
JP 4301125 B2 2009.7.22

10

20

(57)【特許請求の範囲】
【請求項１】
　楽器に備えられた演奏操作子群を操作して楽曲を演奏していく際の指の運びである運指
を示す運指情報を生成する装置であって、
　前記楽曲の演奏内容を示す演奏情報を取得する演奏情報取得手段と、
　前記演奏情報取得手段が取得した演奏情報を参照して、該演奏情報が演奏内容を示す楽
曲の運指情報を生成する運指情報生成手段と、
　前記運指情報生成手段が生成した運指情報を参照して、該運指情報が示す運指を行うう
えでの難易度を算出する難易度算出手段と、
　前記難易度算出手段が算出した難易度を基に、前記運指情報生成手段が生成した運指情
報の修正を行う運指情報修正手段と、
　を具備することを特徴とする運指情報生成装置。
【請求項２】
　前記運指情報修正手段は、前記演奏情報及び運指情報の夫々が有する複数種の特性の中
からいずれかひとつの選択された特性に基づき、前記運指情報生成手段が生成した運指情
報に対する修正を行ない、
　前記運指情報生成装置はさらに、前記修正された運指情報に対して前記難易度算出手段
により再度難易度算出を行なわせ、この難易度算出結果を基に前記選択された特性を変更
するとともに、前記運指情報修正手段に対して、前記変更された特性に基づいて前記修正
された運指情報の再度修正を行なわせるように制御する制御手段を有する請求項１に記載

(2) JP 4301125 B2 2009.7.22

10

20

30

40

50

の運指情報生成装置。
【請求項３】
　前記運指情報修正手段は、前記演奏情報を参照して該演奏情報を１つ以上の部分演奏情
報に仮想的に分割し、該部分演奏情報単位で前記選択された特性に基づいた修正を前記運
指情報に対して行う、
　ことを特徴とする請求項２記載の運指情報生成装置。
【請求項４】
　前記選択された特性に基づいた前記部分演奏情報単位の修正は、該部分演奏情報が示す
演奏内容のパターン、該演奏内容の種類、該部分演奏情報間の演奏内容の類似性、及び該
部分演奏情報から生成された運指情報に従った運指の難易度に基づいた修正を一つ以上、
含む、
　ことを特徴とする請求項３記載の運指情報生成装置。
【請求項５】
　前記部分演奏情報間の演奏内容の類似性に基づいた修正は、該部分演奏情報を参照して
生成される運指情報を他の部分演奏情報に適用させる形での修正を含む、
ことを特徴とする請求項４記載の運指情報生成装置。
【請求項６】
　楽器に備えられた演奏操作子群を操作して楽曲を演奏していく際の指の運びである運指
を示す運指情報を生成する運指情報生成装置として用いられるコンピュータに、
　前記楽曲の演奏内容を示す演奏情報を取得する機能と、
　前記取得する機能により取得した演奏情報を参照して、該演奏情報が演奏内容を示す楽
曲の運指情報を生成する機能と、
　前記生成する機能により生成した運指情報を参照して、該運指情報が示す運指を行うう
えでの難易度を算出する機能と、
　前記算出する機能により算出した難易度を基に、前記生成する機能により生成した運指
情報の修正を行う機能と、
　を実現させるためのプログラム。
【発明の詳細な説明】
【技術分野】
【０００１】
　本発明は、楽器に備えられた演奏操作子群を操作して楽曲を演奏していく際の指の運び
である運指を示す運指情報を生成するための技術に関する。
【背景技術】
【０００２】
　現在では、多くの鍵盤楽器に、演奏の進行に応じて押鍵（操作）すべき鍵を順次、ユー
ザ（演奏者）に通知していくナビゲーション機能が搭載されている。しかし、ナビゲーシ
ョン機能を利用するユーザの多くは技術的に未熟であり、そのナビゲーション機能によっ
て次に押鍵すべき鍵を知ることができても、その鍵をどの指で押鍵すべきかが判らないの
が実状である。このことから、鍵の押鍵に使うべき指を表示する演奏動作表示装置を搭載
した鍵盤楽器も製品化されている。その演奏動作表示装置を利用することにより、指の運
び方を意識した演奏を行えるため、ユーザにとってはより効率的な練習（学習）を行うこ
とができる。
【０００３】
　運指情報生成装置は、楽曲の演奏内容を示す演奏情報を参照して、楽器に備えられた鍵
盤（演奏操作子群）を操作してその楽曲を演奏していく際の指の運びである運指を示す運
指情報を自動的に生成するものである。通常、上記演奏動作表示装置では、運指情報を参
照して、演奏の進行に応じて順次、押鍵すべき鍵の押鍵に使うべき指、その指を離鍵させ
るべきタイミング、等を教示するようになっている。従来の運指情報生成装置としては、
例えば特許文献１に記載されたものがある。
【０００４】

(3) JP 4301125 B2 2009.7.22

10

20

30

40

50

　特許文献１に記載された従来の運指情報生成装置では、押鍵すべき鍵の押鍵に使うべき
指として、その鍵の押鍵を行う難易度を示すコストを指別に算出することにより、その押
鍵が比較的に容易に行える指を割り当てている。その鍵以降に押鍵すべき鍵も考慮するこ
とにより、滑らかに演奏できるようにさせている。また、和音等の楽曲上の構造（演奏内
容の種類）や、指潜り等の運指（演奏）方法に着目してフレーズを判定することにより、
フレーズ別に適切な方法で指の割り当てを行うようにさせている。
【０００５】
　上記コストや楽曲の構造（演奏内容の種類）、及び運指方法に着目することにより、ユ
ーザにとってより容易な（適切な）運指情報を生成することができる。上記従来の運指情
報生成装置では、それらを全て考慮しつつ、運指情報を生成していくようになっていた。
このため、演奏情報が示す演奏内容に係わらず、運指情報の生成に常に長い時間がかかる
という問題点があった。
【０００６】
　楽曲のなかには、その構造等を考慮しなくとも最適、或いはそれに近い運指情報を生成
できるものも存在する。ユーザのより快適な利用を可能とさせるために、そのような楽曲
の運指情報はより迅速に生成できるようにすることが望ましいと考えられる。
【特許文献１】特開２００１－３３１１７３号公報
【発明の開示】
【発明が解決しようとする課題】
【０００７】
　本発明の課題は、演奏情報が示す演奏内容に応じて、運指情報の生成をより迅速に行え
るようにするための技術を提供することにある。
【課題を解決するための手段】
【０００８】
　本発明の第１の態様の運指情報生成装置は、楽器に備えられた演奏操作子群を操作して
楽曲を演奏していく際の指の運びである運指を示す運指情報を生成することを前提とし、
それぞれ以下の手段を具備する。
【０００９】
　第１の態様の運指情報生成装置は、前記楽曲の演奏内容を示す演奏情報を取得する演奏
情報取得手段と、前記演奏情報取得手段が取得した演奏情報を参照して、該演奏情報が演
奏内容を示す楽曲の運指情報を生成する運指情報生成手段と、前記運指情報生成手段が生
成した運指情報を参照して、該運指情報が示す運指を行ううえでの難易度を算出する難易
度算出手段と、前記難易度算出手段が算出した難易度を基に、前記運指情報生成手段が生
成した運指情報の修正を行う運指情報修正手段と、を具備する。
【００１０】
　なお、前記運指情報修正手段は、前記演奏情報及び運指情報の夫々が有する複数種の特
性の中からいずれかひとつ選択された特性に基づき、前記運指情報生成手段が生成した運
指情報に対する修正を行ない、前記運指情報生成装置はさらに、前記修正された運指情報
に対して前記難易度算出手段により再度難易度算出を行なわせ、この難易度算出結果を基
に前記選択された特性を変更するとともに、前記運指情報修正手段に対して、前記変更さ
れた特性に基づいて前記修正された運指情報を再度修正を行なわせるように制御する制御
手段を有する、ことが望ましい。
【００１１】
　上記運指情報修正手段は、演奏情報を参照して該演奏情報を１つ以上の部分演奏情報に
仮想的に分割し、該部分演奏情報単位で前記選択された特性に基づいた修正を運指情報に
対して行う、ことが望ましい。前記選択された特性に基づいた前記部分演奏情報単位の修
正は、該部分演奏情報が示す演奏内容のパターン、該演奏内容の種類、該部分演奏情報間
の演奏内容の類似性、及び該部分演奏情報から生成された運指情報に従った運指の難易度
、に基づいた修正を一つ以上、含む、ことが望ましい。部分演奏情報間の演奏内容の類似
性に基づいた修正については、該部分演奏情報を参照して生成される運指情報を他の部分

(4) JP 4301125 B2 2009.7.22

10

20

30

40

50

演奏情報に適用させる形での修正を含む、ことが望ましい。
【００１３】
　本発明の第１の態様のプログラムは、上記第１の態様の運指情報生成装置が具備する手
段を実現させるための機能を搭載している。
【発明の効果】
【００１４】
　本発明は、演奏情報及び運指情報の夫々が有する複数種の特性の中からいずれかひとつ
選択された特性を参照して、その演奏情報が演奏内容を示す楽曲の運指情報を生成し、必
要に応じて、生成した運指情報に対する修正（補正）を、前記選択された特性を変更させ
ながら段階的に行わせる。
【００１５】
　生成した運指情報に対する修正を必要に応じて行うようにしたことから、運指情報の生
成には比較的に簡単なアルゴリズムを採用することができる。そのため、簡単なアルゴリ
ズムで最適、或いはそれに近い運指情報の生成が可能な楽曲（演奏情報）では、その生成
を迅速に行えるようになる。そうでない楽曲でも、生成後の修正により、最適、或いはそ
れに近い運指情報を得ることができる。生成した運指情報、及び修正後の運指情報を対象
にその評価を行うようにした場合には、最適、或いはそれに近い運指情報を、必要最小限
の時間で確実に得られるようになる。
【発明を実施するための最良の形態】
【００１７】
 以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。
　図１は、本実施の形態による運指情報生成装置を搭載した電子楽器の構成を説明する図
である。
【００１８】
　その電子楽器は、図１に示すように、楽器全体の制御を行うＣＰＵ１と、そのＣＰＵ１
が実行するプログラムや各種制御用データを格納したＲＯＭ２と、ＣＰＵ１がワークに用
いるＲＡＭ３と、各種スイッチ等の操作子を有する入力部４と、例えば液晶表示装置であ
る表示部５と、各種データの格納に用いることができる外部記憶装置６と、演奏操作の対
象となる演奏操作子群である鍵盤７と、ＣＰＵ１の指示に従って楽音を発音させるサウン
ドシステム８と、を備えている。
【００１９】
　なお、上記外部記憶装置６は、例えば着脱自在な記録媒体にアクセスするものである。
入力部４に備えられた運指情報の生成に係わる操作子としては、運指情報生成の対象とな
る曲（演奏情報）を指定するための曲指定スイッチ、運指情報の生成を指示するための運
指生成スイッチ、運指情報生成の動作モードを設定するためのモード設定スイッチ、その
動作モードとして、指定区間（範囲）のみ運指情報を生成対象とするモード（以降「指定
区間モード」と呼ぶ）が設定されている場合に、その区間を設定するための範囲設定スイ
ッチ、指定区間の前、或いは後を考慮する生成を行うか否か設定するためのオプション設
定スイッチ、及び内容が同一のフレーズを考慮した補正を行うか否か設定するための同一
フレーズ補正スイッチ、などが設けられている。
【００２０】
　運指情報生成の対象となる演奏データ（情報）は、例えば曲指定スイッチを操作して、
外部記憶装置６がアクセス可能なもののなかから選択するようになっている。ＣＰＵ１は
、ユーザが選択した演奏データを外部記憶装置６に読み出させ、それをＲＡＭ３に格納す
る。
【００２１】
　図２は運指情報生成のためにＲＡＭ３に格納される各種データの構成を説明する図であ
る。図２（ａ）は演奏データの構成、図２（ｂ）は制御変数をそれぞれ示している。
　図２（ａ）に括弧を付して表記の「ＭＥ」は、曲を構成する１音符に係わるデータ（音
符データ）を表している。その音符データＭＥは、「ｔｉｍｅ」と表記の発音開始時刻、

(5) JP 4301125 B2 2009.7.22

10

20

30

40

50

「ｇａｔｅ」と表記の発音継続時間、「ｐｉｔｃｈ」と表記の発音ピッチ（ノート番号）
、「ｐｏｓｘ」と表記の発音ピッチに対応する鍵の鍵盤座標、「ｔｅｎｄ」と表記のピッ
チ増減傾向、「ｆｉｇ」と表記の運指番号（その鍵の押鍵に使うべき指を示す番号）、「
ｃｏｓｔ」と表記の運指コスト（その鍵を押鍵するうえでの難易度）、「ｐｉｄ」と表記
のフレーズ番号（その発音ピッチの音符が属するフレーズに割り当てられる識別用番号）
、及び「ｐｓｔａｔ」と表記のフレーズ状態（その音符が属するフレーズ内での位置）、
の各データから構成されている。
【００２２】
　図示していないデータとしては、鍵の押鍵に使うべき指が右手か否かを示すパートや、
その押鍵時の強さを示すベロシティなども存在する。しかし、ここでは説明上、便宜的に
省略している。
【００２３】
　データｐｏｓｘは、ＭＩＤＩフォーマットで６０のノート番号が割り当てられた鍵を基
準（０）として、白鍵毎に２つずつ変化させる値で鍵盤座標を表現したものである。その
ように変化させることにより、白鍵は偶数、黒鍵は奇数とさせている。これは、白鍵と黒
鍵とでは鍵盤７の長手方向の交差方向上の位置に違いがあるからである。
【００２４】
　上記ピッチ増減傾向は、その増減の切り替わる点に当たる音符では０、前の音符と同じ
ピッチ（音高）の音符では±１、前の音符のピッチと異なる音符では±２、で表現するよ
うにしている。その符号は＋はピッチが増加中であることを示し、「－」はピッチが減少
中であることを示している。
【００２５】
　上記運指番号としては、親指は０、人指し指は１，中指は２、薬指は３、小指は４をそ
れぞれ割り当てている。上記フレーズ状態としては、フレーズ先頭位置の音符には０、フ
レーズ終了位置の音符には２、それ以外、つまりその間の音符には１、をそれぞれ割り当
てている。
【００２６】
　上記ｔｉｍｅ、ｇａｔｅ、及びｐｉｔｃｈは、外部記憶装置６から読み出された演奏デ
ータを構成するデータか、或いはそのデータから生成されるものである。それら以外のデ
ータは、運指情報を構成するデータ、或いはそのデータ生成に用いるデータである。
【００２７】
　一方、制御変数としては、図２（ｂ）に示すように、「ｅｖ＿ｍａｘ」と表記の全音符
数－１の値（演奏データ最大インデックス）、「ｍｏｄｅ」と表記の動作モードを示す値
、「ｅｖ＿ｓ」と表記の指定区間先頭インデックス、「ｅｖ＿ｅ」と表記の指定区間末端
インデックス、「ｌｏｏｋｕｐｂ」と表記の指定区間前考慮フラグ、「ｌｏｏｋｕｐｆ」
と表記の指定区間後考慮フラグ、「ｍｅ＿ｓ」と表記の指定区間前を考慮する場合の指定
区間先頭インデックス、「ｍｅ＿ｅと表記の指定区間後を考慮する場合の指定区間末端イ
ンデックス、「ｍｅ＿ｔｏｐ」と表記の処理区間先頭インデックス、「ｍｅ＿ｔａｉｌ」
と表記の処理区間末端インデックス、「ｌｏｏｐｃｎｔ」と表記の処理ループカウンタ、
及び「ｐｈｒｃｏｒ」と表記の同一フレーズ補正実行フラグ、の代入用の変数が用意され
る。
【００２８】
　上記ｍｏｄｅの値としては、上記指定区間モードの設定時には１、演奏データ全体を運
指情報の生成の対象にするモード（以降「全体モード」と呼ぶ）の設定時には０、が代入
される。上記ｌｏｏｋｕｐｂ、ｌｏｏｋｕｐｆの各値としては、指定区間を越える範囲を
考慮する場合には１、そうでない場合には０がそれぞれ代入される。上記ｐｈｒｃｏｒと
しても同様に、同一内容のフレーズを対象にした補正を行う場合には１、そうでない場合
には０が代入される。上記ｅｖ＿ｓ、ｅｖ＿ｅ、ｌｏｏｋｕｐｂ、ｌｏｏｋｕｐｆ、及び
ｐｈｒｃｏｒとしては、ユーザの設定に応じた値が代入される。
【００２９】

(6) JP 4301125 B2 2009.7.22

10

20

30

40

50

　以降は、図３～図８、図１０～図１４、図１６～図２１、及び図２３～図２９に示す各
種処理のフローチャート、並びに図９、図１５、及び図２２に示す各種説明図を参照しつ
つ、電子楽器の動作について詳細に説明する。なお、それらの図に示す各処理は、ＣＰＵ
１がＲＯＭ２に格納されたプログラムを実行することで実現される。
【００３０】
　図３は、全体処理のフローチャートである。始めに図３を参照して、全体処理について
詳細に説明する。
　電源がオンされると、先ず、ステップＳＡ１で初期処理を実行し、電子楽器を所定の状
態に設定する。続くステップＳＡ２では、曲指定スイッチがオンしたか否か判定する。そ
のスイッチをユーザが操作したことで入力部４からその旨を示す信号を受け取った場合、
判定はＹＥＳとなり、次にステップＳＡ３において、ユーザの入力部４への操作により指
定される曲（演奏データ）を外部記憶装置６から取り込むための処理を実行してからステ
ップＳＡ４に移行する。演奏データの取り込みを行う際、音符データＭＥの個数をカウン
トして、そのカウント値－１の値を変数ｅｖ＿ｍａｘに代入する。一方、そうでない場合
には、判定はＮＯとなり、次にそのステップＳＡ４の処理を実行する。
【００３１】
　ステップＳＡ４では、ステップＳＡ３で取り込まれる演奏データのなかで運指情報の生
成の対象となる範囲をユーザに設定させるための範囲設定処理を実行する。次のステップ
ＳＡ５では、運指生成スイッチがオンしたか否か判定する。そのスイッチをユーザが操作
した場合、判定はＹＥＳとなり、次にステップＳＡ６で運指情報の生成を行うための運指
生成処理を実行した後、ステップＳＡ７に移行する。そうでない場合には、次にそのステ
ップＳＡ７に移行する。
【００３２】
　ステップＳＡ７では、入力部４に設けられたその他のスイッチへの操作に対応するため
のその他スイッチ処理を実行する。続くステップＳＡ８では、鍵盤７へのユーザの操作に
応じて楽音を発音させるための鍵盤処理を実行する。その次のステップＳＡ９では、ユー
ザに曲を指定させ、指定された曲の自動演奏を実現させるための自動演奏処理を実行する
。それ以降は、ステップＳＡ１０で表示部５に表示させるべき情報を表示させる表示処理
、ステップＳＡ１１でその他処理を実行してから、上記ステップＳＡ２に戻る。
【００３３】
　図４以降に示すフローチャートは、上記全体処理内で直接的、或いは間接的に呼び出さ
れるサブルーチン処理を示すものである。このことから以降、そのサブルーチン処理につ
いて詳細に説明する。
【００３４】
　図４は、上記ステップＳＡ４として実行される範囲設定処理のフローチャートである。
次に図４を参照して、その設定処理について詳細に説明する。
　先ず、ステップＳＣ１では、モード設定スイッチがオンしたか否か判定する。そのスイ
ッチをユーザが操作した場合、判定はＹＥＳとなり、次のステップＳＣ２で変数ｍｏｄｅ
に値の代入を行ってからステップＳＣ７に移行する。そうでない場合には、判定はＮＯと
なってステップＳＣ３に移行する。
【００３５】
　上記指定区間モード、全体モードの間の切り替えは、例えばモード設定スイッチが操作
される度に行うようになっている。そのようにモード間の切り替えが行われる場合、ステ
ップＳＣ２で変数ｍｏｄｅに代入される値は、それまでの値が０であれば１、それまでの
値が１であれば０、である。
【００３６】
　ステップＳＣ３では、範囲設定スイッチがオンしたか否か判定する。そのスイッチをユ
ーザが操作した場合、判定はＹＥＳとなり、ステップＳＣ４で変数ｅｖ＿ｓ、或いはｅｖ
＿ｅへの値の代入をユーザの入力部４への操作に応じて行ってからステップＳＣ７に移行
する。そうでない場合には、判定はＮＯとなってステップＳＣ５に移行する。

(7) JP 4301125 B2 2009.7.22

10

20

30

40

50

【００３７】
　運指情報の生成対象とする区間（範囲）は、特には図示していないが、例えば先頭から
の音符数で指定するようになっている。その指定は、数値を直接、入力させることで行わ
せても良いが、演奏データから楽譜を生成して表示部５に表示させることにより、表示部
５上で指定できるようにさせても良い。当然のことながら、それら以外の方法を採用して
も良い。
【００３８】
　ステップＳＣ５では、オプション設定スイッチがオンしたか否か判定する。そのスイッ
チをユーザが操作した場合、判定はＹＥＳとなり、ステップＳＣ６で変数ｌｏｏｋｕｐｂ
、及びｌｏｏｋｕｐｆのうちの少なくとも一方の値を変更させてから、ステップＳＣ７に
移行する。そうでない場合には、判定はＮＯとなってステップＳＣ１１に移行する。
【００３９】
　ステップＳＣ６では、変数ｌｏｏｋｕｐｂ、及びｌｏｏｋｕｐｆの値は、例えばオプシ
ョン設定スイッチが操作される度に、（０，０）（前者は変数ｌｏｏｋｕｐｂに代入され
る値、後者は変数ｌｏｏｋｕｐｆに代入される値。以下、同様）→（０，１）→（１，０
）→（１，１）→（０，０）の順序でサイクリックに変化させるようになっている。それ
により、オプション設定スイッチを操作することで所望のオプションを設定できるように
させている。
【００４０】
　ステップＳＣ７では、変数ｍｏｄｅの値が０か否か判定する。その値が０、つまり全体
モードが設定されている場合、判定はＹＥＳとなり、ステップＳＣ８で変数ｍｅ＿ｓに０
、変数ｍｅ＿ｅに変数ｅｖ＿ｍａｘの値を代入した後、一連の処理を終了する。そうでな
い場合には、判定はＮＯとなってステップＳＣ９に移行する。
【００４１】
　ステップＳＣ９では、変数ｍｅ＿ｓに、変数ｌｏｏｋｕｐｂの値が０ならば変数ｅｖ＿
ｓの値、その変数ｌｏｏｋｕｐｂの値が１ならば変数ｅｖ＿ｓの値から定数ＣＯＳＴＳＥ
ＥＫＣＮＴを引いた値（その値が０より小さければ０）を代入する。次のステップＳＣ１
０では、変数ｍｅ＿ｅに、変数ｌｏｏｋｕｐｆの値が０ならば変数ｅｖ＿ｅの値、その変
数ｌｏｏｋｕｐｆの値が１ならば変数ｅｖ＿ｅの値に定数ＣＯＳＴＳＥＥＫＣＮＴを加算
した値（その値が変数ｅｖ＿ｍａｘの値より大きければ変数ｅｖ＿ｍａｘの値）を代入す
る。一連の処理はその後に終了する。
【００４２】
　このようにして結果的に、運指情報の生成の対象となる区間範囲を示す値は変数ｍｅ＿
ｓ、ｍｅ＿ｅに代入される。それにより、それらの変数により指定される範囲（区間）を
対象にして運指情報の生成を行うようにしている。上記定数ＣＯＳＴＳＥＥＫＣＮＴはＣ
ＰＵ１が実行するプログラム内で定義された変数か、或いは制御用データとしてＲＯＭ２
に格納されたデータである。これは他の定数も同様である。
【００４３】
　一方、上記ステップＳＣ５の判定がＮＯとなって移行するステップＳＣ１１では、同一
フレーズ補正スイッチがオンしたか否か判定する。そのスイッチをユーザが操作した場合
、判定はＹＥＳとなり、ステップＳＣ１２で変数ｐｈｒｃｏｒに値の代入を行った後、一
連の処理を終了する。そうでない場合には、判定はＮＯとなり、ここで一連の処理を終了
する。
【００４４】
　上記ステップＳＣ１２での変数ｐｈｒｃｏｒへの値の代入は、例えばそれまでの値が０
であれば１、それまでの値が１であれば０、を代入することで行うようになっている。そ
れにより、内容が同一のフレーズを考慮した運指情報の補正を行うか否かを同一フレーズ
補正スイッチへの操作により選択できるようにさせている。
【００４５】
　図５は、図３に示す全体処理内でステップＳＡ６として実行される運指生成処理のフロ

(8) JP 4301125 B2 2009.7.22

10

20

30

40

50

ーチャートである。次に図５を参照して、その生成処理について詳細に説明する。
　先ず、ステップＳＢ１では、変数ｌｏｏｐｃｎｔへの０の代入を含め、各種変数の初期
化を行う。次に移行するステップＳＢ２では、変数ｍｅ＿ｓ、ｍｅ＿ｅにそれぞれ代入さ
れた値で指定された範囲を対象にして運指情報を生成する指定区間運指生成処理を実行す
る。その実行後はステップＳＢ３に移行する。
【００４６】
　ステップＳＢ３では、ステップＳＢ２で生成される運指情報に従った演奏の難易度を評
価するための評価処理を実行する。次のステップＳＢ４では、変数ｌｏｏｐｃｎｔの値が
０でないか否か判定する。評価処理では、後述するように、難易度として、１音符平均の
難易度（コスト）を算出し、算出した難易度が判定用の定数ＴＨＲＣＯＳＴ２より小さけ
れば、つまり生成された運指情報に従った演奏の難易度が許容範囲内と云えるのであれば
、その運指情報は適切なものであるとして変数ｌｏｏｐｃｎｔに０を代入するようにして
いる。このことから、直前のステップＳＢ２の実行により生成された運指情報が適切なも
のであった場合、判定はＮＯとなり、ここで一連の処理は終了する。そうでない場合には
、判定はＹＥＳとなって上記ステップＳＢ２に戻る。
【００４７】
　上記指定区間運指生成処理では、変数ｌｏｏｐｃｎｔの値が０であれば運指情報の生成
を行い、０以外の値であれば、その値に応じた運指情報に対する修正を行うようになって
いる。それにより、ステップＳＢ４の判定がＹＥＳとなってステップＳＢ２に戻った場合
には、運指情報をより適切なものとするための修正を行うようにさせている。
【００４８】
　図６、及び図７は、そのステップＳＢ２として実行される指定区間運指生成処理のフロ
ーチャートである。次に図６、及び図７を参照して、その生成処理について詳細に説明す
る。
【００４９】
　先ず、ステップＳＪ１では、変数ｌｏｏｐｃｎｔの値が０か否か判定する。その値が０
であった場合、判定はＹＥＳとなり、次にステップＳＪ２で１音符毎に運指情報を生成す
る逐次生成処理を実行し、その次のステップＳＪ３で変数ｍｅ＿ｔａｉｌに変数ｍｅ＿ｅ
の値、変数ｌｏｏｐｃｎｔに１をそれぞれ代入した後、一連の処理を終了する。そうでな
い場合には、判定はＮＯとなってステップＳＪ４に移行する。
【００５０】
　ステップＳＪ４では、変数ｌｏｏｐｃｎｔの値が１か否か判定する。その値が１でなか
った場合、判定はＮＯとなってステップＳＪ９に移行する。そうでない場合には、判定は
ＹＥＳとなってステップＳＪ５に移行する。
【００５１】
　ステップＳＪ５では、区間内の演奏データが示す演奏をフレーズで仮想的に分割するた
めのフレーズ分割処理を実行する。続くステップＳＪ６では、ステップＳＪ５でのフレー
ズ分割処理の実行で抽出される１フレーズ分の演奏データを対象に運指のパターンを適用
するためのパターン適用処理を実行する。ステップＳＪ７にはその後に移行する。
【００５２】
　上記フレーズ分割処理の実行により、詳細は後述するように、分割・抽出したフレーズ
の最後に位置する音符（データ）のインデックス値が変数ｍｅ＿ｔａｉｌに代入される。
ステップＳＪ７では、その変数ｍｅ＿ｔａｉｌの値が変数ｍｅ＿ｅの値と等しいか否か判
定する。区間内に存在する最後のフレーズの分割・抽出が終了した場合、変数ｍｅ＿ｔａ
ｉｌには変数ｍｅ＿ｅの値が代入されることから、判定はＹＥＳとなり、ステップＳＪ８
で変数ｌｏｏｐｃｎｔに２を代入した後、一連の処理を終了する。そうでない場合には、
判定はＮＯとなり、ここで一連の処理を終了する。
【００５３】
　上記ステップＳＪ４の判定がＮＯとなって移行するステップＳＪ９では、変数ｌｏｏｐ
ｃｎｔの値が２か否か判定する。その値が２であった場合、判定はＹＥＳとなってステッ

(9) JP 4301125 B2 2009.7.22

10

20

30

40

50

プＳＪ１０に移行し、そうでない場合には、判定はＮＯとなって図７のステップＳＪ１４
に移行する。
【００５４】
　ステップＳＪ１０では、区間内の演奏データが示す演奏で発音される和音を判定する和
音判定処理を実行する。続くステップＳＪ１１では、その区間内における全ての運指の組
み合わせを調査するための和音全数検査処理を実行する。ステップＳＪ１２にはその後に
移行する。
【００５５】
　上記和音全数検査処理の実行により、詳細は後述するように、変数ｍｅ＿ｔａｉｌには
変数ｍｅ＿ｅの値、または判定された和音の最後に位置する音符（データ）のインデック
ス値が代入される。ステップＳＪ１２では、その変数ｍｅ＿ｔａｉｌの値が変数ｍｅ＿ｅ
の値と等しいか否か判定する。それらが一致する場合、判定はＹＥＳとなり、ステップＳ
Ｊ１３で変数ｌｏｏｐｃｎｔに３を代入した後、一連の処理を終了する。そうでない場合
には、判定はＮＯとなり、ここで一連の処理を終了する。
【００５６】
　上記ステップＳＪ９の判定がＮＯとなって移行する図７のステップＳＪ１４では、変数
ｌｏｏｐｃｎｔの値が３か否か判定する。その値が３であった場合、判定はＹＥＳとなっ
てステップＳＪ１５に移行し、そうでない場合には、判定はＮＯとなってステップＳＪ１
９に移行する。
【００５７】
　ステップＳＪ１５では、区間内の演奏データが示す演奏で発音される分散和音を判定す
る分散和音判定処理を実行する。続くステップＳＪ１６では、その区間内における全ての
運指の組み合わせを調査するための分散和音全数検査処理を実行する。ステップＳＪ１７
にはその後に移行する。
【００５８】
　上記分散和音全数検査処理の実行により、上記和音全数検査処理の実行時と同様に、変
数ｍｅ＿ｔａｉｌには変数ｍｅ＿ｅの値、または判定された分散和音の最後に位置する音
符（データ）のインデックス値が代入される。ステップＳＪ１７では、その変数ｍｅ＿ｔ
ａｉｌの値が変数ｍｅ＿ｅの値と等しいか否か判定する。それらが一致する場合、判定は
ＹＥＳとなり、ステップＳＪ１８で変数ｌｏｏｐｃｎｔに４を代入した後、一連の処理を
終了する。そうでない場合には、判定はＮＯとなり、ここで一連の処理を終了する。
【００５９】
　ステップＳＪ１９では、変数ｌｏｏｐｃｎｔの値が４か否か判定する。その値が４であ
った場合、判定はＹＥＳとなってステップＳＪ２０に移行し、そうでない場合には、判定
はＮＯとなってステップＳＪ２４に移行する。
【００６０】
　ステップＳＪ２０では、運指コストが閾値として定めた定数ＴＨＲＣＯＳＴ１よりも大
きな音符を抽出する検索を行う修正個所検索処理を実行する。次のステップＳＪ２１では
、その処理の実行により抽出される修正対象範囲内における全ての運指の組み合わせを調
査するための全数検査処理を実行する。ステップＳＪ２２にはその後に移行する。
【００６１】
　上記全数検査処理の実行により、他の全数検査処理の実行時と同様に、変数ｍｅ＿ｔａ
ｉｌには変数ｍｅ＿ｅの値、または抽出された修正対象範囲の最後に位置する音符（デー
タ）のインデックス値が代入される。ステップＳＪ２２では、その変数ｍｅ＿ｔａｉｌの
値が変数ｍｅ＿ｅの値と等しいか否か判定する。それらが一致する場合、判定はＹＥＳと
なり、ステップＳＪ２３で変数ｌｏｏｐｃｎｔに５を代入した後、一連の処理を終了する
。そうでない場合には、判定はＮＯとなり、ここで一連の処理を終了する。
【００６２】
　ステップＳＪ２４では、変数ｌｏｏｐｃｎｔの値が５、且つ変数ｐｈｒｃｏｒの値が１
か否か判定する。変数ｌｏｏｐｃｎｔの値が５，且つ変数ｐｈｒｃｏｒの値が１であった

(10) JP 4301125 B2 2009.7.22

10

20

30

40

50

場合、判定はＹＥＳとなり、ステップＳＪ２５で同一フレーズ補正処理を実行し、更にス
テップＳＪ２６で変数ｌｏｏｐｃｎｔに０を代入した後、一連の処理を終了する。そうで
ない場合には、判定はＮＯとなり、次にステップＳＪ２６の処理を実行する。
【００６３】
　図５に示す運指生成処理内でステップＳＢ２として実行される指定区間運指生成処理で
は、上述したように、実行する度に変数ｌｏｏｐｃｎｔの値がインクリメントされる。そ
れにより、最初に生成した運指情報に対し、変数ｌｏｏｐｃｎｔの値に対応する内容に着
目した補正を適切な運指情報が生成されるか、或いは着目する内容が無くなるまで順次、
行うようにしている。そのようにして、適切（最適）な運指情報を生成するうえで必要な
補正を必要に応じて行うようにすることにより、適切（最適）な運指情報を演奏データが
示す演奏内容に応じて確実、且つより迅速に生成できるようになる。
【００６４】
　次に、上記指定区間運指生成処理内で実行されるサブルーチン処理について詳細に説明
する。
　図８は、上記ステップＳＪ２として実行される逐次生成処理のフローチャートである。
そのサブルーチン処理としては、始めに図８を参照して、逐次生成処理について詳細に説
明する。その逐次生成処理は、区間内に発音される音符別に運指情報を生成していく処理
である。
【００６５】
　新たな押鍵に使うべき指として、その押鍵時に別の鍵の押鍵に使用中の指を割り当てる
ことはできない。新たな押鍵に使うべき指はそのときの状況によって制限される。このこ
とから、本実施の形態では、図９に示すように、手の状態管理用変数を指別に用意してい
る。
【００６６】
　その図９において、括弧を付して表記の「ｈｆｉｇ」が指別にその状態を管理するため
のデータ（以降「指状態データ」と呼ぶ）を示している。括弧内の数字は対応する指の番
号（図２（ａ）に示すｆｉｇと同様）を示している。その指状態データは、「ｓｔａｔｕ
ｓ」と表記の押鍵状態フラグ、「ｅｖｅｎｔ」と表記の押鍵イベントのインデックス（値
）（そのイベントを表す音符データＭＥのインデックス）、「ｐｏｓｘ」と表記の指の位
置座標、から構成されている。
【００６７】
　上記押鍵状態フラグとしては、押鍵中でない指では０、押鍵中の指では１を割り当てる
ようにしている。上記位置座標は、図２（ａ）に示すデータｐｏｓｘと同じく鍵盤座標で
表している。逐次生成処理では、指状態データ（手の状態管理用変数の代入値）を更新し
つつ、運指情報を生成する。指状態データを構成するデータが代入される変数は、これま
でと同様に、「変数ｓｔａｔｕｓ」といったように図中に表記のシンボルを付して表記す
る。
【００６８】
　先ず、ステップＳＫ１では、変数ｍｅに変数ｍｅ＿ｓの値、変数ｐに、変数ｍｅの値で
指定される音符データＭＥのデータｐｏｓｘ（図中「ＭＥ［ｍｅ］．ｐｏｓｘ」と表記。
以降、その表記法も併せて用いることとする）をそれぞれ代入し、各指の指状態データの
更新を行う。その更新は、具体的には各変数ｓｔａｔｕｓ（図中「ｈｆｉｇ［ｎ］．ｓｔ
ａｔｕｓ」（ｎ＝０～４）と表記）に０をそれぞれ代入し、各変数ｐｏｓｘに親指から、
変数ｐの値から４を減算した値、変数ｐの値から２を減算した値、変数ｐの値、変数ｐの
値に２を加算した値、変数ｐの値に４を加算した値、をそれぞれ代入する。
【００６９】
　ステップＳＫ１に続くステップＳＫ２では、変数ｍｅの値で指定される音符データＭＥ
を処理する時点での各指の状態を確認するための指状態確認処理を実行する。その次に移
行するステップＳＫ３では、その音符データＭＥのデータｐｉｔｃｈで指定される鍵の押
鍵に使うべき指を割り当てる指割り当て処理を実行する。その後はステップＳＫ４に移行

(11) JP 4301125 B2 2009.7.22

10

20

30

40

50

して、変数ｍｅの値が変数ｍｅ＿ｅの値と等しいか否か判定する。それらの値が等しい場
合、判定はＹＥＳとなり、ここで一連の処理を終了する。そうでない場合には、判定はＮ
Ｏとなり、ステップＳＫ５で変数ｍｅの値をインクリメントしてから上記ステップＳＫ２
に戻る。それにより、変数ｍｅの値を順次、インクリメントしながら、変数ｍｅの値で指
定される音符データＭＥに従った押鍵に使うべき指の割り当てを行う。
【００７０】
　次に、上記ステップＳＫ２として実行される指状態確認処理について、図１０に示すそ
のフローチャートを参照して詳細に説明する。
　先ず、ステップＳＬ１では、着目する指を管理するための変数ｎに０、指の位置座標の
最小値、最大値を管理するための変数ｐｏｓｍｉｎ、及びｐｏｓｍａｘにそれぞれ－１を
代入する。続くステップＳＬ２では、変数ｎの値が５より小さいか否か判定する。その値
が５より小さい場合、判定はＹＥＳとなってステップＳＬ３に移行する。そうでない場合
には、判定はＮＯとなり、ここで一連の処理を終了する。
【００７１】
　ステップＳＬ３では、変数ｎの値で指定される指状態データを構成する変数ｓｔａｔｕ
ｓ（図中「ｈｆｉｇ［ｎ］．ｓｔａｔｕｓ」と表記）の値が１か否か判定する。変数ｎの
値に対応する指が押鍵中である場合、その値は１であることから、判定はＹＥＳとなって
ステップＳＬ４に移行し、そうでない場合には、判定はＮＯとなってステップＳＬ７に移
行する。
【００７２】
　ステップＳＬ４では、変数ｅｖに、変数ｎの値で指定される指状態データを構成する変
数ｅｖｅｎｔ（図中「ｈｆｉｇ［ｎ］．ｅｖｅｎｔ」と表記）の値を代入する。その代入
後に移行するステップＳＬ５では、変数ｅｖの値で指定される音符データＭＥを構成する
、データｔｉｍｅにデータｇａｔｅを加算して得られる値が、変数ｍｅの値で指定される
音符データＭＥを構成するデータｔｉｍｅの値より小さいか否か判定する。変数ｍｅの値
で指定される音符データＭＥに従った押鍵開始時に、変数ｅｖの値で指定される音符デー
タＭＥに従った押鍵が終了している場合、前者は後者より小さくなる。このことから、そ
のような場合、判定はＹＥＳとなり、ステップＳＬ６において変数ｎの値で指定される指
状態データを構成する変数ｓｔａｔｕｓ（図中「ｈｆｉｇ［ｎ］．ｓｔａｔｕｓ」と表記
）の値として０を代入してからステップＳＬ７に移行する。そうでない場合には、判定は
ＮＯとなり、次にそのステップＳＬ７に移行する。
【００７３】
　ステップＳＬ７では、変数ｐｏｓｍｉｎの値が－１、またはｈｆｉｇ［ｎ］．ｐｏｓｘ
の値より大きいならば、その変数ｐｏｓｍｉｎにｈｆｉｇ［ｎ］．ｐｏｓｘの値を代入す
る。続くステップＳＬ８では、変数ｐｏｓｍａｘの値が－１、またはｈｆｉｇ［ｎ］．ｐ
ｏｓｘの値より小さいならば、その変数ｐｏｓｍａｘにｈｆｉｇ［ｎ］．ｐｏｓｘの値を
代入する。その後は、ステップＳＬ９で変数ｎの値をインクリメントしてから上記ステッ
プＳＬ２に戻る。
【００７４】
　このようにして、指状態確認処理を実行することにより、変数ｍｅの値で指定される音
符データＭＥに従った押鍵開始時に離鍵中とすべき指は離鍵中に設定され、その押鍵開始
時に位置座標が最小値、及び最大値となる２つの指の座標値は変数ｐｏｓｍｉｎ、ｐｏｓ
ｍａｘにそれぞれ代入される。
【００７５】
　図１１は、図８に示す逐次生成処理内でステップＳＫ３として実行される指割り当て処
理のフローチャートである。次に図１１を参照して、その割り当て処理について詳細に説
明する。その割り当て処理では、押鍵に使われていない指を探しだし、着目する音符デー
タＭＥに従って押鍵すべき鍵の座標値よりも小さい座標値に位置している指を優先的に押
鍵に使うべき指として割り当てるようにしている。
【００７６】

(12) JP 4301125 B2 2009.7.22

10

20

30

40

50

　先ず、ステップＳＭ１では、変数ｎに０、変数ｉｆｉｇに－１をそれぞれ代入する。続
くステップＳＭ２では、変数ｎの値が５より小さいか否か判定する。その値が５より小さ
い場合、判定はＹＥＳとなってステップＳＭ３に移行し、そうでない場合には、判定はＮ
ＯとなってステップＳＭ９に移行する。
【００７７】
　ステップＳＭ３では、ｈｆｉｇ［ｎ］．ｓｔａｔｕｓの値が０か否か判定する。変数ｎ
の値で指定される指が押鍵に使われていない場合、その値は０であることから、判定はＹ
ＥＳとなり、ステップＳＭ５で変数ｉｆｉｇに変数ｎの値を代入してからステップＳＭ６
に移行する。そうでない場合には、判定はＮＯとなり、ステップＳＭ４で変数ｎの値をイ
ンクリメントしてから上記ステップＳＭ２に戻る。
【００７８】
　ステップＳＭ６では、ｈｆｉｇ［ｎ］．ｐｏｓｘの値がＭＥ［ｍｅ］．ｐｏｓｘの値以
下か否か判定する。変数ｎの値で指定される指の座標値が変数ｍｅの値で指定される音符
データＭＥに従って押鍵すべき鍵の座標値以下であった場合、判定はＹＥＳとなってステ
ップＳＭ７に移行する。そうでない場合には、判定はＮＯとなり、ステップＳＭ４で変数
ｎの値のインクリメントを行う。そしてステップＳＭ２の判定がＮＯになった場合は、ス
テップＳＭ９に移行する。ステップＳＭ９では、変数ｉｆｉｇが－１か否か判定する。変
数ｉｆｉｇが－１の場合は、判定がＹＥＳとなり、ステップＳＭ１０で変数ｉｆｉｇに０
を代入してからステップＳＭ７に移行する。そうでない場合には、判定はＮＯとなってス
テップＳＭ７に移行する。
【００７９】
　ステップＳＭ７では、ｈｆｉｇ［ｉｆｉｇ］．ｓｔａｔｕｓに１、ｈｆｉｇ［ｉｆｉｇ
］．ｅｖｅｎｔに変数ｍｅの値、ｈｆｉｇ［ｉｆｉｇ］．ｐｏｓｘにＭＥ［ｍｅ］．ｐｏ
ｓｘの値、ＭＥ［ｍｅ］．ｆｉｇに変数ｉｆｉｇの値、をそれぞれ代入する。次のステッ
プＳＭ８では、押鍵に割り当てた指以外の指の座標値を指定する指位置指定処理を実行す
る。その実行後、一連の処理を終了する。
【００８０】
　図１２は、その指位置指定処理のフローチャートである。次にその指定処理について、
図１２を参照して詳細に説明する。その指定処理では、全ての指を対象に位置させるべき
座標値の基準からの変位量を算出して配列変数ｆｉｇｔｍｐの対応する要素に代入し、押
鍵を割り当てた指以外の指を位置させるべき座標値として、対応する要素に代入した座標
値から算出される値を設定するようにしている。
【００８１】
　先ず、ステップＳＮ１では、変数ｎに０、変数ｒａｎｇｅに、変数ｐｏｓｍａｘの値か
ら変数ｐｏｓｍｉｎの値を減算した値を代入する。次のステップＳＮ２では、変数ｎの値
が５より小さいか否か判定する。その値が５より小さい場合、判定はＹＥＳとなってステ
ップＳＮ３に移行し、そうでない場合には、判定はＮＯとなってステップＳＮ５に移行す
る。
【００８２】
　ステップＳＮ３では、ｈｆｉｇ［ｎ］．ｐｏｓｘの値からｈｆｉｇ［０］．ｐｏｓｘの
値を減算した値を、ｈｆｉｇ［４］．ｐｏｓｘの値からｈｆｉｇ［０］．ｐｏｓｘの値を
減算した値で除算し、その除算値を変数ｒａｎｇｅの値に乗算して得られる変位量を、配
列変数ｆｉｇｔｍｐの変数ｎの値で指定される要素ｆｉｇｔｍｐ［ｎ］に代入する。その
代入後は、ステップＳＮ４で変数ｎの値をインクリメントしてから上記ステップＳＮ２に
戻る。
【００８３】
　一方、ステップＳＮ５では、変数ｎに０を代入する。次のステップＳＮ６では、変数ｎ
の値が５より小さいか否か判定する。その値が５より小さい場合、判定はＹＥＳとなって
ステップＳＮ７に移行する。そうでない場合には、判定はＮＯとなり、ここで一連の処理
を終了する。

(13) JP 4301125 B2 2009.7.22

10

20

30

40

50

【００８４】
　ステップＳＮ７では、変数ｎの値が変数ｉｆｉｇの値と等しくないか否か判定する。そ
れらの値が一致していた場合、判定はＮＯとなり、ステップＳＮ９で変数ｎの値をインク
リメントしてからステップＳＮ６に戻る。そうでない場合には、判定はＹＥＳとなってス
テップＳＮ８に移行し、ｈｆｉｇ［ｎ］．ｐｏｓｘの値として、ｈｆｉｇ［ｉｆｉｇ］．
ｐｏｓｘの値に、要素ｆｉｇｔｍｐ［ｎ］の値から要素ｆｉｇｔｍｐ［ｉｆｉｇ］の値を
減算した値を代入する。その代入後は、ステップＳＮ９に移行して変数ｎの値をインクリ
メントする。
【００８５】
　図６、及び図７に示す指定区間運指生成処理内で実行されるサブルーチン処理の説明に
戻る。
　図１３は、その生成処理内でステップＳＪ５として実行されるフレーズ分割処理のフロ
ーチャートである。次にその分割処理について、図１３を参照して詳細に説明する。その
分割処理は、区間内の演奏をフレーズで仮想的に分割して１フレーズ分の演奏を抽出する
ための処理である。
【００８６】
　先ず、ステップＳＦ１では、フレーズ分割の開始位置を管理するための変数ｍｅｆに、
変数ｍｅ＿ｔａｉｌの値に１を加算した値（その加算値が変数ｍｅ＿ｅの値より大きけれ
ば変数ｍｅ＿ｓの値）を代入する。次のステップＳＦ２では、その終了位置として考えら
れる最大位置を管理するための変数ｍｅｄに、変数ｍｅｆの値に定数ＤＩＶＮＯＴＥＣＮ
Ｔを加算した値（その加算値が変数ｍｅ＿ｅの値より大きければ変数ｍｅ＿ｅの値）を代
入する。その後は、ステップＳＦ３で変数ｍｅに変数ｍｅｆの値、変数ｍｅｔに変数ｍｅ
ｄの値、変数ｎｏｔｅｏｎｉｎｔｖに定数ＴＨＲＩＮＴＶをそれぞれ代入してからステッ
プＳＦ４に移行する。
【００８７】
　本実施の形態では、フレーズ分割は隣接する２音間の発音開始時刻の時間差に着目して
行っている。上記定数ＴＨＲＩＮＴＶはその時間差として考えられる最小の閾値として定
めたものである。そのような定数ＴＨＲＩＮＴＶを用意したことにより、変数ｍｅｄの値
で指定される音符までの演奏区間の間で、その定数ＴＨＲＩＮＴＶより長い時間差のなか
で最大のものをフレーズの境界としてフレーズ分割を行うようにしている。そのフレーズ
分割は、ステップＳＦ４以降の処理を実行することで実現される。
【００８８】
　先ず、ステップＳＦ４では、変数ｍｅの値が変数ｍｅｄの値と等しいか否か判定する。
それらの値が等しい場合、判定はＹＥＳとなってステップＳＦ８に移行し、そうでない場
合には、判定はＮＯとなってステップＳＦ５に移行する。
【００８９】
　ステップＳＦ５では、変数ｎｏｔｅｏｎｉｎｔｖの値が、ＭＥ［ｍｅ＋１］．ｔｉｍｅ
の値からＭＥ［ｍｅ］．ｔｉｍｅの値を減算した値より小さいか否か判定する。変数ｍｅ
の値で指定される音符とその次に発音される音符との間の発音開始時刻の時間差が変数ｎ
ｏｔｅｏｎｉｎｔｖの値で表される時間差より大きい場合、判定はＹＥＳとなり、ステッ
プＳＦ６において、変数ｍｅｔに変数ｍｅの値、変数ｎｏｔｅｏｎｉｎｔｖにＭＥ［ｍｅ
＋１］．ｔｉｍｅの値からＭＥ［ｍｅ］．ｔｉｍｅの値を減算した値をそれぞれ代入し、
更にステップＳＦ７で変数ｍｅの値をインクリメントしてから上記ステップＳＦ４に戻る
。そうでない場合には、判定はＮＯとなって次にステップＳＦ７の処理を実行する。
【００９０】
　そのステップＳＦ４の判定がＹＥＳとなって移行するステップＳＦ８では、変数ｍｅ＿
ｔｏｐに変数ｍｅｆの値、変数ｍｅ＿ｔａｉｌに変数ｍｅｔの値をそれぞれ代入する。続
くステップＳＦ９では、変数ｍｅｆの値と変数ｍｅｔの値で指定される区間内に存在する
音符データＭＥ中のデータｐｉｄ、ｐｓｔａｔの更新を行う。その更新は、各データｐｉ
ｄとして０をそれぞれ設定し、データｐｓｔａｔとしては、変数ｍｅｆの値で指定される

(14) JP 4301125 B2 2009.7.22

10

20

30

40

50

音符データＭＥのものには０、変数ｍｅｔの値で指定される音符データＭＥのものには２
、それ以外の音符データＭＥのものには１をそれぞれ設定することで行う。一連の処理は
その更新後に終了する。
【００９１】
　上記ステップＳＦ８で値が代入される変数ｍｅ＿ｔｏｐ、ｍｅ＿ｔａｉｌは、分割によ
り抽出されたフレーズの先頭位置、終了位置を音符データＭＥのインデックス値で表すも
のとして扱われる。フレーズ分割処理に続けて実行されるパターン適用処理では、それら
のインデックス値で指定される区間として抽出された１フレーズに運指のパターンを適用
させる。
【００９２】
　図１４は、そのパターン適用処理のフローチャートである。次にその適用処理について
、図１４を参照して詳細に説明する。
　１フレーズ分の演奏に適用可能な運指のパターンを示すパターンデータは、ＲＯＭ２に
制御用データとして格納されている。そのパターンデータは、例えば図１５に示すような
構成でＲＯＭ２に格納されている。それにより、適用処理は、ＲＯＭ２に格納されたパタ
ーンデータを参照して行うようになっている。
【００９３】
　図１５中に括弧を付して表記の「ＦＰ」はパターンデータを示している。それにより、
ＲＯＭ２には、計ＦＰ＿Ｎ個のパターンデータが格納されている。括弧内の数値は、パタ
ーンデータＦＰの特定用に割り当てられた番号（パターン番号）を表している。
【００９４】
　各パターンデータＦＰは、音符単位のデータ（以下「音符データ」と呼ぶ）が複数、ま
とめられて構成されている。図１５中に括弧を付して表記の「ｎｏｔｅ」はその音符デー
タを表している。括弧内の数値は、パターンデータＦＰの先頭を基準にした音符データｎ
ｏｔｅの位置を表している。音符データｎｏｔｅの指定はその数値により行われる。「Ｆ
ＰＮ＿Ｎ」は各パターンデータＦＰを構成する音符データ数に１を加算した値である。
【００９５】
　音符データｎｏｔｅは、「ｂｗ」と表記の鍵盤種類、「ｐｉｎｔ」と表記の前音符との
発音開始時刻の時間間隔、「ｎｉｎｔ」と表記の次音符との発音開始時刻の時間間隔、及
び「ｆｉｇ」と表記の運指番号（押鍵に用いる指の番号）、を備えた構成となっている。
鍵盤種類は、白健では０、黒鍵では１、最後の音符データでは－１で表している。
【００９６】
　図１４に示す適用処理では先ず、ステップＳＱ１で変数ｐａｔに０を代入する。その変
数ｐａｔは、注目するパターンデータＦＰを管理するためのものである。その変数ｐａｔ
に０を代入した後はステップＳＱ２に移行して、変数ｐａｔの値がパターンデータＦＰの
総数ＦＰ＿Ｎより小さいか否か判定する。パターンの適用のために全てのパターンデータ
ＦＰに注目した場合、変数ｐａｔの値は総数ＦＰ＿Ｎ以上となる。このことから、その場
合、判定はＮＯとなり、ここで一連の処理を終了する。そうでない場合には、判定はＹＥ
ＳとなってステップＳＱ３に移行する。
【００９７】
　ステップＳＱ３では、変数ｍａｔｃｈに１を代入する。続くステップＳＱ４では、変数
ｐａｔの値で指定されるパターンデータＦＰに着目したパターンマッチング処理を実行す
る。その後に移行するステップＳＱ５では、変数ｍａｔｃｈの値が０か否か判定する。そ
の値が０であった場合、判定はＹＥＳとなり、ステップＳＱ６で変数ｐａｔの値をインク
リメントしてから上記ステップＳＱ２に戻る。そうでない場合には、判定はＮＯとなり、
ここで一連の処理を終了する。
【００９８】
　図１６は、上記ステップＳＱ４として実行されるパターンマッチング処理のフローチャ
ートである。ここで図１６を参照して、そのマッチング処理について詳細に説明する。そ
のマッチング処理は、変数ｐａｔの値で指定されるパターンデータＦＰ［ｐａｔ］と抽出

(15) JP 4301125 B2 2009.7.22

10

20

30

40

50

フレーズの間のマッチングを行い、それらの間の一致している部分を確認するための処理
である。
【００９９】
　パターンデータＦＰを構成する音符データｎｏｔｅは、鍵盤種類（押鍵すべき鍵の種類
：データｂｗ）、前音符との発音開始時刻の時間間隔（データｐｉｎｔ）、次音符との発
音開始時刻の時間間隔（データｎｉｎｔ）、及び運指番号（データｆｉｇ）、を備えた構
成である。それにより、パターンマッチングは、パターンデータＦＰ［ｐａｔ］と抽出フ
レーズのそれぞれ先頭に位置している音符データ（ｎｏｔｅおよびＭＥ）から、押鍵して
いくべき鍵の種類の流れ、及びその押鍵間隔の許容範囲内での一致を確認していく形で行
うようにしている。許容範囲内で一致するか否か判定するために、定数ＴＨＲＩＮＴＶ２
を用意している。
【０１００】
　先ず、ステップＳＲ１では、変数ｐｐに変数ｍｅ＿ｔｏｐの値、変数ｐｃｎｔに０をそ
れぞれ代入する。変数ｐｐは演奏データのなかで注目する音符データＭＥを管理するため
に用いられ、変数ｐｃｎｔはパターンデータＦＰ［ｐａｔ］のなかで注目する音符データ
ｎｏｔｅの管理（及び一致している音符データの個数のカウント）に用いられる。それら
の代入後に移行するステップＳＲ２では、変数ｐｐの値が変数ｍｅ＿ｔａｉｌの値より大
きいか否か判定する。変数ｐｐの値が変数ｍｅ＿ｔａｉｌの値より大きい場合、判定はＹ
ＥＳとなってステップＳＲ１０に移行し、そうでない場合には、判定はＮＯとなってステ
ップＳＲ３に移行する。
【０１０１】
　ステップＳＲ３では、各種変数への値の代入を行う。具体的には、変数ｆｐに、パター
ンデータＦＰ［ｐａｔ］のなかで変数ｐｃｎｔの値で指定される音符データ（図中「ＦＰ
［ｐａｔ］．ｎｏｔｅ［ｐｃｎｔ］」と表記。以降、その表記法も用いる）を代入し、変
数ｐｐの値が０であれば０、そうでなければ変数ｐｐで指定される音符とその前音符間の
発音開始時刻の時間間隔（＝ＭＥ［ｐｐ］．ｔｉｍｅ－ＭＥ［ｐｐ－１］．ｔｉｍｅ）を
変数ｐｉｎｔに代入し、変数ｐｐの値が変数ｅｖ＿ｍａｘの値と等しければ０、そうでな
ければ変数ｐｐで指定される音符とその次音符間の発音開始時刻の時間間隔（＝ＭＥ［ｐ
ｐ＋１］．ｔｉｍｅ－ＭＥ［ｐｐ］．ｔｉｍｅ）を変数ｎｉｎｔに代入する。そのような
代入を行った後、ステップＳＲ４に移行する。
【０１０２】
　ステップＳＲ４では、変数ｆｐに代入されたＦＰ［ｐａｔ］．ｎｏｔｅ［ｐｃｎｔ］の
なかのデータｂｗ（図中「ｆｐ．ｂｗ」と表記）の値が－１か否か判定する。そのデータ
ｂｗの値が－１であった場合、判定はＹＥＳとなってステップＳＲ１０に移行し、そうで
ない場合には、判定はＮＯとなってステップＳＲ５に移行する。ここでのＹＥＳの判定は
、着目するパターンデータＦＰ［ｐａｔ］を構成する音符データｎｏｔｅが全て抽出フレ
ーム中の対応する音符データＭＥと一致判定条件（鍵盤種類が一致し、且つ前音符、及び
次音符との発音開始時刻の時間間隔が許容範囲内でそれぞれ一致するという条件）を満た
していることを意味する。
【０１０３】
　ステップＳＲ５では、ｆｐ．ｂｗの値がＭＥ［ｐｐ］．ｐｏｓｘを２で割った余り（図
中「ＭＥ［ｐｐ］．ｐｏｓｘ　％２」と表記。以降、その表記法も用いる）と等しくない
か否か判定する。音符データｎｏｔｅ［ｐｃｎｔ］中のデータｂｗが表す鍵の種類が音符
データＭＥ［ｐｐ］中のデータｐｏｓｘで指定される鍵の種類と同じであった場合、それ
らは一致することから、判定はＮＯとなってステップＳＲ６に移行する。そうでない場合
には、判定はＹＥＳとなり、ステップＳＲ９で変数ｍａｔｃｈに０を代入した後、一連の
処理を終了する。
【０１０４】
　ステップＳＲ６では、変数ｐｉｎｔの値からｆｐ．ｐｉｎｔの値を引いた値の絶対値が
上記定数ＴＨＲＩＮＴＶ２より大きいか否か判定する。パターンデータＦＰと抽出フレー

(16) JP 4301125 B2 2009.7.22

10

20

30

40

50

ズ間で前音符との時間間隔が許容範囲内で一致しなかった場合、その関係が満たされるこ
とから、判定はＹＥＳとなってステップＳＲ９に移行し、そうでない場合には、判定はＮ
ＯとなってステップＳＲ７に移行する。
【０１０５】
　ステップＳＲ７では、変数ｎｉｎｔの値からｆｐ．ｎｉｎｔの値を引いた値の絶対値が
上記定数ＴＨＲＩＮＴＶ２より大きいか否か判定する。パターンデータＦＰと抽出フレー
ズ間で次音符との時間間隔が許容範囲内で一致しなかった場合、その関係が満たされるこ
とから、判定はＹＥＳとなってステップＳＲ９に移行する。そうでない場合には、つまり
一致判定条件が全て満たされている場合には、判定はＮＯとなり、ステップＳＲ８で変数
ｐｐ、及びｐｃｎｔの値をそれぞれインクリメントしてから上記ステップＳＲ２に戻る。
それにより、ステップＳＲ２でのＹＥＳの判定は、抽出フレーズを構成する音符データＭ
Ｅは全て、パターンデータＦＰ［ｐａｔ］を構成する音符データｎｏｔｅのなかで対応す
る音符データｎｏｔｅと一致判定条件を満たしていることを意味している。
【０１０６】
　ステップＳＲ２、或いはＳＲ４の判定がＹＥＳとなって移行するステップＳＲ１０では
、変数ｐｃｎｔの値が０か否か判定する。その値が０であった場合、判定はＹＥＳとなり
、ここで一連の処理を終了する。そうでない場合には、判定はＮＯとなってステップＳＲ
１１に移行する。
【０１０７】
　ステップＳＲ１１以降では、パターンデータＦＰ［ｐａｔ］で定義された運指番号を抽
出フレーズを構成する各音符データＭＥ中のデータｆｉｇとして設定するための処理が行
われる。
【０１０８】
　先ず、ステップＳＲ１１では、変数ｐｐに変数ｍｅ＿ｔｏｐの値、変数ｎに０をそれぞ
れ代入する。続くステップＳＲ１２では、ＭＥ［ｐｐ］．ｆｉｇとして、パターンデータ
ＦＰ［ｐａｔ］の変数ｎの値で指定される音符データｎｏｔｅ［ｎ］中のデータｆｉｇ（
図中「ＦＰ［ｐａｔ］．ｎｏｔｅ［ｎ］．ｆｉｇ」と表記）を設定し、変数ｎの値をイン
クリメントする。
【０１０９】
　ステップＳＲ１２に続くステップＳＲ１３では、変数ｎの値が変数ｐｃｎｔの値より小
さいか否か判定する。パターンデータＦＰ［ｐａｔ］で定義された運指番号の抽出フレー
ズを構成する各音符データＭＥ中のデータｆｉｇとしての設定が完了した場合、その関係
は満たされなくなることから、判定はＮＯとなり、ここで一連の処理を終了する。そうで
ない場合には、判定はＹＥＳとなり、ステップＳＲ１４で変数ｐｐの値をインクリメント
してから上記ステップＳＲ１２に戻る。それにより、データｆｉｇの設定を継続させる。
【０１１０】
　図１７は、図６、及び図７に示す指定区間運指生成処理内でステップＳＪ１０として実
行される和音判定処理のフローチャートである。次にその判定処理について、図１７を参
照して詳細に説明する。本実施の形態では、発音開始時刻が同じ（許容範囲内で一致する
）３音以上の音符群を和音の構成音として検出するようにしている。
【０１１１】
　先ず、ステップＳＥ１では、変数ｍｅ＿ｔａｉｌの値に１を加算した値が変数ｍｅ＿ｅ
を越えなければその加算値、それを越えれば変数ｍｅ＿ｓの値を変数ｍｅに代入する。次
のステップＳＥ２では、変数ｍｅの値が、変数ｍｅ＿ｅの値から１を引いた値以上か否か
判定する。変数ｍｅの値がその減算値以上であった場合、判定はＹＥＳとなり、ステップ
ＳＥ３で変数ｍｅ＿ｔｏｐ、及びｍｅ＿ｔａｉｌに変数ｍｅ＿ｅの値を代入した後、一連
の処理を終了する。そうでない場合には、判定はＮＯとなってステップＳＥ４に移行する
。ここでのＹＥＳの判定は、和音の検出が全て終了したことを意味している。
【０１１２】
　ステップＳＥ４では、ＭＥ［ｍｅ］．ｔｉｍｅの値がＭＥ［ｍｅ＋１］．ｔｉｍｅの値

(17) JP 4301125 B2 2009.7.22

10

20

30

40

50

と一致するか否か判定する。変数ｍｅの値で指定される音符とその次音符の発音開始時刻
が一致している場合、判定はＹＥＳとなり、ステップＳＥ６で変数ｃｎｔに２、変数ｎｅ
に変数ｍｅの値に２を加算した値をそれぞれ代入してからステップＳＥ７に移行する。そ
うでない場合には、判定はＮＯとなり、ステップＳＥ５で変数ｍｅの値をインクリメント
してから上記ステップＳＥ２に戻る。
【０１１３】
　ステップＳＥ７では、ＭＥ［ｎｅ］．ｔｉｍｅの値がＭＥ［ｍｅ］．ｔｉｍｅの値と一
致するか否か判定する。変数ｍｅの値で指定される音符と変数ｎｅの値で指定される音符
の発音開始時刻が一致している場合、判定はＹＥＳとなり、ステップＳＥ８で変数ｃｎｔ
、及びｎｅの各値のインクリメントを行った後、ステップＳＥ９に移行する。そうでない
場合には、判定はＮＯとなり、ステップＳＥ１０に移行する。
【０１１４】
　ステップＳＥ９では、変数ｎｅの値が変数ｍｅ＿ｅの値より大きいか否か判定する。そ
の大小関係が成立している場合、判定はＹＥＳとなってステップＳＥ１０に移行する。そ
うでない場合には、判定はＮＯとなり、上記ステップＳＥ７に戻る。それにより、変数ｍ
ｅの値で指定される音符の発音開始時刻と発音開始時刻が一致しない音符が見つかるか（
ステップＳＥ７のＮＯの判定）、或いは発音開始時刻を比較する対象となる音符が無くな
るまで（ステップＳＥ９のＹＥＳの判定）、ステップＳＥ７～ＳＥ９で形成される処理ル
ープを繰り返し実行する。
【０１１５】
　ステップＳＥ１０では、変数ｃｎｔの値が３以上か否か判定する。その値が３、つまり
発音開始時刻が一致すると見なす音符が３つ以上、見つかった場合、判定はＹＥＳとなり
、ステップＳＥ１１で変数ｍｅの値を変数ｍｅ＿ｔｏｐ、変数ｃｎｔの値から１を引いた
値に対し、変数ｍｅの値を加算した値を変数ｍｅ＿ｔａｉｌにそれぞれ代入した後、一連
の処理を終了する。そうでない場合には、判定はＮＯとなり、ステップＳＥ１２で変数ｍ
ｅにそれまでの値に変数ｃｎｔの値を加算した値を新たに代入してから上記ステップＳＥ
２に戻る。それにより、和音の構成音の検出を継続させる。
【０１１６】
　図６、及び図７に示す指定区間運指生成処理では、上記和音検出処理の実行後に移行す
るステップＳＪ１１で和音全数検索処理を実行する。次にその検索処理について、図１８
に示すそのフローチャートを参照して詳細に説明する。
【０１１７】
　先ず、ステップＳＰ１では、変数ｍｅ＿ｔｏｐの値が変数ｍｅ＿ｔａｉｌの値と等しい
か否か判定する。上述したように、それらの変数には、ステップＳＥ２の判定がＹＥＳ、
つまり和音の検出が全て終了した場合に同じ値が代入される。このことから、そのような
場合、判定はＹＥＳとなり、ここで一連の処理を終了する。そうでない場合には、判定は
ＮＯとなってステップＳＰ２に移行し、全数検査処理を実行する。その後、一連の処理を
終了する。
【０１１８】
　次に上記全数検査処理について、図１９に示すそのフローチャートを参照して詳細に説
明する。その全数検査処理は、図６、及び図７に示す指定区間運指生成処理内ではステッ
プＳＪ２１として実行される。
【０１１９】
　先ず、ステップＳＴ１では、指定の区間内の運指上のコストを算出する区間コスト算出
処理を実行する。次のステップＳＴ２では、その算出処理の実行により変数ｃｏｓｔｔｍ
ｐに代入されたコストを変数ｃｏｓｔｂｅｓｔ、変数ｍｅ＿ｔｏｐの値を変数ｍｅ、１を
変数ｌｏｏｐｍａｘ、０を変数ｌｏｏｐにそれぞれ代入する。そして、変数ｍｅ＿ｔｏｐ
と変数ｍｅ＿ｔａｉｌで指定される区間の運指を、配列変数ｆｉｇｔｍｐにコピーする。
そのコピーは、変数ｍｅに変数ｍｅ＿ｔｏｐの値から変数ｍｅ＿ｔａｉｌの値まで順次、
代入しながら、その変数ｍｅの値で指定される音符データＭＥ［ｍｅ］のデータｆｉｇを

(18) JP 4301125 B2 2009.7.22

10

20

30

40

50

、初期値が０でその値から変数ｍｅの値と同じタイミングで順次インクリメントする変数
ｃｎｔの値で指定される配列変数ｆｉｇｔｍｐ［ｃｎｔ］に設定（つまりｆｉｇｔｍｐ［
ｃｎｔ］←ＭＥ［ｍｅ］．ｆｉｇ）することで行われる。そして全ての運指のコピーが終
了した後で、変数ｍｅ＿ｔｏｐの値を改めて変数ｍｅに代入する。ステップＳＴ３にはそ
の後に移行する。
【０１２０】
　ステップＳＴ３～ＳＴ５では、変数ｌｏｏｐｍａｘに、区間内における運指の組み合わ
せ総数、つまりその区間内における全ての運指の組み合わせの数を求めて代入するための
処理が行われる。
【０１２１】
　先ず、ステップＳＴ３では、変数ｌｏｏｐｍａｘに、それまでの値に５を掛けた値を新
たに代入する。続くステップＳＴ４では、変数ｍｅの値が変数ｍｅ＿ｔａｉｌの値と等し
いか否か判定する。それらの値が一致した場合、判定はＹＥＳとなってステップＳＴ６に
移行する。そうでない場合には、判定はＮＯとなり、ステップＳＴ５で変数ｍｅの値をイ
ンクリメントしてから上記ステップＳＴ３に戻る。それにより、ステップＳＴ４の判定が
ＹＥＳとなった場合、変数ｌｏｏｐｍａｘには組み合わせ総数が代入されていることにな
る。
【０１２２】
　ステップＳＴ６では、変数ｌｏｏｐの値が変数ｌｏｏｐｍａｘの値より小さいか否か判
定する。その大小関係が成立している場合、判定はＹＥＳとなり、ステップＳＴ７に移行
する。そうでない場合には、判定はＮＯとなり、ステップＳＴ１８に移行する。ステップ
ＳＴ１８では、変数ｍｅ＿ｔｏｐと変数ｍｅ＿ｔａｉｌで指定される区間の運指に、配列
変数ｆｉｇｔｍｐの運指をコピーする。そのコピーは、変数ｍｅに変数ｍｅ＿ｔｏｐの値
から変数ｍｅ＿ｔａｉｌの値まで順次、代入しながら、その変数ｍｅの値で指定される音
符データＭＥ［ｍｅ］のデータｆｉｇに、初期値が０でその値から変数ｍｅの値と同じタ
イミングで順次インクリメントする変数ｃｎｔの値で指定される配列変数ｆｉｇｔｍｐ［
ｃｎｔ］の運指を設定（つまりＭＥ［ｍｅ］．ｆｉｇ←ｆｉｇｔｍｐ［ｃｎｔ］）するこ
とで行われる。その後、一連の処理を終了する。
【０１２３】
　ステップＳＴ７では、変数ｍｅに変数ｍｅ＿ｔｏｐの値、変数ｄｉｇｉｔに１、変数ｃ
ｎｔに０をそれぞれ代入する。次のステップＳＴ８では、音符データＭＥの変数ｍｅの値
で指定される要素ＭＥ［ｍｅ］のデータｆｉｇに、変数ｌｏｏｐの値を変数ｄｉｇｉｔの
値で割った除算値を５で割って得られる余り（図中「（ｌｏｏｐ／ｄｉｇｉｔ）％５」と
表記）を代入し、その代入後には変数ｄｉｇｉｔにそれまでの値に５を掛けた値を代入し
、変数ｃｎｔの値をインクリメントする。その後に移行するステップＳＴ９では、変数ｍ
ｅの値が変数ｍｅ＿ｔａｉｌの値と等しいか否か判定する。それらの値が等しい場合、判
定はＹＥＳとなってステップＳＴ１１に移行する。そうでない場合には、判定はＮＯとな
り、ステップＳＴ１０で変数ｍｅの値をインクリメントしてから上記ステップＳＴ８に戻
る。
【０１２４】
　上記ステップＳＴ８～ＳＴ１０で形成される処理ループをステップＳＴ９の判定がＹＥ
Ｓとなるまで繰り返し実行することにより、要素ＭＥ［ｍｅ］．ｆｉｇには順次、運指番
号が代入される。その運指番号は、変数ｌｏｏｐの値を固定にして変数ｄｉｇｉｔの値の
みを随時それまでの５倍とすることにより、変数ｌｏｏｐの値に応じて固有に変化してい
く数値となる。
【０１２５】
　ステップＳＴ１１では、音符データＭＥに代入した運指番号に従った運指上のコストを
算出するために、区間コスト算出処理を実行する。その実行後はステップＳＴ１２に移行
する。
【０１２６】

(19) JP 4301125 B2 2009.7.22

10

20

30

40

50

　ステップＳＴ１２では、変数ｃｏｓｔｂｅｓｔの値が変数ｃｏｓｔｔｍｐの値より大き
いか否か判定する。変数ｃｏｓｔｔｍｐに代入されるコストは、その値が大きくなるほど
難易度が高いことを示している。それにより、今回、音符データＭＥの各要素に代入して
いった運指番号の組み合わせから求めたコストがそれまでのものより小さい場合、判定は
ＹＥＳとなってステップＳＴ１３に移行し、そうでない場合には、判定はＮＯとなってス
テップＳＴ１７に移行する。
【０１２７】
　ステップＳＴ１３では、変数ｃｏｓｔｂｅｓｔに変数ｃｏｓｔｔｍｐの値、変数ｍｅに
変数ｍｅ＿ｔｏｐの値、変数ｃｎｔに０をそれぞれ代入する。次のステップＳＴ１４では
、ＭＥ［ｍｅ］．ｆｉｇの値を要素ｆｉｇｔｍｐ［ｃｎｔ］のデータとして設定し、その
設定後に変数ｃｎｔの値をインクリメントする。その後に移行するステップＳＴ１５では
、変数ｍｅの値が変数ｍｅ＿ｔａｉｌの値と等しいか否か判定する。それらの値が一致す
る場合、判定はＹＥＳとなり、ステップＳＴ１７で変数ｌｏｏｐの値をインクリメントし
てから上記ステップＳＴ６に戻る。そうでない場合には、判定はＮＯとなり、ステップＳ
Ｔ１６で変数ｍｅの値をインクリメントしてから上記ステップＳＴ１４に戻る。それによ
り、ステップＳＴ６の判定がＮＯとなった時点では、コストが最も低い運指（指の割り当
て）の組み合わせが配列変数ｆｉｇｔｍｐに設定されていることになる。
【０１２８】
　図２０は、上記ステップＳＴ１、或いはＳＴ１１で実行される区間コスト算出処理のフ
ローチャートである。次にその算出処理について、図２０に示すそのフローチャートを参
照して詳細に説明する。
【０１２９】
　先ず、ステップＳＵ１では、変数ｃｏｓｔｔｍｐに０、変数ｍｅに変数ｍｅ＿ｔｏｐの
値をそれぞれ代入する。続くステップＳＵ２では、変数ｍｅの値が変数ｍｅ＿ｔａｉｌの
値より大きいか否か判定する。前者が後者より大きい場合、判定はＹＥＳとなり、ステッ
プＳＵ６で変数ｃｏｓｔｔｍｐに、それまでの値を音符の総数（＝ｍｅ＿ｔａｉｌ－ｍｅ
＿ｔｏｐ＋１）で割った値、つまり１音符当たりの平均コストを代入した後、一連の処理
を終了する。そうでない場合には、判定はＮＯとなってステップＳＵ３に移行する。
【０１３０】
　ステップＳＵ３では、０から定数ＣＯＳＴＳＥＥＫＣＮＴ未満までの変数ｎの値で指定
される配列変数ｃｏｓｔｓの要素ｃｏｓｔｓ［ｎ］に０をそれぞれ代入し、変数ｃｎｔに
も０を代入する。その次に移行するステップＳＵ４では、変数ｍｅの値で指定される音符
に着目してコストを算出する指定音コスト算出処理を実行する。その実行後は、ステップ
ＳＵ５に移行して、０から変数ｃｎｔの値未満までの変数ｎの値で指定される要素ｃｏｓ
ｔｓ［ｎ］に代入されたコストの平均値を算出し、その算出結果をＭＥ［ｍｅ］．ｃｏｓ
ｔとして設定し、変数ｃｏｓｔｔｍｐに、それまでの値にＭＥ［ｍｅ］．ｃｏｓｔの値を
加算した値を代入し、変数ｍｅの値をインクリメントする。その後は上記ステップＳＵ２
に戻る。
【０１３１】
　図２１は、上記ステップＳＵ４として実行される指定音コスト算出処理のフローチャー
トである。次に図２１を参照して、そのコスト算出処理について詳細に説明する。
　先ず、ステップＳＶ１では、変数ｆにＭＥ［ｍｅ］．ｆｉｇ、変数ｐにＭＥ［ｍｅ］．
ｐｏｓｘ、変数ｂｗに変数ｐを２で割った余り、変数ｍｅｎに変数ｍｅの値に１を加算し
た値、をそれぞれ代入する。その次に移行するステップＳＶ２では、変数ｍｅの値が変数
ｍｅ＿ｔａｉｌの値以上か、または変数ｃｎｔの値が定数ＣＯＳＴＳＥＥＫＣＮＴ以上か
否か判定する。変数ｍｅの値が変数ｍｅ＿ｔａｉｌの値以上か、または変数ｃｎｔの値が
定数ＣＯＳＴＳＥＥＫＣＮＴ以上であった場合、判定はＹＥＳとなり、ここで一連の処理
を終了する。そうでない場合には、つまり変数ｍｅの値が変数ｍｅ＿ｔａｉｌの値未満、
且つ変数ｃｎｔの値が定数ＣＯＳＴＳＥＥＫＣＮＴ未満であった場合には、判定はＮＯと
なってステップＳＶ３に移行する。

(20) JP 4301125 B2 2009.7.22

10

20

30

40

50

【０１３２】
　ステップＳＶ３では、変数ｎｆにＭＥ［ｍｅｎ］．ｆｉｇ、変数ｎｐにＭＥ［ｍｅｎ］
．ｐｏｓｘをそれぞれ代入する。続くステップＳＶ４では、変数ｐの値が変数ｎｐの値よ
り小さいか否か判定する。変数ｍｅの値で指定される音符が変数ｍｅｎの値で指定される
音符より低音であった場合、変数ｐの値は変数ｎｐの値より小さくなることから、判定は
ＹＥＳとなり、ステップＳＶ５で変数ｐｍに０、変数ｉｎｔｖに変数ｎｐの値から変数ｐ
の値を引いた値（音符間のピッチ差）をそれぞれ代入してからステップＳＶ７に移行する
。そうでない場合には、判定はＮＯとなり、ステップＳＶ６で変数ｐｍに１、変数ｉｎｔ
ｖに変数ｐの値から変数ｎｐの値を引いた値をそれぞれ代入してからそのステップＳＶ７
に移行する。変数ｐの値が変数ｎｐの値より小さいということは、発音させるべき音符の
ピッチ変化方向は増加の方向にあることを意味する。
【０１３３】
　ステップＳＶ７では、変数ｉｎｔｖの値が定数ＭＡＸＩＮＴＶ未満か否か判定する。そ
の定数ＭＡＸＩＮＴＶは、運指により押鍵を行う難易度が極めて高いと考えられる鍵間（
ピッチ差）を判定するために用意したものである。このことから、着目する２つの音符の
間にそのようなピッチ差が存在している場合、判定はＮＯとなり、ステップＳＶ８で要素
ｃｏｓｔｓ［ｃｎｔ］にコストの最大値として設定の定数ＭＡＸＣＯＳＴを代入し、更に
ステップＳＶ９で変数ｃｎｔ、ｍｅｎの各値をインクリメントしてから上記ステップＳＶ
２に戻る。一方、そうでない場合には、判定はＹＥＳとなり、ステップＳＶ１０で要素ｃ
ｏｓｔｓ［ｃｎｔ］に、運指コストテーブルＣＴから抽出される値をコストとして代入し
てからステップＳＶ１１に移行する。
【０１３４】
　図２２は、その運指コストテーブルＣＴのデータ構成を説明する図である。そのテーブ
ルＣＴは、ＲＯＭ２に制御用データとして格納されている。
　図２２中、「ｂｗ」は鍵盤種類（０は白鍵、１は黒鍵）、「ｐｍ」はピッチ変化方向（
０は増加方向、１は減少方向）、「ｆｉｇ１」は変数ｍｅの値で指定される音符の指番号
、「ｆｉｇ２」は変数ｍｅｎの値で指定される音符の指番号、「ｉｎｔｖ」はそれら２つ
の音符間のピッチ差、をそれぞれ表している。それにより、テーブルＣＴは、それらのデ
ータ、つまり変数ｂｗ、ｐｍ、ｆ、ｎｆ、及びｉｎｔｖの各値の組み合わせで示される状
況別に、その状況下での運指のコストを格納したものとなっている。このことから、要素
ｃｏｓｔｓ［ｃｎｔ］には、変数ｂｗ、ｐｍ、ｆ、ｎｆ、及びｉｎｔｖの各値で指定され
る欄に格納されたコストが抽出して代入される。図２２では、５次元の配列変数ＣＴの形
でテーブルＣＴを表記している。
【０１３５】
　図２１の説明に戻る。
　ステップＳＶ１１では、変数ｆの値が変数ｎｆの値と等しく、かつ変数ｐの値が変数ｎ
ｐの値と等しくないか否か判定する。変数ｆ、ｎｆの値（指番号）が等しく、かつ変数ｐ
の値と変数ｎｐの値が等しくない（ピッチ（押鍵すべき鍵の音高）が等しくない）場合、
判定はＹＥＳとなり、ステップＳＶ１２で変数ｓｆに１を代入した後、ステップＳＶ１４
に移行する。そうでない場合には、つまり変数ｆの値が変数ｎｆの値と等しくないか、或
いは変数ｐの値が変数ｎｐの値と等しいような場合には、判定はＮＯとなり、ステップＳ
Ｖ１３で変数ｓｆに０を代入した後、そのステップＳＶ１４に移行する。
【０１３６】
　ステップＳＶ１４では、ＭＥ［ｍｅ］．ｔｉｍｅがＭＥ［ｍｅｎ］．ｔｉｍｅと等しい
か否か判定する。変数ｍｅ、ｍｅｎの各値で指定される音符の発音開始時刻が同じ場合、
判定はＹＥＳとなってステップＳＶ１５に移行し、そうでない場合には、判定はＮＯとな
ってステップＳＶ１７に移行する。
【０１３７】
　ステップＳＶ１５では、変数ｓｆの値が１か、または変数ｆの値が変数ｎｆの値（指番
号）より大きいか否か判定する。演奏データでは、発音開始時刻が同じ音符群はピッチの

(21) JP 4301125 B2 2009.7.22

10

20

30

40

50

小さな順に配列されている。このことから、発音開始時刻が同じでピッチが異なる２つの
音符を同じ指で押鍵するか、またはピッチが大きいほうの音符を親指、或いは親指に近い
ほうの指で押鍵しなければならない運指であった場合、判定はＹＥＳとなり、ステップＳ
Ｖ１６で要素ｃｏｓｔｓ［ｃｎｔ］に定数ＭＡＸＣＯＳＴを代入してから上記ステップＳ
Ｖ９に移行する。そうでない場合には、つまり発音開始時刻が同じでピッチが異なる２つ
の音符を同じ指で押鍵せず、かつピッチが大きいほうの音符を親指、或いは親指に近いほ
うの指で押鍵しない運指であった場合には、判定はＮＯとなってそのステップＳＶ９に移
行する。
【０１３８】
　ステップＳＶ１７では、変数ｃｎｔの値が０、かつ変数ｓｆの値が１か否か判定する。
変数ｃｎｔの値の０は、変数ｍｅｎの値で指定される音符は先頭の音符の次に位置してい
ることを意味する。このことから、先頭、及びその次に位置する２つのピッチが異なる音
符を同じ指で押鍵する運指であった場合、判定はＹＥＳとなって上記ステップＳＶ１６に
移行し、そうでない場合には、判定はＮＯとなって上記ステップＳＶ９に移行する。
【０１３９】
　このようにして、本実施の形態では、難易度の高い困難な運指の検出を行い、それによ
って検出された運指のコストとして定数ＭＡＸＣＯＳＴを設定するようにしている。それ
により、設定された困難な運指はコストに大きく反映させている。
【０１４０】
　図６、及び図７に示す指定区間運指生成処理内で実行されるサブルーチン処理の説明に
戻る。
　図２３、及び図２４は、その生成処理内でステップＳＪ１５として実行される分散和音
判定処理のフローチャートである。次に図２３、及び図２４を参照して、その判定処理に
ついて詳細に説明する。
【０１４１】
　先ず、ステップＳＤ１では、変数ｍｅ＿ｔａｉｌの値に１を加算した値が変数ｍｅ＿ｅ
の値を越えるならば変数ｍｅ＿ｓの値、そうでなければその加算値を変数ｍｅに代入する
。次のステップＳＤ２では、変数ｍｅの値が変数ｍｅ＿ｅの値と等しいか否か判定する。
それらの値が一致している場合、判定はＹＥＳとなり、ステップＳＤ３で変数ｍｅ＿ｔｏ
ｐ、及びｍｅ＿ｔａｉｌにそれぞれ変数ｍｅ＿ｅの値を代入した後、一連の処理を終了す
る。そうでない場合には、判定はＮＯとなり、ステップＳＤ４に移行する。
【０１４２】
　ステップＳＤ４では、変数ｔｃに０、変数ｎｐに変数ｍｅの値、変数ｓｔｅｐｔｉｍｅ
にＭＥ［ｎｐ＋１］．ｔｉｍｅからＭＥ［ｎｐ］．ｔｉｍｅを減算した値（変数ｎｐの値
で指定される音符とその次音符間の発音開始時刻の時間間隔）をそれぞれ代入する。その
後に移行するステップＳＤ５では、変数ｔｃの値が定数ＭＡＸＡＲＰの２倍以上、または
変数ｎｐの値が変数ｍｅ＿ｅの値以上か否か判定する。変数ｔｃの値が定数ＭＡＸＡＲＰ
の２倍以上、または変数ｎｐの値が変数ｍｅ＿ｅの値以上であった場合、判定はＹＥＳと
なってステップＳＤ８に移行する。そうでない場合には、つまり変数ｔｃの値が定数ＭＡ
ＸＡＲＰの２倍未満、かつ変数ｎｐの値が変数ｍｅ＿ｅの値未満であった場合には、判定
はＮＯとなってステップＳＤ６に移行する。上記定数ＭＡＸＡＲＰは、分散和音の構成音
数として考えられる最大値として設定したものである。その最小値は、定数ＭＩＮＡＲＰ
として設定している。
【０１４３】
　ステップＳＤ６では、変数ｔｃの値が０でなく、かつ変数ｓｔｅｐｔｉｍｅの値がＭＥ
［ｎｐ＋１］．ｔｉｍｅからＭＥ［ｎｐ］．ｔｉｍｅを減算した値と等しくないか否か判
定する。変数ｔｃの値が０でないことは、減算値が示す発音開始時刻の時間間隔は、変数
ｍｅの値で指定されない音符とその次音符間のものであることを意味する。このことから
、その時間間隔が変数ｍｅの値で指定される音符とその次音符間のそれと一致しない場合
、判定はＹＥＳとなってステップＳＤ８に移行する。そうでない場合には、判定はＮＯと

(22) JP 4301125 B2 2009.7.22

10

20

30

40

50

なり、ステップＳＤ７において、配列変数ｐｉｔｖｅｃの変数ｔｃの値で指定される要素
ｐｉｔｖｅｃ［ｔｃ］にＭＥ［ｎｐ＋１］．ｐｉｔｃｈからＭＥ［ｎｐ］．ｐｉｔｃｈを
減算した値（隣り合う音符のピッチ差）を代入し、その代入後に変数ｔｃ、及びｎｐの各
値をインクリメントしてから上記ステップＳＤ５に戻る。それにより、変数ｔｃ、及びｎ
ｐの各値を順次インクリメントしながら、分散和音が存在する可能性のある区間の抽出を
行う。
【０１４４】
　上記ステップＳＤ５、或いはＳＤ６の判定がＹＥＳとなって移行するステップＳＤ８で
は、変数ｍａｘｆｒに、変数ｔｃの値を２で割った値を代入する。その代入後はステップ
ＳＤ９に移行して、変数ｍａｘｆｒの値が定数ＭＩＮＡＲＰ未満か否か判定する。その値
が定数ＭＩＮＡＲＰ未満であった場合、判定はＹＥＳとなり、ステップＳＤ１０で変数ｍ
ｅにそれまでの値に変数ｔｃの値を加算した値を代入してから上記ステップＳＤ２に戻る
。そうでない場合には、判定はＮＯとなり、図２４のステップＳＤ１１に移行する。
【０１４５】
　ステップＳＤ９でのＮＯの判定は、変数ｍｅ、ｎｐの各値で指定される区間内に分散和
音が存在する可能性があることを意味する。このことから、そのステップＳＤ１１以降で
は、その区間内に存在する分散和音を特定するための処理が行われる。
【０１４６】
　先ず、ステップＳＤ１１では、変数ｆｒに定数ＭＩＮＡＲＰを代入する。続くステップ
ＳＤ１２では、変数ｆｒの値が変数ｍａｘｆｒの値より大きいか否か判定する。変数ｆｒ
の値が変数ｍａｘｆｒの値より大きい場合、判定はＹＥＳとなって図２３のステップＳＤ
１０に移行し、そうでない場合には、判定はＮＯとなってステップＳＤ１３に移行する。
【０１４７】
　ステップＳＤ１３では、変数ｎに０を代入する。次のステップＳＤ１４では、変数ｎの
値が変数ｆｒの値未満か否か判定する。変数ｎの値が変数ｆｒの値以上であった場合、判
定はＮＯとなってステップＳＤ１８に移行する。そうでない場合には、判定はＹＥＳとな
り、ステップＳＤ１５に移行して、要素ｐｉｔｖｅｃ［ｎ］の値に要素ｐｉｔｖｅｃ［ｎ
＋ｆｒ］の値を掛けた値が０未満か否か判定する。各要素ｐｉｔｖｅｃ［］には、隣り合
う音符間のピッチ差が代入されている。このため、変数ｆｒの値分、離れた２つの音符で
その次音符とのピッチ差の符号（ピッチ変化方向）が異なる場合、判定はＹＥＳとなり、
ステップＳＤ１７で変数ｆｒの値をインクリメントしてから上記ステップＳＤ１２に戻る
。そうでない場合には、判定はＮＯとなり、ステップＳＤ１６で変数ｎの値をインクリメ
ントしてから上記ステップＳＤ１４に戻る。
【０１４８】
　ステップＳＤ１８では、要素ｐｉｔｖｅｃ［ｆｒ］の値に要素ｐｉｔｖｅｃ［ｆｒ－１
］の値を掛けた値が０未満か否か判定する。変数ｆｒの値で指定される音符とその前後に
位置する各音符との間のピッチ差の符号（ピッチ変化方向）が異なる場合、判定はＹＥＳ
となり、ステップＳＤ１９に移行する。すなわち、一般的な分散和音はピッチの低い音か
ら始まるため、ステップＳＤ１８の判定がＹＥＳとなる。そしてステップＳＤ１９では変
数ｍｅの値を変数ｍｅ＿ｔｏｐに、変数ｍｅの値に変数ｆｒの値を加算し、その加算結果
から１を引いて得られる値を変数ｍｅ＿ｔａｉｌにそれぞれ代入した後、一連の処理を終
了する。つまり分散和音の構成音が存在していると見なす区間を、変数ｍｅ＿ｔｏｐ、及
びｍｅ＿ｔａｉｌの各値で指定する。一方ステップＳＤ１８の判定がＮＯである場合は、
次にステップＳＤ１７に移行する。
【０１４９】
　図６、及び図７に示す指定区間運指生成処理内では、上記分散和音判定処理に続いてス
テップＳＪ１６で分散和音全数検査処理を実行する。次にその検査処理について、図２５
に示すそのフローチャートを参照して詳細に説明する。
【０１５０】
　先ず、ステップＳＧ１では、変数ｍｅ＿ｔｏｐの値が変数ｍｅ＿ｔａｉｌの値と等しい

(23) JP 4301125 B2 2009.7.22

10

20

30

40

50

か否か判定する。それらの値が等しい場合、判定はＹＥＳとなり、ここで一連の処理を終
了する。そうでない場合には、判定はＮＯとなり、次にステップＳＧ２で図１９に示す全
数検査処理を実行してからステップＳＧ３に移行する。
【０１５１】
　ステップＳＧ３では、変数ｍｅ＿ｔｏｐの値を変数ｍｅｔｍｐに、変数ｍｅ＿ｔａｉｌ
の値から変数ｍｅ＿ｔｏｐの値を減算し、その減算結果に１を加算して得られる値（分散
和音の構成音数）を変数ｄにそれぞれ代入する。続くステップＳＧ４では、ＭＥ［ｍｅｔ
ｍｐ＋ｄ］．ｆｉｇとしてＭＥ［ｍｅｔｍｐ］．ｆｉｇを設定し、その設定後に変数ｍｅ
ｔｍｐの値をインクリメントする。その後に移行するステップＳＧ５では、変数ｍｅｔｍ
ｐの値が変数ｍｅ＿ｔａｉｌの値より大きいか否か判定する。変数ｍｅｔｍｐの値が変数
ｍｅ＿ｔａｉｌの値より大きい場合、判定はＹＥＳとなり、ステップＳＧ６において、変
数ｍｅ＿ｔｏｐにそれまでの値に変数ｄの値を加算した値、変数ｍｅ＿ｔａｉｌにそれま
での値に変数ｄの値を加算した値をそれぞれ代入した後、一連の処理を終了する。そうで
ない場合には、判定はＮＯとなって上記ステップＳＧ４に戻る。
【０１５２】
　分散和音の構成音が存在していると見なす区間は変数ｍｅ＿ｔｏｐ、及びｍｅ＿ｔａｉ
ｌの各値で指定される。上述の分散和音判定処理では、２つの分散和音が連続する区間を
対象に抽出するようにしている。それにより、本実施の形態では、最初の分散和音の構成
音を押鍵していく運指をその次の分散和音に対しても適用させるようにしている。
【０１５３】
　図２６は、図６、及び図７に示す指定区間運指生成処理内でステップＳＪ２０として実
行される修正箇所検索処理のフローチャートである。次にその検索処理について、図２６
を参照して詳細に説明する。
【０１５４】
　先ず、ステップＳＨ１では、変数ｍｅ＿ｔａｉｌの値に１を加算した値が変数ｍｅ＿ｅ
の値以下であればその加算値、そうでなければ変数ｍｅ＿ｓの値を変数ｍｅｐに代入する
。次のステップＳＨ２では、変数ｍｅに変数ｍｅｐの値に１を加算した値を代入する。そ
の次に移行するステップＳＨ３では、変数ｍｅの値が変数ｍｅ＿ｅの値より大きいか否か
判定する。変数ｍｅの値が変数ｍｅ＿ｅ以下であった場合、判定はＮＯとなってステップ
ＳＨ４に移行する。そうでない場合には、判定はＹＥＳとなり、ステップＳＨ１３で変数
ｍｅ＿ｔｏｐ、及びｍｅ＿ｔａｉｌにそれぞれ変数ｍｅ＿ｅの値を代入した後、一連の処
理を終了する。
【０１５５】
　ステップＳＨ４では、ＭＥ［ｍｅ］．ｃｏｓｔが定数ＴＨＲＣＯＳＴ１以上か否か判定
する。その定数ＴＨＲＣＯＳＴ１は、運指を修正すべき箇所のコストの閾値として設定し
たものである。このことから、変数ｍｅの値で指定される音符を発音させるための運指（
その音符のピッチが割り当てられた鍵の押鍵に使うべき指）の修正が望ましいような場合
、判定はＹＥＳとなってステップＳＨ６に移行し、そうでない場合には、判定はＮＯとな
り、ステップＳＨ５で変数ｍｅの値をインクリメントしてから上記ステップＳＨ３に戻る
。それにより、修正すべき箇所の特定を継続させる。
【０１５６】
　ステップＳＨ６では、変数ｍｅｔに変数ｍｅの値を代入し、変数ｍｅの値が変数ｍｅ＿
ｅの値未満ならば変数ｍｅの値に１を加算した値、そうでなければ変数ｍｅの値を変数ｍ
ｅｌに代入し、変数ｃｎｔに１を代入する。次のステップＳＨ７では、変数ｍｅｔの値が
０、またはＭＥ［ｍｅｔ］．ｔｅｎｄが０か否か判定する。変数ｍｅｔの値で指定される
音符が曲の先頭、または極点（データｔｅｎｄが０）に位置する音符であった場合、判定
はＹＥＳとなってステップＳＨ９に移行する。そうでない場合には、判定はＮＯとなり、
ステップＳＨ８で変数ｍｅｔの値をデクリメントすると共に、変数ｃｎｔの値をインクリ
メントしてから再度ステップＳＨ７での判定を行う。なお、各音符データＭＥ中のデータ
ｔｅｎｄは、例えば図３に示すメインルーチン内のステップＳＡ３において、音符間のピ

(24) JP 4301125 B2 2009.7.22

10

20

30

40

50

ッチ差を算出し参照して設定するようになっている。
【０１５７】
　ステップＳＨ９では、変数ｃｎｔの値が定数ＲＥＴＲＹＮ未満か否か判定する。その値
が定数ＲＥＴＲＹＮ未満であった場合、判定はＹＥＳとなってステップＳＨ１０に移行す
る。そうでない場合には、判定はＮＯとなり、ステップＳＨ１２で変数ｍｅ＿ｔｏｐに変
数ｍｅｔの値、変数ｍｅ＿ｔａｉｌに変数ｍｅｌの値をそれぞれ代入した後、一連の処理
を終了する。
【０１５８】
　ステップＳＨ１０では、変数ｍｅｌの値が変数ｍｅ＿ｅ、またはＭＥ［ｍｅｌ］．ｔｅ
ｎｄが０か否か判定する。変数ｍｅｌの値で指定される音符が区間の最後、または極点に
位置する音符であった場合、判定はＹＥＳとなってステップＳＨ１２に移行する。そうで
ない場合には、判定はＮＯとなり、ステップＳＨ１１で変数ｍｅｌ、及びｃｎｔの各値を
インクリメントしてから再度ステップＳＨ１０での判定を行う。
【０１５９】
　このようにして本実施の形態では、修正すべきと見なす箇所は、その前後の部分を含め
て修正するようにしている。これは、１箇所の修正はその前後の演奏に影響を及ぼすのが
普通であり、また、その箇所に至る部分の演奏を考慮しなければよりコストの低い運指を
設定するのは困難、といった理由からである。定数ＲＥＴＲＹＮは、そのように修正対象
範囲を設定することから、その範囲が必要以上に広がらないように用意している。
【０１６０】
　次に、図６、及び図７に示す指定区間運指生成処理内でステップＳＪ２５として実行さ
れる同一フレーズ補正処理について、図２７、及び図２８に示すそのフローチャートを参
照して詳細に説明する。その補正処理は、同一の（同一と見なせる）フレーズを検出し、
そのなかでコストが最小のフレーズを抽出し、抽出したフレーズで設定されている運指を
他のフレーズに適用させて補正する処理である。
【０１６１】
　演奏内容が同一のフレーズであっても、その前、或いは後に位置するフレーズの影響に
よって運指（の組み合わせ）が異なることがありうる。その運指の違いは特に初心者に対
しては違和感を与える可能性がある。本実施の形態では、そのような違和感を与えない運
指情報を生成できるようにするために、同一フレーズ補正スイッチを設け、そのスイッチ
への操作によりこの同一フレーズ補正処理を実行させるか否かユーザが選択できるように
させている。
【０１６２】
　先ず、ステップＳＸ１では、変数ｐｉｄに１を代入する。続くステップＳＸ２では、変
数ｍｅに変数ｍｅ＿ｓの値、変数ｃｏｓｂｅｓｔには－１をそれぞれ代入する。その次に
移行するステップＳＸ３では、変数ｍｅの値を順次、インクリメントしながら、その値で
指定される音符データＭＥ［ｍｅ］中のデータｐｉｄ、及びｐｓｔａｔを確認していくこ
とにより、データｐｉｄ、及びｐｓｔａｔが共に０である最初の音符データＭＥを指定す
るインデックス値を変数ｍｅ＿ｔｏｐに、その後に確認される、データｐｉｄが０でデー
タｐｓｔａｔが２の音符データＭＥを指定するインデックス値を変数ｍｅ＿ｔａｉｌにそ
れぞれ代入するための処理を行う。ステップＳＸ４にはその後に移行する。
【０１６３】
　データｐｉｄ、及びｐｓｔａｔが共に０である音符データＭＥは分割したフレーズの先
頭に位置し、データｐｉｄが０でデータｐｓｔａｔが２の音符データＭＥはそのフレーズ
の最後に位置する。ステップＳＸ４では、変数ｍｅの値が変数ｍｅ＿ｅと一致するまでに
、そのような音符データＭＥのインデックス値を代入することによるフレーズの検出が行
えたか否か判定する。ステップＳＸ３で２つのインデックス値の代入が行えた場合、判定
はＹＥＳとなってステップＳＸ５に移行し、そうでない場合には、判定はＮＯとなって図
２８のステップＳＸ１２に移行する。
【０１６４】

(25) JP 4301125 B2 2009.7.22

10

20

30

40

50

　ステップＳＸ５では、変数ｃｏｓｔｂｅｓｔの値が－１か否か判定する。その値が－１
であった場合、判定はＹＥＳとなり、ステップＳＸ６で変数ｍｅｂｅｓｔに変数ｍｅ＿ｔ
ｏｐの値を代入してからステップＳＸ８に移行する。そうでない場合には、判定はＮＯと
なり、ステップＳＸ７に移行して、今回、検出したフレーズが、変数ｍｅｂｅｓｔに先頭
位置の音符データＭＥのインデックス値が代入されたフレーズと同じか否か判定する。そ
れらのフレーズが同一のものであった場合、判定はＹＥＳとなってステップＳＸ８に移行
する。そうでない場合には、判定はＮＯとなって上記ステップＳＸ３に戻る。
【０１６５】
　フレーズが同一か否かの判定は、特に詳細な説明は省略するが、例えば隣り合う音符間
のピッチ差、押鍵すべき鍵の種類に着目して行っている。当然のことながら、別の内容に
着目して判定を行うようにしても良い。
【０１６６】
　ステップＳＸ８では、ＭＥ［ｍｅ＿ｔｏｐ］．ｐｉｄとして変数ｐｉｄの値をセットす
る。次のステップＳＸ９では、図２０に示す区間コスト算出処理を実行する。その次に実
行するステップＳＸ１０では、変数ｃｏｓｔｂｅｓｔの値が－１、または変数ｃｏｓｔｔ
ｍｐの値が変数ｃｏｓｔｂｅｓｔの値未満か否か判定する。変数ｃｏｓｔｂｅｓｔの値が
－１、または変数ｃｏｓｔｔｍｐの値が変数ｃｏｓｔｂｅｓｔの値未満であった場合、判
定はＹＥＳとなり、ステップＳＸ１１で変数ｃｏｓｔｂｅｓｔに変数ｃｏｓｔｔｍｐの値
、変数ｍｅｂｅｓｔに変数ｍｅ＿ｔｏｐの値をそれぞれ代入した後、上記ステップＳＸ３
に戻る。そうでない場合には、変数ｃｏｓｔｂｅｓｔの値が－１でなく、かつ変数ｃｏｓ
ｔｔｍｐの値が変数ｃｏｓｔｂｅｓｔの値より大きい場合には、判定はＮＯとなって上記
ステップＳＸ３に戻る。
【０１６７】
　このようにして、本実施の形態では、分割したフレーズのなかで同一の（同一と見なす
）フレーズには同一のフレーズ番号を割り当て、同一のフレーズのなかでコストが最小の
フレーズを特定し、特定したフレーズの先頭に位置する音符データＭＥのインデックス値
を変数ｍｅｂｅｓｔに代入している。図２８のステップＳＸ１２には、そのようなフレー
ズ番号の割り当て、コストが最小のフレーズの特定を試みた後に移行する。
【０１６８】
　そのステップＳＸ１２では、変数ｃｏｓｔｂｅｓｔの値が－１、または変数ｃｏｓｔｂ
ｅｓｔの値が定数ＭＡＸＣＯＳＴと等しいか否か判定する。変数ｃｏｓｔｂｅｓｔの値と
しての－１は、対象となるフレーズ自体が検出されなかったことを意味する。定数ＭＡＸ
ＣＯＳＴは、他のフレーズに運指を適用させるフレーズのコストがその適用を行うべきレ
ベルか否か判定するために用意したものである。このようなことから、結果として、運指
を適用するフレーズが存在しない場合には、判定はＹＥＳとなってステップＳＸ１８に移
行し、そうでない場合には、判定はＮＯとなってステップＳＸ１３に移行する。
【０１６９】
　ステップＳＸ１３では、変数ｍｅに変数ｍｅ＿ｓの値を代入する。続くステップＳＸ１
４では、上記ステップＳＸ３と同様にして、データｐｉｄが変数ｐｉｄの値でデータｐｓ
ｔａｔが０である最初の音符データＭＥを指定するインデックス値を変数ｍｅ＿ｔｏｐに
、その後に確認される、データｐｉｄが変数ｐｉｄの値でデータｐｓｔａｔが２の音符デ
ータＭＥを指定するインデックス値を変数ｍｅ＿ｔａｉｌにそれぞれ代入するための処理
を行う。ステップＳＸ１５にはその後に移行する。
【０１７０】
　ステップＳＸ１５では、変数ｍｅの値が変数ｍｅ＿ｅと一致するまでに、そのような音
符データＭＥのインデックス値を代入することによるフレーズの検出が行えたか否か判定
する。ステップＳＸ１４で２つのインデックス値の代入が行えた場合、判定はＹＥＳとな
ってステップＳＸ１６に移行し、そうでない場合には、判定はＮＯとなってステップＳＸ
１８に移行する。
【０１７１】

(26) JP 4301125 B2 2009.7.22

10

20

30

40

50

　ステップＳＸ１６では、変数ｍｅ＿ｔｏｐの値が変数ｍｅｂｅｓｔの値と等しいか否か
判定する。それらの値が等しい場合、つまり変数ｍｅ＿ｔｏｐの値として代入されたイン
デックス値は運指を適用させる元のフレーズの先頭に位置する音符データＭＥを指定する
ものであった場合、判定はＹＥＳとなって上記ステップＳＸ１４に戻る。そうでない場合
には、判定はＮＯとなってステップＳＸ１７に移行し、コストが最小のフレーズで設定さ
れた運指を適用させるためのコピーを行う。そのコピーは、変数ｐ１に変数ｍｅ＿ｔｏｐ
の値から変数ｍｅ＿ｔａｉｌの値まで順次、代入しながら、その変数ｐ１の値で指定され
る音符データＭＥ［ｐ１］のデータｆｉｇとして、初期値が変数ｍｅｂｅｓｔの値でその
値から変数ｐ１の値と同じタイミングで順次インクリメントする変数ｐ２の値で指定され
る音符データＭＥ［ｐ２］のデータｆｉｇを設定（つまりＭＥ［ｐ１］．ｆｉｇ←ＭＥ［
ｐ２］．ｆｉｇ）することで行われる。そのようにして適用を行った後は上記ステップＳ
Ｘ１４に戻る。
【０１７２】
　上記ステップＳＸ１２の判定がＹＥＳ、或いはＳＸ１５の判定がＮＯとなって移行する
ステップＳＸ１８では、変数ｐｉｄの値をインクリメントする。続くステップＳＸ１９で
は、変数ｐｉｄの値が定数ＭＡＸＰＩＤと等しいか否か判定する。その値が定数ＭＡＸＰ
ＩＤと等しい場合、判定はＹＥＳとなり、ここで一連の処理を終了する。そうでない場合
には、判定はＮＯとなって図２７のステップＳＸ２に戻る。
【０１７３】
　図６、及び図７に示す指定区間運指生成処理では、上述したようなサブルーチン処理が
実行される。そのようなサブルーチン処理を変数ｌｏｏｐｃｎｔの値に応じて実行するこ
とから、その値をインクリメントさせながら指定区間運指生成処理を実行させる度に、運
指情報はより最適化されていくこととなる。
【０１７４】
　図２９は、図５に示す運指生成処理内でステップＳＢ３として実行される評価処理のフ
ローチャートである。最後に図２９を参照して、その評価処理について詳細に説明する。
その評価処理では、上述したように、運指コストとして、１音符平均のコストを算出し、
算出したコストが定数ＴＨＲＣＯＳＴ２より小さければ、生成、或いは修正した運指情報
は適切なものであるとして変数ｌｏｏｐｃｎｔに０を代入するようになっている。
【０１７５】
　先ず、ステップＳＷ１では、変数ｍｅ＿ｔｏｐに変数ｍｅ＿ｓの値、変数ｍｅ＿ｔａｉ
ｌに変数ｍｅ＿ｓの値をそれぞれ代入し、それに続くステップＳＷ２で図２０に示す区間
コスト算出処理を実行する。その次に移行するステップＳＷ３では、変数ｃｏｓｔｔｍｐ
の値が定数ＴＨＲＣＯＳＴ２未満か否か判定する。その定数ＴＨＲＣＯＳＴ２は、生成さ
れた運指情報が最適（適切）なものか否か判定するために用意した閾値である。このこと
から、その運指情報が最適なものであった場合、判定はＹＥＳとなり、ステップＳＷ４で
変数ｌｏｏｐｃｎｔに０を代入した後、一連の処理を終了する。そうでない場合には、判
定はＮＯとなり、ここで一連の処理を終了する。
【０１７６】
　図５の運指生成処理では、ステップＳＢ４の判定がＮＯ、つまり変数ｌｏｏｐｃｎｔの
値が０となるまでステップＳＢ２～ＳＢ４で形成される処理ループを繰り返し実行する。
その繰り返しを必要に応じて行わせることにより、ステップＳＢ２の指定区間運指生成処
理によって最初に生成された運指情報は、それ以降の生成処理の実行により、より最適（
適切）な運指情報となるまで段階的に順次、補正されていくことになる。
【０１７７】
　なお、本実施の形態では、変数ｌｏｏｐｃｎｔの値に応じた運指情報の生成は一つの内
容にのみ着目して行うようにしているが（図６、及び図７）、複数の内容に着目して行う
ようにしても良い。着目する内容、その順序は演奏データ、或いは運指情報を参照して決
定するようにしても良い。
【０１７８】

(27) JP 4301125 B2 2009.7.22

10

20

30

40

　上述したような運指情報生成装置を実現させるようなプログラムは、ＣＤ－ＲＯＭ、Ｄ
ＶＤ、或いは着脱自在なフラッシュメモリ等の記録媒体に記録させて配布しても良い。公
衆網等の通信ネットワークを介して、そのプログラムの一部、若しくは全部を配信するよ
うにしても良い。そのようにした場合には、ユーザーはプログラムを取得してデータ処理
装置にロードすることにより、その装置に本発明を適用させることができる。このことか
ら、記録媒体は、プログラムを配信する装置がアクセスできるものであっても良い。
【図面の簡単な説明】
【０１７９】
【図１】本実施の形態による運指情報生成装置を搭載した電子楽器の構成を説明する図で
ある。
【図２】電子楽器のＲＡＭに格納されるデータを説明する図である。
【図３】全体処理のフローチャートである。
【図４】範囲設定処理のフローチャートである。
【図５】運指生成処理のフローチャートである。
【図６】指定区間運指生成処理のフローチャートである。
【図７】指定区間運指生成処理のフローチャートである（続き）。
【図８】逐次生成処理のフローチャートである。
【図９】電子楽器のＲＯＭに格納されたデータを説明する図である（その１）。
【図１０】指状態確認処理のフローチャートである。
【図１１】指割り当て処理のフローチャートである。
【図１２】指位置指定処理のフローチャートである。
【図１３】フレーズ分割処理のフローチャートである。
【図１４】パターン適用処理のフローチャートである。
【図１５】電子楽器のＲＯＭに格納されたデータを説明する図である（その２）。
【図１６】パターンマッチング処理のフローチャートである。
【図１７】和音判定処理のフローチャートである。
【図１８】和音全数検査処理のフローチャートである。
【図１９】全数検査処理のフローチャートである。
【図２０】区間コスト算出処理のフローチャートである。
【図２１】指定音コスト算出処理のフローチャートである。
【図２２】電子楽器のＲＯＭに格納されたデータを説明する図である（その３）。
【図２３】分散和音判定処理のフローチャートである。
【図２４】分散和音判定処理のフローチャートである（続き）。
【図２５】分散和音全数検査処理のフローチャートである。
【図２６】修正箇所検索処理のフローチャートである。
【図２７】同一フレーズ補正処理のフローチャートである。
【図２８】同一フレーズ補正処理のフローチャートである（続き）。
【図２９】評価処理のフローチャートである。
【符号の説明】
【０１８０】
　　１　　ＣＰＵ
　　２　　ＲＯＭ
　　３　　ＲＡＭ
　　４　　入力部
　　５　　表示部
　　６　　外部記憶装置

(28) JP 4301125 B2 2009.7.22

【図１】 【図２】

【図３】 【図４】

(29) JP 4301125 B2 2009.7.22

【図５】 【図６】

【図７】 【図８】

(30) JP 4301125 B2 2009.7.22

【図９】 【図１０】

【図１１】 【図１２】

(31) JP 4301125 B2 2009.7.22

【図１３】 【図１４】

【図１５】 【図１６】

(32) JP 4301125 B2 2009.7.22

【図１７】 【図１８】

【図１９】 【図２０】

(33) JP 4301125 B2 2009.7.22

【図２１】 【図２２】

【図２３】 【図２４】

(34) JP 4301125 B2 2009.7.22

【図２５】 【図２６】

【図２７】 【図２８】

(35) JP 4301125 B2 2009.7.22

【図２９】

(36) JP 4301125 B2 2009.7.22

10

フロントページの続き

(56)参考文献 特開２００１－３３１１７３（ＪＰ，Ａ）　　　
 特開２０００－３２２０５９（ＪＰ，Ａ）　　　
 特開２００４－２０５７９１（ＪＰ，Ａ）　　　
 特開２０００－１６３０５５（ＪＰ，Ａ）　　　
 特開２００６－７１６７５（ＪＰ，Ａ）　　　

(58)調査した分野(Int.Cl.，ＤＢ名)
 Ｇ０９Ｂ　　１５／００－１５／０８
 Ｇ１０Ｇ　　　１／００－　７／０２
 Ｇ１０Ｈ　　　１／００－　７／１２

	biblio-graphic-data
	claims
	description
	drawings
	overflow

