(54) Title: PARTICLES OF METAL PEROXIDE WITH INCREASED PARTICLE SIZE, PROCESS FOR THEIR PREPARATION AND THEIR USE

(57) Abstract: Particles containing a metal peroxide in which the metal is chosen from the Groups Ia and IIb of the periodic table and in which at least 50% of the weight of the particles have a diameter higher than 20 μm. Process for the preparation of such particles comprising: (a) mixing at least one metal oxide or hydroxide, the metal being chosen from the groups Ia and IIb of the periodic table, in the form of an aqueous solution, a suspension or a solid, with an aqueous hydrogen peroxide solution, (b) allowing the metal oxide or hydroxide to react with hydrogen peroxide to form a suspension of the corresponding peroxide, (c) adding to this suspension at least one additive, and (d) drying the resulting peroxide suspension.
Particles of metal peroxide with increased particle size, process for their preparation and their use

The present invention is related to particles of metal peroxide, especially calcium peroxide, magnesium peroxide, zinc peroxide or mixed calcium/magnesium peroxide, with improved properties, especially increased particle size. It is also related to a process for the preparation of these particles and to their use.

Metal peroxides are known. The British patent application GB 2048842 for instance discloses the preparation of alkali metal or alkaline earth metal peroxides by forming a mixture of a concentrated aqueous alkali metal or alkaline earth metal oxide or hydroxide suspension and an aqueous hydrogen peroxide solution, allowing the oxide or hydroxide to react with hydrogen peroxide to form the corresponding peroxide and spray drying the resulting peroxide suspension. In example 1, a calcium peroxide is obtained with an average grain size diameter of 5 µm and 90 % of the particles have a diameter between 2 and 7 µm.

Due to its small particle size, this known product is poor in free flow behavior, contains a large amount of dust, and is sticky, which makes it difficult to handle.

The aim of the present invention is to overcome these drawbacks by providing new metal peroxide particles which are free flowing, dustfree and non-sticky.

To this end, the present invention is related to particles containing at least one metal peroxide in which the metal is chosen from the groups IIa and IIb of the periodic table and in which at least 50 % by weight of the particles have a diameter higher than 20 µm.

The mean particle size of the particles according to the invention is in general at least 30 µm, in particular at least 40 µm, values of at least 50 µm giving good results. The mean particle size is usually at most 100 µm, in many cases at most 90 µm, values of at most 80 µm being common. Suitable ranges for the mean particle size are from 40 to 90 µm, preferably from 50 to 80 µm. The mean particle size is measured with a light scattering system equipped with a laser.
The content of particles having a diameter higher than 20 μm is preferably at least 60 % by weight, in particular at least 70 % by weight, values of at least 80 % by weight being advantageous and those of at least 90 % by weight being the most preferred. Preferably, at most 95 % by weight of the particles have a diameter higher than 20 μm. For example, at least 75 and at most 95 % by weight of the particles have a diameter higher than 20 μm.

According to the invention, at least 50 % by weight of the particles have a diameter lower than 110 μm. The content of particles having a diameter lower than 110 μm is preferably at least 60 % by weight, in particular at least 70 % by weight, values of at least 80 % by weight being advantageous and those of at least 90 % by weight being the most preferred.

The content of particles having a diameter higher than 20 μm and lower than 110 μm is measured by sieve analysis.

One of the essential features of the invention resides in the increased particle size of the particles. Figures 1 to 6 show typical pictures made with Scanning Electron Microscopy. Figures 1 to 3 are related to the same magnesium peroxide, and figures 3 to 6 are related to the same calcium peroxide.

Due to the increased particle size, the particles of the invention present the advantages of containing a small amount of fines which makes the product dustfree and thus non-sticky and easy to handle.

The increased particle size and the low amount of fines renders the particles of the invention also free flowing. The flow behavior is expressed as the time necessary for 100 g of particles to flow out of a plastic funnel with the following size:

```
  10 cm
   ↑
  9 cm
  ↓
2.5 cm
```

The flow behavior of the particles of the invention is improved compared to known metal peroxides, the flow behavior of which can typically go up to 20 s. The flow behavior of the particles of the invention is in general equal to or smaller than 8 s, especially equal to or smaller than 7 s, values equal to or smaller than 6 s are the most preferred.
The particles of the invention can be obtained by using an additive during the preparation as explained below which favors agglomeration so that large granules are formed. The additive can be chosen from usual binding agents.

The binding agents can be water-soluble, partially soluble, or insoluble in water. Water-soluble binding agents suitable for the present invention comprise phosphate-containing builder material or carboxylate or polycarboxylate builder, borates, and mixtures of any of the foregoing. Water insoluble binding agents include the sodium aluminosilicates. Organic polymeric compounds can also be used as suitable binding agents for the present invention. The use of organic polymeric compounds as binding agents is recommended.

The phosphate-containing binding agents are for instance the alkali metal tripolyphosphates, sodium and potassium and ammonium pyrophosphate, sodium and potassium orthophosphate, sodium polycarbometa/phosphate in which the degree of polymerization ranges from about 6 to 21, and salts of phytic acid. The phosphate-containing binding agent preferably comprises tetrasodium pyrophosphate or even more preferably anhydrous sodium tripolyphosphate.

The carboxylate or polycarboxylate binding agent can be monomeric or oligomeric in type, although monomeric polycarboxylates are generally preferred for reasons of cost and performance. Monomeric polycarboxylates, or their acid forms, homo or copolymeric polycarboxylic acids or their salts in which the polycarboxylic acid comprises at least two carboxylic radicals separated from each other by not more than two carbon atoms can be used. Suitable carboxylates containing one carboxy group include the water soluble salts of lactic acid, glycolic acid and ether derivatives thereof. Polycarboxylates containing two carboxy groups include the water-soluble salts of succinic acid, malonic acid, (ethylenedioxy) diacetic acid, maleic acid, diglycolic acid, tartaric acid, tartronic acid and fumaric acid, as well as the other carboxylates and the sulfinyl carboxylates. Polycarboxylates or their acids containing three carboxy groups include, in particular, water-soluble citrates, aconitrates and citraconates as well as succinate derivatives such as the carboxymethylcyloxsuccinates described in British Patent No. 1,379,241, lactoxysuccinates described in British Patent No.1,389,732, and aminosuccinates described in Netherland Application 7205873, and the oxypolycarboxylate materials such as 2-oxa-1,1,3-propane tricarboxytes described in British Patent No. 1,387,447. The most preferred polycarboxylic acid containing three carboxy groups is citric acid.

Polycarboxylates containing four carboxy groups include oxydisuccinates
disclosed in British Patent No. 1,261,829, 1,1,2,2-ethane tetracarboxylates, 1,1,3,3-propane tetracarboxylates and 1,1,2,3-propane tetracarboxylates. Polycarboxylates containing sulfo substituents include the sulfosucinate derivatives disclosed in British Patent Nos. 1,398,421 and 1,398,422 and in U.S. Patent No. 3,936,448, and the sulfonated pyrolysed citrates described in British Patent No. 1,439,000. Preferred polycarboxylates are hydroxycarboxylates containing up to three carboxy groups per molecule, more particularly citrates. The parent acids of the monomeric or oligomeric polycarboxylate chelating agents or mixtures thereof with their salts, e.g. citric acid or citrate/citric acid mixtures are also contemplated as useful builder components.

Suitable aluminosilicate zeolites have the unit cell formula \(\text{Na}_x[(\text{AlO}_2)_y(\text{SiO}_2)_z]_m\times\text{H}_2\text{O} \) wherein \(x \) and \(y \) are at least 6; the molar ratio of \(z \) to \(y \) is from 1.0 to 0.5 and \(x \) is at least 5, preferably from 7.5 to 276, more preferably from 10 to 264. The aluminosilicate material are in hydrated form and are preferably crystalline, containing from 10% to 28%, more preferably from 18% to 22% water in bound form. The aluminosilicate zeolites can be naturally occurring materials, but are preferably synthetically derived. Synthetic crystalline aluminosilicate ion exchange materials are available under the designations Zeolite A, Zeolite B, Zeolite P, Zeolite X, Zeolite HS and mixtures thereof. Zeolite A has the formula: \(\text{Na}_{12}[(\text{AlO}_2)_{12}(\text{SiO}_2)_{12}]_m\times\text{H}_2\text{O} \) wherein \(m \) from 20 to 30, especially 27. Zeolite x has the formula \(\text{Na}_{86}[(\text{AlO}_2)_{86}(\text{SiO}_2)_{106}]_m\times\text{H}_2\text{O} \). Another preferred aluminosilicate zeolite is zeolite MAP builder. Zeolite MAP is described in EP 384070A (Unilever). It is defined as an alkali metal alumino-silicate of the zeolite P type having a silicon to aluminium ratio not greater than 1.33, preferably within the range from 0.9 to 1.33 and more preferably within the range of from 0.9 to 1.2. Of particular interest is zeolite MAP having a silicon to aluminium ratio not greater than 1.15 and, more particularly, not greater than 1.07.

Examples of organic polymeric compounds useful as binding agents include the water soluble organic homo- or co-polymeric polycarboxylic acids or their salts, polyamino compounds, terpolymers containing monomer units selected from maleic acid, acrylic acid, polyaspartic acid and vinyl alcohol, polyvinylalcohol, and polysaccharides.

Homo- or co-polymeric polycarboxylic acids or their salts useful to the invention are such that the polycarboxylic acid comprises at least two carboxyl radicals separated from each other by not more than two carbon atoms. Polymers
of the latter type are disclosed in GB-A-1,596,756. Examples of such salts are polyacrylates of molecular weight 1000-5000 and their copolymers with maleic anhydride, such copolymers having a molecular weight of from 2000 to 100,000, especially 40,000 to 80,000.

Terpolymers containing monomer units selected from maleic acid, acrylic acid, polyaspartic acid and vinyl alcohol, particularly those having an average molecular weight of from 5,000 to 10,000, are also suitable herein.

Other organic polymeric compounds suitable in the present invention include polysaccharides such as starch, compounds derived from starch, and cellulose derivatives.

The term starch denotes a natural product (for instance found in seeds, fruits, tubers, roots and stem pith of plants, notably in corn, potatoes, wheat and rice) which is a polysaccharide made up of glucose units that has alpha-1,4-glycoside linkages. It commonly corresponds to the formula \([(C_6H_{10}O_5)_n]_p\) in which n and p can be such that the molecular weight of the starch is at least 10000. It is usually in the form of a white, tasteless, odorless, granular or powdery solid. The expression "compounds derived from starch" denotes any product that has been obtained by modifying starch chemically or physically. Examples of suitable compounds derived from starch are the products called UNI-PURE™ LQ and National 77-1760 from the National Starch & Chemical Company.

Cellulose is the chief constituent of the cell walls of plants. It is a long-chain polymeric polysaccharide carbohydrate made up of glucose units that has beta-1,4-glycoside linkages. It commonly corresponds to the formula \((C_6H_{10}O_5)_n\) in which n is at least 200. Usual cellulose derivatives, which can be used in the present invention as binding agents, are methylcellulose, carboxymethylcellulose, hydroxypropylmethylcellulose and hydroxyethylcellulose.

Preferably, the additive used as binding agent is a polysaccharide. More preferably, the polysaccharide is chosen from starch and compounds derived from starch.

Generally, the additive is present in the particles of the invention in an amount equal to or higher than 0.1 % by weight, preferably equal to or higher
than 1 % by weight, in many cases 2 % by weight, in particular equal to or higher than 3 % by weight, values equal to or higher than 4 % by weight being the most preferred. The amount of additive in the particles of the invention is most often equal to or smaller than 50 % by weight, more preferably equal to or smaller than 25 % by weight, advantageously equal to or smaller than 10 % by weight, especially equal to or smaller than 8 % by weight, values equal to or smaller than 6 % by weight giving satisfactory results. Additive amounts of at least 1 % by weight and at most 25 % by weight, preferably of at least 2 % by weight and at most 10 % by weight are suitable.

The metal in the particles of the invention is chosen from the groups IIa and IIb of the periodic table. Amongst those of group IIa, magnesium, calcium and strontium are preferred, especially calcium and magnesium. Amongst those of group IIb, zinc is preferred. The metal is advantageously chosen from calcium, magnesium, zinc and mixtures thereof.

The metal peroxide in the particles of the invention is preferably chosen from magnesium peroxide, calcium peroxide, zinc peroxide, mixed calcium/magnesium peroxides such as those disclosed in the United States patent US 6283495 of SOLVAY INTEROX GmbH, and mixtures of at least two of these compounds.

The particles of the invention contain the metal peroxide in an amount which is usually equal to or higher than 25 % by weight, in particular equal to or higher than 55 % by weight. The amount of metal peroxide in the particles is most often equal to or smaller than 80 % by weight, especially equal to or smaller than 70 % by weight. The remainder is usually the corresponding metal oxide or hydroxide and/or the corresponding metal carbonate.

The particles of the invention can be prepared by any adequate process provided that the process leads to a content of particles having a diameter higher than 20 μm of at least 50 % by weight.

A particularly suitable process comprises

(a) mixing at least one metal oxide or hydroxide, the metal being chosen from the groups IIa and IIb of the periodic table, in the form of an aqueous solution, a suspension or a solid, with an aqueous hydrogen peroxide solution,

(b) allowing the metal oxide or hydroxide to react with hydrogen peroxide to form a suspension of the corresponding peroxide,
(c) adding to this suspension at least one additive chosen from binding agents, and
(d) drying the resulting peroxide suspension in order to obtain particles of the peroxide.

The present invention therefore also concerns this process for the preparation of the above-described particles.

Step (a) of this process can be carried out by using the metal oxide or hydroxide in the form of an aqueous solution, a suspension or a solid. When it is used in solid form, it can be carried out as in the process described in the examples of US 6547490 of SOLVAY INTEROX GmbH. Step (a) is preferably carried out by using the metal oxide or hydroxide in the form of a suspension. In this case, the oxide or hydroxide suspension should have a high solids concentration, preferably so high that the suspension is still just pumpable. The solids concentration of this suspension is generally adjusted according to the oxide or hydroxide to be used and is preferably equal to or higher than 200 g/l, in particular equal to or higher than 300 g/l. The solids content is often at most 600 g/l and especially at most 500 g/l. Solids contents from 350 to 450 g/l are suitable. Aqueous suspensions are preferred.

The oxide or hydroxide suspension can be prepared for example by simultaneously metering water and the oxide or hydroxide powder into a reaction vessel, with stirring.

The hydrogen peroxide solution to be used in the process of the invention may be any known product. It may also contain known active oxygen stabilizers. It is advisable to select a hydrogen peroxide concentration equal to or greater than 30 % by weight and preferably equal to or greater than 70 % by weight so that the reaction medium does not become too strongly diluted. Hydrogen peroxide concentrations from 45 to 65 % by weight give good results.

The molar ratio of (oxide or hydroxide) : hydrogen peroxide used in step (a) of the process of the invention can vary from 0.9:1 to 1.1:1. By using approximately stoichiometric quantities of reactants and operating with a concentrated reaction mixture, the proportion of ballast to be incorporated (for example water, excess reactants, etc) can be kept extremely low.

During step (b) the mixture of step (a) is maintained, preferably with mixing and/or with cooling, until the reaction is complete or until the optimum conversion is achieved. This can be done in any suitable device capable of giving intensive mixing. The device can be chosen from kneading devices, such
as a conical screw mixer, or from rapidly rotating eccentric pumps, such as a can impeller mixer.

During step (b), the temperature can raise spontaneously due to the exothermic character of the reaction. It can then be necessary to cool down the temperature of the mixture. Cooling can be done by using a cooling jacket or cooling coils or an external cooler. The external cooler is preferred. Cooling is generally carried out to maintain the temperature from 20 to 60 °C, in particular from 25 to 50 °C, most preferably from 30 to 40 °C.

The duration of step (b) can go from 5 min to 3 h.

During step (c) the additive is added to the suspension obtained in step (b). The additive can be added in solid form or in the form of a suspension. The suspension is preferred. Aqueous suspensions are suitable. The nature and the amount of the additive are described above. It can be advantageous to stir the mixture during step (c) in order to homogeneously disperse the additive into the suspension. During step (c) cooling can be performed as described before.

After step (c) it can be advantageous to remove a part of the water content from the reaction mixture, preferably to a water content of not more than about 40 % by weight, suitably in a centrifuge. The thick peroxide suspension or paste resulting from the reaction may be transported by means of a screw pump to the device in which step (d) is carried out.

Step (d) of the process of the invention can be carried out in any suitable drying equipment. It is preferably carried out in a spray drier, for example in a spray drier with a rapidly rotating disc. The rotating speed of the rotating disc generally influences the size of the particles in that lower speeds lead to higher particle sizes. Generally the spray drier is operated at an inlet temperature of from 250 to 600 °C and an outlet temperature from 110 to 140 °C.

The process of the invention can be carried out either on a continuous or on discontinuous basis.

The particles of the invention can be used as an oxygen release agent or as an oxidizing agent. They give good results as an oxygen release agent in the in situ bioremediation of soil. They also give satisfactory results as oxidizing agents in oil drilling or in toothpaste. The present invention is therefore also related to these uses.

Examples 1-3

In the reference example 1, standard calcium peroxide was prepared according to the above process with steps (a) to (d) but without adding an
additive, and its flow behavior was measured according to the method described before.

In examples 2 and 3 according to the invention, all the operations of example 1 were repeated except that an additive was used. In example 2, the commercial starch UNI-PURE™ LQ was used in an amount of 3 % by weight. In example 3, the commercial starch National 77-1760 was used in an amount of 5 % by weight.

The results of flow behavior are shown in the following table.

<table>
<thead>
<tr>
<th>Example</th>
<th>Additive</th>
<th>Flow behavior</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>None</td>
<td>17 s</td>
</tr>
<tr>
<td>2</td>
<td>3 % by weight of UNI-PURE™ LQ</td>
<td>5.3 s</td>
</tr>
<tr>
<td>3</td>
<td>5 % by weight of National 77-1760</td>
<td>2.5 s</td>
</tr>
</tbody>
</table>

In the calcium peroxide of example 1, 90% of the particles have a diameter between 2 and 7 µm (average particle size of 5 µm).

In example 2, 96% of the particles of calcium peroxide have a diameter higher than 20 µm and 38% of the particles have a diameter higher than 63 µm.

These values were determined by air stream seaving.
CL A I M S

1. Particles containing a metal peroxide in which the metal is chosen from the groups IIa and IIb of the periodic table, characterized in that at least 50% by weight of the particles have a diameter higher than 20 μm.

2. Particles according to claim 1, characterized in that at most 95% by weight of the particles have a diameter higher than 20 μm.

3. Particles according to claim 1 or 2, characterized in that their mean particle size is in the range from 40 to 90 μm, preferably from 50 to 80 μm.

4. Particles according to any one of claims 1 to 3, characterized in that at least 75 and at most 95 % by weight of the particles have a diameter higher than 20 μm.

5. Particles according to any one of claims 1 to 4, characterized in that they have an improved flow behavior of at most 8 s, the flow behavior being expressed as the time necessary for 100 g of particles to flow out of a plastic funnel with the following size:

 ![Funnel Diagram]

6. Particles according to any one of claims 1 to 5, characterized in that they contain at least one additive chosen from binding agents.

7. Particles according to claims 5, characterized in that the binding agent is chosen from starch and compounds derived from starch.

8. Particles according to claim 6 or 7 containing the additive in an amount of at least 2 % by weight and at most 10 % by weight.

9. Particles according to any one of claims 1 to 8 in which the metal peroxide is chosen from magnesium peroxide, calcium peroxide, zinc peroxide,
mixed calcium/magnesium peroxides and mixtures of at least two of these compounds.

10. Process for the preparation of the particles of any one of claims 1 to 9 comprising:

5 (a) mixing at least one metal oxide or hydroxide, the metal being chosen from the groups IIa and IIb of the periodic table, in the form of an aqueous solution, a suspension or a solid, with an aqueous hydrogen peroxide solution,

(b) allowing the metal oxide or hydroxide to react with hydrogen peroxide to form a suspension of the corresponding peroxide,

(c) adding to this suspension at least one additive chosen from binding agents, and

(d) drying the resulting peroxide suspension.

11. Process according to claim 10 in which the reaction heat of step (b) is evacuated by cooling and the drying in step (d) is carried out in a spray dryer having an outlet air temperature between 110 and 140 °C.

12. Use of the particles of any one of claims 1 to 10 as an oxygen release agent or as an oxidizing agent.

13. Use according to claim 11 in the in situ bioremediation of soil, in oil drilling or in toothpaste.
INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2006/062434

A. CLASSIFICATION OF SUBJECT MATTER

INV. C01B15/043 C01B15/047

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

C01B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 4 470 839 A (GAO ET AL) 11 September 1984 (1984-09-11) examples 1-7</td>
<td>1-9,12,13</td>
</tr>
<tr>
<td>X</td>
<td>US 5 395 419 A (FARONE ET AL) 7 March 1995 (1995-03-07) column 1, line 17 - line 28 column 6, line 65 - column 7, line 30; example 1</td>
<td>1-9,12,13</td>
</tr>
<tr>
<td>X</td>
<td>US 4 293 426 A (GAO ET AL) 6 October 1981 (1981-10-06) column 1, line 7 - line 11 column 3, line 14 - line 23 column 3, line 40 - line 49</td>
<td>1-5,9,12</td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td>10,11</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:
 - "A" document defining the general state of the art which is not considered to be of particular relevance
 - "E" earlier document but published on or after the international filing date
 - "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 - "O" document referring to an oral disclosure, use, exhibition or other means
 - "P" document published prior to the international filing date but later than the priority date claimed

* Other documents:
 - "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 - "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 - "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
 - "s" document member of the same patent family

Date of the actual completion of the international search

25 July 2006

Date of mailing of the international search report

03/08/2006

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentamts 2 NL-2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx 31 651 epo nl, Fax (+31-70) 340-3016

Form PCT/ISA/2/10 (second sheet) (April 2005)

Page 1 of 2
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 2 415 443 A (RENTSCHLER MAHON J) 11 February 1947 (1947-02-11) column 2, line 3 - line 13 column 3, line 50 - line 56</td>
<td>1-5,12</td>
</tr>
<tr>
<td>A</td>
<td>US 2 805 128 A (HOEKJE HOWARD H) 3 September 1957 (1957-09-03) column 1, line 15 - line 16 column 2, line 43 - line 55</td>
<td>1,2,4,8,9,12</td>
</tr>
<tr>
<td>A</td>
<td>US 5 182 054 A (BAUER ET AL) 26 January 1993 (1993-01-26) column 3, line 29 - line 34</td>
<td>6,7</td>
</tr>
<tr>
<td>A</td>
<td>US 4 968 500 A (BERTSCH-FRANK ET AL) 6 November 1990 (1990-11-06) column 5, line 10 - line 14</td>
<td>6,7</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-----------------</td>
<td>------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 8254682 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 8202386 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 3275372 D1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0063844 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR 2504521 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 57196705 A</td>
</tr>
<tr>
<td>US 5395419 A</td>
<td>07-03-1995</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT 822478 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 523711 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 4155578 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 7807565 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 2861270 D1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 475024 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IT 1101030 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 54078856 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LU 78545 A1</td>
</tr>
<tr>
<td>US 2415443 A</td>
<td>11-02-1947</td>
<td>NONE</td>
</tr>
<tr>
<td>US 2805128 A</td>
<td>03-09-1957</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WR 9102696 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0487567 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2054368 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 4507395 T</td>
</tr>
<tr>
<td>US 4968500 A</td>
<td>06-11-1990</td>
<td>DE 3804509 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 727888 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0328768 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GR 3002453 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 1246111 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5094827 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>YU 12889 A1</td>
</tr>
<tr>
<td>SU 1778068 A1</td>
<td>30-11-1992</td>
<td>NONE</td>
</tr>
</tbody>
</table>