INFORMATION PROCESSING SYSTEM, HOST DEVICE, AND PROGRAM FOR CAUSING COMPUTER TO EXECUTE INFORMATION PROCESSING METHOD INCLUDING COMMUNICATION COMPLETION JUDGING

Inventors: Fumio Koyama, Hara-mura (JP); Yasuhito Nagatomo, Shiojiri (JP); Atsushi Narasawa, Hino (JP)

Assignee: Seiko Epson Corporation (JP)

Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 716 days.

Appl. No.: 11/689,680
Filed: Mar. 22, 2007

Prior Publication Data

Mar. 23, 2006 (JP) 2006-080370

Field of Classification Search 709/21-228, 709/203; 705/39; 345/52

References Cited

U.S. PATENT DOCUMENTS

Abstract

An information processing system including a host device and a client device which requests the host device to process information, includes: a communication unit which provides communication between the host device and the client device, wherein the host device includes: a communication completion judgment unit which judges whether or not first communication information to be transmitted and received via one round of communication provided by the communication unit has all been transmitted or received; and a communication information process determination unit which, in the event that the communication unit is unable to transmit or receive the first communication information before it is judged by the communication completion judgment unit that the first communication information has all been transmitted or received, determines a process related to the first communication information in accordance with second communication information received via a next or subsequent round of communication.

6 Claims, 5 Drawing Sheets
(CLIENT)

COMMUNICATION UNIT ACTIVATED

S201

PROVIDE CONNECTING PORTION ID

S202

PROVISION OF DOCUMENT DATA
RECEPTION AND DISPLAY OF UPDATED DISPLAY DATA

S203

COMMUNICATION UNIT DISCONNECTED

S204

(HOST)

DESIGNATE CLIENT
DESIGNATION CONNECTING PORTION

S210

COMMUNICATION UNIT ACTIVATED

S211

IDENTIFY OPERATING BUTTON

S212

DOCUMENT PROCESSING CORRESPONDING TO OPERATING BUTTON
TRANSMISSION OF UPDATED DISPLAY DATA

S213

NOTIFY THAT DISCONNECTION IS POSSIBLE

S214

FINISH DESIGNATION
COMMUNICATION UNIT DISCONNECTION

S215

FIG. 2A

FIG. 2B
INFORMATION PROCESSING SYSTEM, HOST DEVICE, AND PROGRAM FOR CAUSING COMPUTER TO EXECUTE INFORMATION PROCESSING METHOD INCLUDING COMMUNICATION COMPLETION JUDGING

BACKGROUND

1. Technical Field

The present invention relates to an information processing system, a host device, and a program for causing execution of an information processing method, and particularly to an information processing system, a host device, and a program for causing execution of an information processing method, which enable communication between the host device and a client device only while an operator operates the client device.

2. Related Art

At present, in a computer field, there is a host-based type information system composed of a host device and a client device. In many host-based type information systems, an operator operates the client device to designate an information processing, and the designation is transmitted from the client device to the host device. Also, the host device, in accordance with the designation, carries out the information processing, and notifies the client device of a result thereof.

An example of this kind of host-based type information system is JP-A-2003-157184. In the client-server configuration of JP-A2003-157184 is further configured such that, by communicating information related to a finish or execution condition of a program between the client computer and the server computer, the system monitors a result of the execution of the program. Also, with regard to each item of information to be communicated, a delivery thereof is confirmed in a communication protocol by both the client computer and the server computer.

Meanwhile, recently, an electronic data display medium, which includes a display screen, which is thin to such an extent that it can be handled in approximately the same way as paper, has been put to practical use. This kind of display medium is also called electronic paper. Also, a host-based type information system configured by connecting the electronic paper as the client device to a computer or the like which serves as the host device has been considered. This kind of system can be said to serve a demand to avoid an increase in size caused by providing a large-sized control device in order to handle the electronic paper in the same way as paper.

It is undesirable that the electronic paper be provided with a complicated operating portion or control portion, as there is a demand for a reduction in weight and a simplification of the configuration so as to enable handling in generally the same way as paper. For this reason, a host-based type information system including electronic paper has been proposed in which the electronic paper communicates with the host device only while an operating button or the like provided on the electronic paper is touched with a dedicated pen or the like, and which transmits and receives communication information, including an identification signal from the client device indicating that an operation such as, for example, a rewriting of the display screen has been carried out, which corresponds to a process corresponding to the operation.

However, in the case that this kind of electronic paper is applied to the client device of JP-A-2003-157184, when the pen comes out of contact with the operating button in the middle of the communication, a situation occurs in which the communication is disrupted, such normal completion of signal reception in the host device becomes impossible. In this way, in the event that the transmission and reception of the communication information is not normally completed, the heretofore known host-based type information system generally executes a process such as trying to retransmit the communication information.

Also, in the case that a configuration is such that a plurality of the client devices can be connected to the host device, it is also considered that, although communication with one client device has not been normally completed, a signal is transmitted to the host device from another client device. In this kind of case, it is general that the host device side generates an error, judging that a request is inconsistent.

This kind of situation reduces processing efficiency of a host-based type information system using the electronic paper, resulting in a reduction in operability thereof.

SUMMARY

An advantage of some aspects of the invention is to provide an information processing system, a host device, and a program for causing a computer to execute an information processing method, in which a subsequent process can be executed without any problem even in the event that communication between the host device and a client device has been disrupted before a data transmission by the client device is normally finished.

In order to achieve the above advantage, a document processing system according to an aspect of the invention is an information processing system including a host device and a client device which requests the host device to process information, including: a communication unit which provides communication between the host device and the client device. The host device includes a communication completion judgment unit which judges whether or not first communication information to be transmitted and received via one round of communication, provided by the communication unit has all been transmitted or received; and a communication information process determination unit which, in the event that the communication unit is unable to transmit or receive the first communication information, before it is judged by the communication completion, judgment unit that the first communication information has all been transmitted or received, determines a process related to the first communication information in accordance with second communication information received via a next or subsequent round, of communication.

According to this kind of aspect of the invention, the host device can judge whether or not the first communication information to be transmitted and received via one round of communication provided by the communication unit has all been transmitted or received. Also, in the event that the communication unit has become unable to transmit or receive the first communication information before it is judged that the first communication information has all been transmitted or received, it is possible, in accordance with the second communication information received via the next or subsequent round of communication, to determine the process related to the first communication information.

For this reason, according to the aspect of the invention, as the first communication information, even in the event that it has been disrupted during communication, is appropriately processed at the time of a next round of communication, it is possible to provide the information processing system in which, even in the event that communication is disrupted, a subsequent process can be executed without any problem.
Also, in the information processing system according to the aspect of the invention, the communication unit includes:
an operating portion provided on the client device side; a
designation member which, being provided on the host
device side, designates the operating portion; and a commu-
nication information transmission unit which, when the oper-
ating portion has been designated by the designation member,
transmits communication information corresponding to the
designated operating portion.

According to this kind of aspect of the invention, it is
to possible to ensure communication only in the event that the
operating portion on the client device side is operated with the
designation member such as a pen on the host device side.
This kind of configuration is effective in simplifying a control
or a configuration related to communication of the client
device, and in further reducing a size and a weight of the client
device.

Also, in the information processing system according to the
aspect of the invention, a plurality of the operating por-
tions is provided corresponding to types of operations on the
client device, and the communication information transmis-
sion unit transmits communication information indicating
that operations corresponding to the operating portions have
been designated.

According to this kind of aspect of the invention, the opera-
tion carried out on the client device can be easily detected on
the host device side.

Also, in the information processing system according to the
aspect of the invention, the communication information
process determination unit, after suspending a process corre-
sponding to an operation indicated by the first commu-
nication information, determines an execution of a process corre-
sponding to a designation of an operation indicated by the
second communication information.

According to this kind of aspect of the invention, after oper-
ating one operating portion, by an erroneous operation or the like,
by operating another operating portion originally to be
operated, it is possible to prevent an execution of an uninten-
tended process by an erroneous operation.

Also, in the information processing system according to the
aspect of the invention, the communication information
process determination unit, in the event that the operation
indicated by the first communication information and the
operation indicated by the second communication, informa-
tion are different, after suspending the process corresponding
to the operation, indicated by the first communication informa-
tion, executes the process corresponding to the designa-
tion of the operation indicated by the second communication
information and, in the event that the operation, indicated by the
first communication information and the operation indi-
cated by the second communication information are identi-
cal, determines a continuation of the process corresponding to
the operation indicated by the first communication informa-
tion.

According to this kind of aspect of the invention, even in
the event that the communication of the first communication
information has been disrupted by an operational error or the
like, it is possible, by operating the operating portion again, to
restart a process to be carried out via the disrupted commu-
nication. Also, in the event that a previous operation is an
erroneous operation, the execution of the unintended process
by the operational error can be prevented by an appropriate
operation carried out later.

Also, in the information processing system according to the
aspect of the invention, the operating portion includes a con-

According to this kind of aspect of the invention, the
operating portion is provided on the client device side; a

designation member which, being provided on the host
device side, designates the operating portion; and a commu-
munication information transmission unit which, when the oper-
ating portion has been designated by the designation member,
transmits communication information corresponding to the
designated operating portion.

According to this kind of aspect of the invention, it is
to possible to ensure communication only in the event that the
operating portion on the client device side is operated with the
designation member such as a pen on the host device side.
This kind of configuration is effective in simplifying a control
or a configuration related to communication of the client
device, and in further reducing a size and a weight of the client
device.

Also, in the information processing system according to the
aspect of the invention, a plurality of the operating por-
tions is provided corresponding to types of operations on the
client device, and the communication information transmis-
sion unit transmits communication information indicating
that operations corresponding to the operating portions have
been designated.

According to this kind of aspect of the invention, the opera-
tion carried out on the client device can be easily detected on
the host device side.

Also, in the information processing system according to the
aspect of the invention, the communication information
process determination unit, after suspending a process corre-
sponding to an operation indicated by the first commu-
nication information, determines an execution of a process corre-
sponding to a designation of an operation indicated by the
second communication information.

According to this kind of aspect of the invention, even in
the event that the communication of the first communication
information has been disrupted by an operational error or the
like, it is possible, by operating the operating portion again, to
restart a process to be carried out via the disrupted commu-
nication. Also, in the event that a previous operation is an
erroneous operation, the execution of the unintended process
by the operational error can be prevented by an appropriate
operation carried out later.

Also, in the information processing system according to the
aspect of the invention, the operating portion includes a con-

According to this kind of aspect of the invention, the
operating portion is provided on the client device side; a

designation member which, being provided on the host
device side, designates the operating portion; and a commu-
munication information transmission unit which, when the oper-
ating portion has been designated by the designation member,
transmits communication information corresponding to the
designated operating portion.

According to this kind of aspect of the invention, it is
to possible to ensure communication only in the event that the
operating portion on the client device side is operated with the
designation member such as a pen on the host device side.
This kind of configuration is effective in simplifying a control
or a configuration related to communication of the client
device, and in further reducing a size and a weight of the client
device.

Also, in the information processing system according to the
aspect of the invention, a plurality of the operating por-
tions is provided corresponding to types of operations on the
client device, and the communication information transmis-
sion unit transmits communication information indicating
that operations corresponding to the operating portions have
been designated.

According to this kind of aspect of the invention, the opera-
tion carried out on the client device can be easily detected on
the host device side.

Also, in the information processing system according to the
aspect of the invention, the communication information
process determination unit, after suspending a process corre-
sponding to an operation indicated by the first commu-
nication information, determines an execution of a process corre-
sponding to a designation of an operation indicated by the
second communication information.

According to this kind of aspect of the invention, even in
the event that the communication of the first communication
information has been disrupted by an operational error or the
like, it is possible, by operating the operating portion again, to
restart a process to be carried out via the disrupted commu-
nication. Also, in the event that a previous operation is an
erroneous operation, the execution of the unintended process
by the operational error can be prevented by an appropriate
operation carried out later.

Also, in the information processing system according to the
aspect of the invention, the operating portion includes a con-

According to this kind of aspect of the invention, the
operating portion is provided on the client device side; a

designation member which, being provided on the host
device side, designates the operating portion; and a commu-
munication information transmission unit which, when the oper-
ating portion has been designated by the designation member,
transmits communication information corresponding to the
designated operating portion.

According to this kind of aspect of the invention, it is
to possible to ensure communication only in the event that the
operating portion on the client device side is operated with the
designation member such as a pen on the host device side.
This kind of configuration is effective in simplifying a control
or a configuration related to communication of the client
device, and in further reducing a size and a weight of the client
device.

Also, in the information processing system according to the
aspect of the invention, a plurality of the operating por-
tions is provided corresponding to types of operations on the
client device, and the communication information transmis-
sion unit transmits communication information indicating
that operations corresponding to the operating portions have
been designated.

According to this kind of aspect of the invention, the opera-
tion carried out on the client device can be easily detected on
the host device side.

Also, in the information processing system according to the
aspect of the invention, the communication information
process determination unit, after suspending a process corre-
sponding to an operation indicated by the first commu-
nication information, determines an execution of a process corre-
sponding to a designation of an operation indicated by the
second communication information.

According to this kind of aspect of the invention, even in
the event that the communication of the first communication
information has been disrupted by an operational error or the
like, it is possible, by operating the operating portion again, to
restart a process to be carried out via the disrupted commu-
nication. Also, in the event that a previous operation is an
erroneous operation, the execution of the unintended process
by the operational error can be prevented by an appropriate
operation carried out later.

Also, in the information processing system according to the
aspect of the invention, the operating portion includes a con-

According to this kind of aspect of the invention, the
operating portion is provided on the client device side; a

designation member which, being provided on the host
device side, designates the operating portion; and a commu-
munication information transmission unit which, when the oper-
ating portion has been designated by the designation member,
transmits communication information corresponding to the
designated operating portion.
munication unit which communicates with a client device. The program comprises instructions for directing the performance of the following steps: a communication completion judgment step of judging whether or not first communication information to be transmitted and received via one round of communication has all been transmitted and received by the communication unit, and a communication information process determination step of, in the event that the communication unit is unable to receive the first communication information before it is judged in the communication completion judgment step that the first communication information has all been transmitted and received, determining a process related to the first communication information based on second communication information received via a next or subsequent round of communication.

According to this kind of aspect of the invention, the host device can judge whether or not the first communication information to be transmitted and received via one round of communication provided by the communication unit has all been transmitted or received. Also, in the event that the communication unit has become unable to transmit or receive the first communication information before it is judged that the first communication information has all been, transmitted or received, it is possible, in accordance with the second communication information received via the next or subsequent round of communication, to determine the process related to the first communication information.

For this reason, according to the aspect of the invention, as the first communication information, even in the event that it has been disrupted during communication, is appropriately processed at the time of a next round of communication, it is possible to provide the program, for causing the computer to execute the information processing method in which, even in the event that communication is disrupted, a subsequent process can be executed without any problem.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention will be described with reference to the accompanying drawings, wherein like numbers reference like elements.

FIG. 1 illustrates an information processing system according to an embodiment of the invention.

FIGS. 2A and 2B illustrate an interaction between a client device and a host device of the information processing system according to an embodiment of the invention.

FIG. 3 is a flowchart illustrating an operation in which the host device judges whether a process has been completed or not.

FIGS. 4A and 4B are flowcharts showing a case of judging a suspension or a continuation of the uncompleted process based on a policy according to an embodiment of the invention.

FIGS. 5A and 5B are other flowcharts showing a case of judging the suspension or continuation of the uncompleted process based on the policy according to an embodiment of the invention.

DESCRIPTION OF EXEMPLARY EMBODIMENTS

Hereafter, a description will be given of an information processing system a host device, and a program for causing execution of an information processing method according to an embodiment of the invention.

FIG. 1 illustrates an information processing system according to an embodiment of the invention. A configuration shown in the FIG., including a host device 3 and a client device 1 which is used for a display and an operation of a processing result of the host device 3, is an information processing system furnished with a communication unit which causes display data or information related to an operation to be communicated between the client device 1 and the host device 3. In the embodiment, the host device 3 and the client device 1 are connectable along with the operation, and a plurality of the client devices 1 can be alternately used. In the host device 3, a process is caused to progress by an event drive type driven by the operation on the client device 1.

In the present embodiment, the communication unit comprises operating buttons 109a, 109b and 109c which constitute an operating portion provided on the client device side, a pen 2 which, being provided on the host device 3 side via a wireless or wired connection, is a designation member making contact with the operating buttons 109a to 109c, and a communication processing portion 108, to be described hereafter, of the client device 1. When the pen 2 makes contact with the operating button 109a, 109b or 109c, the communication processing portion 103 transmits communication information corresponding to the contacted operating button. Hereafter, a description will be given of each of the client device 1, the pen 2 and the host device 3.

Client Device

The client device 1 is comprised of a thin display and a comparatively simple component for displaying an image (including a letter and a picture) on the display. This kind of client device configuration will, in this embodiment, be referred to hereafter as electronic paper.

The client device 1 includes a self-holding display component 101 which functions as a display device and is referred to herein simply as a display. The display 101, being, for example, an A4 size and a high pixel density, displays image data by a control of a display execution portion 107. The display 101, having a property of consuming power only in a case of rewriting a temporarily displayed image, is of a type that is often employed in the electronic paper.

As the display 101, it is possible to employ, for example, an electrophoretic display, a cholesteric display, a display using a charged toner, a display using a twist ball, an electrophoretic display or the like.

Also, the client device 1 includes a nonvolatile memory portion 102 and a processing portion 103 as components for displaying the image. The nonvolatile memory portion 102 includes display data 104, document data 105 and process progression data 106. The display data 104 are received from the host device 3 and displayed on the display 101. The process progression data 106 are data in which is recorded a progression of a process carried out by the host device 3 in response to the client device 1. Also, it is acceptable that the document data 105 and the process progression data 106 are provided in either the client device 1 or the host device 3.

The processing portion 103 includes the display execution portion 107 and the communication processing portion 108. The display execution portion 107, by directly controlling the display 101 in accordance with an updating of the display data stored in the nonvolatile memory portion 102, causes the display 101 to display the updated display data 104. Specifically, the display execution portion 107, with reference to the display data 104, by driving an X driver and a Y driver of the display 101, causes the display 101 to display a raster image.

In this embodiment, as a driver method of the drivers, it is possible to employ, for example, a passive matrix drive method, a TFT (Thin Film Transistor) method or a D-TFTD (Digital Thin Film Diode) method.
Also, the host device includes a plurality of the operating buttons 109a, 109b, and 109c. The operating buttons 109a to 109c are provided corresponding to types of operator's operation on the client device 1. The operation types refer, for example, to a rewriting (a paging) of an image displayed on the display 101 and the like. In this embodiment, the paging operation is further divided into a previous page display and a subsequent page display, to which the operating buttons 109a and 109c are assigned, respectively.

Furthermore, in this embodiment, the host device includes a continuation designation button 109b. The continuation designation button 109b is a button which, in the event that an operation has been interrupted before communication, connected, with a process corresponding to the operation is completed, is used to designate a continuation of the process corresponding to the operation and, in the embodiment, it is a component dedicated to this kind of designation.

The communication processing portion 108 generates a signal corresponding to an operating button, of the operating buttons 109a to 109c, operated with the pen 2, and generates communication information to be transmitted to the host device 3. This kind of communication, processing portion 108 function as a communication information transmission unit of the embodiment.

Host Device

The host device 3 includes a document processing portion 303 which judges whether or not communication information to be transmitted and received via one round of communication has all been transmitted and received. Also, as the document processing portion 303 judges a progression of the process with reference to an incomplete process management portion 302, the document processing portion 303 and the uncompleted process management portion 302 function as a communication completion judgment unit and a communication information process determination unit.

The document processing portion 303 and the uncompleted process management portion 302, in the event that, before it is judged that a certain item of communication information (first communication information) has all been transmitted and received, the pen 2 becomes unable to receive the communication information, determines a process related to the first communication information based on another item of communication information (second communication information) which the pen 2 has received via a next or subsequent round of communication.

The uncompleted process management portion 302 records a type of a process executed by the host device 3 and a stage of the executed process (how much of a series of processes has been completed). The recording is realised by recording a parameter or intermediate data of the process (for example, an objective display page in the paging). The record made by the uncompleted process management portion 302 serves as process contexts used in restarting a process designated by communication information of which communication, has been suspended.

The record made by the uncompleted process management portion 302 not being limited to a configuration in which it is recorded only in the host device 3, it is also acceptable to save a part of it in the client device 1 as the process progression, data 106.

Also, the host device 3 includes a power supply 301, the document processing portion 303 and an information service portion 304. The power supply 301 supplies power to the host device 3 and the pen 2 connected to the host device 3.

The document processing portion 303 interprets communication information transmitted from the client device 1, and executes a process in accordance with operation details indicated by the communication information.

More specifically, the document processing portion 303, in accordance with each kind of communication information transmitted from the client device 1, reads a process routine stored in advance, and executes a process corresponding to the communication information. As a specific example of the process, a description will be given of a process in a case in which the paging is designated using the client device 1. In the case in which the paging is designated by means of the operating button 109a or 109c, the document management portion 305 acquires information (process information) regarding a page currently displayed on the display 101 and document data from the nonvolatile memory portion 102 via the operating button 109a or 109c and the pen 2.

Furthermore, the document processing portion 303, based on the acquired process information and document data, executes a next page layout process, and generates next page display data. The generated display data is stored in the nonvolatile memory portion 102 via the operating button 109a or 109c and the pen 2.

The information service portion 304 is a component for using document data transmittable to the client device 1 or another network resource. For this reason, it includes a document management portion 305, which manages the document data and the display data, and a network portion 306 for a downloading etc. of the document data and the display data from an exterior.

Operating Buttons and Pen

The operating buttons 109a to 109c and the pen 2 are an interface between the client device 1 and the host device 3. That is, the pen 2 contains an antenna coil inside it. Meanwhile, each of the operating buttons 109a to 109c of the client device 1 also contains an antenna coil in the same way. By touching one of the operating buttons 109a to 109c with the pen 2, the touched one of the operating buttons 109a to 109c is designated. By the pen 2 and the operating button touching, their antenna coils are electromagnetically connected, and a signal for specifying the operating button the pen 2 has touched is generated. In the embodiment, the communication processing portion 103 generates communication information corresponding to the signal generated by the communication processing portion 108, and the pen 2 transmits the communication information to the host device 3.

The information processing system of the embodiment is not limited to the configuration described heretofore. That is, instead of the display data 104, the document data 105 and the process progression data 106 being saved in the client device 1, it is acceptable to configure in such a way as to save them in the host device 3. Also, a designation of each of the operating buttons 109a to 109c not being limited to the designation by the touching, it is acceptable to have a configuration in which communication is ensured by both the pen 2 and the operating button approaching to a very short prescribed distance or less from one another.

Operation Mode

Next, a description will be given of a mode of an operation executed in the information processing system of the embodiment. The operation, mode refers to an operation by the host device 3 in a case in which communication of the first communication information is disrupted before completed. In the embodiment, this kind of operation mode will be referred to as a policy.

The operation by the host device 3 is determined when the host device 3 receives a next or subsequent item of communication information after the communication is disrupted. In
In the event that the operator touches the continuation designation button $109b$ with the pen 2, the document processing portion 303, with reference to the data recorded in the uncompleted process management portion 302, judges how much of the uncompleted process has been processed and where it has been suspended. Then, the document processing portion 303 executes the uncompleted process again from the suspended condition.

The policy C is provided assuming a case in which the operating button $109a$ and the operating button $109c$ have been touched in quick succession in a rush to page in an operation of the paging or the like. That is, according to the policy C, even in the event that communication is suspended although a display process of a page instructed to be displayed first is uncompleted, it is possible to touch the continuation designation button $109b$ and continue the uncompleted process.

Policy D

In a policy D, a process based on a new instruction, whether identical or different, is executed after the uncompleted process is continued. That is, the policy D is a policy in which, no matter whether the operation indicated by the first communication information and the operation indicated by the second communication information are identical or different, the document processing portion 303 and the uncompleted process management portion 302, after continuing and completing the process corresponding to the operation indicated by the first communication information, execute the process corresponding to the operation indicated by the second communication information.

According to this kind of policy, even in the event that a process of the paging or the like has been finished incomplete by mistake during an operation of the operating button $109a$ or the like, by touching an operating button for a next operation, it is possible to continue to execute the process finished incomplete, and complete it normally.

Next, a description will be given, using the flowcharts of FIGS. 2A and 2B to 5A and 5B, of an operation of the heretofore described information processing system of the embodiment.

The flowcharts of FIGS. 2A and 2B illustrate an interaction between the client device 1 and the host device 3 of the information processing system of the embodiment. FIG. 2A shows an operation of the client device 1, and FIG. 2B shows an operation of the host device 3.

When the operator touches the operating button $109a$ or the like of the client device 1 with the pen 2 (step S210), communication is activated between the host device 3 and the client device 1 (steps S202 and S211). Also, by operating button and the pen 2 making contact with each other, communication information including an ID (a connecting portion ID) specifying a touched operation button, of the operating buttons $109a$ to $109c$, is provided from the communication processing portion 108 to the host device 3. The host device 3 receives the communication information, and identifies and specifies an operated client device and operating button (S202 and S212).

Next, the client device 1 provides the host device 3 with data related to a document currently displayed on the display 101. The host device 3, based on the data related to the document and the touched operating button, executes a document process such as a generation of display data, and transmits the generated display data to the client device 1 via the pen 2 as updated display data. The client device 1 receives the updated display data, and displays it on the display 101 (S203 and S213).
After the above process, in the host device 3, the document processing portion 303 can notify a user, by means of sound, light or the like, that the communication can be disconnected as the transmission of the updated display data has been completed (S214). By the pen 2 being released from the touching relation with the operating buttons 109a to 109c, the communication is disconnected on the client device 1 side. Also, the host device 3 also detects that the communication has been disconnected, and disconnects the communication unit (S204 and S215).

The document processing portion 303 of the host device 3 divides details of the designated process in advance by process step, checks a communication, condition every time each step is finished, detects a completion ratio of the process in the case in which the communication has been disrupted, and records it in the uncompleted process management portion 302. This kind of process of the document processing portion 303 will be shown in a flowchart and described.

FIG. 3 is a flowchart for illustrating an operation for the host device 3 to judge whether the process is uncompleted or completed. The flowchart shown in FIG. 3 is also applied to any of cases of a start of a certain communication process (normal), a suspension thereof and a process restart. In the embodiment, first, a description will be given of the case of the start of the normal process.

In the case of starting the normal process (a process type—normal), the document processing portion 303, for example, in a case of being instructed by the client device 1 to display a 6th page in accordance with the paging, executes the partial process (1) obtained by dividing the process into n parts (S301). After finishing the partial process (1), the document processing portion 303 judges whether or not communication carried out with the client device 1 via the pen 2 has been disrupted (S302).

If it is judged in step S302 that the communication has been disrupted (S302: disruption), it is unknown whether or not the partial process (1) has been normally completed. For this reason, the partial process (1) is also completed as being uncompleted. Also, if it is judged that the communication has not been disrupted, it is recorded in the uncompleted process management portion 302 that the process has been completed up to the partial process (1) (the whole process is uncompleted) (S303). In the embodiment, when the host device 3 finishes transferring the display data, the uncompleted process management portion 302 is initialized as a paging for one page having been finished.

After the above process, in a case in which the process is restarted or suspended in a condition in which, it has been completed up to the partial process (1), a restart or suspension flow converges or diverges at the time of a recording of a partial completion in step S303 (S304). In the case of the normal process (S304: normal), the process proceeds to a partial process (2).

The document processing portion 303 judges the disruption of the communication even after executing the partial process (2) (S307) and, if the communication has been disrupted (disruption), finishes the process as not having been appropriately completed. Also, if the process has been completed up to a partial process (i) (non-disruption), it is recorded that the process has been completed up to the partial process (i) (S308).

In the embodiment, the partial processes are sequentially executed in the above way and, only if the partial process has been completed without the communication disrupted, it is recorded that the relevant partial process has been completed. In this way, if all of the n partial processes have been completed (S313: non-disruption), it is recorded in the uncompleted process management portion 302 that there is no uncompleted process, and the process is completed (S314).

Meanwhile, in the above process, the disrupted communication is restarted or suspended by a restart process (process type—restart) or a suspension process (process type—suspension). The restart or suspension of the process is determined by the type of each herefore described policy and each designated operating button 109a to 109c.

That is, in the policies, if an operating button to designate the process restart has been designated in a policy (process type—restart), the host device 3, with reference to the uncompleted process management portion 302, specifies a stage in which the process is completed (S318). Then, the restart process converges on a process flow at a time immediately after each step in which it has been recorded that the specified partial process has been completed (S304, S309 and S311) and, at each convergent point, the process proceeds to an execution of a partial process to follow (S304: restart, S309: restart, and S311: restart).

Also, if the operator has carried out the suspension process (process type—suspension), in the same way, the host device 3, with reference to the uncompleted process management portion 302, specifies a step in which the process is completed (S318). Then, it returns to a time immediately after each step in which it has been recorded that the specified partial process has been completed (S304, S309 and S311), and moves to a suspension process corresponding to the time (S304, S309 and S311: suspension). The suspension process corresponds to a sequential execution of partial suspension processes (S315, S316 and S317) corresponding to the individual partial processes, but is also sometimes a partial suspension process in which there is no substantial process. After a completion of the series of suspension processes, it is recorded in the uncompleted process management portion 302 that there is no uncompleted process.

By this means, in this embodiment, the normally finished partial process is recorded in the uncompleted process management portion 302. For this reason, if the uncompleted partial process is suspended or restarted, by the document processing portion 303 referring to a completion ratio P received in the uncompleted process management portion 302 (S319), it is possible to prevent an already completed process, of the uncompleted processes, from being processed again.

In the above process, a granularity or frequency managing the completion ratio (in which stage the completion ratio is to be recorded, or a frequency of the recording) is set appropriately in this embodiment.

Next, a description will be given, using flowcharts shown in FIGS. 4A, 4B, 5A and 5B, of the suspension and continuation (restart) of the uncompleted process determined by the previously described policies A to D.

FIG. 4A is a flowchart in a case of judging the suspension or continuation of the uncompleted process based on the policies A and D. If the client device 1 mates a process request H to the host device 3 (S401), the document processing portion 303, with reference to the uncompleted process management portion 302, judges whether or not there is any uncompleted process U (S402). If there is no uncompleted process U (S402: No), a process N is executed afresh by (process type—normal) of the flowchart shown in FIG. 3 (S403).

In step S402, if it is judged that there is the uncompleted process U (S402: Yes), the (process type—restart) or (process type—suspension) process of the flowchart shown in FIG. 3 is executed. That is, if the document processing portion 303 operates in the policy A, the flowchart of FIG. 3 is executed from a (process type—incompletion) route. Meanwhile, if the document processing portion 303 operates in the policy D, the
If the communication is disrupted during the restart process of the process U or the normal execution of the process M, as shown in FIG. 3, each process is put into a process incompletion condition (S404: disruption or S403: disruption). That is, when a further subsequent operation is carried out, the same flowchart is applied with the process in execution during the disruption as a new uncompleted process U.

FIG. 4B is a flowchart in a case of judging the suspension or continuation of the uncompleted process based on the policy 3. If the client device 1 makes a process request N to the host device 3 (S410), the document processing portion 303, with reference to the uncompleted process management portion 302, judges whether or not there is any uncompleted request (S411). If there is no uncompleted process U (S411: No), the process N is executed in accordance with (process type = normal) of the flowchart of FIG. 3 (S412).

If it is judged in step S411 that there is the uncompleted process U (S411: Yes), the document processing portion 303 judges whether or not in process U is identical to process N and the process U and the process N are identical has been requested (S413). If a result of the judgment is that the process U and the process N are not the identical process (S413: No), the uncompleted process U is suspended and finished (S415) and, subsequently, the process N is normally processed (S412).

Meanwhile, if the process N and the process U are the identical process (S413: Yes), the process U continues to be executed (S414), and the process is finished without the process N (the process identical to the process U) executed afresh.

If the communication is disrupted during the restart process of the process U or the normal execution of the process N, as shown in FIG. 3, each process is put into a process incompleteness condition (S414: disruption or S412: disruption). That is, when a further subsequent operation is carried out, the same flowchart is applied with the process in execution during the disruption as a new uncompleted process U.

FIG. 5A is a flowchart in a case of judging the suspension or continuation of the uncompleted processes based on the policies A and C. If the client device 1 makes a process request N to the host device 3 (S501), the document processing portion 303, with reference to the uncompleted process management portion 302, judges whether or not there is any uncompleted process U (S502). If there is no uncompleted process U (S502: No), it is judged whether or not the process N is a continuation request generated by operating the continuation designation button 109b (S503).

If a result of the judgment in step S503 is that the process U is the continuation request (S503: Yes), the document processing portion 303 completes the process without processing anything (as there is no uncompleted process to be continued). Also, if the process N is not the continuation request (S503: No), the process N is normally executed (S504).

If it is judged in step S502 that there is the uncompleted process U (S502: Yes), the document processing portion 303 judges whether or not the process N is a continuation request generated by operating the continuation designation button 109b (S505). If a result of the judgment is that the process N is the continuation request (S505: Yes), the process U is continuously executed (S506). Also, if the process N is not the continuation request (S505: No), the process U is suspended (S507), and the process N is executed thereafter.

In either of step S504 or step S506, if the communication is disrupted based on the flowchart of FIG. 3, the process is finished as being uncompleted (S504: disruption and S506: disruption). That is, in this case, when a further subsequent operation is carried out, the same flowchart is applied with the process in execution during the disruption as a new uncompleted process U.

FIG. 5B is a flowchart in a case of judging the suspension or continuation of the uncompleted process based on the policies B and C. If the client device 1 makes a process request N to the host device 3 (S511), the document processing portion 303, with reference to the uncompleted process management portion 302 judges whether or not there is any uncompleted process U (S512). If there is no uncompleted process U (S512: No), it is judged whether or not the process N is a continuation request generated by operating the continuation designation button 109b (S513).

If a result of the judgment is that the process N is the continuation request (S513: Yes), the document processing portion 303 completes the whole process without processing anything (as there is no uncompleted process to be continued). Also, if the process N is not the continuation request (S513: No), the process N is normally executed (S514).

If it is judged in step S512 that there is the uncompleted process U (S512: Yes), the document processing portion 303 judges whether or not the process N is the continuation request (S515). If a result of the judgment is that the process N is the continuation request (S515: Yes), the process U is continuously executed (S516).

Also, if the process N is not the continuation request (S515: No), first, it is judged whether or not the process N and the process U are the identical process (S517). At this point, if the process N and the process U are the identical process (S517: Yes), it is equivalent to the case in which the process N is the continuation request (S515: Yes). If the process N and the process U are not the identical process (S517: No), the process U is suspended (S518), and the process N is executed (S514).

In either of step S514 or step S516, if the communication is disrupted based on the flowchart of FIG. 3, the process is finished as being uncompleted (S514: disruption and S516: disruption). That is, in this case, when a further subsequent operation is carried out, the same flowchart is applied with the process in execution during the disruption as a new uncompleted process U.

In order to realize the heretofore described flowcharts by means of software, various specific methods can be considered. For example, while an immediately previous process is incomplete, they can also be realized by a suspension process routine or a restart process routine being recorded as a dispatch destination of (the interruption raised by) successive button operation. In the case that the information processing system of the embodiment is configured by this kind of method, a rewriting of a dispatch table is executed by the uncompleted process management portion 302.

In the heretofore described embodiment, even in the event that communication information is disrupted during communication, as an appropriate process is carried out at the time of a next round of communication, it is possible, even in the event that the communication is disrupted, to execute a subsequent process without any problem.

Also, the embodiment, as described heretofore, responds not only to a disruption of a signal transmitted from the client device 1 to the host device 3, but can also be applied to a case in which the communication is disrupted while displaying image data or the like are transmitted from the host device 3 to the client device 1. That is, in the event that communication from
the host device 3 to the client device is disrupted, the host device 3 can also receive communication information trans-
mitted next from the client device 1 and, in accordance with the communication information, judge a display data trans-
smission, restart or the like.

According to the heretofore described process, the embod-
iment can operate in the following way.

That is, the host device 3, in the event that it is instructed to page by the client device 1, and the instruction is disrupted in an incomplete condition, registers a paging process, and reg-
isters that a page to be displayed is, for example, a 6th page.
After the registration, it records a completion ratio 1. Next, it
generates display data 104 of the 6th page from document data
105. When completing the generation of the display data, the host device 3 records a completion ratio 2.

Next, the host device 3 starts a transfer of the display data to a client, and updates the completion ratio by +1 for each
prescribed unit of transfer completion. Before the transfer completion, for example, in the event that communication is
disrupted at a stage of a completion ratio 4, and the operator
instructs the paging again from the client device 1 side, the
host device 3 refers to the uncompleted process management portion 302. A result of the reference is that the 6th page
is being processed at present, and that a completion ratio of the
process is 4, and the host device 3, based on any of the
heretofore described policies, executes a discard of a process
progression (for example, storage details), an initialization of
the uncompleted process management portion 302 or the like.

In order to newly display a 7th page, the host device 3, as
well as storing a fact that the display page is the 7th page,
records the completion ratio 1 in the uncompleted process management portion 302. Then, it generates display data of
the 7th page from the document data.

Also, in the information processing system of the embodi-
ment, there is a possibility that the operator continuously
operates the operating buttons 109a to 109e and, before the
previous communication is completed, designates a next
round of communication. For this reason, it can be consid-
ered, for example, that the operator, while continuously oper-
at ing the operating buttons 109a for the purpose of displaying
a 9th page, suspends the operation by an operational error
before communication of the 9th page is completed.

In the embodiment, the continuation designation button
109b is provided assuming this kind of case. When the oper-
ator operates the continuation designation button 109b, the
host device 3 can start an uncompleted process continuation
process and restart the process as if there were no disruption
in the middle.

In the heretofore described embodiment, as the communica-
tion information, even in the event that it is disrupted during
communication, is appropriately processed at the time of a
next round of communication, it is possible, even in the event
that the communication is disrupted, to execute a subsequent
process with no problem. That is, it is possible to provide a
high operability information processing system in which it
is possible to give an instruction to restart a process which the
operator has temporarily suspended, and to execute an appro-
piate process in line with the operator’s intention.

2006-80370, filed Mar. 23, 2006 is expressly incorporated by
reference herein.

What is claimed is:

1. An information processing system, comprising:
 a host device;
 a client device which requests the host device to process
 information, the client device including a plurality of
 operating portions corresponding to a plurality of oper-

a communication unit which provides communication
between the host device and the client device, the com-

unit providing communication information transmission
unit which transmits communication information correspon-
ding to the designated operating portion when the designated
operating portion is designated by the designation mem-
ber;

wherein the host device includes:
 a communication completion judgment unit which judges
whether or not first communication information to be
transmitted and received via one round of communica-
tion provided by the communication unit has all been
transmitted or received; and

a communication information process determination unit
which, in the event that the communication unit is unable
to transmit or receive the first communication informa-
tion before it is judged by the communication completion
judgment unit that the first communication informa-
tion has all been transmitted or received, determines a
process related to the first communication information
in accordance with second communication information
received via a next or subsequent round of communica-
tion;

and wherein the communication information process
determination unit, in the event that the operation indi-
cated by the first communication information and the
operation indicated by the second communication informa-
tion are different, after suspending the process corre-
sponding to the operation indicated by the first commu-
nication information, executes the process corresponding
to the designation of the operation indicated by the
second communication information and, in the event that
the operation indicated by the first communication
information and the operation indicated by the
second communication information are identical, deter-
mines a continuation of the process corresponding
to the operation indicated by the first communication
information.

2. The information processing system according to claim 1,
wherein

the communication information process determination
unit, after suspending a process corresponding to an
operation indicated by the first communication informa-
tion, determines an execution of a process correspond-
in to a designation of an operation indicated by the
second communication information.

3. The information processing system according to claim 1,
wherein

the operating portion includes a continuation designation
button which designates a continuation of the process
operating corresponding to the operation indicated by the
first communication information, and

the communication information process determination
unit, by the communication unit receiving communica-
tion information transmitted by an operation of the con-
tinuation designation button, determines the continua-
tion of the process corresponding to the operation
indicated by the first communication information.

4. The information processing system according to claim 1,
wherein

the communication information process determination
unit, no matter whether the operation indicated by the
first communication information and the operation indicated by the second communication information are different or identical, after continuing and completing the process corresponding to the operation indicated by the first communication information, determines a process corresponding to the designation of the operation indicated by the second communication information.

5. A host device including a communication unit which is adapted to communicate with a client device, comprising:

- a communication completion judgment unit which judges whether or not first communication information to be transmitted and received via one round of communication has all been transmitted and received; and
- a communication information process determination unit which, in the event that the communication unit is unable to receive the first communication information before it is judged by the communication completion judgment unit that the first communication information has all been transmitted and received, determines a process related to the first communication information based on second communication information received via a next or subsequent round of communication;

the host device receiving communication information corresponding to a designated operating portion from a plurality of operating portions of the client device, the plurality of operating portions corresponding to a plurality of operations of the client device, the host device receiving the communication information when the designated operating portion is designated by a designation member of the communication unit;

wherein the communication information process determination unit, in the event that the operation indicated by the first communication information and the operation indicated by the second communication information are different, after suspending the process corresponding to the operation indicated by the first communication information, executes the process corresponding to the designation of the operation indicated by the second communication information and, in the event that the operation indicated by the first communication information and the operation indicated by the second communication information are identical, determines a continuation of the process corresponding to the operation indicated by the first communication information.

6. A program stored in a non-transitory computer storage medium for causing execution of an information processing method by a host device that includes a communication unit which is adapted to communicate with a client device, the program comprising:

- instructions for judging whether or not first communication information to be transmitted and received via one round of communication has all been transmitted and received;
- instructions for, in the event that the communication unit is unable to receive the first communication information before it is judged in the communication completion judgment step that the first communication information has all been transmitted and received, determining a process related to the first communication information based on second communication information received via a next or subsequent round of communication;
- instructions for receiving communication information corresponding to a designated operating portion from a plurality of operating portions of the client device, the plurality of operating portions corresponding to a plurality of operations of the client device, the host device receiving the communication information when the designated operating portion is designated by a designation member of the communication unit;
- instructions for, in the event that the operation indicated by the first communication information and the operation indicated by the second communication information are different, after suspending the process corresponding to the operation indicated by the first communication information, executing the process corresponding to the designation of the operation indicated by the second communication information and, in the event that the operation indicated by the first communication information and the operation indicated by the second communication information are identical, determining a continuation of the process corresponding to the operation indicated by the first communication information.