CONVEYOR AND METHOD FOR CONVEYING PRODUCTS

A conveyor for conveying products (2), comprising a conveyor belt (1) and a moving endless guiding element (12) which includes a straight portion (4) extending between two guide wheels (5, 6), which straight portion (4) is capable of guiding products (2) that are present on the conveyor belt in lateral direction towards and over the edge of the conveyor belt, wherein the distance between the two guide wheels is adjustable.
Published:
— with international search report
— entirely in electronic form (except for this front page) and available upon request from the International Bureau

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.
CONVEYOR AND METHOD FOR CONVEYING PRODUCTS

The invention relates to a conveyor for conveying products, comprising a conveyor belt and a moving endless guiding element which includes a straight portion extending between two guide wheels, which straight portion is capable of guiding products that are present on the conveyor belt in lateral direction towards and over the edge of the conveyor belt.

Such a conveyor is known, it is used for dividing a flow of products on the conveyor belt into several subflows. The guiding device of this known conveyor essentially comprises two guide wheels, over which an endless rope is tensioned. One of the two guide wheels is driven by a motor, so that the rope guides the products towards the edge of the conveyor belt at a specific velocity. Furthermore, one of the two guide wheels of the guiding device is disposed an adjustable distance away from the edge above the conveyor belt, whereby the guiding device extends to beside conveyor belt. By varying the distance from the conveyor belt it is possible to adjust the amount of products that is guided by the guiding device of the conveyor belt. Since the angle of the direction of transport of the guiding device with respect to the direction of transport of the conveyor belt has an optimum in relation to the movement of the product, it is preferred to maintain a constant value for said angle. With the known conveyor the adjustment of the amount of products to be guided off the conveyor belt is effected by moving the guiding device along its own longitudinal axis, therefore. The drawback of this is, however, that in the extreme position, in which hardly any products are guided off the conveyor belt, if at all, the guiding device extends laterally from the
conveyor belt over a width that corresponds to the width of the conveyor belt. As a result, the conveyor takes up a great deal of space.

The object of the invention is to provide an inexpensive, simple, efficient and/or reliable conveyor of the kind referred to in the introduction, which takes up little space.

In order to accomplish that objective, the distance between the two guide wheels is adjustable. As a result, the straight portion of the guiding element, which extends between the guide wheels and which guides the products off the conveyor belt, has a variable length, which makes it possible to lead the portion of the guiding element that is not being used for guiding products off the conveyor belt in another direction, in such a manner that the guiding element no longer extends as far laterally as described above.

Preferably, a first guide wheel is disposed at a fixed location beside, and preferably near the edge of the conveyor belt, seen from above. The second guide wheel is preferably disposed at an adjustable location above the conveyor belt. The location of the second guide wheel thereby determines the amount of products that are guided off the conveyor belt.

Preferably, the larger part of the guiding element is positioned above the conveyor belt, irrespective of the adjusted distance between the guide wheels. As a result, the guiding element hardly projects outside the conveyor belt so that a the most compact conveyor possible is obtained. In one preferred embodiment this is accomplished by leading back the non-guiding portion of the guiding element to a position above the guiding portion thereof. Alternatively, said portion can also be
led back to a position beside said guiding portion.

The guiding element is preferably tensioned over at least two fixed guide wheels and two adjustable guide wheels. The two adjustable guide wheels are preferably interconnected by a cable which is passed over at least one adjusting wheel. In one specific embodiment the cable is an endless cable, which is passed over the adjusting wheel on the one hand and a freely rotating wheel near the fixed guiding wheels on the other hand. The term cable must be given a wide interpretation in this context, it also comprises a chain, a wire or a belt, for example. The adjusting wheel is preferably driven by a motor, in particular a positioning motor, so that the aforesaid distance between the two guide wheels, and consequently the amount of products being guided off the conveyor belt, can be set accurately and quickly.

Preferably, the adjustable guide wheels are essentially positioned between the fixed guide wheels on the one hand and the adjusting wheel on the other hand. Thus a compact, elongated guiding element having a fixed length equal to the distance between the fixed guide wheels and the adjusting wheel is obtained.

The invention is especially advantageous when several guiding elements extend above the conveyor belt so as to divide the flow of products to be conveyed into several subflows. The distance from the former adjustable guide wheel to the aforesaid edge of the conveyor belt is increased in small steps, seen in downstream direction, so that a new (adjustable) part of the products is guided off the conveyor belt with each respective distance.

The invention furthermore relates to a method for
conveying products, wherein a straight portion of a moving endless guiding element, which extends between two guide wheels, guides products that are present on a conveyor belt in lateral direction towards and over the edge of said conveyor belt, and wherein the distance between the two guide wheels is adjusted for the purpose of regulating the amount of products being guided towards and over the edge of the conveyor belt.

The invention will now be explained in more detail by means of an exemplary embodiment as shown in the figures, wherein:

Figure 1 is a perspective view of a conveyor; and

Figure 2 is a perspective view of a detail of the conveyor of Figure 1.

Referring to Figure 1 a conveyor for conveying products comprises a moving endless conveyor belt 1, on which the products, in this case candies 2 to be packaged, are supplied in bulk, whereby the candies are distributed more or less at random over the width of the conveyor belt. In order to divide said bulk flow into several small flows, so that they can be fed to a packaging apparatus in a suitable manner, the conveyor furthermore comprises a number of guiding devices 3. Said guiding devices 3 are disposed in mutually parallel relationship, at an angle of about 50° to the direction of movement of the conveyor belt and parallel to the plane of the conveyor belt. Each guiding device 3 comprises a moving endless rope 12, a straight guiding portion 4 of which extends between a fixed guide wheel 5, which is disposed at a fixed location beside the conveyor belt, and a linearly movable and adjustable guide wheel 6. As will be explained in more detail yet, the adjustment of the position of the guide wheel 6
takes place by means of a positioning motor 7.

Guiding portion 4 is disposed at a height above conveyor belt 1 that is smaller than the height of candies 2, so that the candies cannot move under said guiding portion and run against said guiding portion 4. The candies 2 can move under the portion of the guiding device 3 where guiding portion 4 does not extend. The endless rope 12 is driven by means of fixed guide wheel 5, which is connected to an electric motor 8, at a speed which has a component in the direction of the movement of conveyor belt 1 which is approximately equal to the speed of that conveyor belt 1, wherein guiding portion 4 moves at an angle towards the side of conveyor belt 1, so that the candies 2 that run against the guiding portion 4 are deflected in lateral direction over the edge of the conveyor belt 1. The exact speed of endless rope 12 is adjustable depending on the volume of candies 2 that has to be taken off.

The manner of dividing the bulk flow of candies 2 into several small flows is determined by the positions of guide wheels 6. Generally the distance between the movable guide wheels 6 and the fixed guide wheels 5 is increased in small steps, seen in downstream direction. The volume of a deflected flow is thereby determined by the incremental lateral distance between two successive movable guide wheels 6.

After the candies 2 have been guided over the edge of conveyor belt 1, they are transported in lateral direction by second conveyor belts 9. Present above conveyor belts 9 are rotatable guide elements 10 as shown in Figure 2, which ensure that the candies 2 are guided to a selected third conveyor belt 11.

Figure 1 and 2 show the manner in which rope 12, part of
which forms guiding portion 4, is tensioned and moved. Rope 12 is passed over four guide wheels, viz. the movable guide wheel 6, fixed guide wheel 5, a second movable guide wheel 13 and a second fixed guide wheel 14, which is driven by an electric motor 8. The two movable guide wheels 6, 13 are furthermore connected to two endless chains 15, which are passed on the one hand over chain wheels 16, which are disposed co-axially with the fixed guide wheels 5, 14, and on the other and over adjusting chain wheels 20, which are driven by the positioning motor 7, in such a manner that the distance between the fixed guide wheel 5 and the movable guide wheel 6 can be adjusted by the positioning motor 7.

Pusher elements 17 are present on chains 15, along the length where also rope 12 extends, a pushing portion of which is positioned behind and near rope 12 in order to prevent rope 12, and in particular the guiding portion 4 thereof, being pushed inwards by the candies 4, which might happen in particular when the distance between the fixed guide wheel 5 and the movable guide wheel 6 is large. The rotatable shaft 18 that pushes against the guiding portion 4 of rope 12 makes it possible for rope 12 to be deflected outwards near guide wheels 5 and 14, since otherwise the pusher elements 17 would not be able to move between the guide wheels 5 and 14.

Furthermore a rotatable shaft 19 having a relatively small radius is disposed near movable guide wheel 6, which shaft ensures that the end of guiding portion 4 is sharply defined, resulting in a well defined separation of the flow of candies 2 into several subflows. The shaft 19 is driven by a string 22 which is passed over guide wheel 6.

The present invention has been described above by means of a preferred embodiment. Many embodiments and variants
will be apparent to those skilled in the art, however, and consequently the scope of the present invention shall not be limited by the details of the above description.
CLAIMS

1. A conveyor for conveying products (2), comprising a conveyor belt (1) and a moving endless guiding element (12) which includes a straight portion (4) extending between two guide wheels (5, 6), which straight portion (4) is capable of guiding products (2) that are present on the conveyor belt (1) in lateral direction towards and over the edge of the conveyor belt (1), characterized in that the distance between the two guide wheels (5, 6) is adjustable.

2. A conveyor according to claim 1, characterized in that a first guide wheel (5) is disposed at a fixed location beside the conveyor belt (1), seen from above.

3. A conveyor according to claim 1 or 2, characterized in that a second guide wheel (6) is disposed at an adjustable location above the conveyor belt (1).

4. A conveyor according to claim 1, 2 or 3, characterized in that the larger part of the guiding element (12) is positioned above the conveyor belt (1), irrespective of the adjusted distance between the guide wheels (5, 6).

5. A conveyor according to any one of the preceding claims, characterized in that said guiding element (12) is tensioned over at least two fixed guide wheels (5, 14) and two adjustable guide wheels (6, 13).

6. A conveyor according to claim 5, characterized in that the two adjustable guide wheels (6, 13) are interconnected by a cable (15) which is passed over
at least one adjusting wheel (20).

7. A conveyor according to claim 6, characterized in that the adjusting wheel (20) is driven by a motor (7).

8. A conveyor according to claim 6 or 7, characterized in that the adjustable guide wheels (6, 13) are essentially positioned between the fixed guide wheels (5, 14) on the one hand and the adjusting wheel (20) on the other hand.

9. A conveyor according to any one of the preceding claims, characterized in that at least one guide wheel (14) is driven by a motor (8).

10. A conveyor according to any one of the preceding claims, characterized in that several guiding elements (12) extend above the conveyor belt (1) so as to divide the flow of products (2) to be conveyed into several subflows.

11. A method for conveying products (2), wherein a straight portion (4) of a moving endless guiding element (12), which extends between two guide wheels (5, 6), guides products (2) that are present on a conveyor belt (1) in lateral direction towards and over the edge of said conveyor belt (1), characterized in that the distance between the two guide wheels (5, 6) is adjusted for the purpose of regulating the amount of products (2) being guided towards and over the edge of the conveyor belt (1).
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7 B65G47/76

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 B65G

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base end, where practical, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 2 389 696 A (J.W.STILES) 27 November 1945 (1945-11-27) the whole document</td>
<td>1-4</td>
</tr>
<tr>
<td>A</td>
<td>idem</td>
<td>5,10,11</td>
</tr>
<tr>
<td>X</td>
<td>US 5 655 643 A (BONNET HENRI) 12 August 1997 (1997-08-12) column 4, paragraph 2; figure 4 column 6, paragraph 1; figure 5C</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>US 3 584 729 A (IVY JOE G) 15 June 1971 (1971-06-15) column 2, line 65 - line 69; figure 3</td>
<td>1,10</td>
</tr>
<tr>
<td>A</td>
<td>US 3 093 236 A (J.MCLAUGHIN) 11 June 1963 (1963-06-11) column 3, line 1 - line 10; figures 1,3</td>
<td>1,11</td>
</tr>
</tbody>
</table>

X Further documents are listed in the continuation of box C. **X** Patent family members are listed in annex.

* Special categories of cited documents:

- **A** document defining the general state of the art which is not considered to be of particular relevance
- **E** earlier document but published on or after the international filing date
- **L** document which may throw doubts on priority claims or which is cited to establish the publication date of another citation or other special reason (as specified)
- **O** document referring to an oral disclosure, use, exhibition or other means
- **P** document published prior to the international filing date but later than the priority date claimed

X later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

Y document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

X document member of the same patent family

Date of the actual completion of the international search: 8 February 2002

Date of mailing of the international search report: 15/02/2002

Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL-2280 Hl Rifwegj Tel. (+31-70) 343-2040, Tx. 31 651 epo nl, Fac. (+31-70) 340-3016

Authorized officer Beernaert, J
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passage</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>DE 965 627 C (ENZINGER-UNION-WERKE AG)</td>
<td></td>
</tr>
</tbody>
</table>
INTERNATIONAL SEARCH REPORT

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 2389696 A 27-11-1945 NONE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69705952 D1 06-09-2001</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 918715 T3 05-11-2001</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0918715 A1 02-06-1999</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2161463 T3 01-12-2001</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 3138482 B2 26-02-2001</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2000501367 T 08-02-2000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9742111 A1 13-11-1997</td>
<td></td>
</tr>
</tbody>
</table>

US 3584729 A 15-06-1971 NONE			
US 3093236 A 11-06-1963 NONE			
DE 965627 C NONE			