
(19) United States
US 20070299.991A1

(12) Patent Application Publication (10) Pub. No.: US 2007/0299991 A1
Giebel (43) Pub. Date: Dec. 27, 2007

(54) DMA MODULE AND OPERATING SYSTEM (30) Foreign Application Priority Data
THEREFOR

Jan. 3, 2003 (DE)..................................... 103 OO O305

(76) Inventor: Burkhard Giebel, Denzlingen (DE) Publication Classification

51) Int. Cl. Correspondence Address: (
OSHEA, GETZ & KOSAKOWSKI, P.C. (52) s I3/28 (2006.01) 710/22
15OO MAN ST. Oa -

SUTE 912 (57) ABSTRACT
SPRINGFIELD, MA 01115 (US) -

A DMA module is described which, in order to read or write
a memory location within a DMA process, accesses by a

(21) Appl. No.: 11/485,750 reading operation a memory location of an addressable
memory (5) identified by a first address (46) in order to read

(22) Filed: Jul. 13, 2006 there at least one second address (52); which advances the
second address (52) to an adjacent memory location, and

Related U.S. Application Data implements a write access or read access at a memory
location identified by the second address (52); and which

(62) Division of application No. 10/751,668, filed on Jan. finally stores the second address at the memory location
5, 2004, now Pat. No. 7,293,120. identified by the first address (46).

DREax - A y BYPx DINTx
4. 47. to ICU

foMA Pendino | 1 srch
HW opt. -- S Q & DMA . 2
PINTO -- Mux R Channel Priority Logic Encoder
PINT1

31

f Trio. ENx so
DACKx

Once per DMA Channel --------41 -
Yr 42

fSYS – f &
DWAIT-i- a y AC23:O

Memory LOCK f O<31: O.
Controller DACC i : MASCO)

DACK - MASC1
V N 8 \ } rRW

46 D31: Os

DMA Wec. Base

| 59/-/

Zl

US 2007/0299.991 A1 Patent Application Publication Dec. 27, 2007 Sheet 1 of 4

US 2007/0299991 A1 Patent Application Publication Dec. 27, 2007 Sheet 2 of 4

| 2

[×ORIIO!

Patent Application Publication Dec. 27, 2007 Sheet 3 of 4 US 2007/0299991 A1

so
OOC DMA Vector 3 DMA Vector B --
OO8 DMA Vector 2 DMA Chonnel 4 46
004 DMA Vector 1
OOO Defoult DMA Vector Bose

53 52

O
1 Doto <- - - - - - - - - -
2
3
4.

5 N
6 5

7

US 2007/0299991 A1

(~X,X)_X_.JPV XIoba, v NOXioyoo^ WWQ%X\/ — F/A–OOWO
-/-_I-XÒBèJO —_p-_-_I-l_I-l_I-l_T-7/l_I ***

Patent Application Publication Dec. 27, 2007 Sheet 4 of 4

US 2007/0299.991 A1

DMA MODULE AND OPERATING SYSTEM
THEREFOR

PRIORITY INFORMATION

0001. This application is a divisional of co-pending Ser.
No. 10/751,668 filed Jan. 5, 2004.

BACKGROUND OF THE INVENTION

0002 The invention relates to the field of microcontrol
lers, and in particular to the field of direct memory access
(DMA).
0003 DMA modules are employed in microcomputer
controller systems and microcontroller systems to relieve the
CPU from routinely recurring data transfer tasks. A DMA
module may be viewed as a kind of specialized processor
which receives a specification for a memory area which
must be accessed, for example, a start address and stop
address, or a start address and a number of Subsequent
memory locations, and which outputs the addresses of a
specified range in rapid succession to an address bus in order
to enable rapid reading from or writing to the memory area.
A DMA module thus enables the rapid transfer of data
between memory areas, or between one memory area and a
peripheral device, without taking up any of the processing
power of the CPU. A DMA module thus relieves the CPU
from simple data transfer tasks, thereby increasing the
average achievable performance of the CPU.
0004 If the CPU and the DMA module share a common
bus for access to the memory, then for every bus cycle in
which the DMA module accesses the memory for a read or
write operation the CPU must be halted to prevent the CPU
from attempting to initiate access at the same time. Although
during this procedure, known as "cycle stealing the opera
tion of the CPU is slightly retarded, the number of CPU
cycles lost is significantly less than if the CPU itself had to
control the data transfer. Hence, use of the DMA module
enhances the performance of the CPU.
0005. A DMA module always proceeds from a start
address to a stop address. In the conventional approach, the
two addresses are stored in internal registers of the DMA
module. As a result, it is possible with a single bus cycle to
output an address, to read or write a memory location
identified by the address, and to advance an address counter
for the following read or write operation.
0006 A DMA module with two registers of this type is
able to perform only one DMA process at a time. If a running
DMA process has to be interrupted to perform a DMA
process of higher priority, the register contents of the cur
rently running, lower priority process with its current values
from the DMA module must be swapped out and tempo
rarily stored to allow the relevant parameters of the higher
priority process to be loaded and executed. This Swapping
out and loading of addresses slows down the DMA module,
and the microcontroller along with it, and is therefore not
desirable.

0007. A conceivable approach would be to equip a DMA
module of this type with a plurality of register pairs that
would hold the parameters of the different DMA processes.
As a result, to interrupt a currently running DMA process in
favor of a higher-priority process the system would Switch
to a different register pair.

Dec. 27, 2007

0008. The problem with this approach, however, is the
fact that registers of this type have a high space requirement
on a semiconductor Substrate, this requirement being five
times the requirement of a memory element of identical size
within RAM. This large space requirement makes fabrica
tion of multi-process DMA modules expensive.
0009. Therefore, there is a need for DMA module which
has a small space requirement, and a method of operating a
DMA module in which such small-area DMA modules may
be employed.

SUMMARY OF THE INVENTION

0010) A DMA module includes a conventional address
generator to perform a write or read access to a memory
location of an addressable memory, and an address counter
to advance a stored address to an adjacent memory location.
The address counter can not act on an internal register of the
DMA module but instead be configured so that between
reading an address value from the memory and writing the
address value to the memory, this counter is advanced once.
As a result, the memory location of the memory at which the
address value is read or written takes on the function of a
register conventionally integrated in the DMA module. This
approach reduces the space requirement of the DMA mod
ule, and yields the additional advantage that the DMA
module may be employed to control a large number of DMA
processes that may mutually interrupt each other, simply by
providing a plurality of memory locations of the memory to
store specifications of the DMA blocks.
0011 Operation of the DMA module comprises the fol
lowing steps:

0012 a) Implementing a read access to a memory loca
tion identified by the first address so as to read there at least
a second address which points to the next memory location
that must be accessed in the current DMA process;
0013 b) Advancing the second address to an adjacent
memory location, storing the second address at the memory
location identified by the first address, and
0014 c) Implementing a write access or read access at a
memory location identified by the second address (although
it is unimportant whether or not the second address is first
advanced and the memory location identified by it then
accessed, or visa versa).
0015 Since the parameters required to control the DMA
process are present in the addressable memory, it is no
longer necessary to first Swap out register values in order to
switch from one DMA process to another. As a result, rapid
switching is therefore possible between different DMA
processes.

0016. In order to have the DMA module determine when
a DMA process has been completed, it is appropriate before
write accessing and read accessing the memory location
identified by the second address to read a count value that is
representative for the number of memory access operations
yet to be performed, to decrement the count value, and then
to re-store it after implementation of the write/read access to
the second address as set forth in step c). In this way, the
DMA module can determine from the count value when a
DMA process has been completed, and terminate it at the
right time.

US 2007/0299.991 A1

0017. To reduce the number of memory access opera
tions, it is useful to record this count value during each read
access of step a) and to log the value during the write access
of step b). This procedure is implemented as long as the total
bit number of the second address and of the count value do
not exceed the width of data words read in a single data
access, in other words, the width of the data bus. In this way,
one bus cycle is sufficient to read or store the required
parameters of one DMA process.
0018. Another aspect of the invention involves the utili
Zation of the normally frequently available interrupt request
line of the peripheral module to transfer the DMA request
signal by which a peripheral module “orders a DMA
transfer. To this end, the DMA module is advantageously
looped into the request line to the interrupt controller, and is
thus, in a manner of speaking, connected in series before the
interrupt controller.
0019. As a result, a design is created that is able to initiate
a number of “cheap' (in terms of CPU performance) DMA
transfers before an expensive interrupt is initiated. A design
of this type is particularly suitable for collecting data to
process it at the end of the process in a concentrated way
with CPU participation but without detectable CPU over
loading.

0020. In an aspect of the invention, a data table may be
transferred under DMA control between the peripheral mod
ule and RAM, but nevertheless initiate an CPU interrupt
routine at the end of the process. In the interrupt routine, the
CPU is able to process, for example, the current data table
in a time-concentrated manner, then configure the DMA
module to transfer the next data table and start this DMA
Sequence.

0021. These and other objects, features and advantages of
the present invention will become more apparent in light of
the following detailed description of preferred embodiments
thereof, as illustrated in the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWING

0022 FIG. 1 is a block diagram illustration of a micro
controller system;
0023 FIG. 2 is a block diagram of a DMA controller;
0024 FIG. 3 illustrates a design of DMA vector table:
and

0.025 FIG. 4 is a timing diagram of various signals
occurring in the DMA controller of FIG. 2.

DETAILED DESCRIPTION OF THE
INVENTION

0026 FIG. 1 is a block diagram illustration of a micro
controller system 100. The microcontroller system 100
comprises a CPU 1, a bus controller 2, an interrupt manager
unit (interrupt controller ICU)3, a DMA controller 4, a static
read-write memory (SRAM) 5, a read-only memory (ROM)
6, and an input/output module 7. The components 1-7 are
interconnected by an internal bus 8 with address lines, data
lines and control lines. In addition, the I/O module 7 is
connected to one or more external data terminals from which
the module receives data to store in internal bus 8, or to
which terminals it outputs data from internal bus 8. The I/O
module 7, DMA controller 8, and ICU3 are directly inter

Dec. 27, 2007

connected by a plurality of control lines 9-12 isolated from
the bus 8. The design and function of the control lines 9-12
is discussed in more detail in connection with FIG. 2.

0027 FIG. 2 shows in greater detail the design of DMA
controller 4. The functions of DMA controller 4 may be
Subdivided in to two areas, the first being the management
of different processes that may initiate a DMA access, in this
case various data sources or data sinks connected through
I/O module 7 to the microcontroller system, i.e., deciding for
which of the various processes a DMA will be implemented
at a given point in time. A second part of the DMA controller
4 is responsible for controlling the actual memory access.
The management circuits of these two areas are designated
as DMA channel logic 41 or DMA control logic 42. One
DMA channel logic 41 is provided for each DMA channel,
i.e., for each process that may be triggered for a DMA. An
input multiplexer 43, to which the signals identifying the
requesting process X, namely DREQX, X=1, 2, 3, 3, etc. from
the control line 9 are applied, sets a flag in one RS flip-flop
44 indicating the pending state of a DMA process. This flag
is automatically reset by DMA channel logic 41 if the
corresponding DMA cycle has terminated. An enabling flag
EN masks the pending state flag from priority encoder 45.
The priority encoder 45 is connected to outputs from all
DMA the channel logic circuits 41 and sends to its output an
ordinal number corresponding to the channel logic circuit 41
with a pending DMA process has the highest priority level.
The priority levels for the individual processes are recorded
in the priority encoder 45. In addition, the DMA channel
logic 41 sends an acknowledgment signal DACKX through
the control line 10 back to the triggering process, which
signal indicates implementation of a DMA access and com
municates to the process that—depending on the access
direction—a data value read from the memory 5 is located
on the internal bus 8 and may be accepted, or that a data
value Supplied from the process has been accepted and a new
value must be provided.

0028. A switch 47 is located in request signal line
DREQX, X=1, 2, 3, which allows a signal arriving in line
DREQX to be optionally fed through to the ICU 3, where it
is able to trigger an interrupt, or to supply a control signal
generated by the DMA channel logic 41 to the ICU 3. The
function of the signal on the line 12 is to directly transfer
data between the ICU 3 and the interface 7 in a situation in
which request signal DREQX is fed through at the switch 47
to the signal on the line 11.

0029. Within one DMA cycle, the DMA control logic 42
controls the sequence of each individual access. In order to
be able to manage the different DMA processes that may run
in a time-overlapping fashion, the DMA control logic 42
accesses a DMA vector table 51 that is located in the SRAM
5. A start address for this vector table 51 is recorded in a
table initial register 46 of DMA control logic 42. The entries
of the DMA vector table may be 32-bit words that form a
specification for a DMA process and each may be composed,
as shown in FIG. 3, of a 24-bit-wide address 52 that is the
initial address of a block in the SRAM 5 in which a DMA
access is to occur and of an 8-bit-wide count value that
indicates the length of the block in bytes.

0030 Each time before a DMA process begins, the
address and count value are each written to the DMA vector
table 51, for example, by the CPU 1. Given the width of

US 2007/0299.991 A1

eight (8) bits for the count value assumed here in the
example, a DMA block may have a maximum length of
2=256 bytes. It is of course evident that any other types of
apportionment for DMA vectors between the initial address
and the count value, and thus other block lengths, are
conceivable.

0031 Whenever the DMA control logic 42 of the priority
encoder 45 receives the number of a DMA process for which
an access is to be implemented, the control logic 42 calcu
lates an access address by adding the fourfold multiple of the
number supplied by the priority encoder 45 to the address of
the table initial register 46. If the number supplied by the
priority encoder 45 is able to assume the values 1, 2 or 3,
then the control logic 42 is able to access the fields of the
vector table 51 identified in FIG. 3 as “DMA Vector 1,
“DMA Vector 2, and “DMA Vector 3.
0032. It is readily evident that the DMA controller 4 is
easily adaptable in order to manage varying numbers of
DMA processes without significant modifications to its
circuit design. The limiting factor for the number of pro
cesses is simply the output width of the priority encoder 45,
i.e., the bit number of the line through which the encoder
transmits the number of a DMA-triggering process to the
control logic 42, and the size of the DMA vector table 51.
0033 FIG. 4 illustrates the behavior of different signals
within the microcontroller system over the course of a DMA
process. Here f designates the system clock at which both
the CPU and the DMA controller 4 operate. A period off.
corresponds to one CPU clock cycle. A pulse of the signal
DREQx (x=1, 2, 3, etc.) indicates a DMA request by the
process X. Several cycles may elapse before the request is
fulfilled. When this happens, signal DACC supplied by the
DMA controller 4 to the memory control changes from low
to high level in order to indicate that the DMA controller 4
has control of the bus and that the CPU 1 may not access it
with either a write or a read operation. In a first clock cycle
with DACC at high level, the DMA controller 4 uses the
identity of the requesting process and the address recorded
in the table initial register 46 to pass the address of one of
vectors “DMA Vector 1, “DMA Vector 2 or “DMA Vector
3’ to address lines A of the bus 8. The SRAM 5, in which
the table S1 of vectors is located, then sets the specification
for a DMA block, recorded at the corresponding address and
including of initial address and byte number to be sent, to the
data lines of the bus 8. These values are transferred by the
DMA controller 4 into an address register or a counter.
0034. In the next clock cycle, the address of the DMA
vector is again set to the address lines of the bus 8. At the
same time, the initial address incremented by one and the
count value decremented by one are passed to the data lines
of the bus 8 where the previous DMA vector is overwritten
by these values. In the following clock cycle, the incre
mented address is output to the address lines in order
to—depending on the access direction of the DMA pro
cess—implement a write or read access at the corresponding
memory location.
0035. Whenever multiple write access and read access
operations of a single DMA process follow in immediate
Succession, i.e., without interruption by a DMA process of
higher priority, the step of reading the DMA vector may be
eliminated for the second, and all Subsequent, memory
access operations since the specification stored there has

Dec. 27, 2007

already been stored in the registers of the DMA module. The
memory locations identified by the DMA vectors thus have
the function of registers that point to an address immediately
before that memory address in the SRAM 5 at which the
next write/read access is to take place. In other words, no
access occurs at the actual address written to a DMA vector
upon initialization of a DMA process but only at the sub
sequent addresses. Once the count value Zero (0) is reached,
the DMA process is terminated.
0036). Of course, an alternative approach might be one in
which, upon initialization of a DMA process at the memory
location to which the assigned DMA vector must point, the
size of the memory block to be processed and the first
address are recorded at which a write or read operation
should be implemented. In this case, the sequence of steps
described above in reference to FIG. 4 would be slightly
modified. Immediately after reading the memory location
identified by the DMA vector, the write/read access to the
address indicated there could follow, then an incremented
address and a decremented count value would be stored at a
location identified by the DMA vector in a subsequent clock
cycle.

0037. In either case, the DMA process requires three
clock cycles in which the CPU 1 is halted to read or write
a first memory location, and at least two clock cycles for
each of the following memory locations. Although this
operation is slower than in a DMA in which the addresses of
the memory block to be processed are stored directly in
registers of a DMA controller and do not have to be obtained
from a Swap-out memory, it is nevertheless significantly
faster than if the CPU 1 itself has to perform these tasks.
Since the number of registers required in the DMA control
ler is independent of the number of DMA processes that the
DMA controller 4 is able to process simultaneously, the
invention makes it very easy to design a DMA controller
which is able to handle any desirable large number of DMA
processes simultaneously.
0038 Although the present invention has been shown and
described with respect to several preferred embodiments
thereof, various changes, omissions and additions to the
form and detail thereof, may be made therein, without
departing from the spirit and Scope of the invention.

What is claimed is:
1. A method of operating a DMA module, comprising the

steps:

a) implementing a read access to a memory location of an
addressable memory (5) identified by a first address in
order to read there at least one second address (52);

b) in any order: advancing the second address (52) to an
adjacent memory location and storing the second
address (52) at the memory location identified by the
first address;

c) implementing a write or read access at a memory
location identified by the second address (52).

2. The method of claim 1, characterized in that before
each implementation of step b) a count value (53) is read,
that the count value (53) is decremented or incremented and
re-stored after implementation of step b), and that the
method halts when the count value has reached a predeter
mined final value.

US 2007/0299.991 A1

3. The method of claim 2, characterized in that the count
value (53) is recorded during each read access of step a), and
logged during each write access of step b).

4. The method of claim 1, characterized in that the write
access or read access takes place within one cycle of a bus
(8) through which the DMA module (4) is connected to the
memory (5).

5. The method of claim 4, characterized in that the DMA
module (4) halts a microcontroller (1) also connected to the
memory (5) within a bus cycle in which the module accesses
the memory (5).

Dec. 27, 2007

6. The method of claim 1, including the step in which a
DMA access is requested by a peripheral module, and the
first address is selected based on the identity of the periph
eral module.

7. The method of claim 6, characterized in that the
peripheral module requests the DMA access through its
interrupt request line.

8. The method of claim 6, characterized in that the
interrupt request is Suppressed in response to the triggering
of the DMA access through the interrupt request line.

k k k k k

