PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6.

GO6F 15/16 Al

(11) International Publication Number:

(43) International Publication Date:

WO 00/63785

26 October 2000 (26.10.00)

(21) International Application Number: PCT/US99/25807

(22) International Filing Date: 1 November 1999 (01.11.99)

(30) Priority Data:

09/294,621 19 April 1999 (19.04.99) Us

(71) Applicant: CFN, THE CONSUMER FINANCIAL NET-
WORK, INC. [US/US]; 4450 Rivergreen Parkway, Suite
100, Duluth, GA 30096 (US).

(72) Inventors: CHLAN, Michael, M.; 10565 Kingsmark Trail,
Alpharetta, GA 30022 (US). DAVIS, Richard, E.; 137
Grand Avenue, Suwanee, GA 30024 (US).

(74) Agent: KUESTER, Jeffrey, R.; Thomas, Kayden, Horstemeyer
& Risley LLP, 100 Galleria Parkway, Suite 1500, Atlanta,
GA 30339 (US).

(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG,
BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE,
ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP,
KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD,
MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD,
SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN,
YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD,
SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG,
KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY,
DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT,
SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW,
ML, MR, NE, SN, TD, TG).

Published
With international search report.

(54) Title: INTERNET WEB SERVER CACHE STORAGE AND SESSION MANAGEMENT SYSTEM

(57) Abstract

In an Internet implementation, a session is maintained between
an Internet web server (20) and a client browser (52, 56, 62) through
the use of at least one temporary cache file (26), preferably saved in a
location local to the web server (20). The web server (20) also interacts
with at least one data source (31), preferably located behind a firewall
(30) from the web server (20). After a cache file (26) is created, it is
used to store data received from the client (52, 56, 62) and from the
data source (31), resulting in fewer interactions with the data source
(31). The cache file (26) is saved from working memory (21) before
each page is generated and transmitted from the web server (20), after
which the working memory (21) becomes available for other uses. Since
each page includes a reference to the cache file (26), such as in a hidden
form field or in the URL of a hyperlink, for example, the session is
effectively maintained between pages when the user interacts with the
page to generate data that is transmitted from the client (52, 56, 62)
to the web server (20), at which point the web server (20) opens the

referenced cache file (26).

USER
BROWSER

DATA
SERVER

AL
AM
AT
AU
AZ
BA
BB
BE

BG
BJ
BR
BY
CA
CF
CG
CH
CI
cM
CN
Cu

DE
DK
EE

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cote d'Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
1E
IL
IS
IT
JP
KE
KG
KP

KR
Kz
LC
LI

LK
LR

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Treland

Tsrael

Iceland

Ttaly

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
Sz
TD
TG
TJ
™
TR
TT
UA
uG
us
vz
VN
YU
w

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

10

15

20

25

WO 00/63785 PCT/US99/25807

INTERNET WEB SERVER CACHE STORAGE AND SESSION
MANAGEMENT SYSTEM

CROSS-REFERENCES TO RELATED APPLICATIONS
This application is a continuation-in-part of U.S. Patent Application Number
09/203,954, filed on December 2, 1998, and also claims the benefit of U.S. Provisional
Patent Application Number 60/106,819, filed November 3, 1998, and U.S. Provisional
Patent Application Number 60/110,423, filed December 1, 1998, all of which are

incorporated herein by reference in their entireties.

STATEMENT AS TO ANY INVENTION RIGHTS UNDER FEDERALLY
SPONSORED RESEARCH
Not applicable.

BACKGROUND OF THE INVENTION

The present invention relates generally to the field of session management, and
more particularly to the field of database session management on the Internet, in one
embodiment of the present invention.

The Internet, also referred to as a global computer network, or network of
computer networks, includes computers connected through a set of communication
protocols known as Transmission Control Protocol/Internet Protocol (TCP/IP). One
popular component of the Internet is the World Wide Web (WWW), or “the web,”
which is a collection of resources on servers on the Internet that utilize a Hypertext
Transfer Protocol (HTTP), which is an application protocol that provides users access
to those resources (often referred to as “pages,” which can be in static or dynamically
generated formats, including text, form entry fields, graphics, images, sound, video,
etc.) using a Standard Generalized Markup Language (SGML), such as the Hypertext
Markup Language (HTML), which is an information management standard for
providing platform-independent and application-independent resources that retain

formatting, indexing, and inter-resource hyperlinking information.

10

15

20

25

30

WO 00/63785 PCT/US99/25807

One reason for the Internet’s rapid growth is the introduction and widespread
use of web browsers, which are HTML-compliant user client software programs, or
portions of other programs, providing simple graphical user interface (GUI) access to
resources on web servers. The use of an HTML-compliant client, such as a web
browser, involves specification of an address via a Uniform Resource Locator (URL).
A URL may include reference to a static resource or a reference to a software program
on the web server, such as a Common Gateway Interface (CGI) script, as an example,
which may interact with a database, or other data source, to dynamically generate the
resource requested by the user through the web browser. When a user enters data into
fields on a form web page and then submits that data, the browser communicates that
data to the web server, as part of or accompanying the URL transmitted from the
browser to the web server, which may then be used by a CGI script in interacting with
the data source to generate the next resource for the user.

Like many network protocols, HTTP uses a client-server model. An HTTP
client, such as a user browser, opens a connection and sends a request message to an
HTTP server, such as a web server, which then returns a response message, usually
containing the resource that was requested. After delivering the response, the web
server closes the connection, which makes HTTP a stateless protocol, i.e. not
maintaining any connection information between transactions. In other words, HTTP
does not practically provide for maintaining a “session” as a user requests and interacts
with various resources. Because of transfer speed limitations of the Internet, users can
become frustrated waiting on large resources to slowly download to user browsers. In
addition, very large resources can be confusing to many users.

Consequently, designers of web resources tend to break larger resources into
multiple smaller resources to speed download times for each of the smaller resources,
as well as to present users with resources that are more manageable and
understandable. However, since HTTP is a stateless protocol, designers needed to
develop a method for conveniently maintaining a session between user interactions
with the different resources. One method of addressing this problem has become

known as "cutting a cookie" on a user's computer, which often includes the web server

10

15

20

25

30

WO 00/63785 PCT/US99/25807

reading and writing certain information to a user's hard drive in files called "cookies "
Since many users do not allow such manipulation of their hard drives, and since the
amount of data needed in some sessions would make this solution unworkable, the use
of cookies does not fully address this problem. Other methods of attempting to
efficiently maintain a session include inserting information as hidden form fields or part
of the return URL in the resources, or web pages, themselves. As with cookies, some
sessions may require more data than would be practical to include in such hidden form
fields or URLs. In addition, such methods may expose sensitive data to unauthorized
access.

Yet another attempt at effectively solving this problem of efficiently
maintaining a session includes using the primary data source used in dynamically
generating the resources. In other words, the data source would be accessed every
time the web server receives data submitted by a user and one of the many smaller
resources is generated. Unfortunately, such a method is often a rather inefficient use of
a very busy data source and can lead to higher costs and complexity for data sources
supporting web resources. Furthermore, if the data source is not located on the web
server, additional delay may be introduced. On the other hand, locating the data
source on the web server could create a larger risk of unauthorized access.

There is, therefore, a need for a system for addressing these and other related

and unrelated problems.

SUMMARY OF THE INVENTION

In addition to other implementations, in an Internet implementation, a session is
maintained between an Internet web server and a client browser through the use of at
least one temporary cache file, preferably saved in a location local to the web server.
The web server also interacts with at least one data source, preferably located behind a
firewall from the web server. After a cache file is created, it is used to store data
received from the client and from the data source, resulting in fewer interactions with
the data source. The cache file is saved from working memory before each page is

generated and transmitted from the web server, after which the working memory

10

15

20

25

30

WO 00/63785 PCT/US99/25807

becomes available for other uses. Since each page includes a reference to the cache
file, such as in a hidden form field or in the URL of a hyperlink, for example, the
session is effectively maintained between pages when the user interacts with the page
to generate data that is transmitted from the client to the web server, at which point the

web server opens the referenced cache file.

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

The accompanying drawings incorporated in and forming a part of the
specification illustrate several aspects of the present invention, and together with the
description, serve to explain the principles of the invention.

FIG. 1 is a block diagram illustrating various acceptable implementations of
components associated with the present invention, in accordance with various
embodiments of the present invention.

FIG. 2 is a flow chart representation of selected basic generic steps of one
embodiment of the present invention.

FIGS. 3 - 7 are flow chart representations of steps performed in one
implementation of one embodiment of the present invention.

Reference will now be made in detail to the description of the invention as
illustrated in the drawings. While the invention will be described in connection with

these drawings, there is no intent to limit it to the embodiments disclosed therein.

DETAILED DESCRIPTION OF THE INVENTION

Turning now to the drawings, wherein like reference numerals designate
corresponding parts throughout the drawings, FIG. 1 is a block diagram illustrating
various acceptable implementations of components associated with a web server cache
storage and session management system 10 of the present invention, in accordance
with various embodiments of the present invention. A web server 20 is shown
connected to working memory 21, common gateway interface (CGI) programming 22,
static pages 24, and cache files 26. A firewall 30 is shown connecting the web server

20 to a data source 31, represented as a data server 32 connected to a database 34.

10

15

20

25

WO 00/63785 PCT/US99/25807

Another firewall 34 is shown connecting the web server 20 to an Internet service
provider (ISP) 42, which is connected to Internet 44. Another ISP 45 is shown
connecting a firewall 46 to a data source 47, including data server 48 and database 50,
to the Internet 44. A user browser 52 is shown connected to the Internet 44 through
an ISP 54, and a user browser 56 is connected through a local area network (LAN) 58
and an ISP 60 to the Internet. A user browser 62 is shown connected directly to the
web server 20. Except for the web server 20, each of the elements shown in FIG. 1
are representative of multiple similarly situated components. In addition, except to the
extent discussed herein regarding the functionality of the present invention, the
elements shown in FIG. 1 essentially include conventional hardware and software
components, as would be understood by those reasonably skilled in the art of the
present invention. For example, a user browser is understood to include various types
of conventional browsing functionality, including, for example, a browser software
program running on a personal computer, as well as browser functionality incorporated
into an operating system or functioning with other hardware, such as a handheld
device, a television, etc.

As stated above, FIG. 1 illustrates various acceptable implementations of the
present invention. For example, one implementation includes user browser 52
operating through ISP 54, the Internet 44, ISP 42, and firewall 40 to interact with the
web server 20 and accompanying elements 21, 22, 24, and 26, which interact with data
server 32 and database 34 through firewall 30. Another implémentation includes the
previous implementation with the addition of elements 45, 46, 48 and 50. Still other
implementations include providing access to web server 20 for user browsers 56
through LAN 58, ISP 60, and Internet 44, as well as directly to user browser 62. Still
other implementations omit the Internet entirely, including only user browser 62 (and
other similarly situated browsers, as discussed above), web server 20 with
accompanying elements 21, 22, 24, and 26, as well as firewall 30, data server 32, and
database 34. Still other implementations include omitting firewall 30 and combining
web server 20 with data server 32, making database 34 directly accessible by web

server 20. Also, the lines between the web server 20 and the other elements should be

10

15

20

25

WO 00/63785 PCT/US99/25807

understood to include direct local connections, local area network connections, and
wide area network connections. For example, although not shown, the cache files 26
are located across the Internet 44 from the web server 20 in other implementations. Of
course, one ISP might be used by multiple elements shown in FIG. 1, and the web
server 20 is located within an ISP in some embodiments. Firewalls are also variable in
other embodiments, including the omission of one or more firewalls, as well as the
addition of firewalls, such as between the web server 20 and the cache files 26. In
addition, other embodiments include other ordinarily stateless servers 20 besides those
that qualify as "web" servers. Of course, these statements describing other
embodiments and implementations of the present invention are not intended to be
comprehensive.

In one example implementation, the CGI programming 22, static pages 24 and
cache files 26 are normally stored in non-volatile memory, such as one or more local
hard drives, until executed or utilized in working memory 21, which includes, as an
example, standard random access memory (RAM). Of course, web server 20 also
preferably includes other conventional elements, such as a high performance
microprocessor, networking capabilities, internal bus systems, a power supply, an
operating system, input/output devices such as a keyboard, a mouse, a screen, etc., as
would be understood by those reasonably skilled in the art of the present invention.
However, the elements of the present invention can be implemented in any combination
of software and firmware. In one preferred embodiment, the system 10 is implemented
in software that is stored in a memory and that is executed by a suitable instruction
execution system. Nonetheless, the system 10, which includes ordered listings of
executable instructions for implementing logical functions, can be embodied in any
computer-readable medium for use by or in connection with én instruction execution
system, apparatus, or device, such as a computer-based system, processor-containing
system, or other system that can fetch the instructions from the instruction execution
system, apparatus, or device and execute the instructions. In the context of this
document, a "computer-readable medium" can be any means that can contain, store,

communicate, propagate, or transport the program for use by or in connection with the

10

15

20

25

30

WO 00/63785 PCT/US99/25807

instruction execution system, apparatus, or device. The computer readable medium
can be, for example but not limited to, an electronic, magnetic, optical,
electromagnetic, infrared, or semiconductor system, apparatus, device, or propagation
medium. More specific examples (a non-exhaustive list) of the computer-readable
medium would include the following: an electrical connection (electronic) having one
or more wires, a portable computer diskette (magnetic), a random access memory
(RAM) (magnetic), a read-only memory (ROM) (magnetic), an erasable programmable
read-only memory (EPROM or Flash memory) (magnetic), an optical fiber (optical),
and a portable compact disc read-only memory (CDROM) (optical). Note that the
computer-readable medium could even be paper or another suitable medium upon
which the program is printed, as the program can be electronically captured, via for
instance optical scanning of the paper or other medium, then compiled, interpreted or
otherwise processed in a suitable manner if necessary, and then stored in a computer
memory.

FIG. 2 is a flow chart representation of selected basic generic steps 200 of one
embodiment of the present invention. With reference to FIG.; 1 and FIG. 2, the steps
200 are from the perspective of the web server 20 running one or more CGI programs
22. While there are many acceptable implementations of the elements of FIG. 1 as
discussed above, only one implementation will generally be discussed hereafter, merely
for purposes of clarity. Thus, based on the above discussions, applicability of the
following functions to other implementations would be understood by those reasonably
skilled in the art of the present invention. After data is received at the web server 20
from the user browser 52 (step 202), the web server 20 utilizes that data to
communicate with and request data from the data source 31 (step 204). After data is
received from the data source 31 (step 206), the web server 20 saves the data from the
data source 31 and data from the user browser 52 in a cache file 26 (step 208).
Subsequently, the web server 20 generates and outputs a resource, such as an HTML
web page, to the user browser 52, wherein the resource includes a reference (such as a
filename or ID number saved as a hidden form field or hyperlink URL parameter, as

examples) to the particular saved cache file 26 related to that session (step 210). After

10

15

20

25

30

WO 00/63785 PCT/US99/25807

a user interacts with the newly generated resource, the web server 20 receives
additional data from the user browser 52, including the reference to the cache file 26
(step 212). Again under CGI programming 22 control, the web server 20 opens,
updates, and saves the referenced cache file 26 responsive to the data recetved from
the user browser 52 (step 214). If the CGI programming 22 determines that the data
source 31 should be accessed for reporting data or retrieving additional data (step
216), processing continues with step 204. Otherwise, processing continues with step
210 without interaction with the data source 31. Of course, the generic loop shown in
FIG. 2 is ultimately ended normally when an application process is finished or through
failure of a user to respond td a resource, such as between steps 210 and 212. Also,
another process, a cache file deleter, not shown, is continually executed on web server
20 for deleting cache files 26 experiencing no activity within a defined period of time,
ranging from minutes to weeks, as examples, depending on particular implementations.
During that time, a user may be able to come back to the system and retrieve
automatically saved wprk that was saved in the cache file.

Refer now to FIGS. 3 - 7, which are flow chart representations of steps
performed in one implementation of one embodiment of the present invention. One
example of a service that generally follows the steps of FIGS. 3 - 7 is the automobile
insurance quote request process described in U.S. Patent Application No. 09/203,954,
filed on December 2, 1998, which is incorporated herein by reference in its entirety.
Of course, the disclosure of this example is not intended to limit the applicability of the
principles of the present invention since they are applicable to a multitude of particular
implementations. FIG. 3 of the present application shows a process starting (step 302)
with the web server 20 receiving a request from a user for a login page (step 304).
Such a request is typically transmitted to the web server 20 from a user browser 52
after a user selects a hyperlink from another page, in which case the URL arriving at
the web server 20 may include additional variables that can be used in designing the
login page that is subsequently sent to the user (step 306). Of course, the login page
may simply be displayed when a user types in a home page URL or other address with

no additional parameters. According to this particular example, the login page

10

15

20

25

30

WO 00/63785 PCT/US99/25807

includes username and password form fields to be filled-in and submitted by the user,
after which point they are received by the web server 20 (step 308). As is understood
by those reasonably skilled in the art of the present invention, form fields may be
reported to a web server 20 through a “post” or “get” technique. For purposes of this
disclosure, the data that is returned is referred to herein as “command line” data since
it comes from the user browser with the URL, or immediately thereafter. The
“submit” button, or its equivalent, on the login page is set to activate one of the CGI
programs 22, referred to as “login CGI” (step 310). One of the first actions of login
CGl is to allocate a portion of working memory 21 for temporary use by login CGI for
that particular user, and then to copy into that portion of working memory 21 the
command line data received from the user, as well as standard cache information. The
standard cache information is accessed from a file (not shown) in web server 20 which
includes globally relevant information applicable to all CGI programs 22, such as
standard names of data sources, data source port numbers, style & error directories,
system status, etc.

Subsequently, login CGI attempts to locally validate the login information (step
314), such as by making sure the correct number and types of digits were entered by
the user in the username and password fields. If the information does not pass local
validation processing, the login page is re-sent to the user with an error message (not
shown), and processing continues back at step 306. If the information passes local
validation processing, the information is sent to the data source 31 as part of a request
(or transaction) for additional data regarding that user (step 316). Building a
transaction with a data source 31 includes using data from the standard cache
information, as well as additional information about a particular user, to build the
request. If data is not received from the data source 31 after the web server 20 waits
(step 318) for a defined period of time response, a system error page is generated and
transmitted to the user (not shown). However, if data is received from the data source
31 within that period of time, the data is parsed and stored in the working memory
cache data of working memory 21 along with the previously stored standard

information and command line information received from the user (step 320). Data

10

15

20

25

30

WO 00/63785 PCT/US99/25807

received from the data source 31 includes, as examples, without limitation and among
others, a session identification (session ID) that is used to identify the current session,
an indication of whether the user is a valid user, options available to that particular
user for display on an upcoming menu page, graphical style indications and available
images for formatting the upcoming menu page, any results of previous processing
now available to the user since a previous visit, etc. If the login information does not
correspond to a registered user, the login screen is again sent with an error message
(not shown), as discussed above in the case that the login information does not pass
local validation. Otherwise, operation proceeds as shown, and the working memory
cache data, except for the standard cache information, is saved in a file, using the
session ID as the cache ID and name of the file (step 322). Of course, other
embodiments of the present invention include using any name for the cache file,
including one created by the web server 20, rather than by the data source 31. In one
embodiment, the cache file is a data structure that, in one example of an acceptable
implementation, includes various sections, including a cache ID, field definitions,
validation routines, validation errors, error handlers, and log messages that keep track
of the pages viewed by a user. Each field definition entry in the cache includes a tag, a
value, a type, and a description. A corprate CGI program of CGI programs 22 is then
called by the login CGI program, including passing the cache ID as a parameter to the
corprate CGI program (step 324, 326). After that point, that portion of the working
memory 21 becomes free for use by CGI programs 22. Thus, while no page has yet
been sent to the user, the cache file has been saved, such as to non-volatile memory,
and the session is maintained by a call between CGI programs.

Referring now to FIG. 4, after beginning operation (step 402), the corporate
CGI accesses the stored cache file (step 404). In this and other references to steps of
accessing the cache file, it should be understood that a portion of working memory 21
is again allocated, and the programming copies into that memory the stored cache file
referenced by the cache ID, as well as any data arriving on the command line to the
invoke the programming, as well as the standard cache information discussed above.

The command line data would replace any differing values from the stored cache file.

10

10

15

20

25

30

WO 00/63785 PCT/US99/25807

As discussed below, one embodiment of the present invention includes the creation and
maintenance of a session cache file, as well as sub-session, or child, cache files. When
a child cache is created, such as would be useful during one of a variety of complex
services, or requests, that are available to a user, the cache ID of that child cache is
saved as a child cache ID in the session cache (i.e., the only cache created at this
point). Since there is no need for a child cache at this point in the processing, the
corprate CGI sets the child cache ID field in the session cache (step 406), and then
saves the cache file (step 408). Subsequently, a frame definition page is generated and
sent to the user (step 410) befo.re a menu CGl is called for building a menu frame (step
412), with the cache ID being passed to the menu CGI. As will be seen below, one of
the reasons that the corporate CGI is separated from the login CGI is to be able to
conveniently jump to that page creation point without going through the previous login
steps of the login CGI. Other CGI programs (not shown) are also called to build other
previously defined frames (step 410), but only the menu CGI is shown for clarity.

When the menu CGI starts, as with other CGI programs, the cache file is again
accessed and loaded into a new portion of working memory 21, which, as discussed
above, includes loading the standard cache information and any command line data
(step 414). Subsequently, the cache is again saved (step 416) before the menu frame is
built and sent to the user, including menu items configured as hyperlinks calling a filter
CGI with the cache ID and a request to have a notification sent to the data source 31
(step 418). In this implementation, the general purpose filter CGI program makes
substitutions into a standard template files, wherein the URL calling the filter CGI
specifies the file to be manipulated and the values to use in the substitutions, as well as
whether to use a particular cache file for those values. Filter CGI can also be used for
simple procedural logic processing, such that, for example, if-then statements in a file
to be filtered can direct the filtering. In addition, filter CGI can be directed to execute
a transaction with the data source, such as reporting the occurrence of a user executing
a particular hyperlink, as is the case in the present embodiment when a user selects one
of the menu items displayed to the user. Of course, other embodiments include

individual scripts used in place of filter CGI. When user data is received (step 420),

11

10

15

20

25

WO 00/63785 PCT/US99/25807

filter CGI is initiated according to the hyperlink selected by the user, which results in
the reporting transaction to the data source 31, as discussed above, as well as the
creation and sending to the user of an instructions page for the selected service (step
422). In this implementation, the instructions page includes a “start” hyperlink at the
bottom of the instructions page, and the hyperlink includes the cache ID and a call to a
large CGI program, referred to as wll CGI. Except to any extent necessary for the
notification transaction sent to the data source 31, the filter CGI does not access the
cache file, thus it is not loaded into working memory and re-saved for the generation of
the instructions page. This shows how the filter CGI can be used for presenting largely
static pages 24 since only a small amount of data needs to be substituted, such as
inserting the proper cache ID in the “start” hyperlink. Subsequently, if the user selects
the “start” hyperlink, the web server 20 receives an indicatioﬁ of thai selection,
including the cache ID, and the w11 CGl is initiated (steps 426, 428). The w11 CGI is
specific to a particular request or service provided by the system 10 of the present
invention, according to one embodiment.

Referring now to FIG. 5, after w11 CGI begins execution (step 502), it
accesses the cache file (step 504) as other scripts have done previously, including
loading the referenced cache file into a working memory, along with standard cache
information. At that point, a request ID transaction is built and transmitted to the data
source 31 (step 506) in which the data source 31 is asked for a new request ID for
assigning to this particular request. The w11 CGI is specific to a particular type of
request, or service, provided by the system 10 of the present invention, according to
one embodiment. After the request ID is received by the web server 20 (step 508), it
is inserted as the value of the child cache ID field in the cache data currently stored in
the working memory, which is then saved as a cache file (step 510). After that point,
that file can be referred to as the session cache file. Subsequently, the working
memory cache data is edited to change the cache ID from the session cache ID to the
new request ID supplied from the data source 31, and the child cache ID field is set to
NULL (step 512). As with the original cache ID, this request ID can be generated by

the web server 20 or other source in other embodiments of the present invention.

12

10

15

20

25

30

WO 00/63785 PCT/US99/25807

Names for files on the web server 20 to receive data to be requested from the data
source 31 are then defined and stored in the working cache memory (step 5 14), and
additional transactions are built and transmitted to the data source 31 to request
additional information (step 516). Subsequently, child processes are created to wait
for the resulting data from the data source 31 and then store that data in files according
to the previously defined filenames (step 518). These child processes continue living
past this particular execution of wi1 CGI, as well as past the creation and transmission
of a page to a user, as shown below. Subsequently, the working memory cache data is
saved in a new cache file according to the new cache ID (step 520). An additional
instruction page is then generated and sent to the user (step 522), including hidden
form fields with data to be returned to the web server 20 when the user submits the
form, including cache ID, page ID, and a reference to the w11 CGI code that
generated the page. Since the wll CGl is a large script handling results from multiple
types of pages, it needs direction regarding which code section to execute for
particular data, for which the page ID is used. Also, in handling errors resulting from
data entered for a particular page, the wl1 CGI references the code that generated the
page, which is another parameter that is passed back to it with the submission of a
form from the user. In addition, though not shown, a restart ID is also often passed
back and forth for use with the page ID for subsequent pages to help return the correct
page to a user when a user selects “back” or a “reload” on the browser since frames
often prevent the URL from containing the proper information to accomplish the
correct reload or return to a previous page. Finally, the w11 CGI terminates (step
524) while the child processes wait for the requested data to be received from the data
source 31.

Referring now to FIG. 6, after starting (step 602), a user submit indication is
received at the web server 20 along with the hidden form fields discussed above (step
604). As before, the cache file is accessed (step 606), and wll CGI is executed at the
appropriate segment for the page just shown to the user, which in this case, was simply
another instruction page with a “continue” button operating as a form submit function.

Since enough time should have passed for the data source 31 to reply to the previous

13

10

15

20

25

30

WO 00/63785 PCT/US99/25807

transactions being monitored in the background by the child processes discussed
above, the respective files should have been created with data from the data source 31.
That data is then parsed and stored in the working memory cache (step 610), which is
then edited by defining the form elements for the next page to be sent to the user,
including data validation and error handling information. The data validation
information includes local validation rules (e.g., number of characters, type of
characters, format, etc.) and references to other programming code segments to handle
more complicated validation procedures. Error handling information includes
references to code segments for controlling how errors are handled and subsequently
displayed to users. The data from the data source 31 is used as default values for any
fields in which the user may entered previously entered data that was then stored in the
data source 31, maybe even from other services or requests the user may previously
have executed. Subsequently, the cache file is saved (step 614), and a page is
generated and set to the user (step 616). That page includes displayed form fields for
receiving input from a user and hidden form fields referencing the cache ID, page ID,
reference to the code that generated the page, reference to any sequence numbers for
pages used in sequential repetition, and optionally a restart ID (not shown) as
necessary, as discussed above. Then, w1l CGI terminates (step 618) until a user
submission is received, including hidden form field data and responses to displayed
form fields (steps 620, 622).

With reference to FIG. 7, after beginning (step 702), w1l CGI is again
executed in response to the data received from the user (step 704) and in the location
corresponding to the page (page ID) that produced the data returning from the user.
The cache file is accessed and updated with the data from the user (also referred to
herein as the command line data) (step 706). Local validation is then attempted (step
708), based upon the rules and any referenced validation code segments stored in the
working memory cache data. If the data is not locally valid (step 710), error messages
are stored in the working memory cache data (step 712) so that system administrators
can help users who get stuck. Then, appropriate error handling code is executed (step

714) for controlling how errors will be reported to the user, as discussed above. The

14

10

15

20

WO 00/63785 PCT/US99/25807

cache file is saved (step 716), and the page that generated the errors is re-sent to the
user with the appropriate error messages (steps 718, 720), after which processing
continues as before when the page was sent to the user (step 720 and steps 652, 618 in
FIG. 6). If the data from the user was validated (step 710), w11 CGI determines if
information should be reported to the data source 31 (step 722). If not, processing
continues to send another page to the user (step 724 and steps 650, 612 in FIG. 6).
Otherwise, a reporting transaction is generated and transmitted to the data source 31
(step 726). If there are more pages to display to the user, processing continues to
display the next page (step 724 and steps 650, 612 in FIG. 6). Otherwise, the cache
file is saved (step 730), and corprate CGI is called, with the session ID being used as
the new cache ID (step 732), and processing continues with corprate CGI (steps 732,
734 and steps 402, 404 in FIG. 4). Eventually, the child cache file is deleted, and thus,
the child cache was used during the request to store a large arﬁount of additional data
that was not needed in the session cache file.

In concluding the detailed description, it should be noted that it will be obvious
to those skilled in the art that many variations and modifications can be made to the
preferred embodiment without substantially departing from the principles of the
present invention. All such variations and modifications are intended to be included

herein within the scope of the present invention, as set forth in the following claims.

15

10

15

20

25

30

WO 00/63785 PCT/US99/25807

CLAIMS

We claim:

1. A server method for maintaining a session between a client and a server, said
method comprising steps of:

transmitting a resource to a client from a server, wherein the resource
includes a reference to a temporary cache file;

receiving data from the client responsive to the resource, wherein the
data includes a reference to the temporary cache file;

opening the temporary cache file based upon the reference included in
the data received from the client; and

storing at least a portion of the data received from the client in the

temporary cache file.

2. . The method of claim 1, wherein the temporary cache file is stored locally on
the server.
3. The method of claim 1, further comprising steps of communicating with a data

source and storing data from the data source in the temporary cache file.

4. The method of claim 3, wherein the communicating step includes

communicating through a network with the data source.

5. The method of claim 4, wherein the communicating step includes

communicating through a firewall with the data source.

6. The method of claim 3, wherein the transmitting step includes transmitting data

received from the data source to the client.

16

10

15

20

25

WO 00/63785

7.

10.

11

12.

PCT/US99/25807

The method of claim 3, wherein the communicating step includes requesting
data from the data source, initiating a process to both wait to receive the data
from the data source and write the received data to a file with a defined name,
and writing the defined file name into the temporary cache file, wherein the
communicating step occurs prior to the transmitting step, except for the
receiving of the data from the data source and the writing of the received data

to the file with the defined name.

The method of claim 1, wherein the storing step includes updating information

in the temporary cache file based upon data received from the client.

The method of claim 1, further comprising steps of communicating with a
plurality of data sources and storing data from the plurality of data sources in

the temporary cache file.

The method of claim 1, further comprising steps of receiving a session creation
request from a client, communicating with a data source responsive to

receiving the session creation request, receiving data from the data source, and
saving the temporary cache file with data from the session creation request and

data from the data source.

The method of claim 10, further comprising steps of transmitting at least one
additional resource to the client based upon the temporary cache file before

communicating again with the data source.
The method of claim 10, further comprising steps of transmitting a plurality of

additional resources to the client based upon the temporary cache file before

communicating again with the data source.

17

10

15

20

25

WO 00/63785

13.

14.

15.

16.

17.

18.

19.

20.

PCT/US99/25807

The method of claim 10, wherein the session creation request includes login
information from a user, and further including transmitting a login resource to a

client prior to receiving the session creation request.

The method of claim 1, further comprising a step of deleting the temporary
cache file after the passing of a defined period of time after any data is received

from the client.

The method of claim 14, wherein the defined period of time is no more than a

few hours.

The method of claim 14, wherein the defined period of time is at least one

week.

The method of claim 1, wherein the server includes a web server, the client
includes a user browser, the resource includes an HTML page, and the

reference to the temporary cache file includes a hidden form field.

The method of claim 1, further comprising a step of creating a plurality of
temporary cache files based upon data received from the client, wherein said
plurality of temporary cache files include a session cache file and at least one

sub-session cache file to which the session cache file includes a pointer.

The method of claim 1, further comprising a step of validating data received

from the client using validation rules saved in the temporary cache file.

A server cache system embodied in a storage medium for maintaining a session

between a server and a client, said server cache system comprising:

18

10

15

20

25

WO 00/63785

21.

22.

23.

24.

25.

26.

PCT/US99/25807

a resource transmitter configured to transmit a resource to a client,
wherein the resource includes a reference to a temporary cache
file;

a client data receiver configured to receive data from the client
responsive to the resource, wherein the data includes a reference
to the temporary cache file; and

a temporary cache file processor configured to open the temporary
cache file based upon the reference included in the data received
from the client and to store at least a portion of the data

received from the client in the temporary cache file.

The system of claim 20, wherein the temporary cache file is stored locally on

the server.

The system of claim 20, further comprising a data source communicator
configured to communicate with a data source and store data from the data

source in the temporary cache file.

The system of claim 22, wherein the data source is connected to the server

through a network.

The system of claim 23, wherein a firewall separates the data source from the

Server.

The system of claim 22, wherein the resource transmitter is further configured

to transmit data received from the data source to the client.

The system of claim 22, wherein the data source communicator is further
configured to request data from the data source, initiate a process to both wait

to receive the data from the data source and write the received data to a file

19

10

15

20

25

WO 00/63785

27.

28.

29.

30.

31

PCT/US99/25807

with a defined name, and write the defined file name into the temporary cache
file, wherein the data source communicator is configured to operate prior to the
transmission of the resource to the client, except for the receiving of the data
from the data source and the writing of the received data to the file with the

defined name.

The system of claim 20, wherein the temporary cache file process is further
configured to updating information in the temporary cache file based upon data

received from the client.

The system of claim 20, further including a data source communicator
configured to communicate with a plurality of data sources and store data from

the plurality of data sources in the temporary cache file.

The system of claim 20, further comprising a session creation request receiver
configured to receive a session creation request from a client and a data source
communicator configured to communicate with a data source responsive to the
session creation request receiver receiving a session creation request from the
client, wherein the temporary cache file processor is further configured to save

data from the data source in the temporary cache file.-

The system of claim 29, wherein the resource transmitter is further configured
to transmit at least one additional resource to the client based upon the
temporary cache file before the data source communicator again communicates

with the data source.

The system of claim 29, wherein the resource transmitter is further configured
to transmit a plurality of additional resources to the client based upon the
temporary cache file before the data source communicator again communicates

with the data source.

20

10

15

20

25

30

WO 00/63785

32.

33.

34.

35.

36.

37.

38.

PCT/US99/25807

The system of claim 29, wherein the session creation request includes login
information from a user, and further including a login resource transmitter
configured to transmit a login resource to a client prior to the session creation

request receiver receiving the session creation request.

The system of claim 20, further including a temporary cache file deleter
configured to delete the temporary cache file after the passing of a defined
period of time after any data is received from the client by the client data

receiver.

The system of claim 33, wherein the defined period of time is no more than a

few hours.
The system of claim 33, wherein the defined period of time is at least one week.

The system of claim 20, wherein the server includes a web server, the client
includes a user browser, the resource includes an HTML page, and the

reference to the temporary cache file includes a hidden form field.

The system of claim 20, wherein said temporary cache file processor is
configured to create a plurality of temporary cache files based upon data
received from the client by the client data receiver, wherein said plurality of
temporary cache files include a session cache file and at least one sub-session

cache file to which the session cache file includes a pointer.

The system of claim 20, wherein said temporary cache file processor is further

" configured to store validation rules in said temporary cache file according to

which the data received from the client is validated.

21

WO 00/63785 1/1 PCT/US99/25807

'_ ______________ L
i |
|
i DATABASE >0 |
FlGl 1 | :
| A |
/ﬁl A 4 |
47 | e 48
. SERVER !
L______ _fx . |
M-
46
FIREWALL
56 58 60
s /- - y
USER |
BROWSER > LAN 45
ISP
52
~ - 42
USER | _
BROWSER > ISP ISP
62
USER [40
BROWSER [
» FIREWALL
\ \ 4
20? WEB SERVER <
K A A
30
v [~
WORKING FIREWALL
MEMORY
| 22 ‘ 24 26 i
L U
i 32 i
| DATA
! SERVER
I A
: 34
|
|
~
0 —" 31 DATABASE

WO 00/63785 2/7 PCT/US99/25807

2007 FIG. 2

RECEIVE DATA FROM USER BROWSER (202

-
'

A

UTILIZE DATA FROM USER BROWSER TO COMMUNICATE K204
WITH AND REQUEST DATA FROM DATA SOURCE

y /206
RECEIVE REQUESTED DATA FROM DATA SOURCE

v

SAVE DATA FROM USER BROWSER AND DATA FROM /203
DATA SOURCE IN LOCAL CACHE FILE

»i

h 4

GENERATE AND OUTPUT RESOURCE TO USER - 210
BROWSER INCLUDING STORED REFERENCE TO CACHE

FILE
v
RECEIVE DATA FROM USER REFERENCING CACHE FILE | ~212
¥
OPEN, UPDATE & SAVE REFERENCED CACHE FILE WITH /214
USER DATA

COMMUNICATE WITH DATA SOURCE?
YES

WO 00/63785 3/7 PCT/US99/25807

@ 302 FIG. 3

304
RECEIVE USER REQUEST FOR LOGIN PAGE 4
y 306
LOGIN PAGE SENT TO USER 4
v
308
RECEIVE LOGIN DATA FROM USER AFTER USER SUBMITS |
v
INITIATE LOGIN CGI 310
y

WORKING MEMORY ALLOCATED AND POPULATED WITH /312
LOGIN COMMAND LINE INFORMATION AND STANDARD
CACHE INFORMATION

v K314
LOCAL VALIDATION OF LOGIN INFORMATION

v /316
INFORMATION REQUEST SENT TO DATA SOURCE

y /.318
WAIT FOR RESPONSE FROM DATA SOURCE

v

PARSE AND STORE DATA RECEIVED FROM DATA SOURCE IN |~
WORKING MEMORY CACHE DATA :

320

¥

SAVE CACHE FILE USING SESSION ID AS CACHE ID ~322
v

CALL CORPRATE CGI, PASSING CACHE ID | -324

326

WO 00/63785 4/ 7 PCT/US99/25807

102 FIG. 4
ACCESS CACHE FILE 404
v
SET CHILD CACHE ID TO NULL 406
: 408
SAVE CACHE FILE -
!
BUILD/SEND FRAME DEFINITION PAGE ~ 410
v
CALL MENU CGI FOR MAIN MENU FRAME, PASSING CACHE ID |~ 412
v
ACCESS CACHE FILE ~ 414
v
SAVE CACHE FILE — 416
v
BUILD/SEND MENU FRAME WITH MENU LINKS CALLING [~ 418
EILTER CGI WITH CACHE ID AND REPORTING TRANSACTION
v
RECEIVE USER SELECTION INDICATION ~ 420
v
INITIATE FILTER CGI TO CREATE/SEND RESPECTIVE |~ 422
INSTRUCTIONS PAGE WITH "START" LINK CALLING W11 CGlI
WITH CACHE ID
v
RECEIVE USER "START" INDICATION WITH CACHE ID ™ 424
v
INITIATE W11 CGlI |~ 426

428

WO 00/63785 PCT/US99/25807

5/7
O FIG. 5
ACCESS CACHE FILE — 504
v
TRANSMIT REQUEST FOR REQUEST ID TO DATA SOURCE [~ 506
v
RECEIVE REQUEST ID FROM DATA SOURCE — 508
v

INSERT REQUEST ID AS CHILD CACHE ID AND SAVE ~ 510
WORKING MEMORY CACHE DATA AS SESSION CACHE FILE

v

CHANGE CACHE ID IN WORKING MEMORY CACHE DATATO |~ 512
REQUEST ID AND SET CHILD CACHE ID TO NULL

v

DEFINE NAMES IN WORKING MEMORY CACHE DATA OF FILES~ 914
FOR DATA TO BE RECEIVED FROM DATA SOURCE

v

TRANSMIT MULTIPLE REQUESTS FOR ADDITIONAL DATA TO |~ 516
DATA SOURCE

v

INITIATE CHILD PROCESSES TO WAIT FOR DATA FROM DATA |~ 918
SOURCE AND WRITE DATA INTO DEFINED FILES

v
SAVE CACHE FILE ~ 520

v

BUILD/SEND ADDITIONAL INSTRUCTIONS PAGE WITH HIDDEN |~ 522
FORM FIELD DATA INCLUDING CACHE ID, PAGE ID,
REFERENCE TO W11 CGI CODE THAT GENERATED PAGE

v

W11 TERMINATES & CHILD PROCESSES EVENTUALLY |~ 524
RECEIVE AND WRITE DATA FROM DATA SOURCE

526

WO 00/63785 6/7 PCT/US99/25807

602
FIG. 6
RECEIVE USER SUBMIT INDICATION WITH HIDDEN FORM |~ 604
FIELDS

v
ACCESS CACHE FILE — 606

v
EXECUTE REFERENCED PORTION OF W11 CGlI — 608

v
PARSE DATA FILES, STORE IN WORKING MEMORY CACHE [~ 610

650 @
A

EDIT WORKING MEMORY CACHE: DEFINE FORM ELEMENTS /612
OF NEXT PAGE, INCLUDING VALIDATION AND ERROR INFO

v
SAVE CACHE FILE —614

v

BUILD/SEND PAGE TO USER WITH DISPLAYED FORM FIELDS
AND HIDDEN FORM FIELDS FOR CACHE ID, PAGE ID, /616
REFERENCE TO W11 CGI CODE THAT GENERATED PAGE,
REFERENCE TO SEQUENCE NUMBER FOR PAGES USED IN
REPETITION FOR SEQUENCES OF SIMILAR DATA

652 @ >

A

W11 CGI TERMINATES 618

v

RECEIVE USER SUBMISSION WITH DISPLAYED AND HIDDEN | ~g20
FORM FIELD DATA

622

WO 00/63785 PCT/US99/25807

7/7
702 FIG.7
INITIATE W11 CGI AT PROPER CODE SEGMENT ~ 704
v
ACCESS CACHE FILE, UPDATING WITH USER DATA ~ 706
v
ATTEMPT TO VALIDATE USER DATA ~ 708
710 722
VALID? REPORT?
N v YES
WRITE ERROR 726 D
MESSAGES TO A 724
WORKING CACHE REPORT TO DATA
SOURCE
714
EXECUTE
REFERENCED
ERROR CODE YES 728
730
716)
. SAVE CACHE FILE
SAVE CACHE FILE
732
718 DR
RE-SEND PAGE CALL CORPRATE
WITH ERROR CGIWITH
INDICATIONS SESSION ID AS
CACHE ID

720
734

INTERNATIONAL SEARCH REPORT Intemational application No.
PCT/US99/25807

A. CLASSIFICATION OF SUBJECT MATTER
IPC(6) :GO6F 15/16
US CL :709/203, 227
According to Intemational Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

US. : 709/203, 227, 228

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the intemational search (name of data base and, where practicable, search terms used)
WEST

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 5,835,724 A (SMITH) 10 NOVEMBER 1998, COL. 1 LINE 53-| 1-4, 6-13, 19-23,
- COL. 2 LINES 26; COL. 20 LINE 39-COL. 21 LINE 4. 25-32, 36-38
Yy +] e
5 14-16, 24, 33-
35
Y US 5,774,670 A (MONTULLI) 30 JUNE 1998, COL. 2 LINES 14-| 14-16, 33-35
55.

Y,E US 5,999,973 A (GLITHO ET AL.) 07 DECEMBER 1999,| 5, 24
ENTIRE DOCUMENT.

D Further documeants are listed in the continuation of Box C. D Sce patent family annex.

. Special categories of cited d ts T Inter d t published afier the international filing date or priority
A document defining the general stata of the art which is not considered data and not in conflit with the spplication but cited to and
1o be of parti relovance the principle or theory underlying the invention
"B* earlier document published on or after the international filing date X doounent :i;vp:‘mo:nlll‘ nlol;mu the ,‘ to m‘:o::‘::': entive ;:
o A document which may fhruw doubts on priority clnm(l) or which is when the document is taken alone
o mm.m“ h e ion date of anoth or other "y document of particular relevance; the claimed invention t be
special (o 'P“‘ﬁad) considered to involve an inventive step when the doclmom is
o" document referring to an oral disclosure, use, exhibition or other combined with one or more other such d ts, such
means being obvious to a person skilled in the art
"p* document published prior to the international filing date but later than ~ « g+ document member of the same patent family
the priority date claimed
Date of the actual completion of the international search Date of mailing of the international search report
11 FEBRUARY 2000 ‘ 0 2 MAR ZOUO
Name and mailing address of the ISA/US uthorized officer
gmt;mérlioner of Patents and Trademarks M
X
Washington, D.C. 20231 AHMAD MATAR
Facsimile No. (703) 305-3230 clephone No. (703) 3054731

Form PCT/ISA/210 (second sheet)(July 1992)x v

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US99/25807

A. CLASSIFICATION OF SUBJECT MATTER:
IPC (6):

GOGF, 15/16

Form PCT/ISA/210 (extra sheet)(July 1992)«

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

