（54）发明名称
顶部装载洗衣容器的方法

（57）摘要
一种洗衣方法，其包含以下步骤：a) 提供涂覆洗涤剂颗粒，其具有正交尺寸 x, y 和 z，其中 x 为 1mm 至小于 2mm, y 为大于 2mm 至 8mm, 且 z 为大于 2mm 至 8mm, 其中所述颗粒包含：i) 50-90 重量%的选自阴离子型表面活性剂和 / 或非离子型表面活性剂的表面活性剂；ii) 1-40 重量%的水溶性无机盐；iii) 0-20 重量%的其它组分，其包括至少 15 重量%的包含香料的水不溶性材料，并且其中所述无机盐作为涂层存在于所述洗衣洗涤剂颗粒上，而所述表面活性剂作为核存在；b) 将所述涂覆洗涤剂颗粒溶解到水中形成洗涤液；c) 用所述洗涤液处理制品；d) 将所述制品与所述洗涤液分离；和 e) 漂洗和干燥所述制品；其中至少步骤 c) 在顶部装载的洗衣容器中进行。
1. 一种洗衣方法，其包含以下步骤：
 a) 提供涂覆洗涤剂颗粒，其具有正交尺寸 x, y 和 z，其中 x 为 1mm 至小于 2mm, y 为大于
 2mm 至 8mm, 且 z 为大于 2mm 至 8mm，其中所述颗粒包含：
 i) 50-90 重量％的选自阴离子型表面活性剂、非离子型表面活性剂及其混合物的表面
 活性剂；
 ii) 1-40 重量％的水溶性无机盐；
 iii) 0-20 重量％的其它组分，其包括少于 15 重量％的包含香料的水不溶性材料，和，
 其中所述无机盐作为涂层存在于所述洗衣洗涤剂颗粒上，而所述表面活性剂作为核存在；
 b) 将所述涂覆洗涤剂颗粒溶解到水中形成洗涤液；
 c) 用所述洗涤液处理制品；
 d) 将所述制品与所述洗涤液分离；和
 e) 漂洗和干燥所述制品；
 其中至少步骤 c) 在顶部装载的洗衣容器中进行。
2. 根据权利要求 1 的方法，其中所述涂覆洗涤剂颗粒进一步包含一种或多种染料，优
 选自酸性染料、分散染料和烷基化染料，及优选选自具有氨基、单-偶氮、双-偶氮、咹
 吨、酞菁、和酚嗪发色团的那些，及优选选自具有氨基和单-偶氮基发色团的那些。
3. 根据权利要求 1 或 2 的方法，其中作为涂层存在于所述洗衣洗涤剂颗粒上的所述无
 机盐包括碳酸钠。
4. 根据前述权利要求任一项的方法，其中所述阴离子型表面活性剂包括烷基苯磺酸
 盐；优选 C_{10}-C_{18} 烷基苯磺酸钠；烷基醚硫酸盐，优选具有 1-3 乙氧基的月桂基醚硫酸钠；和
 /或烷基硫酸盐，优选 C_{12}-C_{18} 烷基硫酸钠。
5. 根据权利要求 1-4 任一项的方法，其中所述表面活性剂包含 15-100 重量％的阴离子
 型表面活性剂，其中 20-30 重量％为月桂基醚硫酸钠，基于总表面活性剂计。
6. 根据权利要求 1-4 任一项的方法，其中所述表面活性剂包含基于总表面活性剂的
 15-85 重量％的阴离子型表面活性剂和 5-75 重量％的非离子型表面活性剂。
7. 根据权利要求 1-4 和 6 任一项的方法，其中所述非离子型表面活性剂是 10-50EO 的
 醇乙氧基化物。
8. 根据权利要求 7 的方法，其中所述非离子型表面活性剂为直链或支链的脂族 C_{8-18}
 烷基醇与 20-35 环氧乙烷基团的缩合产物。
9. 根据前述权利要求任一项的方法，其中所述涂覆洗涤剂颗粒包含 20-40 重量％，优
 选 25-35 重量％的无机盐增效剂作为涂层。
10. 根据前述权利要求任一项的方法，其中所述颗粒包含 0-15 重量％，优选 1-5 重量％
 的水。
11. 根据前述权利要求任一项的方法，至少 90 数量％至 100 数量％的涂覆洗衣洗涤剂
 颗粒中最大与最小的涂覆洗衣洗涤剂颗粒在 x, y 和 z 尺寸上的变化在 20 数量％，优选 10
 数量％以内。
12. 根据前述权利要求任一项的方法，其中所述顶部装载的洗衣容器选自顶部装载的
 半自动或全自动洗衣机。
13. 根据权利要求 12 的方法，其中所述机器具有搅动所述洗涤液的装置。

14. 根据权利要求 1-11 任一项的方法，其中所述顶部装载的洗衣容器包括盆、缸、桶、池、碗或槽。

15. 根据前述权利要求任一项的方法，其中在所述清洗过程中所述涂染洗涤剂颗粒同时与水和使用者皮肤接触。
顶部装载洗衣容器的方法

发明领域
[0001] 本发明涉及使用成形的洗衣洗涤剂颗粒的洗衣清洁方法。
[0002] 发明背景
[0004] 除了相对少量的薄片、糊和片剂、和在世界上某些地方的洗涤剂块以外，大多数洗涤剂组合物以液体或粉末形式出售和使用。粉末是许多地方传统的形式，并且使用者重视它们提供有效清洗。然而，人们已经能够意识到由在被洗涤的制品上残留物的堆积引起的负面问题。这些残留物一部分是由灰、其它不溶性固体（例如沸石增效剂）和/或是由于沉淀增效剂而产生。这种堆积的最终结果可以是已被洗涤的制品的颜色发生变化。
[0005] 液体洗涤剂没有这些同样的残留物问题，但是因为其大部分是非增效的体系，它们可能清洁力不足，尤其是在硬水地区。液体具有优于粉末的另一个优点，例如它们不会在固体的结块问题。
[0006] 然而许多使用者仍然不相信液体具有与粉末相同的清洁效力。粉末的残留物问题在顶部装箱的洗涤习惯下尤其显著，其中漂洗掉沉淀或沉积的固体存在问题，尤其是在缺乏水或水相对昂贵的地区。
[0007] WO1999/32599 描述了制造洗衣洗涤剂颗粒的方法，通过将增效剂和表面活性剂挤出形成条状物。将具有硫酸化或磺酸化的阴离子型表面活性剂作为主要组分的组合物进料至的挤出机，在少 40℃，优选至少 60℃的温度下进行机械作业，并通过具有多个挤出孔的挤出头挤出。在大部分实例中，表面活性剂与增效剂以超过 1 份增效剂比 2 份表面活性剂的重量比一起进料到挤出机中。挤出物显然需要进一步干燥。在实施例 6 中，将 PAS 粘状物干燥并挤出。这样的 PAS 条状物是现有技术中熟知的。条状物通常是由圆柱的，并且它们的长度超过它们的直径，如实施例 2 中所述。
[0008] EP 申请 09158717.0 (WO2010/122051) 公开了具有低表面粗糙度的高活性洗涤剂颗粒，其是通过将含阴离子型表面活性剂的组合物挤出，并将挤出的产物切割以形成比它们的宽度更薄的薄片来制备。然后，用例如碳酸钠水溶液喷雾这些薄片，以形成可能看起来像“扁豆”的表面光滑的、自由流动的颗粒。在其说明书中已经阐明，使用例如碳酸钠的增效剂是有效的，因为它将 pH 缓冲在阴离子型表面活性剂特别有效的水平，并增加离子强度。据说颗粒在水中也溶解得很好，并适用于用在前部装箱的洗衣机中（第 6 页，19 行）。
[0009] 我们的相关但未公开的 EP 申请 09158718.8 公开了包含主要量的直链烷基苯磺酸盐的高活性颗粒。
[0010] 发明简述
[0011] 我们确定，在包括使用顶部装箱洗衣容器的方法中，具有特定形状和配方的涂覆挤出颗粒显示出被一组使用者所感知的异常良好的清洁和护理作用。
[0012] 在尤其优选的实施方式中，在涂层使用一水合碳酸钠配制的情况下，颗粒在使用时没有显示“手上灼热”的感觉。

[0013] 因此，本发明提供了洗衣方法，其包含以下步骤：

[0014] a) 提供一种涂覆洗涤剂颗粒，其具有正交尺寸 x, y 和 z，其中 x 为 1mm 至小于 2mm，y 为大于 2mm 至 8mm，且 z 为大于 2mm 至 8mm，其中所述颗粒包含：

[0015] i) 50–90 重量％的选自阴离子型表面活性剂和非离子型表面活性剂的表面活性剂；

[0016] ii) 1–40 重量％的水溶性无机盐；

[0017] iii) 0–20 重量％的其它组分，其包括小于 15 重量％的包含香料的水不溶性材料，和，

[0018] 其中所述无机盐作为涂层存在于所述洗衣洗涤剂颗粒上，而所述表面活性剂作为核存在，

[0019] b) 将所述涂覆洗剂颗粒溶解到水中形成洗涤液

[0020] c) 用所述洗涤液处理制品；

[0021] d) 将所述制品与所述洗涤液分离，和

[0022] e) 漂洗和干燥所述制品；

[0023] 其中至少步骤 c) 在顶部装载的洗衣容器中进行。

[0024] 小组研究显示上述方法使衣物更柔软，具有更明亮的颜色，更少的残留物，仍然具有与传统粉末同等的清洁作用。非常优选的是，洗涤剂颗粒中表面活性剂与增效剂比率为 1.5–2.5：1，更优选地为 1.8–2.2：1。当比率进一步向高增效剂水平移动时，洗涤液变得过于碱性，而当其高表面活性剂水平移动时，则丧失缓冲能力。通过使增效剂作为包裹柔软且粘性的表面活性剂的涂层存在，能够提供具有优选表面活性剂与增效剂比率的浓缩颗粒。不存在其它物质（表面活性剂载体、填充等）减少了一次清洗所需要的单位剂量，并因此减少了运输成本并增加了货架利用率。

[0025] 还减少了化学品对环境的影响。剂量将通常显著地比常规的产品更小，对于顶部装载的机器大约为 0.5-1g/L 的完全配制的产品，对于手洗容器大约为 1-3g/L。

[0026] 由尺寸可注意到，涂覆洗衣洗涤剂颗粒具有非球形表面。优选地，这个表面部分是弯曲的。涂覆洗衣洗涤剂颗粒可以描述为盘形、扁豆形、扁圆球体／椭圆体，其中 z 和 y 是赤道直径，而 x 是极直径。优选地，y 和 z 数值上相似，但在某些制造方法下由于在挤出产品切割期间所施加的压力，它们可能略微不同。一般而言，颗粒具有沿极轴线的旋转对称轴线。

[0027] 优选地，涂覆洗衣洗涤剂颗粒不具有任何孔，即，涂覆洗衣洗涤剂颗粒的拓扑亏格为 0。

[0028] 优选地 y 和 z 独立地是 3–8mm。这使得其形状进一步偏离球体并增加了表面积与体积的比率，提高了溶解性。使用短而胖而不是长而瘦的颗粒提高了产品的流动和剂量控制性能。通过涂覆本发明的相对大的洗涤剂颗粒，通过使用特定的涂层水平可得到的涂层厚度显著大于通常尺寸的洗涤剂细粒（0.5–2mm 直径球体）将达到的涂层厚度。这获得了坚固的涂层，并降低了表面活性剂通过涂层渗出使颗粒变粘的趋势。另外，在这种情况下，显著比例的增效剂在表面活性剂开始溶解前溶解以致洗涤液在表面活性剂溶解前至少部
分地被增效。
[0029] 这些相对大的颗粒在顶部装载中进一步的优势是它们迅速下沉并且在清洗的早期与叶轮接触。
[0030] 为获得最佳的溶解性能，该表面积与体积的比值必须大于 3mm⁻¹。然而涂层厚度与这个系数成反比，因此对于涂层“涂覆颗粒的表面积”除以“涂覆颗粒体积”的比率应该小于 15mm⁻¹。
[0031] 优选地，涂覆洗衣洗涤剂颗粒是这样的：至少 90 至 100%的涂覆洗衣洗涤剂颗粒中，最大与最小的涂覆洗衣洗涤剂颗粒在单个颗粒的平均 x，y 和 z 尺寸上的变化在 20%、优选 10%以内。这些具有类似尺寸的颗粒的聚集显示了良好的流动性能，能够包装在瓶内并能够像液体一样给量。
[0032] 适合地，洗涤剂颗粒包含 0.0001-0.1 重量%，优选 0.001-0.01 重量%的染料，其中所述染料选自：阴离子型染料和非离子型染料。染料提供了几种有用的功能。染料可以帮助使用者识别不同产品，和/或可以发挥遮蔽剂的作用，以掩盖被洗涤制品的黄色。优选地，不是所有颗粒都是相同颜色，而是存在两种或更多种颜色，例如白色和蓝色、白色和粉色或白色和橙色。
[0033] 除非另作说明，所有的重量%是指在颗粒中以干重（当存在的情况下，包括水合水）的总百分比。
[0034] 发明详述
[0035] 为了能够进一步和更好地理解本发明，将参考各种优选和/或任选的特征进一步进行说明。
[0036] 顶部装载的洗涤容器
[0037] 对于本申请文件以及在本发明的上下文中，顶部装载的清洗容器是任何被终端使用者用于洗涤衣物的容器。通常，这样的容器的容量大于 4 升。
[0038] 这样的容器包括和优选地包含，顶部装载的半自动和全自动洗衣机。优选具有搅动它们内部的洗涤液的装置，和，另外或替换地，在搅动是手工的情况下其他容器，优选但不限于缸、桶、池、碗或槽。机器包括例如或类似于巴西的“Tanquinho”的机器。
[0039] 在本发明优选实施方式中，容器在清洗操作过程中在上部是打开的，且至少部分的搅动是由手提供的。
[0040] 表面活性剂
[0042] 阴离子型表面活性剂
[0043] 可以使用的合适的阴离子型洗涤剂化合物通常是具有含有约 8 至约 22 个碳原子的烷基的有机硫酸盐和磺酸盐的水溶性碱金属盐，术语烷基用于包括高级酰基的烷基部
分。合适的合成阴离子型洗涤剂化合物的实例是烷基硫酸钠和钾，尤其是通过将产于例如牛脂或椰子油的高级 C_{12} 至 C_{18} 酚硫酸化获得的那些；烷基 C_{6}-C_{10} 苯磺酸钠和钾，特别是直链仲烷基 C_{10}-C_{15} 苯磺酸钠；和烷基甘油醚硫酸钠，尤其是源自牛脂或椰子油的高级醇和源自石油的合成醇的那些醚。

[0044] 最优选的阴离子型表面活性剂是月桂基醚硫酸钠（SLES）（特别优选具有 1-3 个乙氧基）、C_{10}-C_{15} 烷基苯磺酸钠（LAS）和 C_{12}-C_{18} 烷基硫酸钠（PAS）。烷基酯硫酸盐如甲酯磺酸盐（MES）可以全部或部分用来替代其他阴离子型表面活性剂。

[0046] 还可以存在皂。所用的脂肪酸皂优选含有约 16 至约 22 个碳原子，优选是直链结构。来自皂的阴离子贡献优选占总阴离子的 0-30 重量%。

[0047] 优选地，至少 50 重量%的阴离子型表面活性剂选自：C_{11}-C_{15} 烷基苯磺酸钠，和 C_{12}-C_{18} 烷基硫酸钠。甚至更优选地，阴离子型表面活性剂为 C_{11}-C_{15} 烷基苯磺酸钠。

[0048] 优选地，阴离子型表面活性剂以总表面活性剂 15-85 重量%的水平存在于涂覆洗衣洗涤剂颗粒中，更优选 50-80 重量%。

[0049] **非离子表面活性剂**

[0050] 具体地，可以使用的合适的非离子型洗涤剂化合物包括具有疏水基和活性氢原子的化合物（例如，脂肪醇、酸、酰胺或烷基酚）与环氧烷（尤其是单独的环氧乙烷或其与环氧丙烷一起）的反应产物。优选的非离子型洗涤剂化合物是 C_{6}-C_{22} 烷基酚 - 环氧乙烷缩合物，一般为 5-25EO，即每个分子 5-25 个环氧乙烷单元，以及脂族 C_{6}-C_{18} 伯或仲直链或支链醇与环氧乙烷的缩合产物，一般为 5-50EO。优选地，非离子型是 10-50EO，更优选 20-35EO。特别优选烷基乙氧基化物，最特别地为具有 25-35EO 的那些，因为这些提供了特别良好的泡沫性能。

[0051] 优选地，非离子型表面活性剂以总表面活性剂的 5-75 重量%，更优选总表面活性剂 10 至 40 重量%的水平存在于涂覆洗衣洗涤剂颗粒中。

[0052] 阳离子型表面活性剂可以作为次要成分优选以总表面活性剂 0-5 重量%的水平存在。

[0053] 优选地，在干燥之前将所有表面活性剂混合在一起。可以使用常规的混合设备，洗涤洗涤剂颗粒的表面活性剂核可以通过挤出或压筒压制来形成，并且随后涂覆无机盐。

[0054] 泡沫促进剂如甜菜碱类、氧化胺类和/或其他两性离子和两性表面活性剂是优选的，因为本发明的组合物通常显示足够起泡作用。

[0055] **耐钙表面活性剂体系**

[0056] 在另一个方面中，所用的表面活性剂体系是耐钙的，并且这是优选的方面，因为这降低了对增效剂的需求。

[0057] 优选对于硬水中有益洗涤不需要存在增效剂的表面活性剂混合物。如果它们通过下文中列出的测试，将这样的混合物称为耐钙表面活性剂混合物。然而，本发明也可以用于使用天然产生的或使用水软化剂制得的软水的洗涤。在这种情况下，钙耐受性不再重要并且可以使用耐钙混合物以外的混合物。
说明书

[0058] 如下测试表面活性剂混合物的钙耐受性:
[0059] 以每升水 0.7g 表面活性剂固体的浓度来制备所测试的表面活性剂混合物，其含有足量钙离子以使 French 硬度为 40(4×10^{-3} 摩尔 Ca^{2+})。将其他不含硬度离子的电解质(如，氯化钠、硫酸钠和氢氧化钠)加入溶液中，以将离子强度调节至 0.05M 以及将 pH 调节至 10。在样品制备 15 分钟后，测量 540nm 波长的光通过 4mm 样品的吸收。进行十次测量并且计算平均值。产生小于 0.08 吸收值的样品被认为是耐钙的。
[0060] 满足上述钙耐受性测试的表面活性剂混合物的实例包括具有 LAS 表面活性剂(其自身不是耐钙的)作为主要部分与一种或多种其他耐钙表面活性剂(助表面活性剂)混合，以产生几乎没有与增效剂一起使用并且通过了给定测试的足够耐钙的混合物的那些。合适的耐钙助表面活性剂包括 SLES 1~7EO 和烷基-乙氧基化物非离子型表面活性剂，特别是熔点低于 40℃的那些。
[0061] LAS/SELS 表面活性剂混合物具有优于 LAS 非离子型表面活性剂混合物的泡沫性能并且因此对于需要高水平泡沫的手洗制剂是优选的。可以以最高为表面活性剂混合物的 30 重量％的水平来使用 SLES。
[0062] 水溶性无机盐
[0063] 水溶性无机盐优选选自水溶性的碳酸盐、氯化物盐、硅酸盐和硫酸盐，或其混合物，最优选基于总水溶性无机盐，70~100％为碳酸钠。水溶性无机盐作为涂层存在于颗粒上。
[0064] 本领域技术人员将认识到尽管可以应用相同或不同涂层材料的多层涂层，但为了操作简便，并且最大表涂层的厚度，优选单层涂层。为使洗涤剂颗粒获得最佳的抗结块性能，涂层的含量应当在颗粒的 1~40 重量％，优选 20~40 重量％，更优选 25~35 重量％的范围内。
[0065] 优选通过水溶性无机盐的水溶液的沉积将涂层施加于表面活性剂核的表面。或者，涂覆可以使用浆料来进行。水溶液优选含有大于 50g/L，更优选大于 200g/L 的盐。现已经发现了流化床中的涂层溶液的水性喷射产生了良好的结果，并且在流化过程中还可以产生了洗涤剂颗粒的轻微制圆。可能需要干燥和/或冷却来完成该方法。
[0066] 优选的耐钙的涂覆洗衣洗涤剂颗粒的表面活性剂基于表面活性剂包含 15~100 重量％的阴离子表面活性剂，其中基于表面活性剂的 20~30 重量％为月桂基硫酸钠。
[0067] 包含在涂层中的水溶性无机盐非常优选为一水合碳酸钠。在清洗过程中涂覆洗涤剂颗粒同时接触到水和使用者的皮肤的情况下，这将具有明显的益处，因为暴露于水时，颗粒产生的热不会如碳酸盐是无水情况下产生的那样多。这是重要的优选特征，因为使用者经常用手混合洗涤剂产品与水，并且将采用无水碳酸钠的产品描述为具有“手上灼热”感。
[0068] 优选的是涂层中的无机盐是 100 重量％的一水合碳酸钠。这对防潮提供了最好的保护。一水合碳酸钠的水平可以低至涂层中无机盐的 50 重量％。
[0069] 染料
[0071] 用在本发明中的染料选自阴离子型和非离子型染料。阴离子型染料在 pH 7 的水
性介质中是带负电的。阴离子型染料的实例可参见颜色索引（Colour Index）（染色工做者及配色师协会（Society of Dyers and Colourists）和美国纺织化学师与印染师协会（American Association of Textile Chemists and Colorists 2002））中的酸和直接染料类别中。阴离子型染料优选含有至少一个磺酸盐或羧酸盐基团。非离子型染料在pH7的水性介质中是不带电的，实例发现于颜色索引（Colour Index）中的分散染料类别中。

[0072] 染料可以烷氧基化。烷氧基化染料优选具有以下的通式：染料-（NR）R₂/NR/NR₃。该基团连接到染料的芳香环。R₂和R₃独立地选自具有2个或更多个重复单元的聚氧乙烯链，并且优选具有2-20个重复单元。聚氧乙烯链的实例包括环氧乙烷、环氧丙烷、缩水甘油醚（glycidol oxide）、氧化丁烯及其混合物。

[0073] 优选的聚氧乙烯链是[（CH₂CR₂H₃）ₙ（CH₂CR₂H₃）ₙ]，其中x+y≤5，其中y≥1，并且z=0-5，R₃选自：H、CH₃、CH₂O（CH₂CH₂O）ₙH及其混合物；R₃选自：H、CH₂O（CH₂CH₂O）ₙH及其混合物；以及R₂选自：H和CH₃。

[0074] 用于本发明中的优选烷氧基化染料是：

![染料分子结构](image)

[0075] 优选地，染料选自酸性染料、分散染料和烷氧基化染料。

[0076] 最优选地，染料是非离子型染料。

[0077] 优选地，染料选自具有意醌、单－偶氮、双－偶氮、吲哚、酚和含硫发色团的那些。更优选地，染料选自具有：意醌和单－偶氮发色团的那些。

[0078] 为了获得着色的颗粒，将染料加入涂层溶液或浆料中并搅拌，之后施涂于颗粒的核。施涂可以通过任何合适的方法，优选喷雾到如以上述的核颗粒上。

[0079] 染料可以是任何颜色的，优选染料是蓝色、紫色、绿色或红色。最优选，染料是蓝色或紫色。

[0080] 优选地，染料选自：酸性蓝80、酸性蓝62、酸性紫43、酸性绿25、直接蓝86、酸性蓝59、酸性蓝98、直接紫99、直接紫35、直接紫51、酸性紫50、酸性黄3、酸性红94、酸性红51、酸性红95、酸性红92、酸性红88、酸性黄73、酸性红85、酸性紫9、酸性红52、食品黑1、食品黑2、酸性黑163、酸性黑1、酸性橙24、酸性黄23、酸性黄40、酸性黄11、酸性红180、酸性红155、酸性红1、酸性红33、酸性红41、酸性红19、酸性橙10、酸性红27、酸性红26、酸性橙20、酸性橙6、磺酸化的Al和Zn酰基、溶剂紫13、分散紫26、分散紫28、溶剂绿3、溶剂红63、分散蓝55、分散紫27、溶剂黄33、分散蓝79:1。

[0081] 染料优选是为洗涤织物赋予洁白感的遮蔽染料（shading dye）。染料可以共价结合到聚合物物质上。可以使用染料组合。

[0082] 含水量

[0083] 在293K和50%相对湿度下，颗粒优选包含0-15重量％的水，更优选0-10重量％，最优选1-5重量％的水。这有助于颗粒的储存稳定性及其机械性能。
说明书

第8页

0085 其他助剂
0086 下文所描述的助剂可以存在于颗粒的涂层或核中。
0087 荧光剂
0088 涂覆洗衣洗涤剂颗粒优选包含荧光剂（荧光增白剂）。荧光剂是熟知的且许多这样的荧光剂可以购得。通常，这些荧光剂以其碱金属盐的形式来供应和使用，例如，钠盐。组合物中所用的一种或多种荧光剂的总量通常为 0.005-2 重量%，更优选 0.01-0.1 重量%。适用于本发明中的荧光剂在 R. Hunger 编辑的 Industrial Dyes 的第 7 章，2003Wiley-VCH ISBN 3-527-30426-6 中有描述。
0089 优选的荧光剂选自二苯乙烯联苯类、三嗪基氨基均二苯代乙烯类、双 (1,2,3-三嗪 -2- 基) 均二苯代乙烯类、双 (苯并 [h] 吲哚 -2- 基) 联苯类、1,3-二苯基 -2- 吡唑啉类和香豆素类。优选荧光剂是磺酸化的。
0090 优选的荧光剂类别是：二苯乙烯联苯化合物，例如，Tinopal (商标) CBS-X，二胺均二苯代乙烯二磺酸化合物，例如，Tinopal DMS pure Xtra 和 Blankphor (商标) HRH，以及吡唑啉化合物，例如，Blankphor SN。优选的荧光剂是 2-(4-苯乙烯基 -3- 磺酸基) -2- 苄基 [1,2-Ω 三嗪钠,4,4’-双 [(4-苯胺基 -6- (N-甲基 -N-2 羟乙基) 氨基 1,3,5- 三嗪 -2- 基)] 氨基] 均二苯代乙烯 -2-2’二磺酸二钠,4,4’-双 [(4-苯胺基 -6- 吡嗪代 -1,3,5-三嗪 -2- 基)] 氨基] 均二苯代乙烯 -2-2’二磺酸二钠和 4,4’-双 (2-硫代苯乙烯基) 联苯二钠。
0091 Tinopal ® DMS 是 4,4’-双 [(4-苯胺基 -6- 吡嗪代 -1,3,5-三嗪 -2- 基)] 氨基] 均二苯代乙烯 -2-2’二磺酸二钠的二钠盐。Tinopal ® CBS 是 4,4’-双 (2-磺化苯乙烯基) 联苯二钠的二钠盐。
0092 香料
0093 优选地，组合物包含香料。香料优选在 0.001-3 重量%，最优选 0.1-1 重量% 的范围内。在 CFTA Publications 出版的 CFTA (Cosmetic, Toiletry and Fragrance Association) 1992 International Buyers Guide 和 Schnell Publishing Co 出版的 OPD 1993 Chemicals Buyers Directory 80th Annual Edition 中提供了许多合适的香料实例。
0094 在制剂中存在多种香料成分是常见的。在本发明的组合物中，可存在四种或更多种，优选五种或更多种，更优选六种或更多种，乃至七种或更多种不同的香料成分。
0095 在香料混合物中，优选 15-25 重量% 是头香。头香由 Poucher (Journal of the Society of Cosmetic Chemists 6(2):80[1955]) 定义。优选的头香选自柑橘油、里哪醇、醋酸里哪酯、薰衣草、二氢月桂烯醇、玫瑰醚和顺 -3-己醇。
0096 聚合物
0097 组合物可以包含一种或多种其他的聚合物。实例是羧甲基纤维素、聚 (乙二醇)、聚 (乙烯醇)、聚乙烯亚胺、乙氧基化聚乙烯亚胺、水溶性聚酯聚合物聚羧酸酯、如聚丙烯酸酯、马来酸 / 丙烯酸共聚物和甲基丙烯酸月桂基酯 / 丙烯酸共聚物。
0098 酶
0099 优选本发明的组合物中存在一种或多种酶。
0100 优选地，每种酶的水平为基于产品计 0.0001 重量% 至 0.5 重量% 蛋白质。
0101 尤其考虑的酶包括蛋白酶、a - 淀粉酶、纤维素酶、脂肪酶、过氧化物酶 / 氧化酶、
果胶酸裂解酶和甘露聚糖酶，或其混合物。
【0020】合适的脂肪酶包括细菌或真菌来源的那些。包括化学修饰或蛋白质工程突变体。
【0022】优选可购得的脂肪酶包括Lipase™和Lipase Ultra™, Lipex™(Novozymes A/S)和Lipoclean™。
【0023】本发明的方法可以在归类为EC 3.1.1.4或EC 3.1.1.32的磷脂酶的存在下进行。如在本文中所述，术语磷脂酶是泛指具有活性的酶。
【0024】磷脂酶，如卵磷脂或磷脂酰胆碱，其由两个脂肪酸在外部（sn-1）和中间（sn-2）的位置酯化并且用磷酸在第三个位置酯化的甘油组成；磷酸进一步可以酯化成氨基酯。磷脂酶是参与磷脂水解的酶。可以区分几种磷脂酶活性的类型，包括磷脂酶A₁和A₂，其水解一个脂肪酰基（分别在sn-1和sn-2位）以形成溶血磷脂；以及溶血磷脂酶（或磷脂酶B），其可以水解溶血磷脂中剩余的脂肪酰基。磷脂酶C和磷脂酶D（磷酸二酯酶）分别释放二酰基甘油或磷脂酸。
【0025】合适的蛋白酶包括动物、植物或微生物来源的那些。优选微生物来源。包括化学修饰或蛋白质工程突变体。蛋白酶可以是丝氨酸蛋白酶或金属蛋白酶，优选碱性微生物蛋白酶或类胰蛋白酶。优选的可购得的蛋白酶包括Alcalase™，Savinase™，Primase™，Duralase™，Dyrazym™，Esperase™，Everlase™，Polarzyme™和Kannase™(Novozymes A/S)，Maxatase™，Maxacal™，Maxapem™，Properase™，Purafact™，Purafect0xF™，FN2™和FN3™(Genencor International Inc.)。
【0026】本发明的方法可以在归类为EC 3.1.1.74的角质酶的存在下进行。根据本发明使用的角质酶可以是任何来源的。优选角质酶是微生物的，特别是细菌、真菌或酵母来源。
【0027】合适的淀粉酶（α和/or β）包括细菌或真菌来源的那些。包括化学修饰或蛋白质工程突变体。淀粉酶包括，例如，来自芽孢杆菌属（Bacillus）的α-淀粉酶，例如，更详细描述于GB 1,296,839中的地衣芽孢杆菌（B.licheniformis）的特定菌株，或WO 95/026397或WO 00/060060中公开的芽孢杆菌属（Bacillus sp）菌株。可购得的淀粉酶是Duramyl™，Termamy™，Termamy Ultra™，Natalase™，Stainzyme™，Fungamyl™和BAN™(Novozymes A/
S）、Rapidase™和Purastar™（来自Genencor International Inc.）。

【0111】合适的过氧化物酶/氧化酶包括植物、细菌或真菌来源的那些。包括化学修饰或蛋白质工程突变体。有用的过氧化物酶实例包括来自鬼伞属（Coprinus）的过氧化物酶，例如来自灰顶鬼伞（C.cinereus）及其变体，如WO 93/24618、WO 95/10602和WO 98/15257中所述的那些。可购得的过氧化物酶包括Guardzyme™和Novozym™ 51004（Novozymes A/S）。

【0113】可以使用酶组合。特别优选的是使用脂肪酶、蛋白酶与选自淀粉酶和甘露聚糖酶中的一种或者二者的组合。

【0114】酶稳定剂

【0115】组合物中存在的任何酶可以使用常规的稳定剂来稳定，例如，多元醇（如丙二醇或甘油）、糖或糖醇、乳酸、硼酸或硼酸衍生物（例如，芳族硼酸酯）或苯基硼酸衍生物（如4-甲酸基苯硼酸），并且组合物可以如在例如WO 92/19709和WO 92/19708中所述进行配制。

【0116】螯合剂

【0117】除钙离子和镁离子以外的离子的螯合剂可以存在于涂覆洗衣洗涤剂颗粒中。一种合适的螯合剂（其也起着作为去除铁的添加剂的作用）是柠檬酸根。柠檬酸根优选以基于总颗粒的5-15重量%的水平存在。柠檬酸根可以以盐或者酸的形式存在。当以酸存在时在将颗粒暴露到水时会产生逸出气体。这可以产生局部溢流，其促进了溶解并用作清洁的指示物。磷酸盐，例如Dequest™2010也可以用来作为螯合剂。

【0118】优选地，涂覆洗衣洗涤剂颗粒不含有过氧化物漂白剂，例如过碳酸盐、过硼酸盐和其它过酸。

【0119】完全配制的产品

【0120】优选的“基础（chassis）”制剂包括：

【0121】LAS/NI基（较低温的方案）；

【0122】(i)50-70重量%的LAS钠和7-35EO非离子型，

【0123】(ii)20-30重量%的磷酸钠，

【0124】(iii)1-3重量%的羧甲基纤维素，

【0125】(iv)1-3重量%的香料和

【0126】(v)0-2重量%的水分。
[0127] 在上述制剂中，一些 LAS 可以用 PAS 替换。
[0128] LAS/PAS/SLES 基（高泡方案）；
[0129] (i) 50-70 重量％的 LAS 钠、PAS 和 SLES，
[0130] (ii) 20-30 重量％的碳酸钠，
[0131] (iii) 1-3 重量％的羧甲基纤维素，
[0132] (iv) 1-3 重量％的香料，和
[0133] (v) 0-2 重量％的水分。
[0134] 可以将 LAS/NI 基的或 LAS/PAS/SLES 基的方案与 5-10 重量％水平的柠檬酸盐 / 柠檬酸组合。
[0135] 任一制剂都可以包含去污聚合物，优选为聚酯材料，例如 1-5 重量％水平的 Texcare SRN170。
[0136] 为了进一步被理解在实践中实施本发明，将通过实施例的方式进一步进行描述。

实施例

[0137] 实施例 1 : 颗粒制造
[0138] 将 1962.5g 的干燥的、磨碎的表面活性剂混合物 (LAS/PAS/NI 以重量计为 68/17/15) 和 37.38g 香料油充分混合。然后使用 ThermoFisher 24HC 双螺杆挤出机，在 8 千克/小时的速率下操作，将混合物挤出。挤出机的入口温度设置为 20℃，在即将到达模具板之前升温到 40℃。使用的模具板钻有 6 个 5mm 直径的圆形孔。
[0139] 使用高速切割机，在模具板之后将挤出产物进行切割，以产生具有～1.1mm 厚度的颗粒。切割机使从挤出产品上切下的盘形物发生变形，在 y 和 z 尺寸之间产生略微的不同。
[0140] 将 764g 的上述挤出物装载到 Strea 1 实验室流化床干燥器 (Aromatic-Fielder AG) 的流化室中，并使用顶部喷雾构造喷雾 1069g 的在 748.3g 水中含有 320.7g 碳酸钠的溶液进行涂覆。
[0141] 将涂层溶液通过蠕动泵 (Watson-Marlow 型号 101U/R) 进料到 Strea 1 的喷嘴中，初始速度为 3.3 克/分钟，在涂覆试验的过程中升高到 9.1 克/分钟，。
[0142] 流化床涂布器运行过程中，初始空气入口温度为 55℃，在涂覆试验的过程中增加到 90℃，而在整个涂覆过程维持出口温度为 45-50℃。
[0143] 所得的颗粒为扁圆球形，其具有以下平均尺寸：x = 1.1mm, y = 4.0mm, z = 5.0mm。每个颗粒重量为～0.013g。

[0144] 实施例 2 : 洗涤研究

[0145] 洗涤剂研究在巴西的 whirlpool 顶部装载的洗衣机中进行，设置为冷介质洗涤，充入 12FH 水（45L）。负载包含 3kg 的 31% 针织棉、38% 的聚酯棉和 31% 的针织聚酯。使用 20-25g 的产品剂量，进行六次重复清洗。使用设置有颗粒物、脂肪和油脂、酶敏感性和可漂白污渍的广泛检测组来测定去垢能力。结果在下表中给出。
[0146] 更高数值的结果显示出相对于被设置为标准的“Skip”粉末更好的得分。
[0147]
表

<table>
<thead>
<tr>
<th>污渍种类</th>
<th>Skip (粉末，来自阿根廷) 50-60g/洗涤</th>
<th>OMO (液体，产地中国) 75ml/洗涤</th>
<th>本发明 20-25g/洗涤</th>
</tr>
</thead>
<tbody>
<tr>
<td>颗粒物</td>
<td>1</td>
<td>-3.5</td>
<td>4.2</td>
</tr>
<tr>
<td>脂肪和油脂</td>
<td>1</td>
<td>-2.9</td>
<td>1.0</td>
</tr>
<tr>
<td>酶</td>
<td>1</td>
<td>-3.9</td>
<td>2.0</td>
</tr>
<tr>
<td>可漂白的</td>
<td>1</td>
<td>-2.3</td>
<td>-1.0</td>
</tr>
<tr>
<td>Redep</td>
<td>1</td>
<td>-0.1</td>
<td>-0.1</td>
</tr>
</tbody>
</table>

[0148] 从这些结果中可以看出，本发明的组合物相对于标准显示了显著的改善，并且尽管它们是可倾倒的组合物，但也显著地比常规液体表现得更好。

[0149] 实施例 3：黑色小袋测试

[0150] 将 Skip 粉（来自阿根廷）和本发明的组合物缝进黑色棉布小袋中。使用下表中提及的周期进行洗涤。在准备小袋之前黑色棉在 60℃下预洗 3 次以避免染料在黑色小袋测试过程中转移（Miele professional 350gRobijn, 8kg 黑色棉布）。小袋用 10g 不同的洗涤剂产品装填，结果如下表所示。

<table>
<thead>
<tr>
<th></th>
<th>Skip（比较）</th>
<th>本发明</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 度棉布循环</td>
<td>一些残留物</td>
<td>无残留物</td>
</tr>
<tr>
<td>30 度毛织品循环</td>
<td>很多残留物</td>
<td>轻微的残留物</td>
</tr>
</tbody>
</table>

[0152] 结果显示了本发明的实施方式，尽管尺寸以比粉更大的颗粒开始，仍然得到了更少的残留物。

[0153] 实例 4：小组测试

[0154] 邀请一组来自泰国和南非的 80 名消费者将本发明的产品与他们当前的粉末产品保密地进行比较。

[0155] 统计上显著的发现是本发明的产品“溶解彻底”、“有效清洁”、“使衣物明亮”、“使衣物柔软”和“使衣物更容易熨烫”。

[0156] 在这个技术观察研究中，消费者注意到与他们当前的粉末产品相比，根据本发明的产品不是“手上灼热”的。

[0157] 实施例 5：加热对比

[0158] 将本发明组合物溶解时的温度上升与商购洗衣组合物的温度升高在塑料桶和玻璃罐两者中进行比较。在两种情况下，将 75g 的产品加入到 70g 的水中。以 300 秒的时间间隔监测温度上升。在所有的情况下，使用本发明的颗粒的温度上升显著地低于使用商购产品的温度上升。

[0159] 下面给出的结果为使用桶时左边列出的产品的温度。
<table>
<thead>
<tr>
<th>时间（秒）</th>
<th>0</th>
<th>20</th>
<th>40</th>
<th>60</th>
<th>120</th>
<th>300</th>
</tr>
</thead>
<tbody>
<tr>
<td>Persil™(来自英国)</td>
<td>23.2</td>
<td>32.0</td>
<td>34.1</td>
<td>33.7</td>
<td>34.1</td>
<td>32.5</td>
</tr>
<tr>
<td>Brihante™(来自巴西)</td>
<td>23.5</td>
<td>28.6</td>
<td>30.8</td>
<td>31.0</td>
<td>30.9</td>
<td>29.8</td>
</tr>
<tr>
<td>实施方式</td>
<td>23.5</td>
<td>22.9</td>
<td>23.2</td>
<td>25.2</td>
<td>24.8</td>
<td>24.3</td>
</tr>
</tbody>
</table>

可以看出本发明实施方式的初始温度上升远低于对比商购产品。