a2 United States Patent

Inglis et al.

US008201158B2

US 8,201,158 B2
*Jun. 12, 2012

(10) Patent No.:
(45) Date of Patent:

(54)

(735)

(73)

")

@
(22)

(65)

(63)
(1)
(52)

(58)

(56)

6,170,083 Bl
6,289,506 Bl

SYSTEM AND PROGRAM PRODUCT FOR
IMPLEMENTING SINGLE THREADED
OPTIMIZATIONS IN A POTENTIALLY
MULTI-THREADED ENVIRONMENT

Inventors: Derek B. Inglis, Markham (CA); Trent
A. Gray-Donald, Ottawa (CA); Kevin
A. Stoodley, Richmond Hill (CA); Vijay
Sundaresan, North York (CA)

Assignee: International Business Machines
Corporation, Armonk, NY (US)
Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 1046 days.

This patent is subject to a terminal dis-
claimer.

Appl. No.: 12/100,035

Filed: Apr. 9,2008
Prior Publication Data
US 2008/0189692 Al Aug. 7, 2008

Related U.S. Application Data

Continuation of application No. 10/930,032, filed on
Aug. 30, 2004, now Pat. No. 7,395,530.

Int. CL.

GO6F 9/45 (2006.01)

US.CL e 717/153
Field of Classification Search
See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

1/2001 Adl-Tabatabai
9/2001 Kwong et al.

100

6,330,714 B1 12/2001 Hicks et al.

6,341,371 Bl 1/2002 Tandri

6,505,344 Bl 1/2003 Blais et al.

6,507,946 B2 1/2003 Alexander, III et al.

6,530,079 Bl 3/2003 Choi et al.

6,665,865 Bl 12/2003 Ruf

6,757,891 Bl 6/2004 Azagury et al.
2004/0221272 Al 11/2004 Wu et al.
2004/0250240 Al 12/2004 Stoodley et al.

OTHER PUBLICATIONS

Jeff Bogda and Urs Holzle, “Removing Unnecessary Synchroniza-
tion in Java”, 1999, Proceedings of the 14 ACM SIGPLAN Confer-
ence on Objected-Oriented Programming, Systems, Languages, and
Applications, United States, pp. 35-46.

Fitzgerald et al., “Marmot: An Optimizing Compiler for Java”, Mar.
2000, Software—Practice & Experience, vol. 30, Issue 3, pp. 199-
232.

Erik Ruf, “Effective Synchronization Removal for Java”, 2000, Pro-
ceedings of the ACM SIGPLAN 2000 Conference on Programming
Language Design and Implementation, pp. 208-218.

Choi et al., “Stack Allocation and Synchronization Optimizations for
Java Using Escape Analysis”, Nov. 2003, ACM Transactions on
Programming Languages and Systems, vol. 25, Issue 6, pp. 876-910.

(Continued)

Primary Examiner — Lewis A Bullock, Jr.

Assistant Examiner — Jue Wang

(74) Attorney, Agent, or Firm — Nelson and Nelson; Daniel
P. Nelson; Alexis V. Nelson

(57) ABSTRACT

Under the present invention, program code is examined (stati-
cally or dynamically) for characteristics indicative of a poten-
tial to generate multiple threads. If none are found, single
threaded optimization(s) such as desynchronization, optimi-
zation of globals, etc., can be implemented. In addition, if the
program code is later revealed to have the potential to gener-
ate multiple threads, the single threaded optimization(s) can
be corrected to avoid incorrect execution.

20 Claims, 2 Drawing Sheets

102

~

EXAMINE PROGRAM CODE FOR
CHARACTERISTICS INDICATIVE OF A POTENTIAL
TO GENERATE MULTIPLE THREADS

‘ 104

IMPLEMENT AT LEAST ONE SINGLE THREADED
OPTIMIZATION IF THE EXAMINATION REVEALS
THAT THE PROGRAM CODE DOES NOT HAVE THE
POTENTIAL TO GENERATE MULTIPLE THREADS

‘ 106

REMOVE THE AT LEAST ONE SINGLE THREADED
OPTIMIZATION IF THE PROGRAM CODE IS LATER
REVEALED TO HAVE THE POTENTIAL TO
GENERATE MULTIPLE THREADS

US 8,201,158 B2
Page 2

OTHER PUBLICATIONS Wang, U.S. Appl. No. 10/930,032, Office Action Communication,
Jun. 21, 2007, 20 pages.
Wang, U.S. Appl. No. 10/930,032, Office Action Communication, Wang, U.S. Appl. No. 10/930,032, Notice of Allowance & Fees Due,
Jan. 22, 2007, 22 pages. Dec. 31, 2007, 16 pages.

US 8,201,158 B2

Sheet 1 of 2

Jun. 12, 2012

U.S. Patent

S32IN3d
(114 IVNY31LX3
A //QN
\ W3LSAS
| 4 4 M3IINTSH
\ WILSAS S3ADV4HALNI
Zz| NOILVZINILJO ol
\-92
WILSAS
Ve NOILYNINVYX3 p=—
or 3d02
WILSAS
SISATVNY NVHD0Hd LINN
/ ONISSIDO0OHd
ze— AYOWIANW 2z <oz

Z1 W3ILSAS ¥31NdNOD

["Old

vi

NVHOOdd

oL

US 8,201,158 B2

Sheet 2 of 2

Jun. 12,2012

U.S. Patent

SAVIYHL ITdILTNN FLVEINTO
Ol TVILNILOd IHL IAVH OL d3TVIATY
d31V1 Sl 3d0D NVE9O0Hd 3HL 41 NOILVZINILHO
d3dvddHL I1ONIS INO LSV LV IHL JAONES

901" A

SAVIHHL ITdILTNN FLVHEINTO OL 1VILNILOd
dHL 3AVH 1ON S304d 3d0D AVE90dd FHL LVHL
STV3IATE NOILVYNIANVYXE 3HL dI NOILVZINILJO
d3dvV3adHL 19NIS INO LSVIT 1V LINIWIT1dII

2oL A

SAVIYHL 741NN 31VEHEINTO OL
IVILNTILOd V 40 JAILVIIANI SOILSIHTLOVHVHO
d04 3Ad0D NVHO0™d IANINYX3E

Z0L—

¢ DA

00l

US 8,201,158 B2

1
SYSTEM AND PROGRAM PRODUCT FOR
IMPLEMENTING SINGLE THREADED
OPTIMIZATIONS IN A POTENTIALLY
MULTI-THREADED ENVIRONMENT

The current application is a continuation application of
co-pending U.S. patent application Ser. No. 10/930,032, filed
on Aug. 30, 2004, now U.S. Pat. No. 7,395,530 which is
hereby incorporated by reference.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention generally relates to a method, system
and program product for implementing single threaded opti-
mizations in a potentially multi-threaded environment. Spe-
cifically, the present invention allows single threaded optimi-
zations to be legally implemented in appropriate program
code.

2. Related Art

As programming languages advance, computer programs
can generally be categorized into groups that are capable of
generating a single thread, and those that are capable of
generating multiple threads. Based on this categorization,
certain optimizations can be performed. For example, if a
program is capable of only generating a single thread, the
program can be desynchronized, its globals can be optimized,
etc. Such single-threaded optimizations should not be imple-
mented with programs having multi-thread capability at the
risk of causing incorrect execution. To this extent, the possi-
bility that multiple threads could be created by a program
constrains analyses and restricts the code transformations that
can be performed.

Most programming languages have a fixed set of primitives
under which a new thread can be created. Unfortunately, no
existing system provides the capability to examine a program
for the potential to generate multiple threads without per-
forming whole program analysis (i.e., seeing every piece of
code that might be run), and then make optimizations based
on the determination. This is an especially difficult task for
dynamic loading environments where it is not possible to
determine in advance if multiple threads cannot be generated.
Specifically, in a dynamic compilation environment, exami-
nation results could change as the program continues to run/
execute. To this extent, existing systems also fail to provide a
system whereby an examination result and subsequent opti-
mization that later proves to be erroneous can be reversed.

In view of the foregoing, there exists a need for a method,
system and program product for implementing single
threaded optimizations in a potentially multi-threaded envi-
ronment. Specifically, a need exists for a system that is
capable of examining (dynamically or statically) program
code for multi-thread potential. A further need exists for the
system to implement single threaded optimizations if the
examination reveals that multi-thread potential is not present.
Still yet, a need exists for the system to be able to take
corrective steps in the event a program is later revealed to have
multi-thread potential. This need is especially apparent in an
environment with dynamic loading where it is not possible to
determine in advance if multiple threads cannot be generated.

SUMMARY OF THE INVENTION

In general, the present invention provides a method, system
and program product for implementing single threaded opti-
mizations in a potentially multi-threaded environment. Spe-
cifically, under the present invention, program code is exam-

20

25

30

35

40

45

50

55

60

65

2

ined (statically or dynamically) for characteristics indicative
of'a potential to generate multiple threads. If none are found,
single threaded optimization(s) such as desynchronization,
optimization of globals, etc., can be implemented. In addi-
tion, if the program code is later revealed to have the potential
to generate multiple threads, the single threaded optimiza-
tion(s) can be corrected to avoid incorrect execution.

A first aspect of the present invention provides a method for
implementing single threaded optimizations in a potentially
multi-threaded environment, comprising: examining pro-
gram code for characteristics indicative of a potential to gen-
erate multiple threads; and implementing at least one single
threaded optimization if the examining step reveals that the
program code does not have the potential to generate multiple
threads, wherein the implementing step is correctable if the
program code is later revealed to have the potential to gener-
ate multiple threads.

A second aspect of the present invention provides a method
for implementing single threaded optimizations in a poten-
tially multi-threaded environment, comprising: dynamically
examining program code for characteristics indicative of a
potential to generate multiple threads; implementing at least
one single threaded optimization if the examining reveals that
the program code does not have the potential to generate
multiple threads; and removing the at least one single
threaded optimization if the program code is later revealed to
have the potential to generate multiple threads.

A third aspect of the present invention provides a system
for implementing single threaded optimizations in a poten-
tially multi-threaded environment, comprising: a code exami-
nation system for examining program code for characteristics
indicative of a potential to generate multiple threads; an opti-
mization system for implementing at least one single
threaded optimization if the code examination system reveals
that the program code does not have the potential to generate
multiple threads; and a review system for removing the at
least one single threaded optimization if the program code is
later revealed to have the potential to generate multiple
threads.

A fourth aspect of the present invention provides a program
product stored on a recordable medium for implementing
single threaded optimizations in a potentially multi-threaded
environment, which when executed, comprises: means for
examining program code for characteristics indicative of a
potential to generate multiple threads; means for implement-
ing at least one single threaded optimization if the means for
examining reveals that the program code does not have the
potential to generate multiple threads; and means for remov-
ing the at least one single threaded optimization if the pro-
gram code is later revealed to have the potential to generate
multiple threads.

A fifth aspect of the present invention provides a system for
deploying an application for implementing single threaded
optimizations in a potentially multi-threaded environment,
comprising: a computer infrastructure being operable to:
examine program code for characteristics indicative of a
potential to generate multiple threads; implement at least one
single threaded optimization if the means for examining
reveals that the program code does not have the potential to
generate multiple threads; and remove the at least one single
threaded optimization if the program code is later revealed to
have the potential to generate multiple threads.

A sixth aspect of the present invention provides computer
software embodied in a propagated signal for implementing
single threaded optimizations in a potentially multi-threaded
environment, the computer software comprises instructions
to cause a computer system to perform the following func-

US 8,201,158 B2

3

tions: examine program code for characteristics indicative of
a potential to generate multiple threads; implement at least
one single threaded optimization if the means for examining
reveals that the program code does not have the potential to
generate multiple threads; and remove the at least one single
threaded optimization if the program code is later revealed to
have the potential to generate multiple threads.

Therefore, the present invention provides a method, system
and program product for implementing single threaded opti-
mizations in a potentially multi-threaded environment.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other features of this invention will be more
readily understood from the following detailed description of
the various aspects of the invention taken in conjunction with
the accompanying drawings in which:

FIG. 1 depicts a system for implementing single threaded
optimizations in a potentially multi-threaded environment
according to the present invention.

FIG. 2 depicts a method flow diagram according to the
present invention.

The drawings are not necessarily to scale. The drawings are
merely schematic representations, not intended to portray
specific parameters of the invention. The drawings are
intended to depict only typical embodiments of the invention,
and therefore should not be considered as limiting the scope
of the invention. In the drawings, like numbering represents
like elements.

DESCRIPTION OF THE INVENTION

As indicated above, the present invention provides a
method, system and program product for implementing
single threaded optimizations in a potentially multi-threaded
environment. Specifically, under the present invention, pro-
gram code is examined (statically or dynamically) for char-
acteristics indicative of a potential to generate multiple
threads. If none are found, single threaded optimization(s)
such as desynchronization, optimization of globals, etc., can
be implemented. In addition, if the program code is later
revealed to have the potential to generate multiple threads, the
single threaded optimization(s) can be corrected to avoid
incorrect execution.

Referring now to FIG. 1, a system 10 for implementing
single threaded optimizations in a potentially multi-threaded
environment is shown. Under system 10, a computer system
12 will examine program 14 (i.e., the program code thereof)
for characteristics indicative of a potential to generate mul-
tiple threads. If multi-thread potential is not found, then cer-
tain single threaded optimizations can be implemented. The
examination of program 14 can occur statically before the
program is run, or dynamically as the program is being run
(e.g., compiled and run). To this extent, it should be under-
stood that program analysis system 32 shown in memory 22
of computer system could be implemented as part of or in
conjunction with a compiler, or a dynamic means such as a
real-time compiler (e.g., a Java Just-in-Time Compiler). In
any event, performing the method of present invention
dynamically allows the process to be “refined.” Such refine-
ment can come in the form of, for example, reducing the
number of situations that prevent single threaded optimiza-
tions from being implemented and/or delaying correction of
single threaded optimizations that have been implemented.

It should also be understood that in an illustrative example
described below, the teachings of the present invention will be
described in conjunction with the Java programming lan-

20

25

30

35

40

45

50

55

60

65

4

guage (e.g., program 14 could be a Java program). However,
this need not be the case. Rather, the teachings herein could be
implemented in conjunction with any programming lan-
guage.

In addition, it should be appreciated that the present inven-
tion could be implemented via a stand-alone system as
shown, or over a network such as the Internet, a local area
network (LAN), awide area network (WAN), a virtual private
network (VPN), etc. Communication through such a network
could occur via a direct hardwired connection (e.g., serial
port), or via an addressable connection that may utilize any
combination of wireline and/or wireless transmission meth-
ods. Moreover, conventional network connectivity, such as
Token Ring, Ethernet, WiFi or other conventional communi-
cations standards could be used. Still yet, connectivity could
be provided by conventional IP-based protocol.

In any event, as depicted, computer system 12 generally
processing unit 20, memory 22, bus 24, input/output (I/O)
interfaces 26, external devices/resources 28 and storage unit
30. Processing unit 20 may comprise a single processing unit,
or be distributed across one or more processing units in one or
more locations, e.g., on a client and server. Memory 22 may
comprise any known type of data storage and/or transmission
media, including magnetic media, optical media, random
access memory (RAM), read-only memory (ROM), a data
cache, a data object, etc. Moreover, similar to processing unit
20, memory 22 may reside at a single physical location,
comprising one or more types of data storage, or be distrib-
uted across a plurality of physical systems in various forms.

1/0O interfaces 26 may comprise any system for exchanging
information to/from an external source. External devices/
resources 28 may comprise any known type of external
device, including speakers, a CRT, LED screen, hand-held
device, keyboard, mouse, voice recognition system, speech
output system, printer, monitor/display, facsimile, pager, etc.
Bus 24 provides a communication link between each of the
components in computer system 12 and likewise may com-
prise any known type of transmission link, including electri-
cal, optical, wireless, etc.

Storage unit 30 can be any system (e.g., a database, etc.)
capable of providing storage for information under the
present invention. Such information could include, among
other things, characteristics indicative of a potential of pro-
gram 14 to generate multiple threads, single threaded optimi-
zations, an activity log, etc. As such, storage unit 30 could
include one or more storage devices, such as a magnetic disk
drive or an optical disk drive. In another embodiment, storage
unit 30 includes data distributed across, for example, a local
area network (LAN), wide area network (WAN) or a storage
area network (SAN) (not shown). Although not shown, addi-
tional components, such as cache memory, communication
systems, system software, etc., may be incorporated into
computer system 12.

Shown in memory 22 as a program product is program
analysis system 32, which generally includes code examina-
tion system 40, optimization system, 42 and review system
44. Under the present invention, code examination system 40
will first examine the program code of program 14 for char-
acteristic that are indicative of a potential of program 14 to
generate multiple threads. Such characteristics could include,
among other things, a new user thread being explicitly created
in program 14; finalizer methods being run; and a native
thread attaching to a (Java) process. Such characteristics
could be programmed within code examination system 40
and/or accessed as a reference (e.g., in storage unit 30).
Regardless, if the potential to generate multiple threads is not

US 8,201,158 B2

5

detected for program 14, optimization system 42 will imple-
ment one or more single threaded optimizations.

Under the present invention, many types of single threaded
optimizations are possible. Two examples of such are as fol-
lows:

(1) Desynchronization: In multi-threaded programs, syn-
chronization between threads is usually important to ensure
correct execution. Most programming languages provide
primitives to specify synchronized methods or synchronized
blocks to enable programmers to indicate which sections of
code and which objects require synchronization between
threads to ensure correctness. It is common for classes to be
designed and implemented generally enough to work cor-
rectly when used in a multi-threaded environment. In fact,
many collection classes in the Java class library (e.g. Vector
and Hashtable) contain a large number of synchronized meth-
ods because they are designed for general use. However, the
convenient Application Programming Interfaces (APIs)
offered by library classes means that they are frequently used
by programmers in single-threaded programs as well, in
which the case the synchronization is unnecessary, as conten-
tionis not possible. Since the lock/unlock operations required
to implement synchronization are relatively expensive, elimi-
nating such operations under the present invention can sig-
nificantly improve the performance of a program proven to
create only a single thread.

(2) Optimization of globals: The possibility that multiple
threads can be created also hinders other optimizations,
because it must be conservatively assumed that another
thread could load another class or modify global data at any
time (unless there is an explicit restriction imposed by the
runtime to exclude this property). This means that traditional
class hierarchy based optimizations like pre-existence cannot
be naively applied for globals (fields/statics). Also, optimiza-
tions such as check elimination (e.g. null checks, array bound
checks, zero divide checks) for globals also cannot be
applied, as it is possible that another thread modifies the
global after the check has been performed and before the code
that depends on the check having been done earlier. To work
around this problem when optimizing globals, compilers usu-
ally apply a specific transformation to privatize global
accesses (i.e. read the global value into (thread-specific)
locals that cannot be manipulated by another thread) before it
can optimize them. Privatization of globals has drawbacks in
that it adds compilation overhead, and also might not be
possible in several, fairly common encountered situations.

After program 14 has been examined and subsequently
optimized, the present invention also allows for correction in
the event that program 14 is later determined to have the
capability to generate multiple threads. This is especially
useful when the present invention is implemented in a
dynamic environment where the examination and optimiza-
tion occur as program 14 is being run. Specifically, if an
optimization is implemented that later needs to be reversed,
the present invention will employ any means necessary (e.g.,
recompilation, code patching, any combination thereof, etc.)
to affect the “de-implementation” of the single threaded opti-
mization(s).

ILLUSTRATIVE EXAMPLE

For an illustrative example, assume that program 14 is a
Java program. As indicated above, code examination system
40 will first dynamically examine the program code thereof
for various characteristics that could indicate the potential of
program 14 to generate multiple threads. Listed below are

20

25

30

35

40

45

50

55

60

65

6

three non-exhaustive examples of characteristics for which
program 14 could be examined:

(1) A new user thread is explicitly created: Program 14
could be examined to see if a new user thread is explicitly
created that is reachable from an optimized method. Specifi-
cally, code examination system 40 will examine the relevant
code that can affect the optimized region of program code
within the method being optimized. The relevant code is
defined to be any code that might be executed after the pro-
logue and before an optimized region of code in the method.
If there is a thread creation primitive (in Java, this means
allocation of any object whose type implements the interface
such as “Java.lang.Runnable”), an unresolved class in the
relevant code, or call to an unsafe native, then the method will
not be optimized. Unresolved accesses prevent optimization
of the method because resolution can load a new class and
invoke arbitrary Java code (which could create a new thread).
A call to a native that is not recognized as a safe library
method native will prevent the optimization of the method
because the native may invoke code which could create a new
thread.

The program code in methods that could possibly be
invoked by calls in the relevant code is typically examined
based on the class hierarchy of the program at compile time.
For virtual calls, assumptions could be added such that if any
method that could be invoked is overridden as a result of a
future class loading event, and the method contains code that
violates the single thread assumptions, the optimized method
will be recompiled by review system 44. If it can be proven
that a new user thread cannot be created in the relevant code,
the method can be optimized by optimization system 42.

If it is later determined that an optimization was errone-
ously implemented, review system 44 will correct the error by
recompilation. Recompilation alone is generally sufficient in
this case because the examination of the present invention
ensures that an optimized method cannot be on the “stack”
when a method gets overridden or when a new class is loaded.
Since the examination proves that there are no unresolved
classes in the relevant code before optimizing a method, a
class cannot be loaded from the relevant code.

(2) Finalizer methods are run: Program code in the finalizer
method in each class that is loaded during program execution
is examined to ensure that the method: (a) does not create a
new thread; and (b) does not synchronize on any object the
type of which could potentially be the same as the type of
object(s) that were synchronized on in the optimized method.
If either condition (a) or (b) is violated in any finalizer
method, the potential to generate multiple threads is recog-
nized and the corresponding method will not be optimized.
However, if these conditions were satisfied, but were violated
by some future class loading event, then the method is marked
for recompilation. If an unresolved class was found in a
finalizer method, the class will be registered in the compiler’s
internal data structures, so that if the class is loaded in future,
the optimized method will be recompiled if the program code
in relevant methods in that class violates assumptions.

It should be noted that recompilation by review system 44
alone might not be adequate to compensate for an assumption
that gets violated in a finalizer method. If the optimized
method was on the “stack” when a finalizer thread was run-
ning, the finalizer thread would be suspended until the
method completes execution and returns. The Java specifica-
tion does not strictly impose any conditions on when finaliz-
ers should be run and leaves it to the JVM to make that
decision. Review system 44 can use code patching to add a
call to notify the finalizer thread at all exit points out of the
optimized method. An exception handler might need to be

US 8,201,158 B2

7

added around the whole method for this purpose in case the
control exits out of the method as aresult of an exception. This
handler would notify the finalizer thread and then re-throw
the original exception. An alternative way of achieving the
same result is to patch (change) the return addresses to notity
the finalizer thread upon a normal exit out of the method. If an
exception is thrown, then the run time stack walker would
need to notify the finalizer thread. Upon notification, the
finalizer thread would resume executing. This would work
well in most cases, but if the optimized method contained an
infinite loop, then it might never exit, in which case, the
finalizer thread would never resume. Thus, optimization sys-
tem 42 will not optimize a method if the relevant code in it
contains a loop that cannot be proven to terminate by analysis
at compile time.

(3) Native thread attaching to a Java process: In this case,
code examination system 40 will examine program 14 to see
if a native thread is attached to a Java process. If so, the
corresponding method should not be optimized. However,
since a request for attaching a native thread might be received
at any point in the execution of the program, recompilation is
not sufficient in the event program 14 is erroneously opti-
mized. Rather, review system 44 can implement code patch-
ing similar to described above for the finalizer thread case.
The difference here would be that attachment of the native
thread would be suspended until the method exits (similar to
the suspension of the finalizer thread in the prior case), at
which point a Java Virtual Machine (JVM) routine could be
invoked to allow the attachment to occur. In this case as well,
the presence of a potentially long running loop would prevent
the optimization from being performed.

It should be appreciated that the teachings of the present
invention could be offered as a business method on a sub-
scription or fee basis. For example, computer system 12 of
FIG. 1 could be created, maintained, supported and/or
deployed by a service provider that offers the functions
described herein for customers. That is, a service provider
could offer to provide implementation of single threaded
optimizations in a potentially multi-threaded environment as
described above.

It should also be understood that the present invention can
berealized in hardware, software, a propagated signal, or any
combination thereof. Any kind of computer/server sys-
tem(s)—or other apparatus adapted for carrying out the meth-
ods described herein—is suited. A typical combination of
hardware and software could be a general purpose computer
system with a computer program that, when loaded and
executed, carries out the respective methods described herein.
Alternatively, a specific use computer, containing specialized
hardware for carrying out one or more of the functional tasks
of the invention, could be utilized. The present invention can
also be embedded in a computer program product or a propa-
gated signal, which comprises all the respective features
enabling the implementation of the methods described
herein, and which—when loaded in a computer system—is
able to carry out these methods. Computer program, propa-
gated signal, software program, program, or software, in the
present context mean any expression, in any language, code
or notation, of a set of instructions intended to cause a system
having an information processing capability to perform a
particular function either directly or after either or both of the
following: (a) conversion to another language, code or nota-
tion; and/or (b) reproduction in a different material form.

Referring now to FIG. 2, a method flow diagram 100
according to the present invention is shown. As depicted, first
step 102 is to examine program code for characteristics
indicative of a potential to generate multiple threads. Second

20

25

30

35

40

45

50

55

60

65

8

step 104 is to implement at least one single threaded optimi-
zation if the examining reveals that the program code does not
have the potential to generate multiple threads. Third step 106
is to remove the at least one single threaded optimization if the
program code is later revealed to have the potential to gener-
ate multiple threads.
The foregoing description of the preferred embodiments of
this invention has been presented for purposes of illustration
and description. It is not intended to be exhaustive or to limit
the invention to the precise form disclosed, and obviously,
many modifications and variations are possible. Such modi-
fications and variations that may be apparent to a person
skilled in the art are intended to be included within the scope
of'this invention as defined by the accompanying claims. For
example, the configuration of program analysis system 32 of
FIG. 1 is intended to be illustrative only.
We claim:
1. An apparatus for implementing single threaded optimi-
zations in a potentially multi-threaded environment, the appa-
ratus comprising:
at least one processor;
a memory coupled to the at least one processor and storing
instructions for execution on the at least one processor,
the instructions causing the at least one processor to:
examine program code for characteristics indicative of a
potential to generate multiple threads, wherein the
program code is examined dynamically as the pro-
gram code is running to at least one of reduce a num-
ber of situations that prevent single threaded optimi-
zations from being implemented, and delay
correction of single threaded optimizations that have
been implemented;

implement at least one single threaded optimization if
the characteristics indicate that the program code does
not have the potential to generate multiple threads;
and

remove the at least one single threaded optimization if
the program code is later revealed to have the potential
to generate multiple threads.

2. The apparatus of claim 1, wherein the instructions fur-
ther cause the at least one processor to examine the program
code statically as the program code is being compiled.

3. The apparatus of claim 1, wherein examining the pro-
gram code for characteristics indicative of a potential to gen-
erate multiple threads comprises examining the program code
for a thread creation primitive.

4. The apparatus of claim 1, wherein examining the pro-
gram code for characteristics indicative of a potential to gen-
erate multiple threads comprises examining a finalizer
method in each class that is loaded by the program code.

5. The apparatus of claim 1, wherein examining the pro-
gram code for characteristics indicative of a potential to gen-
erate multiple threads comprises determining whether a
native thread created by any process of the program code is
attached to a JAVA process.

6. The apparatus of claim 1, wherein implementing at least
one single threaded optimization comprises desynchronizing
the program code if the characteristics indicate that the pro-
gram code does not have the potential to generate multiple
threads.

7. The apparatus of claim 1, wherein implementing at least
one single threaded optimization comprises optimizing glo-
bals of the program code if the characteristics indicate that the
program code does not have the potential to generate multiple
threads.

8. A computer program product for implementing single
threaded optimizations in a potentially multi-threaded envi-

US 8,201,158 B2

9

ronment, the computer program product comprising a non-
transitory computer-readable storage medium having com-
puter-usable program code embodied therein, the computer-
usable program code comprising:

computer-usable program code to examine program code

for characteristics indicative of a potential to generate
multiple threads, wherein the program code is examined
dynamically as the program code is running to at least
one of reduce a number of situations that prevent single
threaded optimizations from being implemented, and
delay correction of single threaded optimizations that
have been implemented;

computer-usable program code to implement at least one

single threaded optimization if the characteristics indi-
cate that the program code does not have the potential to
generate multiple threads; and

computer-usable program code to remove the at least one

single threaded optimization if the program code is later
revealed to have the potential to generate multiple
threads.

9. The computer program product of claim 8, further com-
prising computer-usable program code to examine the pro-
gram code statically as the program code is being compiled.

10. The computer program product of claim 8, wherein
examining the program code for characteristics indicative of
apotential to generate multiple threads comprises examining
the program code for a thread creation primitive.

11. The computer program product of claim 8, wherein
examining the program code for characteristics indicative of
apotential to generate multiple threads comprises examining
a finalizer method in each class that is loaded by the program
code.

12. The computer program product of claim 8, wherein
examining the program code for characteristics indicative of
a potential to generate multiple threads comprises determin-
ing whether a native thread created by any process of the
program code is attached to a JAVA process.

13. The computer program product of claim 8, wherein
implementing at least one single threaded optimization com-
prises desynchronizing the program code if the characteris-
tics indicate that the program code does not have the potential
to generate multiple threads.

14. The computer program product of claim 8, wherein
implementing at least one single threaded optimization com-
prises optimizing globals for the program code if the charac-

20

25

30

35

40

10

teristics indicate that the program code does not have the
potential to generate multiple threads.

15. A system for implementing single threaded optimiza-
tions in a potentially multi-threaded environment, the system
comprising:

a code examination system to examine program code for
characteristics indicative of a potential to generate mul-
tiple threads, wherein the code examination system
examines the program code dynamically as the program
code is running to at least one of reduce a number of
situations that prevent single threaded optimizations
from being implemented, and delay correction of single
threaded optimizations that have been implemented,
wherein the code examination system comprises at least
one hardware component;

an optimization system to implement at least one single
threaded optimization if the characteristics indicate that
the program code does not have the potential to generate
multiple threads; and

a review system to remove the at least one single threaded
optimization if the program code is later revealed to have
the potential to generate multiple threads.

16. The system of claim 15, wherein the code examination
system is configured to examine the program code for char-
acteristics indicative of a potential to generate multiple
threads by examining the program code for thread creation
primitives.

17. The system of claim 15, wherein the code examination
system is configured to examine the program code for char-
acteristics indicative of a potential to generate multiple
threads by examining finalizer methods in each class that is
loaded by the program code.

18. The system of claim 15, wherein the code examination
system is configured to examine the program code for char-
acteristics indicative of a potential to generate multiple
threads by determining whether native threads created by any
process of the program code are attached to a JAVA process.

19. The system of claim 15, wherein the optimization sys-
tem is configured to implement at least one single threaded
optimization by desynchronizing the program code.

20. The system of claim 15, wherein the optimization sys-
tem is configured to implement at least one single threaded
optimization by optimizing globals of the program code.

#* #* #* #* #*

