032. Office Action Communication,
Jun. 21, 2007, 20 pages.

Wang, U.S. Appl. No. 10/930,032. Office Action Communication, Wang, U.S. Appl. No. 10/930,032. Notice of Allowance & Fees Due,
Jan. 22, 2007, 22 pages. Dec. 31, 2007, 16 pages.

US 8,201,158 B2

ÅRHOVNE|WN

Z? WELSÅS HELDdWOO

U.S. Patent

US 8,201,158 B2 Sheet 2 of 2 Jun. 12, 2012 U.S. Patent

Z0),

Ó '{DIJH

US 8,201,158 B2
1.

SYSTEMAND PROGRAMI PRODUCT FOR
IMPLEMENTING SINGLE THREADED
OPTIMIZATIONS IN A POTENTIALLY
MULT-THREADED ENVIRONMENT

The current application is a continuation application of
co-pending U.S. patent application Ser. No. 10/930,032, filed
on Aug. 30, 2004, now U.S. Pat. No. 7,395,530 which is
hereby incorporated by reference.

BACKGROUND OF THE INVENTION

1. Field of the Invention
The present invention generally relates to a method, system

and program product for implementing single threaded opti
mizations in a potentially multi-threaded environment. Spe
cifically, the present invention allows single threaded optimi
Zations to be legally implemented in appropriate program
code.

2. Related Art
As programming languages advance, computer programs

can generally be categorized into groups that are capable of
generating a single thread, and those that are capable of
generating multiple threads. Based on this categorization,
certain optimizations can be performed. For example, if a
program is capable of only generating a single thread, the
program can be desynchronized, its globals can be optimized,
etc. Such single-threaded optimizations should not be imple
mented with programs having multi-thread capability at the
risk of causing incorrect execution. To this extent, the possi
bility that multiple threads could be created by a program
constrains analyses and restricts the code transformations that
can be performed.
Most programming languages have a fixed set of primitives

under which a new thread can be created. Unfortunately, no
existing system provides the capability to examine a program
for the potential to generate multiple threads without per
forming whole program analysis (i.e., seeing every piece of
code that might be run), and then make optimizations based
on the determination. This is an especially difficult task for
dynamic loading environments where it is not possible to
determine inadvance if multiple threads cannot be generated.
Specifically, in a dynamic compilation environment, exami
nation results could change as the program continues to run/
execute. To this extent, existing systems also fail to provide a
system whereby an examination result and Subsequent opti
mization that later proves to be erroneous can be reversed.

In view of the foregoing, there exists a need for a method,
system and program product for implementing single
threaded optimizations in a potentially multi-threaded envi
ronment. Specifically, a need exists for a system that is
capable of examining (dynamically or statically) program
code for multi-thread potential. A further need exists for the
system to implement single threaded optimizations if the
examination reveals that multi-thread potential is not present.
Still yet, a need exists for the system to be able to take
corrective steps in the event a program is later revealed to have
multi-thread potential. This need is especially apparent in an
environment with dynamic loading where it is not possible to
determine inadvance if multiple threads cannot be generated.

SUMMARY OF THE INVENTION

In general, the present invention provides a method, system
and program product for implementing single threaded opti
mizations in a potentially multi-threaded environment. Spe
cifically, under the present invention, program code is exam

10

15

25

30

35

40

45

50

55

60

65

2
ined (statically or dynamically) for characteristics indicative
of a potential to generate multiple threads. If none are found,
single threaded optimization(s) such as desynchronization,
optimization of globals, etc., can be implemented. In addi
tion, if the program code is later revealed to have the potential
to generate multiple threads, the single threaded optimiza
tion(s) can be corrected to avoid incorrect execution.
A first aspect of the present invention provides a method for

implementing single threaded optimizations in a potentially
multi-threaded environment, comprising: examining pro
gram code for characteristics indicative of a potential togen
erate multiple threads; and implementing at least one single
threaded optimization if the examining step reveals that the
program code does not have the potential to generate multiple
threads, wherein the implementing step is correctable if the
program code is later revealed to have the potential to gener
ate multiple threads.
A second aspect of the present invention provides a method

for implementing single threaded optimizations in a poten
tially multi-threaded environment, comprising: dynamically
examining program code for characteristics indicative of a
potential to generate multiple threads; implementing at least
one single threaded optimization if the examining reveals that
the program code does not have the potential to generate
multiple threads; and removing the at least one single
threaded optimization if the program code is later revealed to
have the potential to generate multiple threads.
A third aspect of the present invention provides a system

for implementing single threaded optimizations in a poten
tially multi-threaded environment, comprising: a code exami
nation system for examining program code for characteristics
indicative of a potential to generate multiple threads; an opti
mization system for implementing at least one single
threaded optimization if the code examination system reveals
that the program code does not have the potential to generate
multiple threads; and a review system for removing the at
least one single threaded optimization if the program code is
later revealed to have the potential to generate multiple
threads.
A fourth aspect of the present invention provides a program

product stored on a recordable medium for implementing
single threaded optimizations in a potentially multi-threaded
environment, which when executed, comprises: means for
examining program code for characteristics indicative of a
potential to generate multiple threads; means for implement
ing at least one single threaded optimization if the means for
examining reveals that the program code does not have the
potential to generate multiple threads; and means for remov
ing the at least one single threaded optimization if the pro
gram code is later revealed to have the potential to generate
multiple threads.
A fifth aspect of the present invention provides a system for

deploying an application for implementing single threaded
optimizations in a potentially multi-threaded environment,
comprising: a computer infrastructure being operable to:
examine program code for characteristics indicative of a
potential to generate multiple threads; implement at least one
single threaded optimization if the means for examining
reveals that the program code does not have the potential to
generate multiple threads; and remove the at least one single
threaded optimization if the program code is later revealed to
have the potential to generate multiple threads.
A sixth aspect of the present invention provides computer

Software embodied in a propagated signal for implementing
single threaded optimizations in a potentially multi-threaded
environment, the computer Software comprises instructions
to cause a computer system to perform the following func

US 8,201,158 B2
3

tions: examine program code for characteristics indicative of
a potential to generate multiple threads; implement at least
one single threaded optimization if the means for examining
reveals that the program code does not have the potential to
generate multiple threads; and remove the at least one single
threaded optimization if the program code is later revealed to
have the potential to generate multiple threads.

Therefore, the present invention provides a method, system
and program product for implementing single threaded opti
mizations in a potentially multi-threaded environment.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other features of this invention will be more
readily understood from the following detailed description of
the various aspects of the invention taken in conjunction with
the accompanying drawings in which:

FIG. 1 depicts a system for implementing single threaded
optimizations in a potentially multi-threaded environment
according to the present invention.

FIG. 2 depicts a method flow diagram according to the
present invention.
The drawings are not necessarily to Scale. The drawings are

merely schematic representations, not intended to portray
specific parameters of the invention. The drawings are
intended to depict only typical embodiments of the invention,
and therefore should not be considered as limiting the scope
of the invention. In the drawings, like numbering represents
like elements.

DESCRIPTION OF THE INVENTION

As indicated above, the present invention provides a
method, system and program product for implementing
single threaded optimizations in a potentially multi-threaded
environment. Specifically, under the present invention, pro
gram code is examined (statically or dynamically) for char
acteristics indicative of a potential to generate multiple
threads. If none are found, single threaded optimization(s)
Such as desynchronization, optimization of globals, etc., can
be implemented. In addition, if the program code is later
revealed to have the potential to generate multiple threads, the
single threaded optimization(s) can be corrected to avoid
incorrect execution.

Referring now to FIG. 1, a system 10 for implementing
single threaded optimizations in a potentially multi-threaded
environment is shown. Under system 10, a computer system
12 will examine program 14 (i.e., the program code thereof)
for characteristics indicative of a potential to generate mul
tiple threads. If multi-thread potential is not found, then cer
tain single threaded optimizations can be implemented. The
examination of program 14 can occur statically before the
program is run, or dynamically as the program is being run
(e.g., compiled and run). To this extent, it should be under
stood that program analysis system 32 shown in memory 22
of computer system could be implemented as part of or in
conjunction with a compiler, or a dynamic means such as a
real-time compiler (e.g., a Java Just-in-Time Compiler). In
any event, performing the method of present invention
dynamically allows the process to be “refined.” Such refine
ment can come in the form of for example, reducing the
number of situations that prevent single threaded optimiza
tions from being implemented and/or delaying correction of
single threaded optimizations that have been implemented.

It should also be understood that in an illustrative example
described below, the teachings of the present invention will be
described in conjunction with the Java programming lan

10

15

25

30

35

40

45

50

55

60

65

4
guage (e.g., program 14 could be a Java program). However,
this need not be the case. Rather, the teachings herein could be
implemented in conjunction with any programming lan
gllage.

In addition, it should be appreciated that the present inven
tion could be implemented via a stand-alone system as
shown, or over a network Such as the Internet, a local area
network (LAN), a wide area network (WAN), a virtual private
network (VPN), etc. Communication through such a network
could occur via a direct hardwired connection (e.g., serial
port), or via an addressable connection that may utilize any
combination of wireline and/or wireless transmission meth
ods. Moreover, conventional network connectivity, Such as
Token Ring, Ethernet, WiFi or other conventional communi
cations standards could be used. Still yet, connectivity could
be provided by conventional IP-based protocol.

In any event, as depicted, computer system 12 generally
processing unit 20, memory 22, buS 24, input/output (I/O)
interfaces 26, external devices/resources 28 and storage unit
30. Processing unit 20 may comprise a single processing unit,
or be distributed across one or more processing units in one or
more locations, e.g., on a client and server. Memory 22 may
comprise any known type of data storage and/or transmission
media, including magnetic media, optical media, random
access memory (RAM), read-only memory (ROM), a data
cache, a data object, etc. Moreover, similar to processing unit
20, memory 22 may reside at a single physical location,
comprising one or more types of data storage, or be distrib
uted across a plurality of physical systems in various forms.

I/O interfaces 26 may comprise any system for exchanging
information to/from an external source. External devices/
resources 28 may comprise any known type of external
device, including speakers, a CRT, LED screen, hand-held
device, keyboard, mouse, Voice recognition system, speech
output system, printer, monitor/display, facsimile, pager, etc.
Bus 24 provides a communication link between each of the
components in computer system 12 and likewise may com
prise any known type of transmission link, including electri
cal, optical, wireless, etc.

Storage unit 30 can be any system (e.g., a database, etc.)
capable of providing storage for information under the
present invention. Such information could include, among
other things, characteristics indicative of a potential of pro
gram 14 to generate multiple threads, single threaded optimi
Zations, an activity log, etc. As such, Storage unit 30 could
include one or more storage devices, such as a magnetic disk
drive oran optical disk drive. In another embodiment, storage
unit 30 includes data distributed across, for example, a local
area network (LAN), wide area network (WAN) or a storage
area network (SAN) (not shown). Although not shown, addi
tional components, such as cache memory, communication
systems, system Software, etc., may be incorporated into
computer system 12.
Shown in memory 22 as a program product is program

analysis system 32, which generally includes code examina
tion system 40, optimization system, 42 and review system
44. Under the present invention, code examination system 40
will first examine the program code of program 14 for char
acteristic that are indicative of a potential of program 14 to
generate multiple threads. Such characteristics could include,
among other things, a new user thread being explicitly created
in program 14; finalizer methods being run; and a native
thread attaching to a (Java) process. Such characteristics
could be programmed within code examination system 40
and/or accessed as a reference (e.g., in storage unit 30).
Regardless, if the potential to generate multiple threads is not

US 8,201,158 B2
5

detected for program 14, optimization system 42 will imple
ment one or more single threaded optimizations.

Under the present invention, many types of single threaded
optimizations are possible. Two examples of Such are as fol
lows:

(1) Desynchronization: In multi-threaded programs, syn
chronization between threads is usually important to ensure
correct execution. Most programming languages provide
primitives to specify synchronized methods or synchronized
blocks to enable programmers to indicate which sections of
code and which objects require synchronization between
threads to ensure correctness. It is common for classes to be
designed and implemented generally enough to work cor
rectly when used in a multi-threaded environment. In fact,
many collection classes in the Java class library (e.g. Vector
and Hashtable) contain a large number of synchronized meth
ods because they are designed for general use. However, the
convenient Application Programming Interfaces (APIs)
offered by library classes means that they are frequently used
by programmers in single-threaded programs as well, in
which the case the synchronization is unnecessary, as conten
tion is not possible. Since the lock/unlock operations required
to implement synchronization are relatively expensive, elimi
nating Such operations under the present invention can sig
nificantly improve the performance of a program proven to
create only a single thread.

(2) Optimization of globals: The possibility that multiple
threads can be created also hinders other optimizations,
because it must be conservatively assumed that another
thread could load another class or modify global data at any
time (unless there is an explicit restriction imposed by the
runtime to exclude this property). This means that traditional
class hierarchy based optimizations like pre-existence cannot
be naively applied for globals (fields/statics). Also, optimiza
tions such as check elimination (e.g. null checks, array bound
checks, Zero divide checks) for globals also cannot be
applied, as it is possible that another thread modifies the
global after the check has been performed and before the code
that depends on the check having been done earlier. To work
around this problem when optimizing globals, compilers usu
ally apply a specific transformation to privatize global
accesses (i.e. read the global value into (thread-specific)
locals that cannot be manipulated by another thread) before it
can optimize them. Privatization of globals has drawbacks in
that it adds compilation overhead, and also might not be
possible in several, fairly common encountered situations.

After program 14 has been examined and Subsequently
optimized, the present invention also allows for correction in
the event that program 14 is later determined to have the
capability to generate multiple threads. This is especially
useful when the present invention is implemented in a
dynamic environment where the examination and optimiza
tion occur as program 14 is being run. Specifically, if an
optimization is implemented that later needs to be reversed,
the present invention will employ any means necessary (e.g.,
recompilation, code patching, any combination thereof, etc.)
to affect the "de-implementation of the single threaded opti
mization(s).

ILLUSTRATIVE EXAMPLE

For an illustrative example, assume that program 14 is a
Java program. As indicated above, code examination system
40 will first dynamically examine the program code thereof
for various characteristics that could indicate the potential of
program 14 to generate multiple threads. Listed below are

10

15

25

30

35

40

45

50

55

60

65

6
three non-exhaustive examples of characteristics for which
program 14 could be examined:

(1) A new user thread is explicitly created: Program 14
could be examined to see if a new user thread is explicitly
created that is reachable from an optimized method. Specifi
cally, code examination system 40 will examine the relevant
code that can affect the optimized region of program code
within the method being optimized. The relevant code is
defined to be any code that might be executed after the pro
logue and before an optimized region of code in the method.
If there is a thread creation primitive (in Java, this means
allocation of any object whose type implements the interface
Such as “Java.lang.Runnable'), an unresolved class in the
relevant code, or call to an unsafe native, then the method will
not be optimized. Unresolved accesses prevent optimization
of the method because resolution can load a new class and
invoke arbitrary Java code (which could create a new thread).
A call to a native that is not recognized as a safe library
method native will prevent the optimization of the method
because the native may invoke code which could create a new
thread.
The program code in methods that could possibly be

invoked by calls in the relevant code is typically examined
based on the class hierarchy of the program at compile time.
For virtual calls, assumptions could be added such that if any
method that could be invoked is overridden as a result of a
future class loading event, and the method contains code that
violates the single thread assumptions, the optimized method
will be recompiled by review system 44. If it can be proven
that a new user thread cannot be created in the relevant code,
the method can be optimized by optimization system 42.

If it is later determined that an optimization was errone
ously implemented, review system 44 will correct the error by
recompilation. Recompilation alone is generally sufficient in
this case because the examination of the present invention
ensures that an optimized method cannot be on the “stack”
when a method gets overridden or when a new class is loaded.
Since the examination proves that there are no unresolved
classes in the relevant code before optimizing a method, a
class cannot be loaded from the relevant code.

(2) Finalizer methods are run: Program code in the finalizer
method in each class that is loaded during program execution
is examined to ensure that the method: (a) does not create a
new thread; and (b) does not synchronize on any object the
type of which could potentially be the same as the type of
object(s) that were synchronized on in the optimized method.
If either condition (a) or (b) is violated in any finalizer
method, the potential to generate multiple threads is recog
nized and the corresponding method will not be optimized.
However, if these conditions were satisfied, but were violated
by some future class loading event, then the method is marked
for recompilation. If an unresolved class was found in a
finalizer method, the class will be registered in the compilers
internal data structures, so that if the class is loaded in future,
the optimized method will be recompiled if the program code
in relevant methods in that class violates assumptions.

It should be noted that recompilation by review system 44
alone might not be adequate to compensate for an assumption
that gets violated in a finalizer method. If the optimized
method was on the 'stack' when a finalizer thread was run
ning, the finalizer thread would be suspended until the
method completes execution and returns. The Java specifica
tion does not strictly impose any conditions on when finaliz
ers should be run and leaves it to the JVM to make that
decision. Review system 44 can use code patching to add a
call to notify the finalizer thread at all exit points out of the
optimized method. An exception handler might need to be

US 8,201,158 B2
7

added around the whole method for this purpose in case the
control exits out of the method as a result of an exception. This
handler would notify the finalizer thread and then re-throw
the original exception. An alternative way of achieving the
same result is to patch (change) the return addresses to notify
the finalizer thread upon a normal exit out of the method. Ifan
exception is thrown, then the run time stack walker would
need to notify the finalizer thread. Upon notification, the
finalizer thread would resume executing. This would work
well in most cases, but if the optimized method contained an
infinite loop, then it might never exit, in which case, the
finalizer thread would never resume. Thus, optimization sys
tem 42 will not optimize a method if the relevant code in it
contains a loop that cannot be proven to terminate by analysis
at compile time.

(3) Native thread attaching to a Java process: In this case,
code examination system 40 will examine program 14 to see
if a native thread is attached to a Java process. If so, the
corresponding method should not be optimized. However,
since a request for attaching a native thread might be received
at any point in the execution of the program, recompilation is
not sufficient in the event program 14 is erroneously opti
mized. Rather, review system 44 can implement code patch
ing similar to described above for the finalizer thread case.
The difference here would be that attachment of the native
thread would be suspended until the method exits (similar to
the Suspension of the finalizer thread in the prior case), at
which point a Java Virtual Machine (JVM) routine could be
invoked to allow the attachment to occur. In this case as well,
the presence of a potentially long running loop would prevent
the optimization from being performed.

It should be appreciated that the teachings of the present
invention could be offered as a business method on a sub
Scription or fee basis. For example, computer system 12 of
FIG. 1 could be created, maintained, supported and/or
deployed by a service provider that offers the functions
described herein for customers. That is, a service provider
could offer to provide implementation of single threaded
optimizations in a potentially multi-threaded environment as
described above.

It should also be understood that the present invention can
be realized in hardware, Software, a propagated signal, or any
combination thereof. Any kind of computer/server sys
tem(s)—or otherapparatus adapted for carrying out the meth
ods described herein is Suited. A typical combination of
hardware and Software could be a general purpose computer
system with a computer program that, when loaded and
executed, carries out the respective methods described herein.
Alternatively, a specific use computer, containing specialized
hardware for carrying out one or more of the functional tasks
of the invention, could be utilized. The present invention can
also be embedded in a computer program product or a propa
gated signal, which comprises all the respective features
enabling the implementation of the methods described
herein, and which when loaded in a computer system is
able to carry out these methods. Computer program, propa
gated signal, Software program, program, or software, in the
present context mean any expression, in any language, code
or notation, of a set of instructions intended to cause a system
having an information processing capability to perform a
particular function either directly or after either or both of the
following: (a) conversion to another language, code or nota
tion; and/or (b) reproduction in a different material form.

Referring now to FIG. 2, a method flow diagram 100
according to the present invention is shown. As depicted, first
step 102 is to examine program code for characteristics
indicative of a potential to generate multiple threads. Second

10

15

25

30

35

40

45

50

55

60

65

8
step 104 is to implement at least one single threaded optimi
Zation if the examining reveals that the program code does not
have the potential to generate multiple threads. Third step 106
is to remove the at least one single threaded optimization if the
program code is later revealed to have the potential to gener
ate multiple threads.
The foregoing description of the preferred embodiments of

this invention has been presented for purposes of illustration
and description. It is not intended to be exhaustive or to limit
the invention to the precise form disclosed, and obviously,
many modifications and variations are possible. Such modi
fications and variations that may be apparent to a person
skilled in the art are intended to be included within the scope
of this invention as defined by the accompanying claims. For
example, the configuration of program analysis system 32 of
FIG. 1 is intended to be illustrative only.
We claim:
1. An apparatus for implementing single threaded optimi

Zations in a potentially multi-threaded environment, the appa
ratus comprising:

at least one processor,
a memory coupled to the at least one processor and storing

instructions for execution on the at least one processor,
the instructions causing the at least one processor to:
examine program code for characteristics indicative of a

potential to generate multiple threads, wherein the
program code is examined dynamically as the pro
gram code is running to at least one of reduce a num
ber of situations that prevent single threaded optimi
Zations from being implemented, and delay
correction of single threaded optimizations that have
been implemented;

implement at least one single threaded optimization if
the characteristics indicate that the program code does
not have the potential to generate multiple threads:
and

remove the at least one single threaded optimization if
the program code is later revealed to have the potential
to generate multiple threads.

2. The apparatus of claim 1, wherein the instructions fur
ther cause the at least one processor to examine the program
code statically as the program code is being compiled.

3. The apparatus of claim 1, wherein examining the pro
gram code for characteristics indicative of a potential togen
erate multiple threads comprises examining the program code
for a thread creation primitive.

4. The apparatus of claim 1, wherein examining the pro
gram code for characteristics indicative of a potential togen
erate multiple threads comprises examining a finalizer
method in each class that is loaded by the program code.

5. The apparatus of claim 1, wherein examining the pro
gram code for characteristics indicative of a potential togen
erate multiple threads comprises determining whether a
native thread created by any process of the program code is
attached to a JAVA process.

6. The apparatus of claim 1, wherein implementing at least
one single threaded optimization comprises desynchronizing
the program code if the characteristics indicate that the pro
gram code does not have the potential to generate multiple
threads.

7. The apparatus of claim 1, wherein implementing at least
one single threaded optimization comprises optimizing glo
bals of the program code if the characteristics indicate that the
program code does not have the potential to generate multiple
threads.

8. A computer program product for implementing single
threaded optimizations in a potentially multi-threaded envi

US 8,201,158 B2

ronment, the computer program product comprising a non
transitory computer-readable storage medium having com
puter-usable program code embodied therein, the computer
usable program code comprising:

10
teristics indicate that the program code does not have the
potential to generate multiple threads.

15. A system for implementing single threaded optimiza
tions in a potentially multi-threaded environment, the system

computer-usable program code to examine program code 5 comprising:
for characteristics indicative of a potential to generate
multiple threads, wherein the program code is examined
dynamically as the program code is running to at least
one of reduce a number of situations that prevent single
threaded optimizations from being implemented, and
delay correction of single threaded optimizations that
have been implemented;

computer-usable program code to implement at least one
single threaded optimization if the characteristics indi
cate that the program code does not have the potential to
generate multiple threads; and

computer-usable program code to remove the at least one
single threaded optimization if the program code is later
revealed to have the potential to generate multiple
threads.

9. The computer program product of claim 8, further com
prising computer-usable program code to examine the pro
gram code statically as the program code is being compiled.

10. The computer program product of claim 8, wherein
examining the program code for characteristics indicative of
a potential to generate multiple threads comprises examining
the program code for a thread creation primitive.

11. The computer program product of claim 8, wherein
examining the program code for characteristics indicative of
a potential to generate multiple threads comprises examining
a finalizer method in each class that is loaded by the program
code.

12. The computer program product of claim 8, wherein
examining the program code for characteristics indicative of
a potential to generate multiple threads comprises determin
ing whether a native thread created by any process of the
program code is attached to a JAVA process.

13. The computer program product of claim 8, wherein
implementing at least one single threaded optimization com
prises desynchronizing the program code if the characteris
tics indicate that the program code does not have the potential
to generate multiple threads.

14. The computer program product of claim 8, wherein
implementing at least one single threaded optimization com
prises optimizing globals for the program code if the charac

10

15

25

30

35

40

a code examination system to examine program code for
characteristics indicative of a potential to generate mul
tiple threads, wherein the code examination system
examines the program code dynamically as the program
code is running to at least one of reduce a number of
situations that prevent single threaded optimizations
from being implemented, and delay correction of single
threaded optimizations that have been implemented,
wherein the code examination system comprises at least
one hardware component;

an optimization system to implement at least one single
threaded optimization if the characteristics indicate that
the program code does not have the potential to generate
multiple threads; and

a review system to remove the at least one single threaded
optimization if the program code is later revealed to have
the potential to generate multiple threads.

16. The system of claim 15, wherein the code examination
system is configured to examine the program code for char
acteristics indicative of a potential to generate multiple
threads by examining the program code for thread creation
primitives.

17. The system of claim 15, wherein the code examination
system is configured to examine the program code for char
acteristics indicative of a potential to generate multiple
threads by examining finalizer methods in each class that is
loaded by the program code.

18. The system of claim 15, wherein the code examination
system is configured to examine the program code for char
acteristics indicative of a potential to generate multiple
threads by determining whether native threads created by any
process of the program code are attached to a JAVA process.

19. The system of claim 15, wherein the optimization sys
tem is configured to implement at least one single threaded
optimization by desynchronizing the program code.

20. The system of claim 15, wherein the optimization sys
tem is configured to implement at least one single threaded
optimization by optimizing globals of the program code.

k k k k k

