Title: DIAGNOSIS OF METASTASES IN HNSCC TUMOURS

Abstract: The invention relates to the detection or prediction of metastases of head and neck squamous cell carcinoma (HNSCC) with the use of gene expression profiles. A gene signature has been identified which is able to detect or predict the occurrence of these metastases better than current clinical methods. Part of the invention are micro-arrays comprising this signature and methods for performing the detection and/or prediction.
Title: Diagnosis of metastases in HNSCC tumours

FIELD OF THE INVENTION

The invention relates to the field of tumour diagnosis, in particular to predict the existence of metastases of a tumour, more in particular to the detection of lymph node metastases of head and neck squamous cell carcinoma (HNSCC) especially those that arise in the oral cavity and oropharynx.

STATE OF THE PRIOR ART

Metastasis is the process whereby cancers spread to distinct sites in the body. It is the principal cause of death in individuals suffering from cancer. For some tumor types, the earliest detectable sign of metastasis is the presence of malignant cells in lymph nodes close to the site of the primary tumour. Early detection of local lymph node metastases is currently pivotal for appropriate treatment of many types of cancer. However, because of difficulties in detecting lymph node metastases reliably, many patients currently receive inappropriate treatment.

Most patients with HNSCC, especially those in the oral cavity or oropharynx have the primary tumour removed. Treatment of clinically diagnosed lymph node metastasis positive patients (N+) involves the additional surgical removal of a significant portion of the neck, including all five local lymph node levels: radical

Clinical diagnosis of N0 lymph node status is even less accurate. Histological examination of electively operated clinically diagnosed N0 patients reveals that about one-third have positive neck nodes (Jones, A.S. et al., (1993) Eur. Arch. Otorhinolaryngol. 250, 446-449). Different strategies exist for neck treatment of N0 diagnosed patients (Pillsbury, H.C., et al., (1997) Laryngoscope 107, 1294-1315). One is the so-called "watch and wait" strategy by which N0 diagnosed patients do not undergo any neck dissection. The involves the risk of fatality by allowing overlooked metastases to develop and spread further. Since the prevalence of false-negative predictions is very high, most clinics perform neck surgery for all diagnosed N0 patients. In this case most often a supra-omohyoidal neck dissection (SOHND) is performed, removing the three upper lymph node levels (Robbins, K.T. et al., supra).

This treatment is less appropriate than an RND for those N+ patients falsely diagnosed as N0 and, moreover, completely unnecessary for all patients correctly diagnosed as N0. Although SOHND is less rigorous than RND, the treatment cause disfigurement, long-term discomfort, pain and can lead to additional complications such as shoulder disability (e.g. Short, S.O. et al., (1984) Am. J. Surg. 148, 478-482). Both treatments strategies result in over- or undertreatment due to limitations in detecting lymph node metastasis reliably.

For HNSCC such expression signatures are starting to be uncovered (Chung, C.H. et al., (2004) Cancer Cell 5, 489-500), but as yet without independent validation for reliability and clinical outcome.

Thus, there is still a large need for a reliable diagnostic tool on basis of expression of genes with which a reliable and accurate prediction can be established for the presence or occurrence of lymph node metastasis in HNSCC.

SUMMARY OF THE INVENTION

The invention now provides a nucleotide array of maximal 50 nucleotide sequences, preferably maximal 100 nucleotide sequences, more preferably maximal 1000 nucleotide sequences, for the detection of metastasis in head and neck squamous cell cancer (HNSCC) comprising at least 1 of the elements of Table 5, more preferably 2 of the elements, more preferably 3 of the elements, more preferably 4 of the elements., more preferably 5 of the elements, more preferably 6 of the elements%, more preferably 7 of the elements, more preferably 8 of the elements, more preferably 9 of the elements, more preferably 10 of the elements and most preferably at least 20 of the elements. Alternatively, a nucleotide array for the detection of metastasis in HNSCC has 50 or more of the elements of the genes listed in Table 4.

Further provided is a method to establish reference and control gene expression profiles of patients having had metastasis after HNSCC (N+ group) or no metastasis after HNSCC (N0 group) by analysing the gene expression from a tumour biopsy sample of each patient, or from pooled samples of each group of patients, on an array according to the invention.

Another embodiment of the invention is a method to predict the presence or risk of occurrence of lymph node metastasis of a HNSCC patient. comprising:

a. taking a biopsy sample from the tumour of the patient;
b. isolating the nucleic acid from the biopsy sample;
c. analyse the gene expression profile of said nucleic acid by assaying it with a nucleotide array according to the invention;
d. classifying the expression profile as N+ or N0 by determining whether the expression profile would match the expression profile of a group of HNSCC patients known to have developed metastasis.

Preferably, the biopsy samples in the above methods are fresh biopsy samples.

A preferred embodiment for the method to predict the presence or risk of metastasis is a method, wherein the analysis of the gene expression profile comprises:

a. hybridising the nucleic acid form the biopsy sample with the nucleotide array according to the invention;

b. determining the amount of hybridisation of each of the elements of the nucleotide array relative to the amount of hybridisation of each element with a reference sample, said step optionally involving a normalisation step;

c. determining for each element of the array whether the expression of the corresponding gene in the biopsy sample is more or less than the expression of the corresponding gene in the reference sample.

Preferably, the expression profile is classified as N+ (high risk of metastasis) or N0 (low or no risk of metastasis) according to the steps of:

a. determining the collective correlation of the classifier/predictor genes or elements present in the expression profile with the average N+ or N0 profile from primary tumors with previously established N-status; and

b. determining the predictive threshold based on the correlation threshold from primary tumors with previously established N-status

In another preferred embodiment the method is a method, wherein the gene expression profile of a group of HNSCC patients known to have developed metastasis is the expression profile contained in the dataset E-UMCU-11, available in the public microarray database ArrayExpress (http://www.ebi.ac.uk/arrayexpress/).

Calculation of the correlation as performed in the above methods is preferably done using the cosine correlation method.

Normalization of the expression profile is preferably achieved by correcting the expression data for experimental variations with the help of expression data of a control gene or element which is not affected by the tumour state, preferably by calculating the ratio of the expression data of each gene or element in the array of claim 1 or 2 with the expression of a control gene or element or the mean of a pool of control genes or elements.
LEGENDS TO THE FIGURES

Figure 1. A predictor for HNSCC lymph node metastasis. (a) Expression profiles of the 102 predictor genes on the 82 primary tumor training set (middle). The predictor genes are clustered based on their similarities across the 82 tumors (Pearson around zero correlation, centroid clustering). Tumors are rank-ordered according to their correlation with the average N0 expression profile (left). The solid line represents the threshold for optimal overall accuracy. Tumors above the threshold show an expression profile that indicates that the patient is free of lymph node metastasis. In the right panel the patient’s histological N-status, including the 3 year follow-up period, and the clinical diagnosis are shown (black indicates post-operative histological N+, white indicates post-operative histological N0, dark grey indicates clinical N+ and light grey indicates clinical N0 assessment). The asterix indicates a patient that developed lymph node metastasis post-treatment. (b) Expression profiles and tumor correlations from 6 training tumors samples (circles) and their technical replicates (squares). (c) as (a) only for a independent validation set of 22 primary HNSCC tumors. The threshold is set according to the optimal threshold established with the latter half of the training set (Fig. 2d).

Figure 2. Long-term tissue storage results in loss of predictive accuracy. (a) The mean correlation with the average no-metastasis profile and the standard deviation range for N0 patients (blue) and N+ patients (red) in the training set are shown for each year of surgery. (b) The N0 (blue), N+ (red) and overall (green) predictive accuracies increase from 40–45% for samples from 1996, to 89–100% for samples from 2000. (c,d) Correlation data from tumors with longer (c) or shorter (d) storage time. The predictor correctly predicts 22 of the 38 and 38 of the 44 samples, respectively.

Figure 3. The predictor outperforms current clinical diagnosis on the validation set. (a) Predictive accuracies (PA) of current clinical diagnosis (blue) and the predictor
(red) on the validation set. Error bars are based on the standard error for predictive accuracy. The predictor has a N0 PA of 100%, N+ PA of 77%, and overall PA of 86%. Clinical diagnosis has a N0 PA of 67%, N+ PA of 71%, and overall PA of 68%. (b,c) Treatment accuracy for the validation set, based on current clinical diagnosis (b) or if based on predictor outcome (c). Completely appropriate treatment is shown in green and under- or overtreatment in red. Current diagnosis resulted in 23% of patients receiving appropriate treatment (50% of N+ receiving an RND). Predictor based treatment would result in 86% of patients receiving appropriate treatment (75% of N0 that no longer receive any neck dissection and 100% of N+ receiving a RND).

Figure 4. Study design and procedures overview. a, RNA was isolated from 2-3 tumor sections, followed by mRNA amplification and fluorescent labeling. After hybridization, scanned images were quantified and the data was normalized. Duplicates of each tumor were averaged and a predictor was designed using the differentially expressed genes. Quality control monitoring occurred after total RNA isolation, cRNA synthesis, labeling, scanning and normalization. b, The training experiment design involved 82 primary HNSCC tumors, compared in duplicate dye-swap against a common reference pool containing equal amounts of cRNA from each tumor. Nine reference pool self-self comparisons were generated in parallel, to establish an error-model for technical variation. c, The predictor was designed using a double loop training-validation protocol.

Figure 5. The predictive outcome of different signatures is stable. Predictive correlation outcome of 66 tumor samples using a multiple training approach. A thousand different molecular signatures comprising 50 (A), 100 (B) or 200 (C) genes were used to predict each sample approximately 100 times. Samples from patients without metastasis are colored blue (top line in the graph), samples from patients with lymph node metastasis are colored red (bottom line in the graph). The shaded area represents the 95%-confidence interval for the sample predictions.

DETAILED DESCRIPTION OF THE INVENTION
The inventors herein show that it is possible to give a more accurate prediction of the presence of lymph node metastasis of HNSCC than currently possible, by measuring mRNA expression of a concise set of genes (the predictor signature). It appeared possible to give an accurate prediction on basis of a set of 102 genes listed in Table I. It appeared that half of these genes have not been directly associated with tumorigenesis or metastasis before. Besides expected epithelial marker genes, interesting categories include genes (putatively) coding for extracellular matrix components, genes involved in cell adhesion including three members of the plakin family of cytolinkers and the enzyme transglutaminase 3, which play a role in maintaining tissue integrity; cell death genes; cell growth and maintenance genes and genes encoding hydrolyzing activities including proteins involved in degradation of the extracellular matrix (uPA and PAI-1) and a metalloproteinase. Another feature of the metastasis signature is that there is more down-regulation associated with metastasis (two thirds) than up-regulation. It is likely that this involves stromal and immune-regulatory components (Pollard, J.W. (2004) Nat. Rev. Cancer 4, 71-78; Chambers, A.F. et al. (2002) Nat. Rev. Cancer 2, 563-572). Many of the predictor genes belong to this categories, strengthening the argument for profiling bulk tumour tissue rather than laser-dissected regions densely populated with tumour cells.

It is shown herein that a diagnosis/prediction of the presence of metastases can be given using expression data of a set of only five genes from this large set of 102 genes. Table 2 indicates 15 of the genes which rank high in predictive value and which can especially be used to give a diagnosis or prediction of metastasis in HNSCC. Of course, accuracy of prediction will increase when more then five, preferably all 15 and even more preferably all 102 genes will be used on an array for gene expression analysis for the diagnostic/predictive signature.

Gene expression analysis is preferably done using a micro-array. The techniques for measuring and comparing gene expression on micro-arrays is well established within the art. It should be understood that it is not necessary to have the full length nucleotides encoding the above mentioned genes on said array: a stretch of nucleotides which is sufficient to establish unique hybridisation with the RNA expressed from said genes in the tumour cells can be used. Such a stretch of
nucleotides is hereinafter referred to as 'element'. Preferably for the specific use of gene expression analysis for the current invention (i.e. with relation to detection of the presence of or the risk for metastases of HNSCC) such an array need not contain a large number of (different) genes or elements. It would be sufficient for the array to contain the necessary genes, as discussed above, and, preferably, some control genes, as will be discussed below. The array, which can be used for the analysis of the invention thus does not need to contain more than 1000 genes or elements, preferably not more than 500 genes or elements, more preferably not more than 200 genes or elements and most preferably from about 50 to about 150 genes or elements.

To investigate a gene expression profile the array should be subjected to hybridisation with target polynucleotide molecules from a clinically relevant source, in this case e.g. a person with HNSCC. Therefore, preferably a fresh frozen (within 1 hour from surgical removal), liquid nitrogen (at least -80 °C) stored tumour sample needs to be available. Said target polynucleotide molecules should be expressed RNA or a nucleic acid derived therefrom (e.g., cDNA or amplified RNA derived from cDNA that incorporates an RNA polymerase promoter). If the target molecules consist of RNA, it may be total cellular RNA, poly(A)^+ messenger RNA (mRNA) or fraction thereof, cytoplasmic mRNA, or RNA transcribed from cDNA (cRNA). Methods for preparing total and poly(A)^+ messenger RNA are well known in the art, and are described e.g. in Sambrook *et al.*, (1989) Molecular Cloning: A Laboratory Manual (2nd Ed.) Vols. 1-3, Cold Spring Harbor, New York. In one embodiment, RNA is extracted from cells using guanidinium thiocyanate lysis followed by CsCl centrifugation (Chrigwin *et al.*, (1979) Biochem. 18:5294-5299). In another embodiment, total RNA is extracted using a silica-gel based column, commercially available examples of which include RNeasy (Qiagen, Valencia, CA, USA) and StrataPrep (Stratagene, La Jolla, CA, USA). Poly(A)^+ messenger RNA can be selected, e.g. by selection with oligo-dT cellulose or, alternatively, by oligo-dT primed reverse transcription of total cellular RNA. In another embodiment, the polynucleotide molecules analyzed by the invention comprise cDNA, or PCR products of amplified RNA or cDNA.

Preferably, the target polynucleotides are detectably labelled at one or more nucleotides. Any method known in the art may be used to detectably label the nucleotides. Preferably, this labelling incorporates the label uniformly along the length of the polynucleotide and is carried out at a high degree of efficiency. One
embodiment for this labelling uses oligo-dT primed reverse transcription to incorporate the label; however, conventional methods hereof are biased toward generating 3' end fragments. Thus, in this embodiment, random primers (e.g. 9-mers) are used in reverse transcription to uniformly incorporate labelled nucleotides over the full length of the target polynucleotides. Alternatively, random primers may be used in conjunction with PCR methods or T7 promoter-based in vitro transcription methods in order to amplify the target polynucleotides.

In a preferred embodiment, the detectable label is a luminescent label. For example, fluorescent labels, bioluminescent labels, chemiluminescent labels and colorimetric labels may be used. In a highly preferred embodiment, the label is a fluorescent label, such as a Cy5 or Cy3, fluorescein, a phosphor, a rhodamine, or a polymethylene dye or derivative. In another embodiment, the detectable label is a radiolabeled nucleotide.

The array may be any nucleotide array which represents five or more of the genes of Table 2 or Table 1. To indicate the difference with the existing very large arrays of e.g. Affymetrix, the dedicated arrays of the present invention should preferably comprise no more than 50, or 100, or 250 or, alternatively 500 or 1000 genes altogether. Presence of other genes on the array is allowable and the expression data from such other genes need not necessarily be considered for the present application. The methods of the invention can be applied on the above mentioned dedicated arrays, but can also be performed on arrays that are commercially available (e.g. from Agilent US; Affymetrix Inc, CA, USA; and others). It is also possible to work with self-made arrays by spotting or synthesizing nucleotides which are known to selectively hybridise to the target genes on a surface. Methods to prepare such arrays are well within the skill of the artisan. The microarrays can comprise cDNA, but can also comprise short oligonucleotides (Affimatrix and Nimblegen) or long oligonucleotides which are synthesized in situ (Agilent); in another embodiment the arrays comprise long oligonucleotides and are self-made by spotting.

Nucleic acid hybridisation and wash conditions are chosen so that the target polynucleotide molecules specifically hybridize to the complementary polynucleotide sequences of the array, preferably to a specific array site, wherein its complementary DNA is located. Optimal hybridisation conditions will depend on the type (e.g., RNA or DNA) of the target nucleotides and array. General parameters for
specific (i.e., stringent) conditions of hybridisation are described in Sambrook et al. (supra). Typical hybridisation conditions for cDNA microarrays are hybridisation in 5 X SSC plus 0.2% SDS at 65 °C four hours, followed by washes at 25 °C in low stringency wash buffer (1 X SSC plus 0.2% SDS), followed by 10 minutes at 25 °C in higher stringency wash buffer (0.1 X SSC plus 0.2% SDS).

When fluorescence labelled probes are used, the fluorescence emissions at each site of the microarray may be detected by scanning confocal laser microscopy. In one embodiment, the arrays is scanned with a laser fluorescent scanner with a computer controlled X-Y stage and a microscope objective. Fluorescent laser scanning devices are described in e.g. Schena et al. (1996) Genome Res. 6:639-645. Signals are recorded and, in a preferred embodiment, analysed by computer using a 12 or 16 bit analog to digital board. In one embodiment the scanned image is despeckled using a graphics program (e.g., Hijaak Graphics Suite) and then analysed using an image gridding program that creates a spreadsheet of the average hybridisation at each wavelength at each site.

Not all of the genes are evenly contributing to the discriminating effect. As is shown in Table 1, the genes differ in significant expression. Although the statistical data presented in the Examples are calculated with all of the 102 genetic elements of Table 1, it is submitted that a good distinction between the two groups of patients and therewith a good diagnosing/predicting ability of the signature gene set can also be achieved with only a part of the elements of Table 1. At least 5 (5%) of the elements of Table 1 are included in the analysis, more preferably 20%, more preferably 40%, more preferably 60%, more preferably 80%, more preferably 90% and most preferably all of the elements. It would be advisable not to randomly choose the elements, but to pick the most discriminating genes in this list. Table 2 gives an overview of the top 15 genes out of the 102 genes of table 1, of which at least 5, more preferably at least 6, more preferably at least 7, more preferably at least 8, more preferably at least 9, more preferably at least 10, more preferably at least 11, more preferably at least 12, more preferably at least 13, more preferably at least 14, and most preferably all 15 can be used for making up the signature with which the microarray analysis is performed.

It furthermore has been found that a more comprehensive set of predicting genes can be compiled by repeatedly calculating a predictive signature via a multiple training approach (similar to Michiels, S. et al., Lancet 365:488-492, 2005). In this

SUBSTITUTE SHEET (RULE 26)
study (see Examples) it appeared that from the originally more than 2000 differentially expressed genes only 825 (Table 3) had a predictive character, and that for these a subgroup of 179 (Table 4) genes was used in more than half of the signatures. From this group again a supergroup of 61 genes (Table 5) could be distinguished which was predominantly used to discriminate between N+ and N0. It will be understood that preferably an array would comprise at least three, but preferably five, more preferably 10, even more preferably 25 and most preferably 61 of the genes of Table 6. However, it also appeared possible to classify on basis of genes, which did not occur in Table 5, but in such cases many genes are required to achieve an acceptable prediction. Thus, an array could also comprise at least 10, preferably 25, more preferably 50, and most preferably 100 of the genes of Table 5.

As indicated above, various combinations of these genes can be used for determining the presence of lymph node metastases in several ways.

On dual channel DNA microarrays this is performed by determining the expression level ratios of the genes in the primary tumour sample versus expression of the same genes in reference material. The reference material can be derived from a pool of total RNA or amplified mRNA from a set of HNSCC primary tumours with established lymph node metastasis characteristics. The individual gene expression ratios contribute towards the expression ratio signature of a sample. The degree of correlation of a sample’s signature with the signatures of samples with known metastatic status (preferably calculated by the cosine correlation (Jones, W. P., & Furnas, G. W. (1987). Pictures of Relevance: A Geometric Analysis of Similarity Measures. Journal of the American Society for Information Science, 36 (6), 420-442) as, e.g., provided by the Genesis software; http://genome.tugraz.at/Software/Genesis/Description.html) is used to predict the metastatic state of the unknown sample. The correlation threshold for predicting the metastatic state is based on the optimal threshold for discriminating between the metastatic states of the samples with known metastatic states, which can easily be determined by a person skilled in the art.

Other measurements of absolute expression and expression ratios of these genes can also be used. Reference material can be derived from other sources than a pool of samples with known metastatic states. Preferably, however, samples with
known metastatic states are still required to determine the correlation threshold for determining the metastatic status.

Expression ratios can also be derived from single channel microarray experiments, using as a reference so-called housekeeping genes (i.e. with stable expression across many different samples) or a collection of housekeeping genes or any collection of genes or features with stable expression. Again here it is preferred to use samples with known metastatic states to determine the correlation threshold for determining the metastatic status.

Gene expression measurements and the derived ratios can also be obtained by (quantitative) reverse transcription PCR or any other assay for gene expression, using as a reference any gene or collection of genes that have stable expression across many samples. In a specific embodiment of this application of the invention, samples with known metastatic states are still required to determine the correlation threshold for determining the metastatic status.

In the absence of tumour samples with known metastatic states for calibration of the prediction, the genes or various combinations of the (expression analysis of the) genes can still be used to predict the metastatic state. In these embodiments of the invention an absolute or relative measurement of gene expression is determined for example using single or dual channel DNA microarrays, or by other methods such as (quantitative) reverse transcription PCR. Increased expression of the genes in table 1 or 2 with a positive N+ correlation will hereby contribute positively towards prediction of the N+ status and negatively towards prediction of the N0 status. Conversely, increased expression of the genes in table 1 or 2 with a negative N+ correlation will contribute positively towards N0 prediction and negatively towards N+ prediction. Increased expression in both cases indicates an increase relative to a suitable marker gene or feature, set of genes or features or collectively in relation to each other.

However, a person skilled in the art is able to obtain the reference data that have been produced in the below example, since this data is available as dataset E-UMCU-11 from the public micro-array database ArrayExpress.
(http://www.ebi.ac.uk/arrayexpress/). When desiring to predict or determine the presence of metastases for a certain patient, the practitioner should take a biopsy from that patient, isolate the RNA and determine the expression of at least 5 of the elements of Table 1. To normalize these expression data with respect to the data of the reference set E-UMCU-11, it is possible to correct the data for variations with the help of expression data of a control gene or element which is not affected by the tumour state (such as a housekeeping gene), which is present in the reference set E-UMCU-11 and should also be available on the array that has been used to determine the expression profile of the patient to be assessed. In stead of one control gene or element, also the mean value of a poll of control genes or elements can be taken. This correction can, for instance, be done by subtracting the expression level of the control gene(s)/element(s) from the expression levels of each of the tested genes/elements. Preferably, the ratio for every tested gene(s) with respect to the control gene(s) is calculated for both the patient's expression profile as well as for the expression data of the reference set.

With these figures, the correlation with the mean value of the N0 values of the reference set should be calculated. If this correlation is negative (i.e. a value below zero) it can be concluded that the patient is N+ (i.e. having or prone to develop metastases). Conversely, the correlation can be calculated with respect to the mean value of the N+ values of the reference set. Then a negative correlation indicates a match with the N0 group.

Further enablement for a diagnosis/prediction of cancer metastasis on basis of gene expression analyses can be found in WO 03/010337, indicating that methods as have been generally described above are well within the skills of the practitioners in the art.

Example

Data accessibility
MIAME\(^1\) compliant data in MAGE-ML\(^2\) format as well as complete descriptions of protocols, microarrays and clinical parameters have been submitted to the public microarray database ArrayExpress (http://www.ebi.ac.uk/arrayexpress/) with the following accession numbers: Microarray layout, A-UMCU-3; HNSCC tumour data, E-UMCU-11; Protocols for sectioning of tumour material, P-UMCU-18; RNA isolation, P-UMCU-19; DNase treatment, P-UMCU-20; mRNA amplification, P-UMCU-21; generating reference pool, P-UMCU-26; cRNA labeling, P-UMCU-22; hybridization and washing of slides, P-UMCU-23 and P-UMCU-24; scanning of slides, P-UMCU-25; Image analysis, P-UMCU-11

Tumor samples

For the training set, 92 samples were randomly taken from a collection of primary tumours surgically removed between 1996 and 2000 and that fulfilled the following criteria: biopsy-proven HNSCC in the oropharynx and oral cavity; no previous malignancies in the head and neck region; tumour sections contained more than 50% tumour cells. Of these 92 tumours, 82 passed total RNA and cRNA quality control (QC) and were included in this study. For the validation set, 27 tumours were randomly taken from the same collection of tumours, surgically removed between 2000 and March 2001, and that fulfilled the same selection criteria. Of these, 22 passed total RNA and cRNA QC and were included in this study. The diagnostic procedures for clinical staging of cervical lymph nodes was performed according to the Netherlands national guidelines for oral cavity and oropharynx carcinomas, by clinical examination (palpation) of the neck region, followed by bilateral ultrasound examination, computed tomography (CT) and/or magnetic resonance imaging (MRI).

Suspected nodes were subjected to aspiration cytology. In this way, patients were pre-operatively classified as either N0 or N+, the latter in the case of aspirates yielding metastatic tumour cells. Only in the case of obvious neck involvement, as shown by huge swelling, were the patients classified as N+ without additional efforts to prove the presence of metastasis.

Surgery was aimed at complete tumour removal. With regard to the neck, in the case of clinical N0 only a SOHND was performed\(^3\). In cases clinically classified as N+ a RND was performed including all five lymph node levels\(^3\). Postoperative irradiation was administered in accordance with current practice and depending on margin
status, tumour growth features, number of positive nodes and extracapsular growth. In practice, 36 out of 60 clinically assessed N0 patients and 38 out of 43 clinically assessed N+ patients received radiation therapy. This treatment as well as additional clinical information is presented in Supplemental data 2 (for accessibility, see above).

After surgery, patients were periodically checked for development of neck metastasis, and patients initially classified as N0 but showing positive nodes in their surgical specimen or developing neck nodes within a time span of 3 years after surgery without having another head and neck cancer that could be responsible for this metastasis, were retrospectively added to the N+ patient group. Less than 5% of patients with HNSCC in the oral cavity or oropharynx subsequently develop metastasis after treatment4,5. Here, for the training and validation cohorts, one patient subsequently developed positive neck nodes after surgery. Three years is to be considered as a reliable time period, since at least 80% of the recurrences are known to take place in the first two years after surgery (Takes, R.P. \textit{et al.} (2001) J Pathol \textbf{194}, 298–302 ; Jones, K.R., \textit{et al.}, (1992) Arch. Otolaryngol. Head Neck Surg. \textbf{118}, 483–485).

Fresh tumour tissue was taken from the surgical specimen, snap-frozen in liquid nitrogen immediately after surgical removal and stored at –80°C. Frozen sections were cut for RNA isolation and immediately transferred to a RNAlater solution (Ambion). A haematoxylin and eosin stained section was prepared for tumour percentage assessment. Only samples with at least 50 percent tumour cells were used. For a small number of samples the tumour percentage was increased by removing areas with no tumour cells.

\textbf{RNA isolation}

Total RNA was isolated from 2-3 sections (20 µm) with TRIzol reagent (Invitrogen), followed by a purification using the RNeasy mini-kit (Qiagen) and a DNase treatment using the Qiagen DNA-free kit. The yield and quality of total RNA was checked by spectrophotometry and by the Agilent 2100 Bioanalyser (Agilent). Total RNA quality control criteria were in accordance with the Tumour Analysis Best Practices Working Group6, discarding samples with no clear 18S and 28S ribosomal bands. We also removed samples that had a yield lower than 500 ng total RNA or showed mycoplasma contamination.
cRNA synthesis and labeling
mRNA was amplified by *in vitro* transcription using T7 RNA polymerase on 1 μg of total RNA. First a double stranded cDNA template was generated including the T7 promoter. Next, this template was used for *in vitro* transcription with the T7 megascript kit (Ambion) to generate cRNA. During the *in vitro* transcription, 5-(3-aminoallyl)-UTP (Ambion) was incorporated into the single-stranded cRNA. The yield and quality of the cRNA was analyzed by spectrophotometry and by the Agilent 2100 Bioanalyzer. Samples with a yield less than 5000 ng or with small cRNA fragments (median less than 500 bp) were not used.

Cy3 or Cy5 fluorophores (Amersham) were coupled to 500 ng of cRNA. After coupling, free dye molecules were removed using Clontech ChromoSpin-30 columns (Clontech). The yield and label incorporation (5-7%) of the cy-labeled cRNA was checked using spectrophotometry. Before hybridization, 300 ng of cy-labeled cRNA from one tumor was mixed with an equal amount of reverse color cy-labeled material from the reference sample.

Microarray production
The Human Array-Ready Oligo set (version 2.0) was purchased from Qiagen and printed on Corning UltraGAPS slides as described elsewhere. The microarrays contained 70-mer oligonucleotides representing 21,329 genes as well as 3871 additional features for control purposes.

Microarray hybridization
Before use, the microarray slides were treated with sodium-borohydrate solution to reduce auto-fluorescence in the cy3-channel. The labelled cRNA targets were hybridized on the microarray for 10 hours at 42 °C using the Ventana Discovery Hybridization Station in combination with the ChipMap-80 Kit (Ventana Europe). After hybridization the slides were manually washed and scanned in the Agilent G2565AA DNA Microarray Scanner (100% laser power, 30% PMT).

Pre-processing of expression data
The scanned images were quantified and background corrected using Image 4.0 software (Biodiscovery). The expression data was normalized for dye and print-tip biases using a Lowess per print-tip normalization algorithm applied in the statistical package R. Following normalization, variance stabilization (VSN) was applied to stabilize variance in the intensity data. Both duplicate dye-swap hybridizations of each tumor were averaged and for each gene a tumor-reference ratio was calculated. Reference versus reference hybridizations were used to build a gene error model for technical variation. Nine reference self-self comparisons were performed in dye-swap (18 hybridizations), resulting in nine reference ratios for each gene on the microarray. These nine reference ratios yield an estimate of the technical variation for each gene. To test whether a gene in a tumor samples shows differential expression, a Student's t-test was applied on the tumor ratio and the corresponding nine reference ratios (technical variation). The calculated p-values for differential expression were used to select those genes that show differential expression in the tumor samples.

Supervised classification

A classifier was constructed to distinguish between N0 and N+ patients. Of the 21,329 genes on the microarray, 6221 were excluded based on aberrant signal and spot morphology in one of the 164 hybridizations. From these remaining 15,108 genes, only genes that were significantly different from the reference in at least 31 tumours were selected based on the error model for technical variation (p<0.01). This resulted in a set of 1,986 genes. For these genes the signal-to-noise-ratio (SNR) was computed and employed to rank the genes (top ranked genes being genes that are best suited to distinguish the outcome classes). The optimal gene set to employ in the classifier (a nearest mean classifier similar to the classifier employed in), was determined by gradually expanding the gene set starting from the highest ranked gene. At each expansion round the nearest mean classifier was trained on a training set and tested on a test set. The performance on the test set served as a quality measure of the gene set. The performance was measured as the average of the false positive (N0 classified as N+) and false negative (N+ classified as N0) rates of the test samples. Initially the performance increases as the set is expanded. The expansion of the gene set is terminated when the performance deteriorates, i.e. when the optimal performance is
reached. The steps of ranking the genes and training and testing the classifier are performed in a 10-fold cross-validation procedure. The output of this procedure is an optimal number of top-ranked genes and a trained classifier. To ensure independent validation, this process of optimizing the set of genes and training the classifier is wrapped in a second 3-fold cross-validation loop. This entails that the optimization of the gene set and the training of the classifier is performed on 2/3 of the data, while the classifier is validated on 1/3 of the data. Since this 1/3 of the data is never involved in any of the gene selection and training steps, this ensures completely independent validation of the classifier, which avoids selection bias14,15 and therefore results in a reliable performance estimate. This double-loop procedure determined 102 genes to form the final diagnostic classifier. This classifier was trained on the complete set of 82 samples by recalculating the signal-to-noise ratio for all genes and subsequently selecting the top 102 genes. The predictor was trained using the 102 selected genes and the 82 training samples. A decision threshold for this classifier was fixed such that the highest overall predictive accuracy for both N0 and N+ tumours was reached.

Statistics

Odds ratios (OR) were calculated by fitting a logistic regression model on the prediction outcome of the validation set. The predictor had an infinitive OR since no false negative prediction was made. To get an estimate of the OR for the predictor, one false negative was artificially introduced resulting in a predictor OR of 30 \((p=0.006) \) and a clinical OR of 4.2 \((p=0.15) \). The standard error for predictive accuracy (Fig. 3a) includes the predictions made on the latter half of the training set.

Selection of predictive genes

A multiple training approach was used to identify a complete set of predictive genes, based on the 66 tumor samples from 1998 to 2001. The tumor samples were randomly divided into a training set and test set using a 10-fold cross validation procedure. Based on the training set, \(p \)-values were calculated for all 3064 differentially expressed genes based on the difference in expression between N+ and N0 tumor samples (Student's T-test). The set of genes with lowest \(p \)-values (i.e. most-predictive) was used for prediction of the test samples by calculating the correlation

SUBSTITUTE SHEET (RULE 26)
with the average N+ and average N0 training profile and, based on these correlations, classifying the test samples as N0 or N+. Repeating this resampling procedure a thousand times resulted in multiple predictions for each tumor sample, based on the different predictive gene sets. This approach was repeated three times to determine 1000 predictive gene sets consisting of 50 genes, 1000 gene sets of 100 genes and 1000 gene sets of 200 genes. All gene sets had predictive value (Figure 1). Genes selected at least once are listed in Table 3. This consists of 825 genes with predictive power for detection or prediction of metastasis in head and neck squamous cell carcinoma. Small and large sets of genes from this list can be used for prediction (Figure 5).

Genes selected more frequently, that is present in more than 50% of the 200 gene set predictors are listed in Table 4. This consists of 179 genes with strongest predictive power for detection or prediction of metastasis in head and neck squamous cell carcinoma. Small and large sets of genes from this list can be used for prediction. Genes selected most frequently (more than 90%) are listed in Table 5. This consists of 51 genes with the highest predictive power. Small and large sets of genes from this list can be used for prediction. This list consists of genes, most/all of which have never before been associated with prediction of metastasis in tumors, especially metastasis in head-neck squamous cell carcinoma.

References

Table 1. Complete list of the 102 HNSCC predictor genes

<table>
<thead>
<tr>
<th>Gene</th>
<th>GenBank ID</th>
<th>Gene name</th>
<th>N+ corr</th>
</tr>
</thead>
<tbody>
<tr>
<td>FTH1</td>
<td>NM_002032</td>
<td>ferritin, heavy polypeptide 1</td>
<td>0.726</td>
</tr>
<tr>
<td>COL5A1</td>
<td>NM_00093</td>
<td>COL5A1 protein (collagen 5 type A1 like)</td>
<td>0.627</td>
</tr>
<tr>
<td>NCOR2</td>
<td>NM_006312</td>
<td>Nuclear receptor corepressor 2</td>
<td>0.617</td>
</tr>
<tr>
<td>P4HA1</td>
<td>NM_000917</td>
<td>proline 4-hydroxylase alpha polypeptide I</td>
<td>0.572</td>
</tr>
<tr>
<td>TNFAIP3</td>
<td>NM_006290</td>
<td>tumour necrosis factor, alpha-induced protein 3</td>
<td>0.536</td>
</tr>
<tr>
<td>PLAU</td>
<td>NM_002658</td>
<td>urokinase plasminogen activator (uPA)</td>
<td>0.535</td>
</tr>
<tr>
<td>COL5A3</td>
<td>NM_015719</td>
<td>Collagen, type V, alpha 3</td>
<td>0.521</td>
</tr>
<tr>
<td>SPOCK</td>
<td>NM_004598</td>
<td>Sparc/osteonectin, ccwcv and kazal-like domains proteoglycan (testican)</td>
<td>0.500</td>
</tr>
<tr>
<td>FAP</td>
<td>NM_004460</td>
<td>fibroblast activation protein, alpha</td>
<td>0.498</td>
</tr>
<tr>
<td>ADAM12</td>
<td>NM_003474</td>
<td>a disintegrin and metalloproteinase domain 12 (meltrin alpha)</td>
<td>0.482</td>
</tr>
<tr>
<td>TPM2</td>
<td>NM_003289</td>
<td>tropomyosin 2 (beta)</td>
<td>0.470</td>
</tr>
<tr>
<td>MICAL2</td>
<td>NM_014632</td>
<td>flavoprotein oxidoreductase MICAL2</td>
<td>0.459</td>
</tr>
<tr>
<td>D2S448</td>
<td>XM_056455</td>
<td>D2S448 (Melanoma associated gene)</td>
<td>0.446</td>
</tr>
<tr>
<td>PAI-1</td>
<td>NM_000602</td>
<td>plasminogen activator inhibitor type 1</td>
<td>0.440</td>
</tr>
<tr>
<td>REN</td>
<td>NM_000537</td>
<td>renin</td>
<td>0.383</td>
</tr>
<tr>
<td>Gene</td>
<td>Accession</td>
<td>Description</td>
<td>Score</td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
<td>---</td>
<td>-------</td>
</tr>
<tr>
<td>POSTN</td>
<td>NM_006475</td>
<td>periostin, osteoblast specific factor</td>
<td>0.367</td>
</tr>
<tr>
<td>CKTSF1B1</td>
<td>NM_013372</td>
<td>cysteine knot superfamily 1, BMP antagonist 1 (DRM/GREMLIN)</td>
<td>0.330</td>
</tr>
<tr>
<td>IER3</td>
<td>NM_003897</td>
<td>immediate early response 3</td>
<td>0.303</td>
</tr>
<tr>
<td>MMD</td>
<td>NM_012329</td>
<td>monocyte to macrophage differentiation-associated</td>
<td>0.300</td>
</tr>
<tr>
<td>CTDSP1</td>
<td>NM_021198</td>
<td>CTD (carboxy-terminal domain, RNA polymerase II, polypeptide A) small phosphatase 1</td>
<td>0.260</td>
</tr>
<tr>
<td>PSMD2</td>
<td>NM_002808</td>
<td>proteasome (prosome, macropain) 26S subunit, non-ATPase, 2</td>
<td>0.256</td>
</tr>
<tr>
<td>MAN1B1</td>
<td>NM_016219</td>
<td>mannosidase, alpha, class 1B, member 1</td>
<td>0.254</td>
</tr>
<tr>
<td>DKK3</td>
<td>NM_013253</td>
<td>dickkopf homolog 3 (Xenopus laevis)</td>
<td>0.140</td>
</tr>
<tr>
<td>NT5C3</td>
<td>NM_016489</td>
<td>5'-nucleotidase, cytosolic III</td>
<td>0.138</td>
</tr>
<tr>
<td>DAPK3</td>
<td>NM_001348</td>
<td>death-associated protein kinase 3</td>
<td>0.022</td>
</tr>
<tr>
<td>NDUFB4</td>
<td>NM_004547</td>
<td>NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 4, 15kDa</td>
<td>0.012</td>
</tr>
<tr>
<td>UBA52</td>
<td>NM_003333</td>
<td>ubiquitin A-52 residue ribosomal protein fusion product 1</td>
<td>0.002</td>
</tr>
<tr>
<td>C9orf5</td>
<td>NM_032012</td>
<td>chromosome 9 open reading frame 5</td>
<td>0.075</td>
</tr>
<tr>
<td>COPG</td>
<td>NM_016128</td>
<td>Coat protein gamma-cop</td>
<td>-0.081</td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>--------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>RGS5</td>
<td>NM_003617</td>
<td>regulator of G-protein signalling 5</td>
<td>-0.097</td>
</tr>
<tr>
<td>FLJ12236</td>
<td>AK022298</td>
<td>Homo sapiens cDNA FLJ12236 fis, clone MAMMA1001244</td>
<td>-0.104</td>
</tr>
<tr>
<td>IDI1</td>
<td>NM_004508</td>
<td>Isopentenyl-diphosphate delta isomerase</td>
<td>-0.126</td>
</tr>
<tr>
<td>RPL37A</td>
<td>NM_000998</td>
<td>ribosomal protein L37a</td>
<td>-0.162</td>
</tr>
<tr>
<td>ZDHHC18</td>
<td>NM_032283</td>
<td>Zinc finger DHHC domain containing protein 18</td>
<td>-0.175</td>
</tr>
<tr>
<td>MO30</td>
<td>M26463</td>
<td>Homo sapiens immunoglobulin mu chain antibody MO30 (IgM) mRNA, complete cds</td>
<td>-0.194</td>
</tr>
<tr>
<td>FLJ20073</td>
<td>NM_017654</td>
<td>Hypothetical protein FLJ20073</td>
<td>-0.215</td>
</tr>
<tr>
<td>FLJ30814</td>
<td>AK055376</td>
<td>Homo sapiens cDNA FLJ30814 fis, clone FEBRA2001529</td>
<td>-0.222</td>
</tr>
<tr>
<td>PLK2</td>
<td>NM_006622</td>
<td>polo-like kinase 2</td>
<td>-0.230</td>
</tr>
<tr>
<td>MMPL1</td>
<td>NM_004142</td>
<td>Matrix metalloproteinase-like 1</td>
<td>-0.230</td>
</tr>
<tr>
<td>Z95126</td>
<td></td>
<td>Human DNA sequence from clone RP1-30P20 on chromosome Xq21.1-21.3</td>
<td>-0.232</td>
</tr>
<tr>
<td>BAL</td>
<td>NM_031458</td>
<td>B aggressive lymphoma protein (BAL)</td>
<td>-0.234</td>
</tr>
<tr>
<td>OSBP2</td>
<td>NM_030758</td>
<td>Oxysterol binding protein 2</td>
<td>-0.244</td>
</tr>
<tr>
<td>PARVB</td>
<td>NM_013327</td>
<td>Parvin, beta</td>
<td>-0.286</td>
</tr>
<tr>
<td>CEBPA</td>
<td>NM_004364</td>
<td>CCAAT/enhancer binding</td>
<td>-0.290</td>
</tr>
<tr>
<td>Gene ID</td>
<td>Accession Number</td>
<td>Description</td>
<td>Fold Change</td>
</tr>
<tr>
<td>---------</td>
<td>------------------</td>
<td>---</td>
<td>-------------</td>
</tr>
<tr>
<td>ZNF533</td>
<td>NM_152520</td>
<td>protein (C/EBP), alpha zinc finger protein 533</td>
<td>-0.291</td>
</tr>
<tr>
<td>ABCA12</td>
<td>NM_015657</td>
<td>ATP-binding cassette, sub-family A (ABC1), member 12</td>
<td>-0.293</td>
</tr>
<tr>
<td>LOR</td>
<td>NM_000427</td>
<td>loricrin</td>
<td>-0.322</td>
</tr>
<tr>
<td>E2F5</td>
<td>NM_001951</td>
<td>E2F transcription factor 5, p130-binding</td>
<td>-0.356</td>
</tr>
<tr>
<td>APM2</td>
<td>NM_006829</td>
<td>Adipose specific 2</td>
<td>-0.360</td>
</tr>
<tr>
<td>CAPNS2</td>
<td>NM_032330</td>
<td>CAPNS2 (calpain small subunit 2)</td>
<td>-0.360</td>
</tr>
<tr>
<td>MGC13219</td>
<td>NM_032931</td>
<td>Hypothetical protein MGC13219</td>
<td>-0.367</td>
</tr>
<tr>
<td>FLJ22202</td>
<td>NM_024883</td>
<td>Hypothetical protein FLJ22202</td>
<td>-0.383</td>
</tr>
<tr>
<td>KRT23</td>
<td>NM_173213</td>
<td>keratin 23 (histone deacetylase inducible)</td>
<td>-0.409</td>
</tr>
<tr>
<td>PPT2</td>
<td>NM_005155</td>
<td>palmitoyl-protein thioesterase 2</td>
<td>-0.417</td>
</tr>
<tr>
<td>PGBD5</td>
<td>NM_024554</td>
<td>piggyBac transposable element derived 5</td>
<td>-0.469</td>
</tr>
<tr>
<td>SSH2</td>
<td>NM_033389</td>
<td>SSH2 (slingshot 2)</td>
<td>-0.475</td>
</tr>
<tr>
<td>ALOX12B</td>
<td>NM_001139</td>
<td>arachidonate 12-lipoxygenase, 12R type</td>
<td>-0.480</td>
</tr>
<tr>
<td>MAL2</td>
<td>NM_052886</td>
<td>mal, T-cell differentiation protein 2</td>
<td>-0.544</td>
</tr>
<tr>
<td>ZD52F1</td>
<td>NM_033317</td>
<td>Hypothetical gene ZD52F1</td>
<td>-0.562</td>
</tr>
<tr>
<td>EPPK1</td>
<td>AB107036</td>
<td>Epiplakin 1</td>
<td>-0.566</td>
</tr>
<tr>
<td>S100A7</td>
<td>NM_002963</td>
<td>S100 calcium binding protein A7 (psoriasin 1)</td>
<td>-0.580</td>
</tr>
<tr>
<td>FLJ22184</td>
<td>NM_025094</td>
<td>Hypothetical protein FLJ22184</td>
<td>-0.586</td>
</tr>
<tr>
<td>Gene</td>
<td>Accession</td>
<td>Description</td>
<td>Score</td>
</tr>
<tr>
<td>-------</td>
<td>------------</td>
<td>---</td>
<td>-------</td>
</tr>
<tr>
<td>MAP17</td>
<td>NM_005764</td>
<td>membrane-associated protein 17 (MAP17)</td>
<td>-0.591</td>
</tr>
<tr>
<td>FLJ13497</td>
<td>AK023559</td>
<td>Homo sapiens cDNA FLJ13497 fis, clone PLACE14518</td>
<td>-0.603</td>
</tr>
<tr>
<td>ECM1</td>
<td>NM_022664</td>
<td>extracellular matrix protein 1</td>
<td>-0.610</td>
</tr>
<tr>
<td>TGM3</td>
<td>NM_003245</td>
<td>transglutaminase 3 (E polypeptide, protein-glutamine-gamma-glutamyltransferase)</td>
<td>-0.629</td>
</tr>
<tr>
<td>RAD17</td>
<td>NM_133344</td>
<td>RAD17 homolog (S. pombe)</td>
<td>-0.631</td>
</tr>
<tr>
<td>FLJ30988</td>
<td>AK055550</td>
<td>Homo sapiens cDNA FLJ30988 fis, clone HLUNGL7700030</td>
<td>-0.650</td>
</tr>
<tr>
<td>C10orf26</td>
<td>NM_017787</td>
<td>chromosome 10 open reading frame 26</td>
<td>-0.653</td>
</tr>
<tr>
<td>PALM2</td>
<td>NM_053016</td>
<td>paralemmin 2</td>
<td>-0.655</td>
</tr>
<tr>
<td>C4.4A</td>
<td>NM_014400</td>
<td>GPI-anchored metastasis-associated protein homolog (C4.4A)</td>
<td>-0.665</td>
</tr>
<tr>
<td>ECG2</td>
<td>NM_032566</td>
<td>Esophagus cancer-related gene-2 protein precursor (ECRG-2)</td>
<td>-0.670</td>
</tr>
<tr>
<td>PPL</td>
<td>NM_002705</td>
<td>periplakin</td>
<td>-0.672</td>
</tr>
<tr>
<td>HPCAL1</td>
<td>NM_002149</td>
<td>hippocalcin-like 1</td>
<td>-0.674</td>
</tr>
<tr>
<td>SLPI</td>
<td>NM_003064</td>
<td>secretory leukocyte protease inhibitor (antileukoproteinase)</td>
<td>-0.677</td>
</tr>
<tr>
<td>PI3</td>
<td>NM_002638</td>
<td>protease inhibitor 3, skin-derived (SKALP)</td>
<td>-0.680</td>
</tr>
<tr>
<td>GenBank Accession</td>
<td>UniProt ID</td>
<td>Description</td>
<td>Score</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------</td>
<td>--</td>
<td>-------</td>
</tr>
<tr>
<td>FLJ25911</td>
<td>AK098777</td>
<td>Hypothetical protein FLJ25911 [Fragment]</td>
<td>-0.680</td>
</tr>
<tr>
<td>CLIC3</td>
<td>NM_004669</td>
<td>chloride intracellular channel 3</td>
<td>-0.691</td>
</tr>
<tr>
<td>BENE</td>
<td>NM_005434</td>
<td>BENE protein</td>
<td>-0.698</td>
</tr>
<tr>
<td>FLJ00074</td>
<td>AK024480</td>
<td>FLJ00074 protein [Fragment]</td>
<td>-0.699</td>
</tr>
<tr>
<td>DKFZp547F134</td>
<td>AL512697</td>
<td>Homo sapiens mRNA; cDNA DKFZp547F134 (from clone DKFZp547F134)</td>
<td>-0.706</td>
</tr>
<tr>
<td>PLA2G4B</td>
<td>NM_005090</td>
<td>phospholipase A2, group IVB (cytosolic)</td>
<td>-0.707</td>
</tr>
<tr>
<td></td>
<td>AF339799</td>
<td>Homo sapiens clone IMAGE:2363394, mRNA sequence</td>
<td>-0.708</td>
</tr>
<tr>
<td>TRGV9</td>
<td>BC062761</td>
<td>T cell receptor gamma variable 9</td>
<td>-0.710</td>
</tr>
<tr>
<td>DSG3</td>
<td>NM_001944</td>
<td>desmoglein 3 (pemphigus vulgaris antigen)</td>
<td>-0.711</td>
</tr>
<tr>
<td>FLJ12787</td>
<td>NM_032175</td>
<td>Hypothetical protein FLJ12787</td>
<td>-0.734</td>
</tr>
<tr>
<td>LLGL2</td>
<td>NM_004524</td>
<td>lethal giant larvae homolog 2 (Drosophila)</td>
<td>-0.738</td>
</tr>
<tr>
<td>SMC5L1</td>
<td>NM_015110</td>
<td>SMC5 structural maintenance of chromosomes 5-like 1</td>
<td>-0.741</td>
</tr>
<tr>
<td>ODCP</td>
<td>NM_052998</td>
<td>Ornithine decarboxylase-like protein (EC 4.1.1.17) (ODC-paralogue) (ODC-p)</td>
<td>-0.741</td>
</tr>
<tr>
<td>FLJ31161</td>
<td>AK055723</td>
<td>Homo sapiens cDNA FLJ31161 fis, clone</td>
<td>-0.747</td>
</tr>
<tr>
<td>Gene ID</td>
<td>Accession</td>
<td>Description</td>
<td>Score</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td>-------------</td>
<td>-------</td>
</tr>
<tr>
<td>FLJ21214</td>
<td>AK024867</td>
<td>Homo sapiens cDNA: FLJ21214 fis, clone COL00523</td>
<td>-0.748</td>
</tr>
<tr>
<td>SPINK5</td>
<td>NM_006846</td>
<td>serine protease inhibitor, Kazal type, 5</td>
<td>-0.749</td>
</tr>
<tr>
<td>KIAA0350</td>
<td>XM_290667</td>
<td>KIAA0350 protein</td>
<td>-0.760</td>
</tr>
<tr>
<td>PGLYRPL</td>
<td>NM_052890</td>
<td>peptidoglycan recognition protein L precursor</td>
<td>-0.764</td>
</tr>
<tr>
<td>S100A9</td>
<td>NM_002965</td>
<td>S100 calcium binding protein A9 (calgranulin B)</td>
<td>-0.773</td>
</tr>
<tr>
<td>DNAH11</td>
<td>NM_003777</td>
<td>Dynein, axonemal, heavy chain-11</td>
<td>-0.776</td>
</tr>
<tr>
<td>LAGY</td>
<td>NM_032495</td>
<td>lung cancer-associated Y protein; homeodomain-only protein</td>
<td>-0.793</td>
</tr>
<tr>
<td>IVL</td>
<td>NM_005547</td>
<td>involucrin</td>
<td>-0.801</td>
</tr>
<tr>
<td>TNFRSF5</td>
<td>NM_001250</td>
<td>tumor necrosis factor receptor superfamily, member 5 (CD40)</td>
<td>-0.802</td>
</tr>
<tr>
<td>SRP19</td>
<td>NM_003135</td>
<td>signal recognition particle 19kDa</td>
<td>-0.814</td>
</tr>
<tr>
<td>KLK12</td>
<td>NM_019598</td>
<td>kallikrein 12</td>
<td>-0.837</td>
</tr>
<tr>
<td>IL22RA1</td>
<td>NM_021258</td>
<td>interleukin 22 receptor, alpha 1</td>
<td>-0.885</td>
</tr>
</tbody>
</table>
TABLE 2

<table>
<thead>
<tr>
<th>Gene</th>
<th>GenBank ID</th>
<th>Gene name</th>
<th>N+ corr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>COL5A3</td>
<td>NM_015719</td>
<td>Collagen, type V, alpha 3</td>
<td>0.520719</td>
</tr>
<tr>
<td>COL5A1</td>
<td>NM_000093</td>
<td>COL5A1 protein (collagen 5 type A1 like)</td>
<td>0.626949</td>
</tr>
<tr>
<td>ZD52F1</td>
<td>NM_033317</td>
<td>Hypothetical gene ZD52F1</td>
<td>-0.56185</td>
</tr>
<tr>
<td>FLJ25911</td>
<td>AK098777</td>
<td>Hypothetical protein FLJ25911</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[Fragment]</td>
<td>-0.6799</td>
</tr>
<tr>
<td>EPPK1</td>
<td>AB107036</td>
<td>Epilakpin 1</td>
<td>-0.56641</td>
</tr>
<tr>
<td>KIAA0350</td>
<td>XM_290667</td>
<td>KIAA0350 protein</td>
<td>-0.76021</td>
</tr>
<tr>
<td>DNAH11</td>
<td>NM_003777</td>
<td>Dynein, axonemal, heavy chain-1</td>
<td>-0.77599</td>
</tr>
<tr>
<td>PI3</td>
<td>NM_002638</td>
<td>Protease inhibitor 3, skin-derived (SKALP)</td>
<td></td>
</tr>
<tr>
<td>P4HA1</td>
<td>NM_000917</td>
<td>Procollagen-proline, 2-oxoglutarate 4-dioxygenase (proline 4-hydroxylase), alpha polypeptide I</td>
<td>0.572479</td>
</tr>
<tr>
<td>ODCP</td>
<td>NM_052998</td>
<td>Ornithine decarboxylase-like protein (EC 4.1.1.17) (ODC-paralogue) (ODC-p)</td>
<td>-0.74146</td>
</tr>
<tr>
<td>MMD</td>
<td>NM_012329</td>
<td>Monocyte to macrophage differentiation-associated</td>
<td>0.299881</td>
</tr>
<tr>
<td>TPM2</td>
<td>NM_003289</td>
<td>Tropomyosin 2 (beta)</td>
<td>0.470038</td>
</tr>
<tr>
<td>SRP19</td>
<td>NM_003135</td>
<td>Signal recognition particle 19kDa</td>
<td>-0.81361</td>
</tr>
<tr>
<td>IL22RA1</td>
<td>NM_021258</td>
<td>Interleukin 22 receptor, alpha 1</td>
<td>-0.88482</td>
</tr>
<tr>
<td>FLJ31161</td>
<td>AK055723</td>
<td>Homo sapiens cDNA FLJ31161 fis, clone KIDNE1000028</td>
<td>-0.7475</td>
</tr>
</tbody>
</table>
TABLE 3

List of 825 genes with predictive value

<table>
<thead>
<tr>
<th>UniProt</th>
<th>Gene_symbol</th>
<th>GB_accession</th>
<th>UniGene_ID</th>
<th>N+</th>
<th>Gene_name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q9NZQ6</td>
<td>COL5A3</td>
<td>NM_015719</td>
<td>235368</td>
<td>0.5748109</td>
<td>Collagen, type V, alpha</td>
</tr>
<tr>
<td>FINC_HUMAN</td>
<td>FN1</td>
<td>NM_002026</td>
<td>287820</td>
<td>0.5512686</td>
<td>Fibronectin 1</td>
</tr>
<tr>
<td>FSL1_HUMAN</td>
<td>FSTL1</td>
<td>NM_007085</td>
<td>296267</td>
<td>0.5345273</td>
<td>Follistatin-like 1</td>
</tr>
<tr>
<td>ER22_HUMAN</td>
<td>KDELRE</td>
<td>NM_006864</td>
<td>118778</td>
<td>0.5298673</td>
<td>KDEL (Lys-Asp-Glu-Leu) endoplasmic reticulum protein retention receptor 2</td>
</tr>
<tr>
<td>PC01_HUMAN</td>
<td>PCOLCE</td>
<td>NM_002593</td>
<td>202097</td>
<td>0.5267259</td>
<td>Procollagen C- endopeptidase enhancer</td>
</tr>
<tr>
<td>SPRC_HUMAN</td>
<td>SPARC</td>
<td>NM_003118</td>
<td>111779</td>
<td>0.5192253</td>
<td>Secreted protein, acidic, cysteine-rich (osteonectin)</td>
</tr>
<tr>
<td>NC5R_HUMAN</td>
<td>DIA1</td>
<td>NM_007326</td>
<td>274464</td>
<td>0.5148285</td>
<td>Diaphorase (NADH) cytochrome b-5 reductase</td>
</tr>
<tr>
<td>SEPR_HUMAN</td>
<td>FAP</td>
<td>NM_004460</td>
<td>4184</td>
<td>0.5146633</td>
<td>Fibroblast activation protein, alpha</td>
</tr>
<tr>
<td>HSAC013564</td>
<td>COL5A1</td>
<td>NM_000093</td>
<td>146428</td>
<td>0.5122580</td>
<td>Collagen, type V, alpha</td>
</tr>
<tr>
<td>HSAC009848</td>
<td>ZFP93</td>
<td>NM_004234</td>
<td>298089</td>
<td>0.5098939</td>
<td>Zinc finger protein 93 homolog (mouse)</td>
</tr>
<tr>
<td>PGCV_HUMA</td>
<td>CSPG2</td>
<td>U16306</td>
<td>81800</td>
<td>0.5090627</td>
<td>Chondroitin sulfate proteoglycan 2 (versican)</td>
</tr>
<tr>
<td>Q14521</td>
<td>LLGL2</td>
<td>NM_004524</td>
<td>3123</td>
<td>-</td>
<td>Lethal giant larvae 0.5096958 homolog 2 (Drosophila)</td>
</tr>
<tr>
<td>CA14_HUMAN</td>
<td>COL4A1</td>
<td>NM_001845</td>
<td>119129</td>
<td>0.5066475</td>
<td>Collagen, type IV, alpha</td>
</tr>
<tr>
<td>HSAC014709</td>
<td>TEM1</td>
<td>NM_020404</td>
<td>195727</td>
<td>0.5064784</td>
<td>Tumor endothelial marker 1 precursor</td>
</tr>
<tr>
<td>UROK_HUMA</td>
<td>PLAUR</td>
<td>NM_002658</td>
<td>77274</td>
<td>0.5039383</td>
<td>Plasminogen activator, urokinase</td>
</tr>
<tr>
<td>Q8N6P7</td>
<td>IL22R</td>
<td>NM_021258</td>
<td>110915</td>
<td>-</td>
<td>Interleukin 22 receptor 0.4992849</td>
</tr>
<tr>
<td>LEG1_HUMAN</td>
<td>LGALS1</td>
<td>NM_002305</td>
<td>227751</td>
<td>0.4874021</td>
<td>Lectin, galactoside-binding, soluble, 1 (galectin 1)</td>
</tr>
<tr>
<td>CA26_HUMAN</td>
<td>COL5A2</td>
<td>NM_000393</td>
<td>82985</td>
<td>0.4867551</td>
<td>Collagen, type V, alpha</td>
</tr>
<tr>
<td>CA13_HUMAN</td>
<td>COL3A1</td>
<td>NM_000090</td>
<td>119571</td>
<td>0.4845991</td>
<td>Collagen, type III, alpha 1 (Ehlers-Danlos syndrome type IV, autosomal dominant)</td>
</tr>
<tr>
<td>Q9BYD5</td>
<td>LOC84518</td>
<td>NM_032488</td>
<td>148590</td>
<td>-</td>
<td>Protein related with</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Accession</td>
<td>Description</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>-----------</td>
<td>-------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BGH3_HUMAN TGFBI</td>
<td>NM_000358</td>
<td>0.4844928 psoriasis factor, beta-induced, 68kD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CQT6_HUMAN CTRP6</td>
<td>NM_031910</td>
<td>22011 0.4797861 Complement-c1q tumor necrosis factor-related protein 6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AD12_HUMAN ADAM12</td>
<td>NM_003474</td>
<td>8850 0.4790545 A disintegrin and metalloproteinase domain 12 (meltrin alpha)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q8N3N2 FLJ11196</td>
<td>NM_018357</td>
<td>6166 0.4777263 Hypothetical protein FLJ11196</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CATK_HUMAN CTSK</td>
<td>NM_000396</td>
<td>83942 0.4773496 Cathepsin K (pycnodysostosis)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q96DR2</td>
<td>0AK055031</td>
<td>44289 - Homo sapiens cDNA FLJ30469 fis, clone BRAWH1000037, weakly similar to UROKINASE PLASMINOGEN ACTIVATO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P03996 ACTA2</td>
<td>NM_001613</td>
<td>195851 0.4756099 Actin, alpha 2, smooth muscle, aorta</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K6A2_HUMAN</td>
<td>0AK027727</td>
<td>184581 0.4739618 Homo sapiens cDNA FLJ14821 fis, clone OVARC1000556, highly similar to RIBOSOMAL PROTEIN S5 KINASE II</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q9HBBo THY1</td>
<td>AK057885</td>
<td>125359 0.4727028 Thy-1 cell surface antigen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TM29_HUMAN TRIM29</td>
<td>NM_012101</td>
<td>82237 - Tripartite motif-containing 29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIM2_HUMAN</td>
<td>0AL110197</td>
<td>6441 0.4719957 Homo sapiens mRNA; cDNA DKFZp586J021 (from clone DKFZp586J021)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MM02_HUMAN MMP2</td>
<td>NM_004530</td>
<td>111301 0.4702631 Matrix metalloproteinase 2 (gelatinase A, 72kD gelatinase, 72kD type IV collagenase)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCA2_HUMAN JTV1</td>
<td>NM_006303</td>
<td>301613 0.4696414 JTV1 gene</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CA16_HUMAN COL6A1</td>
<td>NM_001848</td>
<td>108885 0.4694256 Collagen, type VI, alpha 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EVA1_HUMAN EVA1</td>
<td>AF275945</td>
<td>116651 - Epithelial V-like antigen 0.46891651</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CA21_HUMAN COL1A2</td>
<td>NM_000089</td>
<td>179573 0.4673958 Collagen, type I, alpha 5 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CA36_HUMAN COL6A3</td>
<td>NM_004369</td>
<td>80988 0.4650704 Collagen, type VI, alpha 8 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accession</td>
<td>Description</td>
<td>Gene Symbol</td>
<td>Entrez Gene ID</td>
<td>Comment</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>-------------</td>
<td>----------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>OPN3_HUMAN</td>
<td>Opsin 3</td>
<td>NM_014322</td>
<td>279926</td>
<td>0.46101056 (encephalopsin, panopsin)</td>
<td></td>
</tr>
<tr>
<td>Q9UBG0</td>
<td>Endocytic receptor</td>
<td>KIAA0709</td>
<td>NM_006039</td>
<td>7835</td>
<td>0.46012143 (macrophage mannose receptor family)</td>
</tr>
<tr>
<td>TPM2_HUMAN</td>
<td>Tropomyosin 2 (beta)</td>
<td>TPM2</td>
<td>NM_003289</td>
<td>300772</td>
<td>0.46000307</td>
</tr>
<tr>
<td>INVO_HUMAN</td>
<td>Involucrin</td>
<td>IVL</td>
<td>NM_005547</td>
<td>157091</td>
<td>-</td>
</tr>
<tr>
<td>O88386</td>
<td>RAB10, member RAS oncogene family</td>
<td>RAB10</td>
<td>NM_016131</td>
<td>236494</td>
<td>-</td>
</tr>
<tr>
<td>PEPL_HUMAN</td>
<td>Periplakin</td>
<td>PPL</td>
<td>NM_002705</td>
<td>74304</td>
<td>-</td>
</tr>
<tr>
<td>HSAC002603</td>
<td>FLJ11036</td>
<td>FLJ11036</td>
<td>NM_018306</td>
<td>16740</td>
<td>-</td>
</tr>
<tr>
<td>TNR5_HUMAN</td>
<td>Tumor necrosis factor receptor superfamily, member 5</td>
<td>TNFRSF5</td>
<td>NM_001250</td>
<td>25648</td>
<td>-</td>
</tr>
<tr>
<td>FRIH_HUMAN</td>
<td>Ferritin, heavy polypeptide 1</td>
<td>FTH1</td>
<td>AK054816</td>
<td>62954</td>
<td>0.4396982</td>
</tr>
<tr>
<td>P4H2_HUMAN</td>
<td>Procollagen-proline, 2-oxoglutarate 4-dioxygenase (proline 4-hydroxylase), alpha polypeptide II</td>
<td>P4HA2</td>
<td>NM_004199</td>
<td>3622</td>
<td>0.4247841</td>
</tr>
<tr>
<td>P09526</td>
<td>RAP1B, member of RAS oncogene family</td>
<td>RAP1B</td>
<td>NM_015646</td>
<td>156764</td>
<td>0.4223420</td>
</tr>
<tr>
<td>PS23_HUMAN</td>
<td>Protease, serine, 23</td>
<td>SPUVE</td>
<td>NM_007173</td>
<td>25338</td>
<td>0.4208009</td>
</tr>
<tr>
<td>HSAC011159</td>
<td>Homo sapiens clone FBA1, Cri-du-chat region mRNA</td>
<td>0AF009267</td>
<td></td>
<td>102238</td>
<td>-</td>
</tr>
<tr>
<td>SDC2_HUMAN</td>
<td>Syndecan 2 (heparan sulfate proteoglycan 1, cell surface-associated, fibroglycan)</td>
<td>SDC2</td>
<td>J04621</td>
<td>1501</td>
<td>0.4545519</td>
</tr>
<tr>
<td>HSAC013320</td>
<td>Homo sapiens mRNA; cDNA DKFZp762H106 (from clone DKFZp762H106)</td>
<td>0AL162069</td>
<td></td>
<td>140978</td>
<td>-</td>
</tr>
<tr>
<td>TAGL_HUMAN</td>
<td>Transgelin</td>
<td>TAGLN</td>
<td>NM_003186</td>
<td>75777</td>
<td>0.4376112</td>
</tr>
<tr>
<td>MM01_HUMAN</td>
<td>Matrix metalloproteinase 1 (interstitial collagenase)</td>
<td>MMP1</td>
<td>NM_002421</td>
<td>83169</td>
<td>0.4326825</td>
</tr>
<tr>
<td>P05209</td>
<td>Tubulin, alpha, ubiquitous</td>
<td>K-ALPHA-1</td>
<td>NM_006082</td>
<td>334842</td>
<td>0.4223654</td>
</tr>
<tr>
<td>TSP2_HUMAN</td>
<td>Thrombospondin 2</td>
<td>THBS2</td>
<td>NM_003247</td>
<td>108623</td>
<td>0.4679158</td>
</tr>
<tr>
<td>Q8N789</td>
<td>Hypothetical protein</td>
<td>DKFZP434K0410</td>
<td>AL137589</td>
<td>152149</td>
<td>-</td>
</tr>
</tbody>
</table>

SUBSTITUTE SHEET (RULE 26)
<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>O60335</td>
<td>KIAA0594</td>
</tr>
<tr>
<td>P05209</td>
<td>K-ALPHA-1</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>TN3_HUMAN</td>
<td>TNFAIP3</td>
</tr>
<tr>
<td>FGR1_HUMAN</td>
<td>FGFR1</td>
</tr>
<tr>
<td>CAD2_HUMAN</td>
<td>CDH2</td>
</tr>
<tr>
<td>TCOF_HUMAN</td>
<td>TCOF1</td>
</tr>
<tr>
<td>O14635</td>
<td></td>
</tr>
<tr>
<td>GLSK_HUMAN</td>
<td>GLS</td>
</tr>
<tr>
<td>Q9BRJ6</td>
<td>MGC11257</td>
</tr>
<tr>
<td>ALK1_HUMAN</td>
<td>SLPI</td>
</tr>
<tr>
<td>AQP3_HUMAN</td>
<td>AQP3</td>
</tr>
<tr>
<td>SPIB_HUMAN</td>
<td>SPIB</td>
</tr>
<tr>
<td>P05209</td>
<td>K-ALPHA-1</td>
</tr>
<tr>
<td>DRG1_HUMAN</td>
<td>DRG1</td>
</tr>
<tr>
<td>PHMX_HUMA</td>
<td>PHEMX</td>
</tr>
<tr>
<td>P05209</td>
<td>K-ALPHA-1</td>
</tr>
<tr>
<td>HSAC018335</td>
<td></td>
</tr>
<tr>
<td>POSN_HUMA</td>
<td>OSF-2</td>
</tr>
<tr>
<td>DHC3_HUMAN</td>
<td>CBR3</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SUBSTITUTE SHEET (RULE 26)
<table>
<thead>
<tr>
<th>Accession</th>
<th>Gene</th>
<th>Protein Name</th>
<th>Description</th>
<th>Value</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q14113</td>
<td>AEBO1</td>
<td>AEBO1</td>
<td>(NM_001129) AE binding protein 1</td>
<td>118397</td>
<td>0.4208746</td>
</tr>
<tr>
<td>TBX2_HUMAN</td>
<td>TBX2</td>
<td>TBX2</td>
<td>(AK001031) T-box 2</td>
<td>322856</td>
<td>0.4383178</td>
</tr>
<tr>
<td>CRF_HUMAN</td>
<td>CRH</td>
<td>CRH</td>
<td>(NM_000756) Corticotropin releasing hormone</td>
<td>75294 0.4135380</td>
<td>4</td>
</tr>
<tr>
<td>Q9NUJ7</td>
<td>FLJ11323</td>
<td>Hypothetical protein</td>
<td>(NM_018390)</td>
<td>25625 0.4384292</td>
<td>3</td>
</tr>
<tr>
<td>Q96DU1</td>
<td>AKAP2</td>
<td>AKAP2</td>
<td>(AJ303079) A kinase (PRKA)</td>
<td>42322 0.4410680</td>
<td>9</td>
</tr>
<tr>
<td>P05209</td>
<td>K-ALPHA-1</td>
<td>Tubulin, alpha,</td>
<td>(NM_006082) Tubulin alpha, ubiquitoues</td>
<td>334842 0.4073674</td>
<td>4</td>
</tr>
<tr>
<td>Q969Y7</td>
<td>MGC4677</td>
<td>Hypothetical protein</td>
<td>(NM_052871) Hypothetical protein MGC4677</td>
<td>337986 0.3945535</td>
<td>4</td>
</tr>
<tr>
<td>Q9BX6Y5</td>
<td>FLJ13962</td>
<td>Hypothetical protein</td>
<td>(NM_024862) 0.4432775 FLJ13962</td>
<td>330407 0.4432775</td>
<td>9</td>
</tr>
<tr>
<td>K1CW_HUMA</td>
<td>HA1K1</td>
<td>Type I intermediate filaments cytokeratin</td>
<td>(NM_015515)</td>
<td>9029 0.4259488</td>
<td>3</td>
</tr>
<tr>
<td>HSAC019114</td>
<td>FLJ22622</td>
<td>Hypothetical protein</td>
<td>(NM_025151)</td>
<td>324841 0.4331912</td>
<td>3</td>
</tr>
<tr>
<td>PGS2_HUMAN</td>
<td>DCN</td>
<td>Decorin</td>
<td>(NM_001920) 76152 0.3988271</td>
<td>76152 0.3988271</td>
<td>5</td>
</tr>
<tr>
<td>DCP1_HUMA</td>
<td>ODC-p</td>
<td>Ornithine decarboxylase</td>
<td>(NM_052998) Ornithine decarboxylase-like protein</td>
<td>91681 0.4160916</td>
<td>2</td>
</tr>
<tr>
<td>HSAC020747</td>
<td></td>
<td>Homo sapiens cDNA</td>
<td>(AK005828) FLJ32266 f1s, clone PROST1000419</td>
<td>350748 0.4082256</td>
<td>3</td>
</tr>
<tr>
<td>P05209</td>
<td>K-ALPHA-1</td>
<td>Tubulin, alpha,</td>
<td>(NM_006082) Tubulin, alpha, ubiquitoues</td>
<td>334842 0.3999729</td>
<td>5</td>
</tr>
<tr>
<td>Q96F00</td>
<td></td>
<td>Homo sapiens cDNA:</td>
<td>(AK0025719) Homo sapiens cDNA: FLJ22066 f1s, clone HEP10611</td>
<td>251664 0.3945717</td>
<td>6</td>
</tr>
<tr>
<td>ISK5_HUMA</td>
<td>SPINK5</td>
<td>Serine protease inhibitor, Kazal type</td>
<td>(NM_006846) Serine protease inhibitor, Kazal type</td>
<td>331555 0.4377088</td>
<td>4</td>
</tr>
<tr>
<td>GFR1_HUMAN</td>
<td>GFRA1</td>
<td>GDNF family receptor</td>
<td>(NM_005264) GDNF family receptor alpha 1</td>
<td>105445 0.3785951</td>
<td>6</td>
</tr>
<tr>
<td>AAF24516</td>
<td>NUDEL</td>
<td>NUDEL</td>
<td>(NM_030808) LIS1-Interacting protein endoolegpeptidase A</td>
<td>3850 0.4072627</td>
<td>7</td>
</tr>
<tr>
<td>P05209</td>
<td>K-ALPHA-1</td>
<td>Tubulin, alpha,</td>
<td>(NM_006082) Tubulin, alpha, ubiquitoues</td>
<td>334842 0.3959429</td>
<td>3</td>
</tr>
<tr>
<td>O60836</td>
<td>T1A-2</td>
<td>Lung type-I cell</td>
<td>(NM_013317) Lung type-I cell membrane-associated glycoprotein</td>
<td>135150 0.3712753</td>
<td>4</td>
</tr>
<tr>
<td>KLKA_HUMA</td>
<td>KLK10</td>
<td>Kallikrein 10</td>
<td>(NM_002776) Kallikrein 10</td>
<td>69423 0.4058494</td>
<td>3</td>
</tr>
<tr>
<td>Q96KC3</td>
<td>MGC3047</td>
<td>Hypothetical protein</td>
<td>(NM_032348)</td>
<td>58384 0.3992240</td>
<td>3</td>
</tr>
</tbody>
</table>

HEMBA1001658
<table>
<thead>
<tr>
<th>Gene Name</th>
<th>Accession</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUL2_HUMAN KIAA1247</td>
<td>AB033073</td>
<td>enhancer binding factors E12/E47) 43857 0.3918263 Similar to glucosamine-6-sulfatases 6</td>
</tr>
<tr>
<td>HRA3_HUMAN HTRA3</td>
<td>AY040094</td>
<td>60440 0.3804338 Serine protease 3 HTRA3</td>
</tr>
<tr>
<td>CN4A_HUMAN PDE4A</td>
<td>NM_006202</td>
<td>89901 0.3675024 Phosphodiesterase 4A, cAMP-specific (phosphodiesterase E2 dunce homolog, Drosophila) 4</td>
</tr>
<tr>
<td>LTB2_HUMAN LTB2</td>
<td>NM_000428</td>
<td>83337 0.3642497 Latent transforming 3 growth factor beta binding protein 2</td>
</tr>
<tr>
<td>CSF2_HUMAN CSF2</td>
<td>NM_000758</td>
<td>1349 0.3475978 Colony stimulating factor 2 (granulocyte-macrophage) 5</td>
</tr>
<tr>
<td>S109_HUMAN S100A9</td>
<td>NM_002965</td>
<td>112405 0.3811553 S100 calcium binding protein A9 (calgranulin B) 3</td>
</tr>
<tr>
<td>MAL2_HUMAN MAL2</td>
<td>NM_052886</td>
<td>76550 0.3775645 Mal, T-cell differentiation protein 2 2</td>
</tr>
<tr>
<td>HSAC004288 LANO</td>
<td>NM_018214</td>
<td>35091 0.3902080 LAP (leucine-rich repeats and PDZ) and no PDZ protein 1</td>
</tr>
<tr>
<td>P05209 K-ALPHA-1</td>
<td>NM_006082</td>
<td>334842 0.3781600 Tubulin, alpha, ubiquitous 7</td>
</tr>
<tr>
<td>EMP3_HUMAN EMP3</td>
<td>NM_001425</td>
<td>9999 0.3796149 Epithelial membrane protein 3 5</td>
</tr>
<tr>
<td>LUM_HUMAN LUM</td>
<td>NM_002345</td>
<td>79914 0.3809171 Lumican 7</td>
</tr>
<tr>
<td>Q8NC43 FLJ23091</td>
<td>NM_024911</td>
<td>250746 0.4002659 Hypothetical protein FLJ23091</td>
</tr>
<tr>
<td>HRA1_HUMAN PRSS11</td>
<td>NM_002775</td>
<td>75111 0.3831499 Protease, serine, 11 (IGF binding) 1</td>
</tr>
<tr>
<td>CAH6_HUMAN CA6</td>
<td>NM_001215</td>
<td>100322 0.3849588 Carbonic anhydrase VI 1</td>
</tr>
<tr>
<td>SCGF_HUMAN SCGF</td>
<td>NM_002975</td>
<td>105927 0.3852046 Stem cell growth factor; lymphocyte secreted C-type lectin 5</td>
</tr>
<tr>
<td>CALD_HUMAN CALD1</td>
<td>NM_033138</td>
<td>325474 0.3601733 Caldesmon 1 3</td>
</tr>
<tr>
<td>SYH_HUMAN HARS</td>
<td>NM_002109</td>
<td>77798 0.3447688 Histidyl-tRNA synthetase 9</td>
</tr>
<tr>
<td>Q8IXQ7 LABH1</td>
<td>NM_032604</td>
<td>98608 0.3601250 Lung alpha/beta hydrolase 1 3</td>
</tr>
<tr>
<td>WEE1_HUMA WEE1 N</td>
<td>X62048</td>
<td>75188 0.3896713 WEE1+ homolog (S. pombe)</td>
</tr>
<tr>
<td>Q9H08 B DKFZP434B0 44</td>
<td>NM_031476</td>
<td>262958 0.3890273 Hypothetical protein 9 DKFZp434B044</td>
</tr>
<tr>
<td>M1B1_HUMAN MAN1B1</td>
<td>NM_016219</td>
<td>279881 0.3743043 Mannosidase, alpha, class 1B, member 1 9</td>
</tr>
<tr>
<td>FBX8_HUMAN FBXO8</td>
<td>NM_012180</td>
<td>76917 0.3743623 F-box only protein 8</td>
</tr>
</tbody>
</table>

SUBSTITUTE SHEET (RULE 26)
<table>
<thead>
<tr>
<th>Accession</th>
<th>Symbol</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NM_006379</td>
<td>SM3C_HUMAN</td>
<td>SEMA3C</td>
<td>Sema domain, immunoglobulin domain (Ig), short basic domain, secreted (semaphorin) 3C</td>
</tr>
<tr>
<td>NM_020387</td>
<td>RB25_HUMAN</td>
<td>CATX-8</td>
<td>CATX-8 protein</td>
</tr>
<tr>
<td>NM_001533</td>
<td>ROL_HUMAN</td>
<td>HNRPL</td>
<td>Heterogeneous nuclear ribonucleoprotein L</td>
</tr>
<tr>
<td>NM_024326</td>
<td>FX37_HUMAN</td>
<td>MGC11279</td>
<td>Hypothetical protein</td>
</tr>
<tr>
<td>AB002348</td>
<td>HSAC003262</td>
<td>KIAA0350</td>
<td>KIAA0350 protein</td>
</tr>
<tr>
<td>NM_006082</td>
<td>P05209</td>
<td>K-ALPHA-1</td>
<td>Tubulin, alpha, ubiquitous</td>
</tr>
<tr>
<td>NM_031918</td>
<td>BTE4_HUMAN</td>
<td>KLF16</td>
<td>Kruppel-like factor 16</td>
</tr>
<tr>
<td>NM_002391</td>
<td>MK_HUMAN</td>
<td>MKD</td>
<td>Midkine (neurite growth-promoting factor 2)</td>
</tr>
<tr>
<td>NM_017434</td>
<td>Q9NRD9</td>
<td>DUOX1</td>
<td>Dual oxidase 1</td>
</tr>
<tr>
<td>NM_006082</td>
<td>P05209</td>
<td>K-ALPHA-1</td>
<td>Tubulin, alpha, ubiquitous</td>
</tr>
<tr>
<td>NM_007150</td>
<td>Z185_HUMAN</td>
<td>ZNF185</td>
<td>Zinc finger protein 185</td>
</tr>
<tr>
<td>NM_016437</td>
<td>TBG2_HUMAN</td>
<td>TUBG2</td>
<td>Tubulin, gamma</td>
</tr>
<tr>
<td>NM_005399</td>
<td>AAKC_HUMAN</td>
<td>PRKAB2</td>
<td>Protein kinase, AMP-activated, beta 2 non-catalytic subunit</td>
</tr>
<tr>
<td>NM_006508</td>
<td>HSAC006508</td>
<td>COL18A1</td>
<td>Collagen, type XVIII, alpha 1</td>
</tr>
<tr>
<td>NM_033317</td>
<td>Q9BSY6</td>
<td>ZD52F10</td>
<td>Hypothetical gene</td>
</tr>
<tr>
<td>0AJ420500</td>
<td>SOX4_HUMAN</td>
<td></td>
<td>Homo sapiens mRNA clone EUROIMAGE 1977059</td>
</tr>
<tr>
<td>NM_006082</td>
<td>P05209</td>
<td>K-ALPHA-1</td>
<td>Tubulin, alpha, ubiquitous</td>
</tr>
<tr>
<td>NM_002414</td>
<td>MIC2_HUMAN</td>
<td>MIC2</td>
<td>Antigen identified by monoclonal antibodies 12E7, F21 and O13</td>
</tr>
<tr>
<td>NM_000552</td>
<td>VWF_HUMAN</td>
<td>VWF</td>
<td>Von Willebrand factor</td>
</tr>
<tr>
<td>NM_003480</td>
<td>MFA5_HUMAN</td>
<td>MAGP2</td>
<td>Microfibril-associated glycoprotein-2</td>
</tr>
<tr>
<td>NM_002638</td>
<td>ELAF_HUMAN</td>
<td>PI3</td>
<td>Protease inhibitor 3</td>
</tr>
<tr>
<td>Accession Number</td>
<td>Description</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WD13_HUMAN WDR13</td>
<td>NM_017883</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB1_HUMAN PCBP1</td>
<td>NM_006196</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DYHC_HUMA DNCH1</td>
<td>AB002323</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q8WUB2 HSU79274</td>
<td>NM_013300</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q96N74 PGLYRP</td>
<td>NM_052890</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HSAC018816</td>
<td>0 AK055723 310919</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PPL2_HUMAN PPL2</td>
<td>NM_014337 93523</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HSAC015090</td>
<td>0 AK055294 211132 3473874</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P05209 K-ALPHA-1</td>
<td>NM_006082 334842</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DSG3 HUMAN DSG3</td>
<td>NM_001944 1925</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTGF_HUMAN CTGF</td>
<td>NM_001901 755110 3644933</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q96BW1</td>
<td>0 AK056354 916120 3498432</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P05209 K-ALPHA-1</td>
<td>NM_006082 334842 3644052</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HSAC020349</td>
<td>0 BC014584 348710 3302058</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G3P2_HUMAN GAPD</td>
<td>NM_002046 169476 3611237</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DES1_HUMAN DESC1</td>
<td>NM_014058 201877</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAI2_HUMAN SERPINB2</td>
<td>NM_002575 75716</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PYG2_HUMAN</td>
<td>0 BC006132 172084 3684842</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

0.3936770 skin-derived (SKALP) 3 12142 0.3557647 WD repeat domain 13 9 2853 Poly(C) binding 0.3519965 protein 1 7 7720 0.3690891 Dynex, cytoplasmic, 9 heavy polypeptide 1 150555 Protein predicted by 0.4109509 clone 23733 9 282244 Peptidoglycan 0.3781883 recognition protein L 2 precursor 310919 Homo sapiens cDNA 0.3782523 FLJ31161 fis, clone 7 KIDNE1000028 93523 Peptidylprolyl 0.3492625 isomerase 3 (cyclophilin)-like 2 211132 0.3473874 Homo sapiens cDNA 5 FLJ30732 fis, clone FEBR2000126, weakly similar to Mus musculus PDZ domain actin 7 Tubulin, alpha, ubiquitious 334842 0.3640449 Tubulin, alpha, 7 ubiquitious 1925 Desmoglein 3 0.3591677 (pemphigus vulgaris antigen) 9 755110 0.3644933 Connective tissue growth factor 1 348710 0.3302058 Homo sapiens, clone 6 IMAGE:4047052, mRNA 91612 0.3498432 Homo sapiens, clone 6 MGC:23937 IMAGE:3930177, mRNA, complete cds 169476 0.3611237 Glyceraldehyde-3-phosphate dehydrogenase 2 201877 DESC1 protein 0.3719913 5 75716 Serine (or cysteine) 0.3941882 proteinase inhibitor, clade B (ovalbumin), member 2 4 172084 0.3684842 Homo sapiens, clone 4 IMAGE:3627860, mRNA, partial cds
<table>
<thead>
<tr>
<th>Reference</th>
<th>Accession</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA17_HUMAN</td>
<td>COL7A1</td>
<td>NM_000094 Collagen, type VII, alpha 1 (epidermolysis bullosa, dystrophic, dominant and recessive)</td>
</tr>
<tr>
<td>Q8NG54</td>
<td>FLJ21212</td>
<td>NM_024642 Hypothetical protein</td>
</tr>
<tr>
<td></td>
<td></td>
<td>47099 0.3522461 FLJ21212</td>
</tr>
<tr>
<td>Q9H6K5</td>
<td>FLJ22184</td>
<td>NM_025094 Hypothetical protein</td>
</tr>
<tr>
<td></td>
<td></td>
<td>288540 0.3616646 FLJ22184</td>
</tr>
<tr>
<td>Q96FP4</td>
<td></td>
<td>0 BC010607 Homo sapiens, clone</td>
</tr>
<tr>
<td></td>
<td></td>
<td>104679 0.3499912 Homo sapiens cDNA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>333438 0.3789372 HEMBB1000089</td>
</tr>
<tr>
<td>HSAC019418</td>
<td></td>
<td>0 AK021970 Homo sapiens cDNA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>333438 0.3789372 FLJ11908 fis, clone</td>
</tr>
<tr>
<td>HSAC019917</td>
<td></td>
<td>0 AF130069 Homo sapiens cDNA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>343363 0.3437721 FLB8436 PRO2277</td>
</tr>
<tr>
<td>HSAC003296</td>
<td>TACSTD2</td>
<td>NM_002353 Tumor-associated</td>
</tr>
<tr>
<td></td>
<td></td>
<td>23582 0.3427956 Calcium signal transducer</td>
</tr>
<tr>
<td>TTC7_HUMAN</td>
<td>KIAA1140</td>
<td>AB032966 131728 0.3491606 KIAA1140 protein</td>
</tr>
<tr>
<td>G3P2_HUMAN</td>
<td>GAPD</td>
<td>NM_002046 Glyceraldehyde-3-phosphate dehydrogenase</td>
</tr>
<tr>
<td></td>
<td></td>
<td>169476 0.3549723 IMAGE:4156235, mRNA, complete cds</td>
</tr>
<tr>
<td>Q86VR7</td>
<td></td>
<td>0 BC016993 Homo sapiens, clone</td>
</tr>
<tr>
<td></td>
<td></td>
<td>293236 0.4025858 IMAGE:4401841, mRNA</td>
</tr>
<tr>
<td>G3P2_HUMAN</td>
<td>GAPD</td>
<td>NM_002046 Glyceraldehyde-3-phosphate dehydrogenase</td>
</tr>
<tr>
<td></td>
<td></td>
<td>169476 0.3558286 IMAGE:4156235, mRNA, complete cds</td>
</tr>
<tr>
<td>Q96CG8</td>
<td></td>
<td>0 BC014245 Homo sapiens, Similar to RIKEN cDNA, 1110014B07 gene, clone MGC:20766</td>
</tr>
<tr>
<td></td>
<td></td>
<td>283713 0.3486893 IMAGE:4586039, mRNA, complete cds</td>
</tr>
<tr>
<td>HSAC004760</td>
<td></td>
<td>0 S73288 Small proline-rich protein SPRK [human, odontogenic keratocysts, mRNA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>46320 0.3657348 Partial, 317 nt]</td>
</tr>
<tr>
<td>KLK5_HUMAN</td>
<td>KLK5</td>
<td>NM_012427 Kallikrein 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50915 0.3679470</td>
</tr>
<tr>
<td>SREC_HUMAN</td>
<td>SREC</td>
<td>NM_003693 Acetyl LDL receptor;</td>
</tr>
<tr>
<td>Q8IVC7</td>
<td>EPST11</td>
<td>NM_033255 Epithelial stromal interaction 1 (breast)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>57735 0.3591097 SREC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>343800 0.3525323 interaction 1 (breast)</td>
</tr>
<tr>
<td>HSAC008195</td>
<td></td>
<td>0 AF339799 Homo sapiens clone</td>
</tr>
<tr>
<td></td>
<td></td>
<td>174045 0.3657303 IMAGE:2363394, mRNA</td>
</tr>
</tbody>
</table>

SUBSTITUTE SHEET (RULE 26)
<table>
<thead>
<tr>
<th>Gene Name</th>
<th>Accession</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPM2_HUMAN TPM1</td>
<td>NM_000366</td>
<td>77899 0.3486721 Tropomyosin 1 (alpha)</td>
</tr>
<tr>
<td>Q9UFS8 AGS3</td>
<td>AL117478</td>
<td>239370 - Likely ortholog of rat 0.3555215 activator of G-protein signaling 9</td>
</tr>
<tr>
<td>G3P2_HUMAN GAPD</td>
<td>NM_002046</td>
<td>169476 0.3520982 Glyceraldehyde-3-phosphate dehydrogenase</td>
</tr>
<tr>
<td>HSAC011719 CLDN5</td>
<td>NM_003277</td>
<td>110903 - Claudin 5 0.3585097 (transmembrane protein deleted in velocardiofacial syndrome)</td>
</tr>
<tr>
<td>G3P2_HUMAN GAPD</td>
<td>NM_002046</td>
<td>169476 0.3493698 Glyceraldehyde-3-phosphate dehydrogenase</td>
</tr>
<tr>
<td>HSAC002456</td>
<td>0 AK055225</td>
<td>15167 - Homo sapiens cDNA 0.3435031 FLJ30663 fis, clone FCBF1000598, moderately similar to ZINC FINGER PROTEIN 84</td>
</tr>
<tr>
<td>P05209 K-ALPHA-1</td>
<td>NM_006082</td>
<td>334842 0.3517587 Tubulin, alpha, ubiquitous</td>
</tr>
<tr>
<td>HSAC014332 BENE</td>
<td>U17077</td>
<td>185055 - BENE protein 0.3652424</td>
</tr>
<tr>
<td>G3P2_HUMAN GAPD</td>
<td>NM_002046</td>
<td>169476 0.3497682 Glyceraldehyde-3-phosphate dehydrogenase</td>
</tr>
<tr>
<td>HSAC020817</td>
<td>0 AK055932</td>
<td>350820 - Homo sapiens cDNA 0.3661961 FLJ31370 fis, clone NB9N42000122</td>
</tr>
<tr>
<td>KLKB_HUMAN KLK11</td>
<td>NM_006853</td>
<td>57771 - Kallikrein 11 0.3464829</td>
</tr>
<tr>
<td>AAC1_HUMAN ACTN1</td>
<td>NM_001102</td>
<td>119000 0.3396412 Actinin, alpha 1</td>
</tr>
<tr>
<td>G3P2_HUMAN GAPD</td>
<td>NM_002046</td>
<td>169476 0.3514333 Glyceraldehyde-3-phosphate dehydrogenase</td>
</tr>
<tr>
<td>Q8WW05</td>
<td>0 AC006017</td>
<td>131311 - Homo sapiens PAC 0.3489875 clone RP5-98107 from 2 7q34-q36</td>
</tr>
<tr>
<td>HAS3_HUMAN HAS3</td>
<td>AF232772</td>
<td>85962 - Hyaluronan synthase 0.3705656</td>
</tr>
<tr>
<td>HSAC019767</td>
<td>0 AK022838</td>
<td>336419 - Homo sapiens cDNA 0.3577188 FLJ12776 fis, clone NT2RP2001678</td>
</tr>
<tr>
<td>O60565 CKTSF1B1</td>
<td>NM_013372</td>
<td>40098 0.3359244 Cysteine knot superfamily knot 1, BMP antagonist 1</td>
</tr>
<tr>
<td>HSAC013123 DKFZp547D0 AL390147</td>
<td>134742 0.3537743 Hypothetical protein DKFZp547D065</td>
<td></td>
</tr>
<tr>
<td>G3P2_HUMAN GAPD</td>
<td>NM_002046</td>
<td>169476 0.3511559 Glyceraldehyde-3-phosphate</td>
</tr>
<tr>
<td>Accession</td>
<td>Description</td>
<td>Accession</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
<td>------------</td>
</tr>
<tr>
<td>Q14707</td>
<td>KTN1</td>
<td>NM_004986</td>
</tr>
<tr>
<td>HSAC001617</td>
<td>UCRP</td>
<td>AF388367</td>
</tr>
<tr>
<td>HSAC017169</td>
<td>0AL137617</td>
<td>274583</td>
</tr>
<tr>
<td>Q9H7K0</td>
<td>0AK024480</td>
<td>13766</td>
</tr>
<tr>
<td>G3P2_HUMAN</td>
<td>GAPD</td>
<td>NM_002046</td>
</tr>
<tr>
<td>HSAC015798</td>
<td>0AK000745</td>
<td>243901</td>
</tr>
<tr>
<td>CLH1_HUMAN</td>
<td>CLTC</td>
<td>NM_004859</td>
</tr>
<tr>
<td>PA11_HUMAN</td>
<td>SERPINE1</td>
<td>NM_000602</td>
</tr>
<tr>
<td>HSAC018152</td>
<td>0AK057719</td>
<td>303105</td>
</tr>
<tr>
<td>HSAC019360</td>
<td>0AK024104</td>
<td>333154</td>
</tr>
<tr>
<td>Q9H7E9</td>
<td>FLJ20989</td>
<td>NM_023080</td>
</tr>
<tr>
<td>TGF1_HUMAN</td>
<td>TGFBI</td>
<td>NM_000660</td>
</tr>
<tr>
<td>Q9NRA1</td>
<td>PDGFC</td>
<td>NM_016205</td>
</tr>
<tr>
<td>HSAC020279</td>
<td>0BC014381</td>
<td>348523</td>
</tr>
<tr>
<td>Q8IXK0</td>
<td>EDR2</td>
<td>NM_004427</td>
</tr>
<tr>
<td>HSAC017377</td>
<td>PRO0514</td>
<td>NM_014131</td>
</tr>
<tr>
<td>Q9BPY8</td>
<td>SMAP31</td>
<td>NM_032495</td>
</tr>
</tbody>
</table>

SUBSTITUTE SHEET (RULE 26)
<table>
<thead>
<tr>
<th>Accession</th>
<th>Description</th>
<th>Accession</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT70_HUMAN</td>
<td>M6A</td>
<td>NM_019852</td>
<td>268149 0.3534982 Putative methyltransferase</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>77837 0.3242149 UDP-glucose</td>
</tr>
<tr>
<td>UDP2_HUMAN</td>
<td>UGP2</td>
<td>NM_006759</td>
<td>94581 0.3610427 Sulfrantransferase family</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>cytosolic, 2B, member</td>
</tr>
<tr>
<td>O00205</td>
<td>SULT2B1</td>
<td>NM_004605</td>
<td>278682 0.3350770 Phosphatidyglycerophosphate</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>304874 0.3240163 Phosphatidylinositol 4-kinase,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>catalytic, alpha polypeptide</td>
</tr>
<tr>
<td>Q96A75</td>
<td>PGS1</td>
<td>NM_024419</td>
<td>233950 0.3442441 inhibitor, Kunitz type 1</td>
</tr>
<tr>
<td>PI4K_HUMAN</td>
<td>PIK4CA</td>
<td>NM_058004</td>
<td>150926 -0.334427 Fucose-1-phosphate guanylyltransferase</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>137569 0.3323395 with strong homology to p53</td>
</tr>
<tr>
<td>SPT1_HUMAN</td>
<td>SPINT1</td>
<td>NM_003710</td>
<td>169476 0.3376594 Glyceraldehyde-3-phosphate</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>22 0.365354 polyepitope epidermal</td>
</tr>
<tr>
<td>TGM1_HUMAN</td>
<td>TGM1</td>
<td>NM_000359</td>
<td>150926 -0.334427 Fucose-1-phosphate guanylyltransferase</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>137569 0.3323395 with strong homology to p53</td>
</tr>
<tr>
<td>FPGT_HUMAN</td>
<td>FPGT</td>
<td>NM_003838</td>
<td>169476 0.3376594 Glyceraldehyde-3-phosphate</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>22 0.365354 polyepitope epidermal</td>
</tr>
<tr>
<td>Q9H3D4</td>
<td>TP63</td>
<td>Y16981</td>
<td>137569 0.3323395 with strong homology to p53</td>
</tr>
<tr>
<td>G3P2_HUMAN</td>
<td>GAPD</td>
<td>NM_002046</td>
<td>169476 0.3376594 Glyceraldehyde-3-phosphate</td>
</tr>
<tr>
<td>TENA_HUMAN</td>
<td>HXB</td>
<td>NM_002160</td>
<td>289114 0.3118912 Hexabrachion</td>
</tr>
<tr>
<td>OAS1_HUMAN</td>
<td>OAS1</td>
<td>NM_016816</td>
<td>82396 0.3439273 synthetase 1 (40-46 KD)</td>
</tr>
<tr>
<td>Q96E5</td>
<td>MGC15737</td>
<td>NM_032926</td>
<td>39122 0.3438067 Hypothetical protein</td>
</tr>
<tr>
<td>G3P2_HUMAN</td>
<td>GAPD</td>
<td>NM_002046</td>
<td>169476 0.3381877 Glyceraldehyde-3-phosphate</td>
</tr>
<tr>
<td>IL6_HUMAN</td>
<td>IL6</td>
<td>NM_000600</td>
<td>93913 0.3033536 Interleukin 6</td>
</tr>
<tr>
<td>LMB3_HUMAN</td>
<td>LAMB3</td>
<td>NM_000228</td>
<td>75517 0.3205176 Laminin, beta 3 (niecein</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9 125kD, kalinin (140kD), BM800 (125kD)</td>
</tr>
<tr>
<td>HSAC015555</td>
<td>DFKZ761K1423</td>
<td>NM_018422</td>
<td>236438 0.3341682 Hypothetical protein</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4 0.3341682 DFKZ761K1423</td>
</tr>
<tr>
<td>BASP_HUMAN</td>
<td>BASP1</td>
<td>NM_006317</td>
<td>79516 0.3230585 Brain abundant, membrane attached</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>267038 0.3861872 Hypothetical protein</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4 0.3630601 T cell receptor gamma</td>
</tr>
</tbody>
</table>

SUBSTITUTE SHEET (RULE 26)
<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Accession</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TDE2_HUMAN</td>
<td>KIAA1253</td>
<td>AB033079</td>
</tr>
<tr>
<td>ALC1_HUMAN</td>
<td>IGHM</td>
<td>X58529</td>
</tr>
<tr>
<td>G3P2_HUMAN</td>
<td>GAPD</td>
<td>NM_002046</td>
</tr>
<tr>
<td>KCC1_HUMAN</td>
<td>CAMK1</td>
<td>NM_003656</td>
</tr>
<tr>
<td>Q8NC6P6</td>
<td>GLE1L</td>
<td>NM_001499</td>
</tr>
<tr>
<td>COM5_HUMAN</td>
<td>HT002N</td>
<td>AK023070</td>
</tr>
<tr>
<td>HSAC001787</td>
<td>SPC18</td>
<td>NM_014300</td>
</tr>
<tr>
<td>HSAC020210</td>
<td>0 BC012014</td>
<td>348340 0.3229148 Homo sapiens, clone IMAGE:4509827, mRNA, partial cds</td>
</tr>
<tr>
<td>Q96AL8</td>
<td></td>
<td>0 BC016969</td>
</tr>
<tr>
<td>PEDF_HUMAN</td>
<td>SERPINF1</td>
<td>NM_002615</td>
</tr>
<tr>
<td>GA15_HUMAN</td>
<td>DDIT3</td>
<td>NM_004083</td>
</tr>
<tr>
<td>NGAL_HUMAN</td>
<td>LCN2</td>
<td>NM_005564</td>
</tr>
<tr>
<td>RHOC_HUMAN</td>
<td>ARHC</td>
<td>NM_005167</td>
</tr>
<tr>
<td>G3P2_HUMAN</td>
<td>GAPD</td>
<td>NM_002046</td>
</tr>
<tr>
<td>O95491</td>
<td>DNAH11</td>
<td>NM_003777</td>
</tr>
<tr>
<td>NIF3_HUMAN</td>
<td>NLI-IF</td>
<td>NM_021198</td>
</tr>
<tr>
<td>Q96MC2</td>
<td>0 AK057222</td>
<td>123428</td>
</tr>
<tr>
<td>KVB1_HUMAN</td>
<td>KCNAB1</td>
<td>AK057059</td>
</tr>
<tr>
<td>P20172</td>
<td>AP2M1</td>
<td>NM_004068</td>
</tr>
<tr>
<td>Gene</td>
<td>Accession</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>-----------</td>
<td>--</td>
</tr>
<tr>
<td>CDX1_HUMAN</td>
<td>NM_001804</td>
<td>Caudal type homeobox transcription factor subunit</td>
</tr>
<tr>
<td>G3P2_HUMAN</td>
<td>NM_002046</td>
<td>Glyceraldehyde-3-phosphate dehydrogenase</td>
</tr>
<tr>
<td>LCFD_HUMAN</td>
<td>FAACL4</td>
<td>Fatty-acid-Coenzyme A ligase, long-chain</td>
</tr>
<tr>
<td>Q9NX63</td>
<td>FLJ20420</td>
<td>Hypothetical protein</td>
</tr>
<tr>
<td>IBP7_HUMAN</td>
<td>IGFBP7</td>
<td>Insulin-like growth factor binding protein</td>
</tr>
<tr>
<td>HSAC018498</td>
<td>0 AK024867</td>
<td>Homo sapiens cDNA</td>
</tr>
<tr>
<td>HSAC009099</td>
<td>0 AK024849</td>
<td>Homo sapiens cDNA</td>
</tr>
<tr>
<td>Q8IYN2</td>
<td>0 AK026349</td>
<td>Homo sapiens cDNA</td>
</tr>
<tr>
<td>Q96ML0</td>
<td>0 AK056788</td>
<td>Homo sapiens cDNA</td>
</tr>
<tr>
<td>HSAC001114</td>
<td>0 AL137723</td>
<td>Homo sapiens mRNA; tRNA</td>
</tr>
<tr>
<td>HSAC019203</td>
<td>0 AF339829</td>
<td>Homo sapiens clone</td>
</tr>
<tr>
<td>IF42_HUMAN</td>
<td>EIF4A2</td>
<td>Eukaryotic translation initiation factor 4A, isoform 2</td>
</tr>
<tr>
<td>HSAC013605</td>
<td>0 AL512697</td>
<td>Homo sapiens mRNA; cDNA DKFZp547F134</td>
</tr>
<tr>
<td>Q96N43</td>
<td>0 AK055994</td>
<td>Homo sapiens cDNA</td>
</tr>
<tr>
<td>O94781</td>
<td>LAMP3</td>
<td>Lysosomal-associated membrane protein 3</td>
</tr>
<tr>
<td>Q8N336</td>
<td>DFKZp547C1</td>
<td>Hypothetical protein</td>
</tr>
<tr>
<td>BAC1_HUMAN</td>
<td>BACH1</td>
<td>BTB and CNC</td>
</tr>
<tr>
<td>G3P2_HUMAN</td>
<td>NM_002046</td>
<td>Glyceraldehyde-3-phosphate transcription factor</td>
</tr>
</tbody>
</table>

SUBSTITUTE SHEET (RULE 26)
<table>
<thead>
<tr>
<th>Accession</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FX32_HUMAN</td>
<td>NM_058229</td>
<td>61661 Homo sapiens cDNA FLJ32424 fis, clone SKMUS2000954, moderately similar to Homo sapiens F-box protein</td>
</tr>
<tr>
<td>DSC2_HUMAN</td>
<td>NM_004949</td>
<td>239727 Desmocollin 2</td>
</tr>
<tr>
<td>K2CE_HUMAN</td>
<td>NM_005555</td>
<td>335952 Keratin 6B</td>
</tr>
<tr>
<td>ANXB_HUMAN</td>
<td>NM_001157</td>
<td>75510 Annexin A11</td>
</tr>
<tr>
<td>Q9BZC1 BRUNOL4</td>
<td>NM_020180</td>
<td>41641 Bruno-like 4, RNA binding protein (Drosophila)</td>
</tr>
<tr>
<td>MYPH_HUMAN</td>
<td>MYBPH</td>
<td>NM_004997</td>
</tr>
<tr>
<td>ETFA_HUMAN</td>
<td>ETFA</td>
<td>NM_000126</td>
</tr>
<tr>
<td>EMP2_HUMAN</td>
<td>EMP2</td>
<td>NM_001424</td>
</tr>
<tr>
<td>O95712 PLA2G4B</td>
<td>NM_005090</td>
<td>198161 Phospholipase A2, group IVB (cytosolic)</td>
</tr>
<tr>
<td>HSAC020830</td>
<td>AK055817</td>
<td>350833 Homo sapiens cDNA FLJ31255 fis, clone KIDNE2005603, moderately similar to 2-oxoglutarate dehydrogenase</td>
</tr>
<tr>
<td>LOL1_HUMAN</td>
<td>LOXL1</td>
<td>NM_005576</td>
</tr>
<tr>
<td>HSAC007550</td>
<td>AK056805</td>
<td>162859 Homo sapiens cDNA FLJ32243 fis, clone PROST1000039</td>
</tr>
<tr>
<td>HPC1_HUMAN</td>
<td>HPCAL1</td>
<td>NM_002149</td>
</tr>
<tr>
<td>Q9H5G9</td>
<td>FLJ23447</td>
<td>NM_024825</td>
</tr>
<tr>
<td>RSG4_HUMAN</td>
<td>RASAL1</td>
<td>NM_004658</td>
</tr>
<tr>
<td>HSAC009467</td>
<td>AK021980</td>
<td>289068 Homo sapiens cDNA FLJ11918 fis, clone HEMBB1000272</td>
</tr>
<tr>
<td>Q9BXL5</td>
<td>EDAG-1</td>
<td>NM_018437</td>
</tr>
</tbody>
</table>

SUBSTITUTE SHEET (RULE 26)
<table>
<thead>
<tr>
<th>Accession</th>
<th>Description</th>
<th>hg19 Chromosome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q96HM7</td>
<td>0 BC016154</td>
<td>Homo sapiens, clone</td>
</tr>
<tr>
<td>HSAC014243</td>
<td>0 AK057730</td>
<td>Homo sapiens cDNA</td>
</tr>
<tr>
<td>Q9NSU6</td>
<td>0 AL137734</td>
<td>Homo sapiens mRNA; 0.3104151 cDNA</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>DKFZp586C0721 (from clone DKFZp586C0721); partial cds</td>
</tr>
<tr>
<td>Q9UHJ4</td>
<td>KV8.1</td>
<td>0.3257333 channel alpha subunit</td>
</tr>
<tr>
<td></td>
<td>NM_014379</td>
<td>Neuronal potassium</td>
</tr>
<tr>
<td>SPSY_HUMAN</td>
<td>NM_004595</td>
<td>Spermine synthase 3</td>
</tr>
<tr>
<td>HSAC003848</td>
<td>0 AL050204</td>
<td>Homo sapiens mRNA; 0.3220900 cDNA</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>DKFZp586F1223 (from clone DKFZp586F1223)</td>
</tr>
<tr>
<td>Q8NG17</td>
<td>0 AK057423</td>
<td>Homo sapiens cDNA 0.3214772 FLJ32861 fis, clone</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>TESTI2003589</td>
</tr>
<tr>
<td>Q9Y6H1</td>
<td>LOC51142</td>
<td>NM_016139 16.7Kd protein</td>
</tr>
<tr>
<td>Q8TCZ2</td>
<td>DKFZP761H2</td>
<td>NM_031462 Hypothetical protein 0.2994475</td>
</tr>
<tr>
<td>MAT3_HUMAN</td>
<td>0.018834</td>
<td>MATR3 3</td>
</tr>
<tr>
<td>TG37_HUMAN</td>
<td>NM_006531</td>
<td>TG737</td>
</tr>
<tr>
<td>TRIO_HUMAN</td>
<td>NM_007118</td>
<td>Trio functional domain (PTPRF interacting)</td>
</tr>
<tr>
<td>PIMT_HUMAN</td>
<td>NM_005389</td>
<td>PCMT1</td>
</tr>
<tr>
<td>HSAC018541</td>
<td>0 AK025055</td>
<td>Homo sapiens cDNA: 0.2973276 FLJ21402 fis, clone COL03734</td>
</tr>
<tr>
<td>FXO4_HUMAN</td>
<td>NM_005938</td>
<td>MLLT7</td>
</tr>
<tr>
<td>HSAC005508</td>
<td>LOC57099</td>
<td>NM_020371 Cell death regulator 0.3122171 aven</td>
</tr>
<tr>
<td>HSAC013183</td>
<td>0 AL049328</td>
<td>Homo sapiens mRNA; 0.3001538 cDNA DKFZp564E026</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>from clone DKFZp564E026</td>
</tr>
<tr>
<td>Gene</td>
<td>Accession</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
<td>--</td>
</tr>
<tr>
<td>JAK1_HUMAN</td>
<td>NM_002227</td>
<td>50651 - Janus kinase 1 (a protein tyrosine kinase)</td>
</tr>
<tr>
<td>HSAC018490</td>
<td>0 AK024712</td>
<td>306702 - Homo sapiens cDNA: 32265908 FLJ21059 fis. clone</td>
</tr>
<tr>
<td>NHR1_HUMAN</td>
<td>SLC9A3R1</td>
<td>184276 - Solute carrier family 9 (sodium/hydrogen exchanger), isoform 3</td>
</tr>
<tr>
<td>HSAC018263</td>
<td>0 AL109730</td>
<td>306331 0.3024986 Homo sapiens mRNA: full length insert cDNA</td>
</tr>
<tr>
<td>IRK3_HUMAN</td>
<td>KCNJ3</td>
<td>37169 - Potassium inwardly-rectifying channel J, member 3</td>
</tr>
<tr>
<td>CTR1_HUMAN</td>
<td>0 AL050021</td>
<td>14846 - Homo sapiens mRNA: DKFZp564D016</td>
</tr>
<tr>
<td>FAN_HUMAN</td>
<td>NSMAF</td>
<td>78887 0.3161349 Neutral sphingomyelinase (N-SMase) activation associated factor</td>
</tr>
<tr>
<td>Q96NA9</td>
<td>MEG3</td>
<td>112844 0.2518062 Maternally expressed</td>
</tr>
<tr>
<td>HSAC020071</td>
<td>0 AK057520</td>
<td>345390 - Homo sapiens cDNA: 3344247 FLJ32958 fis. clone</td>
</tr>
<tr>
<td>EML1_HUMAN</td>
<td>EMAPL</td>
<td>12451 0.2953237 Echinoderm microtubule-associated protein-like</td>
</tr>
<tr>
<td>O75915</td>
<td>JWA</td>
<td>92384 0.3125817 Vitamin A responsive; cytoskeleton related</td>
</tr>
<tr>
<td>TRKB_HUMAN</td>
<td>0 AJ420458</td>
<td>351930 - Homo sapiens mRNA: 3097519 full length insert cDNA</td>
</tr>
<tr>
<td>Q9P1S1</td>
<td>FLJ10116</td>
<td>79741 - Hypothetical protein</td>
</tr>
<tr>
<td>Q9B21</td>
<td>0 BC016153</td>
<td>283552 - Homo sapiens, similar to hypothetical protein FLJ10134, clone</td>
</tr>
<tr>
<td>RB3D_HUMAN</td>
<td>GOV</td>
<td>8036 - Glioblastoma overexpressed</td>
</tr>
<tr>
<td>CGD1_HUMAN</td>
<td>CCND1</td>
<td>82932 0.2829885 Cyclin D1 (PRAD1: parathyroid adenomatosis 1)</td>
</tr>
<tr>
<td>NPS1_HUMAN</td>
<td>NIPSNAP1</td>
<td>173878 0.2922990 Nipsnap homolog 1 (C. elegans)</td>
</tr>
<tr>
<td>Gene</td>
<td>Accession</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>-----------</td>
<td>---</td>
</tr>
<tr>
<td>COR3_HUMAN</td>
<td>NM_005416</td>
<td>Small proline-rich protein 3</td>
</tr>
<tr>
<td>LDHA_HUMAN</td>
<td>NM_005566</td>
<td>Lactate dehydrogenase A</td>
</tr>
<tr>
<td>KPCI_HUMAN</td>
<td>NM_002740</td>
<td>Protein kinase C, iota</td>
</tr>
<tr>
<td>IF42_HUMAN</td>
<td>NM_001967</td>
<td>Eukaryotic translation initiation factor 4A, isoform 2</td>
</tr>
<tr>
<td>HSAC009161</td>
<td>0AK026955</td>
<td>Homo sapiens cDNA: FLJ23302 fis, clone HEP11143</td>
</tr>
<tr>
<td>PLE1_HUMAN</td>
<td>NM_000445</td>
<td>Plectin 1, intermediate filament binding protein, 500kD</td>
</tr>
<tr>
<td>HSAC014877</td>
<td>0BE961032</td>
<td>Human DNA sequence from BAC 15E1 on chromosome 12. Contains Cytochrome C Oxidase Polypeptide Via-liv</td>
</tr>
<tr>
<td>O94920</td>
<td>KIAA0831</td>
<td>KIAA0831 protein</td>
</tr>
<tr>
<td>ACBP_HUMAN</td>
<td>NM_020548</td>
<td>Diazepam binding inhibitor (GABA receptor modulator, acyl-Coenzyme A binding protein)</td>
</tr>
<tr>
<td>HSAC000440</td>
<td>HBP17</td>
<td>Heparin-binding growth factor binding protein</td>
</tr>
<tr>
<td>MY10_HUMAN</td>
<td>NM_012334</td>
<td>Myosin X</td>
</tr>
<tr>
<td>CP2B_HUMAN</td>
<td>NM_000785</td>
<td>Cytochrome P450, subfamily XXVII B (25-hydroxyvitamin D-1-alpha-hydroxylase), polypeptide 1</td>
</tr>
<tr>
<td>HSAC007525</td>
<td>0AL133568</td>
<td>Homo sapiens mRNA; cDNA DFKZ434N197 (from clone DFKZ434N197)</td>
</tr>
<tr>
<td>Q9BV47</td>
<td>MGC1136</td>
<td>Hypothetical protein</td>
</tr>
<tr>
<td>IHA_HUMAN</td>
<td>NM_002191</td>
<td>Inhibin, alpha</td>
</tr>
<tr>
<td>COXM_HUMA</td>
<td>NM_001866</td>
<td>Cytochrome c oxidase subunit VIIb</td>
</tr>
<tr>
<td>SM4D_HUMAN</td>
<td>NM_006378</td>
<td>Sema domain, immunoglobulin domain (Ig), transmembrane domain (TM) and short</td>
</tr>
<tr>
<td>Gene</td>
<td>Accession</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
<td>--</td>
</tr>
<tr>
<td>SZ06_HUMAN</td>
<td>NM_002993</td>
<td>Small inducible cytokine subfamily B (Cys-X-Cys), member 6 (granulocyte chemotactic protein 2)</td>
</tr>
<tr>
<td>DTNA_HUMAN</td>
<td>0 AK054766</td>
<td>Homo sapiens cDNA</td>
</tr>
<tr>
<td>Q9H6L8</td>
<td>FLJ22559</td>
<td>Hypothetical protein</td>
</tr>
<tr>
<td>LDHA_HUMAN</td>
<td>NM_005566</td>
<td>Lactate dehydrogenase</td>
</tr>
<tr>
<td>LDHA_HUMAN</td>
<td>NM_005566</td>
<td>Lactate dehydrogenase</td>
</tr>
<tr>
<td>Q8NAZ8</td>
<td>MAIL</td>
<td>Molecule possessing ankyrin repeats induced by lipopolysaccharide (MAIL), homolog of mouse</td>
</tr>
<tr>
<td>CBX3_HUMAN</td>
<td>NM_016587</td>
<td>Chromobox homolog 3 (HP1 gamma homolog, Drosophila)</td>
</tr>
<tr>
<td>CLF6_HUMAN</td>
<td>FLJ20396</td>
<td>Hypothetical protein</td>
</tr>
<tr>
<td>Q9Y4H4</td>
<td>C6orf9</td>
<td>Chromosome 6 open reading frame 9</td>
</tr>
<tr>
<td>HSAC018947</td>
<td>FLJ10257</td>
<td>Hypothetical protein</td>
</tr>
<tr>
<td>O60687</td>
<td>SRPUL</td>
<td>Sushi-repept protein</td>
</tr>
<tr>
<td>ETV6_HUMAN</td>
<td>ETV6</td>
<td>Ets variant gene 6 (TEL oncogene)</td>
</tr>
<tr>
<td>BIR2_HUMAN</td>
<td>BIRC2</td>
<td>Baculoviral IAP repeat-containing 2</td>
</tr>
<tr>
<td>IRS2_HUMAN</td>
<td>IRS2</td>
<td>Insulin receptor</td>
</tr>
<tr>
<td>L10K_HUMAN</td>
<td>HSPC023</td>
<td>HSPC023 protein</td>
</tr>
<tr>
<td>HSAC017376</td>
<td>BF541376</td>
<td>ESTs, Weakly similar to FRHUL ferritin light chain [H.sapiens]</td>
</tr>
<tr>
<td>LDHA_HUMAN</td>
<td>NM_005566</td>
<td>Lactate dehydrogenase</td>
</tr>
<tr>
<td>D103_HUMAN</td>
<td>DEFB3</td>
<td>Defensin, beta 3</td>
</tr>
<tr>
<td>Q9BUC9</td>
<td>DAP</td>
<td>Death-associated protein</td>
</tr>
<tr>
<td>Q9BSU0</td>
<td>FLJ22457</td>
<td>Hypothetical protein</td>
</tr>
<tr>
<td>LDHA_HUMAN</td>
<td>NM_005566</td>
<td>Lactate dehydrogenase</td>
</tr>
<tr>
<td>TPTE_HUMAN</td>
<td>TPTE</td>
<td>Transmembrane</td>
</tr>
<tr>
<td>Accession</td>
<td>Description</td>
<td>Reference</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>-----------</td>
</tr>
<tr>
<td>HSAC018269</td>
<td>0 AL110206</td>
<td>308339 0.2914916 Homo sapiens mRNA; cDNA</td>
</tr>
<tr>
<td>Q8WWY3 PRPF31</td>
<td>NM_015629</td>
<td>183438 0.2899259 PRP31 pre-mRNA</td>
</tr>
<tr>
<td>Q9NWG1 SDCCAG1</td>
<td>NM_004713</td>
<td>54900 0.2732585 Serologically defined colon cancer antigen 1</td>
</tr>
<tr>
<td>ID1_HUMAN ID1</td>
<td>NM_002165</td>
<td>75424 - Inhibitor of DNA binding 1, dominant negative helix-loop-helix protein</td>
</tr>
<tr>
<td>HSAC018258</td>
<td>0 AL080208</td>
<td>306325 - Homo sapiens mRNA; cDNA</td>
</tr>
<tr>
<td>E2F5_HUMAN E2F5</td>
<td>NM_001951</td>
<td>2331 - E2F transcription factor 5, p130-binding</td>
</tr>
<tr>
<td>GPX7_HUMAN CL683</td>
<td>NM_015696</td>
<td>43728 0.2787642 Weakly similar to glutathione peroxidase 2</td>
</tr>
<tr>
<td>AMD1_HUMAN AMPD1</td>
<td>NM_000036</td>
<td>89570 0.3064835 Adenosine monophosphate deaminase 1 (isoform M)</td>
</tr>
<tr>
<td>SDC1_HUMAN SDC1</td>
<td>NM_002997</td>
<td>82109 - Syndecan 1</td>
</tr>
<tr>
<td>HSAC010708 FLJ10852</td>
<td>NM_019028</td>
<td>95744 - Hypothetical protein similar to ankyrin repeat-containing protein AKR1</td>
</tr>
<tr>
<td>HSAC016387</td>
<td>0 AK023404</td>
<td>255890 - Homo sapiens cDNA OVARC1001950</td>
</tr>
<tr>
<td>MU81_HUMAN MUS81</td>
<td>NM_025128</td>
<td>288798 0.3022577 MUS81 endonuclease</td>
</tr>
<tr>
<td>LDHA_HUMAN LDHA</td>
<td>NM_005566</td>
<td>2795 0.2943370 Lactate dehydrogenase</td>
</tr>
<tr>
<td>NFC2_HUMAN NFATC2</td>
<td>NM_012340</td>
<td>248037 - Nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent</td>
</tr>
<tr>
<td>CAV2_HUMAN CAV2</td>
<td>NM_001233</td>
<td>139851 0.2857525 Caveolin 2</td>
</tr>
<tr>
<td>HSAC012923</td>
<td>0 AK024243</td>
<td>130874 - Homo sapiens cDNA</td>
</tr>
<tr>
<td>RAG2_HUMAN RAG2</td>
<td>AF080577</td>
<td>159376 0.2705428 Recombination</td>
</tr>
<tr>
<td>Gene ID</td>
<td>Symbol</td>
<td>Accession</td>
</tr>
<tr>
<td>----------------</td>
<td>------------</td>
<td>-----------</td>
</tr>
<tr>
<td>HSAC001602</td>
<td>TOM1L2</td>
<td>AK055959</td>
</tr>
<tr>
<td>HSAC013938</td>
<td>FLJ11585</td>
<td>NM_023075</td>
</tr>
<tr>
<td>WNT3_HUMA</td>
<td>WNT3</td>
<td>NM_030753</td>
</tr>
<tr>
<td>P02570</td>
<td>ACTB</td>
<td>NM_001101</td>
</tr>
<tr>
<td>Y469_HUMAN</td>
<td>KIAA0469</td>
<td>NM_014851</td>
</tr>
<tr>
<td>ALDR_HUMAN</td>
<td>AKR1B1</td>
<td>NM_001628</td>
</tr>
<tr>
<td>HSAC003731</td>
<td></td>
<td>0AK023559</td>
</tr>
<tr>
<td>Q9Y605</td>
<td>PGR1</td>
<td>NM_033296</td>
</tr>
<tr>
<td>KFP3_HUMAN</td>
<td>KIFAP3</td>
<td>NM_014970</td>
</tr>
<tr>
<td>LDHA_HUMAN</td>
<td>LDHA</td>
<td>NM_005666</td>
</tr>
<tr>
<td>HSAC016288</td>
<td></td>
<td>0AL080073</td>
</tr>
<tr>
<td>HSAC003517</td>
<td></td>
<td>0AL133611</td>
</tr>
<tr>
<td>CPG2_HUMAN</td>
<td>LOC51137</td>
<td>NM_016128</td>
</tr>
<tr>
<td>TS22_HUMAN</td>
<td>TSC22</td>
<td>AK027071</td>
</tr>
<tr>
<td>S108_HUMAN</td>
<td>S100A8</td>
<td>NM_002964</td>
</tr>
<tr>
<td>GLGB_HUMAN</td>
<td>GBE1</td>
<td>NM_000158</td>
</tr>
<tr>
<td>TCPZ_HUMAN</td>
<td>CCT6A</td>
<td>NM_001762</td>
</tr>
<tr>
<td>NUDM_HUMA</td>
<td>NDUFA10</td>
<td>NM_004544</td>
</tr>
<tr>
<td>Accession</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>Q9P005</td>
<td>HSPC159</td>
<td></td>
</tr>
<tr>
<td>HSAC013665</td>
<td>0 BC009462</td>
<td>Homo sapiens, Similar to RIKEN cDNA 2310038H17 gene, clone MGC:15974, IMAGE:3542748, mRNA, complete c</td>
</tr>
<tr>
<td>LDHA_HUMAN</td>
<td>LDHA</td>
<td>2795 0.2903858 Lactate dehydrogenase A</td>
</tr>
<tr>
<td>Q96B64</td>
<td>C1orf29</td>
<td></td>
</tr>
<tr>
<td>OSB2_HUMAN</td>
<td>OSBP2</td>
<td>7740 0.2741057 Oxysterol binding protein 2</td>
</tr>
<tr>
<td>IMD2_HUMAN</td>
<td>IMPDH2</td>
<td>75432 0.2550534 IMP (inosine monophosphate) dehydrogenase 2</td>
</tr>
<tr>
<td>NID2_HUMAN</td>
<td>NID2</td>
<td>82733 0.2691638 Nidogen 2</td>
</tr>
<tr>
<td>HSAC019850</td>
<td>0 AJ420542</td>
<td></td>
</tr>
<tr>
<td>Q8WW54</td>
<td>LOC51326</td>
<td></td>
</tr>
<tr>
<td>ELM1_HUMAN</td>
<td>ELMO1</td>
<td>31463 0.2725925 Engulfment and cell motility 1 (ced-12 homolog, C. elegans)</td>
</tr>
<tr>
<td>HSAC014487</td>
<td>KIAA1733</td>
<td>191979 0.2678145</td>
</tr>
<tr>
<td>ENOB_HUMA</td>
<td>ENO3</td>
<td>118804 0.2609465 Enolase 3, (beta, muscle)</td>
</tr>
<tr>
<td>LDHA_HUMAN</td>
<td>LDHA</td>
<td>2795 0.2955842 Lactate dehydrogenase A</td>
</tr>
<tr>
<td>OM07_HUMAN</td>
<td>LOC54543 AK027539</td>
<td>112318 0.2842247 6.2 kd protein</td>
</tr>
<tr>
<td>HSAC003197</td>
<td>0 AK025726</td>
<td></td>
</tr>
<tr>
<td>Q92922</td>
<td>SMARCC1</td>
<td></td>
</tr>
<tr>
<td>Q9Y2F1</td>
<td>KIAA0942</td>
<td></td>
</tr>
<tr>
<td>SIVA_HUMAN</td>
<td>SIVA</td>
<td>112058 0.2653505 CD27-binding (Siva) protein</td>
</tr>
<tr>
<td>LMA3_HUMAN</td>
<td>LAMA3</td>
<td>83450 0.2531057 Laminin, alpha 3 (nicein (160kD), kalinin (165kD), BM600</td>
</tr>
</tbody>
</table>

Note: The table entries are likely related to gene identifiers and their functions, possibly from a scientific context such as a catalog or database entry.
<table>
<thead>
<tr>
<th>Gene Name</th>
<th>Accession</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSAC010931</td>
<td>0AK054565</td>
<td>Homo sapiens, clone IMAGE:3632168, mRNA (150kD), epilegrin</td>
</tr>
<tr>
<td>ALM1_HUMAN</td>
<td>NM_002313</td>
<td>Actin binding LIM protein</td>
</tr>
<tr>
<td>TKNK_HUMAN</td>
<td>NM_013251</td>
<td>Tachykinin 3 (neuromedin K, neurokinin beta)</td>
</tr>
<tr>
<td>HPS3_HUMAN</td>
<td>AY033141</td>
<td>Hermansky-Pudlak syndrome</td>
</tr>
<tr>
<td>HSAC021198</td>
<td>0AK055550</td>
<td>Homo sapiens cDNA, HLUNGI0000030</td>
</tr>
<tr>
<td>Q9H657</td>
<td>FLJ22593</td>
<td>Hypothetical protein</td>
</tr>
<tr>
<td>Q14244</td>
<td>NM_003980</td>
<td>Microtubule-associated protein</td>
</tr>
<tr>
<td>SPB7_HUMAN</td>
<td>NM_003784</td>
<td>Serine (or cysteine) protein inhibitor, clade B (ovalbumin), member 7</td>
</tr>
<tr>
<td>TR1A_HUMAN</td>
<td>NM_001065</td>
<td>Tumor necrosis factor receptor superfamily, member 1A</td>
</tr>
<tr>
<td>TPP2_HUMAN</td>
<td>NM_003291</td>
<td>Tripeptidyl peptidase II</td>
</tr>
<tr>
<td>RU17_HUMAN</td>
<td>NM_003089</td>
<td>Small nuclear ribonucleoprotein 70kD polypeptide (RNP antigen)</td>
</tr>
<tr>
<td>RB6A_HUMAN</td>
<td>AK057157</td>
<td>RAB6A, member RAS oncogene family</td>
</tr>
<tr>
<td>NDKB_HUMAN</td>
<td>NM_002512</td>
<td>Non-metastatic cells 2, 70kD (Ku antigen), expressed in G22P1</td>
</tr>
<tr>
<td>KU70_HUMAN</td>
<td>NM_001469</td>
<td>Thyroid autoantigen</td>
</tr>
<tr>
<td>Q8IVU3</td>
<td>FLJ20637</td>
<td>Hypothetical protein</td>
</tr>
<tr>
<td>TPSN_HUMAN</td>
<td>AF029750</td>
<td>TAP binding protein</td>
</tr>
<tr>
<td>ZEP1_HUMAN</td>
<td>NM_002114</td>
<td>Human immunodeficiency virus type I enhancer binding protein</td>
</tr>
<tr>
<td>Q9H8B3</td>
<td>0AK023854</td>
<td>Homo sapiens cDNA, HLUNGI0000030</td>
</tr>
</tbody>
</table>

SUBSTITUTE SHEET (RULE 26)
<table>
<thead>
<tr>
<th>Gene Name</th>
<th>Accession</th>
<th>Reference</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSAC018635</td>
<td>0AK026731</td>
<td>306873</td>
<td>MYOSIN LIGHT CHAIN KINASE, SMO Homo sapiens cDNA: FLJ23078 fis, clone LNG05870</td>
</tr>
<tr>
<td>HSAC018455</td>
<td>0AK024098</td>
<td>306663</td>
<td>Homo sapiens cDNA: FLJ14036 fis, clone HEMBA1004709</td>
</tr>
<tr>
<td>ECG2_HUMAN EGG2</td>
<td>NM_032566</td>
<td>244569</td>
<td>Esophagus cancer-related gene-2</td>
</tr>
<tr>
<td>DLK_HUMAN DLK1</td>
<td>NM_003836</td>
<td>169228</td>
<td>Delta-like 1 homolog</td>
</tr>
<tr>
<td>LDHA_HUMAN LDHA</td>
<td>NM_005566</td>
<td>2795</td>
<td>Lactate dehydrogenase</td>
</tr>
<tr>
<td>CRTC_HUMAN CALR</td>
<td>NM_004343</td>
<td>16488</td>
<td>Calreticulin</td>
</tr>
<tr>
<td>HSAC013371</td>
<td>LOC51087</td>
<td>142989</td>
<td>Germ cell specific Y-box binding protein</td>
</tr>
<tr>
<td>HSAC011127</td>
<td>0AL133645</td>
<td>101651</td>
<td>Homo sapiens mRNA; DKFZp434C107</td>
</tr>
<tr>
<td>BAA09603</td>
<td>DJ-1</td>
<td>10958</td>
<td>RNA-binding protein regulatory subunit</td>
</tr>
<tr>
<td>ATF7_HUMAN ATF7</td>
<td>NM_006856</td>
<td>55888</td>
<td>Activating transcription</td>
</tr>
<tr>
<td>RHG6_HUMAN ARHGAP6</td>
<td>NM_001174</td>
<td>250830</td>
<td>Rho GTPase activating</td>
</tr>
<tr>
<td>EPOR_HUMAN EPOR</td>
<td>NM_000121</td>
<td>89548</td>
<td>Erythropoietin receptor</td>
</tr>
<tr>
<td>SN23_HUMAN SNAP23</td>
<td>BC003686</td>
<td>184376</td>
<td>Synaptosomal-associated protein, 23kD</td>
</tr>
<tr>
<td>HSAC018299</td>
<td>0AK000293</td>
<td>306391</td>
<td>Homo sapiens cDNA: FLJ20286 fis, clone HEP04358</td>
</tr>
<tr>
<td>AMD_HUMAN PAM</td>
<td>NM_000919</td>
<td>83920</td>
<td>Peptidylglycine alpha-amidating monoxygenase</td>
</tr>
<tr>
<td>MAGC_HUMA MAGEA12</td>
<td>NM_005367</td>
<td>169246</td>
<td>Melanoma antigen, family A, 12</td>
</tr>
<tr>
<td>HSAC011887</td>
<td>0AK021693</td>
<td>113660</td>
<td>Homo sapiens cDNA: FLJ11631 fis, clone HEMBA1004267</td>
</tr>
<tr>
<td>HSAC002243</td>
<td>0U80766</td>
<td>13252</td>
<td>Human EST clone 22453 mariner transposon Hsmar1 sequence</td>
</tr>
<tr>
<td>LDHA_HUMAN LDHA</td>
<td>NM_005566</td>
<td>2795</td>
<td>Lactate dehydrogenase</td>
</tr>
<tr>
<td>HSAC015540</td>
<td>0AK021431</td>
<td>235543</td>
<td>Homo sapiens cDNA</td>
</tr>
<tr>
<td>Accession</td>
<td>Description</td>
<td>Score</td>
<td>Position</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>-------</td>
<td>-----------</td>
</tr>
<tr>
<td>VTNC_HUMAN VTN</td>
<td>NM_000638</td>
<td></td>
<td>0.2718492 FLJ11369 fis, clone</td>
</tr>
<tr>
<td>RS4Y_HUMAN RPS4Y</td>
<td>NM_001008</td>
<td></td>
<td>180911 0.2534960 Ribosomal protein S4,</td>
</tr>
<tr>
<td>Q9NXV4 FLJ20038</td>
<td>AL117436</td>
<td></td>
<td>72071 0.2341145 Hypothetical protein</td>
</tr>
<tr>
<td>LDHA_HUMAN LDHA</td>
<td>NM_005566</td>
<td></td>
<td>2795 0.2872169 Lactate dehydrogenase</td>
</tr>
<tr>
<td>RT36_HUMAN MRPS36</td>
<td>NM_033281</td>
<td></td>
<td>41182 0.2722493 ribosomal protein S36</td>
</tr>
<tr>
<td>HSAC016670</td>
<td>AF127771</td>
<td></td>
<td>269645 Homo sapiens cell-line</td>
</tr>
<tr>
<td>HS71_HUMAN HSPA1A</td>
<td>NM_005345</td>
<td></td>
<td>89977 0.2316681 Heat shock 70kd</td>
</tr>
<tr>
<td>SPCQ_HUMA SPTBN4</td>
<td>NM_025213</td>
<td></td>
<td>32706 0.3057358 erythrocytic 4</td>
</tr>
<tr>
<td>Q00007 PPP2R2A</td>
<td>NM_002717</td>
<td></td>
<td>179574 0.2929337 regulatory subunit B</td>
</tr>
<tr>
<td>P02570 ACTB</td>
<td>NM_001101</td>
<td></td>
<td>288061 0.2890048 Actin, beta</td>
</tr>
<tr>
<td>PSS1_HUMAN PTDSS1</td>
<td>NM_014754</td>
<td></td>
<td>77329 0.274516 Phosphatidylerine</td>
</tr>
<tr>
<td>RBP1_HUMAN RALBP1</td>
<td>NM_006788</td>
<td></td>
<td>75447 0.2820016-alpha isoform</td>
</tr>
<tr>
<td>Q85WL8</td>
<td>AK055310</td>
<td></td>
<td>65771 Homo sapiens cDNA</td>
</tr>
<tr>
<td>HSAC017300</td>
<td>AL137712</td>
<td></td>
<td>278565 0.2497968 Homo sapiens mRNA;</td>
</tr>
<tr>
<td>SPL1_HUMAN SPARCL1</td>
<td>NM_004684</td>
<td></td>
<td>75445 0.2600991 SPARC-like 1 (mast9,</td>
</tr>
<tr>
<td>Q13018 PLA2R1</td>
<td>U17033</td>
<td></td>
<td>171945 0.2569381 receptor 1, 180kd</td>
</tr>
<tr>
<td>Q9NPE2 NEUGRIN</td>
<td>NM_016645</td>
<td></td>
<td>323467 0.2378165 Mesenchymal stem cell</td>
</tr>
<tr>
<td>Q9H652 MGC4171</td>
<td>NM_024307</td>
<td></td>
<td>289015 0.3202480 MGC4171</td>
</tr>
<tr>
<td>K22E_HUMAN KRT2A</td>
<td>NM_000423</td>
<td></td>
<td>707 Keratin 2A (epidermal</td>
</tr>
</tbody>
</table>

SUBSTITUTE SHEET (RULE 26)
<table>
<thead>
<tr>
<th>Accession</th>
<th>Description</th>
<th>Accession</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>KPT2_HUMAN</td>
<td>PCTK2</td>
<td>NM_002595</td>
<td>183302 - PCTAIRE protein kinase 2</td>
</tr>
<tr>
<td>Q96B23</td>
<td>Homo sapiens, clone</td>
<td>BC016149</td>
<td>33862 - IMAGE:4040087, mRNA, complete cds</td>
</tr>
<tr>
<td>DAF_HUMAN</td>
<td>DAF</td>
<td>NM_000574</td>
<td>1369 - Decay accelerating</td>
</tr>
<tr>
<td>Q09753</td>
<td>DEFB1</td>
<td>NM_005218</td>
<td>32949 - Defensin, beta 1</td>
</tr>
<tr>
<td>HSAC001158</td>
<td>0 AK026673</td>
<td></td>
<td>6127 0.2512456 Homo sapiens cDNA: L1015229 f, clone L1015229</td>
</tr>
<tr>
<td>DECR_HUMA</td>
<td>DECR1</td>
<td>NM_001359</td>
<td>81548 0.2149373 2,4-dienoyl CoA reductase 1, mitochondrial</td>
</tr>
<tr>
<td>CIT2_HUMAN</td>
<td>CITED2</td>
<td>AF109161</td>
<td>82071 - Cbp/p300-interacting transactivator, with Glu/Asp-rich carboxy-</td>
</tr>
<tr>
<td>IPO4_HUMAN</td>
<td>FLJ23338</td>
<td>NM_024658</td>
<td>61790 0.2181433 Hypothetical protein</td>
</tr>
<tr>
<td>HSAC009416</td>
<td>0 AK023616</td>
<td></td>
<td>288949 0.2729191 Homo sapiens cDNA: FLJ13554 f, clone PLACE1007478</td>
</tr>
<tr>
<td>SPEE_HUMAN</td>
<td>SRM</td>
<td>NM_003132</td>
<td>76244 0.2620525 Spermidine synthase</td>
</tr>
<tr>
<td>GLT2_HUMAN</td>
<td>GALNT2</td>
<td>NM_004481</td>
<td>130181 0.2516655 UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-</td>
</tr>
<tr>
<td>EF1G_HUMAN</td>
<td>EEF1G</td>
<td>BC004215</td>
<td>2186 0.2425159 Eukaryotic translation elongation factor 1 gamma</td>
</tr>
<tr>
<td>IF42_HUMAN</td>
<td>EIF4A2</td>
<td>NM_001967</td>
<td>173912 0.2248742 Eukaryotic translation initiation factor 4A, isoform 2</td>
</tr>
<tr>
<td>Q9P221</td>
<td>FLJ20654</td>
<td>AB040940</td>
<td>5131 - Hypothetical protein</td>
</tr>
<tr>
<td>HSAC005138</td>
<td>KIAA0303</td>
<td>AB002301</td>
<td>54985 - KIAA0303 protein</td>
</tr>
<tr>
<td>KLK7_HUMAN</td>
<td>KLK7</td>
<td>NM_005046</td>
<td>151254 - Kallikrein 7</td>
</tr>
<tr>
<td>ITP1_HUMAN</td>
<td>ICAP-1A</td>
<td>NM_004763</td>
<td>173274 0.2457260 Integrin cytoplasmic domain-associated</td>
</tr>
<tr>
<td>Gene</td>
<td>Accession</td>
<td>Value</td>
<td>Function</td>
</tr>
<tr>
<td>----------------------</td>
<td>-----------</td>
<td>-------</td>
<td>---</td>
</tr>
<tr>
<td>CT26_HUMAN C2orf26</td>
<td>AL117439</td>
<td>302122</td>
<td>Chromosome 20 open reading frame 6</td>
</tr>
<tr>
<td>MK06_HUMAN MAPK6</td>
<td>NM_002748</td>
<td>271980</td>
<td>Mitogen-activated protein kinase 6</td>
</tr>
<tr>
<td>HSAC004393</td>
<td>0 AF144233</td>
<td>37372</td>
<td>Homo sapiens DNA binding peptide mRNA, partial cds</td>
</tr>
<tr>
<td>UBC3_HUMAN CDC34</td>
<td>NM_004359</td>
<td>76932</td>
<td>Cell division cycle 34 Cell division cycle 34</td>
</tr>
<tr>
<td>HSAC014234</td>
<td>0 AK056507</td>
<td>183953</td>
<td>Homo sapiens cDNA FLJ31945 cDNA, clone NT2RP7006980</td>
</tr>
<tr>
<td>BRAF_HUMAN BRAF</td>
<td>NM_004333</td>
<td>622</td>
<td>V-raf murine sarcoma viral oncogene homolog B1</td>
</tr>
<tr>
<td>HSAC019969 COE2</td>
<td>AK001144</td>
<td>343814</td>
<td>0.2367051 Similar to TRANSCRIPTION FACTOR COE2 (EARLY B-CELL FACTOR 2) (EBF-2) (OLF-1/EBF-LIKE 3) (OE-3) (OE-5)</td>
</tr>
<tr>
<td>HSAC019505</td>
<td>0 AY039026</td>
<td>334395</td>
<td>Homo sapiens immunoglobulin mu chain antibody MO30 (IgM) mRNA, complete cds</td>
</tr>
<tr>
<td>EMP1_HUMAN EMP1</td>
<td>NM_001423</td>
<td>79368</td>
<td>Epithelial membrane protein 1</td>
</tr>
<tr>
<td>Q9NR16 PYY2</td>
<td>NM_021093</td>
<td>157195</td>
<td>Peptide YY, 2 (seminalplasmin)</td>
</tr>
<tr>
<td>HSAC008290 MGC5618</td>
<td>BC016015</td>
<td>177781</td>
<td>Hypothetical protein MGC5618</td>
</tr>
<tr>
<td>O94927 KIAA0841</td>
<td>AB020648</td>
<td>742</td>
<td>KIAA0841 protein</td>
</tr>
<tr>
<td>PRL1_HUMAN PROL1</td>
<td>NM_021225</td>
<td>87198</td>
<td>Proline-rich 1</td>
</tr>
<tr>
<td>Q9NWQ8 PAG</td>
<td>NM_018440</td>
<td>266175</td>
<td>Phosphoprotein associated with glycosphingolipid-enriched microdomains</td>
</tr>
<tr>
<td>HSAC009739</td>
<td>0 AK021991</td>
<td>296675</td>
<td>Homo sapiens cDNA FLJ11929 cDNA, clone HEMBB1000434</td>
</tr>
<tr>
<td>TAP4_HUMAN TFAP4</td>
<td>NM_003223</td>
<td>3005</td>
<td>Transcription factor 0.2467679 AP-4 (activating enhancer binding protein 4)</td>
</tr>
<tr>
<td>CSR3_HUMAN CSRP3</td>
<td>NM_003476</td>
<td>83577</td>
<td>Cysteine and glycine-rich protein 3 (cardiac</td>
</tr>
</tbody>
</table>

SUBSTITUTE SHEET (RULE 26)
<table>
<thead>
<tr>
<th>Gene</th>
<th>Accession</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MYH7_HUMAN</td>
<td>NM_000257</td>
<td>LIM protein) 929 0.2241718 Myosin, heavy 2 polypeptide 7, cardiac muscle, beta</td>
</tr>
<tr>
<td>Q13513</td>
<td>NM_014262</td>
<td>Hypothetical protein B 46458 0.2822699</td>
</tr>
<tr>
<td>CU97_HUMAN</td>
<td>AL161960</td>
<td>FLJ21324 4746 - Hypothetical protein 0.2718952 FLJ21324 4</td>
</tr>
<tr>
<td>Q96EL2</td>
<td>NM_032014</td>
<td>Mitochondrial ribosomal protein S24 284286 0.2690648</td>
</tr>
<tr>
<td>PYR1_HUMAN</td>
<td>NM_004341</td>
<td>CAD 154868 0.2661877 Carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroyorotase 6</td>
</tr>
<tr>
<td>SPS2_HUMAN</td>
<td>NM_012248</td>
<td>Selenophosphate synthetase 2 118725 0.2357810 Selenophosphate 1</td>
</tr>
<tr>
<td>HSAC005553</td>
<td>KIAA0483</td>
<td>AB007952 64691 - KIAA0483 protein 0.2310777 1</td>
</tr>
<tr>
<td>Q8NC10</td>
<td>NM_017729</td>
<td>FLJ20258 28907 - Hypothetical protein 0.2904440 FLJ20258 8</td>
</tr>
<tr>
<td>HSAC007558</td>
<td>0 AK024653</td>
<td>Homo sapiens cDNA: FLJ21000 fis, clone CAE03359 163440 0.2894283</td>
</tr>
<tr>
<td>Q96HT2</td>
<td>0 BC008122</td>
<td>Homo sapiens, clone 334931 0.2833892 MGC:18053 IMAGE:4148889, mRNA, complete cds 8</td>
</tr>
<tr>
<td>P02570</td>
<td>ACTB</td>
<td>NM_001101 288061 0.2809541 Actin, beta 7</td>
</tr>
<tr>
<td>Q96HG1</td>
<td>0 BC008642</td>
<td>Homo sapiens, clone 42239 0.2627103 IMAGE:3868989, mRNA, partial cds 6</td>
</tr>
<tr>
<td>Q9H5C5</td>
<td>FLJ23584</td>
<td>NM_024588 22195 - Hypothetical protein 0.2593342 FLJ23584 3</td>
</tr>
<tr>
<td>HSAC014930</td>
<td>0 AK022228</td>
<td>Homo sapiens cDNA 202577 0.2540353 FLJ12186 fis, clone MAMMA1000616 3</td>
</tr>
<tr>
<td>Q8ND68</td>
<td>PLVP</td>
<td>NM_031310 107125 0.2497362 Plasmalemma vesicle associated protein 2</td>
</tr>
<tr>
<td>Q9NPW0</td>
<td>DKFZp547M2</td>
<td>NM_018713 20981 - Hypothetical protein 0.2460412 DKFZp547M236 1</td>
</tr>
<tr>
<td>HSAC001572</td>
<td>0 AK055659</td>
<td>Homo sapiens cDNA 8037 0.2445160 FLJ31097 fis, clone IMR321000210 4</td>
</tr>
<tr>
<td>PARB_HUMAN</td>
<td>PARVB</td>
<td>NM_013327 8836 - Parvin, beta 0.2429299</td>
</tr>
<tr>
<td>HSAC009747</td>
<td>0 AK022065</td>
<td>Homo sapiens cDNA 296863 0.2325706 FLJ12003 fis, clone HEMBB1001537 4</td>
</tr>
<tr>
<td>RL3_HUMAN</td>
<td>RPL3</td>
<td>BC011860 119598 0.2261210 Ribosomal protein L3 7</td>
</tr>
<tr>
<td>CA1B_HUMAN</td>
<td>COL11A1</td>
<td>NM_001854 82772 0.2237349 Collagen, type XI,</td>
</tr>
<tr>
<td>Accession</td>
<td>Organism</td>
<td>Description</td>
</tr>
<tr>
<td>-------------</td>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>STAT_HUMAN</td>
<td>NM_003154</td>
<td>STAT alpha 1</td>
</tr>
<tr>
<td>HSAC015960</td>
<td>0 AF153502</td>
<td>Homo sapiens SNAIL1 protein</td>
</tr>
<tr>
<td>T1L1_HUMAN</td>
<td>NM_005486</td>
<td>Target of myb1-like 1 protein</td>
</tr>
<tr>
<td>Q8WV53</td>
<td>DKFZP564A216</td>
<td>Protein 8</td>
</tr>
<tr>
<td>HS9A_HUMAN</td>
<td>AK056446</td>
<td>Heat shock 90KD protein</td>
</tr>
<tr>
<td>BM88_HUMAN</td>
<td>NM_016564</td>
<td>BM88 antigen</td>
</tr>
<tr>
<td>HSAC021209</td>
<td>0 AK021479</td>
<td>Homo sapiens cDNA</td>
</tr>
<tr>
<td>TIG2_HUMAN</td>
<td>NM_002889</td>
<td>Retinoic acid receptor protein</td>
</tr>
<tr>
<td>ABC3_HUMAN</td>
<td>NM_001089</td>
<td>ATP-binding cassette, sub-family A (ABC1), member 3</td>
</tr>
<tr>
<td>Q96SG6</td>
<td>BC014899</td>
<td>Homo sapiens, clone</td>
</tr>
<tr>
<td>COP1_HUMAN</td>
<td>0 AK056926</td>
<td>Homo sapiens cDNA</td>
</tr>
<tr>
<td>HSAC005034</td>
<td>0 AF070602</td>
<td>Homo sapiens clone</td>
</tr>
<tr>
<td>Q9BV20</td>
<td>AK026666</td>
<td>Hypothetical protein</td>
</tr>
<tr>
<td>IL8_HUMAN</td>
<td>NM_000584</td>
<td>Interleukin 8</td>
</tr>
<tr>
<td>TGM3_HUMAN</td>
<td>NM_003245</td>
<td>Transglutaminase 3 (E polypeptide, protein-glutamine-gamma-glutamyltransferase)</td>
</tr>
<tr>
<td>FILA_HUMAN</td>
<td>BE551792</td>
<td>EST, Highly similar to A48118 major epidermal calcium-binding protein profilagrin [H. sapiens]</td>
</tr>
<tr>
<td>Q96DP9</td>
<td>AK055428</td>
<td>Homo sapiens cDNA</td>
</tr>
<tr>
<td>Q9C0G8</td>
<td>AB051482</td>
<td>Hypothetical protein</td>
</tr>
<tr>
<td>PPIG_HUMAN</td>
<td>NM_004792</td>
<td>Peptidyl-prolyl</td>
</tr>
<tr>
<td>Gene</td>
<td>Accession</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
<td>--</td>
</tr>
<tr>
<td>ANX1_HUMAN</td>
<td>NM_000700</td>
<td>Annexin A1</td>
</tr>
<tr>
<td>Q9H8H3</td>
<td>DKFZP586A0522</td>
<td>DKFZP586A0522 protein</td>
</tr>
<tr>
<td>ENO1_HUMAN</td>
<td>NM_001428</td>
<td>Enolase 1, (alpha)</td>
</tr>
<tr>
<td>SOX5_HUMAN</td>
<td>NM_006940</td>
<td>SRY (sex determining region Y)-box 5</td>
</tr>
<tr>
<td>MSX1_HUMAN</td>
<td>NM_002448</td>
<td>Msh homeo box homolog 1 (Drosophila)</td>
</tr>
<tr>
<td>HSAC019559</td>
<td>0AK021983</td>
<td>Homo sapiens cDNA FLJ11921 fis, clone</td>
</tr>
<tr>
<td>HSAC016142</td>
<td>0X76785</td>
<td>H.sapiens genomic DNA, integration site for Epstein-Barr virus</td>
</tr>
<tr>
<td>Q9HBZ7</td>
<td>FLJ11305</td>
<td>Hypothetical protein FLJ11305</td>
</tr>
<tr>
<td>CMST_HUMAN</td>
<td>SLC35A1</td>
<td>Solute carrier family 35</td>
</tr>
<tr>
<td>SIM1_HUMAN</td>
<td>NM_005068</td>
<td>Single-minded homolog 1 (Drosophila)</td>
</tr>
<tr>
<td>Q8IXU2</td>
<td>FLJ20190</td>
<td>Hypothetical protein FLJ20190</td>
</tr>
<tr>
<td>C166_HUMAN</td>
<td>Y10183</td>
<td>Activated leucocyte cell adhesion molecule</td>
</tr>
<tr>
<td>Q96AP0</td>
<td>24432</td>
<td>Hypothetical protein 24432</td>
</tr>
<tr>
<td>HSAC018926</td>
<td>0AK00989</td>
<td>Homo sapiens cDNA FLJ10127 fis, clone</td>
</tr>
<tr>
<td>HSAC019510</td>
<td>H2AFKP</td>
<td>H2A histone family, member K, pseudogene</td>
</tr>
<tr>
<td>HSAC021283</td>
<td>0BC018033</td>
<td>Homo sapiens, clone</td>
</tr>
<tr>
<td>Q9NQ25</td>
<td>CRACC</td>
<td>IMAGE:4800052, mRNA, partial cds</td>
</tr>
<tr>
<td>MGP_HUMAN</td>
<td>NM_000900</td>
<td>Matrix Glu protein</td>
</tr>
<tr>
<td>HSAC018514</td>
<td>0AK024924</td>
<td>Homo sapiens cDNA: FLJ21271 fis, clone</td>
</tr>
<tr>
<td>ABC6_HUMAN</td>
<td>ABCB6</td>
<td>ATP-binding cassette,</td>
</tr>
<tr>
<td>Accession</td>
<td>Gene Name</td>
<td>Protein Name</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>--------------</td>
</tr>
<tr>
<td>HSAC016919</td>
<td>HEP27</td>
<td>NM_005794</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD45_HUMAN</td>
<td>PTPRC</td>
<td>NM_002838</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q9ULT2</td>
<td>KIAA1138</td>
<td>AB032994</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SY3L_HUMAN</td>
<td>SCYA3</td>
<td>NM_002983</td>
</tr>
<tr>
<td>MM26_HUMAN</td>
<td>MMP26</td>
<td>NM_021801</td>
</tr>
<tr>
<td>PRL4_HUMAN</td>
<td>PROL4</td>
<td>NM_007244</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P78545</td>
<td>ELF3</td>
<td>NM_004433</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NIC1_HUMAN</td>
<td>NICE-1</td>
<td>NM_019060</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLD7_HUMAN</td>
<td>CLDN7</td>
<td>NM_001307</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.KLKA_HUMAN</td>
<td></td>
<td>0AK026045</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q9POA7</td>
<td>C20orf30</td>
<td>NM_014145</td>
</tr>
<tr>
<td>HSAC019283</td>
<td></td>
<td>0AK026112</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q9NYJ6</td>
<td>LOC51328</td>
<td>NM_016637</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q96HJ4</td>
<td>NUF2R</td>
<td>NM_031423</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAB4_HUMAN</td>
<td>PABPC4</td>
<td>NM_003819</td>
</tr>
<tr>
<td>HSAC012638</td>
<td>FLJ12994</td>
<td>NM_022841</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HS47_HUMAN</td>
<td>SERPINH2</td>
<td>NM_001235</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q9ULL9</td>
<td>KIAA1201</td>
<td>AB033027</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TYY1_HUMAN</td>
<td>YY1</td>
<td>NM_003403</td>
</tr>
<tr>
<td>HSAC016540</td>
<td>ENPP3</td>
<td>NM_005021</td>
</tr>
<tr>
<td>Protein</td>
<td>Accession</td>
<td>Description</td>
</tr>
<tr>
<td>-------------</td>
<td>-----------</td>
<td>---</td>
</tr>
<tr>
<td>IP3K_HUMAN</td>
<td>ITPKA</td>
<td>NM_002220 Phosphodiesterase 3</td>
</tr>
<tr>
<td>HSAC009930</td>
<td>MGC17528</td>
<td>BC010541 Inositol 1,4,5-trisphosphate 3-kinase A</td>
</tr>
<tr>
<td>HSAC016682</td>
<td>0AK057367</td>
<td>300893 Hypothetical protein</td>
</tr>
<tr>
<td>CRE3_HUMAN</td>
<td>CREB3</td>
<td>NM_006368 CAMP responsive protein</td>
</tr>
<tr>
<td>HSAC012959</td>
<td>0AK023520</td>
<td>270002 Homo sapiens cDNA</td>
</tr>
<tr>
<td>TFE2_HUMAN</td>
<td>TCF3</td>
<td>M31523 0.2258451 CAMP responsive protein element binding protein 3 (lumen)</td>
</tr>
<tr>
<td>BIN1_HUMAN</td>
<td>BIN1</td>
<td>NM_004305 Bridging integrator 1</td>
</tr>
<tr>
<td>HSAC012959</td>
<td>0AK023520</td>
<td>131798 Homo sapiens cDNA</td>
</tr>
<tr>
<td>Q64320</td>
<td>STXB1</td>
<td>NM_003165 Syntaxin binding</td>
</tr>
<tr>
<td>3BH1_HUMAN</td>
<td>HSD3B1</td>
<td>NM_000862 Beta- and steroid delta-isomerase 1</td>
</tr>
<tr>
<td>P04270</td>
<td>ACTA1</td>
<td>NM_001100 Actin, alpha 1, skeletal muscle</td>
</tr>
<tr>
<td>GLPB_HUMAN</td>
<td>GYPA</td>
<td>NM_002099 Glycophorin A (includes MN blood group)</td>
</tr>
<tr>
<td>TIG3_HUMAN</td>
<td>RARRES3</td>
<td>NM_004585 Retinoic acid receptor</td>
</tr>
<tr>
<td>Q9HAE0</td>
<td>FLJ11783</td>
<td>NM_024891 Hypothetical protein</td>
</tr>
<tr>
<td>OFU1_HUMAN</td>
<td>POFUT1</td>
<td>AF375884 Protein O-fucosyltransferase 1</td>
</tr>
<tr>
<td>HSAC009500</td>
<td>MMPL1</td>
<td>NM_004142 Matrix</td>
</tr>
<tr>
<td>COXK_HUMA</td>
<td>COX7A1</td>
<td>NM_001864 Cytochrome c oxidase subunit VIIa</td>
</tr>
<tr>
<td>BTE1_HUMAN</td>
<td>BTEB1</td>
<td>NM_001206 Basic transcription</td>
</tr>
<tr>
<td>OPSD_HUMA</td>
<td>RHO</td>
<td>NM_000539 Rhodopsin (opsin 2, rod pigment) (retinitis pigmentosa 4, autosomal dominant)</td>
</tr>
<tr>
<td>PLCB_HUMAN</td>
<td>AGPAT2</td>
<td>NM_006412 1-acylglycerol-3-phosphate O-</td>
</tr>
<tr>
<td>Q15668</td>
<td>NPC2</td>
<td>NM_006432</td>
</tr>
<tr>
<td>Q9UBI4</td>
<td>STOML1</td>
<td>NM_004809</td>
</tr>
<tr>
<td>AAP04413</td>
<td>0 AL133654</td>
<td>201603 0.2188169 Homo sapiens mRNA; cDNA DKFZp434D0917 (from clone DKFZp434D0917)</td>
</tr>
<tr>
<td>Q8WWF8</td>
<td>0 BC017586</td>
<td>55150 0.1975668 to RIKEN cDNA 1700028N11 gene, clone MGC:26610 IMAGE:4837506, mRNA, complete c</td>
</tr>
<tr>
<td>HSAC018492</td>
<td>0 AK024800</td>
<td>306704 0.2875052 FLJ21147 fgs, clone CAS09371</td>
</tr>
<tr>
<td>Q9C0D8</td>
<td>0 BC008941</td>
<td>207024 0.2868422 to hypothetical protein FLJ20515, clone MGC:2696 IMAGE:2820596, mRNA, complete c</td>
</tr>
<tr>
<td>DDC_HUMAN</td>
<td>DDC</td>
<td>NM_000790</td>
</tr>
<tr>
<td>FBW4_HUMAN</td>
<td>SHFM3</td>
<td>AK056917</td>
</tr>
<tr>
<td>QCAA000051</td>
<td>0 0 0</td>
<td></td>
</tr>
<tr>
<td>Q9UM77</td>
<td>OR1E3P</td>
<td>U53583</td>
</tr>
<tr>
<td>TYBP_HUMAN</td>
<td>TYROBP</td>
<td>NM_003332</td>
</tr>
<tr>
<td>SCP1_HUMAN</td>
<td>SYCP1</td>
<td>NM_003176</td>
</tr>
<tr>
<td>Q9HCH7</td>
<td>KIAA1595</td>
<td>AB046815</td>
</tr>
<tr>
<td>HSAC012142</td>
<td>ERH</td>
<td>NM_004450</td>
</tr>
<tr>
<td>ACLY_HUMAN</td>
<td>ACLY</td>
<td>NM_001096</td>
</tr>
<tr>
<td>S3B2_HUMAN</td>
<td>SF3B2</td>
<td>NM_006842</td>
</tr>
</tbody>
</table>
| O14731 | PKMYT1 | NM_004203 | 77783 0.2420293 Membrane-associated tyrsoine-and-
<table>
<thead>
<tr>
<th>Accession</th>
<th>Gene Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSAC003854</td>
<td>0AK025794</td>
<td>threonine-specific cdc2-inhibitory kinase</td>
</tr>
<tr>
<td>HSAC020709</td>
<td>0AK057203</td>
<td>Homo sapiens cDNA FLJ22141 fis, clone HEP21327</td>
</tr>
<tr>
<td>UNRI_HUMAN</td>
<td>UNRIP</td>
<td>NM_007178 Unr-interacting protein</td>
</tr>
<tr>
<td>PGTA_HUMAN</td>
<td>RABGGTA</td>
<td>NM_004581 Rab 6a, alpha subunit</td>
</tr>
<tr>
<td>HSAC019191</td>
<td>0AL080233</td>
<td>Homo sapiens mRNA; cDNA DKFZp586L111</td>
</tr>
<tr>
<td>SDB2_HUMAN</td>
<td>SDCBP2</td>
<td>NM_015685 Syndecan binding protein (syntenin) 2</td>
</tr>
<tr>
<td>CTC9_HUMAN</td>
<td>C20orf129</td>
<td>AK055793 Chromosome 20 open reading frame 129</td>
</tr>
<tr>
<td>PCN2_HUMAN</td>
<td>PCNT2</td>
<td>NM_006031 Pericentrin 2 (kendrin)</td>
</tr>
<tr>
<td>IF42_HUMAN</td>
<td>EIF4A2</td>
<td>NM_001967 Eukaryotic translation initiation factor 4A, isoform 2</td>
</tr>
<tr>
<td>HSAC018456</td>
<td>0AK024123</td>
<td>Homo sapiens cDNA FLJ14061 fis, clone HEMBB1000749</td>
</tr>
<tr>
<td>HSAC018632</td>
<td>0AK026722</td>
<td>Homo sapiens cDNA; FLJ23069, clone LNG05603</td>
</tr>
<tr>
<td>ATS1_HUMAN</td>
<td>ADAMTS1</td>
<td>NM_006988 A disintegrin-like and metalloprotease (reprolysin type) with thrombospondin type 1 motif, 1</td>
</tr>
<tr>
<td>Q96DP3</td>
<td>WAC</td>
<td>AB058747 WW domain-containing adapter with a coiled-coil region</td>
</tr>
<tr>
<td>HSAC002790</td>
<td>DKFZp667O2 AK056427</td>
<td>416 Hypothetical protein DKFZp667O2416</td>
</tr>
<tr>
<td>AN11_HUMAN</td>
<td>ANAPC11</td>
<td>NM_016476 APC11 anaphase promoting complex subunit 11 homolog (yeast)</td>
</tr>
<tr>
<td>Q96M94</td>
<td>KIAA1677</td>
<td>AB051464 61603.0.1736308 KIAA1677</td>
</tr>
<tr>
<td>HSAC017386</td>
<td>HSPC073</td>
<td>NM_014163 278948.0.1573071 HSPC073 protein</td>
</tr>
<tr>
<td>HSAC006154</td>
<td>CD14</td>
<td>NM_000591 75627.0.2710220 CD14 antigen</td>
</tr>
</tbody>
</table>

SUBSTITUTE SHEET (RULE 26)
<table>
<thead>
<tr>
<th>Gene</th>
<th>Accession</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPIF_HUMAN</td>
<td>NM_005729</td>
<td>Peptidylprolyl isomerase F (cyclophilin F)</td>
</tr>
<tr>
<td>Q9NT21</td>
<td>AL137581</td>
<td>Homo sapiens mRNA; 2 DKFZp434B0610 (from clone DKFZp434B0610); partial cds</td>
</tr>
<tr>
<td>Q9H6B9</td>
<td>FLJ22408</td>
<td>Hypothetical protein 0.2575227 FLJ22408</td>
</tr>
<tr>
<td>LDHA_HUMAN</td>
<td>NM_005566</td>
<td>Lactate dehydrogenase A</td>
</tr>
<tr>
<td>H2AY_HUMAN</td>
<td>NM_004893</td>
<td>H2A histone family, 0.2518442 member Y</td>
</tr>
<tr>
<td>HSAC009983</td>
<td>AK022320</td>
<td>Homo sapiens cDNA 0.2470859 FLJ12258 fis, clone MAMMA1001150</td>
</tr>
<tr>
<td>HSAC014390</td>
<td>AK001865</td>
<td>Homo sapiens cDNA 0.2455730 FLJ11003 fis, clone PLACE1002851</td>
</tr>
<tr>
<td>GT4R_HUMAN</td>
<td>NM_020062</td>
<td>SL2CA4 regulator 170088 0.2447383 SL2CA4 regulator</td>
</tr>
<tr>
<td>FOS_HUMAN</td>
<td>NM_005252</td>
<td>V-fos FBJ murine oncogene homolog 0.2433537</td>
</tr>
<tr>
<td>Q9BWL3</td>
<td>DKFZP586G</td>
<td>osteosarcoma viral protein 319899 0.429098 DKFZP586G1722</td>
</tr>
<tr>
<td>CY1_HUMAN</td>
<td>NM_001916</td>
<td>Cytochrome c-1 289271 0.242676</td>
</tr>
<tr>
<td>Q8IX90</td>
<td>BC013418</td>
<td>Homo sapiens, clone 8523 0.2402786 mRNA, complete cds</td>
</tr>
<tr>
<td>GALA_HUMAN</td>
<td>M77140</td>
<td>Galanin 1907 0.2348728</td>
</tr>
<tr>
<td>P02593</td>
<td>CALM2</td>
<td>Calmodulin 2 182278 0.2345017 (phosphorylase kinase, delta)</td>
</tr>
<tr>
<td>HSAC020657</td>
<td>AK057533</td>
<td>Homo sapiens cDNA 350657 0.2332272 FLJ32971 fis, clone TESTI2008847</td>
</tr>
<tr>
<td>Q7H125</td>
<td>C2orf118</td>
<td>Chromosome 20 open reading frame 118</td>
</tr>
<tr>
<td>Q8N8N8</td>
<td>DKFZP434G</td>
<td>DKFZP434G145 protein</td>
</tr>
<tr>
<td>GBAP_HUMAN</td>
<td>NM_007278</td>
<td>GABA(A) receptor-associated protein 0.2205248</td>
</tr>
<tr>
<td>DYI4_HUMAN</td>
<td>NM_023036</td>
<td>Dynein intermediate chain 2</td>
</tr>
<tr>
<td>HSAC017486</td>
<td>HDAC3</td>
<td>Histone deacetylase 3 279789 0.2127926</td>
</tr>
<tr>
<td>NUBM_HUMAN</td>
<td>AK055875</td>
<td>Homo sapiens cDNA 324151 0.2126432 FLJ31313 fis, clone</td>
</tr>
</tbody>
</table>
NRCA_HUMA NRCAM NM_005010 7912 - Neuronal cell adhesion molecule 3 0.2090295
LIVER
IF42_HUMAN EIF4A2 NM_001967 173912 0.2086047 Eukaryotic translation initiation factor 4A, isoform 2 4
CATB_HUMAN CTSB NM_001908 297939 0.2069354 Cathepsin B 4
HSAC009142 0 AK026499 287713 - Homo sapiens cDNA: 0.2062388 FLJ22752 fis, clone KIAA0555 4
NGAP_HUMA RASAL2 NM_004841 227806 0.1877348 RAS protein activator like 2 6
H10_HUMAN H1F0 BC000145 226117 0.1802144 H1 histone family, member 0 5
RNP_HUMAN RNASE1 NM_002933 78224 0.1768122 Ribonuclease, RNase A family, 1 (pancreatic) 1
HSAC021160 0 AK054984 351562 0.1370319 Homo sapiens cDNA FLJ30422 fis, clone BRACE2008861 3
Q9BYE3 LEP16 NM_032563 244349 - Epidermal differentiation complex protein like 5
O75042 0 AK024906 160613 - Homo sapiens cDNA: 0.2654742 FLJ21253 fis, clone COL01316 7
HSAC017211 0 AK021887 277001 - Homo sapiens cDNA 0.2647640 FLJ11825 fis, clone HEMBA1006494 4
IDI1_HUMAN IDI1 NM_004508 76038 - Isopentenyl-diphosphate delta isomerase 8
HSAC006238 TMSB4X AK055976 75968 0.2563250 Thymosin, beta 4, X chromosome 9
ETS2_HUMAN ETS2 NM_005239 85146 - V-ets erythroblastosis virus E26 oncogene homolog 2 (avian) 0.2516845
SSB4_HUMAN MGC3181 NM_032627 324618 0.2497369 Hypothetical protein GCG3181 1
O60426 FADS3 NM_021727 21765 0.2492728 Fatty acid desaturase 3 5
LDHA_HUMAN LDHA NM_005566 2795 0.2475392 Lactate dehydrogenase A 8
KB15_HUMAN KIAA1115 NM_014931 72172 - Homo sapiens cDNA 0.2433171 KIAA1115 protein 9
HSAC014795 PLSCR1 NM_021105 198282 - Phospholipid scramblase 1 0.2429428 1
CO1A_HUMAN CORO1A NM_007074 109606 - Coronin, actin binding 0.2422257 protein, 1A 6
<table>
<thead>
<tr>
<th>Gene Name</th>
<th>Accession</th>
<th>Description</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>K1CP_HUMAN KRT16</td>
<td>NM_005557</td>
<td>Keratin 16 (focal non-epidermolysis keratoderma)</td>
<td>115947</td>
</tr>
<tr>
<td>CT11_HUMAN C20orf11</td>
<td>NM_017896</td>
<td>Chromosome 20 open reading frame 11</td>
<td>103808</td>
</tr>
<tr>
<td>HSAC016239</td>
<td>0 AL049369</td>
<td>Homo sapiens mRNA; DNA DKFZp586D0518 (from clone DKFZp586D0518)</td>
<td>250724</td>
</tr>
<tr>
<td>LDHA_HUMAN LDHA</td>
<td>NM_005566</td>
<td>Lactate dehydrogenase A</td>
<td>27950</td>
</tr>
<tr>
<td>ST24_HUMAN STK24</td>
<td>NM_003576</td>
<td>Serine/threonine kinase 24 (STE20 homolog, yeast)</td>
<td>168913</td>
</tr>
<tr>
<td>O60527 SDCCAG8</td>
<td>AF039690</td>
<td>Serologically defined colon cancer antigen 8</td>
<td>300642</td>
</tr>
<tr>
<td>HSAC018030</td>
<td>0 AL049275</td>
<td>Homo sapiens mRNA; DNA DKFZp586H213 (from clone DKFZp586H213)</td>
<td>302051</td>
</tr>
<tr>
<td>HSAC018565</td>
<td>0 AK025194</td>
<td>Homo sapiens cDNA: FLJ21541, clone COL06166</td>
<td>306784</td>
</tr>
<tr>
<td>PO43_HUMAN POU4F3</td>
<td>NM_002700</td>
<td>POU domain, class 4, transcription factor 3</td>
<td>248019</td>
</tr>
<tr>
<td>HSAC015174</td>
<td>0 AC006328</td>
<td>Homo sapiens BAC clone RP11-10205 from Y</td>
<td>213956</td>
</tr>
<tr>
<td>Q9H0N3 DKFZP566M1046</td>
<td>NM_032127</td>
<td>Hypothetical protein: DNA DKFZp566M1046</td>
<td>8039</td>
</tr>
<tr>
<td>7B2_HUMAN SGNE1</td>
<td>NM_003020</td>
<td>Secretory granule, neuroendocrine protein 1 (7B2 protein)</td>
<td>2265</td>
</tr>
<tr>
<td>IP3S_HUMAN ITPR2</td>
<td>NM_002223</td>
<td>Inositol 1,4,5-triphosphate receptor, type 2</td>
<td>238272</td>
</tr>
<tr>
<td>Q9UEF2 UBC</td>
<td>M26880</td>
<td>Ubiquitin C</td>
<td>183704</td>
</tr>
<tr>
<td>HSAC018590</td>
<td>0 AK025451</td>
<td>Homo sapiens cDNA: FLJ21796, clone HEP00573</td>
<td>306812</td>
</tr>
<tr>
<td>Q8WY82 0 BC006284</td>
<td></td>
<td>Homo sapiens, clone IMAGE:3957135, mRNA, partial cds</td>
<td>333388</td>
</tr>
<tr>
<td>TSP4_HUMAN THBS4</td>
<td>NM_003248</td>
<td>Thrombospondin 4</td>
<td>75774</td>
</tr>
<tr>
<td>HSAC002075 LOC51170</td>
<td>NM_016245</td>
<td>Retinal short-chain dehydrogenase/reductase relSDR2</td>
<td>12150</td>
</tr>
<tr>
<td>HSAC009969</td>
<td>0 AK021935</td>
<td>Homo sapiens cDNA: FLJ11873, clone</td>
<td>301153</td>
</tr>
</tbody>
</table>

SUBSTITUTE SHEET (RULE 26)
<table>
<thead>
<tr>
<th>Accession</th>
<th>Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSAC007149</td>
<td>0AL080078</td>
<td>85335 Homo sapiens mRNA; cDNA 0.2151515</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6 DKFZp564D1462 (from clone DKFZp564D1462)</td>
</tr>
<tr>
<td>MK01_HUMAN</td>
<td>MAPK1 AL157438</td>
<td>324473 0.2120244 Mitogen-activated protein kinase 1</td>
</tr>
<tr>
<td>9KD_HUMAN</td>
<td>MGC10471 NM_030818</td>
<td>24998 Hypothetical protein 0.2113842 MGC10471</td>
</tr>
<tr>
<td>HSAC018712</td>
<td>KAP4.14 NM_033059</td>
<td>307015 Keratin associated 0.2104841 protein 4.14</td>
</tr>
<tr>
<td>TYPH_HUMAN</td>
<td>ECGF1 NM_001953</td>
<td>73946 Endothelial cell growth 0.2035681 factor 1 (platelet-derived)</td>
</tr>
<tr>
<td>Q9UBF4</td>
<td>KIAA1036 NM_014909</td>
<td>155182 0.2032370 KIAA1036 protein</td>
</tr>
<tr>
<td>CIQ5_HUMAN</td>
<td>KCNQ5 NM_019842</td>
<td>283644 0.2008610 Potassium voltage-gated channel, KQT-like subfamily, member 5</td>
</tr>
<tr>
<td>P39028</td>
<td>RPS23 NM_001025</td>
<td>3463 0.1996771 Ribosomal protein S23</td>
</tr>
<tr>
<td>NF3L_HUMAN</td>
<td>NIF3L1 NM_021824</td>
<td>21943 NIF3 NGG1 interacting factor 3-like 1 (S. pombe)</td>
</tr>
<tr>
<td>GTO1_HUMAN</td>
<td>GSTTLP28 NM_004832</td>
<td>11465 0.1799912 Glutathione-S-transferase like; glutathione transferase omega</td>
</tr>
<tr>
<td>RAC2_HUMAN</td>
<td>HSPC022 NM_014029</td>
<td>301175 0.1787311 HSPC022 protein</td>
</tr>
<tr>
<td>Q9HAC8</td>
<td>FLJ11807 NM_024954</td>
<td>285813 0.1768681 Hypothetical protein FLJ11807</td>
</tr>
<tr>
<td>RALA_HUMAN</td>
<td>0AK026850</td>
<td>6906 0.1734305 Homo sapiens cDNA: FLJ23197 fts, clone REC00917</td>
</tr>
<tr>
<td>CSR2_HUMAN</td>
<td>CSRP2 NM_001321</td>
<td>10526 0.1733459 Cysteine and glycine-rich protein 2</td>
</tr>
<tr>
<td>HSAC019311</td>
<td>0BC005220</td>
<td>332008 Homo sapiens, Similar 0.1721865 to chaperon</td>
</tr>
<tr>
<td>MNK2_HUMAN</td>
<td>GPRK7 NM_017572</td>
<td>261828 0.1669433 receptor kinase 7</td>
</tr>
<tr>
<td>HSAC014448</td>
<td>FLJ13385 NM_024853</td>
<td>190279 Hypothetical protein 0.1655290 FLJ13385</td>
</tr>
<tr>
<td>143F_HUMAN</td>
<td>YWHAH NM_003405</td>
<td>349530 0.1475980 Tyrosine 3-monoxygenase/tryptophan 5-</td>
</tr>
<tr>
<td>Accession</td>
<td>Gene/Protein</td>
<td>Description</td>
</tr>
<tr>
<td>-------------</td>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>Q96MZ7</td>
<td>0AK056203</td>
<td>Homo sapiens, clone MGC:2867 IMAGE:2988664, mRNA, complete cds</td>
</tr>
<tr>
<td>LOXR_HUMAN</td>
<td>ALOX12B</td>
<td>Arachidonate 12-0.3308675 lipoygenase, 12R type 9</td>
</tr>
<tr>
<td>BD02_HUMAN</td>
<td>DEFB2</td>
<td>Defensin, beta 2 0.3051073</td>
</tr>
<tr>
<td>HSAC016948</td>
<td>FLJ20433</td>
<td>Hypothetical protein 0.2902490 FLJ20433</td>
</tr>
<tr>
<td>S112_HUMAN</td>
<td>S100A12</td>
<td>S100 calcium binding 0.2872566 protein A12 9 (calgranulin C)</td>
</tr>
<tr>
<td>HSAC018084</td>
<td>AF130062</td>
<td>Homo sapiens clone 0.2592929 FLB7715 PRO2051</td>
</tr>
<tr>
<td>Q9NP0A8</td>
<td>DC6</td>
<td>DC6 protein 0.2538499</td>
</tr>
<tr>
<td>HSAC004275</td>
<td>0AK001638</td>
<td>Homo sapiens cDNA 0.2460472 FLJ10776 fis, clone 2 NT2RP4000323</td>
</tr>
<tr>
<td>HSAC018560</td>
<td>0AK025177</td>
<td>Homo sapiens cDNA: 0.2444630 FLJ21524 fis, clone 2 COL05921</td>
</tr>
<tr>
<td>HSAC020812</td>
<td>0AK055957</td>
<td>Homo sapiens cDNA 0.2437393 FLJ31395 fis, clone 3 NT2NE1000122</td>
</tr>
<tr>
<td>HSAC018421</td>
<td>0AK022022</td>
<td>Homo sapiens cDNA 0.2404392 FLJ11980 fis, clone 9 HEMBB1001008</td>
</tr>
<tr>
<td>O95204</td>
<td>MP1</td>
<td>Metalloprotease 1 0.2393466 (pitrilsyn family)</td>
</tr>
<tr>
<td>Q98IC1</td>
<td>AGRN</td>
<td>Agrin 0.2380847 Agrin</td>
</tr>
<tr>
<td>AKBA_HUMAN</td>
<td>AKR1B10</td>
<td>Aldo-keto reductase 0.2380238 family 1, member B10 (aldose reductase)</td>
</tr>
<tr>
<td>LDHA_HUMAN</td>
<td>LDHA</td>
<td>Lactate dehydrogenase A 0.2379526</td>
</tr>
<tr>
<td>PTK6_HUMAN</td>
<td>PTK6</td>
<td>PTK6 protein tyrosine 0.2358127 kinase 6</td>
</tr>
<tr>
<td>NUOM_HUMA</td>
<td>NDUFV3N</td>
<td>NADH dehydrogenase 0.2356649 (ubiquinone)</td>
</tr>
<tr>
<td>GBP2_HUMAN</td>
<td>GBP2</td>
<td>Guanylate binding 0.2331312 protein 2, interferon-inducible</td>
</tr>
<tr>
<td>Q9Y2I3</td>
<td>KIAA0977</td>
<td>KIAA0977 protein</td>
</tr>
<tr>
<td>Gene</td>
<td>Accession</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
<td>--</td>
</tr>
<tr>
<td>ATS2_HUMAN</td>
<td>NM_014244</td>
<td>ADAMTS2 disintegrin-like and metalloprotease (reprolysin type) with</td>
</tr>
<tr>
<td></td>
<td></td>
<td>thrombospondin type 1 motif, 2</td>
</tr>
<tr>
<td>Q9P1G3</td>
<td>NM_018607</td>
<td>Hypothetical protein</td>
</tr>
<tr>
<td>Q92616</td>
<td>D86973</td>
<td>GCN1 general control of amino-acid synthesis 1-like (yeast)</td>
</tr>
<tr>
<td>SLI1_HUMAN</td>
<td>NM_001449</td>
<td>Four and a half LIM domains</td>
</tr>
<tr>
<td>HSAC010091</td>
<td>Z78330</td>
<td>Hypothetical protein</td>
</tr>
<tr>
<td>S6AC_HUMAN</td>
<td>U27699</td>
<td>Solute carrier family 6 (neurotransmitter transporter, betaine/GABA) member</td>
</tr>
<tr>
<td>Y110_HUMAN</td>
<td>NM_014628</td>
<td>Gene predicted from cDNA with a complete coding sequence</td>
</tr>
<tr>
<td>HSAC013952</td>
<td>X68560</td>
<td>Sp3 transcription factor</td>
</tr>
<tr>
<td>SYD_HUMAN</td>
<td>NM_001349</td>
<td>Aspartyl-IRN synthetase</td>
</tr>
<tr>
<td>RL7_HUMAN</td>
<td>NM_000971</td>
<td>Ribosomal protein L7</td>
</tr>
<tr>
<td>SNK_HUMAN</td>
<td>NM_006622</td>
<td>Serum-inducible kinase</td>
</tr>
<tr>
<td>ID3_HUMAN</td>
<td>NM_002167</td>
<td>Inhibitor of DNA binding 3, dominant negative helix-loop-helix protein</td>
</tr>
<tr>
<td>RMP1_HUMAN</td>
<td>NM_005855</td>
<td>Receptor (calcitonin) activity modifying protein 1</td>
</tr>
<tr>
<td>FK26_HUMAN</td>
<td>NM_014972</td>
<td>Homo sapiens cDNA FLJ33086 fis, clone TRACH20006-1 protein</td>
</tr>
<tr>
<td>IEX1_HUMAN</td>
<td>NM_052815</td>
<td>Immediate early response 3</td>
</tr>
<tr>
<td>PTPK_HUMAN</td>
<td>NM_002844</td>
<td>Protein tyrosine phosphatase, receptor type, K</td>
</tr>
<tr>
<td>HPS4_HUMAN</td>
<td>AK057648</td>
<td>Homo sapiens cDNA FLJ33086 fis, clone TRACH20006-1 protein</td>
</tr>
<tr>
<td>LDHB_HUMAN</td>
<td>BC008952</td>
<td>Lactate dehydrogenase</td>
</tr>
<tr>
<td>Q8NDB6</td>
<td>AK054721</td>
<td>6451 0.2163717 PRO0659 protein</td>
</tr>
<tr>
<td>Accession</td>
<td>Gene Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>--</td>
</tr>
<tr>
<td>N7BM_HUMAN DAP13</td>
<td>NM_018838</td>
<td>44163 - 13kDa differentiation-0.2157902 associated protein</td>
</tr>
<tr>
<td>Q9H7Z7 C9orf15</td>
<td>NM_025072</td>
<td>288102 - Chromosome 9 open-0.2152505 reading frame 15</td>
</tr>
<tr>
<td>TM22_HUMAN TRIM22</td>
<td>NM_006074</td>
<td>318501 - Tripartite motif-0.2152016 containing 22</td>
</tr>
<tr>
<td>Q9H749 DKFZP586D0AL050100 919</td>
<td>49378 - DKFZP586D0919 protein 0.2109167</td>
<td></td>
</tr>
<tr>
<td>Q969K7 CAC-1</td>
<td>NM_033504</td>
<td>343912 - CAC-1-0.2096663 synthetase 3 (100 kD)</td>
</tr>
<tr>
<td>OAS3_HUMAN OAS3</td>
<td>NM_006187</td>
<td>55009 - 2'-5'-oligoadenylate 0.2096663 synthetase 3 (100 kD)</td>
</tr>
<tr>
<td>PAN2_HUMAN PANX2</td>
<td>NM_052839</td>
<td>343259 - 0.2092962 Pannexin 2</td>
</tr>
<tr>
<td>IFT1_HUMAN IFIT1</td>
<td>NM_001548</td>
<td>20315 - Interferon-induced protein with 0.2092449 protein with 3 tetraticopeptide repeats 1</td>
</tr>
<tr>
<td>Q96HK5 LOC51030</td>
<td>NM_016078</td>
<td>6776 - CGI-148 protein-0.2089938</td>
</tr>
<tr>
<td>DDX3_HUMAN DDX3</td>
<td>NM_001356</td>
<td>147916 - DEAD/H (Asp-Glu-Ala-0.2080359 Asp/His) box 1 polypeptide 3</td>
</tr>
<tr>
<td>IF42_HUMAN EIF4A2</td>
<td>NM_001967</td>
<td>173912 - 0.2075663 Eukaryotic translation initiation factor 4A, isoform 2</td>
</tr>
<tr>
<td>Q9NPI0 0 AK027724</td>
<td>334557 - Homo sapiens cDNA-0.2065581 FLJ14818 fis, clone 5 OVARC1000168</td>
<td></td>
</tr>
<tr>
<td>P11082 PPP2CB</td>
<td>NM_004156</td>
<td>80350 - Protein phosphatase 2 (formerly 2A), catalytic subunit, beta isoform-0.2063307</td>
</tr>
<tr>
<td>HSAC004729</td>
<td>0 AK021604</td>
<td>44787 - Homo sapiens mRNA;-0.2056972 cDNA</td>
</tr>
<tr>
<td>THTR_HUMAN TST</td>
<td>NM_003312</td>
<td>351863 - Thiosulfate sulfurtransferase-0.2033993 (rhodanese) 6</td>
</tr>
<tr>
<td>APL1_HUMAN APOL1</td>
<td>AF323540</td>
<td>114309 - Apolipoprotein L, 1-0.2014645</td>
</tr>
<tr>
<td>Q96IP9 H41</td>
<td>AF103803</td>
<td>283690 - Hypothetical protein-0.1989284</td>
</tr>
<tr>
<td>PSB5_HUMAN PSMB5</td>
<td>NM_002797</td>
<td>78596 - Proteasome (prosome, 0.1988445 macropain) subunit, beta type, 5</td>
</tr>
<tr>
<td>Q96MH6</td>
<td>0 AK056932</td>
<td>280858 - Homo sapiens cDNA</td>
</tr>
</tbody>
</table>
Q96DR8 LOC118430 NM_058173
0.1985595 FLJ32370 fs, clone 1
1
PUAEN1000322
0.1972827 mucin
1

HSAC020134 0BG912466 347715
- Homo sapiens mRNA
1
0.1965940 full length insert cDNA
3
clone EUROIMAGE
152428

APA1_HUMAN APOA1 NM_000039
93194 0.1945643 Apolipoprotein A-I
1

IKBA_HUMAN NFKBIA NM_020529
81328 0.1943403 Nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha
9

S51G_HUMAN SEC61G NM_014302
9950 0.1938544 Sec61 gamma
3

Q8TB66 NIFK NM_032390
142838 0.1923585 Nucleolar protein interacting with the FHA domain of pK-67
2

FXLA_HUMAN PCCX2 AB031230
199009 - Protein containing 0.1922701 CXXC domain 2
6

HSAC005389 PRO2086 NM_014111
60082 - PRO2086 protein
0.1918323
3

TGDS_HUMAN TDPGD NM_014305
12393 0.1912078 DTDP-D-glucose 4,6-dehydratase
8

Q9NYL1 PTOV1 NM_017432
19555 0.1894273 Prostate tumor over expressed gene 1
1

RET7_HUMAN RBP7 NM_052960
292718 0.1890260 Retinoid binding protein 7
9

Q9H5V9 FLJ22965 NM_022101
248572 0.1865584 Hypothetical protein
2

O94911 ABCA8 NM_007168
38095 - ATP-binding cassette, 0.1860282 sub-family A (ABC1), 9

AAH50307 MORC NM_014429
278908 - Microchondia homolog 0.185651 (mouse)
9

TR1B_HUMAN TNFRSF1B NM_001066
256278 0.1856088 Tumor necrosis factor receptor superfamily, member 1B
2

HS71_HUMAN HSPA1A NM_005345
8997 0.1832944 Heat shock 70kD protein 1A
6

Q9C086 PAPA-1 NM_031288
118282 - PAP-1 binding protein
0.1817337
1

HSAC005625 0AL050367 66762 0.1758303 Homo sapiens mRNA; cDNA DKFZp564A026 (from clone DKFZp564A026)
4

HSAC000871 0AK024270 4094 0.1741561 Homo sapiens cDNA FLJ14208 fis, clone NT2RP3003264
8

Q9H655 FLJ22595 NM_025047
287702 - Hypothetical protein
<table>
<thead>
<tr>
<th>Gene</th>
<th>Accession</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSAC018574</td>
<td>0AK025291</td>
<td>Homo sapiens cDNA: 0.1693768 FLJ21638 fis, clone COL08269</td>
</tr>
<tr>
<td>Q9UK76</td>
<td>HN1</td>
<td>NM_016185 Hematological and neurological expressed 1</td>
</tr>
<tr>
<td>INI2_HUMAN</td>
<td>G1P3</td>
<td>NM_022873 Interferon, alpha- 0.1598403 inducible protein (clone IFI-6-16)</td>
</tr>
<tr>
<td>HRG_HUMAN</td>
<td>HRG</td>
<td>NM_000412 Histidine-rich glycoprotein</td>
</tr>
<tr>
<td>Q9ULD2</td>
<td>ATIP1</td>
<td>AB033114 AT2 receptor- 0.1536797 interacting receptor 1</td>
</tr>
<tr>
<td>TRBM_HUMAN</td>
<td>THBD</td>
<td>NM_000361 Thrombomodulin 0.1417714</td>
</tr>
<tr>
<td>HSAC015082</td>
<td>0AK023326</td>
<td>Homo sapiens cDNA 0.1361796 FLJ13264 fis, clone OVARC1000936, weakly similar to COAT PROTEIN GP37</td>
</tr>
<tr>
<td>HSAC002372</td>
<td>0AK023269</td>
<td>143550.1353930 Homo sapiens cDNA</td>
</tr>
<tr>
<td>ITB4_HUMAN</td>
<td>ITGB4</td>
<td>NM_000213 Integrin, beta 4</td>
</tr>
<tr>
<td>HSAC013491</td>
<td>0AL157491</td>
<td>145211 Homo sapiens mRNA; 0.1105894 cDNA DKFZp434K1111 (from clone DKFZp434K1111)</td>
</tr>
<tr>
<td>Q8TAD5</td>
<td>SPANXB1</td>
<td>NM_032461 SPANX family, member B1</td>
</tr>
<tr>
<td>Q96SV0</td>
<td>FLJ14621</td>
<td>NM_032811 Hypothetical protein 0.0822750 FLJ14621</td>
</tr>
<tr>
<td>Q9ULE7</td>
<td>KIAA1273</td>
<td>AB033099 KIAA1273 protein 0.0509306</td>
</tr>
<tr>
<td>UniProt</td>
<td>Gene_symbol</td>
<td>GB_accession</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Q9NZQ6</td>
<td>COL5A3</td>
<td>NM_015719</td>
</tr>
<tr>
<td>FINC_HUMAN</td>
<td>FN1</td>
<td>NM_002026</td>
</tr>
<tr>
<td>FSL1_HUMAN</td>
<td>FSTL1</td>
<td>NM_007085</td>
</tr>
<tr>
<td>ER22_HUMAN</td>
<td>KDELR2</td>
<td>NM_006854</td>
</tr>
<tr>
<td>PCO1_HUMAN</td>
<td>PCOLCE</td>
<td>NM_002593</td>
</tr>
<tr>
<td>SPRC_HUMAN</td>
<td>SPARC</td>
<td>NM_003118</td>
</tr>
<tr>
<td>NC5R_HUMAN</td>
<td>DIA1</td>
<td>NM_007326</td>
</tr>
<tr>
<td>SEPR_HUMAN</td>
<td>FAP</td>
<td>NM_004460</td>
</tr>
<tr>
<td>HSAC013564</td>
<td>COL5A1</td>
<td>NM_000993</td>
</tr>
<tr>
<td>HSAC009848</td>
<td>ZFP93</td>
<td>NM_004234</td>
</tr>
<tr>
<td>PGCV_HUMAN</td>
<td>CSPG2</td>
<td>U16306</td>
</tr>
<tr>
<td>Q14521</td>
<td>LLGL2</td>
<td>NM_004524</td>
</tr>
<tr>
<td>CA14_HUMAN</td>
<td>COL4A1</td>
<td>NM_001845</td>
</tr>
<tr>
<td>HSAC014709</td>
<td>TEM1</td>
<td>NM_020404</td>
</tr>
<tr>
<td>UROK_HUMAN</td>
<td>PLAU</td>
<td>NM_002658</td>
</tr>
<tr>
<td>Q8N6P7</td>
<td>IL22R</td>
<td>NM_021258</td>
</tr>
<tr>
<td>LEG1_HUMAN</td>
<td>LGALS1</td>
<td>NM_002305</td>
</tr>
<tr>
<td>CA25_HUMAN</td>
<td>COL5A2</td>
<td>NM_000393</td>
</tr>
<tr>
<td>CA13_HUMAN</td>
<td>COL3A1</td>
<td>NM_000909</td>
</tr>
<tr>
<td>Q9BYD5</td>
<td>LOC8451</td>
<td>NM_032488</td>
</tr>
<tr>
<td>BGH3_HUMAN</td>
<td>TGFBI</td>
<td>NM_000358</td>
</tr>
</tbody>
</table>

TABLE 4

List of 179 genes with strong predictive value
<table>
<thead>
<tr>
<th>Gene Name</th>
<th>Accession</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CQT6_HUMAN</td>
<td>CTRP6</td>
<td>NM_031910 Complement-c1q tumor necrosis factor-related protein 6</td>
</tr>
<tr>
<td>AD12_HUMAN</td>
<td>ADAM12</td>
<td>NM_003474 A disintegrin and metalloproteinase domain 12 (meltrin alpha)</td>
</tr>
<tr>
<td>Q8N3N2</td>
<td>FLJ11196</td>
<td>NM_018357 Hypothetical protein FLJ11196</td>
</tr>
<tr>
<td>CATK_HUMAN</td>
<td>CTSK</td>
<td>NM_000396 Cathepsin K (pynodysostosis)</td>
</tr>
<tr>
<td>Q96DR2</td>
<td>0AK055031</td>
<td></td>
</tr>
<tr>
<td>P03996</td>
<td>ACTA2</td>
<td>NM_001613 Actin, alpha 2, smooth muscle, aorta</td>
</tr>
<tr>
<td>K6A2_HUMAN</td>
<td></td>
<td>0AK027727 Homo sapiens cDNA FLJ14821 fis, clone OVARCH1000556, highly similar to RIBOSOMAL PROTEIN S6 KINASE II</td>
</tr>
<tr>
<td>Q9HBB0</td>
<td>THY1</td>
<td>AK057865 Thy-1 cell surface antigen</td>
</tr>
<tr>
<td>TM29_HUMAN</td>
<td>TRIM29</td>
<td>NM_012101 Tripartite motif-containing 29</td>
</tr>
<tr>
<td>TIM2_HUMAN</td>
<td></td>
<td>0AL110197 Homo sapiens mRNA; cDNA DKFZp586J021 (from clone DKFZp586J021)</td>
</tr>
<tr>
<td>MM02_HUMAN</td>
<td>MMP2</td>
<td>NM_004530 Matrix metalloproteinase 2 (gelatinase A, 72kD gelatinase, 72kD type IV collagenase)</td>
</tr>
<tr>
<td>MCA2_HUMAN</td>
<td>JTV1</td>
<td>NM_006303 JTV1 gene</td>
</tr>
<tr>
<td>CA16_HUMAN</td>
<td>COL6A1</td>
<td>NM_001848 Collagen, type VI, alpha 1</td>
</tr>
<tr>
<td>EVA1_HUMAN</td>
<td>EVA1</td>
<td>AF275945 Epithelial V-like antigen 1</td>
</tr>
<tr>
<td>CA21_HUMAN</td>
<td>COL1A2</td>
<td>NM_000089 Collagen, type I, alpha 2</td>
</tr>
<tr>
<td>CA36_HUMAN</td>
<td>COL6A3</td>
<td>NM_004389 Collagen, type VI, alpha 3</td>
</tr>
<tr>
<td>OPN3_HUMAN</td>
<td>OPN3</td>
<td>NM_014322 Opsin 3 (encephalopsin, panopsin)</td>
</tr>
<tr>
<td>Q9UBG0</td>
<td>KIAA0709</td>
<td>NM_006039 Endocytic receptor (macrophage mannose receptor family)</td>
</tr>
<tr>
<td>TPM2_HUMAN</td>
<td>TPM2</td>
<td>NM_003289 Tropomyosin 2 (beta)</td>
</tr>
</tbody>
</table>

SUBSTITUTE SHEET (RULE 26)
<table>
<thead>
<tr>
<th>GenBank Acc.</th>
<th>Organism</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>INVO_HUMAN</td>
<td>IVL</td>
<td>NM_005547 Involucrin</td>
</tr>
<tr>
<td>O88386</td>
<td>RAB10</td>
<td>NM_016131 RAB10, member RAS oncogene family</td>
</tr>
<tr>
<td>PEPL_HUMAN</td>
<td>PPL</td>
<td>NM_002705 Periplakin</td>
</tr>
<tr>
<td>HSAC002603</td>
<td>FLJ1103</td>
<td>NM_018306 Hypothetical protein FLJ1103</td>
</tr>
<tr>
<td>TNR5_HUMAN</td>
<td>TNFRSF5</td>
<td>NM_001250 Tumor necrosis factor receptor superfamily, member 5</td>
</tr>
<tr>
<td>FRIH_HUMAN</td>
<td>FTH1</td>
<td>AK054816 Ferritin, heavy polypeptide 1</td>
</tr>
<tr>
<td>P4H2_HUMAN</td>
<td>P4HA2</td>
<td>NM_004199 Procollagen-proline, 2-oxoglutarate 4-dioxygenase (proline 4-hydroxylase), alpha polypeptide II</td>
</tr>
<tr>
<td>P09526</td>
<td>RAP1B</td>
<td>NM_015546 RAP1B, member of RAS oncogene family</td>
</tr>
<tr>
<td>PS23_HUMAN</td>
<td>SPUVE</td>
<td>NM_007173 Homo sapiens clone FBA1 Cri-du-chat region mRNA</td>
</tr>
<tr>
<td>HSAC011159</td>
<td>0AF09267</td>
<td>1501 Synecdan 2 (heparan sulfate proteoglycan 1, cell surface-associated, fibroglycan)</td>
</tr>
<tr>
<td>SDC2_HUMAN</td>
<td>SDC2</td>
<td>J04621 Homo sapiens mRNA; cDNA DKFZp762H106 (from clone DKFZp762H106)</td>
</tr>
<tr>
<td>HSAC013320</td>
<td>0AL162069</td>
<td>140978 Homo sapiens mRNA; cDNA DKFZp762H106 (from clone DKFZp762H106)</td>
</tr>
<tr>
<td>TAGL_HUMAN</td>
<td>TAGLN</td>
<td>NM_003186 Transgel</td>
</tr>
<tr>
<td>MM01_HUMAN</td>
<td>MMP1</td>
<td>NM_002421 Matrix metalloproteinase 1 (intestitial collagenase)</td>
</tr>
<tr>
<td>P05209</td>
<td>K-ALPHA-1</td>
<td>NM_006082 Tubulin, alpha, ubiquitous</td>
</tr>
<tr>
<td>TSP2_HUMAN</td>
<td>THBS2</td>
<td>NM_003247 Thrombospondin 2</td>
</tr>
<tr>
<td>Q8N789</td>
<td>DKFZP4</td>
<td>AL137589 Hypothetical protein DKFZp434K0410</td>
</tr>
<tr>
<td>O60335</td>
<td>KIAA059</td>
<td>AB011166 Hypothetical protein DKFZp434K0410</td>
</tr>
<tr>
<td>P05209</td>
<td>K-ALPHA-1</td>
<td>NM_006082 Tubulin, alpha, ubiquitous</td>
</tr>
<tr>
<td>TNI3_HUMAN</td>
<td>TNFAIP3</td>
<td>NM_008290 Tumor necrosis factor, alpha-induced protein 3</td>
</tr>
<tr>
<td>FGR1_HUMAN</td>
<td>FGFR1</td>
<td>NM_023109 Fibroblast growth factor receptor 1 (fms-related tyrosine kinase 2, Pfeiffer syndrome)</td>
</tr>
<tr>
<td>CAD2_HUMAN</td>
<td>CDH2</td>
<td>NM_001792 Cadherin 2, type 1, N-cadherin (neuronal)</td>
</tr>
<tr>
<td>TCOF_HUMAN</td>
<td>TCOF1</td>
<td>NM_000356 Treacher Collins-Franceschetti syndrome 1</td>
</tr>
<tr>
<td>Protein ID</td>
<td>Accession</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
<td>---</td>
</tr>
<tr>
<td>O14635</td>
<td>0AF005082</td>
<td>Homo sapiens skin-specific protein (xp33) mRNA, partial cds</td>
</tr>
<tr>
<td>GLSK_HUMAN</td>
<td>GLS</td>
<td>Glutaminase</td>
</tr>
<tr>
<td>Q9BRJ6</td>
<td>MGC112</td>
<td>Hypothetical protein MGC11257</td>
</tr>
<tr>
<td>ALK1_HUMAN</td>
<td>SLPI</td>
<td>Secretory leukocyte protease inhibitor (antileukoproteinase)</td>
</tr>
<tr>
<td>AQP3_HUMAN</td>
<td>AQP3</td>
<td>Aquaporin 3</td>
</tr>
<tr>
<td>SPIB_HUMAN</td>
<td>SPIB</td>
<td>Spi-B transcription factor (Spi-1/PU.1 related)</td>
</tr>
<tr>
<td>P05209</td>
<td>K-ALPHA-1</td>
<td>Tubulin, alpha, ubiquitous</td>
</tr>
<tr>
<td>DRG1_HUMAN</td>
<td>DRG1</td>
<td>Developmentally regulated GTP binding protein 1</td>
</tr>
<tr>
<td>PHMX_HUMAN</td>
<td>PHEMX</td>
<td>Pan-hematopoietic expression</td>
</tr>
<tr>
<td>P05209</td>
<td>K-ALPHA-1</td>
<td>Tubulin, alpha, ubiquitous</td>
</tr>
<tr>
<td>HSAC018335</td>
<td>0AL137428</td>
<td>Homo sapiens mRNA; cDNA</td>
</tr>
<tr>
<td>POSN_HUMAN</td>
<td>OSF-2</td>
<td>Osteoblast specific factor 2 (fascin I-like)</td>
</tr>
<tr>
<td>DHC3_HUMAN</td>
<td>CBR3</td>
<td>Carbonyl reductase 3</td>
</tr>
<tr>
<td>NCR2_HUMAN</td>
<td>NCOR2</td>
<td>Nuclear receptor corepressor 2</td>
</tr>
<tr>
<td>HSAC015262</td>
<td>0AK021531</td>
<td>Homo sapiens cDNA FLJ11469 fis, clone HEMBA1001658</td>
</tr>
<tr>
<td>Q14113</td>
<td>AEBP1</td>
<td>AE binding protein 1</td>
</tr>
<tr>
<td>TBX2_HUMAN</td>
<td>TBX2</td>
<td>T-box 2</td>
</tr>
<tr>
<td>CRF_HUMAN</td>
<td>CRH</td>
<td>Corticotropin releasing hormone</td>
</tr>
<tr>
<td>Q9NUJ7</td>
<td>FLJ1132</td>
<td>Hypothetical protein FLJ1132</td>
</tr>
<tr>
<td>Q96DU1</td>
<td>AKAP2</td>
<td>A kinase (PRKA) anchor protein 2</td>
</tr>
<tr>
<td>P05209</td>
<td>K-ALPHA-1</td>
<td>Tubulin, alpha, ubiquitous</td>
</tr>
<tr>
<td>Q969Y7</td>
<td>MGC467</td>
<td>Hypothetical protein MGC4677</td>
</tr>
<tr>
<td>Q9BXY6</td>
<td>FLJ1396</td>
<td>Hypothetical protein FLJ1396</td>
</tr>
<tr>
<td>K1CW_HUMAN</td>
<td>HAIK1</td>
<td>Type I intermediate filament cytokeratin</td>
</tr>
<tr>
<td>HSAC019114</td>
<td>FLJ2262</td>
<td>Hypothetical protein FLJ2262</td>
</tr>
<tr>
<td>PGS2_HUMAN</td>
<td>DCN</td>
<td>Decorin</td>
</tr>
<tr>
<td>DCOP_HUMAN</td>
<td>ODC-p</td>
<td>Ornithine</td>
</tr>
<tr>
<td>Accession</td>
<td>Gene Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>---</td>
</tr>
<tr>
<td>HSAC020747</td>
<td>0AK056828</td>
<td>decarboxylase-like protein Homo sapiens cDNA FLJ32286 fis, clone PROST1000419</td>
</tr>
<tr>
<td>P05209</td>
<td>K-ALPHA-1</td>
<td>Tubulin, alpha, ubiquitous</td>
</tr>
<tr>
<td>Q96F00</td>
<td></td>
<td>Homo sapiens cDNA: FLJ22066 fis, clone HEP10611</td>
</tr>
<tr>
<td>ISK5_HUMAN</td>
<td>SPINK5</td>
<td>Serine protease inhibitor, Kazal type, 5</td>
</tr>
<tr>
<td>GFR1_HUMAN</td>
<td>GFRA1</td>
<td>GDNF family receptor alpha 1</td>
</tr>
<tr>
<td>AAF24516</td>
<td>NUDEL</td>
<td>LIS1-interacting protein NUDEL; endoeligopeptidase A</td>
</tr>
<tr>
<td>P05209</td>
<td>K-ALPHA-1</td>
<td>Tubulin, alpha, ubiquitous</td>
</tr>
<tr>
<td>O60836</td>
<td>T1A-2</td>
<td>Lung type-I cell membrane-associated glycoprotein Kallikrein 10</td>
</tr>
<tr>
<td>KLKA_HUMAN</td>
<td>KLK10</td>
<td>Hypothetical protein MGC3047</td>
</tr>
<tr>
<td>Q96KC3</td>
<td>MGC304</td>
<td>GPI-anchored metastasis-associated protein homolog</td>
</tr>
<tr>
<td>Q95274</td>
<td>C4.4A</td>
<td>Serine (or cysteine) proteinase inhibitor, clade B (ovalbumin), member 13</td>
</tr>
<tr>
<td>HSAC015726</td>
<td>SERPIN B13</td>
<td>Sentrin/SUMO-specific protease</td>
</tr>
<tr>
<td>SEN7_HUMAN</td>
<td>SENP7</td>
<td>Ribosomal protein L34 pseudogene 2</td>
</tr>
<tr>
<td>HSAC015968</td>
<td>RPL34P2</td>
<td>Translocase of inner mitochondrial membrane 8 homolog (yeast)</td>
</tr>
<tr>
<td>IMBB_HUMAN</td>
<td>TIMM8B</td>
<td>Monocyte to macrophage differentiation-associated</td>
</tr>
<tr>
<td>P05209</td>
<td>K-ALPHA-1</td>
<td>Preimplantation protein 3</td>
</tr>
<tr>
<td>CYTB_HUMAN</td>
<td>CSTB</td>
<td>Inversin</td>
</tr>
<tr>
<td>MMDP_HUMAN</td>
<td>MMD</td>
<td>S100 calcium binding protein A7 (psoriasin 1)</td>
</tr>
<tr>
<td>Q9H5J1</td>
<td>PREI3</td>
<td>Signal recognition particle 19kD</td>
</tr>
<tr>
<td>Q9Y283</td>
<td>INVS</td>
<td>Epithelial protein up-regulated in carcinoma,</td>
</tr>
<tr>
<td>S107_HUMAN</td>
<td>S100A7</td>
<td></td>
</tr>
<tr>
<td>SR19_HUMAN</td>
<td>SRP19</td>
<td></td>
</tr>
<tr>
<td>MA17_HUMAN</td>
<td>DD96</td>
<td></td>
</tr>
<tr>
<td>Accession</td>
<td>Description</td>
<td>Accession</td>
</tr>
<tr>
<td>-----------</td>
<td>--------------------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>O75943</td>
<td>RAD17 membrane associated protein 17</td>
<td>16184</td>
</tr>
<tr>
<td>THA_HUMAN</td>
<td>THRA</td>
<td></td>
</tr>
<tr>
<td>HSAC008967</td>
<td>0AK021982</td>
<td></td>
</tr>
<tr>
<td>TFE2_HUMAN</td>
<td>TCF3</td>
<td>101047</td>
</tr>
<tr>
<td>SUL2_HUMAN</td>
<td>KIAA124 AB033077</td>
<td>43857</td>
</tr>
<tr>
<td>HRA3_HUMAN</td>
<td>HTRA3</td>
<td>60440</td>
</tr>
<tr>
<td>CN4A_HUMAN</td>
<td>PDE4A</td>
<td>89901</td>
</tr>
<tr>
<td>LTB2_HUMAN</td>
<td>LTBP2</td>
<td>83337</td>
</tr>
<tr>
<td>CSF2_HUMAN</td>
<td>CSF2</td>
<td>1349</td>
</tr>
<tr>
<td>S109_HUMAN</td>
<td>S100A9</td>
<td>112405</td>
</tr>
<tr>
<td>Accession</td>
<td>Description</td>
<td>Position</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>-----------</td>
</tr>
<tr>
<td>Q8IXQ7</td>
<td>LABH1</td>
<td>NM_032604</td>
</tr>
<tr>
<td>WEE1_HUMAN</td>
<td>WEE1</td>
<td>X62048</td>
</tr>
<tr>
<td>Q9H0B8</td>
<td>DKFP4</td>
<td>NM_031476</td>
</tr>
<tr>
<td>M1B1_HUMAN</td>
<td>MAN1B1</td>
<td>NM_016219</td>
</tr>
<tr>
<td>FBX8_HUMAN</td>
<td>FBXO8</td>
<td>NM_012180</td>
</tr>
<tr>
<td>SM3C_HUMAN</td>
<td>SEMA3C</td>
<td>NM_006379</td>
</tr>
<tr>
<td>RB25_HUMAN</td>
<td>CATX-8</td>
<td>NM_020387</td>
</tr>
<tr>
<td>ROL_HUMAN</td>
<td>HNRPL</td>
<td>NM_001533</td>
</tr>
<tr>
<td>FX37_HUMAN</td>
<td>MGC112</td>
<td>NM_024326</td>
</tr>
<tr>
<td>HSAC003262</td>
<td>KIAA035</td>
<td>AB002348</td>
</tr>
<tr>
<td>P05209</td>
<td>K-ALPHA-1</td>
<td>NM_006082</td>
</tr>
<tr>
<td>BTE4_HUMAN</td>
<td>KLF16</td>
<td>NM_031918</td>
</tr>
<tr>
<td>MK_HUMAN</td>
<td>MDK</td>
<td>NM_002391</td>
</tr>
<tr>
<td>Q9NRD9</td>
<td>DUOX1</td>
<td>NM_017434</td>
</tr>
<tr>
<td>P05209</td>
<td>K-ALPHA-1</td>
<td>NM_006082</td>
</tr>
<tr>
<td>Z185_HUMAN</td>
<td>ZNF185</td>
<td>NM_007150</td>
</tr>
<tr>
<td>TBG2_HUMAN</td>
<td>TUBG2</td>
<td>NM_016437</td>
</tr>
<tr>
<td>AAKC_HUMAN</td>
<td>PRKAB2</td>
<td>NM_005399</td>
</tr>
<tr>
<td>HSAC006508</td>
<td>COL18A</td>
<td>AF018081</td>
</tr>
<tr>
<td>Q9BSY6</td>
<td>ZD52F10</td>
<td>NM_033317</td>
</tr>
<tr>
<td>SOX4_HUMAN</td>
<td>0AJ420500</td>
<td></td>
</tr>
<tr>
<td>P05209</td>
<td>K-ALPHA-1</td>
<td>NM_006082</td>
</tr>
<tr>
<td>MIC2_HUMAN</td>
<td>MIC2</td>
<td>NM_002414</td>
</tr>
<tr>
<td>VWF_HUMAN</td>
<td>VWF</td>
<td>NM_000552</td>
</tr>
<tr>
<td>MFA5_HUMAN</td>
<td>MAGP2</td>
<td>NM_003480</td>
</tr>
<tr>
<td>ELAF_HUMAN</td>
<td>PI3</td>
<td>NM_002638</td>
</tr>
<tr>
<td>WD13_HUMAN</td>
<td>WDR13</td>
<td>NM_017883</td>
</tr>
<tr>
<td>Gene</td>
<td>Accession</td>
<td>Gene</td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>-------</td>
</tr>
<tr>
<td>PCB1_HUMAN</td>
<td>PCB1</td>
<td>NM_006196</td>
</tr>
<tr>
<td>DYHC_HUMAN</td>
<td>DNCH1</td>
<td>AB002323</td>
</tr>
<tr>
<td>Q8WUB2</td>
<td>HSU792</td>
<td>NM_013300</td>
</tr>
<tr>
<td>74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q96N74</td>
<td>PGLYRP</td>
<td>NM_052890</td>
</tr>
<tr>
<td>HSAC018816</td>
<td>0AK055723</td>
<td>310919 -0.37825237 Homo sapiens cDNA FLJ31161 fis, clone KIDNE100028</td>
</tr>
<tr>
<td>PPL2_HUMAN</td>
<td>PPIL2</td>
<td>NM_014337</td>
</tr>
<tr>
<td>HSAC015090</td>
<td>0AK055294</td>
<td>211132 0.34738745 Homo sapiens cDNA FLJ30732 fis, clone FEBRA2000126, weakly similar to Mus musculus PDZ domain actin</td>
</tr>
<tr>
<td>P05209</td>
<td>K-ALPHA-1</td>
<td>NM_006082</td>
</tr>
<tr>
<td>DSG3_HUMAN</td>
<td>DSG3</td>
<td>NM_001944</td>
</tr>
<tr>
<td>CTGF_HUMAN</td>
<td>CTGF</td>
<td>NM_001901</td>
</tr>
<tr>
<td>Q96BW1</td>
<td>0AK056354</td>
<td>334842 0.36404497 Tubulin, alpha, ubiquitous</td>
</tr>
<tr>
<td>P05209</td>
<td>K-ALPHA-1</td>
<td>NM_006082</td>
</tr>
<tr>
<td>HSAC020349</td>
<td>0BC014584</td>
<td>348710 0.33020586 Homo sapiens, clone IMAGE:4047062, mRNA</td>
</tr>
<tr>
<td>G3P2_HUMAN</td>
<td>GAPD</td>
<td>NM_002046</td>
</tr>
<tr>
<td>DES1_HUMAN</td>
<td>DESC1</td>
<td>NM_014058</td>
</tr>
<tr>
<td>PAI2_HUMAN</td>
<td>SERPINB2</td>
<td>NM_002575</td>
</tr>
<tr>
<td>PYG2_HUMAN</td>
<td>0BC006132</td>
<td>172084 0.36848424 Homo sapiens, clone IMAGE:3627860, mRNA, partial cds</td>
</tr>
<tr>
<td>CA17_HUMAN</td>
<td>COL7A1</td>
<td>NM_000094</td>
</tr>
<tr>
<td>Q8NG54</td>
<td>FLJ2121</td>
<td>NM_024642</td>
</tr>
</tbody>
</table>
TABLE 5

<table>
<thead>
<tr>
<th>UniProt</th>
<th>Gene_symbol</th>
<th>GB_accession</th>
<th>UniGene_ID</th>
<th>N+</th>
<th>Gene</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSL1_HUM</td>
<td>FSTL1</td>
<td>NM_007085</td>
<td>296267</td>
<td>0.53452734</td>
<td>Follistatin-like 1</td>
</tr>
<tr>
<td>ER22_HUM</td>
<td>KDEL R2</td>
<td>NM_006854</td>
<td>118778</td>
<td>0.52986731</td>
<td>KDEL (Lys-Asp-Glu-Leu) endoplasmic reticulum protein retention receptor 2</td>
</tr>
<tr>
<td>PCO1_HUM</td>
<td>PCOLCEAN</td>
<td>NM_002593</td>
<td>202097</td>
<td>0.52672595</td>
<td>Procollagen C-endopeptidase enhancer</td>
</tr>
<tr>
<td>SPRC_HU</td>
<td>SPARC MAN</td>
<td>NM_003118</td>
<td>111779</td>
<td>0.51922531</td>
<td>Secreted protein, acidic, cysteine-rich (osteonectin)</td>
</tr>
<tr>
<td>NC5R_HUM</td>
<td>DIA1 AN</td>
<td>NM_007326</td>
<td>274464</td>
<td>0.51482855</td>
<td>Diaphorase (NADH) (cytochrome b-5 reductase)</td>
</tr>
<tr>
<td>HSAC009848</td>
<td>ZFP93</td>
<td>NM_004234</td>
<td>298089</td>
<td>0.50989391</td>
<td>Zinc finger protein 93 homolog (mouse)</td>
</tr>
<tr>
<td>Q14521</td>
<td>LLGL2</td>
<td>NM_004524</td>
<td>3123</td>
<td>-0.50695888</td>
<td>Lethal giant larvae homolog 2 (Drosophila)</td>
</tr>
<tr>
<td>Q8N6P7</td>
<td>IL22 R</td>
<td>NM_021258</td>
<td>110915</td>
<td>-0.49928496</td>
<td>Interleukin 22 receptor</td>
</tr>
<tr>
<td>LEG1_HUM</td>
<td>LGALS1 AN</td>
<td>NM_002305</td>
<td>227751</td>
<td>0.48740219</td>
<td>Lectin, galactoside-binding, soluble, 1 (galectin 1)</td>
</tr>
<tr>
<td>Q9BYD5</td>
<td>LOC84518</td>
<td>NM_032488</td>
<td>148590</td>
<td>-0.48449285</td>
<td>Protein related with psoriasis</td>
</tr>
<tr>
<td>CQT6_HUM</td>
<td>CTRP6 AN</td>
<td>NM_031910</td>
<td>22011</td>
<td>0.47978614</td>
<td>Complement-c1q tumor necrosis factor-related protein 6</td>
</tr>
<tr>
<td>AD12_HUM</td>
<td>ADAM12 AN</td>
<td>NM_003474</td>
<td>8850</td>
<td>0.47905457</td>
<td>A disintegrin and metalloproteinase domain 12 (meltrin alpha)</td>
</tr>
<tr>
<td>Q8N3N2</td>
<td>FLJ11196</td>
<td>NM_018357</td>
<td>6166</td>
<td>0.47772636</td>
<td>Hypothetical protein FLJ11196</td>
</tr>
<tr>
<td>Q96DR2</td>
<td></td>
<td>AK055031</td>
<td>44289</td>
<td>-0.47659518</td>
<td>Homo sapiens cDNA FLJ30469 fis, clone</td>
</tr>
<tr>
<td>P03996</td>
<td>ACTA2</td>
<td>NM_001613</td>
<td>195851</td>
<td>0.47560995</td>
<td>Homo sapiens cDNA FLJ14821 fis, clone</td>
</tr>
<tr>
<td>K6A2_HUM</td>
<td></td>
<td>AK027727</td>
<td>184581</td>
<td>0.47396182</td>
<td>Homo sapiens cDNA FLJ14821 fis, clone</td>
</tr>
</tbody>
</table>

SUBSTITUTE SHEET (RULE 26)
<table>
<thead>
<tr>
<th>Accession</th>
<th>Description</th>
<th>E-value</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>TM29_HUM TRIM29 AN</td>
<td>82237 -0.47250994</td>
<td>Tripartite motif-containing 29</td>
<td>Homo sapiens mRNA; cDNA DKFZp586J021 (from clone DKFZp586J021)</td>
</tr>
<tr>
<td>TIM2_HUM AN</td>
<td>6441 0.47199573</td>
<td>Highly similar to RIBOSOMAL PROTEIN S6 KINASE II</td>
<td></td>
</tr>
<tr>
<td>MCA2_HU JTV1 MAN</td>
<td>301613 0.46964142</td>
<td>Opsin 3 (encephalopsin, panopsin)</td>
<td></td>
</tr>
<tr>
<td>OPN3_HUM OPN3 AN</td>
<td>279926 0.46101056</td>
<td>Endocytic receptor (macrophage mannose receptor family)</td>
<td></td>
</tr>
<tr>
<td>Q9UBG0 KIAA0709</td>
<td>7835 0.46012143</td>
<td>Tropomyosin 2 (beta)</td>
<td></td>
</tr>
<tr>
<td>TPM2_HUM TPM2 AN</td>
<td>300772 0.46003075</td>
<td>Involucrin</td>
<td></td>
</tr>
<tr>
<td>INVO_HUM IVL AN</td>
<td>157091 -0.45860578</td>
<td>Periplakin</td>
<td></td>
</tr>
<tr>
<td>PEPL_HUM PPL AN</td>
<td>7430 -0.44874998</td>
<td>Hypothetical protein FLJ10363</td>
<td></td>
</tr>
<tr>
<td>HSAC00260 FLJ11036 3</td>
<td>16740 -0.44841185</td>
<td>Tumor necrosis factor receptor superfamily, member 5</td>
<td></td>
</tr>
<tr>
<td>TNRS5_HUM TNFRSF5 AN</td>
<td>25648 -0.44547341</td>
<td>Ferritin, heavy polypeptide 1</td>
<td></td>
</tr>
<tr>
<td>FRIH_HUM FTH1 AN</td>
<td>62954 0.4396982</td>
<td>Procollagen-proline, 2-oxoglutarate 4-dioxygenase (proline 4-hydroxylase), alpha polypeptide II</td>
<td></td>
</tr>
<tr>
<td>P4H2_HUM P4HA2 AN</td>
<td>3622 0.42478412</td>
<td>Protease, serine, 23</td>
<td></td>
</tr>
<tr>
<td>PS23_HUM SPUVE AN</td>
<td>25338 0.42080095</td>
<td>Homo sapiens clone FBA1 Cri-du-chat region mRNA</td>
<td></td>
</tr>
<tr>
<td>HSAC01115 9</td>
<td>102238 -0.46560322</td>
<td>Homo sapiens mRNA; cDNA DKFZp762H106 (from clone DKFZp762H106)</td>
<td></td>
</tr>
<tr>
<td>HSAC01332 0</td>
<td>140978 -0.44362782</td>
<td>Hypothetical protein DKFZp434K0410</td>
<td></td>
</tr>
<tr>
<td>Q8N789 DKFZ434K0 AL137589 410</td>
<td>152149 -0.43787021</td>
<td>Treacher Collins-Franceschetti syndrome 1</td>
<td></td>
</tr>
<tr>
<td>O60335 KIAA0594</td>
<td>103283 -0.42578156</td>
<td>Homo sapiens skin-specific protein</td>
<td></td>
</tr>
<tr>
<td>TCOF_HUM TCOF1 AN</td>
<td>301266 0.38956707</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Gene Name</td>
<td>Accession</td>
<td>Mass (m/z)</td>
</tr>
<tr>
<td>-------------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>GLSK_HUM</td>
<td>GLS</td>
<td>NM_014905</td>
<td>239189.0</td>
</tr>
<tr>
<td>Q9BRJ6</td>
<td>MGC11257</td>
<td>NM_032350</td>
<td>334368.0</td>
</tr>
<tr>
<td>AQP3_HUM</td>
<td>AQP3</td>
<td>NM_004925</td>
<td>234842.0</td>
</tr>
<tr>
<td>SPIB_HUM</td>
<td>SPIB</td>
<td>NM_003121</td>
<td>192861.0</td>
</tr>
<tr>
<td>DRG1_HU</td>
<td>DRG1</td>
<td>NM_004147</td>
<td>115242.0</td>
</tr>
<tr>
<td>PHMX_HU</td>
<td>PHEMX</td>
<td>NM_005705</td>
<td>271954.0</td>
</tr>
<tr>
<td>HSAC01833</td>
<td></td>
<td>AL137428</td>
<td>306459.0</td>
</tr>
<tr>
<td>POSN_HU</td>
<td>OSF-2</td>
<td>NM_006475</td>
<td>136348.0</td>
</tr>
<tr>
<td>DHC3_HUM</td>
<td>CBR3</td>
<td>NM_001236</td>
<td>154510.0</td>
</tr>
<tr>
<td>HSAC01526</td>
<td></td>
<td>AK021531</td>
<td>224398.0</td>
</tr>
<tr>
<td>Q14113</td>
<td>AEBP1</td>
<td>NM_001129</td>
<td>118397.0</td>
</tr>
<tr>
<td>CRF_HUMA</td>
<td>CRH</td>
<td>NM_000756</td>
<td>75294.0</td>
</tr>
<tr>
<td>Q9NUJ7</td>
<td>FLJ11323</td>
<td>NM_018390</td>
<td>25625.0</td>
</tr>
<tr>
<td>Q96DU1</td>
<td>AKAP2</td>
<td>AJ303079</td>
<td>42322.0</td>
</tr>
<tr>
<td>Q969Y7</td>
<td>MGC4677</td>
<td>NM_052871</td>
<td>337986.0</td>
</tr>
<tr>
<td>Q9BXY6</td>
<td>FLJ13962</td>
<td>NM_024862</td>
<td>330407.0</td>
</tr>
<tr>
<td>K1CW_HU</td>
<td>HAIK1</td>
<td>NM_015515</td>
<td>9029.0</td>
</tr>
<tr>
<td>HSAC01911</td>
<td>FLJ22622</td>
<td>NM_025151</td>
<td>324841.0</td>
</tr>
<tr>
<td>PGS2_HUM</td>
<td>DCN</td>
<td>NM_001920</td>
<td>76152.0</td>
</tr>
<tr>
<td>DCOP_HU</td>
<td>ODC-p</td>
<td>NM_052998</td>
<td>91681.0</td>
</tr>
<tr>
<td>HSAC02074</td>
<td></td>
<td>0AK056828</td>
<td>350748.0</td>
</tr>
<tr>
<td>Q96F00</td>
<td></td>
<td>0AK025719</td>
<td>251664.0</td>
</tr>
<tr>
<td>ISK5_HUM</td>
<td>SPINK5</td>
<td>NM_006846</td>
<td>331555.0</td>
</tr>
<tr>
<td>AN</td>
<td>NM_005264</td>
<td>105445 0.37859516</td>
<td>GDNF family receptor alpha 1 inhibitor, Kazal type, 5</td>
</tr>
<tr>
<td>--------</td>
<td>-----------</td>
<td>-------------------</td>
<td>--</td>
</tr>
<tr>
<td>GFR1_HUM GFRA1 AAF24516 NUDEL</td>
<td>NM_030808</td>
<td>3850 -0.40726277</td>
<td>LIS1-interacting protein NUDEL; endoelgopeptidase A</td>
</tr>
<tr>
<td>O60836 T1A-2</td>
<td>NM_013317</td>
<td>135150 0.37127534</td>
<td>Lung type-I cell membrane-associated glycoprotein</td>
</tr>
<tr>
<td>KLKA_HUM KLK10 AN</td>
<td>NM_002776</td>
<td>69423 -0.40584943</td>
<td>Kallikrein 10</td>
</tr>
</tbody>
</table>
Claims

1. A nucleotide array of maximal 50 nucleotide sequences, preferably maximal 100 nucleotide sequences, more preferably maximal 1000 nucleotide sequences, for the detection of metastasis in head and neck squamous cell cancer (HNSCC) comprising at least 1 of the elements of Table 5, more preferably 2 of the elements, more preferably 3 of the elements, more preferably 4 of the elements, more preferably 5 of the elements, more preferably 6 of the elements, more preferably 7 of the elements, more preferably 8 of the elements, more preferably 9 of the elements, more preferably 10 of the elements and most preferably at least 20 of the elements.

2. A nucleotide array for the detection of metastasis in HNSCC having 50 or more of the elements of the genes listed in Table 4.

3. A method to establish reference and control gene expression profiles of patients having had metastasis after HNSCC (N+ group) or no metastasis after HNSCC (N0 group) by analysing the gene expression from a tumour biopsy sample of each patient, or from pooled samples of each group of patients, on an array comprising the elements mentioned in claim 1 or 2, or an array according to claim 1 or 2.

4. A method to predict the presence or risk on occurrence of lymph node metastasis of a HNSCC patient. comprising:
 a. taking a biopsy sample from the tumour of the patient;
 b. isolating the nucleic acid from the biopsy sample;
 c. analyse the gene expression profile of said nucleic acid by assaying it with a nucleotide array comprising the elements mentioned in claim 1 or 2, or an array according to claim 1 or 2;
 d. classifying the expression profile as N+ or N0 by determining whether the expression profile would match the expression profile of a group of HNSCC patients known to have developed metastasis.

5. A method according to claim 3 or 4, where the biopsy sample is a fresh biopsy sample.

6. A method according to claim 4, wherein the analysis of the gene expression profile comprises:
a. hybridising the nucleic acid form the biopsy sample with the nucleotide array comprising the elements mentioned in claim 1 or 2, or an array according to claim 1 or 2;
b. determining the amount of hybridisation of each of the elements of the nucleotide array relative to the amount of hybridisation of each element with a reference sample, said step optionally involving a normalisation step;
c. determining for each element of the array whether the expression of the corresponding gene in the biopsy sample is more or less than the expression of the corresponding gene in the reference sample.

7. A method according to claim 4 or 6, wherein the expression profile is classified as N+ (high risk of metastasis) or N0 (low or no risk of metastasis) according to the steps of:

a. determining the collective correlation of the classifier/predictor genes or elements present in the expression profile with the average N+ or N0 profile from primary tumors with previously established N-status; and
b. determining the predictive threshold based on the correlation threshold from primary tumors with previously established N-status

8. A method according to any of claims 4, 6 or 7, using the data contained in the E-UMCU-11 dataset in the public microarray database ArrayExpress (http://www.ebi.ac.uk/arrayexpress/), which contains all relevant gene expression measurements for patients with established metastatic status.

9. A method according to claims 7 or 8, wherein the correlation is determined using the cosine correlation method.

10. A method according to any of claims 6 to 9, wherein the normalization of the expression profile is achieved by correcting the expression data for experimental variations with the help of expression data of a control gene or element which is not affected by the tumour state, preferably by calculating the ratio of the expression data of each gene or element in the array of claim 1 or 2 with the expression of a control gene or element or the mean of a pool of control genes or elements.
Figure 1
Figure 2
Figure 3
Study design and procedures overview. a, RNA was isolated from 2-3 tumor sections, followed by mRNA amplification and fluorescent labeling. After hybridization, scanned images were quantified and the data was normalized. Duplicates of each tumor were averaged and a predictor was designed using the differentially expressed genes. Quality control monitoring occurred after total RNA isolation, cRNA synthesis, labeling, scanning and normalization. b, The training experiment design involved 82 primary HNSCC tumors, compared in duplicate dye-swap against a common reference pool containing equal amounts of cRNA from each tumor. Nine reference pool self-self comparisons were generated in parallel, to establish an error-model for technical variation. c, The predictor was designed using a double loop training-validation protocol. See methods section and Supplementary Information for details.
Figure 5

A n=50

B n=100

C n=200

[Graph showing correlation with samples for n=50, n=100, n=200]