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By simultaneously recording EM wave reflections (21) and acoustic speech information (24), the positions and velocities of the speech
organs (2, 3, 4) as speech is articulated can be defined for each acoustic speech unit (20). Well defined time frames and feature vectors (6,
7, 8, 9) describing the speech, to the degree required, can be formed. Such feature vectors (6, 7, 8, 9) can uniquely characterize the speech
unit (20) being articulated each time frame. The onset of speech, rejection of external noise, vocalized pitch periods, articulator conditions,
accurate timing, the identification of the speaker, acoustic speech unit (20) recognition, and organ mechanical parameters can be determined.
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METHODS AND APPARATUS FOR NON-ACOUSTIC SPEECH
CHARACTERIZATION AND RECOGNITION

The United States Government has rights in this invention
pursuant to Contract No. W-7405-ENG-48 between the United States
Department of Energy and the University of California for the operation
of Lawrence Livermore National Laboratory.

BACKGROUND OF THE INVENTION

The invention relates generally to speech recognition and more
particularly to the use of nonacoustic information in combination with
acoustic information for speech recognition and related speech
technologies.

h iti

The development history of speech recognition (SR) technology
has spanned four decades of intensive research. In the '50s, SR research
was focused on isolated digits, monosyllabic words, speaker dependence,
and phonetic-based attributes. Feature descriptions included a set of
attributes like formants, pitch, voiced/unvoiced, energy, nasality, and
frication, associated with each distinct phoneme. The numerical
attributes of a set of such phonetic descriptions is called a feature vector.
In the '60s, researchers addressed the problem that time intervals
spanned by units like phonemes, syllables, or words are not maintained
at fixed proportions of utterance duration, from one speaker to another
or from one speaking rate to another. No adequate solution was found
for aligning the sounds in time in such a way that statistical analysis
could be used. Variability in phonetic articulation due to changes in
speaker vocal organ positioning was found to be a key problem in speech
recognition. Variability was in part due to sounds running together
(often causing incomplete articulation), or half-way organ positioning
between two sounds (often called coarticulation). Variability due to
speaker differences were also very difficult to deal with. By the early
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'70s, the phonetic based approach was virtually abandoned because of
the limited ability to solve the above problems. A much more efficient
way to extract and store acoustic feature vectors, and relate acoustic
patterns to underlying phonemic units and words, was needed.

In the 1970s, workers in the field showed that short “frames” (e.g.,
10 ms intervals) of the time waveform could be well approximated by an
all poles (but no zeros) analytic representation, using numerical “linear
predictive coding” (LPC) coefficients found by solving covariance
equations. Specific procedures are described in B.S. Atal and S.L.
Hanauer, "Speech analysis and synthesis by linear prediction of the
speech wave," J. Acoust. Soc. Am. 50(2), 637 (1971) and L. Rabiner, U.S.
Patent 4,092,493. Better coefficients for achieving accurate speech
recognition were shown to be the Cepstral coefficients, e.g., S. Furui,
"Cepstral analysis technique for automatic speaker verification," IEEE
Trans. on Acoust. Speech and Signal Processing, ASSP-29 (2), 254, (1981).
They are Fourier coefficients of the expansion of the logarithm of the
absolute value of the corresponding short time interval power
spectrum. Cepstral coefficients effectively separate excitation effects of
the vocal cords from resonant transfer functions of the vocal tract. They
also capture the characteristic that human hearing responds to the
logarithm of changes in the acoustic power, and not to linear changes.
Cepstral coefficients are related directly to LPC coefficients. They provide
a mathematically accurate method of approximation requiring only a
small number of values. For example, 12 to 24 numbers are used as the
component values of the feature vector for the measured speech time
interval or “frame” of speech.

The extraction of acoustic feature vectors based on the LPC
approach has been successful, but it has serious limitations. Its success
relies on being able to simply find the best match of the unknown
waveform feature vector to one stored in a library (also called a
codebook) for a known sound or word. This process circumvented the
need for a specific detailed description of phonetic attributes. The LPC-
described waveform could represent a speech phoneme, where a
phoneme is an elementary word-sound unit. There are 40 to 50
phonemes in American English, depending upon whose definition is
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used. However, the LPC information does not allow unambiguous
determination of physiological conditions for vocal tract model
constraints. For example it does not allow accurate, unambiguous vocal
fold on/off period measurements or pitch. Alternatively, the LPC
representation could represent longer time intervals such as the entire
period over which a word was articulated. Vector “quantization” (VQ)
techniques assisted in handling large variations in articulation of the
same sound from a potentially large speaker population. This helped
provide speaker independent recognition capability, but the speaker
normalization problem was not completely solved, and remains an
issue today. Automatic methods were developed to time align the same
sound units when spoken at a different rate by the same or different
speaker. One successful techniques was the Dynamic Time Warping
algorithm which did a nonlinear time scaling of the feature coefficients.
This provided a partial solution to the problem identified in the '60s as
the nonuniform rate of speech.

For medium size vocabularies (e.g., about 500 words), it is
acceptable to use the feature vectors for the several speech units in a
single word as basic matching units. During the late 1970s, many
commercial products became available on the market, permitting
limited vocabulary recognition. However, word matching also required
the knowledge of the beginning and the end of the word. Thus
sophisticated end-point (and onset) detection algorithms were
developed. In addition, purposeful insertion of pauses by the user
between words simplified the problem for many applications. This
approach is known as discrete speech. However, for a larger vocabulary
(e.g., > 1000 words), the matching library becomes large and unwieldy. In
addition, discrete speech is unnatural for human communications, but
continuous speech makes end-point detection difficult. Overcoming the
difficulties of continuous speech with a large size vocabulary was a
primary focus of speech recognition (SR) research in the '80s. To
accomplish this, designers of SR systems found that the use of shorter
sound units such as phonemes or PLUs (phone-like units) was
preferable, because of the smaller number of units needed to describe
human speech.
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In the '80s, a statistical pattern matching technique known as the
Hidden Markov Model (HMM) was applied successfully in solving the
problems associated with continuous speech and large vocabulary size.
HMMSs were constructed to first recognize the 50 phonemes, and to then
recognize the words and word phrases based upon the pattern of
phonemes. For each phoneme, a probability model is built during a
learning phase, indicating the likelihood that a particular acoustic
feature vector represents each particular phoneme. The acoustic system
measures the qualities of each speaker during each time frame (e.g. 10
ms), software corrects for speaker rates, and forms Cepstral coefficients.
In specific systems, other values such as total acoustic energy, differential
Cepstral coefficients, pitch, and zero crossings are measured and added as
components with the Cepstral coefficients, to make a longer feature
vector. By example, assume 10 Cepstral coefficients are extracted from a
continuous speech utterance every 10 ms. Since phonemes last about
100 ms on average, the HMM phonemic model would contain 10 states
(ie., ten 10 ms segments) with 10 symbols (i.e., Cepstral values) per state.
The value of each symbol changes from state to state for each phoneme
because the acoustic signal in each 10 ms time frame is characterized by a
different set of acoustic features captured by the Cepstral coefficients.

The HMM approach is to compute the statistics of frequencies of
occurrence of the symbols in one state related to those in the next state
from a large training set of speakers saying the same phonemes in the
same and differing word series. For example, a set of state transitional
probabilities and the accompanying array of 10 symbols by 10 state array
values that best describes each phoneme are obtained. To recognize an
unknown phoneme, the user computes the 10 by 10 array and matches it
to the pre-computed probabilistic phonemic model using the maximum
likelihood detection approach. The HMM statistical approach makes use
of the fact that the probability of observing a given set of 10 states in a
time sequence is high for only one set of phonemes.

The best laboratory performance of a highly trained, single user
HMM based recognizer today is about 99% correct recognition of words.
In a normal work place with ambient office noise, with average training,
on large vocabulary natural speech, the accuracy drops well below 90%.
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For almost all applications, this is not adequate; for high value
applications, a >10% error rate is intolerable. A typical error
performance specification of a reliable human communication system is
usually in the range from 1 error in 1000 to as low as 1 error in 10,000,
depending upon how much error correction communication between
speaker and listener is used or allowed.

Thus, to reach this goal, factors of 100 to 1000 improvement in
speech recognition accuracy are required. HMM based recognizers, or
variants thereon, have been in intense development for more than 15
years, and are unlikely to deliver such a major breakthrough in accuracy.
One major reason for this is that the acoustic signal contains insufficient
information to accurately represent all of the sound units used in a
given human language. In particular, variability of these speech units
through incomplete articulation or through coarticulation makes for
great difficulty in dealing with day to day variations in a given speaker’s
speech. Yet, even greater problems occur with different speakers and
with the inability to do complete speaker normalization, and finally
with the problems of human speakers who like to use large vocabularies
with rapid, run together speech. Even as computer processors and
memories drop in price and size, the complexity of processing to supply
all of the missing acoustic information, to correct mistakes in
articulation, and to deal with noise and speaker variability will be
difficult or impossible to handle. They will not be able to supply real
time recognition meeting the demands of the market place for accuracy,
cost, and speed.

P LE le of S hR iti

J. L. Flanagan, “Technologies of Multimedia Communications”,
Proc. of IEEE 82, 590, April 1994 on p. 592 states: “The research frontier in
speech recognition is large vocabularies and language models that are
more representative of natural language.... Systems for vocabularies
greater than 1000 words are being demonstrated. But word error rate is
typically around 5% or more, and hence sentence error rate is
substantially higher.”

A current speech signal processing model with the characteristics
described by Flanagan uses a microphone to detect acoustic speech
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information. The acoustic signals are processed by LPC algorithms to
produce a feature vector which is compared to a stored feature vector
library and further processed for word and sentence assembly. The
details of estimating the feature vector are that it uses an open loop, 10th
order, short time stationary model for the vocal tract. The excitation
signal X(t) is assumed to be random broadband white noise. A fast
Linear Predictive Coding (LPC) algorithm is used to compute the model
coefficients. A direct mapping of LPC coefficients to the Cepstral
coefficients provides a robust and compact representation of the short
time power spectrum which is the basis for statistical matching. Figure 1
shows the essential processes of a modern prior art speech recognition
system.

The open loop speech processing model has many drawbacks.
First, the unknown excitation signal is not really spectrally white, but it
is a pattern of air bursts (for vocalized speech) that take place at a rate of
70 to 200 times per second. Second, the complexity of the vocal tract
model changes as a function of voice patterns with the lips opening and
closing, the nasal tract opening, the tongue touching the palate, and
several other important organ configurations. Third, there is an
inherent limitation in estimating both the tract model coefficients and
the excitation source with an all pole LPC mode! from one acoustic
signal. The reason is that zeros in the excitation function (i.e., zero air
flow) and anti-resonances in the tract model (i.e., zeros in the transfer
function) cannot be mathematically modeled with LPC, and their
presence can not be measured unambiguously using a microphone. As
a result, the presently estimated Cepstral (i.e., LPC derived) coefficients
representing the transfer function which characterize the vocal system
of a speaker are inaccurate and not uniquely correlated with only one
specific articulator configuration. Such errors in the feature vector
coefficients directly limit the statistical pattern matching performance.
Thus searching for a better matching algorithm or using more computer
processing power to enhance performance may be futile. In addition,
artifacts associated with ambient noise, speaker articulation variations
from day to day, and speaker to speaker variability add difficulty and also
training expense. Finally, developing large vocabulary systems for
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multiple, natural speakers, in many languages, is very expensive,
because automated techniques for this process can not be well defined.
It has been estimated (Rabiner and Juang, “Fundamentals of Speech
Recognition”, p. 493, Prentice Hall, 1993) that using the best models, it
will take 10 CRAY YMP-16 equivalents to do the highest desired quality
speech recognition.

It has been long recognized by linguists and phoneticians that
human speech organ motions and positions are associated with the
speech sound. Olive et al. “Acoustics of American English Speech”,
Springer 1993, describe the vocal system for almost all singles, pairs, and
triplets of phonemes in American English, and their associated
sonograms. Many decades ago, workers at Bell Laboratories (see
J.L.Flanagan “Speech Analysis, Synthesis, and Perception” Academic
Press, 1965) used x-ray images of the vocal organs and detailed modeling
to determine organ shapes for given sounds. These workers and others
described how optical devices were used to measure the glottal area (i.e.,
vocal fold positions) vs. time for voiced speech, and published detailed
models of the speech system based upon well understood acoustic
principles.

All of these physical measurement techniques suffer from not
being usable in real time, and the detailed models that connect the organ
information into phoneme identification don’t work because the
primary organ measurements are not available in real time. Therefore
the models can not be accurately or easily fit to the speaker’s macroscopic
characteristics such as vocal tract size, compliance, and speed of speech
organs. In addition, very idiosyncratic physiological details of the vocal
tract, such as sinus cavity structure, cross sectional pharynx areas, and
similar details, are not possible to fit into present model structures.
However, they are needed to quantify more exactly individual speech
sounds. Nevertheless, the above studies all show that associated with
any given speech phonetic unit (i.e., syllable, phoneme or PLU) the
speech organ motions and positions are well defined. In contrast,
however, these workers (e.g., . Schroeter and M. M. Sondhi, IEEE ASSP,
2(1) 133 (1994) and references therein) also have shown that acoustic
information alone is insufficient to do the inverse identification of the
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speech tract organ configuration used to produce a sound. It is this
incapacity, using acoustic speech alone, that leads to many of the
difficulties experienced with present speech recognizer systems.
Researchers have searched for methods to measure the positions
and shapes of the vocal tract elements during speech, but have found no
effective way of doing this in real time. Papcun of Los Alamos National
Laboratory described a vocal-tract-constrained speech recognition system
in the Journal of the Acoustic Society of America, 22 (2) Aug. 1992, pp.
688-700, "Inferring Articulation and Recognizing Gestures from
Acoustics with a Neural Network Trained on X-Ray Microbeam Data"
and in PCT/US91/00529 titied "Time Series Association Learning.” He
measured vocal organ motions and their constrained patterns and
locations, by using low power x-ray images of gold balls glued to a subject

4

speaker’s tongue and other vocal organs. He used this information to
improve recognition algorithms based upon conventional
mathematical techniques, but with additional phoneme pattern
constraints imposed by the measurements obtaining using x-ray data.
His algorithms are based upon allowed vocal tract motions, but do not
use the motions in real time to enhance the word recognition reliability.
He also showed that vocal organ positions and sequences of positions
were uniquely associated with many speech sounds. However, it is both
dangerous and impractical to consider using small x-ray machines for
real time speech recognition.

U.S. Patent 4,769,845 by H. Nakamura, issued 9/6/88, describes a
“Method of Recognizing Speech Using a Lip Image”. Several such
patents describe electro-mechanical-optical devices that measure speech
organ motion simultaneously with acoustic speech, e.g., U.S. Patent
4,975,960. In this case, the formation of the lips helps define the
identification of a phoneme in a given speech period, by the degree to
which the acoustic identification agrees with the lip image shape. Such
devices are helpful, but sufficiently expensive and limited in the
information they provide, that they are not widely used for speech
recognition. They have been proposed for the purpose of
synchronization of lip motions to movie or video frames for the
purpose of automatically synchronizing speech to images.
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U.S. Patent 4,783,803, 1988 “Speech Recognition Apparatus and
Method” by Baker et al. assigned to Dragon Inc. (a prominent U.S. speech
recognition company) lays out the details of a modern all acoustic speech
recognition system, followed by six more patents, the latest being U.S.
Patent 5,428,707, 1995 “Apparatus and Method for Training Speech
Recognition ...” by Gould et al. Similarly Kurzweil Applied Intelligence,
Inc. has patented several ideas. In particular, U.S. Patent 5,280,563 by
Ganong in 1994 describes a method of a composite speech recognition
expert (system). This patent describes how to use two separate sets of
constraining rules for enhancing speech recognition--an acoustic set of
rules and a linguistic set of rules. The probabilities of accuracy (i.e.,
“scores”) from each system are combined into a joint probability (i.e.,
“score”) and a multi-word hypothesis is selected. This method of
joining constraining rule sets is common in speech recognition.

EM SENSORS

U.S. Patents 5,345,471 and 5,361,070 by Thomas E. McEwan at
LLNL describe a micropower impulse radar (MIR) receiver and motion
sensor based on very simple, low cost electronic send-and-receive
modules that have millimeter resolution over measuring distances of
10's of centimeters to meters. These devices can be used for wood or
metal "stud-finders" in building walls (U.S. Patent 5,457,394), for
automobile collision or obstacle avoidance radars, and for many other
applications. In addition, McEwan, and others, have shown that the EM
waves emitted from these devices at frequencies near 2 GHz (and at
other frequencies) can propagate through human body tissue. He has
also shown, Ser. No. 08/287,746, that such a propagating wave
experiences enough of a dielectric (or more complex) discontinuity
between human tissue and blood (e.g., heart) or human tissue and air
(e.g., lungs), that the time varying reflected signal from a beating heart or
other body organ motion can be detected and has value.

Professor Neville Luhmann, Director of the Department of
Applied Science of the University of California at Davis, has described
how low cost, solid state millimeter wave generators similar to the
designs of McEwan and others can be made using microelectronics
fabrication techniques. These can be fabricated into transmit-receive
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modules which provide millimeter resolution, and which can be tuned
to optimize body transmission and minimize body tissue heating, or
body chemical resonances.

U.S. Patents 5,030,956 and 5,227,797 to Murphy describe a radar
tomography system for examining a patient for medical purposes. A
radar transmitter capable of transmitting rf or microwave frequencies is
used with multiple receivers and time of flight timing units. The
locations of body organs are measured from multiple depths into the
patient and from multiple directions using both a multiplicity of
receiver units (multistatic system), and by moving the transmitting unit
to view the patient from multiple directions. A reflection tomography
device uses EM wave reflections to build up an image of the interior of a
patient’s body for medical imaging applications. There is no description
of the importance of time varying organ interface information, nor of
the value of single directional, non-imaging systems. Murphy provided
no experimental data on image formation that show his ideas can be
reduced to practice, and several of the proposed embodiments in the
Murphy patent are not expected to be technically realizable in any
commercially important imaging system.

U.S. Patents 3,925,774 to Amlung and 4,027,303 to Neuwirth et al.
describe small radar units generating frequencies that can pass through
human body tissue. Amlung describes a printed circuit board sized radar
device made from discrete components that project rf waves in a
particular direction at a frequency of about 0.9 GHz. The principle of
operation is that as long as there is no change in the reflected rf signal to
the receiver unit from any objects in the line of sight of EM wave
propagation within a defined time unit, appropriate filtering in the
receiver provides a null signal to an alarm device. If an object moves
into the field of the transmitting device at an appropriate rate, greater
than the filter time, a signal is detected and an alarm can be made to
drive a sounding unit. This device is called a field disturbance motion
detection device. It and several other devices referenced by Amlung as
prior art could have been used to detect vocal fold and other vocal organ
motions as early or earlier than 1975 in a fashion similar to the present
invention. Neuwirth et al. describe similar devices.
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Although it has been recognized for many decades in the field of
speech recognition that speech organ position and motion information
could be useful, and radar units were available to do the measurements
for several decades, no one has previously suggested a speech
recognition system using transmitted and reflected EM waves to detect
motions and locations of speech organs and to use the information in an
algorithm to identify speech.

M F N

Accordingly it is an object of the invention to provide method
and apparatus for speech recognition using nonacoustic information in
combination with acoustic information.

It is also an object of the invention to provide method and
apparatus for speech recognition using electromagnetic (EM) generating,
transmitting and detecting modules.

It is also an object of the invention to provide method and
apparatus for speech recognition using radar. ,

It is another object of the invention to use micropower impulse
radar for speech recognition.

It is another object of the invention to use the methods and
apparatus provided for speech recognition for the purposes of speech
quantification, mathematical approximation, and information storage
for other speech related applications.

The invention is method and apparatus for nonacoustic speech
recognition (NASR) in which nonacoustic information obtained by RF
wave, microwave, millimeter wave, infrared, or optical wave
electromagnetic (EM) measurements of speech organs is combined with
conventional acoustic information measured with a microphone. The
EM wave requirement is that it reach the speech organ being measured.
The nonacoustic and acoustic signals are combined using an algorithm
to produce more accurate speech recognition than obtainable only from
acoustic information. The NASR information and the acoustic
information, as needed, is also available for use in other speech
technology applications, such as speaker recognition, speech synthesis,
and speech telephony.
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The nonacoustic speech recognition system includes EM
generator-detector systems that can operate in the nonradiating near
field, the intermediate (i.e., both radiating and nonradiating) field, and
the radiating far field of the antenna structure(s). Radars are normally
considered to use radiating EM waves that “leave” the antenna and
propagate into the far field. However, because of the close positioning of
EM sensor systems to the vocal organs described herein, all three types of
EM wave field systems can be used for the methods and apparatus
described herein. When the word transmission is used herein it is
meant to describe the propagation of EM waves after they are generated
and as they reach an antenna-like-structure where they develop a time
varying near-field, intermediate, or far-field (e.g., radiating) pattern of
electromagnetic fields. Human tissue is transparent, to the degree
needed for the methods herein, in many EM wave-bands - from <108Hz
to >1014Hz.

1) EM wave generator -- All configurations of EM wave generator
modules that meet the frequency, timing, pulse format, position, tissue
transmission, and power (and safety) requirements can be used. EM
wave generators which operate in the (nonradiating) near field, the
intermediate field where the wave is both nonradiating and radiating,
and the far field radiating (i.e., radar) condition of the antenna may be
used. In particular microwave radar modules operating at 2.5 GHz and
with a 2 MHz pulse repetition rate have been used, and these units have
been shown to be safe for routine human use. They have also been
shown to be portable and very economical. The speech recognition
experiments have been conducted using radar transmit/receive units in
4 different configurations. Speech organ motions have been measured
simultaneously with a variety of sensor configurations ranging from
three radar units and one microphone and as simple as one radar unit
and one acoustic microphone signal. Improved methods of directing
the transmitted EM radar wave into the head and neck have been
developed, as well as several antenna designs and beam polarization
options for speech recognition and other related applications. Methods
to use varying phases, varying wavelengths have been considered, and
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multiple simultaneous wavelengths (e.g., impulse radars) have been
used.

2) EM wave detectors -- Four different EM wave detector or
receiver modes have been demonstrated for speech recognition, i.e., CW
reception, single pulse moving range gate reception, multiple pulse
fixed range gate reception, and homodyne reception, and other receiver
modes have been identified. Each specific receiver type is matched to a
transmitter type, and is usually mounted on the same circuit board (or
chip) as the transmitter. The receiver can be fed by an antenna separate
from the transmitter or it can be connected, using a transmit/ receive
switch, to the transmitter antenna if timing allows. In one
demonstrated mode, a circuit in the transmitter/receiver module
compares the phase of the returned received wave from the speech
organ to the initial transmitted wave, thus making a "homodyne"
system which works well in obtaining organ motion information. This
is known as a type of "coherent" radar when the object detected is in the
far field, and can be viewed as a type of an interferometric device when
the object is in the near or intermediate EM antenna field. The timing
of the receiver "range gate” (when used) is controlled by a control unit,
and has been demonstrated by placing the range gate circuit on the
transmit/ receive board. Received signal information can be due to
reflections from interfaces and from attenuation due to losses in the
propagation path and from multiple reflections.

3) Configuration structures, antennas, and control system -- Five
different methods of holding and supporting, simultaneously, several
EM sensor units and microphones against the human face and neck
have been considered (front, side, top, and back of head and neck, and
under the jaw), including a harness such as a telephone operator uses, a
covered enclosure such as used by a court reporter, a hand held unit
such as a calculator, a telephone receiver with modification for under
chin EM sensor modules, and a laboratory structure for carefully
positioning such units for instrumentation purposes to a specific body
shape. It is not necessary that the transmitter and the receiver be
attached to each other or to the user, but can be mounted in any
convenient place nearby such as on the dashboard of an automobile.
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This positioning at a distance from the speech organs requires proper
focusing of the generated wave and/or tracking of the user. For the
purposes of focusing, phased array transmitters or receivers, multi-
element antennas, and other techniques well-known to the radar
community, may be used for the purposes of focusing and tracking.

A control system is used to start the system upon acoustic or other
input, to set the timing of the range gate of the receiver switch, to set the
pulse repetition rate of the pulsed transmitting EM sensor units, that
control the acquisition of the received EM wave information in a
sample and hold unit, and to averages the data to improve statistics, that
directs the held data into 2 memory, and that resets the system for
another cycle. In other designs for nonacoustic speech recognition
systems, the control unit would set the desired frequency of each
transmitted pulse, the phases of the transmitted waves in the transmit
gate, and other similar functions. Such a control unit is a vital part of
the system, but it is relatively straight forward in its construction (it can
be on one chip or several chips). Simple versions of such a control
system have been implemented using timing circuits on the presently
used transmit/receive chips (circuit boards), and the sample holding and
display is done in conjunction with laboratory equipment, such as
storage oscilloscopes and computer A/D conversion boards and
readouts.

4) Processing units and algorithms -- For each set of received EM
wave signals there is a need to process and obtain the information on
organ motions (or their new positions) that can be used to associate the
unknown speech with the intended speech sound or word sound. For
example, information on the position of the lips, jaw, teeth, tongue, and
vellum can be obtained by transmitting in a horizontal direction from a
range gated EM sensor (i.e., radar) system, as well as from other types of
EM sensors each of which view a human subject's speech organs from
different directions. The received signals from the speech organs are
stored in a memory and processed every speech time frame, 10 ms
(nominally), the time taken for a speech organ position to change to a
new position for the next new word. The actual speech frame can be
adapted to optimize the data processing system. The user can measure
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the vocal organ condition changes which determine when the speaker
has altered the vocal system to make a new sound by using simple
threshold tests, and thus the user can automatically define the beginning
of a new speech time frame. The use of vocal organ information for
adaptively determining the speech time frame permits the user, for the
first time, to automatically associate the speech output with a constant
excitation function and time independent vocal tract condition to obtain
the clearest data set possible. In addition, the user may wish to associate
the feature vectors from a sequence of time frames together into a multi-
time frame feature vector. Finally, system control information can be
added as additional coefficients to any feature vector, to identify trained
feature vectors with acoustic speech units (e.g., PLUs, etc.), to optimize
the search speeds, to keep track of pauses and memory locations, and
similar housekeeping activities.

The algorithms normalize and digitize the EM sensor signal
intensities and identify one of a few EM signal structures with known
reference locations such as the skin under the jaw or the face front. The
algorithms then take raw vectorized data, and normalize, quantize, time
align, time compact, and construct a normalized vector for each series of
signals, with control information, that correspond to a given organ's
configuration at each frame of simultaneously measure acoustic speech.
Then a comparison can be made against standardized numerical feature
vectors in libraries using well-known comparison systems (used often in
acoustic speech recognition processors). An example of such a
comparison is to make it against a known organ motion or location data
set for each of the 50 American English speech PLUs (or similar acoustic
units). A positive match of the unknown feature vector against the
appropriate coefficients of a known feature vector associated with a
recognized word-sound in a library yields a recognized sound unit,
which are often defined as syllables, phonemes, or phone like units
(PLU), other acoustic speech units, words, or phrases. This method of
feature vector description for each time frame can be extended to sets of
sequential time frames such as diphones, triphones, whole words, and
phrases for more complex sound unit identification. In addition, this
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method makes possible automatic library generation from spoken
feature vectors associated with known acoustic speech units.

While the examples herein are for American English speech, the
methods are applicable to all natural human languages, to other human
sounds, to certain animal communications caused by structures
measurable by the methods herein, and to human vocal organ motions
associated with synthetic communication techniques such as moving of
the tongue to direct a wheelchair, to move a cursor on a CRT screen, or
to turn on a cellular telephone.

The bases of the following algorithms rely on two primary factors:

i) The techniques of nonacoustic, EM sensor derived speech
organ position and motion measurement are statistically independent of
acoustical speech measurement using a microphone. Thus, the two sets
of information complement each other in a statistical measurement
sense. In particular, the EM signal can show articulator and thus
phonetic conditions directly, in contrast to the acoustic signal which
contains a great deal of superfluous information in addition to the
phonetic specific information.

ii) The EM sensor signals provide explicit evidence of specific
articulator activities which are very difficult to reliably extract from the
acoustic signal. Many speech organ motions are “hidden” and are not
extractable from acoustic signals using mathematical techniques, or the
moving organ does not affect the speech sound, or important organ
motions often occur before or after the speech unit is sounded. Thus,
the nonacoustic organ measurements provide important additional
information heretofore unavailable for use in increasing the accuracy of
speech recognition, coding of speech information, speaker identification,
and measuring physiological properties of great importance to the
speech technology community.

Hlustrative algorithms used to implement the nonacoustic speech
recognition information include:

4A) Location algorithms: Reflected EM wave signal amplitudes
from known organs are measured from one or several locations on each
organ every 10 ms (nominal measurement times), except for vocal cords
which are measured nominally every 1 ms, or more often for higher
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resolution. Time of flight range gating is often used to determine the
locations along a propagation direction. The data from many EM wave
transmission pulses is averaged, corrected, normalized, quantized, time
aligned (to a reference position) and stored in a series of (about 100)
memory locations. A whole speech organ condition can be measured all
at once or parts of an individual organ can be measured, such as
measuring the motions and positions of the front of the tongue, body
(i.e., blade), and the back of the tongue every 10 ms. In another example,
the reflection conditions of the glottal tissues (especially the vocal folds)
are measured every 1 ms, using a real-time algorithm, and these signals
are normalized and formed into a feature vector. Often the feature
vectors from sequential time frames are joined together to form a multi-
frame, time dependent, feature vector. These feature vectors are
compared against pre-measured tables of stored vectors of known
acoustic speech units (e.g., code books or libraries) to allow association of
the unknown measured organ data with a known organ condition.
Such information can be measured, averaged, normalized, and/or
preprocessed in several ways to reflect the linguistic information being
matched For example, such feature vectors can be transformed using
Fourier or other transforms in order to obtain more unique signatures
or patterns. Other techniques include stretching the time or frequency
scale, and taking the logarithm of the amplitudes for improved table (or
other statistical) comparisons. By using data from several speech organs
at once, one can resolve problems that occur when one of the organs is
used by the body in the same way for several different sounds caused by
another speech organ.

Normalization of specific organ reflection characteristics and the
extent of organ travel (both in distance and in velocity) of an individual
can be obtained by asking the speaker to speak series of known words
and phrases that exercise the speaker’s vocal system to the extremes
needed (i.e., a training sequence). Thereafter, in each speech time frame,
the feature vector coefficients describing the condition of each organ (or
part of organ) relative to the full range of the speaking individual can be
mapped against the known full travel or full velocity condition of a
reference speaker or speakers. Similarly the highest and lowest pitch
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period extensions, as well as intermediate pitch values, of the speaker
can be measured using several training words or phrases, and mapped to
the pitch period range of a referenced speaker. These methods remove
much of the individuality of speech from each feature vector making
possible a more precise code book lookup process.

The above described associations of feature vectors can be done
using phonetic association (i.e., pattern matching), HMM, neural
networks or other well-known statistical techniques. Several of these
techniques have been demonstrated on individual words. Similarly,
using standard acoustic sound unit recognition techniques, acoustic
feature vectors and identification data can be generated. These can then
be combined with the EM sensor data to generate a combined feature
vectors which can be compared against known tables of the combined
data vectors for known sounds, using standard statistical and speech
recognition techniques.

4B) Motion pattern algorithms: This algorithm works by using
the speech organ location signals described above, sequential pairs of
which are (for example) subtracted from each other every speech frame
period, e.g., 10 ms. These changes as new words are formed, are divided
by the time between measurements. The resulting velocities are
compared to libraries of predefined acoustic pairs and of the “moving”
sound units such as glides, diphthongs, and plosives. There are about
1000 normally used sound pairs in English (i.e., diphones). To search
this relatively small number of sound pairs, takes much less than the
nominal 10 ms time-scale between new acoustic time frames. These
velocity algorithms are very important because the organ motion
patterns for each PLU (or similar acoustic sound unit), or for patterns for
sequences of PLUs are very unique. In addition, sequences of feature
vectors of PLUs with associated timing information is very idiosyncratic
to each individual and forms the basis for speaker identification
algorithms.

4C) Sound cue algorithms: Unique speech unit indications,
“cues”, can be obtained by using one or more simplified versions of the
EM sensor systems measuring one or a few speech organs, in
conjunction with acoustic speech information. By using a single EM
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sensor to measure the presence or absence of vocal fold motions, one
can provide valuable information to a speech recognition system to
determine if voiced speech is occurring. Similarly a single jaw motion
EM sensor can detect jaw and tongue motions in anticipation of speech,
and tongue motions during speech can indicate certain phonetic
conditions. Rapid tongue tip motions can confirm the sound /th/, or a
Spanish trilled /r/, and rapid jaw drops can indicate plosives such as /b/
or /p/.

Vocal fold motions are particularly valuable because they enable
the user of these methods to obtain pitch periods and define voiced time
frames, all of which can be used in a post-processing mode to validate
the presence of speech to detect noise, to validate voicing or no voicing
of the sound, to measure rates of phoneme articulation, to distinguish
between similar sounding PLUs ("ing" vs. "ine"), and other useful
cueing information to supply missing information to conventional
acoustic recognition systems (CASRs). :

4D) Word signature algorithms: A series of EM wave signals
transmitted and received during the articulation of one or more words
can be collected, and processed during the total time of word
articulation. Simultaneously an acoustic signal is obtained and
processed into sequential frame feature vectors as well. For example, a
multi-time frame, multi-sensor feature vector of 20 single frame vectors
(each 10 ms describing 200 ms of speech) are articulator and time frame
normalized. Then they are processed further if needed, for example
transformed into time or spatial frequencies by typical transforms (e.g.
Fourier, Z-transform). They are formed into vectors as normalized,
multi-sensor, multi-time frame descriptors of a whole word. Such a
vector can be compared, in a preprocessor or post-processor mode, to
known vectors of identical construction formed during training periods
of normalized words in limited vocabularies of several 1000 words.

Another simpler method is to use a conventional acoustic speech
recognition system (i.e., CASR) to make a best decision on the word
being spoken by the user. This identification decision is compared to
similar decisions using EM sensor obtained word feature vectors. The
EM sensor obtained data is used to validate the decision or choose
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between several alternative decisions made by the CASR. If the CASR
selected word is validated, then the word is accepted as recognized with
joint probability; if not, then a best guess among a small set of words
confusing to the CASR system is made using data from the EM sensor
generated data set. EM sensor data has been used experimentally to
resolve the ambiguity in the words "sailing" vs. "saline” and "sixteen"
vs. "sixty". This concept can be used on small and medium sized word
sets, and can be extended to very large word sets of 20,000 to over 40,000
as computer memory and processor speeds improve.

4E) Model based algorithms: It is common practice in acoustic
speech analysis to use models of the human speech organ system. These
models are generally of the nature where an excitation source is known
to drive an acoustic resonator tract, from whence the sound pressure
wave radiates to a listener or to a microphone. There are two major
types of speech, "voiced" where the vocal folds open and close rapidly
providing periodic bursts of air into the vocal tract, and "unvoiced"
where constrictions in the vocal tract cause air turbulence and associated
“modified-white” air flow noise. (A few sounds are made by both
processes at the same time). The human vocal tract is a complex linear
acousto-mechanical filter that transforms the excitation noise source
into recognizable sounds. Physically the acoustic tract is a series of tubes
of different lengths, different areal shapes, with side branch resonator
structures, nasal passage connections, and end point constrictions. As
the excitation pressure wave proceeds from the source to the mouth
(and/or nose) it is constantly being transmitted and reflected by changes
in the tract structure. Research at Bell Laboratories (J. Schroeter and M.
M. Sondhi, IEEE ASSP, 2(1) 133 (1994) and references therein) and
elsewhere, studying the relationship of given speech sounds to the
shape of human vocal tracts resonators, has shown that accurate
knowledge of the excitation source characteristics and the associated
vocal tract configuration can uniquely characterize a given elemental
acoustic speech unit such as a PLU. This accuracy of these organ
configurations can be conveyed by a small set of numbers formed as
coefficients of a feature vector. It is also known that if a change in a
speech sound occurs, the speaker has moved one or more speech organs
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to produce the change. Conversely, it is also known that using acoustic
information alone, it is not possible to work backwards to uniquely
determine the vocal tract condition and thereby uniquely define the
acoustic unit intended for a given time frame of acoustic speech.

The use of EM sensor information makes it possible to define
speech frames uniquely and to determine which type of excitation
function occurs during each speech frame, and what its characteristics
are. Transfer function information can be obtained by measuring the
locations and dimensions of the speech organs, which in turn can be
associated with many types of models. One model describes the
mechanical and acoustic structure of the vocal tract that is general in
nature. A simpler model uses EM sensor information that describes the
constrictions and condition of the various resonators in an individual to
determine the type of vocal tract in use during the speech time frame.
Such models can be based upon general electrical circuit analogies for
which extensive procedures have been developed to obtain transfer
function values from measured data and whose coefficients can be used
for feature vector formation. Finally, simple curve fitting models, such
as polynomials or the LPC procedure, can be used. They are
computationally easy to use and require relatively few parameters for an
acceptable fit of the transfer function during the given speech time
frame and over several sequential epics. The process for using a sound
model is to use the EM sensor information to determine selected organ
motions and positions, to obtain actual physical updating of the
excitation function and vocal tract models for each speech time frame or
sequence of time frames. A feature vector comprised of a relatively few
correct excitation function and transfer function fitting parameters for
each speech time frame will lead to a very high probability of correct
word-sound identification.

A PLU that lasts for several speech frame periods (e.g., 100 ms
with 10 ms per frame) yields multiple (e.g. 10) opportunities to construct
feature vectors. If the feature vectors do not change by more than a user
defined value, then a multiple time frame feature vector can be formed
to minimize computing and storage. In addition, multi time-frame
feature vectors can be used in the same way as just described for single,
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or slowly changing feature vectors. Because of the direct relationship
between speech organ motion and sound, the model approaches provide
a more fundamental parametrization of vocal system condition during
speech than has been possible in the past. They also make possible,
because of the capability of defining sequential speech frames, simplified
descriptions of connected word sounds such as diphones, triphones, and
whole words. Once defined, and once libraries are constructed for the
formats chosen, measured and formed feature vectors can then be used
for subsequent word sound identification using many statistical
techniques including phonetic-template pattern matching, Hidden
Markov Models and others .

5) Post processing units:

5A) Comparison: Post-processors are used where identification
information from an acoustic processor is joined with word sound
identification information from the EM sensor speech recognition
system (from one or several EM sensors). A joint decision using
statistical techniques is then made using information from both systems.
This post processing is necessary for algorithms 4C and 4D above.
5B) Spelling and grammar: Post processing computer units are used to
further analyze the first level of identified speech. This first level of
identification using the above described algorithms associates PLUs with
speech sounds and speech organ motion, but does not provide perfect
spelling or perfect grammar. These post-processing activities are
presently used commonly in acoustic speech recognition systems.
5C) Security: As part of the post processing, the idiosyncratic
characteristics of each speaker can be analyzed and compared (in real
time) to a known record of the speaker's physical speech organ motion
and shape properties, as well as the way the speaker uses his organs to
say key sounds, such as passwords, his own name, etc. The EM sensor
information makes it possible to add a very sophisticated identification
process for security systems that is not possible with speech alone,
because each person's speech organs have unique mechanical properties
and the way they are used in concert --position vs. time -- is unique for
each individual as he speaks a known set of words or phrases.
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6) Display units -- Computer rendered speech recognition must be
made available to the user for a variety of applications. A computer
CRT screen is used to show the written word rendition of the spoken
words, a speech synthesizer can be used to play back to the user the
speech he just said so the speaker can validate his control instructions
or the stream of words spoken into the machine. The data can be
printed, placed on portable or fixed storage units, and sent via
communication links as faxes, e-mail, and similar applications.

7) Keyboard or hand control units -- Hand control units can assist
in the instruction of the system being spoken to. The advantage of a
hand control unit (similar to a “mouse”) is to assist in communicating
the type of speech being inputted such as control instructions versus
data inputting, to assist in editing by directing a combined speech-hand-
directed cursor to increase the speed and the certainty of control by the
user.

8) Foreign language identification and translation unit -- The
statistics of organ motions and relative organ motions, together with
simultaneous acoustic sounds, can be used to identify the speaker’s
language. If the speaker is asked to repeat a known sequence of words or
phrases, then convergence on the speaker's language is more rapid
because the test set is chosen to illustrate language distinctions. In
addition, the same unit can be used to translate speech recognized text
from one language, via a text to speech synthesizer into another
language for transmitting to another person.

9) Auxilliary input unit -- Other instrumentation that aids in
recognition or requires synchronization, e.g., video, can be attached to
the system with this unit. A transmission unit is also needed to
communicate with other systems.

BRIEF TION D IN

Fig. 1 is a schematic diagram of a prior art open loop acoustic
speech recognition system.

Fig. 2 is a schematic diagram of a vocal tract model with a
combined non acoustic/acoustic speech recognition system using EM
sensors and an acoustic sensor.
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Fig. 3 is a schematic diagram of a speech recognition system using
acoustic, plus several EM sensors whose data are combined in a joint
feature vector.

Fig. 4 is a cross sectional view of a head showing speech organs
and position of a speech recognition module with three EM sensors and
an acoustic sensor.

Fig. 5 is a schematic diagram of a NASR (nonacoustic speech
recognition) system, with post processors, video input, and
transmission line output.

Fig. 6 shows an EM sensor response to jaw and tongue tip motion

for the speech series "aaa" and "ana".

Fig. 7 shows an EM sensor responding to jaw/tongue tip motion
for "sailing” and “"saline".

Figs. 8 A-C are schematics of EM pulses being transmitted to and
reflected from the vocal folds in the neck of a speaker. Figures 8A,B are
radiating systems and Figure 8C is a near field system. v

Figs. 9 A,B show simultaneous acoustic and EM sensor obtained
vocal fold open/close data for the word “fox”.

Figs. 10 A,B,C are illustrative representations of the received
voltage signals from a single transmitted pulse reflecting from a series of
speech organs as the organs move from rest to articulate the phonemes
/t/ and then /o/.

Figs. 11 A-D show a transmitted EM pulse, the reflected EM signal
analog voltage from all organs in line with the pulse propagation
direction, the location of the range gate, and the memory locations (i.e.,
bins) into which the digitized signal from the range gate switch is stored.

Fig. 12 is a flow chart of joint EM-sensor (e.g., field disturbance
mode) glottal tissue (e.g., vocal fold) detection with acoustic-sensor
signal detection including preliminary processing, feature vector
formation, and a joint decision making algorithm.

Fig. 13 is a flow chart of joint EM-sensor (e.g., scanned range gate)

9  detection of many organs in horizontal view with acoustic-sensor signal
detection including preliminary processing, feature vector formation,
and joint decision making.
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Fig. 14 shows an algorithmic decision tree joining NASR and
CASR algorithms with example logical-decision values.

Figs. 15 A-D are the acoustic and EM vocal fold sensor data for the
phoneme /ah/ as amplitude vs. time and with the Fourier power
spectrum.

Fig. 16 shows tongue/jaw motion together with vocal fold
motions for "one".

Fig. 17 shows experimental data for tongue palate “contact”
detection taken using a field disturbance mode EM sensor under the jaw
detecting the strong change in reflectivity of the tongue palate system
when contact is made.

Fig. 18 is a flow chart of an algorithm for detecting and storing
tongue palate contact information in a feature vector for the speech
frame in which contact occurred.

Fig. 19 is a flow chart of an algorithmic procedure for start of
speech, end of speech, identification of voiced or unvoiced phoneme,
presence of pause, and extraneous noise presence.

Figs. 20 A,B show experimental data using EM sensor (field
disturbance mode) detecting vocal fold waveforms for the letters "e" and
"u" showing large differences in pitch rate from the same speaker.

Figs. 21A-C show digitized refection vs. position signals from
joint feature vectors of horizontal range gated data and vocal fold
open/close data, (A) shortly before beginning speech, (B) when the
speech organs are in position to sound the phoneme /t/, and (C) the
difference between (A) and (B) showing a method of removing
background.

Fig. 22A shows digitized reflection signals identical to those in Fig.
21B except that the speech organs are in position to sound the phoneme
/o/ in the word “to”. Fig. 22B shows one way of forming a diphone
feature vector, by subtracting the feature vector for frame n from frame
n-1, to form a velocity or motion vector between two phoneme speech
frames.

Figs. 23 A B illustrate graphically how the feature vector patterns
for two phonemes "t" and "o" can be constructed from horizontal
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ranged gate EM sensor and a field disturbance vocal fold sensor, with
stationary reflection artifacts removed.

Figs. 24A,B show an EM sensor (i.e. radar) range sweep of the
sounds "uh” and "00" by a sensor looking up from under the chin. Fig.
24C shows an example of processed data with background artifacts
removed and reflection signals “binned” by location from reference.

Figs. 25A-H show the acoustic and EM vocal fold signal for the
sentence "the quick brown fox jumped over the lazy dog's back.”

Figs. 26 A-D show the outputs of four sensors (positions shown in
Fig. 4) for the sentence “the quick brown fox jumped over the lazy dogs
back.”

Fig. 27 shows the EM tongue/jaw and vocal fold signals for
"sixteen" and "sixty".

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
G 1 Principl

Figure 2 shows a nonacoustic-acoustic speech recognition (NASR)
system which is to be compared to a conventional acoustic speech
recognition (CASR) system as shown in Fig. 1. By comparison, a prior
art CASR system forms a feature vector solely from acoustic
information, while the NASR system of Fig. 2 makes EM sensor
measurements of a number of speech organs (vocal fold, velum, tongue
and lips are shown) and then combines feature vectors describing these
signals with feature vectors describing acoustic information to produce a
more complex, more information-rich feature vector describing the
speech unit time frame.

The generation of a sound really starts at the lungs which provide
a source of pressurized air. The vocal folds, in voiced speech mode,
modulate the air stream by opening and snapping shut to generate a
stream of air bursts as excitation pulses. The on-off pulse shapes
together with the resonating of the vocal tract structure, determines the
speech sounds heard by a listener. The tract shape is governed by the
position of many speech organs. The velum controls the fraction of the
air flow diverted to the nasal cavity, and out the nose. The tongue
positions specify resonant responses of the oral cavity, and most of the
air constrictions, for turbulent air sounds called frication. Finally the
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lips act as both the acoustic aperture (and acoustic antenna) - controlling
the end of the acoustic resonator, the air flow rate and thus sound
intensity, as well as a turbulence generating frication constriction. The
vocal folds (glottis) and lips (and nose sometimes) form two ends of a
series of acoustic resonant chambers. Acoustic energy radiates both
outward through the mouth (and nose) producing a signal Yn(t) from
the nose and Ym(t) from the mouth, and some low level feedback Z(t)
propagages inward from acoustic impedance discontinuities.

Figure 3 (multiple organ flow chart) shows a speech processing
model based on the availability of RF sensors that sense the location of
key organ positions. The extension to one or to a different suite of
several sensors is similar and discussed later. The vocal cord sensor
output signal is related to the true excitation signal of the vocal tract for
which real time signals have never been available before. The speech
processing model derived from knowing the action of the excitation
source, together with the locations and degree of vocal tract areal change
(including nasal opening via the velum) allows a much better and more
accurate model of the vocal organ positions and motions during the
speech time frame under measurement, and therefore a significantly
better and more accurate representation of the feature vector coefficients.
Similar measurements of the positions of other organs which participate
in the definition of the vocal tract during a given speech time frame are
associated with the PLU being spoken and provide a significantly better
and more accurate representation of the feature vector coefficients.

In Fig. 2, signals from an acoustic microphone 1, and from three
EM sensors 2, 3, 4 for vocal folds, tongue-jaw, and lips, are combined
using vocal tract model 5 to form a vocal tract feature vector 6. The
signals from sensors 2, 3, 4 can also be used to generate individual
feature vectors 7, 8, 9. The feature vectors 6, 7, 8, 9 can be combined, with
optional information from other sensors 10, to form a joint feature
vector 11 which is further processed and normalized. By pattern
matching 12 the feature vector 11 against a stored feature vector library
13 a sound identification is made. Finally, word assembly 14 and
sentence assembly 15 can be performed and tested by word spellers,
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grammar and syntax correcting systems, and sent to where the user
wishes.
Operational Modes and Control

There are many operational modes for the use of the EM plus
acoustic detectors. In order to keep the EM irradiation of the human
body low and within federal guidelines, and to minimize system power
usage, especially for wireless systems, several techniques are used to
control the ontime of the EM wave transmission module. Acoustic
microphones can trigger “on time” to be coincident with speech sound
generation; similarly, one can use infrequent EM sensor sampling to test
for vocalization, and /or the use of a finger or other body part to actuate a
button or similar sensor device to start the operation of the EM sensor
system. In addition, the user selects EM sensor frequencies, pulse
formats, and pulse format repetition rates to minimize EM interaction
with the human body and to meet the needs of the speech recognition or
related speech technology user. :

Fig. 4 shows a view of a head with relevant speech organs and an
illustrative NASR sensor 20. Three EM sensor transmit/receive
modules 21, 22, 23 are shown although there can be as few as one or
more than three. Also a microphone 24 is used to obtain simultaneous
acoustic information. Sensor 20 includes the necessary electronics, e.g.
timing and range gate chip 26 and memory chip 27, as well as means to
transfer the data over a wire or wireless, e.g. driver chip 28. Module 21
shows RF waves sent toward and back from the lips, teeth and tongue
tip. Module 23 is directed at the vocal folds and glottis.

Module 22 shows a wave being launched upward toward the
lower jaw, and into the lip palate organ region. The reflection of this
wave back to the detector in module 22 would provide information on
the "openness” or closed nature of the lower jaw with respect to the
upper jaw, and the tongue with respect to the palate as a function of
time. The measurement of lower jaw position is aided if the transmit-
receive module is referenced to the upper jaw. This can be done by
attaching the module to a head harness similar to that used for holding
small microphones in front of the lips. A second approach is to measure
the relative position of the lower jaw air-skin interface relative to the
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upper jaw palate or nasal cavity structures. Another approach to
obtaining the reference position measurement is for the transmitter-
receiver range-gate control computer to integrate (i.e., track) cumulative
motions, of the relatively slow lower-jaw motions as time elapses
(assuming that the jaw is moving slowly with general head motion),
and to then measure, and form feature vectors from the rapid lower jaw
movements associated with speech. The sensor used to track the slow
motions and other EM sensor modules can measure the needed organ
locations as a function of time during the vocalization process: such as
glottal tissues (or simply vocal fold) open-close motions; tongue up and
down motion; tongue fore and aft position; lips open and closed, and
lower jaw up and down position. These examples are not meant to be
an exclusive list of all such module positions, organ types, wiring
arrangements, etc.

These processors are not shown with the necessary supports to
hold them in place against or near the appropriate parts of the body. A
variety of techniques can be used ranging from taped-on sensors, to a
telephone operator-like microphone harness, to court stenographer-like
mouth covers. Such mouth covers are especially well suited to hold EM
sensors, microphones, and other specialized sensors (e.g., air motion
sensors) if needed. The modules could also be held by a support unit(s)
that is located further from the body. They might be on a steering wheel
or visor in a car, attached to a microphone which is used by a person
speaking, etc. The locations of the EM sensor generator and receiver
modules (either separate or together) vs. head position will depend
upon the value of the application, the additional cost of the modules
due to the need for accurate speech-organ location as the distance from
the speech-organ to the module increases, and the additional costs
associated with tracking the speech organ/air interface as the module
and body are increasingly less connected together. EM sensor ranging
speech detection modules may be located against, near, separate from the
body, and attached to or near microphones (either hand held, attached to
harnesses, or as normally used on microphone stands), or included in
head helmets (partial or full head covering), in mouth covers, and in
other devices attached to or on parts of the body near to the head.
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Fig. 5 schematically illustrates a NASR system 30 using sensor 20
of Fig. 4, which includes both EM sensor and acoustic detectors. Sensor
20 is connected by a wireless (RF or optical) link or cable communication
link 31 with a processor 32 and its associated peripheral equipment.
Other equipment, e.g., video camera 47, can be interfaced to processor 32
through unit 46 for purposes of synchronization or added information.
NASR processor 32 is connected to a control unit and general processor
29. Speech synthesizer unit 33, acoustic speech recognizer 34, word
spelling and sentence syntax generator 35, foreign language identifier/
translator 42, NASR code book 43, speaker identification unit 44, and
vocoder unit 45, may be connected to processor 29. An input keypad 36,
a keyboard or mouse 40, headphones 37 for verbal feedback, and video
terminal 38 with acoustic loudspeaker 39 can also be connected to
processor 29. Recognized letters and words, and acoustic signals can be
outputed on wireless or cable links 41. The system is controlled and set
up by control unit 29.

An example of EM sensor response data is shown in Figs. 6 and 7.
An EM sensor (sensor 22 in Fig. 4) responds to tongue tip motion as a
speaker says the sounds "a" and "ana". The EM sensor data in Fig. 6
clearly shows several major stages of speaking an open vowel, starting
with opening of the jaw (upward signal), and closing the jaw/tongue
after the sound /a/, downward signal, the tongue plays little role. For
/ana/, the /n/ is accompanied by a fast, often poorly articulated, tongue
lift between /a/ sounds, and the sequence is terminated by dropping the
tongue and closing the jaw. Fig. 7 shows a field disturbance mode of EM
sensor response to tongue locations for the similar sounds "sailing" and
“saline”, which are difficult to differentiate using conventional CASR
approaches. In these two cases the different tongue positions associated
with "ing" and "ine" are clearly shown by different reflectivities versus
time. The movement of the tongue from the /1/ position to a back
position for /ing/ causes a double bump in the positive signal portion
and a much larger negative reflected signal as the tongue drops to say
/ing/ compared to the waveform when the tongue makes the transition
from /1/ to /ine/.

- i r Principl
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i issi nd Reflection of EM

Figs. 8 A,B illustrate the transmission, radiation, and reflection of
a single linearly polarized EM wave pulse from two illustrative
locations along the propagation path. Fig. 8C illustrates a different
arrangement where the EM wave is non-radiating and measures “near
field” reflectivity variations. In the cases shown in Fig. 8A,B, the EM
wave sensor system is a type of radar. The wavelength of the wave
shortens as it enters the neck and the propagation speed "c" slows to ¢
times 1/€1/2, because the tissue is a material with dielectric constant €
greater than €y =1 for air. In addition, the amplitude of the electric field
drops for two reasons. A significant fraction of the forward propagating
EM wave reflects at the first surface, the air skin interface, and in a
dielectric medium, the E field drops because of the high dielectric
constant, €. The shortening and slowing of the wave makes it possible
to measure the size and location of structures internal to the head that
are a small fraction of each radar pulse length in air. Since it is common
practice to measure distances to less than 1/10th of the EM pulse length
dimension, one can detect structure interfaces that are 1/10 of a half
wave pulise of 1.5 cm of the wavelength in the tissue, or 1.5 mm. More
importantly, it is easy to detect changes in vocal organ interfaces, of less
than 0.15 cm distance, as speech organ motion occurs between one set of
EM sampling pulses to another set of pulses. In Figs. 8 A,B position
changes are associated with motions of the glottal tissue motions
(e.g.,vocal folds as they open and close) and change the interface
locations and the degree of EM wave reflection. Experiments have
shown position change detectability of less than 0.001 cm.

In addition to the single wave packet of a sinusoidal wave shown
in several positions during its propagation in Figs. 8 A,B, other wave
formats can be used for EM wave transmission, including using more
wave cycles to improve the information obtained through reflection
from vocal organ tissue each transmit/receive period. Different
propagation directions can be used, and different orientations of the
generator relative to the receiver can be used to determine reflections
and attenuations of one or more EM waves as they sample the speech
organs (including opposing orientations measuring transmission
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through the body). The transmitted waves can be composed of differing
wavelengths or programmed series of waves with varying wavelengths,
of wave packets ranging from partial to many wave periods, of step or
spike pulse packets (“impulse transmissions”), of waves with randomly
varying pulses (e.g., “noise” radar), and many others described in
Skolnik “Radar Handbook”, McGraw Hill, 2nd ed. 1990 and elsewhere.
The EM sensor transmission packets can be optimized for the purposes
of speech organ detection by enhancing resonance effects, by eliminating
“speckle” (e.g., using quadrature techniques), by optimizing
interferometric (e.g., homodyne) detection, and similar techniques.

EM wave Detection and Processing

After an EM pulse (or pulse train) is received it must be processed,
correlated with other pulses from other organs and correlated with
acoustic data and fed to an algorithm which automatically selects a
word-unit (e.g. PLU), and displays it to the user or customer. Because
EM sensors easily generate over one million pulses per second
(experiments have been done at 2 MHz pulse repetition rates), one can
average 1000 pulses for each reflected range position, or for the purpose
of interrogating with a different wavelength, etc. Then one can change
to a new range, or wavelength, etc. and then average another 1000
pulses. Thereby, the user is able, for example, to measure up to 20
parameters during a typical speech time frame of 10 ms. (The speech
time frame can be fixed or it can adapt to the changes in speech rate on
the organ, e.g. vocal folds open and close each 5-15 milliseconds). Figure
4 also shows a straight forward way of measuring the locations of many
of the important speech organ interfaces from the front of a face through
the back of the throat, up through the lower jaw, and into the neck. The
interface locations at a given time can be associated with a given speech
unit, e.g. PLU, and by knowing, in advance, a sufficient number of
distinctive vocal organ locations for each speech unit one can identify
the sound being spoken using NASR information alone.

However a less complete suite of EM sensors can strongly limit
the number of phonemes consistent with the NASR statistics. By
comparing this limited set with the small set of similar sounding
phonemes identified by conventional acoustic techniques (i.e., CASR
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system), one obtains an increased probability of identifying the correct
acoustic speech unit, i.e., syllable, phoneme, PLU. This approach works
because the EM and acoustic sensors measure the properties associated
with speech in entirely different ways (i.e., physically and statistically).
Data obtained and calculations indicate a greater than 95% accuracy for
all NASR organ measurements (and > 99% for certain measurements).
Experiments at the Lawrence Livermore Laboratory and elsewhere
indicate 90% accuracy for CASR identification. Experiments show that
such CASR errors are usually caused by a lack of distinguishing acoustic
features often caused by incomplete or coarticulation. However the
associated articulator motions are easily measured by the NASR system
(see Fig. 6). Joint recognition statistics of both systems together will lead
to speech recognition error rates of less than 1% in normal
environments. Estimates indicate that the acoustic unit detection error
rate will approach 1 phoneme in 104 when sufficiently accurate EM
sensors plus a microphone are used with advanced algorithms. This is
highly accurate word recognition, approaching human hearing
standards.

There are many situations where complete speech recognition
knowledge of organ location and motion is unnecessary to improve the
condition of present speech recognition technology. Such conditions are
described herein in several of the algorithmic descriptions. In addition,
several algorithms use the special information available from the EM
sensors to provide new ways of recognizing speech in both specialized
and generalized situations, e.g. word signature algorithms and motion
pattern algorithms. They make use of the fact that PLU pairs (i.e.,
diphones) and PLU triplets (i.e., triphones), or larger PLU units (e.g.,
words) are known to adequately describe many of the coarticulation and
incomplete articulation conditions in speech, and knowledge of these
multi-phone units and their rates of delivery are known to be very
useful for enhanced speech recognition accuracy. EM sensor data is
especially useful in describing such PLU sets in a superior way to
acoustics because, in contrast to acoustics, partial organ motions and
positioning can be easily measured.

of or



WO 97/29481 PCT/US97/01489

10

15

20

25

30

35

Two general modes of radar operation for speech organ motion,
in conjunction with acoustic speech detection, have been demonstrated:

(1) scanned range gating of short pulses demonstrated with radar
modules (including the special conditions of no-gate, or one fixed gate
condition), and

(2) heterodyne (including homodyne as an often used special
case) whereby detection of the phase change vs. time of the reflected
waves is used. These two generalized modes, together with well known
variations (see Skolnik "Radar Handbook" ibid.) and combinations of
them, provide very convenient configurations for vocal organ
measurements. In particular, 2 GHz frequency EM transmission
modules were used to measure speech organ motion and to provide
positions of interfaces and whole organs as a function of time. The 2
GHz wavelength (about 2 cm) propagates well in tissue (at least 20 cm)
and reflects well off of the 25-80 to 1 dielectric discontinuities. The wave
period of 0.5 ns lends itself to being used in a pulse format of several
waves for whole organs (1-3 ns), down to a single wave or 1/2 wave
pulse period (about 0.25 to 0.5 ns) for measuring specific interfaces in a
range gate mode. While this example is based on one EM sensor
module and one antenna, multiple modules and multiple antenna
configurations can be used to obtain information from the organs from
other "viewing" directions and can examine many specific organ
interface locations for more descriptive feature vector construction in
each given speech time frame. Interferences between modules are
avoided by proper triggering control or because the actual wave
transmission duty cycle per module is very low and therefore the
chances of interference between modules is very low.
EM Field Disturl S

The simplest speech analysis system used to measure speech and
speech organ motion is the field disturbance sensor together with a
microphone and recording oscilloscope. The sensor works by processing
changes in reflected EM signal levels from organs when compared to a
time “average” reflection level. To measure a change occurring in a 1
ms time interval, the typical system will measure and average the organ
conditions 2000 times. Time filtering of such received and averaged EM
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signals allows very small reflection changes, in a given frequency or
time band, to be detected in the presence of the very strong average
background, which is characterized by slowly changing signals.
Examples include measuring tissue distance changes, smaller than 0.001
cm, associated with acoustic pressure waves. Since the many interfaces
in the vocal system and the head/neck structures are located at different
ranges, and move at very different rates, the wave packet transmitted in
the field disturbance configuration reflects off all the structures within
the range gate time (and thus distance gate). As subsequent pulses are
transmitted and as time progresses, one integrates and processes the
returns from the sequence of pulses with one time constant, and by time
filtering with a different time constant, the method allows the user to

obtain information on many organ interface conditions as long as they

move at different rates.

For example, the method can discriminate rapidly changing
signals from normal, siow head motions. In particular, glottal tissue
motions (which herein include vocal fold motions) are associated with
vocal fold opening and closing. They are easily detected by frequency (or
time) filtering such that signals in the 50 to 2000 Hz band are detected in
the presence of strong, but slow moving skin/air reflections from the
neck and head. Simultaneously acoustic speech signals, corrected for
differences in time of flight, are also measured and recorded. Fig. 9A
shows the acoustic signal and Fig. 9B shows glottal tissue motion signals
for the word "fox." The /f/ in “fox” is an unvoiced first phoneme, and
the "x" is a phonetic /k/ that shows a vocal fold "fry" transition sound
to the end of the "x", which is an unvoiced /s/ sound. The /s/ sound
extends beyond the range of the x-axis in figure 9A, but is shown more
completely in Fig. 25C. Figure 9B also shows how speech frames can be
defined by changes in glottal tissue motion patterns; it demonstrates the
simplicity and effectiveness of determining whether or not voiced
(vocal folds moving) or unvoiced (vocal folds not moving) has occurred
in each speech frame. One sees clearly, and it is easily discriminated
algorithmically, the unvoiced /f/ and then the voiced /o/ and the
transition /x/ in “fox”.

n d ion
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The user measures the presence of tissue interfaces by setting a
fast electronic switch in the receive section of the radar module, called
the range gate. This allows a sample to be taken from a received wave
after a specified time, i.e., the round trip time from the transmitter to a
reflecting interface and then back to the receiver. By conducting this
measurement again, with a different time passage, one can measure the
change in location of the speech organ interface as time (and as a spoken
message) progresses. For example, the tongue tissue to air interface can
be measured as the tongue is raised to say the sound /n/. By changing
the time delay of the receiver sample time (called the sample gate or
range gate) with respect to the transmitted pulse, one can determine the
time delay to the tongue-air interface and back. It may happen that the
round trip time corresponds to a location where there is no
discontinuity and thus no reflected signal will be present. However, if
the time gate is set such that a reflected wave is detected, the user then
knows that an interface or discontinuity was present. It is clear that the
user can direct the radar to change the timing on the receive gate in
order to follow the motion of the interface as time evolves. This is done
by transmitting successive pulses and by finding the location of the
interface by changing the timing of the received pulses ("moving the
range gate") until a received signal is noted. Such timing changes can be
accomplished by using digital controllers or by using analog circuits such
as timing generators. Since modern solid state EM sensor modules can
transmit pulses at rates of a million times per second, and since the
velocities of speech organs are relatively slow, requiring only 100 to 1000
samples per second to keep track of their interfaces, the scanned receiver
gate (or range gate) mode of EM sensor (i.e., radar) operation can easily
resolve and follow the location of the speech organ interfaces.

Figs. 10 A-C illustrate the operation of a short transmit pulse and
scanned range gate system as a function of time through the PLU
sequence of /silence/, /t/ and /o/. Fig. 11A shows the one half wave
transmit pulse. Fig. 11B shows all the received pulses from the single
transmitted pulse of Fig. 11A which reflects off all the interfaces it passes
through in the path of the pulse. Fig. 11C shows the range gate pulse
which directs the received pulse sample through a switch into a bin.
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The range gate is set for the round-trip time to a particular interface, e.g.,
lips. Thus only the reflection from the lips is sampled, in the fixed range
gate example. However, in a swept range gate system, the range gate is
successively “swept through” the whole range, measuring reflections
from each position. The result is the digitized, cumulatively received
pulses (about 50 to 100) added into each bin at a fixed time in the range
gate as shown in Fig. 11D. The gate is then increased by one time unit
and 50 to 100 more pulses are directed into the next bin. (An experiment
of this nature is shown in Figs. 24A and C.)

In a modified EM sensing mode, called whole organ sensing, the
gate in Fig. 11C is widened from 0.1 ns to 5 to 10 ns and all the reflected
signals from all the organs in the propagation path are received and the
signal is stored. This is repeated many times to obtain a suitable signal
to noise ratio. Then at a suitable time later, e.g., 1 ms, the process is
repeated again, but the averaged data is stored in the next bin (e.g., bin 2),
etc. until a profile of the complete organ system condition versus time is
built up. There is a very large static, average background that is usually
subtracted away. When this background is subtracted away, the
differences in signal versus time bin can be amplified and pfocessed
using real time operations such as time filtering. Such a software
embodiment of field disturbance is especially valuable for rapid motions
where the background signals remain relatively constant, allowing the
algorithm to remove slow body motions from rapid vocal articulator
motions. Examples are measuring rapid tongue tip motions or vocal
fold motions.

For simple or low cost speech recognition enhancement, one or
two organ interface measurements may suffice. For increasingly
accurate speech recognition, the user will measure the locations and
velocities of many speech organ interfaces, will measure them with
increasing locational accuracy, will measure them at multiple locations
on a given organ (e.g., tongue tip and back), and will measure them
using higher sampling rates in order to obtain the benefits of averaging
and also to measure positions vs. time in smaller distance motion
increments. In addition the user will measure patterns of organ
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conditions over several sound change periods to obtain multi-phone
and multi-PLU information patterns.

The absolute location of the desired speech organ interface with
respect to the head, the jaw, and other organs can be determined, even if
the head, jaw, etc. are moving, e.g. by attaching the EM sensor module(s)
to the head or neck so head or jaw motion is canceled out. An
additional approach is to use the scanning property of the range gate to
detect a known reference location, such as the lower jaw skin-to-air
interface or the location of the front lip-to-air interface. In this fashion,
all other interface locations can be referenced to this "first" interface, and
the absolute distances can be easily extracted knowing the relative time
of flights. An example of an experiment that illustrates how the range
gated EM sensor speech information would be used to define speech
phonemes is given by Papcun ibid, p. 697, Fig 9. He used x-ray
microbeams to determine the positions of gold balls glued to the tongue
and lips. The position versus time data allowed him to determine those
organ articulations (tongue and lip motions) of the pairs of English
consonant phonemes /b/&/p/, /t/&/d/,and /k/&/g/. This position
information, together with the simultaneously measured acoustic
information, allowed him to uniquely identify the consonants being
spoken by the speaker. This use of organ positions to identify acoustic
speech units is consistent with the vocal organ location vs. sonogram
data categorized and explained in Olive et al. “Acoustics of American
English Speech” Springer, 1993. Thus, EM sensor measurements of
organ location and motion provide the information required for
accurate speech recognition.

The measuring of organ interface position for two separate times
gives a velocity, and is obtained by dividing the position change by the
time interval between two measurements. Organ velocity information
can be especially useful for determining the presence of PLUs which are
very fast such as “plosives”, or those that are not completely articulated
or which are coarticulated. The velocity information is especially
valuable for rapidly, but incompletely articulated diphones and
triphones. An example is the use of an EM sensor to describe the
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rapidly, and often incompletely articulated /n/ in the triphone /ana/
(shown in Fig. 6).

The measuring of velocity of an organ interface over two separate
times provides organ interface acceleration information. This is
valuable for use in defining the mechanical parameters needed for
speech organ trajectory models based upon, or constrained by organ
motions.

Homeodyne mode of EM sensor operation

The homodyne mode of EM sensor detection (e.g., coherent radar
mode) can also be used to obtain the velocity of the referenced speech
organ interface. If needed, by integration over time, one can obtain the
change in position within each measurement interval from the velocity
information. Velocity and movement information can be used for the
resolution of the "run-together”, “incomplete articulation”, and the
"variability of speaker” problem, as well as simplifying other speech
recognition problems, because the beginning of “gestures”, not their
completion, provides much of the needed information. In the simplest
version of the homodyne mode, a short pulse (one wave) is transmitted
toward the speech organs, i.e., toward the mouth, throat, etc. Using a 2
GHz EM wave transmitter, the EM wave length is 15 cm in air and,
consequently, the module would most likely be located a fraction of a
wave distance from the head, throat, or upper chest (although other
distances from 0 waves to several waves are possible). Once the wave
enters the organ tissue (such as the jaw skin, jaw bone, and tongue
muscle) the EM wavelength shortens by about a factor of 8 (the square
root of the dielectric constant) to a wavelength in tissue of about 2 cm.
For example, between the transmitter and the tongue-air interface there
may be one or two wavelengths in air plus one to three additional
wavelengths in tissue. Upon reflection from an interface, a similar
wave path of two to four wavelengths back to the radar antenna is
traversed. Upon entering the antenna and the receiver part of the
module, the receiver detector compares the wave height of the
returning reflected wave to an internal reference wave height. This
procedure measures the coherent interference between the returned
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wave and an internal wave of the same frequency which is frequency
stabilized (for only a few waves) to the initial transmitted wave.

As the organ interface causing the reflection moves during speech
articulation, the reflected wave will have a longer or shorter path length
compared to the path which was used for the initial observation. As an
organ moves to a new location, during the articulation of a word, the
reflected (return) wave will be added to the reference wave in the
module with a different phase. A different voltage will be observed out
of the voltage summer in the transmit-receive module, and, by
calibrating the phase change with distance, one can find the distance
moved from one transmit-receive cycle to the next and thus obtain the
velocity. As this send-and-compare homodyne process continues with a
fixed time between each send and compare, the phase change will
continue to be measured as the interface moves and the velocity will be
obtained.

In near field and mixed modes of EM sensor operation, an EM
wave can be generated using technology much like that described above
for the experimental versions of the impulse radar, and the wave(s)
propagate down a transmission line to the antenna structure. The EM
wave does not radiate from the antenna structure; however, phase
changes associated with organ motions nearby the antenna (within
about one wavelength) will change the phase and amplitude of reflected
near field waves.

The homodyne technique can be modified for various
measurement conditions for speech recognition and related
technologies, by using one or more of the following techniques, together
or separately:

(1) One wave in the transmitted beam but more than one wave
cycle in the received range gate which allows reception of a continuum
of reflections from as many interfaces as desired as the outgoing wave
passes through the head or upper body. Thus as time passes in the
receiver channel, one sees the EM wave reflections from all interfaces in
the range gate window which provides a signature of the position of
many organs in a time stream of information from the receiver.
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(2) A scanning range gate, with fixed width At, but variable range
gate delay from transmit pulse to transmit pulse. This obtains
information from multiple moving (or stationary) interfaces located at
different distances from the module and presents them as received
signals (or absence of signal) after each transmit pulse. In this way, the
signal from each cycle can be stored in a sequential memory location by
the controller; thus, the algorithm can construct a pattern of interface
reflection intensities versus delay time. This approach is applicable to
radiated and non-radiating systems.

(3) By transmitting a relatively long EM wave (many cycles) that
scatters off one or off several interfaces. This implementation is easy to
use because the wave train is so long that one or more of the cycles in
the pulse train are always reflecting off one of the many interfaces in the
head. It can be made easy to interpret by using a fixed range gate which
records only the reflection from one of the waves (of the many waves in
the single transmit cycle) which is received in the range gate timing
window and is measured by the "homodyne" technique. This
configuration can provide a unique reflection signature as time passes
and as subsequent trains of pulses are transmitted. No matter how the
organ interfaces move, there is always a wave being reflected at a time
which will be received through the fixed range gate. These scattered
waves make a pattern associated with a unique combination of several
vocal organ interface motions that evolve in time and the time patterns
can be associated with a unique identification of a given sound, word, or
phrase. This multiwave EM sensor configuration can also be modified
by adding moving range gates, variable range gate widths, and variable
frequencies. These approaches are applicable to radiated and non-
radiating systems.

Signal Processing

As shown in Fig. 12 EM sensor control unit 50 drives a repetition
rate trigger 51 which drives pulse generator 52 which transmits one or
more pulses from antenna 53. Control unit 50 and trigger 51 also actuate
switch 55 through delay 54 to range gate the received pulses. The
received pulses from antenna 53 pass through switch 55 and are
integrated by integrator 56, then amplified by amplifier 57, and passed
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through AD converter 58 and processor 59. Processor 59 can include
gain setting, speaker normalization, time adjustment, background
removal, comparison to data from previous frames, and other well
know procedures. The digitized and processed data is stored in memory
bins 60 from which feature vectors 61 are formed. Simultaneously,
signals from microphone 62 are digitized by AD converter 63 and the
digitized data is processed, formed into feature vectors, start of speech is
noted as applicable, and the information is stored in memory bins 64
from which feature vectors 65 are formed. The two feature vectors 61, 65
are further processed and combined in steps 66, 67 and if the result is
speech recognition, a speech recognition algorithm 68 is applied.

A similar processing system is shown in Fig. 13 except that it is for
multi-location vocal organ signatures. Each single horizontal bin of the
nonacoustic patterns describe a single organ location, and the value in
that same bin changes as time progresses, the organs move and new
patterns are formed as shown. Such a single organ location bin evolves
in time, as shown in Fig. 12, as the EM sensor graph 60 and feature
vector 61 of a single organ. The system in Fig. 13 is essentially the same
as shown in Fig. 12 through A/D converters 58, 63. However, in Fig. 13 a
plurality (n) of memory bins 60a, 60b, ... 60n are illustrated being
produced by sequentially range gating to measure different organs or
different organ parts. Data in memory bins 60a, 60b, ... 60n are used to
generate feature vectors. The rest of the processing is as in Fig. 12.

vention i r

Fig. 14 shows an algorithmic decision tree joining one
nonacoustic speech recognition (NASR) algorithm and one
conventional acoustic speech recognition (CASR) algorithm. This
algorithm is represented by box 67, Fig. 12 and Fig. 13. This decision tree
is easily extendible to multiple NASRs if several EM sensors are used as
shown in Fig. 13. The test values and resultant values of the
algorithmic procedures are determined by the application and the
statistical methods used.

E i ification-P E

Figs. 15 A-D, show the acoustic and EM sensor measured motion

of vocal folds for the PLU /ah/. The data was taken using a variation of
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the range gated EM sensor system but with a fixed range gate. The
Fourier transform of the EM signal, Fig. 15D, clearly illustrates the
fundamental vocalized excitation function pitch of the speaker at 120
Hz. In this case the EM wave generator transmitted multiple waves
(about 10) and the parts of these waves which reflect off the vocal folds at
the time the range gate is opened, enter the EM sensor receiver and were
detected and stored. The advantage of this sensor configuration is since
there are so many waves, one wave is always reflecting off an organ
interface at a range gate time that allows detection, thus simplifying the
finding of the speech organ interfaces. This simple experiment also
indicates how easily this speech organ location information can be
correlated with simultaneous acoustic word signals from a microphone.
The acoustic signals from a microphone sensing the same words as the
EM sensor(s) were displayed on a separate trace of the oscilloscope and
were sampled in an A/D converter and were stored in a memory with
identical start times and with identical time bin numbers as the memory
bins for the EM sensor data. The correlation between these two (or
more) signals were used to validate the assignment of irreducible
spoken sound units (i.e. PLUs) with the expected location or activity of
the vocal organ being measured. In this example in Fig. 15B the glottal
tissue motions associated with vocal fold on-off cycling, or the "voiced"
activity is shown.

Measurements of other organs, such as the tongue and the lips,
have been equally easily obtained because they move more slowly than
the vocal folds and are larger so they reflect more EM wave energy back
to the receiver. Fig. 16 shows the jaw/tongue and glottal tissue
responses of radar modules to the word "one" having several
phonemes. In particular one sees the jaw opening in preparation for
voicing the diphthong /oW /. The glottal tissue trace also shows a glottal
tightening signal preceding vocalization, and then it shows the onset of
vocalization as the dipthong is vocalized, well after the jaw /tongue
motion has begun. This pattern of jaw opening is a triphone of
/silence/ /oW /, then the tongue lifts for /n/, then the tongue drops as
the final /ae/ is sounded. These simple EM sensor produced NASR
patterns are very constraining on the type of acoustic units that were
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used, and thus must be compatible with units simultaneously
recognized by a CASR. This NASR describes the onset of speech, the
opening of the jaw, the motion of a voiced diphthong, the voiced high
tongue position, a tongue drop, and silence - an end of vocalization and
organ motion.

The capacity to detect rapid and incomplete articulator motion can
be very useful for distinguishing acoustically difficult phrase
combinations such as "ana". When spoken rapidly, a speech sonogram
of "ana" (see Olive ibid, p.337) often does not show the /n/, which is an
example of incomplete articulation. Thus a CASR that makes a
recognition decision based upon the acoustic information, will miss the
/n/. However the NASR measurement will show rapid tongue motion
(called a "gesture” in the speech literature) which is associated with a
weak /n/ sound. It is easily detected by the motion detector system,
illustrated as unit 22 in Fig. 4, whose data output in a multiple
transmitted cycle, fixed range gate mode, with time filtering to remove
slow motions and very fast motions is shown in Fig. 6. The algorithm
will insist that an /n/ be placed between the two /a/’s in order to
provide the best recognition estimate.

Algorithms

Conventional acoustic speech recognition systems (CASRs) have
several major problems which lead to their nominal 2% error rates in
quiet laboratory environments, and error rates which exceed 10% when
used in noisy environments, on large vocabularies, by stressed speakers,
or when used by dialectal speakers. These error rates are too high for
most applications. What is needed is a simple, economical sensor
device with a stable algorithm that provides sufficient information to
reduce the error rates to below the nominal 2% error rates of the best
present systems.

All of the algorithms described herein use the property of
obtaining speech organ position or motion information through
generating, transmitting and detecting EM waves reflected and
attenuated from the speech organs. The basic ideas of these new ways of
processing the EM information are usually (but not always) used in
conjunction with simultaneous acoustic information, and are described
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as algorithmic procedures. Modifications and variations of these
algorithmic building blocks can be used for a variety of applications.

Single organ methods are described first because they make up the
basic units of multi-organ and multi-time algorithms. They are
characterized by feature vectors describing the state of the vocal
excitation function and vocal tract that are essentially constant over a
defined time interval called a speech time frame. This new capacity to
define constancy of condition makes is possible to compare the
measured feature vectors from each time frame with ones previously
stored in code books. This constancy also solves the time alignment
problem that is so difficult in acoustic recognition algorithms because
the vocal tract is time independent over the speech time frame.
Additional methods of normalizing the measured vocal tract organ
coefficients that make up the feature vector to those that would have
been spoken by an average speaker over such a time frame are also
described. In addition, a method to limit the number of values of the
coefficients of such an organ feature can assume is described.

Such single organ feature vectors can then be combined with
feature vectors from other organs taken over the same time period, or
time frame to make multi-organ, single time frame feature vectors.
Such multi-organ feature vectors, normalized and quantized by
algorithms described below make possible either complete nonacoustic
recognition (no acoustics needed) or very accurate joint
nonacoustic/acoustic recognition systems for very high accuracy
applications.

Single Organ Algorithms

The actions of single speech organs, such as vocal folds, can guide
important decisions made by traditional acoustic speech recognition
systems; however it is not normally possible to use the non-acoustic
(radar) signature from a single speech organ motion to uniquely identify
a word-sound. Thus single organ algorithms are used primarily in the
joint speech recognition mode (where EM sensor plus acoustic sensor
data and algorithms are used together). This additional information
aids CASR algorithms to provide more accurate, faster, and more
economical overall speech recognition. Figure 12 shows how feature
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vectors are formed for both an acoustic signal and an EM sensor signal of
the single organ vocal fold positions versus time and how they can be
joined together for speech recognition and other purposes.

Also included in single organ motion algorithms, are methods
using the time evolution of organ motion to determine the condition of
various parts of a single organ. Time differentiation of organ position
signals gives varying velocities associated with known organ motions
(e.g. the tongue tip moves at rates faster than the tongue body). Another
method is to obtain several measurements of single organ-part locations
from the several interfaces of a single organ (e.g. tongue tip vs tongue
back). Another single organ algorithm relies on using one or more
wavelengths to detect one or more resonance reflection effects associated
with organ shape or air tract-organ shape dimensions. An example is
the tongue-palate dimensional opening which changes as sounds are
formed.

Single O N lizati |

The feature vectors associated with an individual’s speech can be
"normalized" and then mapped uniquely to a feature vector of a
referenced individual or to a group of individuals (e.g. to an average
speaker of the language). This method includes training an algorithm
by asking a speaker to pronounce a known set of words chosen to
determine the reflection signal amplitudes, the position limits, the
velocity limits, and the time periods of as many of the individual’s vocal
articulators as needed for the given EM sensor suite for the application.
Then an algorithm makes a one to one assignment from the EM sensor
signal associated with each articulator position during the speech frame
measurement, to the signal measured by the same type of EM sensor, but
obtained earlier from the referenced speaker(s) as they spoke the same
word set by using simple interpolation between the measured data. In
this way a person with a small tongue that reflects less EM wave energy
and that does not move as far, is normalized to an average individual
who has a larger tongue and more extensive tongue motion.

Using this knowledge of organ range, and the phonetic
knowledge that an organ must move a given fraction of its range to
establish a detectable new sound, one can quantize organ motions by the
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fraction of total allowable change measured during the speech frame. In
other words, there are bands of organ position over which no discernible
speech sound change occurs. Thus the feature vector coefficients can be
quantized, and a given organ feature vector coefficient may be described
by only a few fractional values, such as the following five, 0.0, 0.25, 0.5,
0.75, and 1.0. These numbers can by multiplied by a normalized
amplitude value if desired.

As an illustrative example, consider the tongue body (i.e., blade)
positions which could be described by a normalized and quantized
feature vector coefficient of 0.25. This value of 0.25 means that the
tongue is in the second of five possible positional “bands” that describe
the range of its motion as detected by the EM sensor system in use. This
value would describe the tongue position until in a subsequent speech
time frame, the tongue would have moved sufficiently to be detected as
lying in a new “band” of the allowed positional range (and a new
discernible sound might be caused by the new tongue position). The
feature vector coefficient in this new speech frame, would be
normalized to a new value and then quantized to a new number, e.g.,
0.5, representing in this example a tongue blade in the midway position
between far up and far down.

This algorithm can be extended to normalize a speaker’s speech
organ rate of motion velocity in several ways. One important time
normalization is described below under speech period definition and
pitch period normalization. A second important time normalization is
to normalize the rate of change of a feature vector coefficient over one
or more speech time frames. The algorithmic procedure is
straightforward; one subtracts the normalized coefficient or coefficients
of the desired organ locations obtained during the most recently
processed speech frame from those obtained in the second most recently
processed feature vector. One divides this normalized position change
value by the time elapsed between the two feature vector
measurements. For example, subtracting the start time of the second
most recent frame from the start time of the most recently formed frame
gives an elapsed time. The vector times can be used as measured, they
can be normalized using well known time warping techniques from
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acoustic speech, or they can be normalized times for the sounds as
spoken by a reference speaker and obtained via a recognition process,

One can also define characteristic motion times differently; for
example each organ has measured characteristic rates, and the algorithm
simply divides the location coefficient difference by a previously defined
time constant to obtain a characteristic motion time. Each organ can be
normalized according to its known responses which are obtained from
research, from training on the individual or on a referenced person or
group, from mechanical models, or adaptively during the speech
recognition process. Furthermore, during training, the characteristic
organ motion times of the user can be associated, on a one to one basis,
with the characteristic organ motion times of referenced speakers. These
velocity values can then be quantized as described above for position
values. An example of extreme quantization of organ motion is to form
two velocity bands -- slow or fast (e.g., 0.0 or 1.0 ). This simple
quantization process, see Table III, constrains the phonetic identification
of the PLU or other acoustic unit very strongly.

Using the algorithmic procedures described above, one can use
one or more of the following four operations: 1) normalize an
individual speaker’s feature vectors to those of an average population;
2) detect the degree of incomplete articulation and coarticulation; 3) pre-
normalize an individual’s articulation habits; and 4) limit the number
of values used to describe the condition of his speech organs. In
addition, as each day starts or during the day, using adaptive techniques,
the system can renormalize the speaker's use of time as he speaks to the
referenced conditions obtained earlier.

The methods of using nonacoustic together with acoustic
information to form speaker independent (i.e., normalized) descriptions
of feature vectors make possible, for the first time (using nonobtrusive,
real time means) obtaining very rapid, and very accurate identification
of the obtained feature vector against libraries of preformed feature
vectors that are associated with known speech units such as syllables,
phonemes, PLUs, acoustic units, words, and phrases.

i Algori
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A specific and important single organ algorithm is the contact of
one organ against another. In speech, the presence, the location, and the
rate of tongue contact against the palate shows that a “t” or “d” or
similarly determined sounds are being formed by the tongue. The
tongue tip to palate contact resonance has been measured and a five fold
increase in reflectivity is obtained from the contact. Fig. 17 shows
tongue contact data, and Fig. 18 provides an algorithmic description.
Organ contact detection is a very important indicator of certain speech
sound units being articulated. The use of resonances and changes in
resonances from one speech frame to another provides clear evidence of
such conditions. The contact of one organ against the other changes the
EM standing wave structure and organ interface EM boundary
conditions, and results in a large change in reflectivity. The use of range
gating, time filtering, and other locating techniques allows one to locate
the points of contact if desired. Thus the contact intensity, change from
frame to frame, and location can be recorded, normalized, and stored in
a feature vector for subsequent pattern matching, code book comparison,
and other statistical techniques described below.

A strong resonance condition can be detected when the
dimensions of two or more organ interfaces are resonant with a
particular wavelength of the propagating EM wave from an EM sensor.
When an EM wave of appropriate wavelength reflects from one
interface, it can add coherently to an EM wave reflecting from another
interface. The case of total constructive interference occurs when the
distances between the interfaces are multiples of 1/4 wavelength apart in
the medium of transmission (for example, about 4 cm for 2 GHz in air or
about 0.5 cm in tissue) depending upon how the interface changes the
wave phase upon reflection. A very large reflection occurs because the
signal intensity is the square of the sums of the wave amplitudes at the
detector, or it is 4X that of single interface reflection. Similarly, reduced
reflection can occur when reflected wave amplitudes destructively
interfere. These conditions occur when there is a 1/2 wave distance
between interfaces, and the detected reflection is canceled (or reduced if
the phase is not perfectly destructively phased). A consequence of
reduction in reflection is that a stronger, forward propagating wave
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beyond the interface takes place, as in anti-reflection coatings on camera
lenses. In the case of tissue, the index of refraction is so large, typically 5
to 9 (in contrast to air with an index of essentially 1.0 ) that very large
coherent effects can take place. To detect these effects, a swept frequency
EM generator and complementary detector can be used to “measure” the
distances of important interfaces for important conditions. The
transmitted and received EM wave information, including range gate
information if used, is recorded along with simultaneously measured
acoustic information.
Single O Algorithmic Descripti

Fig. 19 illustrates one method for determining the onset of speech,
noise rejection, voiced-unvoiced speech, end of speech, and pauses
using acoustic and non-acoustic information together. The example is
for American English with the word "sam". The times and other
constants are statistical estimates and are to be adjusted for different
speakers and languages. These algorithms have been tested manually.

The acoustic information from microphone 70 is inputted into an
acoustic speech sensor, A/D converter and 1 sec. memory 71. Vocal fold
motion information from EM sensor 69 is input into integrator and
band pass filter 72. The processors make decisions as described below
and as listed in Table I. The listed examples are single organ NASR
algorithms which can be used as building blocks for more complex
speech organ descriptions.
Table I Examples of single organ EM sensor algorithms

1) onset of speech time 6) average rate of speech
2) end of speech 7) difficult sound differentiation
3) background noise rejection 8) multiple PLU & word coding

4) presence of voiced speech
5) pitch of speech

Onset of Speech Time Algorithm

Onset of speech is important for speech recognition because there
are many extraneous noises in a user’s environment that can trick a
CASR into beginning to process the sounds as if they were speech. The
algorithm of Fig. 19 is based upon the statistical occurrence in a language
of vocal fold motion onset, and it uses speech time frame definition and
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feature vector formation. In the case of whispered or nonsounded
speech, additional EM sensor information is required for onset
definition and is described below. Vocal fold open/close motions occur
when voiced sounds are formed, as well as when the folds open for
whispering or to allow air flow for unvoiced sounds. Most American
English sounds are voiced and almost all words contain one or more
voiced sounds within each second of speech. This speech usually
contains up to ten PLUs or similar sound units per second and a non-
voiced sound is statistically followed by a voiced sound or pause every 1
to 2 non-voiced PLU units. The algorithm detects the onset of speech by
using both an acoustic and one or more EM sensor modules at the same
time. The issue for this algorithm is that some words begin with
unvoiced sounds such as “s” in “sam” or in “sixteen”; thus the
algorithm must be able to back up to catch sounds that may be missed by
the vocal fold motion onset detection by the EM sensor. In two speech
processing systems, shown in Figs. 12 and 13, the onset algorithm
described here would be used primarily in box 66. The unvoiced
duration timer T is initialized to zero at system turn-on.

Speech onset testing is begun after acoustic and EM speech time
frames and feature vectors are formed. For this example, each speech
frame "i" is defined by its end time ti. The algorithm Fig. 19 is entered at
box 67 where a test on timer T for the cumulative duration of unvoiced
speech over several speech time frames is conducted (e.g., is T >0.5 sec.?).
If the duration of testing is shorter than 0.5 sec, then if the acoustic
microphone 70 output signal exceeds a preset threshold 73, but when it
is less than a loud noise threshold 77, then the algorithm looks for vocal
fold motion to occur within the same speech time period in box 79. If
acoustics and vocal fold motion are present, then a voiced speech unit
has occurred and the unvoiced timer, T, is set to zero in box 78, and
processing on frame tj continues. If satisfactory acoustics, but no vocal
fold motion occurs in box 72, the sound in frame t; is labeled as
nonvoiced speech in box 79 and processing continues. If the acoustic
signal is too loud in box 77, and vocal fold motion is detected at box 80,
the signal is processed as loud voiced speech box 78. If acoustic speech is
below a threshold box 73 (a test not used for silent or whispered speech
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applications), the EM sensor feature vector is processed in box 82, the
acoustic signal is labeled as too weak in box 82, the non-voiced or silence
counter T is increased at box 82 by the time t; - tj-1 of the most recent
speech time frame, and the processing continues. If upon entering the
algorithm at 67, the test on T shows that 0.5 sec. or longer of unvoiced or
silent speech has occurred, the speech frames within the T (e.g.,. 0.5 sec)
interval that have acoustic energy coefficients less than € are deleted at
box 85, a test is made for low acoustics in the presence of vocal fold
motion at box 86. If low sound, but vocal fold motion is occurring, the
system sends a low sound message to the operator at box 84, and returns
to the control unit awaiting a start condition.

Speech onset, as detected in the master control unit by direct
messages from units 78 and 83 in Fig. 19, may be validated by the
algorithm starting at box 67 once start has occurred. An important
example is that tongue and jaw motion EM sensors as shown in Fig. 4
(modules 21 and/or 22) and in Fig. 19 (modules 68, 83) can measure
precursor motions of the tongue and/or jaw motion as they move to a
position in preparation for the first sound. Fig. 16 shows an example of
speaking the word “one”. Tongue and jaw motion are helpful
indicators of speech onset, but do not guarantee speech; thus, the
algorithm starting at box 67 is necessary to test for speech starting within
0.5 sec of timer T after a start condition is detected from boxes 83, 78, or
79. If after 0.5 sec, no speech is validated, the system is returned to the
master control for quiescent operation, or other conditions.

In the cases of onset of whispered or unsounded speech,
additional EM sensor information is required. The same single organ
arguments used to describe vocal fold motions and the use of the single
organ tongue (or tongue-jaw coupled motion) discussed above are used
as onset indicators. This includes the vocal folds which open, but do not
vibrate open and closed, during whispered and unvoiced speech. The
acoustic level sensors, boxes 73 and 77, can be turned off if unsounded
speech or machine control communication is being used or set for very
low levels when whispering only is desired.

-of- i
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If the vote from the onset of speech algorithm shows that speech
has started, then the algorithm in Fig. 19 continues to test each speech
time frame for continuation of speech. The main issue for the
algorithm is that in American English, it is common that words end in
non-voiced consonants --e.g. plural /s/‘s. This algorithm uses a test
time 0.5 seconds to limit search after vocalized speech stops. Processor
67 tests if T>0.5 sec., and if true, it directs the operation to processors 85
and 86, where the process is stopped and returned to the controller. If
acoustic units 73, 77 show acceptable acoustics, but no vocal fold motion
is detected at boxes 72, 79 within 0.5 sec (i.e., T<0.5) after the last voiced
speech frame, the counter T is increased by the frame-i time duration
and the next speech frame is tested starting at box 67. These tests are for
excessive background noise that may “alias” as acoustic speech sound,
but the statistics of the language insist that every 0.5 seconds (example
only) vocal fold motion must occur. However, every speech frame that
is processed within the 0.5 sec waiting period, even without voicing, is
processed as a nonvoiced segment and the feature vector is appropriately
defined. If after 0.5 sec of processing, no vocal fold motion is detected,
the algorithm 67 defines end of speech at boxes 85, 86. The speech
frames recorded during the last 0.5 sec are tested for acoustic levels above
€, and if not, they are deleted. For very special speech technology
applications where many unvoiced sounds are used by a speaker as in
storytelling, acting, or simulating machines or animals, the user can
change the test periods for T to emphasize the acquisition of unvoiced
sounds of varying types and lengths.

B i ion ithm

There are two issues in background noise suppression: noise that
occurs when the speaker is not speaking but which a CASR confuses
with speech onset, and noise that occurs during the speaker's ongoing
speech period. In the first case, noise occurring while the speaker is not
speaking is eliminated as valid speech input by an onset of speech
algorithm.

The second case, the elimination of acoustic noise (from
background) that enters the microphone during speech, is made possible
by the use of non-acoustic data. If a constant high background acoustic



WO 97/29481 PCT/US97/01489

10

15

20

25

30

35

-54-

level is such that it is comparable to the acoustic input by the speaker
into his own microphone, then it is known by experts that CASRs will
not work. However, the multi-organ NASR systems will work, because
they can provide sufficient information to determine the missing speech
unit information, they will continue to function by automatically
defining speech time frames, and they will provide best estimates of the
speech sounds as if they were operating in a whispering or nonsounded
speech mode of operation.

In the case that the exterior acoustic noise is loud, but short in
duration, it will appear during one or only a few speech time frames as
an unusual acoustic signal in the acoustic output of speech processing
algorithm illustrated in Figs. 12 and 13. The algorithm in Fig. 19
illustrated by boxes 67, 73, 77, 80, 81 detects the unusual noise event,
removes the frame information, and marks the frame as “damaged” for
subsequent processing. A typical acoustic unit recognition algorithm as
illustrated in Fig. 14, will detect the noise and will note that the CASR
information is to be disregarded, and only the NASR feature vector
coefficients will be used to obtain the best possible acoustic unit
identification. As such noise events occur, the user can be notified that
the data is being degraded by external noise signals.

In the case that moderate level noise degrades the information
reaching the microphone from the speaker, the additional information
provided by the NASR system can be used in an algorithm to recover
the speakers intent. The user may chose to direct the algorithm in Fig.
14 to 1) pick the best signal from the NASR test when the CASR signal is
inconsistent with the NASR data, 2) perform a further test on the
continuity of CASR and/or the NASR feature vectors from the
preceding speech frame to the following speech frame in order to reject
feature vectors that are inconsistent with known feature vector
sequences over several speech frames or that don’t meet known organ
motion constraints. Similarly, if a diphone or triphone library is
available, the multi-frame signals from both the CASRs and the NASRs
can be compared to the best fit in the library using a process substantially
the same as in Fig. 14. If no match, or only a low probability match, is
available from the CASR system the speech frame acoustic signal based
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identification is given a low probability (e.g., it was probably noise
degraded), and the algorithm chooses the NASR identification as best
according to the rules of the algorithm.

The capacity of the methods described above to notify the speaker
that an error or uncertainty has occurred is very valuable, especially in
high value speech recognition or similar situations where an error can
have serious consequences. This stability is characteristic of “robust”
recognition systems.

Algorithm for 1 ificati f Voi nvoj h-PL

Vocal folds do not open and close in repetitive cycles when
nonvoiced sounds are spoken. They do open for whispering or
nonvoiced sounds in most circumstances. Examples of 8 voiced and
nonvoiced PLU pairs, which are confusing to CASRs, are shown below
in Table II (from Olive et al., “Acoustics of American English Speech”,
ibid p. 24). They are confusing because each pair has the same vocal tract
formation, but one is voiced (vocal folds vibrate) and the other is
sounded by air rushing through vocal tract constrictions (frication,
aspiration, etc.) such as almost closed lips as /s/ is sounded, in contrast
to the vocalized version which is /z/.

TABLE II
Voiced and Non Voiced English sound pairs discernible using EM
Sensors
voiced unvoiced voiced unvoiced
b p \% f
d t th (as in then) th ( asin thin)
asin ¢ ut k z s
j ¢ (as in chore) g (asin sh (as in shore)
garage)

If the CASR algorithm used in conjunction with the NASR decision
algorithm (shown in Fig. 14) is applied to this decision, it will yield a
signature for an acoustic sound that will be somewhat ambiguous
between the voiced or unvoiced version. That is, its probability of
certainty of identification will be confined to either one or the other PLU
of the pair, but the certainty as to which one will be lower than desired.
A voiced-unvoiced algorithm is accomplished two ways. The simplest,
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used in the sense of a speech recognizer “cue”, uses Fig. 19, processor 72.
Processor 72 detects vocal fold motions and notes in a control coefficient
of the feature vector for the speech frame that this distinction has
occurred. The second approach uses the normal algorithmic processing
in Figs. 12 and 13, where the data is measured, averaged, quantized, and
processed such that the vocal fold EM sensor data is available for the
acoustic sound recognition procedure in Fig. 14. The algorithm in Fig.
14 would proceed as follows to deal with a softly spoken /z/. The
acoustic sound feature vector when compared with those in the CASR
library will show two PLUs with relatively high probability (e.g., /s/ and
/2/), but with a notation that the acoustic signal has a low probability of
discrimination with these acoustic units. Next the algorithm tests the
output of the NASR system to provide the probability of voiced (e.g.,
100%) or nonvoiced speech (e.g., 0%), and the joint algorithm chooses
the voiced version of the PLU being tested in the speech time frame
being examined.

ri r D ination Algorith

The output from sensor 23 in Fig. 4 provides the fundamental
open and close rate of the glottis, as measured by observing the motions
of the glottal tissues, especially the vocal folds.

1) Algorithm 1 has been designed and tested to measure the time
intervals of the glottal open/close motions as shown in Figs. 20 A,B and
to automatically give the instantaneous voiced pitch period of the
speaker each speech frame. This algorithm automatically defines the
speech frame duration to be the time between zero crossings of the EM
sensor data and the peak to peak times of the EM sensor data. The
fundamental frequencies of the two data sets shown in Figs. 20A, B differ
by a factor of 20% and they show that "e" is a higher pitched sound with
a vocal fold pitch period of 6.25 ms (160 Hz) than "u” with a period of
7.81 ms (128 Hz) by the speaker. The savings in computational time of
this algorithm, compared to the normal all acoustic pitch tracking
algorithm, is greater than a factor of 5 and is much more accurate.

2) Algorithm 2 has been designed and tested to determine if a
sequential measured pitch period, when compared to an initial pitch
period measurement, has the same pitch period value (within a user
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defined numerical band of measurement accuracy, e.g. 5%). If so, this
algorithm then increases a “counter” by 1 unit as it counts the next
period as being identical; it proceeds and counts the number of
sequential pitch periods that have the same value. If the next pitch
period value is no longer the same, then the algorithm reports that a
new initial period has started. See Figure 9 where speech frames 3
through 15 meet such a criteria. In two experiments, one of which is
shown in Fig. 15B, two male speakers spoke the phoneme /ah/, and the
algorithm showed one to have a 90 Hz fundamental (11 ms pitch period)
and a 120 Hz (8.3 ms pitch period) fundamental excitation frequency, and
the pitch change with words was easily tracked for each speech frame.

Such a sequence of identical pitch periods as defined by algorithm
2 can be used in another algorithm to define a multiple period speech
frame of constant feature vector value when other EM sensors and/or
acoustic information are involved. The definition of constant period is
extended to constant acoustic signal, or constant tongue position, etc. so
that an algorithm can automatically determine the number of voiced
pitch period cycles over which constancy of a sounded speech unit takes
place.

3) Algorithm 3 uses transform techniques for the pitch period
finder and uses data from unit 23 in Fig. 4 which appears like that
shown in Figs. 20A, B. It uses algorithm 2 to define a number of
identical speech time frames. The algorithm next filters the data from
the series of frames over which the data is constant, with a smoothing
function (e.g. Hamming), and it next performs a Fourier transform (or
Z-transform) on one or more sets of the time series of data points. The
algorithm performs a search on the transformed data set(s) to find the
highest amplitude signal and then chooses the frequency associated with
the highest amplitude signal to be the fundamental pitch frequency.

Two variations on this algorithm to find the pitch period are: 3a)
automatically measure the frequency difference between the first and
second harmonic to find the fundamental frequency, and 3b) pick the
location of the first peak when searching for peaks starting from zero
frequency. These have the advantage of not basing the selection on the
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highest amplitude, and also provide redundancy in the measurements
which can be averaged to find a more accurate value.

4) Non-voiced speech frame duration. In the cases where no
glottal repetitive motions occur, i.e., nonvoiced speech or silence is
occurring, a default method of defining speech frame duration is
required.

4a) The time frame is defined as the time period during which
the acoustic output is constant within predetermined bands. If the
unvoiced sound changes, then a new speech frame is started and the
previous time frame duration is recorded. This algorithm treats silence
as no acoustic change.

4b) A default time of 50 ms is used to define the duration of
sequential speech time frames.

An algorithm is designed to be trained by a series of words which
cause the speaker to speak vowels and consonants which cause the vocal
folds to vibrate at the lowest, at an intermediate, and at the highest
frequencies for the speech recognition or speech technology application
at hand. This training, defines the pitch period range of an individual
speaker over the vocabulary training sets of language sounds to be used
in the application. Similarly, a single reference speaker or a group of
chosen reference speakers would have been asked to speak the same
word set in order to define a reference code book of normal pitch periods
for known sounds. Then the algorithm makes a one to one
correspondence from the user’s instantaneous speech period to the pitch
period of the reference speaker for the same sound. Then the algorithm
maps a speaker’s pitch period time to a reference speaker or speakers
period every time the period is measured during normal use. This new
period is used to define the pitch period of the normalized excitation
function in the normalized feature vector.

Use with CASRs: The instantaneous pitch period information as
obtained by NASR systems is used by conventional speech recognizers to
aid in identifying the phonemes, to train a recognizer to find the natural
pitch of the speaker, to normalize the speaker to an average or reference
speaker, to determine the excitation function in model based recognition
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systems, and to assist in determining the speech rate for word alignment
(i.e. time warping).

Use in NASRs: The algorithms provide a basis for defining
speech time frames, fundamental pitch periods, speaker identification,
and basic excitation rates for model based recognition algorithms. Most
importantly, they allow the NASR system to remove enough of an
individual’s idiosyncratic information such as non-average pitch usage,
and nonaverage number of pitch periods in acoustic unit articulation
from the measured feature vectors. Therefore, these methods allow the
acoustic sound unit, e.g. PLU or phoneme, to be defined by the excitation
function conditions and the vocal tract conditions, not by timing
information that is confusing. When timing information is useful, it
can be separated from organ position information and used to best
advantage. Straightforward acoustic unit identification follows.

Rate of Speech Algorithm

The rate of speech is important for conventional acoustic speech
recognizers and nonacoustic recognition systems because they use time
intervals derived from time rate of acoustic information flow to identify
phonemes and to align speech segments for speaker normalization. The
CASRs use a technique called time warping to align the rates of
segments of spoken speech so they can all be recognized with the same
recognizers no matter how rapidly or slowly they were spoken. The
NASR algorithms use speech period length, numbers of periods used
per phoneme, and statistics to determine the number of phonemes
spoken per second, and to determine the time an individual takes to
speak common phonemes. The general principle is first to record the
numbers of vocal organ motion events that are uniquely (in a statistical
sense) associated with the vocal articulation of known sounds for the
vocabularies being utilized by the user. Second, measure the number of
pitch periods the speaker uses to say a small number of known
phonemes (during training with known word sets).

. Voiced-Unvoiced Statistics Algorithm for average speech rate:

By measuring the number of times the comparators 78 and 79 in
Fig. 19 are used in a given segment of speech (e.g. every 4 seconds) one
can measure the rate of voiced vs unvoiced PLUs in the short time (e.g.,
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4 second) word sets and compare this number against the number in
“standard speech”. In this algorithm, standard is defined to be the
speech rate for which the conventional CASR is set for processing or
which is obtained by the EM algorithms for pitch period duration and
number of frames used on training phonemes from a reference speaker
or group of speakers. This can be used to normalize the duration and
number of pitch periods used by the individual speaker to the number
used by the referenced speaker group.

. Tongue Motion Statistics Algorithm for average speech rate:

By using the tongue motion sensor 22 in Fig. 4, the number of
tongue motions above a threshold can be measured for each time
segment for which speech rate information is needed, see Fig 16. This
algorithm simply uses a threshold detector in processing unit 83 in Fig.
19. The number of times the tongue motions exceed the threshold each
second is converted to rate of PLUs per second in the speech being
spoken using training statistics. First, speech appropriate for the
language-vocabulary being used is spoken into the system by both the
reference group to define a library and then by the user during a training
session. The number of threshold triggers are counted for the time
interval exercise as shown in Figs. 12 and 13, referring to processor 66,
which contains the algorithm illustrated in Fig. 19. The two are
compared and a ratio is derived that associates tongue motion threshold
events of the user with a reference group. From this, knowing the
number of speech frames, or the number of PLUs per second, the
algorithm corrects the feature vectors of the speaker to be the same
average time period of the reference group. During normal use by the
speaker, the value can be adapted by examining the threshold count
during any reasonable period of speech, and knowing the vocabulary,
one compares the count to the expected count rate and makes the
corrections. Similar statistics can be built up and used for other organ
motions.

4 Combined Organ(s) Rate of Speech Algorithms:

It is clear from the two prior examples that more complex
decision trees can be formed by using more than one NASR, each for its
own statistical measurements of organ threshold triggering, which are
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then combined by statistical averaging to generate a final number for the
speech rate signal.

Single organ motion detectors can be used to discriminate
between similar spoken sounds or otherwise difficult word recognition
problems because it is usually the case that the slight differences in
similar sound patterns are associated with one organ motion, often
incompletely articulated. As for voiced-unvoiced PLU discrimination,
similar procedures are used in the more general method of
differentiating between similar sounding patterns. The identification of
the correct PLU using EM sensors is often made straightforward because
different parts of an organ (e.g. tongue) move and thus reflect the signal
at different times and with different intensities during the individual
speech time frames (which define each PLU) in a given word cycle. As
an example, the words "saline" and "sailing"”, shown in Figs. 7A,B, are
similar sounding and are distinguishable by noting that the EM sensor
reflection data from the tongue tip and the tongue back, shown as
position versus time, are easily distinguishable. In addition, by
generating a reference library of feature vectors for triphones, which for
the example above would include feature vectors for the confusing ‘
sound patterns /ine/ and /ing/, the feature vectors obtained during the
speech time frames for the two different sounds can be compared to
those in the library and separately identified and used to make the
decision as to which is the correct identification in the algorithmic

procedure in Fig 14.

Limited Vocabulary and Word Reco

The use of a single EM sensor is especially useful for limited
vocabularies used in specialized applications such as trading stocks or
bonds, for banking, for catalogue ordering, for airline system
reservations, where very high accuracy on limited word sets is
important. Single organ EM sensors can provide very simple feature
vectors to complement rather complex acoustic feature vectors for each
speech frame. For example, an EM glottal pitch period sensor can have
its feature vector be as simple as two coefficients, e.g., (8.2, 3) and (9.2, 2).
The first vector means the EM sensor and algorithms measured 8.2 ms
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speech periods over 3 pitch period defined time frames during which
constant pitch was measured. The second vector shows that two
sequential 9.2 ms pitch periods were measured. When normalized, such
pitch information constrains certain vowel identifications. A more
complex vector, similar to the ones obtained from a horizontal ranged
gated EM sensors for the sound /t/ and /o/ which are shown in Figs.
23A, B and which are described by 25 feature vector coefficients
describing the (non-normalized) positions of several articulators in a
row from the lips to the velum. On can choose to use a subset of this
data for single organ condition descriptions. For example, the three
coefficients in each feature vector in bins 11, 12, 13 in Figs. 23A, B
describe the tongue tip motion.

For feature vectors designed for library storage and reference
using these methods, several additional coefficients are added (e.g. ASCII
symbols and time duration) that describe the sound associated with the
organ condition coefficients. In addition, other coefficients that describe
any recognition difficulties and system control coefficients would be
added.

Another example feature vector is constructed by using the
tongue jaw position data from Fig. 7 and for each vocalized pitch period
(or default frame time duration value of 10 ms) form an average value
of the position (i.e., the y-value from the curve). Since Fig. 7 shows no
vocalized data, the vector is formed by averaging y-values for each 10 ms
band along the x-axis. In this fashion, the algorithm constructs one
coefficient for each time frame through the complete sounding of each
of the words “saline” and “sailing”. If this feature vector were to be
stored in a code book, it would need additional coefficients that describe
the word being coded, e.g. “sailing”. In addition, one or two coefficients
that describe recognition problems associated with this sound would be
added. In this example, the added coefficients might describe the
number of separate PLUs in the word to be 6, and the PLU for which a
CABSR system is known to have difficulty, the 6th, leading to a feature
vector for this information (6,6). In addition, additional control
coefficient locations would be added for overall system use, such as time
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duration of the total speech frame, information regarding onset or end
of speech, and similar controls.

As an example of the process for identifying the spoken words
“saline” and "sailing", the user would find that when using the
algorithm described in Fig. 14, the CASR would have trouble with the
differentiation because of the last three PLUs in the word which describe
the sounds "ine"” and "ing". The phonetician, in constructing a word
library with these two words, would label that word as a problem word.
The NASR recognizer for the tongue would identify the unknown
feature vector with a front position to be “saline” if "ine" were spoken,
and would identify the word as “sailing” if “ing” were spoken because
the feature vector would describe a tongue back position, closed against
the palate.

The number of extra information units to be added to the CASR
library of PLU words to accommodate the information for NASR
comparison is the number of organ positions being measured by each
organ sensor, times the number of PLUs. In the single organ case, as few
as one additional information coefficient is needed per word feature
vector in the library to carry the extra information. Typical CASR
feature vectors are 25 to 40 coefficients long in present systems; thus, the
addition of one or a few more coefficients to interface the CASR systems
with NASR systems in algorithms like Fig. 14 is not difficult nor does it
place a significant burden on the memory size or processing speed of the
system. On the contrary, the extra information makes the convergence
much faster because the CASR does not have to resort to complex
statistical techniques, or grammatical or syntactical techniques, to
identify the acoustic unit spoken in the time frame.

The extra information provide by the NASR information can be
used in several ways: 1) to increase the probability of correct
identification, 2) to reduce the processing time of the CASR to reach a
given accuracy because the NASR data more accurately distinguished
many words than the CASR alone, so that the code book comparison is
more accurate, and more rapid, because less statistical processing is
necessary.

ipl Multi ndition Algorith
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Nonacoustic EM sensors systems, when optimized to obtain
multiple organ interface information each time frame, provide a great
deal of information. See Figures 21A-C, 22A-B, and 23A-B. As time
progresses, and as the vocal organs move to new positions for a new
speech time frame, the new organ interface conditions (e.g. locations)
can be recorded, processed, normalized, quantized, and new feature
vectors formed. An automated algorithm for defining a new speech
frame is needed to note that new speech organ condition information
has become available to the recognition system and it must process and
store it in a feature vector. Such an algorithm is defined as follows:

1) If voiced speech is present, the new time frame is defined as
one pitch period, as described in the single organ time frame algorithm.

2) If no speech or organ condition change (other than constant-
spectrum vocal fold motion) has occurred, then a number of sequential
voiced time frames can be joined together if they meet the following
criteria. The algorithm compares one or more of the EM sensor feature
vector coefficients and acoustic feature vector coefficients which are
obtained from the newly processed speech time frame defined in 1) with
those coefficients obtained from the preceding time frame. If any one of
the identified organ coefficients change (i.e. the organ part moves) and if
the acoustic feature vector coefficients change beyond a predefined level,
the algorithm defines the termination of the existing frame and the
advent of a new speech time frame. If no change is detected the length
of the speech frame is increased by one speech period, and a control
coefficient in the feature vector is incremented by one. Figures 21C and
22B illustrate how a feature vector obtained in a past speech frame can be
compared to one taken in the present frame. The large changes in some
coefficients of Fig. 21C, e.g., tongue contact in bin 12, show that
substantial organ motion has occurred and a new speech frame is
needed and was defined.

3) In conditions where no voiced speech occurs, the speech frame
duration is defined as in 2), except that vocal fold condition changes are
examined to determine onset of a new speech frame (e.g. a voiced PLU).
This approach also describes the silence periods. The duration of such
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frames are recorded as a coefficient value in a feature vector control
coefficient location.

4) A default value of 50 ms per speech frame is used if no other
information is available, and if the “presence-of-speech” algorithms
have not yet stopped system processing. Feature vector control
coefficients are used to keep track of system conditions, length of speech
time frame coefficients, start or stop times, etc.

Feature vectors from many individual sensors, formed by using
several EM sensor conditions of several speech organs in the same
speech time frame, and using simultaneously recorded acoustic
information (if needed) can be joined together to generate a longer,
more informative vector for speech unit (PLU) identification. See
Figures 21A-C, 22A-B and 23A-B for examples of how horizontal EM
sensor data feature vectors are joined with EM vocal fold motion
detection to make a 30 coefficient vector that describes mouth organ
conditions as well as vocal fold information. These procedures are

similar to the procedures described above in Limited Vocabulary and
Word Recognition Algorithms for single organ NASR systems. The

organization of the larger number of coefficients of multi-organ, multi-
condition vectors has to be well planned and tested ahead of time to
obtain the correct constants and signal levels. One of the fundamental
advantages of these methods is that they are based upon well
understood fundamental physics, acoustics engineering, and
mathematical principles each of which has been well tested in similar
conditions. Thus, the use of feature vectors with many hundred or
even many thousand coefficients is easily defined, obtained, processed
using modern computers, and leads to very accurate identification of
vocal organ conditions with the sounds being spoken. Only with the
advent of these EM sensor based methods has it been possible to operate
in real time, unobtrusively, safely, and economically.

Valuable multiple organ EM sensor measurements need not be
actual position locations in a photographic sense, but may be complex
convolutions of EM wave reflections from organ-air passages, from
resonances of waves with organ shapes, multiple-interface interference
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effects, whole organ motions, or similar effects. An experimental
example of this is the jaw/tongue motion data taken simultaneously
with vocal fold motion, shown in Fig. 16. It provides very informative
information, but the jaw/tongue condition is obtained as a complex,
convoluted EM wave-organ interface reflection/attenuation signal, and
is not at all a “photographic” or “tomographic” picture of the details of
the tongue and jaw and all their interfaces. These less direct data
nevertheless provide information that uniquely characterize important
conditions of the observed organ(s) with the speech unit, e.g. PLU, being
spoken. They can be normalized and quantized, and formed into a
multi-organ feature vector each speech time frame for library or
codebook reference. By using association techniques based on phonetic
pattern matching, direct table lookup, hidden Markov models, joint or
exclusive probability techniques, neural network models, and others
known to experts in table look up techniques one can identify the PLU
being spoken in each time frame.

llustrative Data Acquisition and Multi-Organ Feature Vector Formati
As an example, by properly choosing a suite of EM sensors and

their wavelengths, as well as pulse format, direction of propagation,
receiver conditions such as sample-gate and/or homodyne phase, one
can obtain a sequence of organ positional data as in Figs. 10A-C and 11A-
D. The A/D conversion, averaging, background subtraction,
normalizing, quantization, and storing in short and longer term
memory of the EM data is summarized in Figs. 12, 13, and illustrative
feature vectors are shown in detail in Figs. 21A-C, 22A-B, and 23A-B. In
particular, these simulated examples show lip-to-throat reflection data
vs time (and thus distance) for the spoken word "to", taken (primarily)
using a horizontal propagating wave as in Fig. 4, sensor 21. However, to
illustrate the power of multiple-sensor multiple-organ information,
vocal fold motion data is added to this set by placing digitized data from
its sensor (Fig. 4, sensor 23) in time bins 25 to 28 of the horizontal digital
data set illustrated in Figs. 21A-C through 22A-B. (Fig 22A shows that 40
ms after the simulated data for /t/, the articulators for the phoneme "o"
in Fig. 21B would be positioned and ready for this sound.)
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Figs. 23A,B show a different feature vector rendition obtained by
subtracting the vocal organ resting EM sensor signals from the data
obtained one or more speech frames later. This processing technique
removes uninteresting vocal articulator data as well as clutter from the
background. The examples in Fig. 23A-B were constructed by subtracting
rest articulator feature vector coefficients shown in Fig. 21A from those
obtained when the organs have moved to articulate the PLU /t/ and /o/
in the word “to”. This “differential” mode of description illustrates
directional changes in the organ motions. When the position
differences are divided by the time interval duration from the rest signal
acquisition to the next organ configuration in the next time frame (see
Fig. 23A) a velocity of organ condition motion is obtained. Such data
provide strong constraints on organ motion or position model
parameters and on acceptable phonemes that are associated with the
vocal tract articulator positions. The changes in positions, over two
speech time frames, strongly constrain phoneme pair representations
such as those described by diphones and triphones. Examples are
plosives, liquids, glides, diphthongs during which the articulators
usually move continuously. Similarly, data from multiple frames can
constrain multi-phoneme speech representations. More complex
feature vectors than the ones illustrated above are easily formed by
increasing the feature vector length by adding descriptive coefficients, in
a well planned way, from the acoustic feature vector for the same speech
time frame, and from other EM sensor generated feature vectors for the
same time frame. Multi-speech frame feature vectors from sequential
speech time frames can be joined together to make longer, more
information rich vectors, and other combinations appropriate for the
speech recognition or related application can be constructed. An
important concept in multi-speech frame feature vector construction is
the economy of information storage that occurs when one needs to only
store changes in information from preceding frames.

Range Gated Multiple Interface Data

The use of range gated and other EM sensor data was illustrated in
Figs. 10A-C and 11A-D; a system for using the data in Figs. 13 and 14, and
illustrations of more complex feature vectors formed from such data are
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illustrated in Figs. 21A-C, 22A-B, and 23A-B. Data of this type has been
obtained by a range gated EM sensor which consisted of a 2 GHz
micropower radar transmitter and receiver unit, which directed EM
waves upward into the jaw, tongue, and nasal cavities. The time gating
when converted to distance was accurate to a few centimeters. The
reflected and detected wave patterns show a variety of signatures of
reflected energy vs time (distance into the head) as a function of the
positioning of the speech articulators for the sounds /uh/ in “one” and
then /o0o/ in "two", Figs. 24A,B. The /uh/ signal compared to the /oo/
signal is associated with differences in a drop in the jaw, tongue body
drop, the increasing of the tongue-body (blade) distance to the palate, and
the nasalization in saying /uh/ in the /one/ sound. These, and similar,
data clearly show the different organ reflections with different PLUs
using these EM sensor conditions. The data is enhanced by subtracting
the nonchanging background from the signals from each speech time
frame. In addition, as shown in Fig. 24C, the data during a given
distance interval are averaged and stored in “bins”. These experiments
and others validate the procedures illustrated in Figs. 10A-C, 11A-D, 13,
21A-C, 22A-B, 23A-B.
il - i- 1ti- iti

An example of the information easily available (i.e., little signal
processing is needed) from the multi-organ, multi-sensor methods is
shown in Table III. The processing, normalizing and quantization
procedures used to generate these data are described in Single Organ
Normalization and Pitch Normalization.

Table III - Simplified Phonetic Conditions of the Vocal Organs

Obtained by NASRs (i.e., EM sensor systems )

ORGAN ORGAN INFORMATION VELOCITY or
CONDITION UNITS TIME RATES
vocal folds -- voicing, not 2
position voicing,
pitch rate 3 hi /med /low

pharynx-glottis open/ nearly
closed

velic port open/closed 2
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jaw up/down 2 slow /fast
tongue --

body (blade) up/down 2 slow

tip up/down 2 fast

back up/down 2 medium
lips open / 2 slow /fast

closed

These organ position and velocity conditions, all together, provide
several thousand information combinations to be applied to the
description of one of the 50 PLUs, or other acoustic sound units, spoken
during each speech time frame. Many PLUs require multiple time
frame descriptions because they are “moving” sounds such as “plosives”
(an example is /d/ in “dog” where the /d/ is sounded by the tongue and
jaw rising and dropping rapidly). Moving sound PLU categories are
called liquids, glides, diphthongs, and others. (see Olive ibid.) To
estimate the information units available, using an average of two time
frame feature vector coefficients per PLU, the amount of information
from sensors and their allowed values as shown in Table 1III, is
simplistically calculated to be in excess of several million units.
However, a large number of organ conditions, described in Table III are
not independent of each other in a given language and thus the
combination number is reduced substantially, but exceeds many 1000s of
units. This estimate on the number of EM sensor measured conditions
does not include the additional information commonly obtained and
described as a feature vector from the acoustic sensor each speech time
frame. The acoustic feature vector can be joined to an EM feature vector
to make a longer, more informative feature vector. The information
available vastly exceeds the number of basic acoustic sounds in any
language, e.g., English uses 50 PLU's, 256-512 acoustic units, 2000 English
demi-syllables, and 10,000 syllables (Ref. Rabiner p. 437 ibid.).

Words feature vectors require that several PLU feature vectors be
joined together to make the whole word feature vectors. When this is
done, the information available exceeds a million units, which is greater
than the number of words used in natural English speech. With
accurately formed and normalized speech feature vectors for each speech

-
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frame, and when using modern table look up techniques, identifying a
match to one of 10,000 code book vectors is straightforward and a match
to one of 40,000 or more vectors to identify words is straightforward.

The consequence of having available, through suitable choices of
EM sensor systems and processing algorithms, the large number of
identifying parameters is that it is possible to identify the acoustic sound
unit being spoken each speech frame without measuring the acoustic
output. The information available on the condition of the vocal organs
each time frame (including open-close motions but not repetitive
cycling of the vocal folds) makes it possible to identify intended speech
units from finite vocabularies that are useful in several applications.
The algorithm that is used is described in Fig. 14, except that the CASR
system is turned off, and the speech unit with the highest probability of
identification by the NASR is defined as being recognized. In particular,
this algorithm is very valuable for noisy conditions when acoustic
CASRs are being used in conjunction with NASR systems.

The measurement of speech organ motions, with or without
simultaneous speech, makes it possible to create synthetic languages that
are optimized for special applications. For example, very small
“vocabulary” tongue-language can be used to direct a wheel chair to
move left or right, forward or backward, or to stay steady. The
communication is accomplished by the user moving the tongue right
and left, up and down, or holding steady in the middle of the mouth for
the respective motions. This synthetic language is used by first forming
feature vectors for the tongue conditions, and comparing those feature
vectors to prestored vectors in a reference code book with associated
machine control commands. Upon identification, the command is
executed. Similarly, a rapidly moving tongue can be used to signal turn-
on for a cellular phone. More complex vocabularies using multi-organ
motions and accompanying human sounds can be generated as needed
for specific applications.

The addition of whispered (i.e., low level unvoiced but sounded
speech) adds additional information to the zero sound condition that
can be useful in low noise applications and can increase the accuracy of
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intended speech unit identification. In this case, the algorithm in Fig. 14
uses the CASR information, but the feature vectors in the library of
whispered speech units are labeled regarding the difficulty of their
identification using whispered acoustic speech data. The algorithm in
Fig. 19 is also set to assume that the acoustic speech amplitude is zero or
less than a value appropriate for whispered speech.

Words

A word is a sequence of primitive acoustic sound units, e.g. PLU
units, and word feature vectors describing a word (or short phrase) can
be constructed by joining together the feature vectors from each PLU
into longer and more complex, but still manageable, feature vectors.
Such composite feature vectors are very effective when used with
limited vocabularies, and they are also useful for more complex
vocabularies. The added information, both in quantity and quality,
afforded by the NASR systems make possible much improved
definitions of word units. Methods to construct multiple acoustic unit
feature vectors, e.g. 2 to 10 sequential PLUs, have been described earlier.
The normalizing, quantizing of coefficients, and definitions of multiple
pitch period time frames are straightforward to implement for larger,
composite word feature vectors of words and phrases. These procedures
work well for the definition of word units knowing, a priori, the
sequence of acoustic sound units, such as PLUs. These procedures are
used to make code books and libraries for referencing by speech
application algorithms, including the recognition application. The
inverse problem, i.e., recognition, is more difficult and is discussed
below.

An example of a process for generating a composite feature vector
for a word or phrase is to simply string, end to end, the coefficients from
sequentially obtained feature vectors. An example would be to take the
two illustrative feature vectors from the vocal fold EM sensor described
in Limi ition Single Organ rithms
which have 2 coefficients each, e.g. (8.2, 3) and (9.2, 2). One makes a
composite vector (8.2, 3, 9.2, 2) for a hypothetical two PLU word with 5
total speech frames of sound, and total time usage of 43 ms. A more
complex example is illustrated by considering the 30 coefficient feature
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vectors for the separate sounds /t/ and /o/, shown in Figs. 23A,B. One
constructs a 60 coefficient feature vector for the word /to/ by joining the
two 30 coefficient sequences. By adding acoustic feature vectors for the
two speech frames as well, each for example 25 coefficients long, and
adding 20 system control coefficients, special information coefficients,
and the ASCII coefficients for the two letters and word end symbols, one
has a very well defined feature vector for the word “to” that is 130
coefficients long. In a third experimentally verified example, using the
EM sensor output of jaw/tongue in Fig. 7, one constructs a feature vector
using the curve values each 10 ms over a period of approximately 1 sec.
This makes a separate 100 coefficient vector for each of the words
“saline” and “sailing”. Several methods of simplifying such long
vectors are available to remove redundant information, including “slow
change” feature vector definitions, coefficient normalization and
quantization, and time-frame to time-frame feature-vector-coefficient
difference generation. ‘

The word start and stop problem is not solved automatically by
the NASR systems. The identification of word transitions requires
additional information beyond the identification of the sequences of
acoustic units such as PLUs. The procedures are described well in
references on acoustic speech recognition such as the work by Rabiner
ibid. and the references contained therein. However because of the
accuracy and normalization capabilities of the NASR system, the user
has many more “cues” to use in assisting in the definition of the word
ending, and next word beginning events. Much of the additional
information available from NASR systems is illustrated in Figs. 25A-H
which show simultaneous acoustic and vocal cord motion data, and
Figs. 26A-D showing all four sensors as illustrated in Fig. 4, both taken as
a male speaker spoke the sentence: "The quick brown fox jumped over
the lazy dog's back." Examples of many of the features described above
are shown, including simultaneous acoustic and vocal fold stops,
emphasis (i.e., prosody) changes, PLU breaks, word starts and stops, pre-
speech glottal tightening, and vocal fold rate transitions. Figs. 25A-H
clearly show the effect of pitch change for differently voiced sounds,
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unvoiced starts for /f/, /b/, /p/, word separations, pauses, and other
phenomena.

Nevertheless, nonacoustic EM sensor data clearly shows the
running together of words by speakers, and such conditions are not
automatically recognized by NASR systems. However a characteristic
EM sensor signal change is always observed for every sound change that
denotes the start or stop of a PLU. As a consequence, the user of these
methods has very good markers between the acoustic units. Secondly
the capacity to define each PLU change means that it is possible to
sequentially analyze long strings of often run together, but clearly
defined, normalized, and quantized feature vectors to use for testing
against multi-word (i.e., phrases) libraries. In addition word spelling,
grammar, and syntax rule generators can be used, as they are for CASR
systems, for separating run together words from each other. In
particular, the capacity of the NASR system to find incomplete, or co-
articulated conditions and the redundancy of information provides
important new procedures to identify the phonemes that are run
together, but incompletely articulated.

w ign in iation with Conventional ch R nition

There are many applications where very high accuracy
recognition of limited vocabularies has great application. Examples are
financial trading, and airline reservation taking. The vocabularies used
in these situations typically have 1000 words or less. Present acoustic
processors work on these vocabularies by demanding that the speaker
speak clearly, distinctly, and be in a low noise environment. What is
needed is additional information that is statistically independent of the
acoustic data in a measurement sense, so that the probability of error of
the new data sets can be joined with that of the acoustic information to
yield an acceptable error budget. Acceptable quality is usually defined to
be human speech like, which is 1 error in 10,000 words. This quality in
limited vocabulary sets can be achieved by using the combinations of
sensors that very strongly constrain the selected word, by using the
simultaneously obtained acoustic data, and by using spelling, syntax and
grammar correctors to correct minor remaining problems.
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The algorithmic decision process illustrated in Fig. 14 can be used
for multi-PLU word feature vectors in the same way as was described for
feature vectors describing single PLUs. A library is constructed of all
word feature vectors needed for the limited vocabulary by the user or a
reference speaker(s) using the same set of EM sensors for the actual
application. Trained phoneticians can label those words from the
limited vocabulary which are known to be difficult to identify with high
probability or those that are known to be improperly articulated when
spoken carelessly. This means over 1000 words will be spoken into the
system, then processed, normalized if desired, phonetically labeled, and
stored in known locations in a library (memory). The algorithm follows
as in Fig. 14; the conventional recognizer, CASR, identifies the closest
word feature vector or several feature vectors from its library depending
on how statistically close the incoming feature vector pattern is to those
in the library. However, the library contains along with the CASR
identifiers, information that certain words are difficult to identify, and
need additional NASR identifying probabilities to improve the overall
recognition probability. The NASR recognizer is consulted for its
information from the speech time frame, and the multi-sound unit
feature vector, fitting both the CASR and the NASR, (in a statistical
sense) is chosen.

The algorithm, Fig. 14, used for the defined vocabulary problem is
to take two sets of data, one with CASRs and the other with two or more
NASRs. The word definition and identification is done first by the
CASR using an expanded code book which has information in it
referring to the expected NASR validation criteria. The NASR data set
for each word can contain several types of information. Multi-
coefficient word feature vectors, constructed from a whole series of PLU
feature vectors have been described.

A very simple algorithmic procedure, is to not use the EM-sensor
data to form individual PLU units and subsequent composite feature
vectors. Instead, a library of NASR words are constructed as described
under Words, wherein a special feature vector is formed by storing the
measured organ condition versus time, using fixed time steps or time
bands. This algorithm was demonstrated using the data in Figure 7 for
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the sounds “sailing” and “saline”. In one use of the procedure, the EM
sensor data is digitized, averaged, normalized, and quantized over 10 ms
speech time frame intervals (for example), and stored in a memory

"bin" for each 10 ms data set. This process continues from the beginning
to the end of the training word and is used to form a vector 50
components long (for a 0.5 second maximum duration word). For
shorter words, many components in the standard vector will be zero; for
longer words a longer standard vector length may be used.

Improvements to this algorithmic word and phrase technique
include the use of automatic speech frame generation, together with
organ condition and pitch period, and speech rate normalization. In
addition, the vector length can be automatically defined by using the
onset of speech algorithm to determine the first feature vector
coefficient, and using the end of speech algorithm to define the last
coefficient during the library formation phase.

Another example of the data that would be quantized, averaged,
and stored every predefined time interval is shown in Fig. 27 which
shows simultaneously sensed acoustic, tongue-jaw position, and vocal
fold motion as a speaker says the two words "sixteen" and "sixty". For
this example a vector for a 0.7 sec word length of 50 components is used,
and the sensor data was averaged every 15 ms. The tongue-jaw sensor
easily notes the differences between the words. In "sixteen" the word is
longer and the tongue-jaw signal stays high longer than in "sixty". The
“een” sound in “sixteen” is clearly shown in contrast to what is seen in
the word “sixty”, and more sequential coefficients in the feature vector
for “sixteen” would have similar values than in “sixty”.

Distinguishing between the two words “sixty” and “sixteen” is
very important in financial trading. However these two words are often
confused with each other by conventional acoustic recognition systems
optimized for financial trading. In contrast, the words “sixty” and
“sixteen” are not confused with other words often used in this speech
recognition application such as "dollars" and "bank" where the CASR
does a good job. Relatively little extra information is required to "help"
the CASR to distinguish between the two acoustically similar sounding
words “sixty” and “sixteen”, and the accuracy improves dramatically as a
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consequence. In similar sounding words or in "difficult words” there is
usually only one relatively short information segment to distinguish
them from each other, see Rabiner ibid. p. 291. The use of the feature
vector coefficient normalization techniques and the speech period
normalization techniques help remove individual idiosyncratic
variations, so that these short segments showing differences are
available for pattern matching.

In summary, whole word description vectors can be constructed
from a series of feature vectors from sequential speech time frames. The
composite vector can be compared, in a post processor mode, to known
vectors for other words in vocabularies with word counts ranging from
<100 to >10,000 words. That is, after a conventional acoustic speech
recognition system makes a decision, the decision is compared against
the EM sensor word data to validate the decision as illustrated in Figure
14. If it is validated with acceptable probabilities, then the word is
accepted as recognized; if not, then a best guess is made using the EM-
sensor generated data set(s) to discriminate from the subset of words
constrained (but not uniquely identified) by the CASR system. Because
such acoustically confused words are usually only confused with one or
two similar sounding sounds within the words in the constrained set,
the EM data easily allows the selection of the correct word with high
probability. It is straightforward to extend this algorithmic concept to
usefully sized word sets of many hundred to many thousand words.
Speaker Identificati

The capacity of the NASR system to accurately define speech time
frames and associated feature vectors during the course of sounded
speech makes it especially valuable for identification of the speaker
using the system. The algorithm is the same as Single Organ
Normalization and Pitch Period Normalization, with a few
modifications. In the normalization algorithms, as used for speaker
identification, the reference speaker is defined to be the owner, or the
named person to be identified. At some previous time, the identified
person was asked to speak a series of training phrases into the NASR
system and a library of his feature vectors was formed. Such a library
can be constructed from isolated sounds such as phonemes, but
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and phrases such as his name or password to construct the library.

The system operates by asking the user (or pretender) to speak
specific passwords or to speak segments of the language that have
several of the identifying multiphone units in them. Standard
nonacoustic processing is conducted by the methods described above,
and a standard pitch and feature vector normalization procedure (for all
organ sensors used) is conducted. The algorithm diverges from
normalization and mapping at this phase, and instead differences
between the feature vector coefficients of each speech frame for the
training set sound units and those in the reference library are formed.
Next the algorithm stores the differences of each coefficient value in a
second (parallel constructed) feature vector. The coefficient values of
the difference feature vector will be low if the speaker is the same person
whose voice was used to form the identification reference library. A
measure of identity is obtained by first choosing which of the coefficients
in the second feature vector are most important to be used as test values.
Then the values of each of these coefficients are squared and all squared
values are added together. The algorithm then takes the square root of
the sum of the squared values to find a total measure of difference. If it
is below a preset threshold, identification is accepted. If the value is
above the threshold, the attempt to be identified is rejected. In
transition cases, the system can ask for additional information to try
again.

The types of feature vectors that are used for the identification
vocabulary are chosen for the application. For special high security
systems, special test words and phrases are chosen that measure the
extension of the users vocal articulators and the time duration of the
speakers speech periods, the time duration of speech units and
multiphone patterns, and organ velocities between speech units are
measured and stored in the feature vector as well. Much simpler
systems can be used for lower value applications. The NASR speaker
identification system is very valuable because the comparison
procedures and process for data taking are essentially impossible to fool,
especially since the EM signals can be randomly transmitted by the
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generator to the user and they can not be simulated with prerecorded
data.
Large Word V 1 i

In natural English speech over 60,000 words are used when names
and technical words are included. Data is obtainable from multiple EM
sensors and related processing algorithms (i.e., NASRs) to easily
distinguish the 60,000 different words used in English and in any other
language. With the over sampling, and additional information
gathering time available during whole word time periods (including
pauses between PLUs), and the use of acoustic recognition techniques,
several times the needed information per time frame is available for
word identification. These word identification vectors can be generated
by combinations of EM sensor systems and algorithms, and acoustic
sensors and their algorithms. The actual table look up techniques (i.e.,
code book or library lookup) can be accomplished using direct phonetic
lookup in code book space, Hidden Markov Modeling, neural network
models, and other known statistical techniques. The use of accurate,
normalized, feature vectors makes it possible to use the vector
coefficients as direct library look up addresses for the direct identification
of the feature vectors.
CONCLUSION

The invention is a method of speech characterization that uses
electromagnetic (EM) radiation scattered (i.e., reflected and
or/attenuated) from human speech organs in concert with acoustic
speech output for the purposes of speech recognition, speech synthesis,
speaker identification, speech prosthesis, speech training, speech coding,
speech synchronization, and speech telephony. The method includes
applications to all human communication associated with vocal organ
usage, including normal sounded speech, whispered speech, and non-
sounded speech communication, e.g. zero acoustic output but
"mouthed" output. The method can be used for all human acoustic
languages. The method can also be used in all animal communications
where motions of animal vocal structures can be used for obtaining
non-acoustic information, in conjunction with acoustics, that are useful
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for understanding and implementing valuable and improved animal
communications, e.g. dolphin speech.

The method includes the use of acoustic microphone(s) for the
detection of acoustic output of a speaker through the speaker's mouth,
nose, or by acoustic radiation through the throat, or other parts of the
speaker's body, in combination with EM radiation organ condition
detectors. The information measured includes, for each sampling time,
the acoustic pressure or sound intensity. By measuring the acoustic
intensity over several sample times, a measure of the frequency, the
zero crossing times, the energy per time interval, the cepstral
coefficients, and other well known characteristics of human acoustic
speech can be obtained using frequency transform methods.

The method can use information from EM wave acoustic
microphones that detect acoustic vibrations of human tissue, using EM
wave sensors. Because of the indirect nature of such EM microphones,
an adjustment step is required to obtain the frequency response function
of the individual to the EM sensor unit. Once the received signal is
corrected for this response, the methods of acoustic information
processing are the same as those described herein for acoustic
microphones.

The method includes, with acoustic measurements, the use of any
EM wave generating, transmitting and detecting system, including RF,
microwave, millimeter wave, infrared, or visible wave radar that can
penetrate the first surface of the skin, as well as reflect from the first
skin-air surface. It includes their use in nonradiating modes, in
radiating modes (i.e., radar), or in mixed nonradiating/radiating modes.
It includes the use of coherent or noncoherent generation and detection
of any EM waves, and the use of timing to obtain spatial location and
time varying information. Examples using radiating (i.e., radar modes)
include using a range gated reception system to detect and store reflected
EM radiation from body tissue-air, tissue-bone, or tissue-tissue
interfaces, or from any other configuration of human body parts that
scatter radiation during the speech process. This method provides
information on the positions and presence or absence of speech organ
interfaces by measuring the time between transmitted and received EM
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signals, i.e. as the EM wave travels into the bodyj, it is attenuated and
reflected from discontinuities. Changes in attenuation or reflectivity as
measured by subsequent EM emissions, with or without time of flight
information, provide information on interface motions. By repetitive
generation and detection of EM pulses, this method provides a sequence
of speech organ condition information as the speech organs progress
through the speech cycle of the speaker. Such a sequence of EM pulses
can be time ordered simultaneously with acoustic measurements of
speech, or with other measurements of speech organ conditions, coded
and processed for the purposes of recording, for recognition, telephony,
and other applications. A variant on this method is to measure the
reflections and attenuations from all organ interfaces reached by each
transmitted pulse train (using one or zero range gates), and to use time
filtering as subsequent pulses are transmitted and received. Organ
reflectivity changes are separated by their time signatures of change as
the organ conditions evolve (e.g. field disturbance radars). ,

This method does not use scattered, incoherent EM radiation, in
the visible or near IR region of the EM spectrum, from only one skin-air
surface which has been received by an imaging TV camera and used in
speech recognition as an aid. It does not use such radation, for example,
in visible lip shape analysis which is used to aid in the acoustic
recognition of certain speech phonemes such as "b" which are associated
with lip opening and closing. It does use EM radiation, including visible
and IR spectral information, that scatters (i.e., reflects and is attenuated)
off both the first skin-air surface as well as from interior surfaces by
penetrating the skin and propagating through interior tissue, bone, air
cavity structures, along with simultaneous acoustic information.

The method uses coherent mode EM transmit/receive systems,
along with acoustic information, where the phase of the received wave
is compared in a linear or nonlinear fashion to stored phase
information of the transmitted wave or to other locally generated phase
information, e.g. homodyne, heterodyne, or other "interferometric"
coherent detection techniques. These methods are especially useful for
organ condition detection systems because the target is so close, as
defined by the number of EM wavelengths, to the transmitter
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antenna(s). These detection methods can use time gating, sequential
transmissions with changes in phase or wavelength, or both
simultaneously. These coherent mode methods can be implemented
with EM wave sensors operating in the near field of the antenna-like
structures, in the intermediate field, and/or in the radiating far field.
The method uses monostatic, bistatic, or multistatic reflected,
scattered (e.g. side, forward, or backward scattered wave) systems
consisting of one or more EM transmitters and receivers. They generate
EM waves that reflect off dielectric and/or conducting discontinuities in
the human vocal system, along with acoustic information. It includes
the use of single, multiple, or swept frequency EM transmit-receive
systems for the purposes of obtaining speech organ state information
(including individual or relative organ positions to other organs), that
provide information pertinent to the dimensions of the organs, to the
relative positions of discontinuities within an organ or between organs,
and to the scattering strength of the EM wave. In this method, an EM
wave of appropriate wavelength reflects from one interface and adds
coherently to an EM wave reflecting from another interface. In the case
of constructive interference, a very large reflection associated with the
square of the sums of the wave amplitudes is detected. Similarly,
reduced reflection can occur when reflected wave amplitudes
destructively interfere, the detected reflection is canceled (or reduced),
and it leads to a stronger forward propagating wave. Such EM wave
transmitted and received information is recorded along with
simultaneously measured acoustic information.
The method, along with measuring acoustic information, uses special
antenna structures for directing and focusing EM radiation for the -
purposes of determining the conditions of certain speech organs or
organ interfaces; it uses impedance matching devices for minimizing
reflections at the first skin-air interface; and it uses dielectric materials to
slow the wave propagation before it meets the skin for purposes of
increased timing accuracy and for spatial focusing. It also uses EM
sensors with multiple antennas, single package EM sensors with both
transmitter-receiver units, as well as EM wave transmitter units
separated from receiver units which can be located along or around the
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head, neck, or upper body for the purposes of ascertaining the conditions
of organs used in speech production from the appropriate angles. It can
include the sensors attached to other structures, e.g. an auto dashboard.
It also includes techniques that make use of "glints" or coherent
resonances from the target organs or organ interfaces, and it includes
methods to remove sensitivities associated with changing EM scattering
sensitivity associated with changes in the relative positions of the
transmitter-receiver antennas to the speakers head, neck, or upper body.
This method uses a control unit that determines the time of generation
and detection of the EM waves, including for example on, off, quiescent
state timing, and the simultaneous reception of acoustic waves (with
time-of-flight corrections), or other detectors. The method of control
includes setting the transmitted frequency and pulse packet duration of
the EM waves, determining master timing of all components in the
system, determining the received range gate timing, determining the
number of transmitted pulses per reception time, averaging or other
noise reduction, controlling the A/D conversion of the voltage levels of
the electronically stored pulses, setting the amount of averaging and
types of pre-processing of the received EM waves, placing the
preprocessed information in temporary or long term storage locations
for subsequent algorithmic processing and use. This control system may
be analog, digital, a hybrid of the two types, and may be in one localized
location on a circuit board or chip, or it may be distributed.

This method uses a data processing system to create an efficient
vector of information that accurately describes the "features” of the
acoustic signal as well as the "features" of the measured organ
conditions during a predefined time frame of speech. These features
including timing information. Initially acoustic and EM feature vectors
may be separately constructed and then combined by algorithmic
procedures. This method uses a means for processing the EM and
acoustic information according to a prestored set of instructions or
algorithms, e.g. hardwired, or placed in ROM as software stored
instructions, with the purpose of generating a defining "feature vector".
This method uses a means of storing such feature vector information in
an electronic library during what is known in the art as "training
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periods” (libraries are also known as codebooks to experts in speech
technologies). It uses a means of accessing such previously stored library
information during the processing sequences, a means of storing
processed information in longer term memory or computer storage
systems, a means for transmission of the processed speech information
to other systems or subsystems as time progresses, and a means for
visualizing or acoustically sounding the derived or raw information as
the speech process evolves in time. |

The method can be carried out under conditions when the
acoustic sound pressure sequence emitted by the speaker is zero, or
below accurate detection levels in intensity, i.e., the organ motions of
intended speech themselves are sufficiently accurate to determine a
valuable level of communication by the speaker. This method can be
used in a very noisy environment. Other related signals associated with
speech can be present and can be used in conjunction with the EM signal
data to define the speech unit from the speaker. This method includes
the simultaneous recording with EM transmitted and received
information, of skin potentials that are associated with speech organ
motion and speech formation, the simultaneous recording and use of
ultrasonic sound imaging systems providing vocal organ system data,
the use of simultaneous video signal information, and the use of air
flow information. It also includes the association of EM scattering with
information obtained by invasive techniques such as micro-beam x-ray
units (with or without metallic attachments to the vocal organs),
magnetic resonance imaging units, magnetic position detectors using
signals obtained from implanted or glued electrical coils or magnets
attached to speech organs, as well as strain gauges, conducting materials,
optical imaging devices inside the vocal system, and air pressure or flow
gauges.

The method also uses, simultaneously, acoustic information and
EM derived speech organ interface velocity information for determining
the state of one or many vocal organ interfaces or organ bodies. To
obtain velocity information, two or more measurements of organ
positions must be obtained. The velocity is derived by dividing the
difference in organ positions by the time difference of the



WO 97/29481 PCT/US97/01489

15

28

25

35

-84-

measurements. Typical speech organ motion cycles are 10 ms for several
mm of motion during the (male) vocal fold open and close cycle, tongue
tip motions of 1 cm in 20 to 100 ms, and jaw up or down motions of 1
cm in 0.1-0.5 sec. Speech organ interface velocity information can easily
be obtained at a rate that is faster than the significant motions of the
organ interfaces, because the EM transmit-receive systems obtain
information at up to several million times per second, more than a
thousand times faster than the organ motion cycles. Average velocities
of entire organs or detailed velocities of specific organ interface locations
are all of value, and the method of measurement is chosen by the
practitioner depending upon the application. Such information is
especially valuable because speech organ velocities change sign as the
organs move and retract to position themselves for phoneme sound
generation or upcoming phoneme sound generation. Thus, the velocity
zero crossings providing accurate and valuable timing information. The
method can also measure changes in velocity over two or more time
frames which yields acceleration data which are obtained and used as is
velocity information.

The method uses, but is not limited to, combinations of speech
organ specific interface position information, speech organ body average
position information, and speech organ interface velocity and/or organ
body average velocity information, together with simultaneous acoustic
information, for the purposes of speech processing.

The method can use speech organ velocity information, together
with speech organ position information, where the acoustic signal
intensity is zero for the purposes of valuable non-acoustic
communication or speech organ condition measurements. The method
can use speech organ velocity information, together with position
information, where the acoustic signal intensity is zero but where other
(e.g. magnetic, video, air flow) simultaneously recorded speech organ
descriptive information is available for the purposes of valuable
communication from speaker to user or for measurements of the
condition of the speech organ.

The method produces "feature"” vectors for the position and/or
velocity of vocal folds during a defined single speech time interval
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frame or for a defined multiple series of time interval speech frames.
These featured vectors can be analyzed to obtain the pitch period of the
speaker’s excitation function over a single period and over multiple
periods. This is accomplished by properly defining the direction,
frequency, and dimension of the EM wave propagation path and by
analyzing the reflected and or attenuated return signal using time
domain techniques or frequency domain techniques over one or several
similar periods

The method “normalizes” the position and temporal feature
vectors of an individual’s speech and maps them uniquely to a feature
vector of a referenced individual or of a group of individuals (e.g. to an
average speaker of the language). This method includes training an
algorithm by asking the speaker to pronounce a set of words that
determine, as needed, the amplitude levels, the position-limits, the
velocity-limits, and the timing-limits of the individual’s vocal
articulators for the EM sensor suite in use. The method then assigns a
one to one correspondence from each EM sensor signal, that is associated
with the speaker’s articulator condition at the moment of measurement,
to an EM sensor signal value from earlier measurements of reference
(i.e., normal) speakers. Furthermore, the normalized signals can be
quantized into bands reflecting the constancy of perceived sound when
the articulator condition is within a given band. This method then
stores these normalized and quanitzed signals as a normalized featured
vector for the time frame or frames being measured.

The method can be used for determining whether or not voiced
speech, or unvoiced speech, or speech or background noise has occurred
in the defined time interval frame or over several defined time frames.
The method can be used for defining start of speech by onset of
vocalized or nonvocalized phonemes, or by noting vocal fold motion,
surrounding glottal tissue or other organ motion precursors during a
given speech time interval frame or over several defined time frames.
Similarly, this method can determine end of vocalized or nonvocalized
phonemes, the presence of external noise interference, and pauses.

The method can be used for determining the presence in a speech
segment of a "glottal stop” and thus the end of air flow. It shows an end
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of vocalization during a given speech time interval frame as repetitive
glottal motions cease. Also a glottal opening at the beginning of
unvoiced speech can be determined, and transitions from unvocalized
to vocalized speech can be measured. The method can be used for
determining the pitch or pitch change of voiced speech by using glottal
tissue position or velocity information from two or more voiced speech-
period time frames by using time domain or frequency domain
techniques.

The method can include using the EM system and specific EM
sensors and algorithms for the glottal tissue structures (including vocal
folds) to obtain basic mechanical, acoustic, and fluid flow information
defining the characteristics of the individual speaker such as tension,
resonance frequency, compliance, mass, spring constants, area vs.
scattering strength, and other well known constants used in acoustic,
mechanical, and EM scattering models of the vocal fold system. The
method can include generating a "feature vector" that describes both the
change from a defined condition (including zero change) and the
repetitive condition of glottal tissue position and/or velocity during
several speech time interval frames using time domain or frequency
domain techniques. Three ways are: (1) record the digitized position or
velocity of the desired organ position (including average position of the
area opening) at each time frame generate the needed coefficients, (2)
approximate the motion of the organ positions over several time
frames, using recorded feature vector coefficients, with a mathematical
function (e.g, such as a Taylor series or LPC series) and use the
coefficients from the mathematical function in a "feature vector”, (3)
approximate the time varying, often repetitive, motions of the
coefficients over the time frames by using Fourier (or similar)
coefficients over the defined number of frames to define a "feature
vector”.

The methods as applied to the vocal folds can also be applied to
the velum. The method can be used for determining whether or not
nasalized speech has occurred in the defined time interval frame by
determining degree of velum closure, and for associating feature vectors
of the velum with models of the jaw position and/or velocities, and for
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generating a feature vector that describes velum contact with the back of
the nasal passage during a given time interval frame.

The methods can also be applied to the jaw. A change in the jaw,
and the open mouth volume that has occurred in the defined time
interval frames, can be used to define the presence of single tube or two-
tube phonemes such as "eh"” or "ah". The presence of "plosive”
consonants such as "b", "p", or other rapid consonant-vowel patterns,
such as "ma", "me", "my", "bo", "ba", can be determined by measuring
changes in jaw position or velocity during the speech time frames.

The methods can also be applied to the tongue, including a change
in the average location or velocity of the tongue body, and parts of the
tongue separately, including in particular, the tongue tip, the central
body top surface, the back top surface, and the transverse curvature of
the top surface. The method can be used to determine whether tongue
contact with the roof of the mouth has occurred in the defined time
interval frame. v

The methods also apply to the lips and other speech organs, speech
cavity air volumes, and/or air passages that participate in defining the
speech qualities of a speaker during a defined single speech frame or for
multiple speech frames. Examples of other organ conditions include
diaphragm motion that defines lung volume and rate of air flow
through the glottal opening. Examples of air passage measurements
include the size of lungs, the pharynx, post glottal passages, nasal
volume dimensions, sinus dimensions, mouth volume with relaxed,
open, or closed jaw and tongue, and velic port dimension. The method
can be used for determining a change in the average location of the
interfaces or interface velocities of the organs or passages, or contact of
the interfaces.

The method includes using one or more of the feature vectors or
speech organ states for the purposes of determining, to a degree defined
by the user, the speaker's entire vocal tract structure including air
passage connections, the passage dimensions, the state of vocalization
and the velocity state of the surrounding interfaces and walls, and the
state of closure of the orifices such as the mouth, velum, glottis, and
tongue-palate condition for a given speech time frame.
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The method can be used to describe a partial or total speech tract
feature vector for the speech time frame interval using elements from
the EM information and the acoustic information. The method can also
define a new feature vector in terms of well known acoustic model
parameters that describe the conditions of the speaker’s vocal excitation
source and tract configuration during the time frame interval or
intervals under consideration for the speech element. The method can
also describe a single feature vector that describes a slowly changing
sound unit condition (including zero change) of the excitation function
and vocal tract conditions over a sequence of speech time frame
intervals.

The method includes describing a feature vector by storing
differences in each vector element from a previously defined known
type of speaker, e.g. an averaged or individual American man, woman,
or child; a foreign speaker with typical dialect in American English; or
other language speakers of different genders or ages. This method
includes displaying such information for purposes of speech correction,
speech assistance, and speech education.

The method includes comparing a feature vector to stored
information on a known human for the purpose of speaker
identification, and for providing statistics of identification, including
performing such comparisons automatically over several time frame
units, isolated time frame units, or on sequences of units where stored
information on the desired speaker's identity is available from a
preformed library. The method includes training the algorithm before
routine use by recording the speaker’s idiosyncratic feature vector
patterns for a defined word set, or by storing his non-normalized
patterns of often used words or word patterns, and storing the trained
information in an identification library.

The method includes using simultaneously recorded acoustic
feature vector information with the EM information to define a single
speech frame feature vector which describes the condition of the
elementary speech unit with sufficient information, including
redundancy and model constraints, that the phoneme (or other simple
speech sound unit) of speech can be defined for the time period. The
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method can also identify with symbols, e.g. letters, pictogram codes,
ASCII computer code, or telephony code, the sound unit under
consideration with very high probability. The method can be used for
determining the duration (i.e., the number of speech time frame
intervals) of the observed sound unit, and using the duration
information, plus the feature vector, to define a speech unit feature
vector that accurately defines the sound condition over several
sequential speech time frame intervals. The method includes defining
the series of several feature vectors from several sequential time frames,
as a composite feature vector. Such a composite feature vector may be
described, for example, as one or more feature vectors attached end to
end to describe the desired number of speech time frames.

The method includes automatically forming feature vectors for
all elementary language sound pairs (i.e. diphones), triads (i.e.
triphones), or other multi-units (i.e. quadphones and higher patterns) of
a language, i.e. defining feature vectors applicable to the definition of
two, three, or more sound units, and generating such sets of known
language sounds for the purpose of defining, through training, libraries
of known feature vectors for all elementary sound pairs, triads, or other
multi-units.

The method can automatically form feature vectors for all word
sounds of a language, i.e. define feature vectors applicable to the varying
sound unit number in each word, and automatically generate such
multi-unit sets of known word sounds for the purpose of defining,
through training, libraries of known word feature vectors.

The method can also be used for automatically forming feature
vectors for as many word combinations as desired in a given language,
i.e. defining feature vectors applicable to the varying sound unit
numbers (e.g. phoneme numbers) in each series of words included in
the multi-word feature vectors. Such multi-word feature vectors, or
vectors of individual sound unit feature vectors can be generated by
limiting the number of phonemes to be stored at one time; or by using a
predetermined running series of vectors wherein for each new word
vector added, the oldest word feature vector is dropped; or by dynamic
feedback based upon prosody constraints.
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The method can automatically generate such multi-word vectors of
known multi-word sounds for the purpose of defining, through
training, libraries of known multi-word feature vectors, and
automatically parse the multi-word vectors by phoneme units
(including the silence phoneme) into units defined by prosody
constraints, e.g. prosody constraints associated with punctuation marks
or associated with pauses in thought by the speaker.

The method includes using vocal articulator feature vectors to identify
the phoneme being spoken in the examined time frame by matching the
pattern (i.e., template) of one or more speech organ conditions (e.g.
multi-organ conditions) plus acoustic output against feature vectors
stored in a previously defined library. The method can include using
Hidden Markov Model techniques (HMM) on the feature vectors to
statistically identify the phoneme being spoken in the examined time
frame or frames by operating on the feature vectors.

The method can also use joint probability to statistically identify
the phoneme being spoken in the examined time frame. First,
conventional (acoustic) speech recognition techniques are used to
estimate the identity of the sound unit and its probability of
identification. Next, the EM defined feature vectors are used alone (with
no acoustic feature information included) to estimate separately the
identity of the sound unit, and to assign an estimate of the probability
for the non-acoustic case. Finally, the probabilities of each estimate are
combined to obtain a more accurate identification of the word unit than
either an all acoustic system, or all EM feature vector system could
accomplish without the additional information.

The method can also use exclusive probability to statistically
differentiate between acoustically similar phonemes being spoken in the
examined time frame. First, a conventional (acoustic) speech
recognition technique is used to estimate the identity of one or more
sound units that have similar probabilities of being defined using
conventional acoustic techniques alone (i.e, there remains ambiguity in
a statistical sense). Next the EM defined feature vectors of each of the
one or more acoustically identified phonemes (with no acoustic feature
information included) are used to estimate separately the identity of the
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sound units, and to assign an estimate of the probability based on EM
feature vectors for each ambiguous sound unit. Acoustic identification,
not consistent with the EM identifications are excluded (i.e., rejected)
from further consideration. Finally, the probabilities of each estimate, of
the remaining acoustic units, are compared to obtain a more accurate
identification of the word unit than either an all acoustic system, or all
EM feature vector system could accomplish without the additional
information from the other. In this manner, one can exclude all of the
acoustically identified sound units except for one that meets the criteria
defined by comparison with the library of stored feature vectors.

The multi-organ or phonetic pattern matching technique, the
HMM technique, the joint probability technique, and the exclusive
probability technique can all be used to identify the diphones, triphones,
multiphones, words, or word sequences in the examined time frames.

The method includes use of neural network algorithms to
associate a pattern measured with EM sensors of one or more speech
organ motions in conjunction with acoustic speech with one or more
speech sound units. This method uses the usual training methods for
neural networks including normalization of input EM and acoustic
signals and averaging of speakers (one or more), and associating the
inputs though the neural network algorithms (e.g. using the back
propagation algorithm, with two or more layers) with recognized
sounds. Once trained, the networks provide a rapid convergence from
the accurately defined input feature vectors to an identified output
speech unit, because the information from the methods herein is so
accurate.

The method also uses EM sensors in conjunction with an acoustic
microphone, together with system components for the purposes of
processing the sensor information, storing the information, conducting
the recognition of the feature vectors, presenting the information in
whatever stage of processing via visualization techniques or acoustic
techniques, transmitting the information (with or without encryption,
foreign language translation, speaker voice modification, bandwidth
minimization, or other processes), and interfaced with keyboards or
handheld control units used for the purposes of aiding in voice
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activated controls, dictation, transcription, language translation or
teaching, speaker modification, prosthesis feedback or activation of
special technology systems.

The method also includes synchronizing acoustic speech with lip
motion or other visual speech organ motions such as jaw motions with
visual images. An example is lip synchronization of speech or music for
the movie or video industry.

Changes and modifications in the specifically described
embodiments can be carried out without departing from the scope of the
invention which is intended to be limited only by the scope of the
appended claims.
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CLAIMS

1. A method of speech characterization of speech by a speaker,
comprising:

directing electromagnetic (EM) radiation toward speech organs of
the speaker;

detecting electromagnetic (EM) radiation scattered from the
speech organs to measure speech organ conditions to obtain EM speech
information;

detecting acoustic speech output from the speaker to obtain
acoustic speech information;

combining the EM speech information with the acoustic speech
information using a speech characterization algorithm.

2. The method of Claim 1 wherein the speech is selected from
normal sounded speech, whispered speech, and non-sounded speech.

3. The method of Claim 1 wherein acoustic speech output of the
speaker is detected using at least one acoustic microphone.

4. The method of Claim 3 further comprising measuring acoustic
pressure or sound intensity over a plurality of sampling times to obtain
amplitude vs. time, frequency, zero crossing times, energy per time
interval, and LPC or cepstral coefficients of acoustic speech.

5. The method of Claim 1 wherein acoustic speech output of the
speaker is detected using at least one EM wave microphone to detect
acoustic vibrations.

6. The method of Claim 1 wherein EM radiation is directed to and
detected from the speech organs using an EM wave transmitting and
receiving system.

7. The method of Claim 6 wherein the EM wave generating,
transmitting and detecting system is an RF, microwave, millimeter
wave, infrared, or visible wave EM sensor.

8. The method of Claim 7 wherein the EM sensor is operated in a
time of flight, non-coherent mode.

9. The method of Claim 8 wherein the EM sensor is range-gated.

10. The method of Claim 7 wherein the EM sensor is operated in
a coherent mode.
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11. The method of Claim 10 wherein the EM sensor is operated in
a homodyne, heterodyne or other interferometric coherent detection
mode.

12. The method of Claim 7 where the EM sensor is operated in a
field disturbance mode, with or without a range gate, with time filtered
output.

13. The method of Claim 1 further comprising controlling the
time of generation, transmission and detection of the EM radiation and
of substantially simultaneous reception of the acoustic speech output.

14. The method of Claim 1 further comprising creating feature
vectors describing features of the acoustic speech output and EM sensor
measured speech organ conditions during a defined time frame of
speech.

15. The method of Claim 14 further comprising storing, in the
feature vector, the start time, duration time, and end time of the defined
time frame of each feature vector.

16. The method of Claim 14 further comprising associating
information contained in the feature vector with information from
other instruments or devices for the purposes of synchronization of
timing.

17. The method of Claim 14 further comprising storing the
feature vectors in an electronic library.

18. The method of Claim 14 further comprising producing a
feature vector for one or more speakers, averaging the feature vectors of
the one or more speakers, and storing the averaged feature vector in a
library.

19. The method of Claim 14 further comprising normalizing and
quantizing the speaker’s feature vectors to those of a reference speaker or
group of speakers.

20. The method of Claim 14 further comprising producing feature
vectors for at least one of position and velocity of at least one of the
velum, jaw, tongue, glottal tissue, and lips.

21. The method of Claim 14 further comprising forming a single
or multiple speech frame feature vector which defines a syllable like
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unit, a phoneme, a PLU, a diphone, a triphone, an acoustic unit, a word,
or a word sequence.

22. The method of Claim 14 further comprising applying a
statistical technique or pattern matching technique to the feature vector
to identify a syllable like unit, a phoneme, a PLU, a diphone, a triphone,
an acoustic unit, a word, or a word sequence.

23. The method of Claim 14 further comprising forming the
feature vector by first forming separate acoustic and EM feature vectors,
and then combining the separate acoustic and EM feature vectors.

24. The method of Claim 14 further comprising identifying sound
changes and EM signal changes to define a new feature vector defined by
changes from a referenced feature vector.

25. The method of Claim 14 further comprising identifying
acoustic changes and EM signal changes, compared to those of the last
time frame, to define a new speech time frame.

26. The method of Claim 14 further comprising automatically
forming the feature vector.

27. The method of Claim 14 further comprising creating a feature
vector that describes a defined condition and change from the defined
condition of position and/or velocity of at least one speech organ during
a plurality of speech time frames.

28. The method of Claim 14 further comprising forming a feature
vector for velocity and acceleration over a plurality of time frames.

29. The method of Claim 14 further comprising identifying a
speaker from patterns of feature vectors formed by that speaker, over a
sequential series of speech time frames.

30. The method of Claim 17 further comprising performing time
alignment of the feature vector of a particular speaker, and comparing
the time aligned feature vector of the particular speaker with feature
vectors in the library.

31. The method of Claim 1 further comprising obtaining organ
velocity or acceleration information from the detected EM radiation.

32. The method of Claim 1 further comprising measuring other
speech information than the EM speech information and acoustic
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speech information and combining the other speech information with
the EM speech information and acoustic speech information.

33. The method of Claim 1 further comprising determining a set
of mechanical parameters of the vocal system from the EM speech
information and acoustic speech information for vocal system
modeling.

34. The method of Claim 1 wherein the algorithm determines the
onset of speech, end of speech, speech period, pauses, speech rate, and
extraneous noise.

35. The method of Claim 1 wherein the algorithm determines the
presence of voiced or unvoiced speech.

36. The method of Claim 22 wherein the statistical technique is a
Hidden Markov Model technique or a neural network technique.

37. The method of Claim 22 wherein the pattern matching
technique is a phonetic-template matching technique.

38. The method of Claim 22 wherein the algorithm uses a joining
or excluding method of identification by comparing feature vectors
identified using conventional acoustic techniques to those identified
using non-acoustic techniques to obtain a higher overall probability of
identification.

39. The method of Claim 1 further comprising measuring organ
contact as one organ touches another and strongly changes the EM wave
reflecting condition because of changing resonator or boundary
condition effects.

40. The method of Claim 1 further comprising generating and
transmitting a series of known wavelengths to detect organ interface
spacings using coherent reflections and transmissions from the tissue
and tissue interfaces.

41. Apparatus for speech characterization of speech by a speaker,
comprising:

at least one electromagnetic (EM) wave generating, transmitting
and detecting unit for directing EM waves toward and detecting EM
waves scattered from speech organs of the speaker to obtain EM speech
information;
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at least one microphone for detecting acoustic speech output from
the speaker to obtain acoustic speech information;

means for combining the EM speech information with the
acoustic speech information using a speech characterization algorithm.

42. The apparatus of Claim 41 wherein each EM wave generating,
transmitting and receiving unit is a RF, microwave, millimeter wave,
infrared, or visible wave radar.

43. The apparatus of Claim 41 wherein each microphone is an
acoustic microphone or an EM microphone.

44. The apparatus of Claim 41 further comprising a structure for
mounting the at least one EM wave generating, transmitting and
detecting unit and at least one microphone such that they can detect the
conditions of the speech organs of the speaker.

45. The apparatus of Claim 41 further comprising means for
controlling the time of generation, transmission, and reception of the
EM waves and of substantially simultaneous reception of the acoustic
speech output.

46. The apparatus of Claim 42 wherein the EM unit is a time of
flight, non-coherent radar, or a field disturbance sensor, with or without
a range gate, with time filtered output, or a coherent radar.

47. The apparatus of Claim 42 wherein the EM unit is a range-
gated radar.

48. The apparatus of Claim 42 wherein the EM unit is a
homodyne, heterodyne or other interferometric coherent detection EM
sensor.
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