» UK Patent Application

(19) GB (11) 2 438 699 (13) A

(43) Date of A Publication 05.12.2007
(21) Application No: 0706426.4 (51) INT CL:
GOG6F 11/36 (2006.01) GOG6F 9/32 (2006.01)

(22) Date of Filing: 02.04.2007 GOG6F 11/07 (2006.01)
(30) Priority Data: (52) UK CL (Edition X):

(31) 11442593 (32) 30.05.2006 (33) UsS NOT CLASSIFIED

) (56) Documents Cited:

(71) Applicant(s): EP 0999498 A2 US 6173395 B1

ARM Limited

(Incorporated in the United Kingdom) (58) Field of Search:

110 Fulbourn Road, Cherry Hinton, UK CL (Edition X) G4A

CAMBRIDGE, CB1 9NJ, United Kingdom INT CL GO6F

Other: WPI, EPODOC, XPIE3E and XPIEE

(72) Inventor(s):

Edmond John Simon Ashfield

Michael John Williams

John Michael Horley

Richard Roy Grisenthwaite
(74) Agent and/or Address for Service:

D Young & Co

120 Holborn, LONDON, EC1N 2DY,

United Kingdom
(54) Abstract Title: Reducing the Size of a Data Stream Produced During Instruction Tracing
(57) The present invention provides an electrical machine 1 20

.) Z

with reduced cogging. The magnet poles 3 of the

electrical machine are comprised of at least two separate :zo

groups of at least two circumferentially adjacent magnet %2

poles. One of the circumferentially outer magnet poles 32

3a, 3h in one of the groups of magnet poles is defined as 1 3]

being in its reference position. The reference position of

each other magnet pole 3b to 3g is defined as the
position each other magnet pole would occupy if all the
magnet poles were equally circumferentially spaced
around the first or second body and the one
circumferentially outer pole was in its reference position.
At least one of the circumferentially outer magnet poles
3a, 3h in each group is sited in its reference position. At
least one magnet pole 3a to 3g in each group is a
displaced magnet pole and is sited in a position that is

displaced from its reference position by an amount thatis

not equal to an integral multiple of the reference angular
pitch of the winding slots. The displacement of the
magnet poles 3 provides a pronounced reduction in

cogging.

90 ;r Data Store
Decompression
Logic }; 70
110
100
|-80

Fig. 2

V 6698E¥ ¢ 9O

Original Printed on Recycled Paper

112

U

1081

JUl

A
i

Y

-

(=

Q
N

\
I
!
l

l
I
I
\

\
I
|
|

I
]
I
\

\
!
|
!

7N /N N
W/ N/ \/

I
I
|
\

10b

Il

i
i

Fig. 1

2/12

20
rJ
30
22 c
rJ
32
I - —~
34
[36
45
/
40

Monitoring

110

100

Fig. 2

Logic 65
A
90~ Data Store
Decompression
Logic 70

3/12

24
fJ
60
CPU ;A
S S
30 40
120

130

31

Fig. 3

Has an

4/12

Yes

exception event
occurred?

Monitor next instruction

{

Is
next inst_r_uction
a conditional
instruction?

Is next
instruction an
indirect branch
instruction?

Increment counter by one

Did
counter

Yes !

overflow?

v

Designate instruction as

a marker instruction

v

A

v

Output exception
Output indicator indicating indicator, including
processor behaviour counter value
|]

v

Reset counter to zero

I

Fig. 4A

Has an

5/12

Yes

exception event
occurred?

Monitor next instruction

Y

Is
next instruction

Yes

a conditional
instruction?

Is next
instruction an

Yes

indirect branch
instruction?

Is next
instruction a
data memory transfer
instruction?

Yes

increment counter by one

Did
counter

Yes

vy

overflow?

A4

Designate !

instruction as a
marker instruction Output
exception
A indicator,
Output indicator including
indicating processor counter
behaviour value
L]

\4

Reset counter to zero
|

Fig.

4B

6/12

Has an Yes
exception event
occurred?
Monitor next instruction
Is next Yes

instr_uction a branch
instruction?

No

v

Designate instruction as
a marker instruction

v

v

Output indicator indicating
processor behaviour

Output exception
indicator, including
program location value

\ 4

Fig. 4C

7112

S
Has an Yes

exception event
occurred?

Monitor next instruction

!

Is
next instruction
a conditional
instruction?

Yes

Is next
instruction an
indirect branch
instruction?

Can

processor

No Yes

Bl

A

Increment counter by one

behaviour?

l

Did
counter
overflow?

Yes +

L

behaviour in response
to instruction be determined
from previous program

Designate instruction as
a marker instruction

Y

< : .* — Output exception
Output indicator indicating | | indicator, including
processor behaviour counter value
|]
v
Reset counter to zero

Fig. 5

8/12

Trace data
stream

!

Portion of
program

Decompression
Logic

Description of
program
data flow

Fig. 6

9/12

1 2 3 4 5 6 7 8
instruction stream Embodiment of the present invention
seq| PC | Instruction [Exec | Marker | Atom | Cnt | Output
1] 0x801c SUB r12,r12,#1 Y N 1
2|{0x8020 CMP_r0.r1 Y N 2
3| 0x8024 BEQ 0x8064 N Y (cc) N 0
4 | 0x8028 LDM r0!{r4-r6} Y N 1
5| 0x802c CMP_r4,i5 Y N 2
6 | 0x8030 BEQ 0x8020 N Y (cc) N 0
71 0x8034 TST rd4.#1 Y N 1
8 | 0x8038 ADDNE r4,r4,r11 N Y (cc) N 0
9| 0x803c TST r5#1 Y N) 1
10 | 0x8040 ADDNE r5,r5,r11 N Y (cc) N 0 F4=1, F3=1, F2=1, F1=1
11 | Ox8044 TST r5#2 Y N 1
12 | 0x8048 ADDNE r5,r5,r11 Y Y (cc) E 0
13 | Ox804c BIC r5,5#3 Y N 1
14 | Ox8050 SUBS r6,r6.#4 Y N 2
15 | 0x8054 LDRCS r7,[r4].#4 Y Y (cc) E 0
16 | 0x8058 STRCS r7.[r5].#4 Y Y (cc) E 0
17 | 0x805c _BHI 0x8050 Y Y (cc) E 0
18 | 0x8050 SUBS 16,/6,#4 Y N 1
19 | 0x8054 LDRCS r7,[r4].#4 N Y (cc) N 0 E[3:0]=4, N=1
20 | 0x8058 _STRCS r7,[r5],#4 N Y (cc) N 0
21| 0x805c BHI 0x8050 N Y (cc) N 0
22 | Ox8060 B 0x8020 Y N 1
23 | 0x8020 CMP r0.r1 Y N 2
24 | 0x8024 BEQ 0x8064 N Y (cc) N 0
25| 0x8028 LDM rO!{r4-r6} Y N 1
26 ** |RQ Exception 0 F3=1, F2=1, F1=1
C=1, A[5:0]=b00010
C=1, A[12:6]=0
C=1, A[19-13]=0
C=1, A[26:20]=0
C=1, A[29:27]=0
C=1, TEE=0, CAN=0,
X[3:0]=b1110, NS=0
1[4:0)=1
27 | 0x0018 LDR pc,[pc,#20) Y | Y(b)) C=1, A[5:0)=0
C=0, A[12:6)=b0010000
28 | 0x1000 SUB ir,ir,#4 Y N 1

Fig. 7A

Total amount of trace data produced: | 12 bytes

-

CD(D\IO"U’IA@N—A*

N RN RN NN = - o ek b oad b b 3 b
NPBWN="2OCOWONOOONDWN-—=O

26

27

10/12

2 3 4 5 6 7 8
Instruction stream XScale® trace ETM® trace
Addr instruction [Executed | cnt | Output Atom | Output
0x801c SUB r12,r12,#1 Y 1 E
0x8020 CMP r0.r1 Y 2 E
0x8024 BEQ 0x8064 N 3 N PNE[3.0]=2, N=1
0x8028 _LDM r0!{r4-r6} Y 4 E
0x802c CMP r4,5 Y 5 E
0x8030 BEQ 0x8020 N 6 N E[3:0]=2, N=1
0x8034 TST r4,#1 Y 7 E
0x8038 ADDNE r4,r4,r11 N 8 N [P3F2=1,F1=0
0x803c _TST r5#1 Y 9 E
0x8040 ~ADDNE r5,r5,r11 N 10 N F2=1,F1=0
0x8044 TST r5#2 Y 1 E
0x8048 ADDNE r5,r5,r11 Y 12 E
0x804c BIC r5,15,#3 Y 13 E
0x8050 SUBS r6,r6,#4 Y 14 E
0x8054 LDRCS r7,{rd] #4 Y 15 E
0x8058 STRCS r7,[r5] #4 Y 0 [ROLLOVER E
0x805c BHI 0x8050 Y 0 [pglcl3:0)=0 E
0x8050 _SUBS r6,r6,#4 Y 1 E
0x8054 LDRCS r7,[rd] #4 N 2 N E[3:0]=8, N=1
0x8058 STRCS r7.[r5].#4 N 3 N
0x805c BHI 0x8050 N 4 N P2F2=1,Fi1=1
0x8060 B 0x8020 Y 0 [pBCi3:0)=4 E
0x8020 CMP_r0,r Y 1 E
0x8024 BEQ 0x8064 N 2 N PN E[3:0)=2, N=1
* IRQ Exception 0 [gvie:0=IRQ, B1| C=1,
C[3:0}=2 A[5:0]=b00010
B2 C=1, A[12:6]=0
B3 C=1, A[19:13}=0
B4| C=1, A[26:20]=0
B5A| C=1, A[29'27]=0
B6| TEE=0, CAN=0,
X[3:0)=b1110,
NS=0
0x0018 LDR pc,[pc.#20] Y 0 fB1]c[3:0)=0 E PNE[3:0]=1,N=0
IB2| A[31:24]=0 B1| C=1, A[5:0]=0
IB3 A[23.16]=1 B2 C=0,
A[12:6)=b0010000
A[15:8]=0
IB5| A[7:0}=0
0x1000 SUB_IrIr#4 Y 1 E
Total amount of trace data produced: 9 bytes 16 bytes

Fig. 7B (PRIORART)

11/12

26+

06

\ 4

g "B14

\ 4

001 -

[

TAY

¢l
~ -
0S cp]
=
ov
om_ 1
0€+] .vm\ Nm\

Predict
executed (3b)

No

Is instrpction
unconditional?

Was
last instruction
unconditional?

Yes

Does
instruction condition
match last instruction
condition?

Did last
instruction
execute?

Did last
instruction
execute?

Predict
executed (3a)

Predict not
executed (3b)

Fig. 9

executed (1)

Predict

Predict

executed (2)

No

Predict not
executed (3a)

(w

10

15

20

25

30

35

2438699

REDUCING THE SIZE OF A DATA STREAM PRODUCED DURING
INSTRUCTION TRACING

The field of the invention relates to data processing and in particular to

diagnostic mechanisms for monitoring data processing operations.

There are a number of situations where it is desirable to keep track of the
processing being performed by a processing circuit, and in such situations it may be
desirable to be able to identify an order that instructions are processed in and to determine
at any point in time which instruction is being processed. For example, such information
is useful during the development of data processing systems, where it is often desirable to
track the activity of the processing circuit. An example of a tool that may be used to assist
in such a process is a tracing tool.

Tracing the activity of a data processing system whereby a trace stream is
generated including data representing the step-by-step activity within the system is a
highly useful tool in system development. Such tracing tools use a variety of means for
tracing the program flow including embedded trace macrocells (ETM, a trademark of
ARM Limited, Cambridge) which are present on the chip whose processing is being
monitored.

Most processor instruction set architectures include branch instructions that are
conditional on the state of the data processing system at the point where the branch is
processed, that is they will execute and branch to the destination if some condition is
true, and not execute and continue to the next sequential instruction if the condition is
false, that is, it is treated as a no-op operation. Most instruction set architectures also
include an indirect branch instruction, where the destination of the branch is calculated
from the current state of the data processing system at the point where the branch is
processed. The ARM® instruction set architecture, which is documented in the ARM
Architecture Reference Manual, ISBN 0-201-73719-1 of 2001 also includes
conditional instructions that are not branch instructions, which either execute or not
depending on the current state of the processor at the point when the instruction is
processed. Other instruction set architectures also include such conditional, sometimes
referred to as predicated, instructions. Instructions that are not conditional — those that
always execute — are referred to as unconditional instructions.

Current protocols used on Embedded Trace Macrocells for non-cycle-accurate
trace of existing ARM® (registered trade mark of ARM Limited, Cambridge)
processor cores has evolved from that used for cycle-accurate trace. Thus, for every

instruction in a stream the ETM codes the information from the CPU as either an E-
1

10

20

25

30

35

atom (when the instruction is executed) or an N-atom (when the instruction was not
executed). The ETM then emits a data stream with the sequence of E and N-atoms that
occurred. Generally these are emitted in a compressed form, using encoding
techniques such as run-length encoding.

This is described in the ARM Embedded Trace Macrocell Architecture
Specification, ARM IHI 0014] of December 2002.

This data stream can be stored either on- or off-chip and can then be fed to a
debug agent program called an ETM decompressor. The decompressor has a copy of
the program being traced so by decoding the E and N-atoms, and other information in
the data stream which encodes data dependent changes to program flow (such as
indirect branches) it can reconstruct the program flow in the embedded CPU.

As data processor cores increase their operating frequency and processors having
multiple cores are becoming more common there is a need to improve the debug and
tracing tools and mechanisms that may be used within the development of data
processing systems. Increasing core frequencies pose a particular problem for trace.
For example in existing ARM processor cores and ETM protocols, a bit rate of about
1.2 to 1.6 bits per instruction is achieved with instruction-only trace. Therefore a 1GHz
processor processing one instruction per cycle would generate 1.2 to 1.6 gigabits per
second of trace data, this data may need to be taken off-chip and stored in a buffer.
Furthermore, multi-processor system introduce integer multiples to this data rate.

Compression is used to reduce the average number of bits used to trace an
individual instruction. However, as ever faster cores need to be traced, it would be
advantageous to be able to reduce this data rate further.

Another known way of tracing the data activity of a data processing system is
that embodied in the data processing system produced by Intel® under the name of
XScale®. This is described in the Intel Developers Manual of January 2004 entitled
Intel® XScale® core.

In this trace mechanism, instead of outputting details of every instruction that
executes or does not execute XScale® counts the instructions that are processed until it
gets to a branch instruction that is executed. Thus, it outputs a number of instructions
processed and information as to where the program has branched to. Thus, if it passes
a conditional branch instruction that does not execute, no information on this
instruction is output as it never outputs non-execution indicators, unlike the other
conventional trace mechanism described above. One disad‘vantagc with XScale® is

that by not outputting information on conditional branch instructions that do not
2

10

15

20

25

30

35

execute, the indicator of a conditional branch instruction that does execute must contain
sufficient information for the trace decompressor to determine which of the possible
branch instructions in the instruction stream is the one that executed, which takes the
form of a counter requiring many bits to encode. In addition, because this counter
counts all instructions processed that are not executed branch instructions, overflows of
this counter are likely, and the trace stream therefore also has to encode overflow
markers. A second disadvantage is that it only outputs information for branch
instructions, and not other conditional instructions; thus, the trace is incomplete,
limiting the number of situations where it is useful.

A first aspect of the present invention provides tracing logic for monitoring a
stream of processing instructions from a program being processed by a data processor,
said tracing logic comprising monitoring logic operable to: detect processing of said
instructions in said instruction stream; detect which of said instructions in said
instruction stream are conditional direct branch instructions, which of said instructions
in said instruction stream are conditional indirect branches and which of said
instructions in said instruction stream are unconditional indirect branch instructions;
said tracing logic further comprising compression logic operable to: designate said
conditional direct branch instructions, said conditional indirect branch instructions and
said unconditional indirect branch instructions as marker instructions; and for each
marker instruction, output an indicator indicating a behaviour of said data processor
when said marker instruction is processed and not output data relating to processed
instructions that are not marker instructions.

In order to address the problem of the ever increasing quantity of data captured
during a trace of processor program flow for processors which operate at ever
increasing speeds, and in some cases have multiprocessors operating together, the
present invention recognises that some of the information that generally forms part of
the trace does not need to be output as it can be inferred and as such a reduced quantity
of information can be output. In this regard, the present invention designates
conditional direct branch instructions, conditional indirect branch instructions and
unconditional indirect branch instructions, i.e. at least some of the instructions that it is
not possible to statically determine the behavior of, as marker instructions. These
instructions are important as the program behaviour at the points where these
instructions are processed is dependent on some factor that is determined dynamically,
i.e. during the running of the program. Thus, when tracing an instruction stream, it is

important that it is known what the behaviour of the processor is when these
3

10

15

20

25

30

35

conditional direct branch instructions, conditional indirect branch instructions
(collectively, conditional branch instructions) or unconditional indirect branch
instructions are processed. That is, are the conditions of the conditional branch
instruction fulfilled, and where do the indirect branch instructions branch to? Other
instructions which are not designated as marker instructions will generally behave in a
known way and thus, it has been recognised that this information need not be output.
Thus, the program stream can be traced just from information regarding the behaviour
of marker instructions and knowledge of the program itself. This significantly reduces
the amount of data that needs to be output to trace the instruction stream.

It will be appreciated that whereas only indirect branch operations and
conditional branch instructions constitute marker instructions for the purposes of
simple instruction trace, for other forms of trace, other classes of instruction may also
be required to be designated as marker instructions.

In some embodiments, said monitoring logic is further operable to detect which
of said instruction stream are conditional instructions; and said compression logic is
further operable to designate said conditional instructions as marker instructions.

By further designating conditional instructions as marker instructions, in addition
to conditional branch instructions and unconditional indirect branch instructions, the
tracing logic outputs indicators indicating the behavior of all instructions that it is not
possible to statically determine the behavior of. Although the behavior of these
instructions does not have to be traced in order to fully determine the instruction stream
processed by the data processor, it is often advantageous when debugging the program
to trace the behaviour of these instructions, so that the full behavior of the program can
be determined. Thus, when tracing a program stream, it is important that it is known
whether the conditions of the conditional instruction are fulfilled.

In some embodiments, said monitoring logic is further operable to detect which
of said instruction stream are data memory transfer instructions; and said compression
logic is further operable to designate said data memory transfer instructions as marker
instructions.

Instruction trace is often extended to include tracing of data memory transfers
generated by data memory transfer instructions executed on the d;tta processing
apparatus. However, it has been observed that tracing all data memory transfers, which
typically consist of a data memory address and one or more data memory values,
results in large amounts of trace data being generated. Therefore existing

implementations of tracing logic includes means to filter the data memory transfers,
4

10

15

20

25

30

35

usually based on the address part of the transfer. In such a system, every data memory
transfer instruction can potentially generate trace, but only some do. It is a requirement
to be able to determine which data memory transfer instructions generated the traced
data memory transfers. By regarding all data memory transfer operations as marker
instructions, the trace stream contains sufficient information to associate the traced data
memory transfers with the data memory transfer instructions, at a relatively low cost, as
the indicator for the behavior of those data memory transfer instructions which did not
generate a traced data memory transfer only has to indicate the processing of a data
memory transfer instruction.

In some embodiments, said compression logic is operable in response to
detection of said indirect branch instructions being processed, to output an indication of
where said instruction has branched to as said indicator.

The indicator can take a number of forms, provided that it gives some
indication as to the behaviour of the processor. In the case of indirect branch
instructions it has been found advantageous to output information as to where the
instruction has branched to as the indicator. Receipt of this information shows both
that the indirect branch instruction has been taken and where the program then
branches to. Thus, this is an efficient way of outputting both an execution indication
and the further information required for the trace.

In some embodiments, said monitoring logic further comprises a counter, and is
further operable to: count a number of non-marker instructions that are processed
following each marker instruction using said counter; and detect an exception event;
and said compression logic is operable in response to detection of said exception event
to: output an exception indicator indicating taking of said exception along with said
counter value.

If an exception event occurs during the running of the program, it is then
important when tracing the program to know at which point this exception event
occurred. Thus, although in general instructions which are not designated as marker
instructions do not need to have information concerning their processing output, in the
case of an exception occurring this is important as it is needed to locate the position
that the exception event occurred. Thus, a counter is used to count how many
instructions are processed between marker instructions. This information can generally
be discarded on reaching the next marker instruction, and the counter reset to an initial
value, however, if an exception event occurs before this, this information is output

along with an indicator indicating that the exception event has occurred. Following
5

10

15

20

25

30

35

output of this information the counter may be reset or it can continue to count. As the
count value has been output if it continues to count the place that a next exception
occurs can be derived from the output value and the value of the counter at that point.

In some embodiments, said compression logic is operable in response to said
counter value passing a predetermined value, to designate said non-marker instruction
reached as a marker instruction irrespective of the nature of said next instruction, and to
reset said counter.

The number of instructions that occur between marker instructions varies and
may in some circumstances be large. Thus, if these instructions are to be counted a
large counter would need to be provided to cope with all eventualities. In order to
avoid the need to have a counter able to count large numbers, it has been found
advantageous to reset the counter when it counts past a predetermined value (generally
the maximum value of the counter, although it could be the minimum if the counter is
counting down) and to designate or promote the next instruction as a marker
instruction. This is an efficient way of not having an unreasonably large counter and
yet still knowing where in the program stream an exception event occurs. An
alternative would be to output a “counter reset” indicator whenever the counter counts
past the predetermined value and hence is reset. A disadvantage of this is that it is an
additional piece of information that would need its own format to be recognised.
Marker instructions by contrast are already used. As should be clear to a skilled
person, a counter can be implemented in a number of ways, all of which are
functionally equivalent; including counting up from zero to a maximum number and
counting down from an initial maximum to zero.

In some embodiments, said monitoring logic is further operable to detect which
of said instruction stream are unconditional direct branch instructions; and said
compression logic is further operable to designate said unconditional direct branch
instructions as marker instructions.

By designating all branch instructions, direct or indirect, conditional or
unconditional, as marker instructions, the trace stream contains only information about
the points in the instruction stream where discontinuities in program flow may exist.
Unconditional direct branch branches normally do not need to be traced as their
behavior can be statically determined without reference to the trace stream, that is, it
can always be determined where the instruction branches to (because the branch is
direct), and that it always branches (because it is unconditional). However, by tracing

these instructions, the program behaviour between the traced marker instructions
6

10

15

20

25

30

35

consists only of instructions at sequential locations in the program, and this can be
advantageous in some forms of processing.

In some embodiments, said monitoring logic is further operable to detect an
exception event; and said compression logic is operable in response to detection of said
exception event to output an exception indicator indicating taking of said exception
along with a value indicative of the location in said program where said exception
occurred.

If an exception event occurs during the running of the program, it is then
important when tracing the instruction stream to know at which point this exception
event occurred. Typically, the location in the program will suffice, as, for most code
sequences, an instruction at any given location will only be processed once between
two marker instructions, although certain code sequences exist where a location is
repeatedly executed due to an unconditional direct branch. Thus, the location of the
exception in the instruction stream can typically be indicated by outputting a value
indicative of the location of the exception in the program.

In some embodiments, said compression logic is operable prior to outputting
said indicators, to compress the stream of indicator data and to output said compressed
data in its place.

It is advantageous to further reduce the data output by compressing the data
regarding indicators and to output the compressed data. By analysing sets of
instructions and the behaviour of conditional or indirect branch instructions, patterns of
indicators that frequently occur can be found and these patterns can be coded in a few
bits, such that the data output is compressed.

In some embodiments said tracing logic is further operable to determine if a
behavior of at least one of said marker instructions can be determined from a behavior
of previous marker instructions, said tracing logic being operable to demote said at
least one marker instruction to an instruction that is not a marker instruction.

It may be that the behavior of some instructions that cannot be statically
determined can nonetheless be dynamically determined in that the behavior of
previously processed instructions provides sufficient information in the trace stream to
be able to determine how a particular indirect branch instruction or conditional
instruction will be processed. In such circumstances knowledge of their behavior can
be derived without the need for a separate indicator in the trace stream. Thus, the data
stream can be further reduced by not designating such instructions as marker

instructions and therefore not outputting an indication of their behavior.
7

10

15

20

25

30

A second aspect of the present invention comprises a data processing apparatus
comprising a data processor operable to process said stream of program instructions
and tracing logic according to a first aspect of the present invention.

In some embodiments, said data processing apparatus further comprises:
prediction logic operable to provide at least one prediction of a processing behaviour of
at least one of said marker instructions; and wherein said monitoring logic is operable
to determine from said monitored behaviour whether or not said at least one prediction
is correct; and for said at least one marker instruction output as said indicator an
indication at to whether or not said at least one prediction is correct.

The use of prediction logic to predict the behaviour of at least one marker
instruction may enable the amount of data in the trace data stream to be reduced. This
is because of two things. Firstly, the symbol sending a “correct prediction indication”
may be a simple Boolean or in the case of many predictions, an enumeration. This may
require less data than may have had to be output to trace exactly what occurred.
Secondly, if the prediction scheme generally produces correct predictions, the sequence
of prediction outcomes may well be more compressible using simple compression
techniques than the original data. Thus, the amount of trace data output can be
reduced.

In some embodiments said prediction logic is operable to provide a prediction for
at least one conditional instruction, said prediction logic being operable to predict
whether the condition of said conditional instruction will be true or false, said indicator
for said at least one conditional instruction comprising a prediction correct indication if
said prediction is correct and prediction incorrect indication if said prediction is
incorrect.

The predicting of conditional instructions can be done by predicting whether
the condition relating to the conditional instruction will be true or false. The
monitoring logic can determine from the monitored behaviour if the prediction is
correct and a suitable indicator output.

In some embodiments, said prediction logic is operable to provide a plurality of
predictions as to a corresponding plurality of steps of said behaviour of said portion of
said data processing apparatus, said tracing logic being operable to determine whether
or not at least some of said plurality of predictions are correct and to produce a
corresponding at least some of said plurality of prediction indicators said compression

logic being operable to compress said at least some of said plurality of prediction

10

20

25

30

35

indicators to produce compressed data and said tracing logic is operable to output said
compressed data.

Generally, the prediction logic provides a plurality of predictions corresponding
to a plurality of steps of the behaviour of the portion of the data processing apparatus
being monitored. The tracing logic then determines whether or not they are correct and
then uses compression logic to compress this information. This is advantageous as if
the predictions scheme is one where it can be expected that the majority of predictions
will be correct. It has been seen that data where values are unevenly distributed
between the possible set of values can be more readily compressed than data where the
data values are evenly distributed between the possible set of values.

It has been observed that, when the tracing logic is constructed such that
information relating to the execution of non-marker instructions is not output, the
resulting output consists of: firstly, indicators of indirect branch instructions; secondly,
indicators as to the execution or non-execution of conditional instructions, where the
distribution of “executed” and “not executed” indicators in this second part of the
output is generally seen to be even. Where a prediction algorithm is used, these
“executed” and “not executed” indicators can be replaced with “prediction correct” and
“prediction incorrect” indicators which, if the prediction is generally correct, are far
less evenly distributed and hence can be better compressed.

In some embodiments, said tracing logic comprises an Embedded Trace
Macrocell.

In some embodiments, said data processing apparatus further comprises a data
store, wherein said compression logic is operable to output data to said data store.

Although, in some embodiments the compression logic outputs the data to an
external apparatus, in other embodiments it simply outputs it to a data store within the
data processing apparatus itself.

In some embodiments, said data processing apparatus further comprises a
program data store for storing said program and decompression logic said
decompression logic being operable to receive data output by said compression logic
and to determine a program flow from said execution and non-execution indicators of
said marker instructions and said stored program.

Although the decompression logic and program data store can be formed in a
separate diagnostic apparatus, in some embodiments they are provided on the same
data processing apparatus that is processing the instructions. Thus, a single data

processing apparatus can both process a program flow and trace it.

9

10

15

20

25

30

A third aspect of the present invention comprises a diagnostic apparatus
operable to receive a data stream output from tracing logic monitoring a data processor,
said data stream comprising indicators indicating a behavior of said data processor
when marker instructions are processed and not comprising data relating to processed
instructions that are not marker instructions, said marker instructions comprising
conditional direct branch instructions, conditional indirect branch instructions and
unconditional indirect branch instructions, said diagnostic apparatus comprising
decompression logic and a data store, said data store being operable to store said
instructions of said program being processed by said data processor, said
decompression logic being operable to receive said data stream and to determine a
program flow from said indicators of said marker instructions and said stored program.

The information output by the tracing logic of the first aspect of the present
invention can be received and analysed by a diagnostic apparatus according to the third
aspect of the present invention. The decompression logic is able to determine the
program flow simply from the execution and non-execution indicators of the marker
instructions and knowledge of the program that is being processed by the data
processor being analysed.

In some embodiments, said diagnostic apparatus further comprises a buffer
operable to receive and store said data stream, prior to forwarding it to said
decompression logic.

A buffer is advantageous between the tracing logic and the diagnostic apparatus
and is therefore generally provided.

A fourth aspect of the present invention provides a method of monitoring a
stream of processing instructions from a program being processed by a data processor,
said method comprising the steps of: detecting processing of said instructions in said
instruction stream; detecting which of said instructions in said instruction stream are
conditional instructions and which of said instructions in said instruction stream are,
conditional indirect branch instructions or unconditional indirect branch instructions;
designating said conditional direct branch instructions, said conditional indirect branch
instructions and said unconditional indirect branch instructions as marker instructions;
for each marker instruction, outputting an execution indicator indicating if said marker
instruction has executed or a non-execution indicator indicating if said marker
instruction has not executed and not outputting data relating to previously processed

instructions that are not marker instructions.

10

10

15

20

25

30

A fifth aspect of the present invention provides a method of diagnosing a
program being processed by a data processor, comprising: receiving data outptlt by
performing a method according to a fourth aspect of the present invention; storing said
instructions of said program being processed by said data processor within a data store;
determining a program flow of said program being processed from said execution and
non execution indicators of said marker instructions and said stored program.

A sixth aspect of the present invention provides a computer program product
which is operable when run on a data processor to control the data processor to form
the steps of the method according to a fifth aspect of the present invention.

The above, and other objects, features and advantages of this invention will be
apparent from the following detailed description of illustrative embodiments which is to
be read in connection with the accompanying drawings.

Figure 1 shows traces of a program flow according to an embodiment of the
present invention.

Figure 2 shows a data processing apparatus comprising an Embedded Trace
Macrocell according to an embodiment of the present invention and a diagnostic
apparatus for analysing the program flow according to an embodiment of the present
invention:

Figure 3 shows a system comprising tracing logic and decompression logic
according to an embodiment of the present invention;

Figure 4A shows a flow diagram illustrating the steps performed during tracing of
a program according to an embodiment of the present invention;

Figures 4B, 4C and 5 show flow diagrams illustrating the steps performed during
tracing of a program according to alternative embodiments of the present invention;

Figure 6 shows a flow diagram illustrating the steps performed during analysis of
the trace data produced in the method shown in Figure 4A;

Figure 7A shows an example sequence of instructions processed and the resultant
output according to an embodiment of the present invention;

Figure 7B shows the same example sequence of instructions processed and the
resultant output of conventional trace systems;

Figure 8 shows a system comprising a data processing apparatus %;nd a diagnostic
apparatus both having prediction logic according to an embodiment of the present
invention; and

Figure 9 shows a flow diagram giving an example prediction scheme.

11

10

15

20

25

30

35

Figure 1 shows in very simple schematic form a stream of instructions 10 being
processed, the instruction stream including conditional branch instructions 10al and 10a2
and exception event 10b.

In this embodiment of the invention, for the instructions shown only marker
instructions have information output about them. Thus in this case an N-atom is output
for the non-execution of instruction 10al and an E-atom is output for the execution of
instruction 10a2. An exception indication and a count value indicating the number of
instructions to have been executed following the previous marker instruction 10a2 is
output in response to exception event 10b.

Figure 2 shows a data processing apparatus 20 comprising a CPU 30 operable to
process a program comprising an instruction stream sent from an instruction memory 22.
The CPU 30 comprises an instruction fetch unit 32, a pipeline 34 and a trace interface 36.
The data processing apparatus also comprises an Embedded Trace Macrocell (ETM) 40
operable to trace the processing of the program via trace interface 36. ETM 40 comprises
monitoring logic 42 having a counter 45 and compression logic 50. Monitoring logic 42
monitors the processing of instructions within the CPU 30 and increments the counter 45
for each instruction processed that it has not designated as a marker instruction. It
designates instructions that are conditional branch instructions or indirect branch
instructions, i.e. at least some of the instructions whose behaviour cannot be statically
determined, as marker instructions. When it designates an instruction as a marker
instruction it resets the counter and discards the information previously stored therein.

Because trace is typically stored in a circular buffer, that is, a buffer where new
entries overwrite the oldest entries, the trace stream typically also includes
synchronization data, output periodically by the ETM. This synchronization data contains
sufficient information for decompression logic to start decompression of the trace from
that synchronization point. Therefore the counter value must be known at the point of
synchronization. One method to achieve this is to include the counter value in the
synchronization data, although it has been found that a preferred method is to simply reset
the counter at the synchronization point.

When an exception event occurs, monitoring logic 42 also detects this and
forwards this information along with the value of the counter (indicative of the number of
non-marker instructions that have executed since the last marker instruction) at this point
to compression logic 50. It then resets the counter.

The compression logic 50 therefore receives a data stream indicating the

behaviour of the processor when processing marker instructions, counter values and
12

10

15

20

25

30

35

indications that exception events have occurred. It generally compresses this information
and outputs it via output port 60, which in this case is connected to an output port 65 on
the data processing apparatus 20. Thus, a data stream of execution and non-execution
indicators and exception event indicators along with counter values are output. The
indicators may take a number of forms, for example, they may contain the address of
where the program branched to. Similarly the exception event indicators may take a
number of forms such as the nature of the exception or where the program has branched
to.

The information output from data processing apparatus 20 is generally
compressed by compression logic 50, and this will be described later. It is received by
trace port adapter 70 and is then forwarded to diagnostic apparatus 80. Trace port adaptor
70 may buffer the information until such time as diagnostic apparatus 80 requests it, or it
may forward the information directly to diagnostic apparatus 80. Diagnostic apparatus 80
may take a number of forms, and in this embodiment comprises a host computer that runs
a debug program 110. Diagnostic apparatus 80 further comprises a data store 90 which
contains an image of the program that is being run on the CPU 30. This enables
decompression logic 100 to reconstruct the program flow of the program being processed
using the information in the data store 90 regarding the program being processed and the
information regarding the behaviour of the marker instructions and any exception events.
This trace information is passed to a debug program 110 on the host computer, which
displays and/or analyses it. Decompression logic can take a number of different forms
but in many embodiments is implemented as a software program.

Figure 3 shows a system according to a further embodiment of the present
invention. The system 24 comprises ETM 40, with output port 60 that outputs data to an
on-chip data store 120. This data is then analysed by decompression program 31.
Decompression program 31 uses data regarding the program being processed from
program data store 130. CPU 30 also uses the program from program data store 130. It
should be noted that decompression program 31 can be run on CPU 30 or on a different
processor. Thus, in this embodiment the data processing apparatus can both run and
debug the program. In the system of Figure 3, the whole system is formed on a single
chip; however, it can clearly be formed on separate chips as is illustrated, for example, in
Figure 2.

Figure 4A shows a flow diagram illustrating a method of tracing a program flow
according to an embodiment of the present invention. The method comprises monitoring

for an exception event or condition, if one is not detected the next instruction in the
13

10

15

20

25

30

35

instruction stream is monitored to see if it is a conditional instruction or an indirect branch
instruction. If it is then this instruction is designated as a marker instruction and an
indicator indicating its behaviour is output, the counter is reset to zero, and we return to
the top of the flow diagram. The indicator can take a number of forms. For example, with
conditional instructions, it may comprise a bit taking the value 1 if the condition is true
and the instruction is executed, and 0 if the condition is false and the instruction is not
executed. For example, with indirect branch instructions, the indicator may comprise
information as to where the program flow branches to. If the “next” instruction is neither a
conditional instruction nor an indirect branch instruction then the counter is incremented
by one. It will be appreciated that the counter is of a fixed size, and therefore at a
maximum value incrementing the counter will cause it to overflow. If the counter
overflows, then the instruction is designated as a marker instruction. In other words a
normal instruction is promoted to be a marker instruction and information indicating the
behaviour of the “marker” instruction is output and the counter is reset to zero. If the
counter does not overflow then we return to the top of the flow diagram to detect if an
exception event has occurred or not. Thus, the counter records the number of non-marker
instructions which are processed between marker instructions.

If an exception is detected in the first step then the value of the counter is output
along with information regarding the type of exception and/or where the exception has
branched to. The counter is then reset to zero and we proceed to detecting the next
instruction provided a further exception is not detected before this, which in this case will
be an instruction that the program branches to in response to an exception, for example, it
may be the first instruction within an interrupt service routine.

Figure 4B shows a flow diagram similar to that of Figure 4A, but with an
additional step. This embodiment includes the case where data memory transfer
operations are also regarded as marker instructions. Thus, following determination of an
instruction as a conditional instruction or indirect branch instruction, an additional step is
performed to determine whether an instruction is a data memory transfer instruction, and
to designate this as a marker. It will be appreciated that, after designating the instruction
as a marker, the tracing logic outputs an indicator of the behavior of the instruction is
output. In outputting the indicator, the tracing logic may make a further determination as
to the nature of this indicator; for example if it determines the data memory transfer is to
be traced, the indicator may comprise an indication of the transfer address and/or value;
whereas if the transfer is not to be traced, the indicator may comprise a single bit

indicating that the data memory transfer instruction was processed.
14

10

15

20

25

30

Figure 4C shows a flow diagram similar to that of Figure 4A, but for a different
embodiment of the present invention. The method comprises monitoring for an exception
event or condition, if one is not detected the next instruction in the instruction stream is
monitored to see if it is a branch instruction. If it is then this instruction is designated as a
marker instruction and an indicator indicating its behaviour is output, and we return to the
top of the flow diagram. The indicator can take a number of forms. For example, with
unconditional branch instructions it may comprise a bit taking the value 1 indicating the
branch is processed. For example, with conditional branch instructions, it may comprise a
bit taking the value 1 if the condition is true and the branch instruction is executed, and 0
if the condition is false and the branch instruction is not executed. For example, with
indirect branch instructions, the indicator may comprise information as to where the
program flow branches to. If the “next” instruction is not a branch instruction then we
return to the top of the flow diagram to detect if an exception event has occurred or not.

If an exception is detected in the first step then the location in the program is
output along with information regarding the type of exception and/or where the exception
has branched to. It will be appreciated that the location indicator may take a number of
forms, and may be output in a compressed form. For example, it may take the form of the
address of the last instruction processed before the exception was taken. We proceed to
detecting the next instruction provided a further exception is not detected before this,
which in this case will be an instruction that the program branches to in response to an
exception, for example, it may be the first instruction within an interrupt service routine.

Figure 5 shows a flow diagram similar to that of Figure 4A, but with an additional
step. This embodiment includes the possibility of not outputting indicators regarding
instructions that can be dynamically determined as well as those that can be statically
determined, i.e. those whose behaviour can be determined at the point that they are to be
processed, from information regarding the behaviour of previously processed instructions
that is contained in the trace stream. Thus, following determination of an instruction as a
conditional instruction or indirect branch instruction, an additional step is performed
whereby it is determined if the behaviour of the instruction can be determined from
previous program behaviour. If the answer is no then the instruction is designated to be a
marker instruction and the method proceeds as for Figure 4A. If, however, it is yes, then
the instruction is not immediately designated as a marker instruction and the method
returns to the step of incrementing the counter value. However, the instruction may yet be

designated as a marker instruction by way of the counter overflowing.

15

10

15

20

25

30

Figure 6 shows a diagram illustrating schematically the steps performed during
analysis of the trace data produced in the method shown in Figure 4A. The data stream
output at output port 65 of Figure 2 is received from trace port adaptor 70 by
decompression logic 100, which may be a program running on a diagnostic apparatus.
The diagnostic apparatus also comprises a data store 90 which stores at least a part of the
program being analysed. The decompression logic can derive a program data flow from
the trace data and the stored program. In particular, it analyses the two together and if the
program shows a conditional instruction or an indirect branch instructions it looks to the
trace data stream to discover how they were processed. For other instructions it assumes
they were executed, unless there is an indication of an exception event in the data stream.
If that is the case, then it looks to the data stream to discover the number of instructions
that were processed following the last conditional instruction or indirect branch
instruction prior to this exception event. It then takes the information about the exception
event and outputs this information along with the information about that number of
instructions processed. Thus, the diagnostic apparatus can produce a step by step analysis
of the behaviour of the processing apparatus processing the program from the stored
program information and the data stream that provides information relating to indirect
branch instructions and conditional instructions and the occurrence and position of
exception events.

In addition to reducing the amount of data that the trace data stream has by not
outputting information about statically determinable instructions, the data can be further
reduced by the use of compression techniques. In order to find a suitable compression
regime, typical patterns of data regarding execution, non-execution and exception events
that are output by compression logic are analysed and the most common pattemns are
given particular encodings, which can then be used to reduce the number of bits required
to output this data.

Figure 7A shows an example of a stream of instructions being processed
(column 3) and the resulting trace output according to an embodiment of the present
invention. The instructions that are designated as marker instructions are shown, along
with the count value and the final compressed output. The instructions from the
ARM® instruction set architecture. Conditional instructions are indicated in the
instruction assembly language by a condition code suffix to the instruction, such as EQ
(equal; that is, the zero [Z] flag is one), NE (not equal; Z=0), CS (carry set; C=1) or HI
(unsigned higher; C=1 and Z=0).

16

10

15

20

25

Column 1 shows a step sequence number indicating the order in which the
instructions are processed. Column 2 shows program counter values for the
instructions. Column 4 indicates whether each instruction processed is executed or not
executed.

The function of the trace logic is to produce a trace stream from this sequence
of operations containing sufficient information for a diagnostic apparatus to be able to
reconstruct the sequence of operations.

In order to understand the output (column 8) of Figure 7A, it is important to
understand the compression technique that is used. A summary of possible
compression schemes to compress the trace data of an embodiment of the present
invention are given below along with a comparison of compression techniques for prior

art trace data.

Existing format (prior-art):

The trace stream consists of a series of bytes, with the following encodings.

Bit: 7 6 5 4 3 2 1 0
PN [N[EB]] ER1] E{1]] E[0) 0 0
P2 (1 0 0 o] FI| P 1 0
Bl [C[A[5]] A[4]] AR Al2]| A[l]] A[0) 1
B2 | C|A[12] [A[IT[A[10] | A[9) [A[8] | A[7]| A[6]
B3 | C | A[19] | A[18] | A[17] | A[16] | A[15) | A[14] | A[13]
B4 [C | A[26] | A[25] | A[24] | A[23] | A[22] | A[21] | A[20]
BSA [0 C 0 0 1 [A[29) [A[28) [A[27)
BST [0 C 0 1 | A[30] | A[29] [A[28] | A[27)
BsJ [0 C 1 [A[31] | A[30] | A[29] | A[28] | A[27]
B6 | 0| TEE| CAN| XB11 X2]1 X[1]| X[0]| NS

Table 1: Existing trace byte formats

Existing format (prior-art): PN and P2:

To indicate a sequence of processed instructions, the trace logic outputs either a
PN byte or a P2 byte.

The PN byte indicates up to 16 instructions processed, consisting of 0 to 15
instructions that executed, followed by up to 1 instruction that did not execute. Bits 7, 1
and 0 are used to discriminate a PN byte. The number of instructions that executed is
encoded in the field E[3..0] and the number of instructions that did not execute is
encoded in the N field:

17

10

15

20

Bits Value # of instrs executed Bits Value # of instrs executed
E{3..0] 0000 0 E(3..0] 1000 8

0001 1 1001 9

0010 2 1010 10

0011 3 1011 11

0100 4 1100 12

0101 5 1101 13

0110 6 1110 14

0111 7 1111 15

Table 2: Encoding of E[3..0] bits in PN format byte

Bits Value # of instrs not executed

N 0 0
1 1

Table 3: Encoding of N bit in PN format byte

The P2 byte indicates 2 instructions were processed, consisting of any mix of

executed and non-executed:

F1 F2 First instruction Second instruction
0 0 Executed Executed

0 1 Executed Not executed

1 0 Not executed Executed

1 1 Not executed Not executed

Table 4: Encoding of F1 and F2 bits of P2 format byte
Bits 7 through 4, 1 and 0 are used to discriminate a P2 byte.

The trace logic tracks instructions being processed and only outputs a P2 or PN
byte when a further instruction that was processed cannot be encoded in the current
byte, or on encountering an indirect branch instruction being executed, or on an
exception.

For example, if a sequence of 5 instructions have been processed, all of which
were executed, the current byte, if output, would be a PN byte with E[3..0] = 0101 and
N = 0. If the next instruction that is processed is executed, the trace logic does not
output this byte and instead moves on to an encoding of PN with E[3..0] = 0110 and N
= 0. However, if the next instruction processed is not executed, the trace logic will
output the PN byte with E[3..0] = 0110 and N = 1 (indicating a sequence of 6
instructions executed, followed by one not executed), since it is impossible to encode

further instructions in that PN byte. That is, the byte 8’b11011000 is output.

Possible compression format suitable for compressing trace data according to an
embodiment of the present invention: PN, P2, P3 and P4:

The prior art encoding favours long runs of executed instructions and few non-
executed. Under a particular embodiment of the present invention, only executed-

conditional instructions and not-executed instructions (which are by definition

18

10

15

20

conditional) are encoded in the PN and P2 formats, with E[3..0] in the PN byte

encoding the number of marker instructions processed that were executed-conditional.

The encoding of the N bit is unchanged.

of instrs executed- # of instrs executed-

Bits Value conditional Bits Value conditional
E[3.0] 0000 0 E[3..0] 1000 8

0001 1 1001 9

0010 2 1010 10

0011 3 1011 11

0100 4 1100 12

0101 5 1101 13

0110 6 1110 14

0111 7 1111 15

Table 5: Encoding of E[3..0} bits in modified PN format byte

Similarly, the definition of the P2 byte is modified:

F1 F2 First instruction Second instruction

0 0 Executed-conditional Executed-conditional

0 1 Executed-conditional Not executed (conditional)
1 0 Not executed (conditional) Executed-conditional

1 1 Not executed (conditional) Not executed (conditional)

Table 6: Encoding of F1, F2 bits in modified P2 format byte

Because runs of executed-conditional instructions are less common than runs of

executed (conditional or unconditional) instructions, new formats are introduced that
indicate 3 and 4 marker instructions processed, consisting of any combination of

executed-conditional and not executed (conditional) marker instructions.

Bit: 7 6 5 4 3 2 1 0
P3|1]0 1| F1| F2| F3 0
P4 | 1|1|F1 | F2{F3|F4]1]|0

Table 7: New format P3 and P4 bytes

The F1 and F2 bit encodings are as in the P2 format byte. The F3 and, in the
case of the P4 byte, F4 encodings are as follows:

F3 F4 (P4 formatonly) Third instruction Fourth instruction (P4 format only)
0 0 Executed-conditional Executed-conditional

0 1 Executed-conditional Not executed (conditional)

1 0 Not executed (conditional) Executed-conditional

1 1 Not executed (conditional) Not executed (conditional)

Table 8: Encoding of F3 and F4 bits in new P3 and P4 format byte

19

10

15

20

25

30

Existing format: B packets:

On encountering an indirect branch instruction that executed, the trace logic
first ensures that preceding instructions and the indirect branch are traced (by
outputting the PN or P2 bytes that encode them), and then outputs a B packet. A
B packet consists of the Bl byte optionally followed by the B2 byte, optionally
followed by the B3 byte and so on. The ‘C’ bit in each B byte indicates that a further
byte follows; C = 0 indicating this is the terminating byte, C = 1 indicating the next
byte follows.

The A[] bits of the B packet encode the changed bits of the program counter
(PC) on the branch. For example, if an indirect branch at address 0x8013
(16’b1000000000010011), branches to address 0x801F (16’b1000000000011111),
only the bottom 4 bits of the PC change, so the B packet is encoded as a single B1 byte
containing the new values. This byte also necessarily includes the unchanged bits 5 and
4 of the PC. That is, the single byte 8°b00111110 is output.

The ARM® processor implements more than one instruction set, with some
implementations having four possible instruction sets, known as the ARM instruction
set, the Thumb instruction set, the Thumb-2EE instruction set, and the Java instruction
set.

Since all instructions in the ARM instruction set (processed in ARM state) are
32 bits and are aligned on addresses that are a multiple of 4, every PC address has bits
1 and O set to 0. Therefore before a branch packet is calculated, the source and
destination addresses are shifted right 2 binary places. That is, B1 bit A[0] corresponds
to PC bit 2, bit A[1] to PC bit 3 and so on.

Similarly, in the Thumb instruction set (processed in Thumb state), and Thumb-
2EE instruction set (processed in ThumbEE state) instructions are 16 bits, aligned on
multiples of 2, and so the addresses are shifted right 1 binary place. That is, B1 bit A[0]
corresponds to PC bit 1, bit A[1] to PC bit 2 and so on.

In the Java instruction set (processed in Jazelle state), instructions are 8 bits and
can be at any address, and so no address shifting occurs. That is, B1 bit A[0]
corresponds to PC bit 0, bit A[1] to PC bit 1 and so on.

Therefore in a 32-bit address space, an ARM address requires at most 30 bits, a
Thumb or Thumb-2EE address at most 31 bits and a Java address 32 bits. If a full 5-
byte B packet is used, the fifth byte is one of the three formats BSA, BST or B5J,

20

10

15

indicating the target address is one of an ARM instruction address, a Thumb or Thumb-
2EE instruction address or a Java instruction address.

On changing instruction sets, the full 5 byte packet is always generated, so that
the target instruction set is indicated. The C bit in the 5™ byte is not normally set on an
indirect branch. It is used to indicate an exception or a branch to or from the ThumbEE
state.

On an exception, a B packet is also generated, which will always contain 5
bytes. However, in the 5™ byte, the continuation bit (C) will be set indicating a 6" byte,
of the format B6. This encodes the type of exception, whether the exception cancelled
the most recent instruction, whether the instruction was processed as a secure
exception.

The 6™ byte is also generated following a BST byte on an indirect branch into
or out of the ThumbEE state, and this is also encoded, with the exception type field
indicating no exception. |
Bit(s) Value Meaning

TEE 0 Target of branch is not ThumbEE state
1 Target of branch is ThumbEE state
CAN 0 Previous instruction not cancelled
1 Previous instruction cancelled

X[3..0] 0000 No exception
0001 Debug exception
0010 Secure Monitor Call exception
0011 Reserved
0100 Imprecise data abort exception
0101 Jazelle exception
0110 Reserved
0111 Reserved
1000 Reset exception
1001 Undefined Instruction exception
1010 Supervisor Call exception
1011 Prefetch abort exception
1100 Data abort exception
1101 Reserved
1110 Interrupt exception

1111 Fast interrupt exception
NS 0 Exception processed in secure state
1 Exception processed in non-secure state

Table 9: Encoding of B6 byte

Therefore on an indirect branch, the sequence of bytes generated is always one of:

21

10

15

0 1 2 3 4 s 6
Branch (not PNor B1
changing state) P2 (C=0)
PN or Bl B2
P2 (C=1) [(C=0)
PN or Bl B2 B3
P2 (C=1) | (C=1) |(C=0)
PN or Bl B2 B3 B4
P2 (C=1) J(€=D (=1 |(C=0)
Branch to ARM PNor Bl B2 B3 B4 B5SA
state P2 (C=1) [(€C=1) [(C=1) |(C=1) | (C=0)
Branch to Thumb PN or B1 B2 B3 B4 BST
state P2 (C=1) [(C=1) [(C=1) |(C=1) |(C=0)
(or, from ThumbEE PNor Bl B2 B3 B4 BST B6 (TEE=0,
state) P2 C=1) [(C=1) {(C=1) |(C=1) |(C=1) | X[3:0]=0)
Branch to Jazelle PNor Bl B2 B3 B4 BsJ
state P2 (C=1) (€= j(C=1) [(C=1) |(C=0)
Branch to PNor B1 B2 B3 B4 BST Bé6 (TEE=1,
ThumbEE state P2 (C=1) [(C=D) |(C=1) [(C=1) |(C=1) | X[3:0]=0)

Table 10: Sequence of bytes on indirect branches

(Note that the PN or P2 byte encodes the instructions prior to, and including,
the branch.)

On an exception, a sequence of bytes is generated:

0 1 2 3 4 5 6
Exception PN or Bl B2 B3 B4 BSA or BST | B6
P2 (C=1) [(C=1) | (C=1) |(C=1) |orBSsJ (X[3:0)£0)
(C=1)

The type of byte 5, and the TEE bit in byte 6 indicate the state the exception is
handled in.

New format, according to an embodiment of the present invention: B7 byte:

To extend the protocol to encode the count of non-marker instructions
processed since the last marker instruction, a further byte is output following the B6
byte, referred to as a B7 byte. To indicate the presence of this byte, a continuation bit is
also added to the B6 byte.

In one embodiment of the present invention, this B7 byte contains a counter

value.

Bit: 7 6 S 4 3 2 1 0
B6 (modified) | C | TEE [CAN | X[3] | X[2] | X[1] [X[0] | NS
B7 0 0 O If4) | 1311 I{21] 1111 1{0]

Table 11: New format B7 byte - exception counter embodiment

22

15

20

25

Bits I[4..0] encode a 5-bit counter, which experimentation has shown to be a

reasonable length to use. Therefore on an exception, the trace logic outputs:

0 1 2 3 4 5 6 7
Exception PN, [Bl |B2 |B3 |B4 |BSAor B6 B7
(new P2,P3 | (C=1) | (C=1) | (C=1) | (C=1) | BSTor (C=1,
format) or P4 BSJ(C=1) | X[3..0]#0)

New format, according to an embodiment of the present invention: B7 to B11 bytes:
In a different embodiment of the present invention, a value indicative of the
location in the program where the exception occurred is output on detection of the
exception. In the preferred embodiment, this is output as a series of bytes following the
B6 bytes which encode the address of the instruction which was subject to the
exception. This is compressed by encoding the value as the bit-wise difference between
the address of the last marker instruction (which will be known to the decompressor)
and the address of the instruction at the exception point, in the same manner as branch
bytes B1 to B4, using a continuation bit in each byte. The final byte, B11, if required
can contain up to the 32" bit of the address, although it will be appreciated that if the
cxception occurred in the ARM, Thumb or Thumb-2EE instruction sets, not all of these

bits will be required and the extra bits will therefore be zero.

Bit: 7 6 5 4 3 2 1 0
B6 (modified) [C| TEE | CAN]| X[31] X[2]1 X111 X[0] NS
B7 [C| XA[5]| XA[4]| XA[3]] XA[2] [XA[1]| XA[0] 1
B8 | C | XA[2] [XA[1] | XA[10] | XA[9]| XA[8)| XA[7]| XA[6]
B9 | C | XA[19] | XA[18] | XA[17] | XA[16] | XA[15] | XA[14] | XA[13]
B10 [C | XA[26] | XA[25] | XA[24] | XA[23] | XA[22] | XA[21] | XA[20]
B11 [0 0 0 | XA[31] | XA[30] | XA[29] | XA[28] | XA[27]

Table 12: New format B7-B11 bytes — exception address embodiment
Therefore on an exception, the trace logic outputs, for example where only 3

bytes are required to indicate this instruction address:

0 1 2 3 4 5 6 7 8 9
Exception PN, Bl B2 B3 B4 BSA or B6 B7 B8 B9
(new P2,P3 | (C=1) | (C=1) | (C=1) | (C=1) | B5Tor (C=1, (C=1) | (C=1) | (C=0)
format) or P4 B5J X[3..0]#0)
(C=1

However, this embodiment is not that shown in Figure 5.
In the new formats, the PN/P2 or P4 byte preceding any B packet sequence

(whether an exception or not) does not encode the branch instruction itself, as this is

implicit by the presence of the B packet.

23

10

15

20

25

30

Column 5 of Figure 7 indicates whether each instruction is an indirect branch
instruction or a conditional instruction; that is, in this embodiment, a marker instruction.
Where an instruction is a marker instruction, the reason is given — with “(cc)” indicating
the instruction is designated a marker instruction on account of being a conditional
instruction, and “(ib)” indicating the instruction is designated a marker instruction on
account of being an indirect branch instruction. An instruction may also be promoted to
be a marker instruction on overflow of the counter used for exception processing.
However, in this example no such overflow occurs.

Column 6 indicates the atoms produced for marker instructions.

Column 7 indicates the value of the counter used for exception processing in this
embodiment of the present invention. This counter increments on each non-marker
instruction processed.

Column 8 indicates the output of this embodiment of the present invention, with
the type of byte produced indicated, and the values in the various fields of that atom
shown.

Instruction processing in the example shown in Figure 7 starts at step 1, with the
processing of a SUB instruction. This instruction is not conditional, and is therefore
executed, and, not being an indirect branch instruction, is treated by the ETM as a non-
marker instruction, indicated in Column 5. Therefore the counter is incremented to 1, as
shown in Column 7.

The instruction at step 2 is similarly not a marker instruction, and the counter
increments to 2.

The instruction at step 3 is BEQ. This is a conditional branch instruction, and
therefore is treated as a marker instruction by the ETM. The ETM generates an N atom
for this instruction as it is not executed, and resets the counter to 0. The stream of atoms is
being further compressed by the ETM so this atom is not output at this step.

Processing continues in this manner to step 10. Two further marker instructions
are encountered, each generating an N atom, and at each step the counter is reset. At step
10, a fourth marker instruction is processed, which also generates an N atom. At this step
the ETM can not further compress the atom stream, and has to output a P4 byte, encoding
the four N-atoms.

Processing further continues to step 17, where, due to the execution of a
conditional branch instruction, BHI, the program counter loops back to the instruction at

0x8050. Processing then continues to step 18. Up to step 18, the sequence of atoms

24

15

20

25

30

35

generated are all E-atoms, but the instruction at step 19 is not executed and therefore the
ETM must now output a PN byte, encoding the run of 4 E-atoms and the single N-atom.

Processing further continues to step 26, where the processor receives an interrupt
exception (referred to in the ARM® architecture as an IRQ). Up to this step the ETM has
recorded three N-atoms, the most recent at step 24. Since that step, 1 non-marker
instruction has been processed, so the counter stands at 1. Therefore the ETM first outputs
a P3 byte to encode the series of 3 N-atoms, followed by a 7-byte branch packet, encoding
the branch the IRQ exception handler at 0x18, the occurrence of the IRQ exception, and
the current value of the counter (1). The counter is reset at this step.

The instruction at the IRQ exception handler is processed at step 27. This
instruction, LDR pc,[pc,#20], is an example of an indirect branch instruction, and hence is
a marker instruction. In response to this marker instruction the ETM generates a further
branch packet encoding the destination of the indirect branch, in this case the address
0x1000. The instruction at 0x1000 is processed at step 28.

By way of illustration, Figure 7B shows the trace output generated by a
conventional ETM and XScale in response to the same set of instructions as that shown in
Figure 7A. As can be seen the embodiment of the present invention reduces the trace data
output when compared to a conventional ETM. The XScale trace comprises roll-over,
direct branch, exception and indirect branch bytes. However, XScale itself produces less
output data than this embodiment. However, it should be noted that XScale may not
output sufficient data to allow the steps of the processor to be accurately traced as
information relating to conditional instructions that are not branch instructions is not
output. XScale also does not output information regarding the address branched to on an
exception, as the address branched to is fixed for the exception type for the XScale
processor. In addition, the sequence of instructions is relatively short and therefore the
amount of trace produced is not representative of a long instruction stream.

As can be seen from Figure 7B, the prior art ETM method produced a trace having
far more E-atoms (indicating executed instructions) than N-atoms (those not executed).
Such data patterns are relatively easy to compress using well known compression
techniques, such as the run-length coding scheme used in the PN encoding described
above. Embodiments of the present invention however, tend to form data patterns having
fairly equal numbers of E and N-atoms and as such are more difficult to compress.

An alternative to finding a compression technique that can effectively deal with
data that has a fairly equal number of two outputs would be to find some way of adjusting

the information output so that nearly all of one value is given. This can be done if a
25

10

15

20

25

30

35

prediction technique is used to predict how an instruction will cause the processor to
behave. If the prediction technique is good at making these predictions then the trace
output will consist mostly of “prediction correct” indicators with only a few “prediction
incorrect” indicators. Provided the diagnostic apparatus was able to make the same
predictions then such a trace data stream could be used to trace the behaviour of a
Processor.

Although in the embodiments shown above it is just conditional instructions and
unconditional indirect branch instructions that are designated as marker instructions, it
should be noted that embodiments of the invention are not limited to this.

It may be that in some circumstances it is important to output data concerning
other classes of processed instructions in addition to conditional instructions and
unconditional indirect branch instructions. Thus, in some embodiments the monitoring
logic may detect a further specified class of instruction, and the compression logic may
designate this further specified class of instructions as marker instructions.
Furthermore, in other embodiments only conditional direct branch instructions,
conditional indirect branch instructions and indirect branch instructions may be
designated as marker instructions.

For example, when the memory addresses and data values of some data
accesses initiated by load and store instructions are also being traced, it is important to
know when these load and store instructions are processed, as not all such memory
addresses and data values will necessarily be traced. By designating load and store
instructions as marker instructions, the trace stream will always contain minimal
information as to the behavior of these instructions, that is, whether they executed or
not, so that those which are traced can later be correctly identified.

In such cases the tracing logic detects the specified class of instructions in the
instruction stream so that it can designate them as marker instruction and output an
indicator indicating their behaviour. It should be noted that it is generally the ETM
itself which specifies any additional class of instruction to be designated as marker
instructions. It does this in dependence upon what it has been asked to trace.

Figure 8 shows a data processing apparatus corresponding to that of Figure 2, but
further comprising prediction logic 72 for predicting the behaviour of the processor 30.
The predictions made by prediction logic 72 are compared to the actual behaviour of the
CPU 30 monitored by monitoring logic 45 and if they are correct a “prediction correct”
indicator is output to compression logic 50, whereas if they are not a “prediction

incorrect” indicator is output to compression logic 50. Additional indication of the actual
26

10

15

20

25

30

35

behavior of the processing apparatus may also be output at this stage if appropriate. If the
prediction system is generally correct then mostly “prediction correct” indicators are
output, and thus will compress to less data than the original trace stream.

For example, the predictions made by prediction logic 72 can be as to whether the
condition of a conditional instruction is true or false. If the value of the condition matches
the prediction made by prediction logic 72 a 1 (a “prediction correct” indicator) is output
to compression logic 50, whereas if the condition does not match the prediction made by
prediction logic 72, a 0 (a “prediction incorrect” indicator) is output to compression logic
50. An additional indicator of the actual behavior is not required in this case as there are
only two possible behaviors.

An example prediction scheme is as follows:

1. When a conditional instruction follows an unconditional instruction,
predict it is executed.

2. When a second conditional instruction follows a first conditional
instruction:

a. if the second instruction’s condition is the same as the first
instruction’s condition, then predict that the execution status of
the second instruction will be the same as the actual execution
status of the first instruction; whereas

b. if the second instruction’s condition is different from the first
instruction’s condition, then predict that the execution status of
the second instruction will be the opposite of the actual
execution status of the first instruction.

Diagnostic apparatus 80 further comprises prediction logic 92 arranged to make
identical predictions of the behavior of the processor. It is able to make identical
predictions as it has access to the sequence of instructions processed by the CPU from
the decompression logic 100. Decompression logic 100 receives the prediction from
prediction logic 92 and, using the indicators in trace stream received from trace port
adaptor 70, reconstructs the actual CPU behavior.

Figure 9 shows a flow diagram illustrating a prediction scheme following the
prediction rules set out above. In this prediction scheme an instruction is considered
and if it is unconditional an “executed” prediction is made in accordance with rule 1. If
it is not unconditional, the previous instruction is considered to see if it was
unconditional if it was, then an “executed” prediction is made (rule 2). If it was not,

the instruction condition is considered to see if it matches the previous instruction
27

condition, if it does, then if the previous instruction executed “executed” is predicted,
whereas if it did not execute “not executed” is predicted in accordance with rule 3a. If
the instruction condition did not match the previous instruction condition, then if the
previous instruction executed “not executed” is predicted whereas if it did not execute,

“executed” is predicted (rule 3b).

28

10

15

20

25

30

CLAIMS

1. Tracing logic for monitoring a stream of processing instructions from a
program being processed by a data processor, said tracing logic comprising monitoring
logic operable to:

detect processing of said instructions in said instruction stream;

detect which of said instructions in said instruction stream are conditional direct
branch instructions, which of said instructions in said instruction stream are conditional
indirect branch instructions and which of said instructions in said instruction stream are
unconditional indirect branch instructions;

said tracing logic further comprising compression logic operable to:

designate said conditional branch instructions, said conditional indirect branch
and said unconditional indirect branch instructions as marker instructions; and

for each marker instruction, output an indicator indicating a behaviour of said
data processor when said marker instruction is processed and not output data relating to

processed instructions that are not marker instructions.

2. Tracing logic according to claim 1, wherein said monitoring logic is
further operable to detect which of said instruction stream are conditional instructions;
and said compression logic is further operable to designate said conditional instructions

as marker instructions.

3. Tracing logic according to any one of the preceding claims, wherein
said monitoring logic is further operable to detect which of said instruction stream are
data memory transfer instructions; and said compression logic is further operable to

designate said data memory transfer instructions as marker instructions.

4, Tracing logic according to any one of the preceding claims, said
compression logic being operable in response to detection of said indirect branch
instructions being processed, to output an indication of where said instruction has

branched to as said indicator.

5. Tracing logic according to any one of the preceding claims, wherein

said monitoring logic further comprises a counter, and is further operable to:

29

10

20

25

30

count a number of non-marker instructions that are processed following each
marker instruction using said counter; and

detect an exception event; and

said compression logic is operable in response to detection of said exception
event to:

output an exception indicator indicating taking of said exception along with

said counter value.

6. Tracing logic according to claim 5, wherein said compression logic is
operable in response to said counter value exceeding a predetermined value, to
designate said non-marker instruction reached at a point said counter value exceeds
said predetermined value as a marker instruction irrespective of the nature of said non-

marker instruction, and to reset said counter.

7. Tracing logic according to any one of the preceding claims, wherein
said monitoring logic is further operable to detect which of said instruction stream are
unconditional direct branch instructions; and said compression logic is further operable

to designate said unconditional direct branch instructions as marker instructions.

8. Tracing logic according to any one of the preceding claims, wherein
said monitoring logic is further operable to:

detect an exception event; and

said compression logic is operable in response to detection of said exception
event to:

output an exception indicator indicating taking of said exception along with a

value indicative of the location in said program where said exception occurred.

9. Tracing logic according to any one of the preceding claims, wherein
said compression logic is operable prior to outputting said indicators, to compress the

indicator data and to output said compressed data.

10. Tracing logic according to any one of the preceding claims, said tracing
logic being further operable to determine if a behaviour of at least one of said marker

instructions can be determined from a behaviour of previous marker instructions, said

30

10

20

25

30

tracing logic being operable to demote said at least one marker instruction to an

instruction that is not a marker instruction.

11. A data processing apparatus comprising a data processor operable to
process said stream of program instructions and tracing logic according to any

preceding claim.

12. A data processing apparatus according to claim 11, said data processing
apparatus further comprising:

prediction logic operable to provide at least one prediction of a processing
behaviour of at least one of said marker instructions; and wherein

said monitoring logic is operable to

determine from said monitored behaviour whether or not said at least one
prediction is correct; and

for said at least one marker instruction output as said indicator an indication at

to whether or not said at least one prediction is correct.

13. A data processing apparatus according claim 12, wherein said prediction
logic is operable to provide a prediction for at least one conditional instruction, said
prediction logic being operable to predict whether the condition of said conditional
instruction will be true or false, said indicator for said at least one conditional
instruction comprising a prediction correct indication if said prediction is correct and

prediction incorrect indication if said prediction is incorrect.

14. A data processing apparatus according to any one of claims 12 and 13,
wherein said prediction logic is operable to provide a plurality of predictions as to a
corresponding plurality of steps of said behaviour of said portion of said data
processing apparatus, said tracing logic being operable to determine whether or not at
least some of said plurality of predictions are correct and to produce a corresponding at
least some of said plurality of prediction indicators said compression logic being
operable to compress said at least some of said plurality of prediction indicators to
produce compressed data and said tracing logic is operable to output said compressed

data.

31

10

15

20

25

30

15. A data processing apparatus according to any one of claims 11 to 14,

wherein said tracing logic comprises an embedded trace macrocell.

16. A data processing apparatus according to any one of claims 11 to 15,
said data processing apparatus further comprising a data store, and wherein said

compression logic is operable to output data to said data store.

17. A diagnostic apparatus operable to receive a data stream output from
tracing logic monitoring a data processor, said data stream comprising indicators
indicating a behavior of said data processor when marker instructions are processed
and not comprising data relating to processed instructions that are not marker
instructions, said marker instructions comprising conditional direct branch instructions,
conditional indirect branch instructions and unconditional indirect branch instructions,
said diagnostic apparatus comprising decompression logic and a data store, said data
store being operable to store said instructions of said program being processed by said
data processor, said decompression logic being operable to receive said data stream and
to determine a program flow from said indicators of said marker instructions and said

stored program.

18. A diagnostic apparatus according to claim 17, said diagnostic apparatus
further comprising a buffer operable to receive and store said data stream, prior to

forwarding it to said decompression logic.

19. A diagnostic apparatus according to claim 17 or 18, wherein said data
stream further comprises exception event indicators and counter values, said counter
values indicating a number of instructions processed following said previous marker
instruction, said diagnostic apparatus being operable to determine a position of said

exception event from said previous marker instruction indicator and said counter value.

20. A diagnostic apparatus according to any one of claims 17 to 19, wherein
said indicators within said data stream comprise prediction indicators, said prediction
indicators indicating if predictions made by logic within said data processing apparatus
about a behavior of a portion of said data processing apparatus are correct or not, said

diagnostic apparatus comprising:

32

10

15

20

25

30

35

prediction logic operable to make predictions as to said behavior of said portion
of said data processing apparatus, said predictions corresponding to predictions made
by said logic within said data processing apparatus; and

decompression logic operable to determine an actual behavior of said data

processing apparatus from said predictions and said received data stream.

21. A system comprising a data processing apparatus according to any one
of claims 11 to 16, and a diagnostic apparatus according to any one of claims 17 to 20
said system further comprising a program data store for storing said program and
decompression logic said decompression logic being operable to receive data output by
said compression logic and to determine a program flow from said indicators of said

marker instructions and said stored program.

22. A method of monitoring a stream of processing instructions from a
program being processed by a data processor, said method comprising the steps of:

detecting processing of said instructions in said instruction stream;

detecting which of said instructions in said instruction stream are conditional
direct branch instructions, and which of said instructions in said instruction stream are
unconditional indirect branch instructions, or conditional indirect branch instructions;

designating said conditional direct branch instructions, said conditional indirect
branch instructions and said unconditional indirect branch instructions as marker
instructions;

for each marker instruction, outputting an indicator indicating a behaviour of
said data processor when said marker instruction is processed and not outputting data

relating to processed instructions that are not marker instructions.

23. A method of diagnosing a program being processed by a data processor,
comprising:

receiving a data stream output from tracing logic monitoring a data processor,
said data stream comprising indicators indicating a behavior of said data processor
when marker instructions are processed and not comprising data relating to processed
instructions that are not marker instructions, said marker instructions comprising
conditional instructions and indirect branch instructions;

storing said instructions of said program being processed by said data processor

within a data store;
33

10

15

20

25

30

determining a program flow of said program being processed from said

indicators of said marker instructions and said stored program.
24. A computer program product which is operable when run on a data
processor to control the data processor to perform the steps of the method according to

any one of the preceding claims.

25. Tracing logic substantially hereinbefore described with reference to

figures 1-7A and 8-9.

26. A data processing apparatus substantially hereinbefore described with
reference to figures 1-7A and 8-9.

27. A diagnostic apparatus substantially hereinbefore described with
reference to figures 1-7A and 8-9.

28. A system substantially hereinbefore described with reference to

reference to figures 1-7A and 8-9.

29. A method of monitoring a stream of processing instructions

substantially hereinbefore described with reference to figures 1-7A and 8-9.

30. A method of diagnosing a program substantially hereinbefore described

with reference to figures 1-7A and 8-9.

31. A computer program product substantially hereinbefore described with
reference to figures 1-7A and 8-9.

34

¥ intellectual
= Property
Off oty

For Croativity and Innceation

Application No: GB0707221.8 Examiner: John Cockitt
Claims searched: 1-27 Datc of search: 14 August 2007

Patents Act 1977: Search Report under Section 17

Documents considered to be relevant:
Catcgory [Relevant | Identity of document and passage or figure of particular relevance
to claims

X | at least | JPO7336976 A
FANUC - see PAJ and EPODOC abstracts

X I at least | EP1217713 A2
MORIC - see magnet spacing

A US6222288 B1
MAVILOR
A US2006/103251 A
HITACHI
Categories:
X Document indicating lack ot novelty or inventive A Document indicating technological background and/or state
step ot the ait.
Y Document indicating lack of mvenuve step if P Document published on or after the declared priority date but
combined with one or more other documents of before the filing date of this tnvention
same category.
& Member of the same patent family IL Patent document published on or after. but with priority date
carlier than, the filing date of this applicauon
Field of Search:
Scarch of GB, P, WO & US patent documents classified in the following areas of the ukc™
[H2A]
Worldwide search of patent documents classified n the following areas of the 1IPC
[HO2K |
The following online and other databases have been used 1n the preparation of this search report
[ONLINE: WPI, EPODOC |
International Classification:
Subclass Subgroup Valid From
HO2K 0001727 01/0172006
HO2K 0001/17 01/01/2006
HO2K 0021/12 01/01/2006
HO2K 0021/22 01/01/2006
S

UK intellectual Property Office Is an operating name of the Patent Office

	BIBLIOGRAPHY
	DRAWINGS
	DESCRIPTION
	CLAIMS
	SEARCH_REPORT

