

(12) STANDARD PATENT
(19) AUSTRALIAN PATENT OFFICE

(11) Application No. AU 2010325787 B2

(54) Title
Factor VIII-Fc chimeric and hybrid polypeptides, and methods of use thereof

(51) International Patent Classification(s)
C07K 14/755 (2006.01) **A61K 38/37** (2006.01)

(21) Application No: **2010325787** (22) Date of Filing: **2010.12.06**

(87) WIPO No: **WO11/069164**

(30) Priority Data

(31)	Number	(32)	Date	(33)	Country
	61/419,676		2010.12.03		US
	61/410,929		2010.11.07		US
	61/285,054		2009.12.09		US
	61/301,592		2010.02.04		US
	61/373,113		2010.08.12		US
	61/267,070		2009.12.06		US
	61/363,065		2010.07.09		US

(43) Publication Date: **2011.06.09**
(44) Accepted Journal Date: **2016.05.12**

(71) Applicant(s)
Biogen Hemophilia Inc.

(72) Inventor(s)
Dumont, Jennifer A.;Low, Susan;Bitonti, Alan J.;Pierce, Glenn;Luk, Alvin;Jiang, Haiyan;McKinney, Byron;Ottmer, Matt;Sommer, Jurg;Nugent, Karen;Li, Lian;Peters, Robert

(74) Agent / Attorney
Cullens Pty Ltd, Level 32 239 George Street, Brisbane, QLD, 4000

(56) Related Art
Dumont, J.A. et al. Blood, 51st Annual Meeting of the American Society of Hematology; New Orleans, LA USA, 5-8 December 2009, Abstract No 545
US 2005/0260194 A1
US 2005/0147618 A1

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
9 June 2011 (09.06.2011)

(10) International Publication Number
WO 2011/069164 A3

(51) International Patent Classification:
A61K 38/37 (2006.01) C07K 14/755 (2006.01)

(US). **LI, Lian** [—/US]; 14 Cambridge Center, Cambridge, MA 02142 (US). **PETERS, Robert** [—/US]; 14 Cambridge Center, Cambridge, MA 02142 (US).

(21) International Application Number:

PCT/US2010/059136

(74) Agents: **STEFFE, Eric, K.** et al.; Sterne, Kessler, Goldstein & Fox PLLC, 1100 New York Avenue, N.W., Washington, DC 20005 (US).

(22) International Filing Date:

6 December 2010 (06.12.2010)

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

61/267,070	6 December 2009 (06.12.2009)	US
61/285,054	9 December 2009 (09.12.2009)	US
61/301,592	4 February 2010 (04.02.2010)	US
61/363,065	9 July 2010 (09.07.2010)	US
61/373,113	12 August 2010 (12.08.2010)	US
61/410,929	7 November 2010 (07.11.2010)	US
61/419,676	3 December 2010 (03.12.2010)	US

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(71) Applicant (for all designated States except US): **BIO-GEN IDEC MA INC.** [US/US]; 14 Cambridge Center, Cambridge, MA 02142 (US).

Published:

- with international search report (Art. 21(3))
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))

(88) Date of publication of the international search report:

28 July 2011

(72) Inventors; and

(75) Inventors/Applicants (for US only): **DUMONT, Jennifer, A.** [—/US]; 14 Cambridge Center, Cambridge, MA 02142 (US). **LOW, Susan** [—/US]; 14 Cambridge Center, Cambridge, MA 02142 (US). **BITONTI, Alan, J.** [—/US]; 14 Cambridge Center, Cambridge, MA 02142 (US). **PIERCE, Glenn** [—/US]; 14 Cambridge Center, Cambridge, MA 02142 (US). **LUK, Alvin** [—/US]; 14 Cambridge Center, Cambridge, MA 02142 (US). **JIANG, Haiyan** [—/US]; 14 Cambridge Center, Cambridge, MA 02142 (US). **MCKINNEY, Byron** [—/US]; 14 Cambridge Center, Cambridge, MA 02142 (US). **OTTMER, Matt** [—/US]; 14 Cambridge Center, Cambridge, MA 02142 (US). **OMMER, Jurg** [—/US]; 14 Cambridge Center, Cambridge, MA 02142 (US). **NUGENT, Karen** [—/US]; 14 Cambridge Center, Cambridge, MA 02142

WO 2011/069164 A3

(54) **Title:** FACTOR VIII-FC CHIMERIC AND HYBRID POLYPEPTIDES, AND METHODS OF USE THEREOF

(57) **Abstract:** The present invention provides methods of administering Factor VIII; methods of administering chimeric and hybrid polypeptides comprising Factor VIII; chimeric and hybrid polypeptides comprising Factor VIII; polynucleotides encoding such chimeric and hybrid polypeptides; cells comprising such polynucleotides; and methods of producing such chimeric and hybrid polypeptides using such cells.

FACTOR VIII-Fc CHIMERIC AND HYBRID POLYPEPTIDES, AND METHODS OF USE THEREOF

BACKGROUND OF THE INVENTION

Field of the Invention

[0001] The present invention relates generally to the field of therapeutics for hemostatic disorders.

Background Art

[0002] Hemophilia A is an X-linked bleeding disorder caused by mutations and/or deletions in the factor VIII (FVIII) gene resulting in a deficiency of FVIII activity (Peyvandi et al. 2006). The disease is characterized by spontaneous hemorrhage and excessive bleeding after trauma. Over time, the repeated bleeding into muscles and joints, which often begins in early childhood, results in hemophilic arthropathy and irreversible joint damage. This damage is progressive and can lead to severely limited mobility of joints, muscle atrophy and chronic pain (Rodriguez-Merchan, E.C., Semin. Thromb. Hemost. 29:87-96 (2003), which is herein incorporated by reference in its entirety).

[0003] The A2 domain is necessary for the procoagulant activity of the factor VIII molecule. Studies show that porcine factor VIII has six-fold greater procoagulant activity than human factor VIII (Lollar, P., and E. T. Parker, J. Biol. Chem. 266:12481-12486 (1991)), and that the difference in coagulant activity between human and porcine factor VIII appears to be based on a difference in amino acid sequence between one or more residues in the human and porcine A2 domains (Lollar, P., et al., J. Biol. Chem. 267:23652-23657 (1992)), incorporated herein by reference in its entirety.

[0004] Treatment of hemophilia A is by replacement therapy targeting restoration of FVIII activity to 1 to 5 % of normal levels to prevent spontaneous bleeding (Mannucci, P.M., et al., N. Engl. J. Med. 344:1773-1779 (2001), which is herein incorporated by reference in its entirety). There are plasma-derived and recombinant FVIII products available to treat bleeding episodes on-demand or to prevent bleeding episodes from occurring by treating prophylactically. Based on the half-life of these products treatment

regimens require frequent intravenous administration. Such frequent administration is painful and inconvenient.

[0005] Reduced mortality, prevention of joint damage and improved quality of life have been important achievements due to the development of plasma-derived and recombinant FVIII. Prolonged protection from bleeding would represent another key advancement in the treatment of hemophilia A patients. However, to date, no products that allow for prolonged protection have been developed. Therefore, there remains a need for improved methods of treating hemophilia due to factor VIII deficiency that are more tolerable and more effective than current therapies.

BRIEF SUMMARY OF THE INVENTION

[0006] The present invention provides methods of administering Factor VIII; methods of administering chimeric polypeptides comprising Factor VIII and hybrids of such chimeric polypeptides; chimeric polypeptides comprising Factor VIII and hybrids of such chimeric polypeptides; polynucleotides encoding such chimeric and hybrid polypeptides; cells comprising such polynucleotides; and methods of producing such chimeric and hybrid polypeptides using such cells.

[0007] The present invention provides a method of administering Factor VIII to a subject in need thereof, comprising administering to the subject a therapeutic dose of a chimeric Factor VIII polypeptide, e.g., a chimeric Factor VIII-Fc polypeptide, at a dosing interval at least about one and one-half times longer than the dosing interval required for an equivalent amount of said Factor VIII without the non-Factor VIII portion (a polypeptide consisting of said Factor VIII portion), e.g., without the Fc portion.

[0008] The dosing interval may be at least about one and one-half to six times longer, one and one-half to five times longer, one and one-half to four times longer, one and one-half to three times longer, or one and one-half to two times longer, than the dosing interval required for an equivalent amount of said Factor VIII without the non-Factor VIII portion (a polypeptide consisting of said Factor VIII portion), e.g., the Fc portion. The dosing interval may be at least about one and one-half, two, two and one-half, three, three and one-half, four, four and one-half, five, five and one-half or six times longer than the dosing interval required for an equivalent amount of said Factor VIII without the non-Factor VIII portion (a polypeptide consisting of said Factor VIII portion), e.g., the Fc

portion. The dosing interval may be about every five, six, seven, eight, nine, ten, eleven, twelve, thirteen, or fourteen days or longer.

[0009] The dosing interval may be at least about one and one-half to 5, one and one-half, 2, 3, 4, or 5 days or longer.

[0010] The present invention also provides a method of administering Factor VIII to a subject in need thereof, comprising administering to the subject a therapeutic dose of a chimeric Factor VIII polypeptide, e.g., a chimeric Factor VIII-Fc polypeptide, to obtain an area under the plasma concentration versus time curve (AUC) at least about one and one-quarter times greater than the AUC obtained by an equivalent amount of said Factor VIII without the non-Factor VIII portion (a polypeptide consisting of said Factor VIII portion), e.g., without the Fc portion.

[0011] The present invention also provides a method of administering Factor VIII to a subject in need thereof, comprising administering to the subject a therapeutic dose of a polypeptide comprising a Factor VIII and an Fc at a dosing interval of about every five, six, seven, eight, nine, ten, eleven, twelve, thirteen, or fourteen days or longer.

[0012] The methods of the invention may be practiced on a subject in need of prophylactic treatment or on-demand treatment.

[0013] On-demand treatment includes treatment for a bleeding episode, hemarthrosis, muscle bleed, oral bleed, hemorrhage, hemorrhage into muscles, oral hemorrhage, trauma, trauma capitis (head trauma), gastrointestinal bleeding, intracranial hemorrhage, intra-abdominal hemorrhage, intrathoracic hemorrhage, bone fracture, central nervous system bleeding, bleeding in the retropharyngeal space, bleeding in the retroperitoneal space, or bleeding in the iliopsoas sheath. The subject may be in need of surgical prophylaxis, peri-operative management, or treatment for surgery. Such surgeries include, e.g., minor surgery, major surgery, tooth extraction, tonsillectomy, inguinal herniotomy, synovectomy, total knee replacement, craniotomy, osteosynthesis, trauma surgery, intracranial surgery, intra-abdominal surgery, intrathoracic surgery, or joint replacement surgery.

[0014] For on-demand treatment, the dosing interval of said chimeric polypeptide is about once every 24-36, 24-48, 24-72, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, or 72 hours or longer.

[0015] The therapeutic doses that may be used in the methods of the invention are about 10 to about 100 IU/kg, more specifically, about 10-20, 20-30, 30-40, 40-50, 50-60, 60-70, 70-80, 80-90, or 90-100 IU/kg, and more specifically, about 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, or 100 IU/kg.

[0016] The therapeutic doses that may be used in the methods of the invention are about 10 to about 150 IU/kg, more specifically, about 100-110, 110-120, 120-130, 130-140, 140-150 IU/kg, and more specifically, about 110, 115, 120, 125, 130, 135, 140, 145, or 150 IU/kg.

[0017] The subject in the methods of the invention may be a human subject or may be a non-human mammal. Non-human mammals include, e.g., mice, dogs, primates, monkeys, cats, horses, cows, pigs, and other domestic animals and small animals. The determination of dosing interval and AUC may be carried out in a single subject or in a population of subjects.

[0018] The Factor VIII (or Factor VIII portion of a chimeric polypeptide) may be a human Factor VIII, or a non-human Factor VIII, such as porcine, mouse or canine factor VIII. The Factor VIII (or Factor VIII portion of a chimeric polypeptide) may have a full or partial deletion of the B domain.

[0019] The Factor VIII (or Factor VIII portion of a chimeric polypeptide) may be at least 90% or 95% identical to a Factor VIII amino acid sequence shown in Table 2 without a signal sequence (amino acids 1 to 1438 of SEQ ID NO:2; amino acids 1 to 2332 of SEQ ID NO:6; amino acids 1 to 740 of SEQ ID NO:8; amino acids 1 to 745 of SEQ ID NO:10; or amino acids 1 to 684 of SEQ ID NO:12). The Factor VIII (or Factor VIII portion of a chimeric polypeptide) may be identical to a Factor VIII amino acid sequence shown in Table 2 without a signal sequence (amino acids 1 to 1438 of SEQ ID NO:2; amino acids 1 to 2332 of SEQ ID NO:6; amino acids 1 to 740 of SEQ ID NO:8; amino acids 1 to 745 of SEQ ID NO:10; or amino acids 1 to 684 of SEQ ID NO:12).

[0020] The Factor VIII (or Factor VIII portion of a chimeric polypeptide) may be at least 90% or 95% identical to a Factor VIII amino acid sequence shown in Table 2 with a signal sequence (amino acids -19 to 1438 of SEQ ID NO:2; amino acids -19 to 2332 of SEQ ID NO:6; amino acids -19 to 740 of SEQ ID NO:8; amino acids -19 to 745 of SEQ ID NO:10; or amino acids -20 to 684 of SEQ ID NO:12). The Factor VIII (or Factor VIII portion of a chimeric polypeptide) may be identical to a Factor VIII amino acid sequence

shown in Table 2 with a signal sequence (amino acids -19 to 1438 of SEQ ID NO:2; amino acids -19 to 2332 of SEQ ID NO:6; amino acids -19 to 740 of SEQ ID NO:8; amino acids -19 to 745 of SEQ ID NO:10; or amino acids -20 to 684 of SEQ ID NO:12).

[0021] The Fc portion (or Fc portion of a chimeric polypeptide) may be at least 90% or 95% identical to the Fc amino acid sequence shown in Table 2 (amino acids 1439 to 1665 of SEQ ID NO:2; amino acids 2333 to 2559 of SEQ ID NO:6; amino acids 741 to 967 of SEQ ID NO:8; amino acids 746 to 972 of SEQ ID NO:10; amino acids 685 to 924 of SEQ ID NO:12). The Fc portion (or Fc portion of a chimeric polypeptide) may be identical to the Fc amino acid sequence shown in Table 2 (amino acids 1439 to 1665 of SEQ ID NO:2; amino acids 2333 to 2559 of SEQ ID NO:6; amino acids 741 to 967 of SEQ ID NO:8; amino acids 746 to 972 of SEQ ID NO:10; amino acids 685 to 924 of SEQ ID NO:12).

[0022] The chimeric polypeptide may comprise a sequence at least 90% or 95% identical to the Factor VIII and Fc amino acid sequence shown in Table 2A(i) without a signal sequence (amino acids 1 to 1665 of SEQ ID NO:2) or at least 90% or 95% identical to the Factor VIII and Fc amino acid sequence shown in Table 2A(i) with a signal sequence (amino acids -19 to 1665 of SEQ ID NO:2). The chimeric polypeptide may comprise a sequence identical to the Factor VIII and Fc amino acid sequence shown in Table 2A(i) without a signal sequence (amino acids 1 to 1665 of SEQ ID NO:2) or identical to the Factor VIII and Fc amino acid sequence shown in Table 2A(i) with a signal sequence (amino acids -19 to 1665 of SEQ ID NO:2).

[0023] The chimeric polypeptide may be in the form of a hybrid comprising a second polypeptide in association with said chimeric polypeptide, wherein said second polypeptide comprises or consists essentially of an Fc.

[0024] The second polypeptide may comprise or consist essentially of a sequence at least 90% or 95% identical to the amino acid sequence shown in Table 2A(ii) without a signal sequence (amino acids 1 to 227 of SEQ ID NO:4) or at least 90% or 95% identical to the amino acid sequence shown in Table 2A(ii) with a signal sequence (amino acids -20 to 227 of SEQ ID NO:4). The second polypeptide may comprise or consist essentially of a sequence identical to the amino acid sequence shown in Table 2A(ii) without a signal sequence (amino acids 1 to 227 of SEQ ID NO:4) or identical to the amino acid sequence shown in Table 2A(ii) with a signal sequence (amino acids -20 to 227 of SEQ ID NO:4).

[0025] The chimeric polypeptide or hybrid may be administered as part of a pharmaceutical composition comprising at least one excipient.

[0026] The invention also provides the above-described chimeric and hybrid polypeptides themselves, polynucleotides encoding them, a cultured human embryonic cells comprising the polynucleotides, and methods of producing such chimeric and hybrid polypeptides, and the polypeptides produced by such methods.

[0026a] A definition of a specific embodiment of the invention claimed herein follows.

[0026b] In a broad format, the invention provides a method of decreasing the incidence of a bleeding episode in a human subject, said method comprising administering to the subject multiple doses of a chimeric polypeptide comprising a Factor VIII (FVIII) portion and an Fc portion at a dosing interval,
wherein each of the multiple dose is about 20 IU/kg to about 90 IU/kg, and
wherein the dosing interval between two doses is every 72 hours or longer.

[0026c] The term "comprise" and variants of the term such as "comprises" or "comprising" are used herein to denote the inclusion of a stated integer or stated integers but not to exclude any other integer or any other integers, unless in the context or usage an exclusive interpretation of the term is required.

[0026d] Any reference to publications cited in this specification is not an admission that the disclosures constitute common general knowledge in Australia.

BRIEF DESCRIPTION OF THE DRAWINGS/FIGURES

[0027] FIG. 1. Schematic Representation of rFVIIIFc monomer.

[0028] FIG. 2. WBCT of rFVIIIFc compared to ReFacto® in hemophilia A mice after a 50 IU/kg intravenous dose (n = 6 mice per group).

[0029] FIG. 3. Chromogenic Activity in Plasma from hemophilia A mice after a single IV dose of 50 IU/kg rFVIIIFc, ReFacto® and Advate®.

[0030] FIG. 4. WBCT of rFVIIIFc and ReFacto® in hemophilia A dogs (A) rFVIIIFc.
(B) ReFacto® followed by rFVIIIFc in a Crossover Study.

[0031] FIG. 5. Pharmacokinetics of intravenous rFVIIIFc and ReFacto® in Hemophilia A Dogs (measured by ELISA).

[0032] FIG. 6. Activity of rFVIII and ReFacto® after a single intravenous dose in hemophilia A dogs (measured by FVIII-specific chromogenic activity assay).

[0033] FIG. 7. Group mean plasma concentration over time of rFVIIIIFc and Xyntha after a single intravenous dose (125 IU/kg) in cynomolgus monkeys (n = 6, mean \pm SD). Plasma concentrations were measured by ELISA.

[0034] FIG. 8. Individual plasma concentration versus time curves of rFVIIIIFc and Xyntha after a single intravenous dose (125 IU/kg) in cynomolgus monkeys (n = 6, mean \pm SD). Plasma concentrations were measured by ELISA. (A) rFVIIIIFc by ELISA. (B) Xyntha by ELISA.

[0035] FIG. 9. Group mean plasma chromogenic activity after a single intravenous dose (125 IU/kg) of rFVIIIIFc and Xyntha in cynomolgus monkeys (n = 6, mean \pm SD). FVIII activity was measured using a FVIII-specific chromogenic activity assay.

[0036] FIG. 10. Individual plasma chromogenic activity versus time curves after a single intravenous dose (125 IU/kg) of rFVIIIIFc and Xyntha in cynomolgus monkeys (n = 6,

[Text continues on page 7]

mean \pm SD). FVIII activity was measured using a FVIII-specific chromogenic activity assay. (A) rFVIIIFc Chromogenic Activity. (B) Xyntha Chromogenic Activity.

[0037] FIG. 11. Biochemical characterization of rFVIII-Fc: Activation of Factor X as a function of Factor X concentration.

[0038] FIG. 12. Biochemical characterization of rFVIII-Fc: Activation of Factor X as a function of Factor IXa concentration.

[0039] FIG. 13. Observed group mean FVIII activity (\pm SE) (one stage assay, 25 IU/kg (A) or 65 IU/kg (B); and chromogenic assay, 25 IU/kg (C) or 65 IU/kg (D)) versus time.

[0040] FIG. 14. Observed group mean FVIII activity (\pm SE) (one stage assay (A) or chromogenic assay (B)) versus time.

DETAILED DESCRIPTION OF THE INVENTION

[0041] The present invention provides a method of treating Hemophilia A with Factor VIII using a longer dosing interval and/or greater AUC than is possible with currently known Factor VIII products. The present invention also provides improved Factor VIII chimeric polypeptides, Factor VIII chimeric polynucleotides, and methods of production.

[0042] Treatment of hemophilia A is by replacement therapy targeting restoration of FVIII activity to 1 to 5 % of normal levels to prevent spontaneous bleeding (Mannucci, P.M., et al., N. Engl. J. Med. 344:1773-9 (2001), herein incorporated by reference in its entirety). There are plasma-derived and recombinant FVIII products available to treat bleeding episodes on-demand or to prevent bleeding episodes from occurring by treating prophylactically. Based on the half-life of these products (10-12 hr) (White G.C., et al., Thromb. Haemost. 77:660-7 (1997); Morfini, M., Haemophilia 9 (suppl 1):94-99; discussion 100 (2003)), treatment regimens require frequent intravenous administration, commonly two to three times weekly for prophylaxis and one to three times daily for on-demand treatment (Manco-Johnson, M.J., et al., N. Engl. J. Med. 357:535-544 (2007)), each of which is incorporated herein by reference in its entirety. Such frequent administration is painful and inconvenient.

[0043] The present invention provides a method of administering Factor VIII to a subject in need thereof, comprising administering to the subject a therapeutic dose of a chimeric Factor VIII polypeptide, e.g., a chimeric Factor VIII-Fc polypeptide, or a hybrid of such a polypeptide at a dosing interval at least about one and one-half times longer than the

dosing interval required for an equivalent amount of said Factor VIII without the non-Factor VIII portion (a polypeptide consisting of said Factor VIII portion), e.g., without the Fc portion.

[0044] The dosing interval may be at least about one and one-half to six times longer, one and one-half to five times longer, one and one-half to four times longer, one and one-half to three times longer, or one and one-half to two times longer, than the dosing interval required for an equivalent amount of said Factor VIII without the non-Factor VIII portion (a polypeptide consisting of said Factor VIII portion), e.g., without the Fc portion. The dosing interval may be at least about one and one-half, two, two and one-half, three, three and one-half, four, four and one-half, five, five and one-half or six times longer than the dosing interval required for an equivalent amount of said Factor VIII without the non-Factor VIII portion (a polypeptide consisting of said Factor VIII portion), e.g., without the Fc portion. The dosing interval may be about every five, six, seven, eight, nine, ten, eleven, twelve, thirteen, or fourteen days or longer.

[0045] The dosing interval may be at least about one and one-half to 5, one and one-half, 2, 3, 4, or 5 days or longer.

[0046] The present invention also provides a method of administering Factor VIII to a subject in need thereof, comprising administering to the subject a therapeutic dose of a chimeric Factor VIII polypeptide, e.g., a chimeric Factor VIII-Fc polypeptide, or a hybrid of such a polypeptide to obtain an area under the plasma concentration versus time curve (AUC) at least about one and one-quarter times greater than the AUC obtained by an equivalent amount of said Factor VIII without non-Factor VIII portion (a polypeptide consisting of said Factor VIII portion), e.g., without the Fc portion.

[0047] The present invention also provides a method of administering Factor VIII to a subject in need thereof, comprising administering to the subject a therapeutic dose of a polypeptide comprising a Factor VIII and an Fc or a hybrid of such a polypeptide at a dosing interval of about every five, six, seven, eight, nine, ten, eleven, twelve, thirteen, or fourteen days or longer.

[0048] The methods of the invention may be practiced on a subject in need of prophylactic treatment or on-demand treatment.

[0049] "Administering," as used herein, means to give a pharmaceutically acceptable Factor VIII polypeptide of the invention to a subject via a pharmaceutically acceptable

route. Preferred routes of administration are intravenous, e.g., intravenous injection and intravenous infusion. Additional routes of administration include, e.g., subcutaneous, intramuscular, oral, nasal, and pulmonary administration. Chimeric polypeptides and hybrid proteins may be administered as part of a pharmaceutical composition comprising at least one excipient.

[0050] "Area under the plasma concentration versus time curve (AUC)," as used herein, is the same as the term of art in pharmacology, and is based upon the rate and extent of absorption of factor VIII following administration. AUC is determined over a specified time period, such as 12, 18, 24, 36, 48, or 72 hours, or for infinity using extrapolation based on the slope of the curve. Unless otherwise specified herein, AUC is determined for infinity. The determination of AUC may be carried out in a single subject, or in a population of subjects for which the average is calculated.

[0051] "B domain" of Factor VIII, as used herein, is the same as the B domain known in the art that is defined by internal amino acid sequence identity and sites of proteolytic cleavage by thrombin, e.g., residues Ser741-Arg1648 of full length human factor VIII. The other human factor VIII domains are defined by the following amino acid residues: A1, residues Ala1-Arg372; A2, residues Ser373-Arg740; A3, residues Ser1690-Ile2032; C1, residues Arg2033-Asn2172; C2, residues Ser2173-Tyr2332. The A3-C1-C2 sequence includes residues Ser1690-Tyr2332. The remaining sequence, residues Glu1649-Arg1689, is usually referred to as the factor VIII light chain activation peptide. The locations of the boundaries for all of the domains, including the B domains, for porcine, mouse and canine factor VIII are also known in the art. Preferably, the B domain of Factor VIII is deleted ("B domain deleted factor VIII" or "BDD FVIII"). An example of a BDD FVIII is REFACTO (recombinant BDD FVIII), which has the same sequence as the Factor VIII portion of the sequence in Table 2A(i) (amino acids -19 to 1438 or 1 to 1438 of SEQ ID NO:2).

[0052] A "B domain deleted factor VIII" may have the full or partial deletions disclosed in U.S. Patent Nos. 6,316,226, 6,346,513, 7,041,635, 5,789,203, 6,060,447, 5,595,886, 6,228,620, 5,972,885, 6,048,720, 5,543,502, 5,610,278, 5,171,844, 5,112,950, 4,868,112, and 6,458,563, each of which is incorporated herein by reference in its entirety. In some embodiments, a B domain deleted factor VIII sequence of the present invention comprises any one of the deletions disclosed at col. 4, line 4 to col. 5, line 28 and

examples 1-5 of U.S. Patent No. 6,316,226 (also in US 6,346,513). In some embodiments, a B domain deleted factor VIII of the present invention has a deletion disclosed at col. 2, lines 26-51 and examples 5-8 of U.S. Patent No. 5,789,203 (also US 6,060,447, US 5,595,886, and US 6,228,620). In some embodiments, a B domain deleted factor VIII has a deletion described in col. 1, lines 25 to col. 2, line 40 of US Patent No. 5,972,885; col. 6, lines 1-22 and example 1 of U.S. Patent no. 6,048,720; col. 2, lines 17-46 of U.S. Patent No. 5,543,502; col. 4, line 22 to col. 5, line 36 of U.S. Patent no. 5,171,844; col. 2, lines 55-68, figure 2, and example 1 of U.S. Patent No. 5,112,950; col. 2, line 2 to col. 19, line 21 and table 2 of U.S. Patent No. 4,868,112; col. 2, line 1 to col. 3, line 19, col. 3, line 40 to col. 4, line 67, col. 7, line 43 to col. 8, line 26, and col. 11, line 5 to col. 13, line 39 of U.S. Patent no. 7,041,635; or col. 4, lines 25-53, of U.S. Patent No. 6,458,563. In some embodiments, a B domain deleted factor VIII has a deletion of most of the B domain, but still contains amino-terminal sequences of the B domain that are essential for *in vivo* proteolytic processing of the primary translation product into two polypeptide chain, as disclosed in WO 91/09122, which is incorporated herein by reference in its entirety. In some embodiments, a B domain deleted factor VIII is constructed with a deletion of amino acids 747-1638, i.e., virtually a complete deletion of the B domain. Hoeben R.C., *et al.* *J. Biol. Chem.* 265 (13): 7318-7323 (1990), incorporated herein by reference in its entirety. A B domain deleted factor VIII may also contain a deletion of amino acids 771-1666 or amino acids 868-1562 of factor VIII. Meulien P., *et al.* *Protein Eng.* 2(4): 301-6 (1988), incorporated herein by reference in its entirety. Additional B domain deletions that are part of the invention include, e.g.: deletion of amino acids 982 through 1562 or 760 through 1639 (Toole et al., *Proc. Natl. Acad. Sci. U.S.A.* (1986) 83, 5939-5942)), 797 through 1562 (Eaton, et al. *Biochemistry* (1986) 25:8343-8347)), 741 through 1646 (Kaufman (PCT published application No. WO 87/04187)), 747-1560 (Sarver, et al., *DNA* (1987) 6:553-564)), 741 though 1648 (Pasek (PCT application No.88/00831)), 816 through 1598 or 741 through 1689 (Lagner (Behring Inst. Mitt. (1988) No 82:16-25, EP 295597)), each of which is incorporated herein by reference in its entirety. Each of the foregoing deletions may be made in any Factor VIII sequence.

[0053] "Chimeric polypeptide," as used herein, means a polypeptide that includes within it at least two polypeptides (or subsequences or peptides) from different sources.

Chimeric polypeptides may include, e.g., two, three, four, five, six, seven, or more polypeptides from different sources, such as different genes, different cDNAs, or different animal or other species. Chimeric polypeptides may include, e.g., one or more linkers joining the different subsequences. Thus, the subsequences may be joined directly or they may be joined indirectly, via linkers, or both, within a single chimeric polypeptide. Chimeric polypeptides may include, e.g., additional peptides such as signal sequences and sequences such as 6His and FLAG that aid in protein purification or detection. In addition, chimeric polypeptides may have amino acid or peptide additions to the N- and/or C-termini.

[0054] In some embodiments, the chimeric polypeptide comprises a Factor VIII portion and a non-Factor VIII portion. Exemplary non-Factor VIII portions include, e.g., Fc, XTEN, and albumin. Exemplary chimeric polypeptides of the invention include, e.g., chimeric Factor VIII-Fc polypeptides, chimeric Factor VIII-XTEN polypeptides, and chimeric Factor VIII-albumin polypeptides.

[0055] Exemplary chimeric Factor VIII-Fc polypeptides include, e.g., SEQ ID NOs:2, 6, 8, 10, and 12 (Table 2), with or without their signal sequences and the chimeric Fc polypeptide of SEQ ID NO:4 (Table 2).

[0056] The chimeric polypeptide may comprise a sequence at least 90% or 95% identical to the Factor VIII and Fc amino acid sequence shown in Table 2A(i) without a signal sequence (amino acids 1 to 1665 of SEQ ID NO:2) or at least 90% or 95% identical to the Factor VIII and Fc amino acid sequence shown in Table 2A(i) with a signal sequence (amino acids -19 to 1665 of SEQ ID NO:2). The chimeric polypeptide may comprise a sequence identical to the Factor VIII and Fc amino acid sequence shown in Table 2A(i) without a signal sequence (amino acids 1 to 1665 of SEQ ID NO:2) or identical to the Factor VIII and Fc amino acid sequence shown in Table 2A(i) with a signal sequence (amino acids -19 to 1665 of SEQ ID NO:2).

[0057] As discussed above, exemplary chimeric polypeptides include Factor VIII fused to one or more XTEN polypeptides. Schellenburger et al., Nat. Biotech. 27:1186-90 (2009), which is incorporated herein by reference in its entirety. Factor VIII can be fused to either the N-terminal end of the XTEN polypeptide or to the C-terminal end of the XTEN polypeptide, provided the Factor VIII component of the Factor VIII-XTEN fusion protein can be processed by a protease to yield a processed Factor VIII containing polypeptide.

A protease site may be included between the XTEEN portion and the Factor VIII portion to allow such processing. XTEEN polypeptides include, e.g., those disclosed in WO 2009/023270, WO 2010/091122, WO 2007/103515, US 2010/0189682, and US 2009/0092582, each of which is incorporated herein by reference in its entirety.

[0058] As discussed above, exemplary chimeric polypeptides also include Factor VIII fused to one or more albumin polypeptides. Preferably the albumin is human albumin. Factor VIII can be fused to either the N-terminal end of the albumin or to the C-terminal end of the albumin, provided the Factor VIII component of the Factor VIII-albumin fusion protein can be processed by an enzymatically-active proprotein convertase to yield a processed Factor VIII-containing polypeptide. Examples of albumin, e.g., fragments thereof, that may be used in the present invention are known. e.g., U.S. Patent No. 7,592,010; U.S. Patent No. 6,686,179; and Schulte, Thrombosis Res. 124 Suppl. 2:S6-S8 (2009), each of which is incorporated herein by reference in its entirety.

[0059] In some embodiments, a chimeric polypeptide comprising a Factor VIII portion has an increased half-life ($t_{1/2}$) over a polypeptide consisting of the same Factor VIII portion without the non Factor VIII portion. A chimeric Factor VIII polypeptide with an increased $t_{1/2}$ may be referred to herein as a long-acting Factor VIII. Long-acting chimeric Factor VIII polypeptides include, e.g., Factor VIII fused to Fc (including, e.g., chimeric Factor VIII polypeptides in the form of a hybrid such as a FVIIIIFc monomer dimer hybrid; see Example 1, Fig. 1, and Table 2A; and US Patent Nos. 7,404,956 and 7,348,004), Factor VIII fused to XTEEN, and Factor VIII fused to albumin.

[0060] "Culture," "to culture" and "culturing," as used herein, means to incubate cells under in vitro conditions that allow for cell growth or division or to maintain cells in a living state. "Cultured cells," as used herein, means cells that are propagated in vitro.

[0061] "Factor VIII," as used herein, means functional factor VIII polypeptide in its normal role in coagulation, unless otherwise specified. Thus, the term Factor VIII includes variant polypeptides that are functional. Preferred factor VIII proteins are the human, porcine, canine, and murine factor VIII proteins. As described in the Background Art section, the full length polypeptide and polynucleotide sequences are known, as are many functional fragments, mutants and modified versions. Examples of human factor VIII sequences are shown as subsequences in SEQ ID NOs:2, 6, 8, 10, and 12 (Table 2). Factor VIII polypeptides include, e.g., full-length factor VIII, full-length factor VIII

minus Met at the N-terminus, mature factor VIII (minus the signal sequence), mature factor VIII with an additional Met at the N-terminus, and/or factor VIII with a full or partial deletion of the B domain. Preferred Factor VIII variants include B domain deletions, whether partial or full deletions.

[0062] A great many functional factor VIII variants are known, as is discussed above and below. In addition, hundreds of nonfunctional mutations in factor VIII have been identified in hemophilia patients, and it has been determined that the effect of these mutations on factor VIII function is due more to where they lie within the 3-dimensional structure of factor VIII than on the nature of the substitution (Cutler et al., *Hum. Mutat.* 19:274-8 (2002)), incorporated herein by reference in its entirety. In addition, comparisons between factor VIII from humans and other species has identified conserved residues that are likely to be required for function (Cameron et al., *Thromb. Haemost.* 79:317-22 (1998); US 6,251,632), incorporated herein by reference in its entirety.

[0063] The human factor VIII gene was isolated and expressed in mammalian cells (Toole, J. J., et al., *Nature* 312:342-347 (1984); Gitschier, J., et al., *Nature* 312:326-330 (1984); Wood, W. I., et al., *Nature* 312:330-337 (1984); Vehar, G. A., et al., *Nature* 312:337-342 (1984); WO 87/04187; WO 88/08035; WO 88/03558; U.S. Pat. No. 4,757,006), each of which is incorporated herein by reference in its entirety, and the amino acid sequence was deduced from cDNA. Capon et al., U.S. Pat. No. 4,965,199, incorporated herein by reference in its entirety, disclose a recombinant DNA method for producing factor VIII in mammalian host cells and purification of human factor VIII. Human factor VIII expression in CHO (Chinese hamster ovary) cells and BHKC (baby hamster kidney cells) has been reported. Human factor VIII has been modified to delete part or all of the B domain (U.S. Pat. Nos. 4,994,371 and 4,868,112, each of which is incorporated herein by reference in its entirety), and replacement of the human factor VIII B domain with the human factor V B domain has been performed (U.S. Pat. No. 5,004,803, incorporated herein by reference in its entirety). The cDNA sequence encoding human factor VIII and predicted amino acid sequence are shown in SEQ ID NOs:1 and 2, respectively, of US Application Publ. No. 2005/0100990, incorporated herein by reference in its entirety.

[0064] U.S. Pat. No. 5,859,204, Lollar, J. S., incorporated herein by reference in its entirety, reports functional mutants of factor VIII having reduced antigenicity and

reduced immunoreactivity. U.S. Pat. No. 6,376,463, Lollar, J. S., incorporated herein by reference in its entirety, also reports mutants of factor VIII having reduced immunoreactivity. US Application Publ. No. 2005/0100990, Saenko et al., incorporated herein by reference in its entirety, reports functional mutations in the A2 domain of factor VIII.

[0065] A number of functional factor VIII molecules, including B-domain deletions, are disclosed in the following patents US 6,316,226 and US 6,346,513, both assigned to Baxter; US 7,041,635 assigned to In2Gen; US 5,789,203, US 6,060,447, US 5,595,886, and US 6,228,620 assigned to Chiron; US 5,972,885 and US 6,048,720 assigned to Biowitrum, US 5,543,502 and US 5,610,278 assigned to Novo Nordisk; US 5,171,844 assigned to Immuno Ag; US 5,112,950 assigned to Transgene S.A.; US 4,868,112 assigned to Genetics Institute, each of which is incorporated herein by reference in its entirety.

[0066] The porcine factor VIII sequence is published, (Toole, J. J., et al., Proc. Natl. Acad. Sci. USA 83:5939-5942 (1986)), incorporated herein by reference in its entirety, and the complete porcine cDNA sequence obtained from PCR amplification of factor VIII sequences from a pig spleen cDNA library has been reported (Healey, J. F., et al., Blood 88:4209-4214 (1996), incorporated herein by reference in its entirety). Hybrid human/porcine factor VIII having substitutions of all domains, all subunits, and specific amino acid sequences were disclosed in U.S. Pat. No. 5,364,771 by Lollar and Runge, and in WO 93/20093, incorporated herein by reference in its entirety. More recently, the nucleotide and corresponding amino acid sequences of the A1 and A2 domains of porcine factor VIII and a chimeric factor VIII with porcine A1 and/or A2 domains substituted for the corresponding human domains were reported in WO 94/11503, incorporated herein by reference in its entirety. U.S. Pat. No. 5,859,204, Lollar, J. S., also discloses the porcine cDNA and deduced amino acid sequences. 6,458,563, incorporated herein by reference in its entirety assigned to Emory discloses a B-domain deleted porcine Factor VIII.

[0067] The Factor VIII (or Factor VIII portion of a chimeric polypeptide) may be at least 90% or 95% identical to a Factor VIII amino acid sequence shown in Table 2 without a signal sequence (amino acids 1 to 1438 of SEQ ID NO:2; amino acids 1 to 2332 of SEQ ID NO:6; amino acids 1 to 740 of SEQ ID NO:8; amino acids 1 to 745 of SEQ ID NO:10; or amino acids 1 to 684 of SEQ ID NO:12). The Factor VIII (or Factor VIII portion of a

chimeric polypeptide) may be identical to a Factor VIII amino acid sequence shown in Table 2 without a signal sequence (amino acids 1 to 1438 of SEQ ID NO:2; amino acids 1 to 2332 of SEQ ID NO:6; amino acids 1 to 740 of SEQ ID NO:8; amino acids 1 to 745 of SEQ ID NO:10; or amino acids 1 to 684 of SEQ ID NO:12).

[0068] The Factor VIII (or Factor VIII portion of a chimeric polypeptide) may be at least 90% or 95% identical to a Factor VIII amino acid sequence shown in Table 2 with a signal sequence (amino acids -19 to 1438 of SEQ ID NO:2; amino acids -19 to 2332 of SEQ ID NO:6; amino acids -19 to 740 of SEQ ID NO:8; amino acids -19 to 745 of SEQ ID NO:10; or amino acids -20 to 684 of SEQ ID NO:12). The Factor VIII (or Factor VIII portion of a chimeric polypeptide) may be identical to a Factor VIII amino acid sequence shown in Table 2 with a signal sequence (amino acids -19 to 1438 of SEQ ID NO:2; amino acids -19 to 2332 of SEQ ID NO:6; amino acids -19 to 740 of SEQ ID NO:8; amino acids -19 to 745 of SEQ ID NO:10; or amino acids -20 to 684 of SEQ ID NO:12).

[0069] "Equivalent amount," as used herein, means the same amount of Factor VIII activity as expressed in International Units, which is independent of molecular weight of the polypeptide in question. One International Unit (IU) of factor VIII activity corresponds approximately to the quantity of factor VIII in one milliliter of normal human plasma. Several assays are available for measuring Factor VIII activity, including the European Pharmacopoeia chromogenic substrate assay and a one stage clotting assay.

[0070] "Fc," as used herein, means functional neonatal Fc receptor (FcRn) binding partners, unless otherwise specified. An FcRn binding partner is any molecule that can be specifically bound by the FcRn receptor with consequent active transport by the FcRn receptor of the FcRn binding partner. Thus, the term Fc includes any variants of IgG Fc that are functional. The region of the Fc portion of IgG that binds to the FcRn receptor has been described based on X-ray crystallography (Burmeister et al. 1994, Nature 372:379, incorporated herein by reference in its entirety). The major contact area of the Fc with the FcRn is near the junction of the CH2 and CH3 domains. Fc-FcRn contacts are all within a single Ig heavy chain. The FcRn binding partners include, e.g., whole IgG, the Fc fragment of IgG, and other fragments of IgG that include the complete binding region of FcRn. The major contact sites include amino acid residues 248, 250-257, 272, 285, 288, 290-291, 308-311, and 314 of the CH2 domain and amino acid residues 385-387, 428, and 433-436 of the CH3 domain. References made to amino acid numbering of

immunoglobulins or immunoglobulin fragments, or regions, are all based on Kabat et al. 1991, Sequences of Proteins of Immunological Interest, U. S. Department of Public Health, Bethesda; MD, incorporated herein by reference in its entirety. (The FcRn receptor has been isolated from several mammalian species including humans. The sequences of the human FcRn, rat FcRn, and mouse FcRn are known (Story et al. 1994, J. Exp. Med. 180: 2377), incorporated herein by reference in its entirety.) An Fc may comprise the CH2 and CH3 domains of an immunoglobulin with or without the hinge region of the immunoglobulin. Exemplary Fc variants are provided in WO 2004/101740 and WO 2006/074199, incorporated herein by reference in its entirety.

[0071] Fc (or Fc portion of a chimeric polypeptide) may contain one or more mutations, and combinations of mutations.

[0072] Fc (or Fc portion of a chimeric polypeptide) may contain mutations conferring increased half-life such as M252Y, S254T, T256E, and combinations thereof, as disclosed in Oganesyan et al., Mol. Immunol. 46:1750 (2009), which is incorporated herein by reference in its entirety; H433K, N434F, and combinations thereof, as disclosed in Vaccaro et al., Nat. Biotechnol. 23:1283 (2005), which is incorporated herein by reference in its entirety; the mutants disclosed at pages 1-2, paragraph [0012], and Examples 9 and 10 of US 2009/0264627 A1, which is incorporated herein by reference in its entirety; and the mutants disclosed at page 2, paragraphs [0014] to [0021] of US 20090163699 A1, which is incorporated herein by reference in its entirety.

[0073] Fc (or Fc portion of a chimeric polypeptide) may also include, e.g., the following mutations: The Fc region of IgG can be modified according to well recognized procedures such as site directed mutagenesis and the like to yield modified IgG or Fc fragments or portions thereof that will be bound by FcRn. Such modifications include, e.g., modifications remote from the FcRn contact sites as well as modifications within the contact sites that preserve or even enhance binding to the FcRn. For example the following single amino acid residues in human IgG1 Fc (Fcγ1) can be substituted without significant loss of Fc binding affinity for FcRn: P238A, S239A, K246A, K248A, D249A, M252A, T256A, E258A, T260A, D265A, S267A, H268A, E269A, D270A, E272A, L274A, N276A, Y278A, D280A, V282A, E283A, H285A, N286A, T289A, K290A, R292A, E293A, E294A, Q295A, Y296F, N297A, S298A, Y300F, R301A, V303A, V305A, T307A, L309A, Q311A, D312A, N315A, K317A, E318A, K320A, K322A,

S324A, K326A, A327Q, P329A, A330Q, A330S, P331A, P331S, E333A, K334A, T335A, S337A, K338A, K340A, Q342A, R344A, E345A, Q347A, R355A, E356A, M358A, T359A, K360A, N361A, Q362A, Y373A, S375A D376A, A378Q, E380A, E382A, S383A, N384A, Q386A, E388A, N389A, N390A, Y391F, K392A, L398A, S400A, D401A, D413A, K414A, R416A, Q418A, Q419A, N421A, V422A, S424A, E430A, N434A, T437A, Q438A, K439A, S440A, S444A, and K447A, where for example P238A represents wildtype proline substituted by alanine at position number 238. In addition to alanine other amino acids may be substituted for the wildtype amino acids at the positions specified above. Mutations may be introduced singly into Fc giving rise to more than one hundred FcRn binding partners distinct from native Fc. Additionally, combinations of two, three, or more of these individual mutations may be introduced together, giving rise to hundreds more FcRn binding partners. Certain of these mutations may confer new functionality upon the FcRn binding partner. For example, one embodiment incorporates N297A, removing a highly conserved N-glycosylation site. The effect of this mutation is to reduce immunogenicity, thereby enhancing circulating half-life of the FcRn binding partner, and to render the FcRn binding partner incapable of binding to FcγRI, FcγRIIA, FcγRIIB, and FcγRIIIA, without compromising affinity for FcRn (Routledge et al. 1995, Transplantation 60:847, which is incorporated herein by reference in its entirety; Friend et al. 1999, Transplantation 68:1632, which is incorporated herein by reference in its entirety; Shields et al. 1995, J. Biol. Chem. 276:6591, which is incorporated herein by reference in its entirety). Additionally, at least three human Fc gamma receptors appear to recognize a binding site on IgG within the lower hinge region, generally amino acids 234-237. Therefore, another example of new functionality and potential decreased immunogenicity may arise from mutations of this region, as for example by replacing amino acids 233-236 of human IgG1 "ELLG" to the corresponding sequence from IgG2 "PVA" (with one amino acid deletion). It has been shown that FcγRI, FcγRII, and FcγRIII which mediate various effector functions will not bind to IgG1 when such mutations have been introduced (Ward and Ghetie 1995, Therapeutic Immunology 2:77, which is incorporated herein by reference in its entirety; and Armour et al. 1999, Eur. J. Immunol. 29:2613, which is incorporated herein by reference in its entirety). As a further example of new functionality arising from mutations described above affinity for FcRn may be increased beyond that of wild type in

some instances. This increased affinity may reflect an increased "on" rate, a decreased "off" rate or both an increased "on" rate and a decreased "off" rate. Mutations believed to impart an increased affinity for FcRn include, e.g., T256A, T307A, E380A, and N434A (Shields et al. 2001, J. Biol. Chem. 276:6591, which is incorporated herein by reference in its entirety).

[0074] The Fc (or Fc portion of a chimeric polypeptide) may be at least 90% or 95% identical to the Fc amino acid sequence shown in Table 2 (amino acids 1439 to 1665 of SEQ ID NO:2; amino acids 2333 to 2559 of SEQ ID NO:6; amino acids 741 to 967 of SEQ ID NO:8; amino acids 746 to 972 of SEQ ID NO:10; amino acids 685 to 924 of SEQ ID NO:12). The Fc (or Fc portion of a chimeric polypeptide) may be identical to the Fc amino acid sequence shown in Table 2 (amino acids 1439 to 1665 of SEQ ID NO:2; amino acids 2333 to 2559 of SEQ ID NO:6; amino acids 741 to 967 of SEQ ID NO:8; amino acids 746 to 972 of SEQ ID NO:10; amino acids 685 to 924 of SEQ ID NO:12).

[0075] "Hybrid" polypeptides and proteins, as used herein, means a combination of a chimeric polypeptide with a second polypeptide. The chimeric polypeptide and the second polypeptide in a hybrid may be associated with each other via protein-protein interactions, such as charge-charge or hydrophobic interactions. The chimeric polypeptide and the second polypeptide in a hybrid may be associated with each other via disulfide or other covalent bond(s). Hybrids are described in WO 2004/101740 and WO 2006/074199, each of which is incorporated herein by reference in its entirety. See also US Patent Nos. 7,404,956 and 7,348,004, each of which is incorporated herein by reference in its entirety. The second polypeptide may be a second copy of the same chimeric polypeptide or it may be a non-identical chimeric polypeptide. See, e.g., Figure 1, Example 1, and Table 2. In preferred embodiments, the second polypeptide is a polypeptide comprising an Fc. In preferred embodiments, the chimeric polypeptide is a chimeric Factor VIII-Fc polypeptide and the second polypeptide consists essentially of Fc, e.g, the hybrid polypeptide of Example 1, which is a rFVIIIFc recombinant fusion protein consisting of a single molecule of recombinant B-domain deleted human FVIII (BDD-rFVIII) fused to the dimeric Fc domain of the human IgG1, with no intervening linker sequence. This hybrid polypeptide is referred to herein as FVIIIFc monomeric Fc fusion protein, FVIIIFc monomer hybrid, monomeric FVIIIFc hybrid, and FVIIIFc

monomer-dimer. See Example 1, Fig. 1, and Table 2A. The Examples provide preclinical and clinical data for this hybrid polypeptide.

[0076] The second polypeptide in a hybrid may comprise or consist essentially of a sequence at least 90% or 95% identical to the amino acid sequence shown in Table 2A(ii) without a signal sequence (amino acids 1 to 227 of SEQ ID NO:4) or at least 90% or 95% identical to the amino acid sequence shown in Table 2A(ii) with a signal sequence (amino acids -20 to 227 of SEQ ID NO:4). The second polypeptide may comprise or consist essentially of a sequence identical to the amino acid sequence shown in Table 2A(ii) without a signal sequence (amino acids 1 to 227 of SEQ ID NO:4) or identical to the amino acid sequence shown in Table 2A(ii) with a signal sequence (amino acids -20 to 227 of SEQ ID NO:4).

[0077] Figure 1 is a schematic showing the structure of a B domain deleted factor VIII-Fc chimeric polypeptide, and its association with a second polypeptide that is an Fc polypeptide. To obtain this hybrid, the coding sequence of human recombinant B-domain deleted FVIII was obtained by reverse transcription-polymerase chain reaction (RT-PCR) from human liver poly A RNA (Clontech) using FVIII-specific primers. The FVIII sequence includes the native signal sequence for FVIII. The B-domain deletion was from serine 743 (S743; 2287 bp) to glutamine 1638 (Q1638; 4969 bp) for a total deletion of 2682 bp. Then, the coding sequence for human recombinant Fc was obtained by RT-PCR from a human leukocyte cDNA library (Clontech) using Fc specific primers. Primers were designed such that the B-domain deleted FVIII sequence was fused directly to the N-terminus of the Fc sequence with no intervening linker. The FVIIIFc DNA sequence was cloned into the mammalian dual expression vector pBUDCE4.1 (Invitrogen) under control of the CMV promoter. A second identical Fc sequence including the mouse Igk signal sequence was obtained by RT-PCR and cloned downstream of the second promoter, EF1 α , in the expression vector pBUDCE4.1.

[0078] The rFVIIIFc expression vector was transfected into human embryonic kidney 293 cells (HEK293H; Invitrogen) using Lipofectamine 2000 transfection reagent (Invitrogen). Stable clonal cell lines were generated by selection with Zeocin (Invitrogen). One clonal cell line, 3C4-22 was used to generate FVIIIFc for characterization in vivo. Recombinant FVIIIFc was produced and purified (McCue et al. 2009) at Biogen Idec (Cambridge, MA). The transfection strategy described above was

expected to yield three products, i.e., monomeric rFVIIIFc hybrids, dimeric rFVIIIFc hybrids and dimeric Fc. However, there was essentially no dimeric rFVIIIFc detected in the conditioned medium from these cells. Rather, the conditioned medium contained Fc and monomeric rFVIIIFc. It is possible that the size of dimeric rFVIIIFc was too great and prevented efficient secretion from the cell. This result was beneficial since it rendered the purification of the monomer less complicated than if all three proteins had been present. The material used in these studies had a specific activity of approximately 9000 IU/mg.

[0079] "Dosing interval," as used herein, means the amount of time that elapses between multiple doses being administered to a subject. The comparison of dosing interval may be carried out in a single subject or in a population of subjects and then the average obtained in the population may be calculated.

[0080] The dosing interval when administering a chimeric Factor VIII polypeptide, e.g., a chimeric Factor VIII-Fc polypeptide (a polypeptide comprising a Factor VIII or a hybrid) of the invention may be at least about one and one-half times longer than the dosing interval required for an equivalent amount of said Factor VIII without the non-Factor VIII portion, e.g., without the Fc portion (a polypeptide consisting of said Factor VIII). The dosing interval may be at least about one and one-half to six times longer, one and one-half to five times longer, one and one-half to four times longer, one and one-half to three times longer, or one and one-half to two times longer, than the dosing interval required for an equivalent amount of said Factor VIII without the non-Factor VIII portion, e.g., without the Fc portion (a polypeptide consisting of said Factor VIII). The dosing interval may be at least about one and one-half, two, two and one-half, three, three and one-half, four, four and one-half, five, five and one-half or six times longer than the dosing interval required for an equivalent amount of said Factor VIII without the non-Factor VIII portion, e.g., without the Fc portion (a polypeptide consisting of said Factor VIII).. The dosing interval may be about every five, six, seven, eight, nine, ten, eleven, twelve, thirteen, or fourteen days or longer. The dosing interval may be at least about one and one-half to 5, one and one-half, 2, 3, 4, or 5 days or longer. For on-demand treatment, the dosing interval of said chimeric polypeptide or hybrid is about once every 24-36, 24-48, 24-72, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,

48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, or 72 hours or longer.

[0081] Preferably, the effective dose is 25-65 IU/kg (25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, or 65 IU/kg) and the dosing interval is once every 3-5, 3-6, 3-7, 3, 4, 5, 6, 7, or 8 or more days, or three times per week, or no more than three times per week. Preferably, the effective dose is 65 IU/kg and the dosing interval is once weekly, or once every 6-7 days.

[0082] "Long-acting Factor VIII" is a Factor VIII having an increased half-life (also referred to herein as t1/2, t1/2 beta, elimination half-life and HL) over a reference Factor VIII. The increased half-life of a long-acting Factor VIII may be due to fusion to one or more non-Factor VIII polypeptides such as, e.g., Fc, XTEN or albumin. The increased half-life may be due to one or more modification, such as, e.g., pegylation. Exemplary long-acting Factor VIII polypeptides include, e.g., chimeric Factor VIII polypeptides comprising Fc, chimeric Factor VIII polypeptides comprising XTEN and chimeric Factor VIII polypeptides comprising albumin. Additional exemplary long-acting Factor VIII polypeptides include, e.g., pegylated Factor VIII.

[0083] The "reference" polypeptide, in the case of a long-acting chimeric Factor VIII polypeptide, is a polypeptide consisting essentially of the Factor VIII portion of the chimeric polypeptide, e.g., the same Factor VIII portion without the Fc portion, without the XTEN portion, or without the albumin portion. Likewise, the reference polypeptide in the case of a modified Factor VIII is the same Factor VIII without the modification, e.g., a Factor VIII without the pegylation.

[0084] In some embodiments, the long-acting Factor VIII has one or more of the following properties when administered to a subject:

- a mean residence time (MRT) (activity) in said subject of about 14-41.3 hours;
- a clearance (CL) (activity) in said subject of about 1.22-5.19 mL/hour/kg or less;
- a t1/2beta (activity) in said subject of about 11-26.4 hours;
- an incremental recovery (K value) (activity; observed) in said subject of about 1.38-2.88 IU/dL per IU/kg;
- a Vss (activity) in said subject of about 37.7-79.4 mL/kg; and
- an AUC/dose in said subject of about 19.2-81.7 IU*h/dL per IU/kg.

[0085] In some embodiments, the long-acting Factor VIII has one or more of the following properties when administered to a patient population:

- a mean incremental recovery (K-Value) (activity; observed) greater than 1.38 IU/dL per IU/kg;
- a mean incremental recovery (K-Value) (activity; observed) of at least about 1.5, at least about 1.85, or at least about 2.46 IU/dL per IU/kg;
- a mean clearance (CL) (activity) in said patient population of about 2.33 ± 1.08 mL/hour/kg or less;
- a mean clearance (CL) (activity) in said patient population of about 1.8-2.69 mL/hour/kg;
- a mean clearance (CL) (activity) in said patient population that is about 65% of the clearance of a polypeptide comprising said Factor VIII without modification;
- a mean mean residence time (MRT) (activity) in said patient population of at least about 26.3 ± 8.33 hours;
- a mean MRT (activity) in said patient population of about 25.9 - 26.5 hours;
- a mean MRT (activity) in said patient population that is about 1.5 fold longer than the mean MRT of a polypeptide comprising said Factor VIII without modification;
- a mean $t_{1/2\beta}$ (activity) in said patient population of about 18.3 ± 5.79 hours;
- a mean $t_{1/2\beta}$ (activity) in said patient population that is about 18 - 18.4 hours;
- a mean $t_{1/2\beta}$ (activity) in said patient population that is about 1.5 fold longer than the mean $t_{1/2\beta}$ of a polypeptide comprising said Factor VIII without modification;
- a mean incremental recovery (K value) (activity; observed) in said patient population of about 2.01 ± 0.44 IU/dL per IU/kg;
- a mean incremental recovery (K value) (activity; observed) in said patient population of about 1.85 - 2.46 IU/dL per IU/kg;
- a mean incremental recovery (K value) (activity; observed) in said patient population that is about 90 % of the mean incremental recovery of a polypeptide comprising said Factor VIII without modification;
- a mean V_{ss} (activity) in said patient population of about 55.1 ± 12.3 mL/kg;
- a mean V_{ss} (activity) in said patient population of about 45.3 - 56.1 mL/kg;
- a mean AUC/dose (activity) in said patient population of about 49.9 ± 18.2 IU*h/dL per IU/kg;
- a mean AUC/dose (activity) in said patient population of about 44.8 - 57.6 IU*h/dL per IU/kg.

[0086] "On-demand treatment," as used herein, means treatment that is intended to take place over a short course of time and is in response to an existing condition, such as a bleeding episode, or a perceived need such as planned surgery. Conditions that may require on-demand treatment include, e.g., a bleeding episode, hemarthrosis, muscle

bleed, oral bleed, hemorrhage, hemorrhage into muscles, oral hemorrhage, trauma, trauma capitis, gastrointestinal bleeding, intracranial hemorrhage, intra-abdominal hemorrhage, intrathoracic hemorrhage, bone fracture, central nervous system bleeding, bleeding in the retropharyngeal space, bleeding in the retroperitoneal space, or bleeding in the iliopsoas sheath. The subject may be in need of surgical prophylaxis, peri-operative management, or treatment for surgery. Such surgeries include, e.g., minor surgery, major surgery, tooth extraction, tonsillectomy, inguinal herniotomy, synovectomy, total knee replacement, craniotomy, osteosynthesis, trauma surgery, intracranial surgery, intra-abdominal surgery, intrathoracic surgery, or joint replacement surgery.

[0087] Preferably, on-demand treatment resolves greater than 80% (greater than 80%, greater than 81%, greater than 82%, greater than 83%, greater than 84%, greater than 85%, greater than 86%, greater than 87%, greater than 88%, greater than 89%, greater than 90%, greater than 91%, greater than 92%, greater than 93%, greater than 94%, greater than 95%, greater than 96%, greater than 97%, greater than 98%, greater than 99%, or 100%) or 80-100%, 80-90%, 85-90%, 90-100%, 90-95%, or 95-100% of bleeds (e.g., spontaneous bleeds) in a single dose. Preferably, greater than 80% (greater than 81%, greater than 82%, greater than 83%, greater than 84%, greater than 85%, greater than 86%, greater than 87%, greater than 88%, greater than 89%, greater than 90%, greater than 91%, greater than 92%, greater than 93%, greater than 94%, greater than 95%, greater than 96%, greater than 97%, greater than 98%, or 100%) or 80-100%, 80-90%, 85-90%, 90-100%, 90-95%, or 95-100% of bleeding episodes are rated excellent or good by physicians after on-demand treatment. Preferably, greater than 5%, (greater than 6%, greater than 7%, greater than 8%, greater than 9%, greater than 10%, greater than 11%, greater than 12%, greater than 13%, greater than 14%, greater than 15%, greater than 16%, greater than 17%, greater than 18%, greater than 19%, greater than 20%), or 5-20%, 5-15%, 5-10%, 10-20%, or 10-15% of bleeding episodes are rated as fair by physicians after on-demand treatment.

[0088] "Polypeptide," "peptide" and "protein" are used interchangeably and refer to a polymeric compound comprised of covalently linked amino acid residues.

[0089] "Polynucleotide" and "nucleic acid" are used interchangeably and refer to a polymeric compound comprised of covalently linked nucleotide residues. Polynucleotides may be DNA, cDNA, RNA, single stranded, or double stranded, vectors,

plasmids, phage, or viruses. Polynucleotides include, e.g., those in Table 1, which encode the polypeptides of Table 2 (see Table 1). Polynucleotides also include, e.g., fragments of the polynucleotides of Table 1, e.g., those that encode fragments of the polypeptides of Table 2, such as the Factor VIII, Fc, signal sequence, 6His and other fragments of the polypeptides of Table 2.

[0090] "Prophylactic treatment," as used herein, means administering a Factor VIII polypeptide in multiple doses to a subject over a course of time to increase the level of Factor VIII activity in a subject's plasma. Preferably, the increased level is sufficient to decrease the incidence of spontaneous bleeding or to prevent bleeding, e.g., in the event of an unforeseen injury. Preferably, during prophylactic treatment, the plasma protein level in the subject does not fall below the baseline level for that subject, or below the level of Factor VIII that characterizes severe hemophilia (<1 IU/dl [1%]).

[0091] Preferably, the prophylaxis regimen is "tailored" to the individual patient, preferably by determining PK data for each patient and administering Factor VIII of the invention at a dosing interval that maintains a trough level of 1-3% FVIII activity. Adjustments may be made when a subject experiences unacceptable bleeding episodes defined as ≥ 2 spontaneous bleeding episodes over a rolling two-month period. In this case, adjustment will target trough levels of 3-5%. Preferably, prophylactic treatment results in prevention and control of bleeding, sustained control of bleeding, sustained protection from bleeding, and/or sustained benefit. Prophylaxis, e.g., sustained protection can be demonstrated by an increased AUC to last measured time point (AUC-LAST) and reduced clearance, resulting in increased terminal $t_{1/2}$ compared to short acting FVIII. Preferably, prophylaxis is demonstrated by better Cmax, better Tmax, and/or greater mean residence time versus short-acting FVIII. Preferably, prophylaxis results in no spontaneous bleeding episodes within about 24, 36, 48, 72, or 96 hours (e.g., 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, or 96 hours, preferably within 72 hours), after injection (e.g., the last injection). Preferably, prophylaxis results in greater than 30% (e.g., greater than 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, or 96 hours, preferably within 72 hours), after injection (e.g., the last injection).

87, 88, 89, or 90%, preferably greater than 50%), mean reduction in annualized bleeding episodes with once weekly dosing (e.g., at 65 IU/kg).

[0092] "Subject," as used herein means a human or a non-human mammal. Non-human mammals include, e.g., mice, dogs, primates, monkeys, cats, horses, cows, pigs, and other domestic animals and small animals.

[0093] "Therapeutic dose," as used herein, means a dose that achieves a therapeutic goal, as described herein. The calculation of the required dosage of factor VIII is based upon the empirical finding that, on average, 1 IU of factor VIII per kg body weight raises the plasma factor VIII activity by approximately 2 IU/dL. The required dosage is determined using the following formula:

Required units = body weight (kg) x desired factor VIII rise (IU/dL or % of normal) x 0.5 (IU/kg per IU/dL)

[0094] The therapeutic doses that may be used in the methods of the invention are about 10-100 IU/kg, more specifically, 10-20, 20-30, 30-40, 40-50, 50-60, 60-70, 70-80, 80-90, or 90-100 IU/kg, and more specifically, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, or 100 IU/kg.

[0095] Additional therapeutic doses that may be used in the methods of the invention are about 10 to about 150 IU/kg, more specifically, about 100-110, 110-120, 120-130, 130-140, 140-150 IU/kg, and more specifically, about 110, 115, 120, 125, 130, 135, 140, 145, or 150 IU/kg.

[0096] "Variant," as used herein, refers to a polynucleotide or polypeptide differing from the original polynucleotide or polypeptide, but retaining essential properties thereof, e.g., factor VIII coagulant activity or Fc (FcRn binding) activity. Generally, variants are overall closely similar, and, in many regions, identical to the original polynucleotide or polypeptide. Variants include, e.g., polypeptide and polynucleotide fragments, deletions, insertions, and modified versions of original polypeptides.

[0097] Variant polynucleotides may comprise, or alternatively consist of, a nucleotide sequence which is at least 85%, 90%, 95%, 96%, 97%, 98% or 99% identical to, for example, the nucleotide coding sequence in SEQ ID NO:1, 3, 5, 7, 9, or 11 (the factor VIII portion, the Fc portion, individually or together) or the complementary strand thereto, the nucleotide coding sequence of known mutant and recombinant factor VIII or Fc such as those disclosed in the publications and patents cited herein or the complementary strand thereto, a nucleotide sequence encoding the polypeptide of SEQ ID

NO:2, 4, 6, 8, 10, or 12 (the factor VIII portion, the Fc portion, individually or together), and/or polynucleotide fragments of any of these nucleic acid molecules (e.g., those fragments described herein). Polynucleotides which hybridize to these nucleic acid molecules under stringent hybridization conditions or lower stringency conditions are also included as variants, as are polypeptides encoded by these polynucleotides as long as they are functional.

[0098] Variant polypeptides may comprise, or alternatively consist of, an amino acid sequence which is at least 85%, 90%, 95%, 96%, 97%, 98%, 99% identical to, for example, the polypeptide sequence shown in SEQ ID NO:2, 4, 6, 8, 10, or 12 (the factor VIII portion, the Fc portion, individually or together), and/or polypeptide fragments of any of these polypeptides (e.g., those fragments described herein).

[0099] By a nucleic acid having a nucleotide sequence at least, for example, 95% "identical" to a reference nucleotide sequence, it is intended that the nucleotide sequence of the nucleic acid is identical to the reference sequence except that the nucleotide sequence may include up to five point mutations per each 100 nucleotides of the reference nucleotide sequence. In other words, to obtain a nucleic acid having a nucleotide sequence at least 95% identical to a reference nucleotide sequence, up to 5% of the nucleotides in the reference sequence may be deleted or substituted with another nucleotide, or a number of nucleotides up to 5% of the total nucleotides in the reference sequence may be inserted into the reference sequence. The query sequence may be, for example, the entire sequence shown in SEQ ID NO:1 or 3, the ORF (open reading frame), or any fragment specified as described herein.

[00100] As a practical matter, whether any particular nucleic acid molecule or polypeptide is at least 85%, 90%, 95%, 96%, 97%, 98% or 99% identical to a nucleotide sequence or polypeptide of the present invention can be determined conventionally using known computer programs. A preferred method for determining the best overall match between a query sequence (reference or original sequence) and a subject sequence, also referred to as a global sequence alignment, can be determined using the FASTDB computer program based on the algorithm of Brutlag et al. (Comp. App. Biosci. (1990) 6:237-245), which is herein incorporated by reference in its entirety. In a sequence alignment the query and subject sequences are both DNA sequences. An RNA sequence can be compared by converting U's to T's. The result of said global sequence alignment is in percent identity.

Preferred parameters used in a FASTDB alignment of DNA sequences to calculate percent identity are: Matrix=Unitary, k-tuple=4, Mismatch Penalty=1, Joining Penalty=30, Randomization Group Length=0, Cutoff Score=1, Gap Penalty=5, Gap Size Penalty 0.05, Window Size=500 or the length of the subject nucleotide sequence, whichever is shorter.

[00101] If the subject sequence is shorter than the query sequence because of 5' or 3' deletions, not because of internal deletions, a manual correction must be made to the results. This is because the FASTDB program does not account for 5' and 3' truncations of the subject sequence when calculating percent identity. For subject sequences truncated at the 5' or 3' ends, relative to the query sequence, the percent identity is corrected by calculating the number of bases of the query sequence that are 5' and 3' of the subject sequence, which are not matched/aligned, as a percent of the total bases of the query sequence. Whether a nucleotide is matched/aligned is determined by results of the FASTDB sequence alignment. This percentage is then subtracted from the percent identity, calculated by the above FASTDB program using the specified parameters, to arrive at a final percent identity score. This corrected score is what is used for the purposes of the present invention. Only bases outside the 5' and 3' bases of the subject sequence, as displayed by the FASTDB alignment, which are not matched/aligned with the query sequence, are calculated for the purposes of manually adjusting the percent identity score.

[00102] For example, a 90 base subject sequence is aligned to a 100 base query sequence to determine percent identity. The deletions occur at the 5' end of the subject sequence and therefore, the FASTDB alignment does not show a matched/alignment of the first 10 bases at 5' end. The 10 unpaired bases represent 10% of the sequence (number of bases at the 5' and 3' ends not matched/total number of bases in the query sequence) so 10% is subtracted from the percent identity score calculated by the FASTDB program. If the remaining 90 bases were perfectly matched the final percent identity would be 90%. In another example, a 90 base subject sequence is compared with a 100 base query sequence. This time the deletions are internal deletions so that there are no bases on the 5' or 3' of the subject sequence which are not matched/aligned with the query. In this case the percent identity calculated by FASTDB is not manually corrected. Once again, only bases 5' and 3' of the subject sequence which are not matched/aligned with the

query sequence are manually corrected for. No other manual corrections are to be made for the purposes of the present invention.

[00103] By a polypeptide having an amino acid sequence at least, for example, 95% "identical" to a query amino acid sequence of the present invention, it is intended that the amino acid sequence of the subject polypeptide is identical to the query sequence except that the subject polypeptide sequence may include up to five amino acid alterations per each 100 amino acids of the query amino acid sequence. In other words, to obtain a polypeptide having an amino acid sequence at least 95% identical to a query amino acid sequence, up to 5% of the amino acid residues in the subject sequence may be inserted, deleted, (indels) or substituted with another amino acid. These alterations of the reference sequence may occur at the amino or carboxy terminal positions of the reference amino acid sequence or anywhere between those terminal positions, interspersed either individually among residues in the reference sequence or in one or more contiguous groups within the reference sequence.

[00104] As a practical matter, whether any particular polypeptide is at least 85%, 90%, 95%, 96%, 97%, 98% or 99% identical to, for instance, the amino acid sequences of SEQ ID NO:2 (the factor VIII portion, the Fc portion, individually or together) or 4, or a known factor VIII or Fc polypeptide sequence, can be determined conventionally using known computer programs. A preferred method for determining the best overall match between a query sequence (reference or original sequence) and a subject sequence, also referred to as a global sequence alignment, can be determined using the FASTDB computer program based on the algorithm of Brutlag et al., Comp. App. Biosci. 6:237-245(1990), incorporated herein by reference in its entirety. In a sequence alignment the query and subject sequences are either both nucleotide sequences or both amino acid sequences. The result of said global sequence alignment is in percent identity. Preferred parameters used in a FASTDB amino acid alignment are: Matrix=PAM 0, k-tuple=2, Mismatch Penalty=1, Joining Penalty=20, Randomization Group Length=0, Cutoff Score=1, Window Size=sequence length, Gap Penalty=5, Gap Size Penalty=0.05, Window Size=500 or the length of the subject amino acid sequence, whichever is shorter.

[00105] If the subject sequence is shorter than the query sequence due to N- or C-terminal deletions, not because of internal deletions, a manual correction must be made to the results. This is because the FASTDB program does not account for N- and C-terminal

truncations of the subject sequence when calculating global percent identity. For subject sequences truncated at the N- and C-termini, relative to the query sequence, the percent identity is corrected by calculating the number of residues of the query sequence that are N- and C-terminal of the subject sequence, which are not matched/aligned with a corresponding subject residue, as a percent of the total bases of the query sequence. Whether a residue is matched/aligned is determined by results of the FASTDB sequence alignment. This percentage is then subtracted from the percent identity, calculated by the above FASTDB program using the specified parameters, to arrive at a final percent identity score. This final percent identity score is what is used for the purposes of the present invention. Only residues to the N- and C-termini of the subject sequence, which are not matched/aligned with the query sequence, are considered for the purposes of manually adjusting the percent identity score. That is, only query residue positions outside the farthest N- and C-terminal residues of the subject sequence.

[00106] For example, a 90 amino acid residue subject sequence is aligned with a 100 residue query sequence to determine percent identity. The deletion occurs at the N-terminus of the subject sequence and therefore, the FASTDB alignment does not show a matching/alignment of the first 10 residues at the N-terminus. The 10 unpaired residues represent 10% of the sequence (number of residues at the N- and C- termini not matched/total number of residues in the query sequence) so 10% is subtracted from the percent identity score calculated by the FASTDB program. If the remaining 90 residues were perfectly matched the final percent identity would be 90%. In another example, a 90 residue subject sequence is compared with a 100 residue query sequence. This time the deletions are internal deletions so there are no residues at the N- or C-termini of the subject sequence which are not matched/aligned with the query. In this case the percent identity calculated by FASTDB is not manually corrected. Once again, only residue positions outside the N- and C-terminal ends of the subject sequence, as displayed in the FASTDB alignment, which are not matched/aligned with the query sequence are manually corrected for. No other manual corrections are to be made for the purposes of the present invention.

[00107] The polynucleotide variants may contain alterations in the coding regions, non-coding regions, or both. Especially preferred are polynucleotide variants containing alterations which produce silent substitutions, additions, or deletions, but do not alter the

properties or activities of the encoded polypeptide. Nucleotide variants produced by silent substitutions due to the degeneracy of the genetic code are preferred. Moreover, variants in which 5-10, 1-5, or 1-2 amino acids are substituted, deleted, or added in any combination are also preferred. Polynucleotide variants can be produced for a variety of reasons, e.g., to optimize codon expression for a particular host (change codons in the human mRNA to those preferred by a bacterial host such as *E. coli*).

[00108] Naturally occurring variants are called "allelic variants," and refer to one of several alternate forms of a gene occupying a given locus on a chromosome of an organism (Genes II, Lewin, B., ed., John Wiley & Sons, New York (1985)). These allelic variants can vary at either the polynucleotide and/or polypeptide level and are included in the present invention. Alternatively, non-naturally occurring variants may be produced by mutagenesis techniques or by direct synthesis.

[00109] Using known methods of protein engineering and recombinant DNA technology, variants may be generated to improve or alter the characteristics of the polypeptides. For instance, one or more amino acids can be deleted from the N-terminus or C-terminus of the secreted protein without substantial loss of biological function. The authors of Ron et al., *J. Biol. Chem.* 268: 2984-2988 (1993), incorporated herein by reference in its entirety, reported variant KGF proteins having heparin binding activity even after deleting 3, 8, or 27 amino-terminal amino acid residues. Similarly, Interferon gamma exhibited up to ten times higher activity after deleting 8-10 amino acid residues from the carboxy terminus of this protein. (Dobeli et al., *J. Biotechnology* 7:199-216 (1988), incorporated herein by reference in its entirety.)

[00110] Moreover, ample evidence demonstrates that variants often retain a biological activity similar to that of the naturally occurring protein. For example, Gayle and coworkers (*J. Biol. Chem.* 268:22105-22111 (1993), incorporated herein by reference in its entirety) conducted extensive mutational analysis of human cytokine IL-1a. They used random mutagenesis to generate over 3,500 individual IL-1a mutants that averaged 2.5 amino acid changes per variant over the entire length of the molecule. Multiple mutations were examined at every possible amino acid position. The investigators found that "[m]ost of the molecule could be altered with little effect on either [binding or biological activity]." (See Abstract.) In fact, only 23 unique amino acid sequences, out of more

than 3,500 nucleotide sequences examined, produced a protein that significantly differed in activity from wild-type.

[00111] As stated above, polypeptide variants include, e.g., modified polypeptides. Modifications include, e.g., acetylation, acylation, ADP-ribosylation, amidation, covalent attachment of flavin, covalent attachment of a heme moiety, covalent attachment of a nucleotide or nucleotide derivative, covalent attachment of a lipid or lipid derivative, covalent attachment of phosphatidylinositol, cross-linking, cyclization, disulfide bond formation, demethylation, formation of covalent cross-links, formation of cysteine, formation of pyroglutamate, formylation, gamma-carboxylation, glycosylation, GPI anchor formation, hydroxylation, iodination, methylation, myristylation, oxidation, pegylation (Mei et al., Blood 116:270-79 (2010), which is incorporated herein by reference in its entirety), proteolytic processing, phosphorylation, prenylation, racemization, selenylation, sulfation, transfer-RNA mediated addition of amino acids to proteins such as arginylation, and ubiquitination. In some embodiments, Factor VIII is modified, e.g., pegylated, at any convenient location. In some embodiments, Factor VIII is pegylated at a surface exposed amino acid of Factor VIII, preferably a surface exposed cysteine, which may be an engineered cysteine. Mei et al. (2010). In some embodiments, modified Factor VIII, e.g., pegylated Factor VIII, is a long-acting Factor VIII.

[00112] "Volume of distribution at steady state (V_{ss})," as used herein, has the same meaning as the term used in pharmacology, which is the apparent space (volume) into which a drug distributes. V_{ss} = the amount of drug in the body divided by the plasma concentration at steady state.

[00113] "About," as used herein for a range, modifies both ends of the range. Thus, "about 10-20" means "about 10 to about 20."

[00114] Having now described the present invention in detail, the same will be more clearly understood by reference to the following examples, which are included herewith for purposes of illustration only and are not intended to be limiting of the invention. All patents and publications referred to herein are expressly incorporated by reference.

Example 1

Abstract

[00115] A recombinant B-domain-deleted factor VIII-Fc (rFVIIIFc) fusion protein was created to extend the half-life of FVIII. rFVIIIFc was studied in mouse and dog models of severe hemophilia A and compared to rFVIII (ReFacto®). Whole blood clotting time (WBCT) in hemophilia A mice was corrected for approximately two to three times longer and the elimination half-life in plasma was nearly twice as long for rFVIIIFc compared to ReFacto®. In hemophilia A dogs, an intravenous dose of rFVIIIFc (125 IU/kg) corrected the WBCT to normal. The WBCT remained below 20 min, the time consistent with FVIII:C > 1%, through approximately 96 hr, compared to 48 hr for dogs treated with ReFacto®. The elimination half-life of rFVIIIFc in dog plasma, when measured using ELISA or chromogenic activity assays, was 15.7 ± 1.7 hr and 15.4 ± 0.3 hr, respectively. ReFacto® corrected WBCT for approximately one half as long as rFVIIIFc and the plasma half-life was 7.0 hr. Thus, fusion of FVIII to Fc produced a molecule with an increased plasma half-life and the ability to provide prolonged protection from bleeding.

Introduction

[00116] Reduced mortality, prevention of joint damage and improved quality of life have been important achievements due to the development of plasma-derived and recombinant FVIII. Prolonged protection from bleeding would represent another key advancement in the treatment of hemophilia A patients. The inventors have created a recombinant factor VIII-Fc (rFVIIIFc) chimeric protein and hybrid as an approach to extend the half-life of FVIII.

[00117] rFVIIIFc is a heterodimeric hybrid protein comprised of B-domain-deleted FVIII fused recombinantly to the Fc domain of human immunoglobulin G1 (IgG1) (Fig. 1, SEQ ID NO:2; Table 2A) (This protein is also referred to herein as FVIIIFc monomeric Fc fusion protein, FVIIIFc monomer hybrid, monomeric FVIIIFc hybrid, and FVIIIFc monomer-dimer.). The Fc enables binding to the neonatal Fc receptor (FcRn), which is responsible for protection of IgG from degradation and confers on IgG the three week half-life observed in humans (Ghetie V, and Ward ES., Annu. Rev. Immunol. 2000;18:739-766; Roopenian DC, and Akilesh S., Nature Rev. Immunol. 2007;7:715-725, each of which is incorporated herein by reference in its entirety).

[00118] The Fc domain of IgG1 has been fused to growth factors, cytokines, enzymes and ligand-binding regions of receptors (Ashkanazi A, et al., *Int. Rev. Immunol.* 1993;10:219-27; Chamow SM, and Ashkanazi A, *Trends Biotechnol.* 1996;14:52-60; Fisher et al., *N. Engl. J. Med.* 1996;334(26):1697-702, each of which is incorporated herein by reference in its entirety). Several of these have become important therapeutic molecules (e.g. etanercept, alefacept, abatacept). In these fusion proteins, two effector molecules are connected to two Fc molecules. In this example, rFVIIIFc has been constructed as a monomeric Fc fusion protein (one copy of a polypeptide consisting of the sequence in Table 2A(i) (SEQ ID NO:2) with or without the signal sequence and one copy of a polypeptide consisting of the sequence in Table 2A(ii) (SEQ ID NO:4) with or without the signal sequence), i.e., with only one copy of the effector molecule (see Figure 1), and the studies presented herein compare the pharmacodynamics and pharmacokinetics of this novel protein to rFVIII in mouse and dog models of hemophilia A. The signal sequence is cleavage during secretion. This protein construct is referred to herein as FVIIIFc monomeric Fc fusion protein, FVIIIFc monomer hybrid, monomeric FVIIIFc hybrid, and FVIIIFc monomer-dimer. See Example 1, Fig. 1, Table 2A; and US Patent Nos. 7,404,956 and 7,348,004, each of which is incorporated herein by reference in its entirety, for the structure and production of this protein.

Methods and Materials

FVIII Preparations

Recombinant FVIIIFc

[00119] The coding sequence of human recombinant B-domain deleted FVIII was obtained by reverse transcription-polymerase chain reaction (RT-PCR) from human liver poly A RNA (Clontech) using FVIII-specific primers. The FVIII sequence includes the native signal sequence for FVIII. The B-domain deletion was from serine 743 (S743; 2287 bp) to glutamine 1638 (Q1638; 4969 bp) for a total deletion of 2682 bp. See Example 1, Fig. 1, Table 2A; and US Patent Nos. 7,404,956 and 7,348,004, each of which is incorporated herein by reference in its entirety, for the structure and production of this protein.

[00120] The coding sequence for human recombinant Fc was obtained by RT-PCR from a human leukocyte cDNA library (Clontech) using Fc specific primers. Primers were

designed such that the B-domain deleted FVIII sequence was fused directly to the N-terminus of the Fc sequence with no intervening linker. The FVIIIFc DNA sequence was cloned into the mammalian dual expression vector pBUDCE4.1 (Invitrogen) under control of the CMV promoter. A second identical Fc sequence including the mouse Igk signal sequence was obtained by RT-PCR and cloned downstream of the second promoter, EF1 α , in the expression vector pBUDCE4.1.

[00121] The rFVIIIFc expression vector was transfected into human embryonic kidney 293 cells (HEK293H; Invitrogen) using Lipofectamine 2000 transfection reagent (Invitrogen). Stable clonal cell lines were generated by selection with Zeocin (Invitrogen). One clonal cell line, 3C4-22 was used to generate FVIIIFc for characterization *in vivo*. Recombinant FVIIIFc was produced and purified (McCue JT, et al., J. Chromatogr. A 2009;7824-7830, incorporated by reference herein in its entirety) at Biogen Idec (Cambridge, MA). The transfection strategy described above was expected to yield three products, i.e., monomeric rFVIIIFc hybrid, dimeric rFVIIIFc hybrid and dimeric Fc. However, there was essentially no dimeric rFVIIIFc detected in the conditioned medium from these cells. Rather, the conditioned medium contained Fc and monomeric rFVIIIFc. It is possible that the size of dimeric rFVIIIFc was too great and prevented efficient secretion from the cell. This result was beneficial since it rendered the purification of the monomer less complicated than if all three proteins had been present. The material used in these studies had a specific activity of approximately 9000 IU/mg. In addition, these human cells produced higher protein level than other cells that were attempted in this experiment.

Recombinant FVIII

[00122] Recombinant B-domain deleted FVIII (ReFacto[®]) was purchased from Novis Pharmaceuticals and was prepared according to manufacturer's instructions. ReFacto[®] (recombinant B-domain deleted FVIII) has the same amino acid sequence as amino acids 1 to 1438 of SEQ ID NO:2.

Hemophilia A animals

[00123] The hemophilia A mice are FVIII exon 16 knockouts on a 129 x B6 background that were obtained from Dr. Kazazian at the University of Pennsylvania (Bi L, et al., Nat. Genet. 1995;10(1):119-121, incorporated by reference herein in its entirety) and bred at

Syntonix. These mice exhibit prolonged whole blood clotting times (>60 min), and are thus a good model of severe hemophilia A.

[00124] Hemophilia A dogs were from the in-bred colony maintained at the Francis Owen Blood Research Laboratory at the University of North Carolina, Chapel Hill (Graham, JB, et al., J. Exp. Med. 1949;90:97-111, incorporated by reference herein in its entirety). These dogs have a severe hemophilic phenotype comparable to the severe form of the human disease (Graham, JB, et al., J. Exp. Med. 1949;90:97-111; Lozier, JN, et al., Proc. Natl. Acad. Sci. 2002;99:12991-12996, each of which is incorporated by reference herein in its entirety).

Study Designs

Hemophilia A Mouse Studies

[00125] The effect of rFVIIIFc and ReFacto[®] on whole blood clotting time (WBCT) was studied in FVIII-deficient mice. Each protein was administered intravenously at 50 IU/kg and blood was collected from the tail vein of each mouse pre-dose and various time points post-dosing. The blood samples were incubated in microtubes at 37°C and visually inspected once per minute for the presence of a clot. Time of clot formation was recorded. If no clot formed by 60 min, the clotting time was recorded as >60min. Blood from normal mice clots in approximately 4 min (range 2-7 min, n = 10 mice) in the WBCT assay.

[00126] In a second set of studies, hemophilia A mice were administered a single intravenous dose of 50 IU/kg rFVIIIFc, ReFacto[®] or Advate[®] (4 mice per time point). Blood was collected by cardiac puncture in one tenth volume 3.2% sodium citrate at 0.25, 8, 24, 48 and 72 hr after dosing. Plasma was prepared and stored at -80°C until analysis for FVIII activity using a FVIII-specific chromogenic activity assay.

Hemophilia A Dog Studies

[00127] In a single dose PK/PD study of rFVIIIFc, two hemophilia A dogs from the Chapel Hill colony were administered a single intravenous dose of 125 IU/kg and blood samples were collected pre-dose and after dosing at selected time points for WBCT, activated partial thromboplastin time (aPTT), FVIIIFc plasma concentration, hematology and serum chemistry. Time points for WBCT included pre-dose, 5 and 30 min and 1, 2,

4, 8, 24, 32, 48, 72, 96, 144, and 168 hr after dosing. Blood collections for clotting activity (aPTT) and FVIIIfc plasma concentration included the time points listed above for WBCT as well as 15 min and 3, 6, 12 hours after dosing.

[00128] A second study was conducted in which ReFacto® (114 IU/kg for dog M12 and 120 IU/kg for dog M38) was administered intravenously. WBCT was measured until clotting times were \geq 20 min (consistent with FVIII:C > 1%), and then 125 IU/kg rFVIIIfc was administered intravenously to the same dogs and blood samples were collected for WBCT, aPTT, FVIIIfc plasma concentration, hematology and serum chemistry. Time points for WBCT included pre-dose, 5 and 30 min and 1, 2, 4, 8, 24, 32, 48, 72 hr after dosing. Blood was also collected at 96, 120, 144, and 168 hr after dosing with FVIIIfc. Blood collections for clotting activity and FVIIIfc plasma concentration included the time points listed above for WBCT as well as 15 min and 3, 6, 12 hours after dosing.

[00129] The WBCT procedure in hemophilia A dogs was slightly different than that in the hemophilia A mice. After dosing with rFVIIIfc or ReFacto®, one mL of blood was collected at various time points and 0.5 mL was distributed into two siliconized glass tubes which were subsequently placed into a 28°C water bath. Beginning at one minute, one tube was tilted every 30 sec, the second left undisturbed. When a clot formed in the tilted tube, the second tube was then tilted every 30 sec until a clot formed. The time for a fully gelled clot in the second tube was recorded as the WBCT.

FVIII activity in plasma

Measurement of FVIII activity in plasma by FVIII-specific chromogenic assay

[00130] Plasma samples were tested for FVIII activity by an automated chromogenic method using a Sysmex CA1500 instrument and reagents were from Siemens Healthcare Diagnostics (Dallas, TX, kit #B4238-40). Activity of rFVIIIfc was determined using a standard curve created using the 7th International Standard Factor FVIII Concentrate (NIBSC code 99/678) spiked into human FVIII-depleted plasma (Stago USA) at concentrations ranging from 1.5 – 0.016 IU/mL.

Measurement of rFVIIIFc or FVIII by ELISAFVIIIIFc in dog plasma by ELISA

[00131] A FVIII antibody specific to the A1 domain (Green Mountain Antibodies: GMA-8002) was coated on 96 well plates and incubated for 1 hr at 37°C. The coated plates were blocked with Tris-buffered saline containing Tween 20, CaCl₂ and bovine serum albumin for 1 hr at room temperature and then standards, controls and samples that were prepared in normal dog plasma, were diluted 1:10 and then added to the plates and incubated for 1 hour at 37°C. The plates were washed and then donkey (F(ab)'₂) anti-human Fc-HRP (Jackson: 709-036-098) was added and incubated for 1 hr at 37°C. After washing, TMB (BioFx supersensitive substrate: TMBS-0100-01) was added to the plates, the substrate reaction was quenched with acid and absorbance was measured on a SpectraMax Plus plate reader (Molecular Devices) at 450 nm.

ReFacto® in dog plasma by ELISA

[00132] An anti-FVIII antibody specific to the A1 domain on the heavy chain (Green Mountain Antibodies: GMA-8002) was coated on 96 well plates and incubated for 2 hr at room temperature. The coated plates were blocked for 1 hr at 37 °C and after washing, the standards, controls and samples were prepared in normal dog plasma then diluted 1:10 were added to the plates and incubated for 2 hr at room temperature. The plates were washed then treated with the detection antibody, a pre-diluted anti-FVIII horse radish peroxidase conjugate (Affinity Biologicals: F8C-EIA-D), and incubated at room temperature for 1 hr. After washing TMB (BioFx supersensitive substrate: TMBS-0100-01) was added to the plates for 10 min. The substrate reaction was quenched with acid and the signal was measured on a SpectraMax Plus plate reader (Molecular Devices) at a wavelength of 450 nm.

Measurement of Fibrinogen

[00133] The concentration of fibrinogen in plasma was measured at Esoterix (Research Triangle Park, NC) using a kit that contains HemosIL™ PT-Fibrinogen-HIS reagent (Instrumentation Laboratory, Lexington, MA, Catalog #0008468210) and an ACL 7000 Coagulation Analyzer (Beckman Coulter), according to the manufacturer's instructions.

Measurement of Platelets

[00134] Platelets were counted in EDTA anti-coagulated whole blood by automated methods using the Vet-ABC-Diff Hematology Analyzer programmed with a species specific smart card (SCIL Animal Care Co., Gurnee, IL).

Pharmacokinetic Analysis

[00135] The pharmacokinetic parameters were calculated by noncompartmental analysis using WinNonlin software from Pharsight, version 5.2 (Mountain View, Ca). PK parameters included the maximum concentration in plasma (C_{max}), area under the plasma concentration versus time curve (AUC), elimination half-life ($t_{1/2}$), volume of distribution (V_{ss}), and clearance (Cl).

Results

Recombinant FVIII-Fc

[00136] rFVIIIFc is a recombinant fusion of human B-domain deleted FVIII with Fc from human IgG1, with no intervening linker sequence (rFVIIIFc; Figure 1).

[00137] Purified rFVIIIFc had a specific activity of approximately 9000 IU/mg as determined using a chromogenic activity assay. Recombinant B-domain deleted FVIII (ReFacto[®]) has a reported specific activity of 9110 – 13700 IU/mg. Conversion of specific activity into IU/nmol to take into account the size difference between FVIIIFc and ReFacto[®] (216 kDa and 170 kDa respectively), indicates that the two proteins have approximately equivalent specific activities (1970 IU/nmol for rFVIIIFc and 1521 – 2287 IU/nmol for ReFacto[®]). Thus the FVIII activity of rFVIIIFc is not affected by fusion of the C-terminus of human FVIII to the N-terminus of human Fc.

Administration to Hemophilia A mice

[00138] A single 50 IU/kg dose of rFVIIIFc or ReFacto[®] was administered intravenously to FVIII-deficient mice (n = 6/group). Blood samples were collected pre-dose and after dosing through 120 hr and WBCT determined as described in Materials and Methods. Baseline WBCT were greater than 60 min. Data from a representative experiment are shown in Figure 2 and Table 3. Immediately after dosing with either rFVIIIFc or ReFacto[®], WBCT was corrected to 2-17 minutes. Blood from mice treated with

ReFacto® lost the ability to clot by 42 hr, whereas blood from all mice treated with rFVIIIFc still clotted at 96 hr, the blood from one of six was clotted at 113 hr, but all had lost the ability to clot by 120 hr. These data suggest that the duration of effect for rFVIIIFc is approximately two to three times longer than for ReFacto®.

[00139] The chromogenic activity of rFVIIIFc, ReFacto® or Advate® (full-length recombinant FVIII) was studied in the FVIII-deficient mice after a single intravenous dose of 50 IU/kg. Blood was collected pre-dose and after dosing at 8, 24, 48, and 72 hr. The activity was measured using a FVIII-specific chromogenic activity assay and is shown in Figure 3. The pharmacokinetic parameters are reported in Table 4. The circulating half-life for rFVIIIFc was approximately 1.6 to 2 fold longer (11.1 hr) compared to Advate® (7 hr) and ReFacto® (5 hr). The Cmax was 1.6 ± 0.36 IU/mL for rFVIIIFc compared to 0.47 ± 0.30 IU/mL for Advate® and 0.67 ± 0.44 IU/mL for ReFacto®. The systemic exposure of rFVIIIFc was markedly greater for rFVIIIFc (22.6 hr·IU/mL) compared to ReFacto® (6.94 hr·IU/mL) and Advate® (3.90 hr·IU/mL) and clearance for rFVIIIFc was notably lower (2.09 mL/hr/kg) compared to both ReFacto® (7.2 mL/hr/kg) and Advate® (12.8 hr/mL/kg) in the hemophilia A mice.

Administration to Hemophilia A dogs

[00140] The pharmacodynamics (PD) and pharmacokinetics (PK) of rFVIIIFc were studied in the Chapel Hill colony of hemophilia A dogs. A single intravenous dose of 125 IU/kg rFVIIIFc was administered to each of four hemophilia A dogs and the WBCT was immediately corrected to normal (Figure 4). The range of WBCT in normal dogs is 8-12 min. The WBCT remained below 20 min, the time consistent with FVIII:C >1%, through approximately 96 hr with the exception of one dog that had WBCT <20 min through 72 hr. In addition, aPTT was also immediately corrected to normal (Table 6). The concentration of rFVIIIFc in plasma was measured using a specific ELISA which was designed to detect both the FVIII and Fc portions of the molecule. The plasma concentration versus time curves are shown in Figure 5. PK analysis of the data showed that the $t_{1/2}$ was 15.7 ± 1.7 hr (Table 5). Similar results were obtained when rFVIIIFc was measured using a FVIII-specific chromogenic activity assay ($t_{1/2} = 15.4 \pm 0.3$ hr, Table 5) and the plasma concentration versus time curves were similar using both methods (Figures 5 and 6). When the activity data were converted from IU/mL to ng/mL using the

specific activity for rFVIIIFc, there was a good correlation with the ELISA data, thereby demonstrating that the protein that was measured by ELISA was fully active.

[00141] Two of the dogs treated with rFVIIIFc also received a single dose of ReFacto[®], 114 IU/kg for dog M12 and 120 IU/kg for dog M38, 72 hr prior to dosing with rFVIIIFc. WBCT and aPTT were corrected to normal immediately after dosing with ReFacto[®]. However, the WBCT normalization after the single dose of rFVIIIFc lasted approximately twice as long compared to ReFacto[®] (Figure 4). Moreover, the plasma half-life of rFVIIIFc (15.7 ± 1.7 hr) was approximately twice as long for rFVIIIFc compared to ReFacto[®] (7.0 and 6.7 hr) when the concentration of the proteins in plasma were measured by ELISA (Table 5). Similar results were obtained when the two molecules were measured by FVIII-specific chromogenic activity.

[00142] To assess the potential risk of thrombogenicity, platelets and fibrinogen were measured. After dosing with either rFVIIIFc or ReFacto[®], platelet numbers and plasma fibrinogen concentration did not change from pre-dose values (data not shown).

Discussion

[00143] Recombinant FVIIIFc was produced in human embryonic kidney 293 (HEK 293) cells from a stably transfected cell line and was purified from cell culture medium. Production in a human cell line represents a significant change in manufacturing compared to currently marketed rFVIII products which are produced in either Chinese Hamster Ovary cells or Baby Hamster Kidney cells. The rationale for this change was that it was expected that the human cells were best equipped to perform the necessary post-translational modifications for the FVIII portion of this molecule.

[00144] Conversion of the specific activity to IU/nmol to take into account the difference in molecular weights for rFVIIIFc and recombinant B-domain deleted FVIII (ReFacto[®]) indicated that the specific activities are similar for both proteins (1970 IU/nmol for rFVIIIFc and 1521 – 2287 IU/nmol for ReFacto[®]). It is somewhat surprising that the specific activity for rFVIIIFc is not affected by fusion of the C terminus of FVIII with the N-terminus of Fc since the C1 and C2 domain of FVIII are involved in phospholipid binding which is essential for full FVIII activity (Fay, PJ, J. Hematology 83:103-8 (2006) and Raut, S, et al., Br. J. Haematol. 107:323 (1999), each of which is incorporated by reference herein in its entirety).

[00145] Treatment of hemophilia A is on-demand at the time of a bleeding episode or by prophylaxis for the prevention of bleeding. Although on-demand treatment is still frequently used, there is a trend toward prophylaxis and the prevention of joint damage (Blanchette P, et al., *Haemophilia* 2004; 10:679-683, Manco-Johnson, MJ, et al., *N. Engl. J. Med.* 2007;357:535-544, each of which is incorporated by reference herein in its entirety). Current FVIII products are administered every two to three days for prophylaxis due to the relatively short half-life of 10-12 hr in order to maintain a FVIII:C above 1 % in patients (Morfini, M, *Haemophilia* 2003;9 (suppl 1):94-99; discussion 100, White GC, et al., *Thromb. Haemost.* 1997;77:660-7, Blanchette, P, et al., *J. Thromb. Haemost.* 2008 Aug;6(8):1319-26, each of which is incorporated by reference herein in its entirety). Longer-acting FVIII therapies that provide prolonged protection from bleeding would represent a marked improvement in the quality of life for patients with hemophilia A. Strategies to extend the half-life of clotting factors include those that have been successful for other molecules, including pegylation (Rostin J, et al., *Bioconj. Chem.* 2000;11:387-96, incorporated by reference herein in its entirety), glycopeylation (Stennicke HR, et al., *Thromb. Haemost.* 2008;100:920-8, incorporated by reference herein in its entirety), formulation with pegylated liposomes (Spira J, et al., *Blood* 2006;108:3668-3673, Pan J, et al., *Blood* 2009;114:2802-2811, each of which is incorporated by reference herein in its entirety) and conjugation with albumin (Schulte S., *Thromb. Res.* 2008;122 Suppl 4:S14-9, incorporated by reference herein in its entirety). Pegylation represents an approach to reduce clearance, however, the effect of the modification *in vivo* is currently unknown. The outcome of direct pegylation of FVIII on *in vivo* is currently unknown, whereas FVIII formulated with pegylated liposomes has been studied clinically and showed a modest to no effect on bleeding periods (Spira J, et al., *Blood* 2006;108:3668-3673, Spira J, et al., *Thromb. Haemost.* 2008 Sep;100(3):429-34, each of which is incorporated by reference herein in its entirety).

[00146] The present approach to extend the half-life of FVIII was to recombinantly fuse FVIII to the Fc domain of IgG1. Fc binds to the naturally occurring receptor, FcRn, of which the normal function is protection of IgG from degradation. The results described herein represent the initial pharmacokinetic and efficacy characterization of rFVIIIFc compared to a rFVIII product in hemophilia A mice and hemophilia A dogs. In both species, the half-life of rFVIIIFc was approximately twice that of rFVIII when measured

by FVIII activity or ELISA (dogs only). These data also correlated well with the WBCT results from both animal models, i.e. the duration of the effect of rFVIIIfc on WBCT was approximately twice as long compared to ReFacto®. In dogs, the C_{max} and clearance were similar for rFVIIIfc and ReFacto®, but the AUC and volume of distribution at steady state were approximately 1.5 fold and 2 fold greater for rFVIIIfc compared to ReFacto®, respectively. The PK parameters for ReFacto® in this animal model are consistent with the values reported in the literature (Brinkhous K, et al., Sem. Thromb. Haemost. 2002;28:269-272, incorporated by reference herein in its entirety).

[00147] If these findings translate to the same extension of half-life in humans, this could represent a significant advancement in the treatment of patients with hemophilia A.

Additional References (each of which is incorporated herein by reference in its entirety)

- [00148] Berkner K., Methods Enzymol. 1993;222:450-477.
- [00149] Bitonti AJ, and Dumont JA., Adv. Drug Del. Rev. 2006;58:1106-1118.
- [00150] Dumont JA, et al., J. Aerosol Med. 2005;18:294-303.
- [00151] Dumont JA, et al., BioDrugs 2006;20:151-160.
- [00152] Ellis CN, and Krueger GG., N. Engl. J. Med. 2001;345:248-55.
- [00153] Low SC, et al., Hum Reprod. 2005;7:1805-1813.
- [00154] Manco-Johnson, M., Haemophilia 2007;13 Suppl;2: 4-9.
- [00155] Mannucci, PM, and Tuddenham, EGD., N. Engl. J. Med. 2001;344:1773-1779.
- [00156] Peyvandi F, et al., Haemophilia 2006;12(Suppl 3):82-89.
- [00157] Rodriguez-Merchan, EC., Semin. Thromb. Hemost. 2003;29:87-96.
- [00158] Srour MA, et al., Ann. Hematol. 2008; 87:107-12.

Example 2

[00159] The objective of the study was to determine the pharmacokinetics and pharmacodynamics of rFVIIIfc and BDD-rFVIII (Xyntha®) in cynomolgus monkeys after a single intravenous dose.

Materials and Methods

[00160] rFVIIIFc (Biogen Idec), supplied as a frozen liquid at a concentration of 1.2 mg/mL, and 9882 IU/mL. The specific activity is 8235 IU/mg. Storage was at - 70°C. It was diluted prior to injection.

[00161] Name: Xyntha (Novis Pharmaceuticals), Supplied as a lyophilized powder which was reconstituted according to the manufacturer's instructions to produce a solution with a nominal concentration of 525 IU/mL. Storage was according to the manufacturer's recommendations.

Animals

[00162] Cynomolgus monkeys from the New Iberia Research Center (NIRC) colony were used, and the study (NIRC Study # 8733-0903) was conducted under an approved NIRC IACUC protocol (APS 2008-8733-058) at NIRC in New Iberia, LA.

[00163] Six naïve cynomolgus monkeys (three males, three females) that were determined to be in good health were used in the study.

[00164] The study was performed in compliance with the protocol and UL Lafayette-NIRC Standard Operating Procedures.

Study Design

[00165] rFVIIIFc was administered intravenously at 125 IU/kg to each of six monkeys (three males, three females). Xyntha (BDD-rFVIII) was administered intravenously to the same animals at 125 IU/kg in a crossover design. Group 1 animals (n = 3) received Xyntha on Day 0 and rFVIIIFc on Day 3, while Group 2 animals (n = 3) received rFVIIIFc on Day 0 followed by Xyntha on Day 4. The additional day between doses for group 2 was to ensure that the rFVIIIFc had sufficient time to decrease below projected baseline levels. Blood was collected for plasma in one-tenth volume 3.2 % sodium citrate from each animal predose and after dosing at 0.25, 4, 12, 24, 36, 48 and 72 hr for measurement of rFVIIIFc or Xyntha by ELISA and a FVIII-specific chromogenic activity assay.

ELISA to measure rFVIIIFc and FVIII in plasmaMethod to Measure rFVIIIFc in Monkey Plasma

[00166] This Enzyme Linked ImmunoSorbent Assay (ELISA) is designed to quantify rFVIIIFc in monkey plasma. In this ELISA method, goat anti-human IgG-(H+L) antibody (monkey absorbed) from Bethyl Laboratories (Cat#A80-319A) is diluted in Coating Buffer and immobilized onto a 96-well microtiter sample plate. The plate is aspirated, and all un-adsorbed sites are blocked with the addition of Blocking Buffer (3% BSA/1xTris) for approximately 2 hours at 37°C. Plasma samples are diluted 1:20 with High Calcium Sample Dilution Buffer (3% Non-Fat Dry Milk/TBST with 30 mM CaCl₂) and dispensed onto the sample plate. Plates are incubated for approximately 2 hours at 37°C. The plate is subsequently washed and mouse anti-B domain-deleted (α .BDDA1) Factor VIII (A1 domain) antibody from Green Mountain Antibodies (Cat#GMA-8002) is added to the plate and incubated for approximately 1 hour at 37°C. After washing the plate, HRP-conjugated goat anti-mouse IgG2a antibody from Southern Biotech (Cat#1080-05) is added to the plate and incubated for approximately 30 minutes at room temperature. The plate is washed again and a tetramethylbenzidine (TMB) peroxidase substrate solution is added and incubated for approximately 30 minutes at room temperature. The reaction is stopped by addition of a non-acidic Stop Solution. Color develops in proportion to the amount of rFVIIIFc in the sample. Plates are read on an absorbance plate reader using a single detection wavelength, 650 nm. rFVIIIFc concentrations are determined on a standard curve obtained by plotting optical density (OD) versus concentration using a four-parameter logistic curve-fitting program. The calibration curve range of this method is 0.400 ng/mL – 51.2 ng/mL in 5% monkey plasma (8.00 ng/mL – 1024 ng/mL in 100% monkey plasma). One calibrator outside the qualified range of the assay at 0.200 ng/mL in 5% monkey plasma may be included to serve as an anchor point to facilitate curve-fitting. The anchor point is removed or retained based on the best fit of the curve (i.e., the highest number of standards read within defined accuracy, %RE).

Method to Measure FVIII in Monkey Plasma

[00167] This Enzyme Linked ImmunoSorbent Assay (ELISA) is designed to quantify FVIII in monkey plasma. In this ELISA method, mouse α BDDA1 FVIII antibody from

Green Mountain Antibodies (Cat# GMA-8002) is diluted in Coating Buffer and immobilized onto a 96-well microtiter sample plate. The plate is aspirated, and all un-adsorbed sites are blocked with the addition of Blocking Buffer (3% BST/1xTris) for approximately 1 hour at 37°C. Plasma samples are diluted 1:20 with High Calcium Sample Dilution Buffer (Blocking Buffer with 100 mM CaCl₂) and dispensed onto the sample plate. Plates are incubated for approximately 2 hours at 37°C. After washing the plate, a Detecting Antibody from the Affinity Biologicals Kit, an HRP labeled polyclonal antibody (Cat#F8C-EIA-D), is further diluted in TBS/0.05% Tween 20, and added to the plate and incubated for approximately 1 hour at room temperature. The plate is washed again and a tetramethylbenzidine (TMB) peroxidase substrate solution is added and incubated for approximately 30 minutes at room temperature. The reaction is stopped by addition acidic Stop Solution. Color develops in proportion to the amount of FVIIIFc in the sample. Plates are read on an absorbance plate reader using a single detection wavelength, 450 nm. FVIII concentrations are determined on a standard curve obtained by plotting optical density (OD) versus concentration using a four-parameter logistic curve-fitting program. The calibration curve range of this method is 0.625 ng/mL – 20 ng/mL in 5% monkey plasma (12.5 ng/mL – 400 ng/mL in 100% monkey plasma). Two calibrators outside the qualified range of the assay at 0.313 and 0.156 ng/mL in 5% monkey plasma may be included to serve as anchor points to facilitate curve-fitting. The anchor points can be removed or retained based on the best fit of the curve (i.e., the highest number of standards read within defined accuracy, %RE).

FVIII-Specific Chromogenic Assay

[00168] FVIII activity in cynomolgus monkey plasma samples was estimated based on administered dose, and then diluted to approximately 0.25 – 1 IU/ml in human FVIII-depleted plasma (Diagnostica Stago). Samples were analyzed in a Sysmex CA1500 (Siemens Diagnostic Healthcare) using a FVIII chromogenic kit (Siemens). In this chromogenic assay, rFVIIIFc in the plasma samples is activated by thrombin. Activated Factor VIII (FVIIIa) then accelerates the conversion of Factor X (FX) to Factor Xa (FXa) in the presence of activated Factor IX (FIXa), phospholipids (PL) and calcium ions. The FXa activity is assessed by hydrolysis of a p-nitroanilide substrate specific to FXa. The initial rate of release of p-nitroaniline (pNA) measured at 405 nm is proportional to the FXa activity, and thus to the FVIII activity in the sample. The limit of quantitation of

FVIII activity due to rFVIIIFc in this assay is ~ 0.3 IU/ml. The assay can measure total FVIII activity down to a lower limit of approximately 0.06 IU/ml with an accuracy of \pm 20%. The calculated activity of the pre-dose sample for individual animals was subtracted from the value at each time point to generate the PD curves (FVIII activity vs. time).

[00169] A standard curve was generated from the NIBSC 7th International Standard FVIII concentrate diluted to 1 IU/ml in human FVIII-deficient plasma. Standard curves were diluted serially in the Sysmex instrument to yield concentrations of 0.15, 0.1, 0.05, 0.025, 0.0053 and 0.0026 IU/ml. Since the instrument dilutes all samples 1:10 internally, the FVIII standard concentrations correspond to plasma concentrations of 1.5 – 0.026 IU/ml, which is the range of FVIII activities that can be measured.

PK analysis

[00170] The concentration time profiles were evaluated using the non-compartmental analysis module in the WinNonlin software program (Version 5.2, Pharsight Corporation, Mountain View, CA).

RESULTS

[00171] The concentration of rFVIIIFc in monkey plasma was measured using a sandwich ELISA format that measured both the FVIII and Fc portions of the molecule and the data are reported in Table 7. All predose samples were below the limit of quantitation. Figure 7 illustrates the group mean rFVIIIFc and Xyntha plasma concentrations over time and individual plasma concentration versus time curves are shown in Figure 8. A summary of the PK parameters for rFVIIIFc and Xyntha are shown in Tables 9 and 10, respectively. The mean $t_{1/2}$ for rFVIIIFc was 11.9 ± 1.7 hr (range 9.3 to 14.1 hr) and for Xyntha, the mean elimination $t_{1/2}$ was 12.7 ± 4.4 hr (range 9.2 to 19.9 hr).

[00172] FVIII activity was measured using a FVIII-specific chromogenic activity assay and the data are reported in Table 8. Pre-dose activity due to endogenous FVIII was subtracted from all samples. A graph of the mean group data is shown in Figure 9 and the individual plasma concentration vs. time curves are shown in Figure 10. A summary of the PK parameters are reported for rFVIIIFc and Xyntha in Tables 9 and 10, respectively. The mean elimination $t_{1/2}$ was 16.1 ± 6.9 hr (range 11.6 to 29.4 hr) for rFVIIIFc and 12.5 ± 1.7 hr (range 10.4 to 14.3 hr) for Xyntha.

Discussion and Conclusions

[00173] The elimination half-lives were similar for rFVIIIFc and Xyntha after a single intravenous dose of 125 IU/kg, whether the test article was measured by ELISA or a chromogenic activity assay.

Example 3

[00174] This will be a Phase I/IIa, open-label, crossover, dose-escalation, multi-center, and first-in-human study designed to evaluate the safety, tolerability, and pharmacokinetics of a single dose of rFVIIIFc in subjects with severe (defined as <1 IU/dL [1%] endogenous factor VIII [FVIII]) hemophilia A. A total of approximately 12 previously treated patients will be enrolled and dosed with rFVIIIFc at 25 or 65 IU/kg. After the screening (scheduled within 28 days prior to the first dose of the Advate® [rFVIII], the reference comparator agent) and a minimum of 4-days (96 hours) elapsing with no FVIII treatment prior to the first injection, approximately 6 subjects will receive a single 25 IU/kg dose of Advate® followed by a 3-day (72 hours) pharmacokinetic (PK) profile then crossover and receive a 25 IU/kg single, open-label dose of rFVIIIFc for a 7-day (168 hours) PK profiling. The first 3 subjects will be dosed sequentially. For the first three (3) subjects dosed with 25 IU/kg of rFVIIIFc, each subject will undergo an inhibitor assessment at 14-days (336 hours) post-injection of rFVIIIFc. Dosing of the next subject (for the first three subjects only) will occur once the inhibitor testing is completed. After the 3rd subject completed the 14 day inhibitor assessment, the remaining three subjects at 25 IU/kg and the six subjects at 65 IU/kg will begin enrollment sequentially at least 1 day apart within each dose group.

[00175] One week after the last subject receives the 25 IU/kg dose of the rFVIIIFc, approximately 6 unique subjects will be recruited for the 65 IU/kg cohort. Each subject in the 65 IU/kg cohort will receive a single 65 IU/kg dose of Advate® followed by a 4-day (96 hours) PK profiling then crossover and receive a 65 IU/kg single, open-label dose of rFVIIIFc for a 10-day (240 hours) profiling. If a bleeding episode occurs before the first injection of rFVIIIFc in any cohort, subject's pre-study FVIII product should be used for treatment and an interval of at least 4 days must then pass before receiving the first injection of rFVIIIFc for the PK profile.

[00176] All subjects will be followed for a 14-day (336 hours) and 28 day safety evaluation period after administration of rFVIIIFc 25 IU/kg or 65 IU/kg for safety. All subjects will undergo pharmacokinetic sampling pre- and post-dosing along with blood samples for analysis of FVIII activity at designated time points.

Example 4

Activity within the Xase Complex

[00177] To investigate the binding of the FVIII proteins (rBDD FVIII and rFVIIIFc) with FIXa, and measure the ability of these proteins to activate FX, kinetic studies were performed examining these interactions in the context of the Xase complex. This assay involved the formation of the Xase complex with activated FIX and activated rBDD FVIII or rFVIIIFc protein on a phospholipid surface in the presence of calcium, and monitoring the conversion of FX to FXa as measured by cleavage of a chromogenic or fluorogenic substrate.

[00178] Briefly, FVIII is first activated with α -thrombin for 5 min, then mixed with FIXa in the presence of Ca2+, and synthetic phospholipid vesicles (25% phosphatidylserine (PS)/75% phosphatidylcholine (PC)) or platelets. Under conditions described below, FVIIIa and FIXa interact in the presence of a phospholipid surface and calcium ions to form an active Xase complex that mediates the conversion of FX into FXa through proteolytic processing. In turn, FXa cleaves a FXa-specific chromogenic or fluorogenic substrate. The cleaved substrate is chromogenic and therefore the amount of cleaved substrate in a solution is indicative of the amount of FXa generated. This is quantitated by measuring the absorbance of the solution at 405 nm.

A. Activation of Factor X

[00179] The ability of rBDD FVIII and rFVIIIFc to activate FX were studied in the context of the Xase complex as described above. Thrombin-activated FVIII proteins were incubated with FIXa and phospholipids in the presence of calcium, then added to different concentrations of FX in the presence of a FX-specific substrate and the rates of FXa generation determined (Figure 11).

[00180] Based on these data, the Km and Vmax for the different FVIII proteins in the context of the Xase complex were calculated (Chang 1997) (Table 11). Data are

expressed as the mean of six analyses (3 experiments containing duplicate runs) \pm the corresponding standard deviation. Based on these data, these proteins (rBDD FVIII and rFVIIIFc) were found to have comparable Km and Vmax values, within the variation of the assay. Therefore, the Xase complex formed with rFVIIIFc behaves similarly to the Xase complex formed with the licensed product rBDD FVIII (ReFacto) with respect to interactions with phospholipids and ability to activate FX. Note that these comparable data also demonstrate that rFVIIIFc is activated to a comparable degree as rBDD FVIII after a short incubation with thrombin.

B. Interaction with FIXa

[00181] The interaction between rBDD FVIII and rFVIIIFc with FIXa were also examined in the context of the Xase complex. The Xase complex was assembled as above, using a fixed amount of FX and varying FIXa levels, and FXa generation rates determined (Figure 12). From these data, the Kd value for the Xase complex formed with both of the FVIII proteins to FIXa were determined (Chang 1997). Data are expressed as the mean of six analyses (3 experiments containing duplicate runs) \pm the corresponding standard deviation (Table 12). Both proteins were found to have similar Kd and Vmax values, indicating that rFVIIIFc has comparable interactions with FIXa as the licensed rBDD FVIII product.

Example 5

[00182] Interim pharmacokinetic data for the Phase I/IIa clinical trial discussed in Example 3 demonstrated the following results for FVIIIFc. FVIIIFc had about a 50% increase in systemic exposure (AUC_{INF}), about 50% reduction in clearance (Cl), and about 50-70% increase in elimination half-life and MRT compared to ADVATE (full length rFVIII). In addition, FVIIIFc showed increased C168, TBLP1, TBLP3, and TBLP5 values compared to ADVATE.

AUC_{INF}	Area under the concentration-time curve from zero to infinity
Beta HL	Elimination phase half-life; also referred to as $t_{1/2\beta}$
C168 dose	Estimated FVIIIFc activity above baseline at approximately 168 h after dose
Cl	Clearance

MRT	Mean residence time
TBLP1	Model-predicted time after dose when FVIIIFc activity has declined to approximately 1 IU/dL above baseline
TBLP3	Model-predicted time after dose when FVIIIFc activity has declined to approximately 3 IU/dL above baseline
TBLP5	Model-predicted time after dose when FVIIIFc activity has declined to approximately 5 IU/dL above baseline

Example 6

[00183] A recombinant B-domain-deleted factor VIII-Fc (rFVIIIFc) fusion protein has been created as an approach to extend the half-life of FVIII. The pharmacokinetics (PK) of rFVIIIFc were compared to rFVIII in hemophilia A mice. We found that the terminal half-life was twice as long for rFVIIIFc compared to rFVIII. In order to confirm that the underlying mechanism for the extension of half-life was due to the protection of rFVIIIFc by FcRn, the PK were evaluated in FcRn knockout and human FcRn transgenic mice. A single intravenous dose (125 IU/kg) was administered and the plasma concentration measured using a chromogenic activity assay. The Cmax was similar between rFVIIIFc and rFVIII (XYNTHA®) in both mouse strains. However, while the half-life for rFVIIIFc was comparable to that of rFVIII in the FcRn knockout mice, the half-life for rFVIIIFc was extended to approximately twice longer than that for rFVIII in the hFcRn transgenic mice. These results confirm that FcRn mediates or is responsible for the prolonged half-life of rFVIIIFc compared to rFVIII. Since hemostasis in whole blood measured by rotation thromboelastometry (ROTEM) has been shown to correlate with the efficacy of coagulation factors in bleeding models of hemophilia mice as well as in clinical applications, we sought to evaluate the ex vivo efficacy of rFVIIIFc in the hemophilia A mice using ROTEM. Hemophilia A mice were administered a single intravenous dose of 50 IU/kg rFVIIIFc, XYNTHA® (FVIII) or ADVATE® (FVIII). At 5 minutes post dose, clot formation was similar with respect to clotting time (CT), clot formation time (CFT) and α -angle. However, rFVIIIFc showed significantly improved CT at 72 and 96 hr post dose, and CFT and α -angle were also improved at 96 hrs compared to both XYNTHA® (FVIII) and ADVATE® (FVIII), consistent with prolonged PK of rFVIIIFc. Therefore construction of an Fc fusion of FVIII produces a molecule with a defined mechanism of

action that has an increased half-life and the potential to provide prolonged protection from bleeding.

Example 7

[00184] This Example presents final analysis results for FVIII activity from 16 patients treated with 25 and 65 IU/kg FVIII products. See Examples 3 and 5.

[00185] In this Example, rFVIIIFc is a recombinant fusion protein comprised of a single molecule of recombinant B-domain deleted human FVIII (BDD-rFVIII) fused to the dimeric Fc domain of the human IgG1, with no intervening linker sequence. This protein construct is also referred to herein as rFVIIIFc heterodimeric hybrid protein, FVIIIFc monomeric Fc fusion protein, FVIIIFc monomer hybrid, monomeric FVIIIFc hybrid, and FVIIIFc monomer-dimer. See Example 1, Fig. 1, and Table 2A.

[00186] Preclinical studies with rFVIIIFc have shown an approximately 2-fold prolongation of the half-life of rFVIII activity compared to commercially available rFVIII products. The rationale for this study was to evaluate the safety and tolerability of a single dose of rFVIIIFc in frozen liquid formulation and provide data on the PK in severe hemophilia A subjects. For this study, 16 evaluable subjects were available for PK evaluation. Single administration of two doses of both rFVIIIFc and Advate at a nominal dose of 25 (n=6) and 65 IU/kg of body weight (n=10) were infused intravenously over approximately 10 minutes. Blood samples for plasma PK assessments were obtained before infusion, as well as up to 10 days after dosing. The PK of FVIII activity for both Advate and rFVIIIFc were characterized in this study using a model-dependent method.

OBJECTIVES

[00187] The primary objective of this study was to assess the safety and tolerability of single administration of two doses of rFVIIIFc (25 and 65 IU/kg) in previously treated patients (PTPs) aged 12 and above with severe hemophilia A.

[00188] The secondary objectives were to determine the pharmacokinetics (PK) parameters determined by pharmacodynamic (PD) activity of FVIII over time after a single administration of 25 or 65 IU/kg of rFVIIIFc compared to Advate in one-stage clotting and chromogenic assays.

Study Design (See Example 3)

[00189] Blood samples were collected for FVIII activity PK evaluations at the screening visit (within 28 days prior to dosing Advate); on Day 0 (injection of Advate) pre-injection and at 10 and 30 minutes and 1, 3, 6, and 9 hours post-injection; on Day 1 at 24 hours post-injection of Advate; on Day 2 at 48 hours post-injection of Advate; on Day 3 at 72 hours post-injection of Advate; and on Day 4 at 96 hours post-injection of high dose of Advate (Cohort B only).

[00190] Blood samples were collected for FVIII activity PK evaluations on the day of rFVIIIFc injection just prior to the administration of rFVIIIFc, at 10 and 30 minutes and 1, 3, 6, and 9 hours post-injection of rFVIIIFc; on Day 1 at 24 hours post-injection of rFVIIIFc; on Days 2 through 5 at 48, 72, 96, and 120 hours post-injection of rFVIIIFc; on Day 7 at 168 hours post-injection of rFVIIIFc; on Days 8, 9, and 10 at 192, 216, and 240 hours post-injection of high dose of rFVIIIFc (Cohort B only). FVIII activity was also measured at the final study visit (28 days post-injection of rFVIIIFc) at 672 hours post-injection of rFVIIIFc.

Pharmacokinetic Modeling and Calculations

[00191] Abbreviations

TBLP1 = Model-predicted time after dose when FVIII activity has declined to approximately 1 IU/dL above baseline.

TBLP3 = Model-predicted time after dose when FVIII activity has declined to approximately 3 IU/dL above baseline

KV_M = Cmax_M/Actual Dose (IU/kg)

KV_OB = Cmax_OB/Actual Dose (IU/kg)

IVR_M = $100 \times \text{Cmax}_M \times \text{Plasma Volume (dL)} / \text{Total Dose in IU}$; where plasma volume in mL = $(23.7 \times \text{Ht in cm}) + (9.0 \times \text{Wt in kg}) - 1709$.

IVR_OB = $100 \times \text{Cmax}_OB \times \text{Plasma Volume (dL)} / \text{Total Dose in IU}$; where plasma volume in mL = $(23.7 \times \text{Ht in cm}) + (9.0 \times \text{Wt in kg}) - 1709$.

RESULTS

[00192] Figure 13. Observed group mean (+SE) FVIII activity versus time profiles, sorted by dose level, grouped by compound (one-stage assay, 25 IU/kg (A) and 65 IU/kg (B)) and (chromogenic assay, 25 IU/kg (C) and 65 IU/kg (D)).

[00193] Figure 14. Observed group mean (+SE) FVIII activity versus time profiles, grouped by dose level and compound (one-stage assay; A) (chromogenic assay; B).

Single-Dose Pharmacokinetics (One-Stage Assay)

[00194] Observed FVIII activity increased sharply after the short IV infusion of either Advate or rFVIIIFc, with mean (\pm SD) model-predicted Cmax values of 56.6 ± 4.74 and 121 ± 28.2 IU/dL for Advate and 55.6 ± 8.18 and 108 ± 16.9 IU/dL for rFVIIIFc for the 25 and 65 IU/kg dose groups, respectively. All Advate- and rFVIIIFc-treated patients had dose-related increases in FVIII activity. The observed increase in both Cmax and AUCINF was slightly less than proportional to dose over the dose range evaluated.

[00195] After the end of the infusion, the decline of the observed FVIII activity exhibited monoexponential decay characteristics until the baseline level was reached. The rate of decline in FVIII activity was slower for rFVIIIFc than for Advate with mean (\pm SD) model-predicted elimination half-life values of 11.9 ± 2.98 and 10.4 ± 3.03 hr for Advate and 18.0 ± 3.88 and 18.4 ± 6.99 hr for rFVIIIFc for the 25 and 65 IU/kg dose groups, respectively. Elimination half-life values appeared to be dose-independent over the dose range evaluated for both FVIII products.

[00196] Total systemic FVIII exposure (assessed by AUCINF) was $\sim 48\%$ and 61% greater following rFVIIIFc administration than Advate at 25 and 65 IU/kg dose levels, respectively. Mean (\pm SD) model-predicted AUCINF values were 974 ± 259 and 1810 ± 606 hr*IU/dL for Advate and 1440 ± 316 and 2910 ± 1320 hr*IU/dL for rFVIIIFc for the 25 and 65 IU/kg dose groups, respectively.

[00197] Similar to elimination half-life, the MRT was prolonged for rFVIIIFc relative to Advate. Mean (\pm SD) model-predicted MRT values were 17.1 ± 4.29 and 14.9 ± 4.38 hr for Advate and 25.9 ± 5.60 and 26.5 ± 10.1 hr for rFVIIIFc for the 25 and 65 IU/kg dose groups, respectively. MRT values appeared to be dose-independent over the dose range evaluated for both FVIII products.

[00198] In addition, primary PK parameter values for CL and V were determined. CL values for rFVIIIFc only accounted for ~ 66% of those observed for Advate at equivalent doses. Mean (\pm SD) model-predicted CL values were 2.70 ± 0.729 and 4.08 ± 1.69 mL/hr/kg for Advate and 1.80 ± 0.409 and 2.69 ± 1.25 mL/hr/kg for rFVIIIFc for the 25 and 65 IU/kg dose groups, respectively. V values were comparable between Advate and rFVIIIFc with mean (\pm SD) model-predicted V values of 43.9 ± 4.27 and 56.1 ± 13.4 mL/kg for Advate and 45.3 ± 7.23 and 61.6 ± 10.6 mL/kg for rFVIIIFc for the 25 and 65 IU/kg dose groups, respectively. Slight increases in mean CL and V values were noted with increasing dose of Advate and rFVIIIFc; however, the increase in standard deviations at the 65 IU/kg dose coupled with limited dose levels confounded an assessment of the dose-dependency of these parameters. For example, the CV% geometric mean CL value for the rFVIIIFc treatment group increased from 23.0% (25 IU/kg) to 48.6% (65 IU/kg).

[00199] In addition to the primary PK parameters, secondary PK parameters (e.g. K-values, IVR, etc.) were determined to evaluate FVIII duration of effect. Evidence of PK difference was also observed with rFVIIIFc demonstrating increased TBLP1 and TBLP3 values compared to Advate at equivalent doses. IVR and K-values for Advate and rFVIIIFc appeared to be comparable. A slight increase in TBLP1 and TBLP3 values were observed with increasing dose of Advate and rFVIIIFc. In contrast, slight decreases in mean IVR and K-values were noted with increasing dose of Advate and rFVIIIFc. As previously indicated, an assessment of the dose dependency of these parameters is confounded by limited dose levels.

[00200] Mean (\pm SD) observed TBLP1 were 2.88 ± 0.733 and 2.93 ± 0.848 IU/dL per IU/kg for Advate and 4.28 ± 0.873 and 5.16 ± 2.02 IU/dL per IU/kg for rFVIIIFc for the 25 and 65 IU/kg dose groups, respectively. Mean (\pm SD) observed TBLP3 were 2.06 ± 0.527 and 2.26 ± 0.666 IU/dL per IU/kg for Advate and 3.09 ± 0.623 and 3.93 ± 1.59 IU/dL per IU/kg for rFVIIIFc for the 25 and 65 IU/kg dose groups, respectively.

[00201] Mean IVR and K-values calculated using observed Cmax values (subtracted with baseline and residual drug within the model) were generally greater than values determined using model-predicted Cmax values; consistent with slight underestimation of the observed peak activity using the one-compartment model. Mean (\pm SD) observed K-values were 2.57 ± 0.198 and 2.13 ± 0.598 IU/dL per IU/kg for Advate and 2.46 ± 0.330

and 1.85 ± 0.332 IU/dL per IU/kg for rFVIIIfc for the 25 and 65 IU/kg dose groups, respectively. Mean (\pm SD) observed IVR values were 94.1 ± 15.6 and 85.8 ± 16.5 % for Advate and 89.5 ± 11.9 and 74.8 ± 6.72 % for rFVIIIfc for the 25 and 65 IU/kg dose groups, respectively.

Single-Dose Pharmacokinetics (Chromogenic Assay)

[00202] Observed FVIII activity increased sharply after the short IV infusion of either Advate or rFVIIIfc, with mean (\pm SD) model-predicted Cmax values of 70.2 ± 9.60 and 157 ± 38.6 IU/dL for Advate and 70.3 ± 10.0 and 158 ± 34.7 IU/dL for rFVIIIfc for the 25 and 65 IU/kg dose groups, respectively.

[00203] All Advate- and rFVIIIfc-treated patients had dose-related increases in FVIII activity. The observed increase in both Cmax and AUCINF was slightly less than proportional to dose over the dose range evaluated.

[00204] After the end of the infusion, the decline of the observed FVIII activity exhibited monoexponential decay characteristics until the baseline level was reached. The rate of decline in FVIII activity was slower for rFVIIIfc than for Advate with mean (\pm SD) model-predicted elimination half-life values of 10.7 ± 1.98 and 10.3 ± 3.27 hr for Advate and 16.2 ± 2.92 and 19.0 ± 7.94 hr for rFVIIIfc for the 25 and 65 IU/kg dose groups, respectively. Elimination half-life values appeared to be dose-independent over the dose range evaluated for both FVIII products.

[00205] Total systemic FVIII exposure (assessed by AUCINF) was $\sim 53\%$ and 84% greater following rFVIIIfc administration than Advate at 25 and 65 IU/kg dose levels, respectively. Mean (\pm SD) model-predicted AUCINF values were 1080 ± 236 and 2320 ± 784 hr*IU/dL for Advate and 1650 ± 408 and 4280 ± 1860 hr*IU/dL for rFVIIIfc for the 25 and 65 IU/kg dose groups, respectively.

[00206] Similar to elimination half-life, the MRT was prolonged for rFVIIIfc relative to Advate. Mean (\pm SD) model-predicted MRT values were 15.3 ± 2.86 and 14.8 ± 4.72 hr for Advate and 23.4 ± 4.22 and 27.3 ± 11.4 hr for rFVIIIfc for the 25 and 65 IU/kg dose groups, respectively. MRT values appeared to be dose-independent over the dose range evaluated for both FVIII products.

[00207] In addition, primary PK parameter values for CL and V were determined. CL values for rFVIIIfc only accounted for $\sim 58\text{-}66\%$ of those observed for Advate at equivalent doses. Mean (\pm SD) model-predicted CL values were 2.39 ± 0.527 and $3.21 \pm$

1.40 mL/hr/kg for Advate and 1.57 ± 0.349 and 1.86 ± 0.970 mL/hr/kg for rFVIIIFc for the 25 and 65 IU/kg dose groups, respectively. V values were comparable between Advate and rFVIIIFc with mean (\pm SD) model-predicted V values of 35.8 ± 5.52 and 43.6 ± 11.2 mL/kg for Advate and 35.9 ± 6.65 and 42.7 ± 8.91 mL/kg for rFVIIIFc for the 25 and 65 IU/kg dose groups, respectively. Increases in mean CL and V values were noted with increasing dose of Advate and rFVIIIFc; however, the increase in standard deviations at 65 IU/kg coupled with limited dose levels confounded an assessment of the dose-dependency of these parameters.

[00208] In addition to the primary PK parameters, secondary PK parameters (e.g. K-values, IVR, etc.) were determined to evaluate FVIII duration of effect. Evidence of PK difference was also observed with rFVIIIFc demonstrating increased TBLP1 and TBLP3 values compared to Advate at equivalent doses. IVR and K-values for Advate and rFVIIIFc appeared to be comparable.

[00209] A slight increase in TBLP1 and TBLP3 values were observed with increasing dose of Advate and rFVIIIFc. In contrast, slight decreases in mean IVR and K-values were noted with increasing dose of Advate and rFVIIIFc. As previously indicated, an assessment of the dose dependency of these parameters is confounded by limited dose levels.

[00210] Mean (\pm SD) observed TBLP1 were 2.70 ± 0.511 and 3.09 ± 0.978 IU/dL per IU/kg for Advate and 4.06 ± 0.798 and 5.66 ± 2.38 IU/dL per IU/kg for rFVIIIFc for the 25 and 65 IU/kg dose groups, respectively. Mean (\pm SD) observed TBLP3 were 1.98 ± 0.377 and 2.39 ± 0.718 IU/dL per IU/kg for Advate and 3.04 ± 0.598 and 4.44 ± 1.84 IU/dL per IU/kg for rFVIIIFc for the 25 and 65 IU/kg dose groups, respectively.

[00211] Mean IVR and K-values calculated using observed Cmax values (subtracted with baseline and residual drug within the model) were generally greater than values determined using model-predicted Cmax values; consistent with slight underestimation of the observed peak activity using the one-compartment model. Mean (\pm SD) observed K-values were 3.08 ± 0.429 and 2.85 ± 0.721 IU/dL per IU/kg for Advate and 3.12 ± 0.451 and 2.92 ± 0.985 IU/dL per IU/kg for rFVIIIFc for the 25 and 65 IU/kg dose groups, respectively. Mean (\pm SD) observed IVR values were 112 ± 14.5 and 116 ± 26.9 % for Advate and 113 ± 16.3 and 117 ± 33.6 % for rFVIIIFc for the 25 and 65 IU/kg dose groups, respectively.

CONCLUSIONS

[00212] All Advate- and rFVIIIFc-treated patients had comparable dose-related increases in Cmax and AUCINF over the dose range evaluated. Peak plasma levels of Advate and rFVIIIFc activity were generally observed within the first hour after the end of the infusion and remained detectable for several days after dosing. After the end of infusion, the decline in baseline corrected FVIII activity exhibited monoexponential decay until the baseline was reached for both products. Parameter values for elimination half-life and MRT appeared to be dose-independent over the dose range evaluated for both FVIII products. Slight increases in mean CL and V values were noted with increasing dose of Advate and rFVIIIFc; however, increased intersubject variability at the 65 IU/kg coupled with limited dose levels confounded an assessment of the dose-dependency of these parameters.

[00213] Comparison of rFVIIIFc and Advate activity PK revealed an approximate 48-61% (One-Stage Assay) or 53-84% (Chromogenic Assay) increase in systemic exposure, approximate 30-40% reduction in clearance, and an approximate 50-80% increase in both elimination half-life and MRT for rFVIIIFc relative to Advate at comparable doses. Evidence of PK difference was also observed with rFVIIIFc demonstrating increased TBLP1 and TBLP3 values compared to Advate at equivalent doses. IVR and K-values for Advate and rFVIIIFc appeared to be comparable.

[00214] The PK parameters obtained from Chromogenic Assay results generally agreed with those from the One-Stage Assay, except that the Chromogenic Assay yielded a higher estimation of exposure parameters (e.g. Cmax, AUCINF, etc.).

[00215] With the observed improvements in PK, rFVIIIFc may provide a prolonged protection from bleeding, allowing less frequent injections for individuals with Hemophilia A.

Example 8

[00216] On the basis of the interim PK analysis from the first-inhuman study of rFVIII:Fc (Example 3), the A-LONG study was designed. A-LONG is an open label, multi-center evaluation of the safety, pharmacokinetics, and efficacy of recombinant Factor VIII Fc fusion (FVIII:Fc) in the prevention and treatment of bleeding in previously treated subjects with severe hemophilia A (defined as <1 IU/dL [<1%] endogenous FVIII).

[00217] Approximately 106 subjects will be enrolled into one of three regimens: a tailored prophylaxis regimen (arm 1), a weekly dosing regimen (arm 2), and an on-demand regimen (arm 3).

Arm 1: Tailored Prophylaxis Regimen

[00218] Arm 1 will include an overall group and a PK subgroup. Approximately 66 subjects will be enrolled. The initial regimen will be twice weekly at 25 IU/kg on the first day, followed by 50 IU/kg on the fourth day of the week. Subjects will administer rFVIIIFc on this weekly prophylaxis regimen until PK results for rFVIIIFc are available. Based on these results, a tailored prophylaxis regimen will be established for each individual, in which the dose and interval will be determined to maintain a trough level of 1-3% FVIII activity. Each subject will then administer his individually tailored prophylaxis regimen throughout the study.

[00219] Subjects will be monitored throughout the study and ongoing dose and interval adjustments will be made. Adjustments will only be made when a subject experiences unacceptable bleeding episodes defined as ≥ 2 spontaneous bleeding episodes over a rolling two-month period. In this case, adjustment will target trough levels of 3-5%.

Arm 2: Weekly Dosing Regimen

[00220] Approximately 20 subjects will be enrolled/randomized and undergo abbreviated rFVIIIFc PK profiling as follows: Washout of at least 96 hours; a single dose of rFVIIIFc 65 IU/kg; Abbreviated sampling beginning on rFVIIIFc Day 0, including pre-injection and 10 (± 2) minutes, 3 hours (± 15 minutes), 72 (± 2) hours [Day 3], and 96 (± 2) hours [Day 4] from the start of injection. Following the abbreviated PK profiling, subjects will then administer a fixed dose of 65 IU/kg rFVIIIFc every 7 days.

Arm 3: On-demand Regimen

[00221] A minimum of 10 major surgeries in at least 5 subjects will be evaluated in the study. Major surgery is defined as any surgical procedure (elective or emergent) that involves general anesthesia and/or respiratory assistance in which a major body cavity is penetrated and exposed, or for which a substantial impairment of physical or physiological functions is produced (e.g., laparotomy, thoracotomy, craniotomy, joint replacement, and limb amputation).

[00222] For prophylaxis during surgery, subjects will be treated with 35 to 50 IU/kg rFVIIIFc every 12 to 24 hours. Prior to surgery, the physician will review the subject's rFVIIIFc PK profile and assess the dose regimen of Factor VIII replacement generally required for the type of planned surgery and the clinical status of the subject. Recommendation for the appropriate dosing of rFVIIIFc in the surgical treatment period, including any rehabilitation time, will take these factors into consideration.

[00223] The primary objectives of this study are (a) to evaluate the safety and tolerability of rFVIIIFc administered as prophylaxis, on-demand, and surgical treatment regimens; and (b) to evaluate the efficacy of rFVIIIFc administered as prophylaxis, on-demand, and surgical treatment regimens. The secondary objectives of this study are (a) to characterize the PK profile of rFVIIIFc and compare the PK of FVIIIFc with the currently marketed product, ADVATE; (b) to evaluate individual responses with FVIIIFc; and (c) to evaluate FVIIIFc consumption.

Primary Objectives

- To evaluate safety and tolerability of rFVIIIFc administered as prophylaxis, weekly, on-demand, and surgical treatment regimens
- To evaluate the efficacy of rFVIIIFc administered as tailored prophylaxis, on-demand, and surgical treatment regimens

Secondary Objectives

- To characterize the PK profile of rFVIIIFc and compare the PK of rFVIIIFc with the currently marketed product, Advate®
- To evaluate individual responses with rFVIIIFc
- To characterize the range of dose and schedules required to adequately prevent bleeding in a prophylaxis regimen; maintain homeostasis in a surgical setting; or to treat bleeding episodes in an on-demand, weekly treatment, or prophylaxis setting
- To evaluate rFVIIIFc consumption (e.g., total annualized rFVIIIFc consumption per subject)

Example 9

Clinical ROTEM Assessment

[00224] In the study in Example 8, in addition to the measurement of plasma FVIII activity by one-stage activated partial thromboplastin time (aPTT) assay, whole blood rotational thromboelastometry (ROTEM) has also been explored to assess the improvement in global hemostasis by rFVIIIFc and Advate in 2 subjects, specifically, 1 in the low dose cohort and 1 in the high dose cohort.

[00225] rFVIIIFc and Advate appear to be comparably active in clot formation when spiked into subjects' blood prior to rFVIIIFc treatment. The clotting time (CT) was linear with respect to the dose of rFVIIIFc and Advate in the range of approximately 1% of 100% of normal, and the dose response was comparable between rFVIIIFc and Advate in the same subject.

[00226] Following dosing with Advate and subsequently rFVIIIFc, citrated whole blood was sampled at various time points and the clot formation following recalcification was monitored by ROTEM. Despite the variable baseline CT due to residue FVIII levels prior to Advate or rFVIIIFc dosing, both products effectively corrected the CT to comparable levels 30 minutes post-injection. In addition, the improvement in CT was better sustained at and after 3 hours post-injection of 25 IU/kg of rFVIIIFc relative to Advate in the subject dosed at this low dose. However, the differential improvement of rFVIIIFc versus Advate was much less appreciable at the 65 IU/kg dose.

Tables

Table 1: Polynucleotide Sequences

A. B-Domain Deleted FVIIIIfc

(i) B-Domain Deleted FVIIIIfc Chain DNA Sequence (FVIII signal peptide underlined, Fc region in bold) (SEQ ID NO:1, which encodes SEQ ID NO:2)

661	A	TGCAAATAGA	GCTCTCCACC	TGCTTCITTC				
721	TGTGCCTTT	GCCATTCTGC	TTTAGTGC	CCAGAAGATA	CTACCTGGGT	GCAGTGGAAAC		
781	TGT	CATGGGA	CTATATCAA	AGT	GATCTCG	GTGAGCTGCC	TGTGGACGCC	AGATTTCCCTC
841	CTAGAGTGC	AAAATCTTT	CCATTCACA	CCTCAGTCGT	GTACAAAAAG	ACTCTGTTG		
901	TAGAATTCA	GGATCACCTT	TICAACATCG	CTAACGCAAG	GCCACCCCTGG	ATGGGTCTGC		
961	TAGGCTCTAC	CATCCAGGCT	GAGGTTTATG	ATACAGTGGT	CATTACACTT	AAGAACATGG		
1021	CTTCCCACATCC	TGTCA	GAGC	CATGCTGTG	GTGTATCCTA	CTGGAAAGCT	TCTGAGGGAG	
1081	CTGAATATGA	TGATCAGACC	AGTC	AAAGGG	AGAAAGAAGA	TGATAAAGTC	TTCCCTGGTG	
1141	GAAGCCATAC	ATATGCTGG	CAGGT	CCTGA	AACAGAAATGG	TCCAATGGCC	TCTGACCCAC	
1201	TGTGCCTTAC	CTACTCATAT	CTT	CTCATG	TGGACCTGGT	AAAAGACTTG	AATTCA	
1261	TCA	ATGGAGC	CCTACTAGTA	TG	TAGAGAAG	GGAGTCTGGC	CAAGGAAAAG	ACACAGACT
1321	TGCA	CACAAATT	TATACTACTT	TTG	GCTGTAT	TTGATGAAGG	GAAAAGTTGG	CACTCAGAAA
1381	CAAAGAACTC	CTTGATGCAG	GATAGGGATG	CTG	CATCTGC	TGGGGCTGG	CCTAAAATGC	
1441	ACACAGTCAA	TGGTTATGTA	AA	CAGGTCTC	TGCCAGGTCT	GATTGGATGC	CACAGGAAAT	
1501	CAGTCTATTG	GCATGTGATT	GG	AAATGGGCA	CCACTCCTGA	AGTGC	ACTCA	ATATTCC
1561	AAGGT	CACAC	ATT	TCTGTG	AGGAACC	ATC	GCGAATC	TCGCA
1621	CTT	TCCTTAC	TG	CTCAAACA	CTCTTG	ATG	GGAAATC	CTTGT
1681	TCT	CTTCCC	CC	AAACATGAT	GGC	ATG	AGGAG	GGAG
1741	AAC	CCC	AACT	ACGAATGAAA	AAT	ATG	GGGAGAAGA	CTATGATG
1801	ATT	CTGAAAT	GG	ATGTTGATG	AG	GACAA	CTC	CTT
1861	GCT	CAGTTG	CA	AGAAC	CT	TTGAC	GGGAGGAGG	AT
1921	ACT	GGGACTA	TG	C	TG	CTG	GGGAGGAGG	CA
1981	TGA	ACAA	ATG	GG	CC	CTG	GGGAGGAGG	AC
2041	CAG	ATGAAAC	CTT	TAAGACT	CG	TG	GGGAC	TC
2101	TAC	TTTATGG	GG	AGTTGATG	G	AC	GGGAC	CT
2161	CAT	ATAACAT	CT	ACCC	CC	AT	GGGAC	CT
2221	CAA	AAAGGTGT	AA	ACATTG	GG	GT	GGGAC	CT
2281	AAT	GGGACAGT	GA	CTTAA	GG	GG	GGGAC	CT
2341	ATT	ACTCTAG	TT	TGTTAAT	GG	GG	GGGAC	CT
2401	TC	ATCTG	CA	AAAGAATCT	GA	GG	GGGAC	CT
2461	ATG	TG	CA	TAAGATCAA	GA	GG	GGGAC	CT
2521	AA	C	TC	GGGACT	GG	GG	GGGAC	CT
2581	AC	AT	CT	GGGACT	GG	GG	GGGAC	CT
2641	ATG	GGG	AT	ACTGGTAC	AT	CTG	GGGAC	CT
2701	TCT	CT	TTG	CTG	TTG	CTG	GGGAC	CT
2761	CATT	CT	GG	AGAAACTGTC	TC	ATG	GGGAC	CT
2821	GCC	ACA	AG	ACTTTCGG	AA	GG	GGGAC	CT
2881	ACA	AGA	AG	AAACAC	AG	GG	GGGAC	CT
2941	GT	AAA	GT	GGGAAACAA	CC	GG	GGGAC	CT
3001	ATC	AAAC	AT	GGGAAAC	AA	GG	GGGAC	CT
3061	ATAC	CC	AG	TTGAAATG	AA	GG	GGGAC	CT
3121	AGA	CCCC	AG	CTTCAA	AA	GG	GGGAC	CT
3181	TCT	GGG	AG	GGATGAGT	AC	GG	GGGAC	CT
3241	GTG	CC	TTG	GGATGAGT	AG	GG	GGGAC	CT
3301	CCT	TATACCG	GG	GAGAACTA	AA	GG	GGGAC	CT

3361 AAGTTGAAGA TAATATCATG GTAACCTTCA GAAATCAGGC CTCTCGTCCC TATTCCCTCT
 3421 ATTCTAGCCT TATTCTTAT GAGGAAGATC AGAGGCAAGG AGCAGAACCT AGAAAAAAACT
 3481 TTGTCAAGCC TAATGAAACC AAAACTTACT TTTGGAAGT GCAACATCAT ATGGCACCCA
 3541 CTAAAGATGA GTTTGACTGC AAAGCCTGGG CTTATTCTC TGATGTTGAC CTGGAAAAAG
 3601 ATGTGCACTC AGGCCTGATT GGACCCCTTC TGGTCTGCCA CACTAACACA CTGAACCCCTG
 3661 CTCATGGGAG ACAAGTGAC GTCAGGAAAT TTGCTCIGTT TTTCACCATC TTTGATGAGA
 3721 CCAAAAGCTG GTACTTCACT GAAAATATGG AAAGAAACTG CAGGGCTCCC TGCAATATCC
 3781 AGATGGAAGA TCCCACCTTT AAAGAGAATT ATCGCTTCCA TGCAATCAAT GGCTACATAA
 3841 TGGATACACT ACCTGGCTTA GTAATGGCTC AGGATCAAAG CATTGATGG IATCTGCTCA
 3901 GCATGGGCAAG CAATGAAAAC ATCCATTCTA TTCAATTTCAG TGGACATGTG ITCACTGTAC
 3961 GAAAAAAAAGA GGAGTATAAA ATGGCACTGT ACAATCTCTA TCCAGGTGTT TTTGAGACAG
 4021 TGGAAATGTT ACCATCCAAA GCTGGAATT GGCGGGTGGG ATGCGCTTATT GGCGAGCATC
 4081 TACATGCTGG GATGAGCACA CTTTTCTGG TCTACACCAA TMACTCTCAG ACTCCCCCTGG
 4141 GAATGGCTTC TGGACACATT AGAGATTTTC AGATACAGC TTCAGGACAA IATGGACAGT
 4201 GGGCCCCAAA GCTGGCCAGA CTCATTATT CCGGATCAAT CAATGCCTGG AGCACCAAGG
 4261 AGCCCTTTTC TTGGATCAAG GTGGATCTGT TGGCACCAAT GATTATTCA CGCATCAAGA
 4321 CCCAGGGTGC CCGTCAGAAG TTCTCCAGCC TCTACATCTC TCACTTTATC ATCATGTATA
 4381 GTCTTGATGG GAAGAAGTGG CAGACTTATC GAGGAATTC CACTGGAACC IAAATGGTCT
 4441 TCTTGGCAA TGTGGATTCA TCTGGGATAA AACACAATAT TTTTAACCT CCAATTATTG
 4501 CTCGATACAT CCGTTGAC CCAACTCATT ATAGCATCTG CAGCACTCTI CGCATGGAGT
 4561 TGATGGGCTG TGATTAAAT AGTTGCAGCA TGCCATTGGG ATGGAGAGT AAAGCAATAT
 4621 CAGATGACA GATTACTGCT TCATCCTACT TTACCAATAT GTTGCCACC IGGTCTCCTT
 4681 CAAAGCTCG ACTTCACCTC CAAGGGAGGA GTAATGCCTG GAGACCTCAG FTGAATAATC
 4741 CAAAGAGTG GCTGCAAGTG GACTTCCAGA AGACAATGAA AGTCACAGGA GTAACTACTC
 4801 AGGGAGTAAA ATCTCTGCTT ACCAGCATGT ATGTGAAGGA GTTCCCTCATC ICCAGCAGTC
 4861 AGATGGCCA TCAGTGGACT CTCTTTTTC AGAATGGCAA AGTAAAGGTT ITCAGGGAA
 4921 ATCAAGACTC CTTCACACCT GTGGTGAECT CTCTAGACCC ACCGTTACTG ACTCGCTACC
 4981 TTCGAATTCA CCCCCAGAGT TGGGTGCACC AGATTGCCCT GAGGATGGAG GTTCTGGGT
 5041 GCGAGGCACA GGACCTCTAC GACAAAAC ACACATGCC ACCGTGCCA GCTCCAGAAC
 5101 TCCTGGGCGG ACCGTCAGTC TTCCCTCTCC CCCCCAAACC CAAGGACACC CTCATGATCT
 5161 CCCGGACCCC TGAGGTACA TGCGTGGTGG TGGACGTGAG CCACGAAGAC CCTGAGGTCA
 5221 AGTTCAACTG GTACGTGGAC GGGCTGGAGG TGCATAATGC CAAGACAAAG CGCGGGAGG
 5281 AGCAGTACAA CAGCACGTAC CGTGTGGTCA GCGTCCCTCAC CGTCCCTGCAC CAGGACTGGC
 5341 TGAATGGCAA GGACTACAAG TCGAAGGTCT CCAACAAAGC CCTCCCAGCC CCCATCGAGA
 5401 AAACCATCTC CAAAGCCAAA GGGCAGCCCC GAGAACCCACA GGTGTACACC CTGCCCCCAT
 5461 CCCGGGATGA GCTGACCAAG AACCAAGGTCA GCCTGACCTG CCTGGTCAAA GGCTTCTATC
 5521 CCAGCGACAT CGCCGTGGAG TGGGAGAGCA ATGGGAGCC GGAGAACAAAC TACAAGACCA
 5581 CGCCTCCCGT GTTGGACTCC GACGGCTCCT TCTTCCTCTA CAGCAAGCTC ACCGTGGACCA
 5641 AGAGCAGGTG GCAGCAGGGG AACGTCTTCT CATGCTCCGT GATGCAATGAG GCTCTGCACA
 5701 ACCACTACAC GCAGAAGAGC CTCTCCCTGT CTCCGGTAA A

(ii) Fc DNA sequence (mouse Igk signal peptide underlined) (SEQ ID NO:3, which encodes SEQ ID NO:4)

7981 ATGGA GACAGACACA
 8041 CTCCTGCTAT GGGTACTGCT GCTCTGGTT CCAGGTTCCA CTGGTGACAA AACTCACACCA
 8101 TGGCCACCGT GCCCAGCACC TGAACCTCTG GGAGGACCGT CAGCTTCCT CTTCCCCCA
 8161 AAACCCAAGG ACACCCCTCAT GATCTCCCG ACCCCCTGAGG TCACATGCGT GGTGGTGGAC
 8221 GTGAGGCCACG AAGACCCCTGA GGTCAAGTTC AACTGGTACG TGGACGGCGT GGAGGTGCAT
 8281 AATGCCAAGA CAAAGCCCG GAGGGAGCAG TACAACAGCA CGTACCGTGT GGTCAAGCGTC
 8341 CTCACCGTCC TGCACCCAGGA CTGGCTGAAT GGCAAGGAGT ACAACTGCAA GGTCTCCAC
 8401 AAAGCCCTCC CAGCCCCCAT CGAGAAAACC ATCTCAAAG CCAAAGGGCA GCCCCGAGAA
 8461 CCACAGGTGT ACACCCCTGCC CCCATCCCAGC GATGAGCTGA CCAAGAACCA GGTCAAGCTG
 8521 ACCTGCTGG TCAAAGGCTT CTATCCCAGC GACATCGCC TGGAGTGGGA GAGCAATGGG
 8581 CAGCCGGAGA ACAACTACAA GACCACGCCT CCCGTGTGG ACTCCGACGG CTCCCTCTTC
 8641 CTCTACAGCA AGCTCACCGT GGACAAGAGC AGGTGGCAGC AGGGAACGT CTTCTCATGC

8701 TCCGTGATGC ATGAGGCTCT GCACAACCAC TACACGCAGA AGAGCCTCTC CCTGTCTCCG
 8761 GGTAAA

B. Full Length FVIIIfc

(i) Full Length FVIIIfc DNA Sequence (FVIII signal peptide underlined, Fc region in bold) (SEQ ID NO:5, which encodes SEQ ID NO:6)

661 ATG CAAATAGAGC TCTCCACCTG
 721 CTTCTTCTG TGCCTTTGC GATTCTGCTT TAGTGCCACC AGAAGATACT ACCTGGGTGC
 781 AGTGGAACTG TCATGGACT ATATGCAAAG TGATCTCGGT GAGCTGCCGT TGGACGCAAG
 841 ATTTCCCTCCT AGAGTGCCAA AATCTTTCC ATTCAACACC TCAGTCGTGT ACAAAAAGAC
 901 TCTGTTTGTGAA ATTTCACGG ATCACCTTT CAACATCGCT AAGCCAAGGC CACCCCTGGAT
 961 GGGTCTGCTA GGTCTTACCA TCCAGGCTGA GGTTTATGAT ACAGTGGTCA TTACACTAA
 1021 GAACATGGCT TCCCATCCTG TCAGTCTTCA TGCTGTCGT GTATCCTACT GAAAGCTTC
 1081 TGAGGGAGCT GAATATGATG ATCAGACCAG TCAAAGGGAG AAAGAAGATG AIAAAAGTCTT
 1141 CCCTGGTGGAGGCCATACAT ATGTCGGCA GGTCCTGAAA GAGAATGGTC CAATGGCCTC
 1201 TGACCCACTG TGCCTTACCT ACTCATATCT TTCTCATGTG GACCTGGTAA AAGACITGAA
 1261 TTCAGGCCTC ATTGGAGCCC TACTAGTATG TAGAGAAGGG AGTCTGGCCA A3GAAAPAGAC
 1321 ACAGACCTTG CACAAATTAA TACTACTTTTG TGCTGTAATT GATGAAAGGGAA AAAGTTGGCA
 1381 CTCAGAAACA AAGAACTCCT TGATGCAGGA TAGGGATGCT GCATCTGCTC GGGCCTGGCC
 1441 TAAAATGCAC ACAGTCATG GTTATGTAAG CAGGTCTCTG CCAGGTCTGA TTGGATGCCA
 1501 CAGGAAATCA GTCTATGGC ATGTGATTGG AATGGGCACC ACTCTGAAAG TGCACACTAAT
 1561 ATTCCCTCGAA GGTACACAT TTCTTGAG GAACCATCGC CAGGGCTCCT TGGAAATCTC
 1621 GCCAATAACT TTCTTACTG CTCAAACACT CTTGATGGAC CTTGGACAGT TTCTACTGTT
 1681 TTGTCTATC TCTTCCCACC AACATGATGG CATGGAAGCT TATGTCAAAG TAGACAGCTG
 1741 TCCAGAGGAA CCCCCAACTAC GAATGAAAAA TAATGAAAGA GCGGAAGACT ATGATGAAIGA
 1801 TCTTACTGAT TCTGAAATGG ATGTGGTCAG GTTTGATGAT GACAACCTC CTTCCATTAT
 1861 CCAAATTGCG TCAGTGGCA AGAAGCATCC TAAAACCTGG GTACATTACA TTGCTGCTGA
 1921 AGAGGAGGAC TGGGACTATG CTCCCTTAGT CTCGCCCCC GATGACAGAA GTTATAAAAG
 1981 TCAATATTG AACAATGGCC CTCAGCGGAT TGGTAGGAAG TACAAAAAAG TCCGATTAT
 2041 GGCATACACA GATGAAACCT TTAAGACTCG TGAAGCTATT CAGCATGAAT CAGGAATCTT
 2101 GGGACCTTAA CTTTATGGGG AAGTTGGAGA CACACTGTT ATTATATTAA AGAATCAAGC
 2161 AAGCAGACCA TATAACATCT ACCCTCACGG AATCACTGAT GTCCGTCTT TGTATTCAAG
 2221 GAGATTACCA AAAGGTGTA AACATTTGAA GGATTTCCA ATTCTGCCAG GAGAAATATT
 2281 CAAATATAAA TGGACAGTGA CTGTAGAAGA TGGGCCACT AAATCAGATC CTCGGTGUC
 2341 GACCCGCTAT TACTCTAGTT TCGTTAATAT GGAGAGAGAT CTAGCTTCAG GACTCATTGG
 2401 CCCTCTCCTC ATCTGCTACA AAGAATCTGT AGATCAAAGA GGAAACCAGA TAATGTCAGA
 2461 CAAGAGGAAT GTCATCCTGT TTTCTGTATT TGATGAGAAC CGAAGCTGGT ACCTCACAGA
 2521 GAATATACAA CGCTTCTCC CCAATCCAGC TGGAGTGCAG CTTGAGGATC CAGATTC
 2581 AGCCTCCAAAC ATCATGCACA GCATCAATGG CTATGTTTT GATAGTTGC AGTTGTCAGT
 2641 TTGTTTGAT GAGGTGGCAT ACTGGTACAT TCTAAGCATT GGAGCACAGA CTGACTCCT
 2701 TTCTGTCTTC TTCTCTGGAT ATACCTCAA ACACAAAATG GTCTATGAAG ACACACTCAC
 2761 CCTATTCCCA TTCTCAGGAG AACTGTCCTT CATGTCGATG GAAAACCCAG GTCTATGGAT
 2821 TCTGGGGTGC CACAACTCAG ACTTCGGAA CAGAGGCATG ACCGCCCTAC TGAAGGTTTC
 2881 TAGTTGTGAC AAGAACACTG GTGATTATTA CGAGGACAGT TATGAAGATA TTTCAGCATA
 2941 CTTGCTGAGT AAAAACAAATG CCATTGAACC AAGAAGCTTC TCCCAGAATT CAAGACACCC
 3001 TAGCACTAGG CAAAAGCAAT TTAATGCCAC CACAATTCCA GAAAATGACA TAGAGAAGAC
 3061 TGACCCCTGG TTTGCACACA GAACACCTAT GCCTAAATA CAAAATGTCT CCTCTAGTGA
 3121 TTTGTTGATG CTCTTGCGAC AGAGTCCTAC TCCACATGGG CTATCCTTAT CTGATCTCCA
 3181 AGAAGCCAAA TATCAGACTT TTTCTGATGA TCCATCACCT GGAGCAATAG ACAGTAATAA
 3241 CAGCCTGTCT GAAATGACAC ACTTCAGGCC ACAGCTCCAT CACAGTGGGG ACATGGTATT
 3301 TACCCCTGAG TCAGGCCCTCC ATTAAAGATT AAATGAGAAA CTGGGGACAA CTGCAGCAAC
 3361 AGAGTTGAAG AAACCTGATT TCAAAGTTTC TAGTACATCA AATAATCTGA TTTCAACAAAT
 3421 TCCATCAGAC AATTTCAGCAG CAGGTACTGA TAATACAAGT TCCTTAGGAC CCCCCAAGTAT
 3481 GCCAGTTCAT TATGATAGTC AATTAGATAC CACTCTATT GGCAAAAGT CATCTCCCC
 3541 TACTGAGTCT GGTGGACCTC TGAGCTTGAG TGAAGAAAAT AATGATTCAA AGTTGTTAGA

3601 ATCAGGTTA ATGAATAGCC AAGAAAGTTC ATGGGGAAAA AATGTATCGT CAACAGAGAG
 3661 TGGTAGGTTA TTTAAAGGGA AAAGAGCTCA TGGACCTGCT TTGTTGACTA AAGATAATGC
 3721 CTTATTCAAA GTTAGCATCT CTTTGTAAA GACAAACAAA ACTTCCAATA ATTCAAGCAAC
 3781 TAATAGAAAG ACTCACATTG ATGGCCCATC ATTATTAAATT GAGAATAGTC CATCAGTC
 3841 GCAAAATATA TTAGAAAGTG ACACTGACTT TAAAAAAGTG ACACCTTTGA TTCATGACAG
 3901 ATGCTTATG GACAAAAATG CTACAGCTT GAGGCTAAT CATATGTC AAAAAACTAC
 3961 TTCATCAAAA AACATGGAAA TGTTCCAACA GAAAAAAAGAG GGCCCCATTG CACAGATGC
 4021 ACAAAATCCA GATATGTCGT TCCTTAAGAT GCTATTCTG CCAGAATCAG CAAGGTGGAT
 4081 ACAAAGGACT CATGGAAAGA ACTCTCTGAA CTCTGGCAA GGCCCCAGTC CAAAGCAATT
 4141 AGTATCCTTA GGACCAAGAAA AATCTGTGGA AGGTCAAGAT TTCTGTCTG AGAAAAAACAA
 4201 AGTGGTAGTA GGAAAGGGT AATTACAAA GGACGTAGGA CTCAAAGAGA TGTTTTTCC
 4261 AAGCAGCAGA AACCTATTTC TTACTAATT GGATAATTAA CATGAAATA ATACACACAA
 4321 TCAAGAAAAA AAAATTCAGG AAGAAATAGA AAAGAAGGAA ACATTAATCC AAGAGAATGT
 4381 AGTTTGCCT CAGATAACATA CAGTCACTGG CACTAAGAAT TTCATGAAGA ACCTTTCTT
 4441 ACTGAGCACT AGGCAAAATG TAGAAGGTTTCA ATATGACGGG GCATATGCTC CAGTACTTC
 4501 AGATTTAGG TCATTAAATG ATTCAACAAA TAGAACAAAG AAACACACAG CTCATTTCTC
 4561 AAAAAAAGGG GAGGAAGAAA ACTTGGAGG CTTGGGAAAT CAAACCAAGC AAATTGTAGA
 4621 GAAATATGCA TGCAACACAA GGATATCTCC TAATACAAGC CAGCAGAATT TTGTCACGCA
 4681 ACGTAGTAAG AGAGCTTGA AACAAATTCAAG ACTCCCACCA GAAGAACAG AACTTGAAA
 4741 AAGGATAATT GTGGATGACA CCTCAACCCA GTGGTCCAAA AACATGAAAC ATTTGACCC
 4801 GAGCACCCCTC ACACAGATAG ACTACAATGA GAAGGAGAAA GGGGCCATTA CTCAGTC
 4861 CTTATCAGAT TGCCCTACGA GGAGTCATAG CATCCCTCAA CCAAAATAGAT CTCCATTAC
 4921 CATTGCAAG GTATCATCAT TTCCATCTAT TAGACCTATA TATCTGACCA GGGTCTATT
 4981 CCAAGACAAC TCTTCICATC TTCCAGCAGC ATCTTATAGA AAGAAAGATT CTGGGGTCCA
 5041 AGAAAGCAGT CATTCTTAC AAGGAGCCAA AAAAAATAAC CTTTCTTTAG CCATTCTAAC
 5101 CTTGGAGATG ACTCCGATC AAAGAGAGGT TGGCTCCCTG GGGACAAGTG CCACAAATTC
 5161 AGTCACATAC AAGAAAGTTG AGAACACTGT TCTCCGAAA CCAGACTTGC CCAAAACATC
 5221 TGGCAAAGTT GAATTGCTTC CAAAAGTTCA CATTATCAG AAGGACCTAT TCCCTACGGA
 5281 AACTAGCAAT GGGCTCCTG GCATCTGGA TCTCGTGGAA GGGAGCCTTC ITCAAGGAAC
 5341 AGAGGGAGCG ATTAAGTGGA ATGAAGCAAA CAGACCTGGA AAAGTTCCCT ITCTGAGAGT
 5401 AGCAACAGAA AGCTCTGCAA AGACTCCCTC CAAGCTATTG GATCCTCTTG CTTGGGATAA
 5461 CCACTATGGT ACTCAGATAC CAAAAGAAGA GTGGAAATCC CAAGAGAAGT CACCAGAAAA
 5521 AACAGCTTT AAGAAAAGG ATACCATTAA GTCCCTGAAC GCTTGTGAAA GCAATCATGC
 5581 AATAGCAGCA ATAAATGAGG GACAAAATAA GCGCGAATA GAAGTCACCT GGGCAAAGCA
 5641 AGGTAGGACT GAAAGGCTGT GCTCTCAAAA CCCACCAGTC TTGAAACGCC ATCAACGGGA
 5701 ATAATCTCGT ACTACTCTTC AGTCAGATCA AGAGGAATT GACTATGATG ATACCATATC
 5761 AGTTGAAATG AAGAAGGAAG ATTTGACAT TTATGATGAG GATGAAAATC AGAGCCCCCG
 5821 CAGCTTCAA AAGAAAACAC GACACTATT TATTGCTGCA GTGGAGAGGC ITCTGGGATTA
 5881 TGGGATGAGT AGCTCCCCAC ATGTTCTAAG AAACAGGGCT CAGAGTGGCA GTGTCCCTCA
 5941 GTTCAAGAAA GTTGTCTTCC AGGAATTTCAG TGATGGCTCC TTACTCTCAGC CCTTATACCG
 6001 TGGGAGACTA AATGAACATT TGGGACTCCT GGGGCATAT ATAAGAGCAG AAGTTGAAGA
 6061 TAATATCATG CTAACCTTCA GAAATCAGGC CTCTCGTCCC TATTCTCT ATCTCTAGCT
 6121 TATTCTTAT GAGGAAGATC AGAGGCAAGG AGCAGAACCT AGAAAAAAACT ITGTCAAGCC
 6181 TAATGAAACC AAAACTTACT TTGGAAAGT GCAACATCAT ATGGCACCCCA CAAAGATGA
 6241 GTTTGACTGC AAAGCCTGGG CTATTCTC TGATGTTGAC CTGGAAAAAG ATGTGCACTC
 6301 AGGCCTGATT GGACCCCTTC TGCTCTGCCA CACTAACACA CTGAACCCCTG CTCACTGGGAG
 6361 ACAAGTGACA GTACAGGAAT TTGCTCTGTT TTTCACCATC TTTGATGAGA CCAAAAGCTG
 6421 GTACTTCACT GAAAATATGG AAAGAAACTG CAGGGCTCCC TGCAATATCC AGATGGAAGA
 6481 TCCCACCTTT AAAGAGAATT ATCGCTTCA TGCAATCAAT GGCTACATAA TGGATACACT
 6541 ACCTGGCTTA CTAATGGCTC AGGATCAAAG GATTGATGG TATCTGCTCA GCATGGGCAG
 6601 CAATGAAAAC ATCCATTCTA TTCAATTCTAG TGGACATGTG TTCACGTAC GAAAAAAAGA
 6661 GGAGTATAAA ATGGCACTGT ACAATCTCA TCCAGGTGTT TTTGAGACAG TGAAATGTT
 6721 ACCATCCAAA GCTGGAATTG GCGGGGTGGA ATGCCTTATT GGCAGCATC TACATGCTGG
 6781 GATGAGCACA CTTTTCTGG TGACAGCAA TAAGTGTCA ACTCCCTGG GAATGGCTC
 6841 TGGACACATT AGAGATTTTC AGATTACAGC TTCAGGACAA TATGGACAGT GGGCCCCAAA
 6901 GCTGGCCAGA CTTCAATT CCGGATCAAT CAATGCTGG AGCACCAAGG AGCCCTTTC
 6961 TTGGATCAAG GTGGATCTGT TGACCAAT GATTATCAGC GGCATCAAGA CCCAGGGTGC
 7021 CCGTCAGAAG TTCTCCAGCC TCTACATCTC TCAGTTATC ATCATGTATA GTCTTGATGG
 7081 GAAGAAGTGG CAGACTTATC GAGGAATTC CACTGGAAACC TTAATGGTCT ICITGGCAA

7141 TGTGGATTCA TCTGGATAA AACACAATAT TTTTAACCTT CCAATTATTG CTCGATACAT
 7201 CCGTTGCAC CCAACTCATT ATAGCATTG CAGCACTTT CGCATGGAGT TGATGGGCTG
 7261 TGATTTAAAT AGTTGCAGCA TGCCATTGGG AATGGAGAGT AAAGCAATAT CAGATGCACA
 7321 GATTACTGCT TCATCCTACT TTACCAATAT GTTGCACCC TGCTCTCCTT CAAAAGCTCG
 7381 ACTTCACCTC CAAGGGAGGA GTAATGCCTG GAGACCTCAG GTGAATAATC CAAAAGAGTG
 7441 GCTGCAAGTG GACTTCAGA AGACAATGAA AGTCACAGGA GTAACTACTC AGGGAGTAA
 7501 ATCTCTGCTT ACCAGCATGT ATGTGAAGGA GTTCCCTCATC TCCAGCAGTC AAGATGGCCA
 7561 TCAGTGGACT CTCTTTTTC AGAATGGCAA AGTAAAGGTT TTTCAGGGAA ATCAAGACTC
 7621 CTTCACACCT GTGGTGAACCT CTCTAGACCC ACCGTTACTG ACTCGCTACC TTGGAATTCA
 7681 CCCCCCAGAGT TGGGTGCACC AGATTGCCCT GAGGATGGAG GTTCTGGGCT GCGAGGCACA
 7741 GACACTCTAC GACAAAACCT ACACATGCC CACCGTGCACCA GCTCCAGAAC TCCTGGGCGG
 7801 ACCGTCAGTC TTCCCTCTCC CCCCCAAACC CAAGGACACC CTCTAGATCT CCCGGACCCC
 7861 TGAGGTCAAC TGGCTGGTGG TGGACGTGAG CCACGAAGAC CCTGAGGTCA AGTTCAACTG
 7921 GTACGTGGAC CGCGTGGAGG TGCATAATGC CAAGACAAAG CGCGGGGAGG AGCAGTACAA
 7981 CAGCACGTAC CGTGTGGTCA CGGTCCCTAC CGTCCTGCAC CAGGACTGGC TGAATGGCAA
 8041 GGAGTACAAG TGCAAGGTCT CCAACAAAGC CCTCCCGAGCC CCCATCGAGA AAACCATCTC
 8101 CAAAGCCAAA GGGCAGCCCC GAGAACCACA GGTGTACACC CTGCCCCCAT CCCGGGATGA
 8161 GCTGACCAAG AACCAAGGTCA GCCTGACCTG CCTGGTCAAA GGCTCTATC CCAGCGACAT
 8221 CGCCGTGGAG TGGGAGAGCA ATGGGCAGCC GGAGAACAC TACAAGACCA CGCCTCCCGT
 8281 GTTGGACTCC GACGGCTCTT TCTTCCTCTA CAGCAAGCTC ACCGTTGACA AGAGCAGGTG
 8341 GCAGCAGGGG AACGTCCTCT CATGCTCCGT GATGCATGAG GCTCTGCACA ACCACTACAC
 8401 GCAGAAGAGC CTCTCCCTGT CTCCGGTAA A

(ii) Fc (same sequence as A (ii) (SEQ ID NO:3))

C.

(i) Heavy Chain (HC)-Fc DNA sequence (no linker between HC and Fc) (signal peptide underlined, Fc region in bold) (SEQ ID NO:7, which encodes SEQ ID NO:8)

1 ATGCAAATAG AGCTCTCCAC CTGCTTCTTT CTGTGCCCTT TCGCATTCTG CTTTAGTGCC
 61 ACCAGAAGAT ACTACCTGGG TGCAGTGGAA CTGTCAATGGG ACTATATGCA AAGTGTATCTC
 121 GGTGAGCTGC CTGTGGACCG AGATTTCTT CCTAGAGTGC CAAAATCTTT TCCATTCAAC
 181 ACCTCAGTCG TGTACAAAAA GACTCTGTTT GTAGAATTCA CGGATCACCT TTTCAACATC
 241 GCTAAGCCAA GGCCACCCCTG GATGGGTCTG CTAGCTCCTA CCATCCAGGC TGAGGTTAT
 301 GATACTGG TCATTAACAT TAAGAACATG GCTTCCCCTC CTGTCAGTCT TCATGCTGTT
 361 GGTGTATCTT ACTGAAAGC TTCTGAGGGA GCTGAATATG ATGATCAGAC CAGTCAAAGG
 421 GAGAAAGAAG ATGATAAAAGT CCTTCCCTGGT GGAAGCCATA CATATGTCTG GCAGGTCTG
 481 AAAGAGAATG GTCCAATGGC CTCTGACCCA CTGTGCCCTA CCTACTCATA TCTTTCTCAT
 541 GTGGACCTGG TAAAAGACTT GAATTCAAGGC CTCACTGGAG CCTACTAGT ATGTAGAGAA
 601 GGGAGTCGG CCAAGGAAAA GACACAGACC TTGCACAAAT TTATACTACT TTTTGCTGTA
 661 TTTGATGAAG GGAAAAGTT GCACTCAGAA ACAAAAGAACT CCTGTATGCA GGATAGGGAT
 721 GCTGCATCTG CTCGGGCCTG GCCTAAAATG CACACAGTC ATGGTTATGT AAACAGGTCT
 781 CTGCCAGTC TGATGGATG CCACAGGAAA TCAGTCTATT GGCATGTGAT TGGAAATGGGC
 841 ACCACTCCTG AAGTGCACTC AATATTCCTC GAAGGTACCA CATTCTTGT GAGGAACCAT
 901 CGCCAGGGGT CCTTGGAAAT CTCGCAATA ACTTTCCCTA CTGCTCAAAC ACTCTTGATG
 961 GACCTTGGAC AGTTCTACT GTTTGTCTAT ATCTCTTCCC ACCAACATGA TGGCATGGAA
 1021 GCTTATGTCA AAGTAGACAG CTGTCCAGAG GAACCCCAAC TACGAATGAA AAATAATGAA
 1081 GAAGCGGAAG ACTATGATGA TGATCTTACT GATTCTGAAA TGGATGTGGT CAGGTTTGT
 1141 GATGACAATCTCCTT TATCAAATT CGCTCAGTTG CCAAGAAGCA TCCCTAAAATC
 1201 TGGGTACATT ACATGCTGC TGAAGAGGAG GACTGGGACT ATGCTCCCTT AGTCCTCGCC
 1261 CCCGATGACA GAAGTTATAA AAGTCAATAT TTGAACAATG GCCCTCAGCG GATTGGTAGG
 1321 AAGTACAAAAA AAGTCCGATT TATGGCATAC ACAGATGAAA CCTTTAAGAC TCGTGAASCT
 1381 ATTCAAGCATG AATCAGGAAT CTTGGGACCT TTACTTTATG GGGAAAGTGG AGACACACTG

1441 TTGATTATAT TTAAGAATCA AGCAAGCAGA CCATATAACA TCTACCCCTCA CGGAATCACT
 1501 GATGTCGGTC CTTTGTATTC AAGGAGATTA CCAAAGGTG TAAAACATTG GAAGGATTT
 1561 CCAATTCTGC CAGGAGAAAT ATTCAAATAT AAATGGACAG TGACTGTAGA AGATGGGCCA
 1621 ACTAAATCAG ATCCTCGGTG CCTGACCCGC TATTACTCTA GTTTCGTTAA TATGGAGAGA
 1681 GATCTAGCTT CAGGACTCAT TGGCCCTCTC CTCATCTGCT ACAAGAATC TGAGATCAA
 1741 AGAGGAACCC AGATAATGTC AGACAAAGAGG AATGTCATCC TGTTTCTGT ATTTGATGAG
 1801 AACCGAAGCT GGTACCTCAC AGAGAATATA CAACGCTTC TCCCCAATCC AGCTGGAGTG
 1861 CAGCTTGAGG ATCCAGAGTT CCAAGCCTCC AACATCATGC ACAGCATCAA TGGCTATGTT
 1921 TTTGATAGTT TGCAGTGTGTC AGTTTGTGTC CATGAGGTGG CATACTGGTA CATTCTAACG
 1981 ATGGGAGCAC AGACTGACTT CCTTTCTGTC TTCTTCTCTG GATATACTT CAAACACAAA
 2041 ATGGTCTATG AAGACACATC CACCCATTC CCATTCTCAG GAGAAACTGTG CTTCATGTCG
 2101 ATGAAAACC CAGGTCTATG GATTCTGGGG TGCCACAATC GACAGTTTCG GAACAGAGGC
 2161 ATGACCCCT TACTGAAGGT TTCTAGTTG GACAAGAAC CTGGTGATTA TTACGAGGAC
 2221 AGTTATGAAG ATATTCAGC ATACTTGCTG AGTAAAACAA ATGCCATTGA ACCAAGA**GAC**
 2281 AAAACTCACA CATGCCACC GTGCCAGCT CCAGAACCTC TGGCGGGACC GTCAGTCTTC
 2341 CTCTTCCCCC CAAAACCCAA GGACACCCCTC ATGATCTCCC GGACCCCTGA GGTCACATGC
 2401 GTGGTGGTGG ACGTGAGCCA CGAACACCTC GAGGTCAAAGT TCAACTGGTA CGTGGACGGC
 2461 GTGGAGGTGC ATAATGCCAA GACAAAGCCG CGGGAGGAGC AGTACAACAG CACGTACCGT
 2521 GTGGTCAGCG TCCTCACCGT CCTGCACCGAG GACTGGCTGA ATGGCAAGGA GTACAAGTGC
 2581 AAGGTCTCCA ACAAAGCCCT CCCAGCCCCC ATCGAGAAAA CCATCTCCAA AGCCAAAGGG
 2641 CAGCCCCGAG AACCACAGGT GTACACCCCTG CCCCCATCCC GGATGAGCT GACCAAGAAC
 2701 CAGGTCAAGCC TGACCTGCCT GGTCAAAGGC TTCTATCCCA GGACATCGG CGTGGAGTGG
 2761 GAGAGCAATG GGCAGCCCGA GAACAACTAC AAGACACAGC CTCCCGTGTG GGACTCCGAC
 2821 GGCTCCTCT TCCTCTACAG CAAGCTCACC GTGGACAAGA GCAGGTGGCA GCAGGGGAAC
 2881 GTCTTCTCAT GCTCCGTGAT CCATGAGGCT CTGCACAACC ACTACACGCA AAAGAGCCTC
 2941 TCCCTGTCTC CGGGTAAA

C.

(ii) Heavy Chain (HC)-Fc DNA sequence (5 amino acid linker between HC and Fc)
 (signal peptide underlined, Fc region in bold, 5 amino acid linker is double-underlined)
 (SEQ ID NO:9, which encodes SEQ ID NO:10)

1 ATGCAAATAG AGCTCTCCAC CTGCTTCTTT CTGTGCCCTT TGGGATTCTG CTTTAGTGCC
 61 ACCAGAAAGAT ACTACCTGGG TGCAAGTGGAA CTGTCATGGG ACTATATGCA AAGTGA~~CTC~~
 121 GGTGAGCTGC CTGTGGAC**GC** AAGATTTCTT CCTAGAGTGC CAAATCTT TCCATTCAAC
 181 ACCTCAGTCG TGTACAAAAA GACTCTGTT GTAGAATTCA CGGATCA**CT** TTTCAACATC
 241 GCTAAGC**AA** GGCCACCC**CT** GATGGGTCTG CTAGGTCTA CCATCCAGGC TGAGGTITAT
 301 GATA**CG**TGG TCA**AT**ACACT TAAGAACATG GCTTCC**AT**C TGTCAG**CT** TCA**TC**AGCIGTT
 361 GGTGTAT**CT** ACTGGAAAGC T**TC**TGAGGG**GA** GCTGAATATG ATGATCAGAC CAGTC**AA**GG
 421 GAGAAAGAAG ATGATAAA**AGT** CT**TC**CC**CT**GGT GGAAGCC**TA** CATATGT**CT**GC GCAGGT**CC**GT
 481 AAAGAGAATG GT**CC**AA**GT**GC CT**TC**TGAC**CC**CA CTGTGCC**TT**A CCTACT**CT**ATA TCT**TT**C**IC**AT
 541 GTGGAC**CT**GG TAA**AG**ACTT GAA**TT**CAG**GC** CTCAT**GG**AG C**CT**CTACT**AG**T ATG**TA**GAG**AA**
 601 GGGAGT**CT**GG CCAAGGAAAA GACACAG**AC**CC TT**GC**ACAA**AT**T T**T**TACT**AC**T TTTG**CT**GTG**TA**
 661 TTTGAT**GA**AG G**GA**AA**AG**TTG G**CA**CT**CA**GA A**CA**AA**AG**A**AC**T C**CT**TGAT**GC**A G**GA**TAG**GG****AT**
 721 G**CT**GC**AT**CTG CTCGG**CC**CTG G**CC**TAA**AT**GC CACAC**AG**T**CA** ATGG**TT**AT**IG**T AAACAGGT**CT**
 781 CTGCCAG**GT**GC TGAT**GG**ATG CCACAGGAAA T**CA**G**CT**T**AT**T G**GC**AT**GT**G**AT** T**GG**A**AT**GG**GC**
 841 ACCACT**CT**CG AAGT**GC**ACT**C** A**AT**AT**CC**TC G**AA**GG**TC**C**AC**A C**AT**T**CT**T**IG**T G**AG**GA**AC****AT**
 901 CGCCAG**GG**GT C**CT**TGG**AA**AT C**TC**G**CC**A**AT**A ACT**TT**C**CT**TA C**TC**G**CT**AA**AC** ACT**CT**T**GT****AT**
 961 GAC**CT**TGG**AC** AG**TT**T**CT**ACT G**TT**TT**GT**C**AT** AT**CT**T**CT**CC**CC** ACC**AA**CA**IG**A T**GG**C**AT**CC**GA**
 1021 G**CT**T**AT**GT**CA** AAGT**AG**AC**AG** C**IG**T**CC**A**GA** G**AA**CC**CC**A**AC** T**AC**GA**AT**G**AA** A**AA**TT**AA**IG**AA**
 1081 G**AA**AG**CG**GA**AG** A**CT**AT**GT**G**AT** G**T**A**T**T**CT**ACT G**A**TT**CT**G**AA**A T**GG****AT**G**GT**GG C**AG**GT**TT****IG****AT**
 1141 G**AT**G**AC**A**CT** C**T**C**CT**CC**CT** T**AT**CC**AA**ATT C**CG**CT**CA**GT**TT**G C**CA**A**GA**A**AG**C**CA** T**CC**T**AA**ACT
 1201 T**GG**GT**AC**ATT A**C**AT**GT**G**TC**G**C** T**GA**AG**AG**GG**AG** G**AC**T**GG**ACT**AT**G**CT**CC**CT** T**AG****IC**C**TC**CG**CC**
 1261 C**CC**G**AT**G**AC**A G**AA**GG**TT**T**AT**AA A**A**GT**CA**AT**AT** T**T**GA**AC**A**AT**G**AC** G**CC**C**CT**C**AG**CG**G** G**AT**T**GG**T**AG****G**
 1321 A**A**GT**AC**AAA A**A**GT**CC**GA**TT** T**T**GG**C**A**T****AC** AC**AG**AT**GA**AAA C**CT**TT**AA**AG**AC** T**CG**T**GA**AG**CT**

1381 ATTCAGCATG AATCAGGAAT CTTGGGACCT TTACTTTATG GGAAAGTIGG AGACACACTG
 1441 TTGATTATAT TTAAGAATCA AGCAAGCAGA CCATATAACA TCTACCCICA CGGAATCACT
 1501 GATGTCGTC CTTTGTATTC AAGGAGAITA CCAAAGGTG TAAAACAITI GAAGGAITTT
 1561 CCAATTCTGC CAGGAGAAAT ATTCAAATAT AAATGGACAG TGACTGTAGA AGATGGGCCA
 1621 ACTAAATCAG ATCCTCGGTG CCTGACCCGC TATTACTCTA GTTICGTAA TATGGAGAGA
 1681 GATCTAGCTT CAGGACTCAT TGGGCTCTC CTCATCTGCT ACAAAGAATC TGTAGATCAA
 1741 AGAGGAACCC AGATAATGTC AGACAAGAGG AATGTCTACCC TTCTTCTGT ATTGTAGAG
 1801 AACCGAAGCT GGTACCTCAC AGAGAATATA CAACGCTTTC TCCCCAATCC AGCTGGAGTG
 1861 CAGCTTGAGG ATCCAGAGTT CCAAGCCTTC AACATCATGC ACAGCATCAA TGGCTATGTT
 1921 TTTGATAGTT TGCAGTTGTC AGTTTGTGTTG CATGAGGTGG CATACTGGTA CATTCTAAC
 1981 ATGGAGCAC AGACTGACTT CCTTTCTGTC TTCTTCTCTG GATATACTT CAAACACAAA
 2041 ATGGTCTATG AAGACACACT CACCCATTC CCATTCTCAG GAGAAACTGT CTTCATGTCG
 2101 ATGGAAAAC CAGGTCTATG GATTCTGGGG TGCCACAAC CAGACTTTCG GAACAGAGGC
 2161 ATGACCGCCT TACTGAGGT TTCTAGTTG GACAAGAAC CTGGTGATTA TTACGAGGAC
 2221 AGTTATGAAG ATATTCAGC ATACTGCTG AGTAAAACATGATGAG ACCAAGAAGC
 2281 TTCTCCCAGA ATGACAAAC TCACACATGC CCACCGTGC CAGCTCCAGA ACTCCTGGC
2341 GGACCGTCAG TCTTCCCTT CCCCCCAAAA CCAAGGACA CCCTCATGAT CTCCCGGACC
 2401 CCTGAGGTCA CATGCGTGGT GGTGGACGTG AGCCACGAAG ACCCTGAGGT CAAGTCAAC
 2461 TGGTACGTGG ACGGCGTGGA GGTGCATAAT GCCAAGACAA AGCCCGGGGA GGAGCAGTAC
 2521 AACAGCACGT ACCGTGTGGT CAGCGTCCCTC ACCGTCTGTC ACCAGGACTG GCTGAATGGC
 2581 AAGGAGTACA AGTGCAGGTT CTCCAACAAA GCCCTCCAG CCCCCATCGA GAAAACCAC
 2641 TCCAAAGCCA AAGGGCAGCC CCGAGAACCA CAGGTGTACA CCCTGGCCCC ATCCCCGGAT
 2701 GAGCTGACCA AGAACCCAGGT CAGCTGACCC TGCGTGTCA AAGGCTTCTA TCCCAGCGAC
 2761 ATCGCCGTGG AGTGGGAGAG CAATGGGAG CCGGAGAAC ACTACAAGAC CACGCCCTCC
 2821 GTGTTGGACT CCGACGGCTC CTTCTTCCTC TACAGCAAGC TCACCGTGGA CAAGAGCAGG
 2881 TGGCAGCAGG GGAACGTCTT CTCATGCTCC GTGATGCATG AGGCTCTGCA CAACCACTAC
 2941 ACGCAGAAGA GCCTCTCCCT GTCTCCGGGT AAA

C.

(iii) Light Chain (LC)-Fc DNA sequence (signal peptide underlined, Fc region in bold)
(SEQ ID NO:11, which encodes SEQ ID NO:12)

1 ATGGGAGACAG ACACACTCCT GCTATGGGTA CTGCTGCTCT GGGTTCCAGG TTCCACTGGT
 61 GAAATAACTC GTACTACTCT TCAGTCAGAT CAAGAGGAAA TTGACTATGA TGATACCATATA
 121 TCAGTTGAAA TGAAGAAGGA AGATTTGAC ATTTATGATG AGGATGAAAAA TCAGAGCCCC
 181 CCCAGCTTC AAAAGAAAAC ACGACACTAT TTTATGCTG CAGTGGAGAG GCTCTGGGAT
 241 TATGGATGA GTAGCTCCCC ACATGTTCTA AGAACACAGGG CTCAGAGTGG CAGTGTCCCT
 301 CAGTTCAAGA AAGTGTGTTT CCAGGAATT ACTGATGGCT CCTTTACTCA CCCCTTATAC
 361 CGTGGAGAAC TAAATGAACA TTTGGGACTC CTGGGCCAT ATATAAGAGC AGAAGTTGAA
 421 GATAATATCA TGGTAACCTT CAGAAATCAG GCCTCTCGTC CCTATTCTT CTATTCTAGC
 481 CTTAATTCTT ATGAGGAAGA TCAGAGGCAA GGAGCAGAAC CTAGAAAAAA CTTTGTCAAG
 541 CCTAATGAAA CCAAAACTTA CTTTTGGAAA GTGCAACATC ATATGGCACC CACTAAAGAT
 601 GAGTTTGACT GCAAAGCTG GGCTTATTC TCTGATGTTG ACTTGGAAAA AGATGTGCAC
 661 TCAGGCCCTGA TTGGACCCCT TCTGGCTCTG CACACTAACCA CACTGAACCC TGCTCATGG
 721 AGACAAGTGA CAGTACAGGA ATTTGCTCTG TTTTTCACCA TCCTTGATGA GACCAAAAGC
 781 TGGTACTTCA CTGAAAATAT GGAAAGAAAAC TGCAAGGCTC CCTGCAATAT CCAGATG3AA
 841 GATCCCACTT TAAAGAGAA TTATCGCTTC CATGCAATCA ATGGCTACAT AATGGATACA
 901 CTACCTGGCT TAGTAATGGC TCAGGATCAA AGGATTCGAT GGTATCTGCT CAGCATG3GC
 961 AGCAATGAAA ACATCCATTC TATTCAATTG AGTGGACATG TGGTCACTGT ACGAAAAAAA
 1021 GAGGAGTATA AAATGGCACT GTACAATCTC TATCCAGGTG TTTTGAGAC AGTGGAAATG
 1081 TTACCATCCA AAGCTGGAAT TTGGCGGGTG GAATGCCCTA TTGGCGAGCA TCTACATGCT
 1141 GGGATGAGCA CACTTTCTT GGTGTACAGC AATAAGTGTG AGACTCCCCT GGGAAATG3CT
 1201 TCTGGACACA TTAGAGATTT TCAGATTACA GCTTCAGGAC AATATGGACA GTGGGCCCA
 1261 AAGCTGGCCA GACTTCATTA TTCCGGATCA ATCAATGCCT GGAGCACCAC GGAGCCCTT
 1321 TCTTGGATCA AGGTGGATCT GTGGCACCA ATGATTATTC ACAGGCATCAA GACCCAGGGT

1381 GCCCGTCAGA AGTTCTCCAG CCTCTACATC TCTCAGTTA TCATCATGTA TAGTCTTGAT
1441 GGGAAAGAAGT GGCAGACTTA TCGAGGAAAT TCCACTGGAA CCTTAATGGT CTTCTTGGC
1501 AATGTGGATT CATCTGGAT AAAACACAAT ATTTTAACC CTCCAATTAT TGCTCGATAC
1561 ATCCGTTGC ACCCAACTCA TTATAGCATT CGCAGCACTC TTCGCATGGA GTTGATGGC
1621 TGTGATTAA ATAGTTGCAG CATGCCATTG GGAATGGAGA GTAAAGCAAT ATCAGAIGCA
1681 CAGATTACTG CTTCATCTA CTTTACCAAT ATGTTGCCA CCTGGTCTCC TTCAAAAGCT
1741 CGACTTCACC TCCAAGGGAG GAGTAATGCC TGGAGACCTC AGGTGAATAA TCCAAAAGAG
1801 TGGCTGCAAG TGGACTTCAGA GAAGACAATG AAAGTCACAG GAGTAACTAC TCAGGGAGTA
1861 AAATCTCTGC TTACCCAGCAT GTATGTGAAG CACTTCCTCA TCTCCAGCAG TCAAGAIGGC
1921 CATCAGTGGG CTCTCTTTT TCAGAATGGC AAAGTAAAGG TTTTCAGGG AAATCAAGAC
1981 TCCTTCACAC CTGTTGGTGAA CTCTCTAGAC CCACCGTTAC TGACTCGCTA CCTTCGAATT
2041 CACCCCCAGA GTTGGGTGCA CCAGATTGCC CTGAGGATGG AGGTTCTGG CTGGAGGCA
2101 CAGGACCTCT ACGACAAAAAC TCACACATTC CCACCCGTGCC CAGCTCCAGA ACTCCTGGGC
2161 GGACCGTCAG TCTTCCTCCTT CCCCCCAAAA CCCAAGGACA CCCTCATGAT CTCCCGGACC
2221 CCTGAGGTCA CATGCGTGGT GGTGGACGTG AGCCACGAAG ACCCTGAGGT CAAGTTCAAC
2281 TGGTACGTGG ACGGCGTGGA GGTGCATAAT GCCAAGACAA AGCCGGGGGA GGAGCACTAC
2341 AACACCAACGT ACCGTGTGGT CAGGGTCCCTC ACCGGTCCCTGC ACCAGGACTG GCTGAATGGC
2401 AAGGAGTACA AGTGCAGGAT CTCCAACAAA GCCCTCCAG CCCCCATCGA GAAAACCATC
2461 TCCAAAGCCA AAGGGCAGCC CCGAGAACCA CAGGTGTACA CCCTGGGGAT ATCCCGGGAT
2521 GAGCTGACCA AGAACCCAGGT CAGCCTGACC TGCCTGGTCA AAGGCTTCTA TCCCAGCGAC
2581 ATCGCCGTGG AGTGGCAGAG CAATGGGAG CCGGAGAACCA ACTACAAGAC CACGCCCTCCC
2641 GTGTTGGACT CCGACGGCTC CTTCTTCCTC TACAGCAAGC TCACCGTGGA CAAGAGCAGG
2701 TGGCAGCAGG GGAACGTCTT CTCATGCTCC GTGATGCATG AGGCTCTGCA CAACCACTAC
2761 ACGCAGAAGA GCCTCTCCCT GTCTCCGGGT AAA

Table 2: Polypeptide Sequences

A. B-Domain Deleted FVIII-Fc Monomer Hybrid (BDD FVIIIFc monomer dimer): created by coexpressing BDD FVIIIFc and Fc chains.

Construct = HC-LC-Fc fusion. An Fc expression cassette is cotransfected with BDDFVIII-Fc to generate the BDD FVIIIFc monomer-. For the BDD FVIIIFc chain, the Fc sequence is shown in bold; HC sequence is shown in double underline; remaining B domain sequence is shown in italics. Signal peptides are underlined.

i) B domain deleted FVIII-Fc chain (19 amino acid signal sequence underlined) (SEQ ID NO:2)

MQIELSTCFFLCLLRFCFS
ATRRYYLGAVELSWDYM**QSDLGELPV**DARFPPRVPKSFPFNTSVVYKKTLFVEFTDHLFNIKPR
 PPWMGLLGPTI**QAEVYDTV**ITLKNMASHPVSLHAVGVSYWKASEGA**EYDDQT**SQREKEDDKVFP
 GGS**HTYVWQVL**KENGPMASDPLC**ITYSYL**SHVDLVKDLNSGLIGALLVCREGSLAKEKTQTLHKE
 ILLFAV**FDEGKSWH**SETKNSLMQDRDAASARAWPKMHTVNGYVNRSLPG**LIGCHR**KSVYWHVIGM
 GTTPEVHS**IFLE**GHTFLVRNHRQAS**LEIS**PITFLTAQ**TL**MDLGQFLFC**HISSH**QHDGMEAYVK
 VDSC**PEEP**QLRMKNNEEA**EDY**DDDLTD**SEMDV**VRFDDDNPSF**TIQIR**SVAKHPKTWVHYIAAEE
 EDWDYAPLV**LAPDD**RSYKS**QYLN**NGPQRIGRKYKKVRFMAYTDET**FKT**TREAIQHES**GILG**PLLYG
 EVGDTLLI**IFKN**QASRPYNIYPHG**ITDVR**PLYSRRLPKG**VKHL**KDFPILP**GEIF**KYKWIVTVEDG
 PTKSDPRCLTRYSSFVNMERDLASGLIGPLLICYKESV**DQ**RG**QI**MSDKRNVILFSV**FD**ENRSW
 YLTENI**QRF**LPNPAGV**QLED**PEFQASNIMHSINGYV**FD**SLQLSVCLHEVAYWYILSIGA**QTD**FLS
 VFFSGYTFKH**KMVY**EDTL**TFP**SG**ETV**FMSMENPGLW**ILG**CHNSDFRN**RGM**TALLKVSSCDKNT
 GDYYEDSYEDISAY**LL**SKNN**AI**EPR**SFSQ**NPVLKR**HQ**RE**IT**RT**TL**QSDQ**EE****IDY**DT**IS**VEMKK
 EDFDIY**DEDEN**QSPRSF**QKK**TRHYFIA**VERL**WDYGMSSSPHVRNRAQSG**SV**PQFKVV**Q**EFT
 DGSFTQ**PL**YRG**EL**NEHL**LL**GPY**IR**AE**VED**DNIM**VT**FRNQASR**PY**SSL**I**Y**EED**Q**RQ**AE**PR**
 NFVK**PN**ETKTYFWK**QHHM**AP**KD**E**FDCK**AWAYFSDVD**LE**KDV**HSG**IG**PLL**V**CH**NT**LN**PAHGR
 Q**TVQ**E**FAL**FFT**I**DE**TKS**WY**F**TENM**ERN**C**APC**N**I**Q**MED**P**T**K**ENY**R**F**H**A**ING**Y****IM**DT**LP**G**LM**
 A**QDQ**R**I**R**WY**LL**SMG**S**N**EN**I**H**SI**F**SGH**V**FT**R**K**EE**Y**K**MA**LY**N**LY**PGV**F**E**T**V**E**ML**P**SKA**GI**W**R**VE**
 CL**IGE**HL**HAGM**ST**LF**V**Y**SN**KC**QT**PLG**MA**SH**IR**DF**Q**IT**AS**GQ**Y**QW**AP**KL**AR**LY**SG**S**IN**A**W**ST**
 KEP**FSW**I**KV**DL**LA**PM**I**I**HG**I**KT**Q**GA**R**QF**SS**LY**I**SQ**FI**I**MY**SLDG**KK**WQ**TY**RGN**ST**GT**LM**VFF**GN
 VD**SSG**I**KHN**I**FN**P**PI**I**ARY**I**RL**H**PT**Y**SIR**SL**RM**EL**MG**CD**LN**CS**MPL**GM**ES**KA**IS**DA**Q**I**T**ASS
 Y**FTNMF**AT**WPSK**AR**LH**L**QGR**SN**AW**R**PQVNNP**KE**WL**L**QVF**Q**TM**K**VT**G**VTT**Q**GV**K**SL**LT**SMY**V**KE**
 FL**ISS**SQ**DGHQ**WT**LF**Q**NGK**V**KV**F**QGNQ**DS**FT**P**VV**N**SLD**PP**LL**TR**Y****L**R**I**H**PQ**S**WV**H**Q**I**ALR**ME**VL**
 G**C**EA**QD**LY**D****K****T****H****T****C****PP****CP****A****P****E****L****L****GG****P****S****V****FL****F****PP****K****P****K****D****T****L****M****I****S****R****T****P****E****V****T****C****V****V****D****V****S****H****E****D****P****E****V****K****E****N****W**
 Y**VDG****VE****VH****NA****KT****K****P****REE****Q****Y****N****ST****Y****R****V****V****S****V****L****T****V****L****H****Q****D****W****L****N****G****KEY****K****C****V****S****N****K****A****L****P****A****I****E****K****T****I****S****K****A****G****Q**
 PREP**QV****Y****T****L****P****P****S****R****D****E****L****T****K****N****Q****V****S****L****T****C****L****V****G****F****Y****P****S****D****I****A****V****E****W****E****S****N****G****Q****P****E****N****Y****K****T****T****P****P****V****L****D****S****G****F****F****L**
 SKL**T****V****D****K****S****R****W****Q****Q****G****N****V****F****S****C****S****V****M****HE****A****L****H****N****H****Y****T****Q****K****S****L****S****P****G****K**

ii) Fc chain (20 amino acid heterologous signal peptide from mouse Igk chain underlined) (SEQ ID NO:4)

METDTLLWVLLLWVPGSTG
DKTHTC**PPCP****A****P****E****L****L****GG****P****S****V****FL****F****PP****K****P****K****D****T****L****M****I****S****R****T****P****E****V****T****C****V****V****D****V****S****H****E****D****P****E****V****K****E****N****W**
 NAK**T****K****P****REE****Q****Y****N****ST****Y****R****V****V****S****V****L****T****V****L****H****Q****D****W****L****N****G****KEY****K****C****V****S****N****K****A****L****P****A****I****E****K****T****I****S****K****A****G****Q**
 PREP**QV****Y****T****L****P****P****S****R****D****E****L****T****K****N****Q****V****S****L****T****C****L****V****G****F****Y****P****S****D****I****A****V****E****W****E****S****N****G****Q****P****E****N****Y****K****T****T****P****P****V****L****D****S****G****F****F****L**

LPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK

B. Full length FVIIIfc monomer hybrid (Full length FVIIIfc monomer dimer): created by coexpressing FVIIIfc and Fc chains.

Construct = HC-B-LC-Fc fusion. An Fc expression cassette is cotransfected with full length FVIIIfc to generate the full length FVIIIfc monomer. For the FVIIIfc chain, the Fc sequence is shown in bold; HC sequence is shown in double underline; B domain sequence is shown in italics. Signal peptides are underlined.

i) Full length FVIIIfc chain (FVIII signal peptide underlined (SEQ ID NO:6)

MQIELSTCFFLCLLRFCFS
ATRRYYLGAVELSWDYMQSDLGELPVDARFPPRVPKSFPFNTSVVYKKTLFVEFTDHLFNIAKPR
PPWMGLLGPTIQAEVYDTVVITLNKMAHPVSLHAVGVSYWKASEGAEYDDQTSQREKEDDKVFP
GGSHTYVWQVLKENGPMASDPLCITYSYLSHVDLVKDLNSGLIGALLVCREGSLAKEKTQTLHKF
ILLFAVFDGKSWHSETKNSLMQDRDAASARAWPKMHTVNGYVNRSLPGLIGCHRKSVYWHVILGM
GTTPEVHSIFLEGHTFLVRNHRQASLEIISPITFLTAQTLMDLGQFLFCCHISSHQHDGMEAYVK
VDSCPEEPQLRMKNNEEAEDYDDDLTDSEMDVVRFDDDNSPSFIOIRSVAKHPKTWVHYIAAEE
EDWDYAPLVLAPDDRSYKSQYLNNGPQRIGRKYKKVRFMAYTDETFKTREAIQHESGILGPLLYG
EVGDTLLIIFKNQASRPYNIYPHGIDVRPLYSRRLPKGVKHLDFPILPGEIFKYKWTVTVEDG
PTKSDPRCLTRYSSFVNMERDLASGLIGPLLICYKESVDQRGNQIMSDKRNVILFSVFDENRSW
YLTENIQRFLPNPAGVQLEDPEFQASNIMHSINGYVFDSQLQLSVCVHEVAYWYILSIGAQTDFLS
VFFSGYTFKHMVYEDTTLFPFSGETVFMSMENPGWILGCHNSDFRNRMGTALLKVSSCDKNT
GDYYEDSYEDISAYLLSKNNAIEPRSFQSNSRHPSTRQKQFNATTIPENDIEKTDPWFAHRTPMP
KIQNVSSSDLLMLLRQSPTPHGLSISLQLQEAKEYTFSDDPSPGAIDSNNSLSEMTHFRPQLHHSG
DMVFTPESGLQLRLNEKLGTTAATELKLDKVSSTSNNLISTIPSDNLAAGTDNTSSLGPPSMP
VHYDSQLDTLFGKKSSPLTESGGPLSLSEENNDSKLLESGLMNSQESSWGKNVSSTESGRLFKG
KRAHGPALLTKDNALFKVSISSLKTNKTSNISATNRKTHIDGPSLLIENSPSVWQNILESDFEK
KVTPLIHDRMLMDKNATALRINHMSNKTTSKNCMENVQKKEGPIPPDAQNPDMMSFFKMLFLPES
ARWIQRTHGKNSLNSGQGPSPKQLVSLGPEKSVEGQNFLSEKNKVVVGKGEFTKDVGLKEMVFPS
SRNLFLTNLDNLHENNTHNQEKKIQQEEIEKKETLIQENVVLQPQIHTVTGKNCMKNLFLLSTRQN
VEGSYDGYAPVLDQFRSLNDSTNRTKKHTAHFSKKGEENLEGLGNQTKQTVEKYACTTRISPNTSQQNFVTQRSKRALKQFRLPLEETELEKRIIVDDTSTQWSKMMKHLTPSTLTQIDYNEKEKGAI
TQSPLSDCLTRSHSIPQANRSPLPIAKVSSFPSIRPIYLTRVLQFDNSSHLPAASYRKKDGVQE
SSHFLQGAKKNLNLAILTLEMTGDQREVGSLGTSATNSVTYKKVENTVLPKPDLPKTSGKVELLPKVHIYQKDLFPTETSGSPGHLDLVEGSSLQGTEGAIKWNEANRPGKVFRLRVATESSAKTPSK
LLDPLAWDNHYGTQIPKEEWKSQEKSPEKTAFKKKDTILSLNACESNHAIAAINEGQNKPEIEVTWAKQGRTERLCSQNPPVLRHOREITRTTLQSDQEEIDYDDTISVEMKKEDFDIYDEDENQSPRS
FQKKTRHYFIAVERLWDYGMSSSPHVLRNRAQSGSPVQFKKVFQEFDTGFSFTQPLYRGELNEHLGLLGPYIRAEVEDNIMVTFRNQASRPYSFYSSLISYEDQRQGAEPKRNFKVCPNETKTYFWKVQHHMAPTKDEFDC
KAWAYFSDVDLEKDVHSGLIGPLLVCHTNLNPAGRQVTVQEFAFFTIFDETKSWYFTENMERNCRAPCNIQMEDPTFKENYRFHAINGYIMDTLPGLVMAQDQRIRWYLLSMGSN
ENIHSIHFGHVFTVRKKEEYKMALNLYPGVFETVEMI PSKAGIWRVECLIGEHLHAGMSTLFL
VYSNKCQTPLGMASGHIRDFQITASGQYQGOWAPKLARLHYSGS INAWSTKEPFSWIKVVDLLAPMI
IHGIKTQGARQKFSSLYISQFIIMYSLDGKKWQTYRGNSTGTLVFFGNVDSSGIKHNIFNPII
ARYIRLHPHTYSIRSTLRMELMGCDLNCSMPLGMESKAISDAQITASSYFTNMFAWSPSKARL

HLQGRSNAWRPQVNNPKEWLQVDFQKTMKVTGVTQGVKSLLTSMYVKEFLISSSQDGHQWTLFF
 QNGKVKVFQGNQDSFTPVVSNDPPLLTRYLRIHPQSWHQIALRMEVLGCEAQDLY**DKTHTCPP**
CPAPELLGGPSVFLFPPPKDTLMISRTPEVTCVVVDVS**HEDPEVKFNWYVDGVEVHNAKTKPRE**
EQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDEL
TKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTPPVLDSDGSFFLYSKLTVDKSRWQGNVF
SCSVMHEALHNHYTQKSLSLSPGK

ii) Fc chain (20 amino acid heterologous signal peptide from mouse Igk chain underlined)
(SEQ ID NO:4)

METDTLLLWVLLLWVPGSTG
DKTHTCPPCPAPELLGGPSVFLFPPPKDTLMISRTPEVTCVVVDVS**HEDPEVKFNWYVDGVEVH**
NAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDEL
TKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTPPVLDSDGSFFLYSKLTVDKSRWQGNVF
RWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK

C. FVIII-Fc Heterodimer Hybrid

This is made by cotransfected HC-Fc and LC-Fc constructs. Two HC-Fc constructs have been made. One has no linker between HC and Fc (HC-Fc) while the other has a 5 amino acid linker between HC and Fc (HC+5-Fc). The FVIII signal peptide was used for the HC-Fc constructs, while the mouse Igk signal sequence was used for the LC-Fc construct.

(i) HC-Fc (Fc sequence is shown in bold, signal peptide underlined) (SEQ ID NO:8)

MQIELSTCFFLCLLRFCS
 ATRRYYLGAVELSDYMQSDLGELPVDARFPPRVPKSFPFNTSVVYKKTLFVEFTDHLFNIAKPR
 PPWMGLLGPTIQAEVYDTVVITLKNMASHPVLHAVGVSYWKASEGAEYDDQTQSREKEDDKVFP
 GGSHTYVWQVLKENGPMASDPLCLTYSYLSHVDLVKDLNSGLIGALLVCREGSLAKEKTQTLHKF
 ILLFAVDEGKSWHSETKNSLMQDRDAASARAWPKMHTVNGYVNRSLPGLIGCHRKSVYWHVIGM
 GTTPEVHSIFLEGHTFLVRNHRQASLEISPIFLTAQTLMDLGQFLLFCHISSHQHDGMEAYVK
 VDSCPEEPQLRMKNNEEAEDYDDDLTDSEMDVVRDDDNSPSFQIRSVAKKHPKTWVHYIAAEE
 EDWDYAPLVLAPDDRSYKSQYLNNGPQRIGRKYKKVRFMAYTDETFKTREAIQHESGILGPLLYG
 EVGDTLLIIFKNQASRPYNIYPHGITDVRPLYSRRLPKGVKHLKDFPILPGEIFKYKWTVTVEDG
 PTKSDPRCLTRYSSFVNMERDLASGLIGPLLICYKESVDQRGNQIMSDKRNVILFSVDENRSW
 YLTENIQRFLPNPAGVQLEDPEFQASNIMHSINGYVFDLSQLSVCLHEVAYWIILSIGAQTDPLS
 VFFSGYTFKHKMVYEDTTLFPFSGETVFMNSMENPGLWILGCHNSDFRNRGMTALLVSSCDKNT
GDYYEDSYEDISAYLLSKNNAIEPRDKTHTCPPCPAPELLGGPSVFLFPPPKDTLMISRTPEVTCVVVDVS
HEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENN
YKTPPVLDSDGSFFLYSKLTVDKSRWQGNVFSCSVMHEALHNHYTQKSLSLSPGK

(ii) HC+5-Fc (Fc sequence is shown in bold, 5 amino acid linker sequence (from the B domain of FVIII) is shown in italics, signal peptide underlined.) (SEQ ID NO:10)

MQIELSTCFFLCLLRFCS

ATRRYYLGAVELSWDYMQSDLGELPVDFPPRVPKSFPFNTSVVYKKTLFVEFTDHLFNIAKPR
PPWMGLLGPTIQAEVYDTVVITLKNMASHPVLHAVGVSYWKASEGAEYDDQTSQREKEKKVFP
GGSHTYVWQVLKENGPMASDPLCLTYSYLHVDLVKDLNSGLIGALLVCREGLAKEKTQTLHKF
ILLFAVFDEGKSWHSETKNSLMQDRDAASARAWPKMHTVNGYVNRSLPGLIGCHRKSVDWHVIGM
GTTPEVHSIFLEIGHTFLVRNHRQASLEISPITFLTAQTIILMDLGQFLLFCHISSHQHDGMEAYVK
VDSCPEEPQLRMKNNEEAEDYDDDLTDSEMDVVRFDDNSPSFIQIRSVAKKHPKTWVHYIAAEE
EDWDYAPLVLAPDDRSYKSQYLNNGPQRIGRKYKKVRFMAYTDETFKTRÉAIQHESGILGPLLYG
EVGDTLLIIFKNQASRPYNIYPHGITDVRPLYSRRLPKGVKHLKDFPILPGEIFKYKWTVTVEDG
PTKSDPRCLTRYSSFVNMERDLASGLIGPLLICYKESVDQRGNQIMSDKRNVILFSVFDENRSW
YLTENIQRFLPNPAGVQLEDPEFQASNIMHSINGYVFDLQLSVCLHEVAYWYILSIGAQTDFLS
VFFSGYTFKHMVYEDTTLFPFSGETVFMSENPGIWILGCIINSDFRNRGMALLKVSSCDKNT
GDYYEDSYEDISAYLLSKNNAIEPRSFSD**DKTHTCPCPAPELLGGPSVFLFPPKPKDTL**MISR
TPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYK
CKVSNKALPAPIEKTISKAKGQPREPVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWENG
QPENNYKTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCVMHEALHNHYTQKSLSLSPGK

(iii) LC-Fc6His (Fc sequence is shown in bold, signal peptide underlined.) (SEQ ID NO:12)

METDTLLLWVLLLWVPGSTG
EITRTTLQSDQEEIDYDDTISVEMKKEDFDIYDEDENQSPRSFQKKTRHYFIAAVERLWDYGMSS
SPHVLRNRAQSGSVPQFKVVFQEFTDGSFTQPLYRGEIINEHLGLGPYIRAEVEDNIMVTFRNQ
ASRPYSFYSSLISYEEDQRQGAEPRKNFVKPNETKTYFWKVQHHMAPTKDEFDCKAWAYFSDVDL
EKDVHSGLIGPLLVCHTNLNPAHGRQVTQEFALFFTIFDETKSWYFTENMERNCRAPCNIQME
DPTFKENYRFHAINGYIMDTLPGLVMAQDQRIRWYLLSMGSNENIHSIHSFSGHFTVRKKEEYKM
ALYNLYPGVFETVEMPLPSKAGIWRVECLIGEHLHAGMSTLFLVYSNCQTPLGMASGHIRDFQIT
ASGQYQWAPKLRALHYSGSINAWSTKEPFSWIKVVDLAPMIIHGIKTQGARQKFSSLYISQFII
MYSLDGKKWQTYRGNSTGTLVFFGNVDSSGIKHNIFNPPIIARYIRLHPTHYSIRSTLRMELMG
CDLNCSMPLGMESKAISSDAQITASSYFTNMFATWSPSKARLHLQGRSNAWRPQVNNPKEWLQVD
FQKTMKVTGVTQGVKSLLTSMYVKEFLISSSDGHQWTLFFQNGKVKVFQGNQDSFTPVVNSLD
PPLLTRYLRIHPQSWVHQIALRMEVLGCEAQDLY**DKTHTCPCPAPELLGGPSVFLFPPKPKDTL**
MISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNNAKTKPREEQYNSTYRVVSVLTVLHQDWLNG
KEYKCKVSNKALPAPIEKTISKAKGQPREPVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWE
ESNGQPENNYKTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCVMHEALHNHYTQKSLSLSPG
K

Table 3. Whole blood clotting time (WBCT) determination in hemophilia A mice after a single intravenous dose of 50 IU/kg rFVIIIIFc or ReFacto®.

A.

Treatment	Animal Number	Time of Blood Collection, hr						
		Pre-dose	0.25	24	36	42	96	113
WBCT, min								
50 IU/kg ReFacto®	1	>60	18	>60	ND	ND		
	2	>60	5	16	>60	ND		
	3	>60	4	7	>60	ND		
	4	>60	7	8	10	>60		
	5	>60	6	9	16	>60		
	6	>60	5	15	>60	ND		
50 IU/kg rFVIIIIFc	7	>60	7				8	>60
	8	>60	5				8	>60
	9	>60	4				16	>60
	10	>60	3				11	4
	11	>60	3				9	>60
	12	>60	4				6	>60

ND = not determined since previous time point was >60 min

B.

Treatment	Animal Number	Time of Blood Collection, hr						
		Pre-dose	0.25	24	48	96	120	
		WBCT, min						
50 IU/kg ReFacto®	1	>60	11	15	>60	>60	ND	
	2	>60	3	3	>60	>60	>60	
	3	>60	4	6	>60	>60	>60	
50 IU/kg rFVIIIFc	4	>60	3	5	5	>60	>60	
	5	>60	3	6	7	13	>60	
	6	>60	5	8	9	9	>60	

ND = Not determined since previous time point was >60 min

Table 4. PK Parameters after a single intravenous dose in hemophilia A mice (50 IU/kg)

Treatment	C _{max} (IU/mL)	AUC (hr·IU/mL)	T _{1/2} (hr)	CL (mL/hr/kg)	V _{ss} (mL/kg)
rFVIIIFc	1.56	22.6	11.1	2.09	28.4
ReFacto® [®]	0.67	6.94	5.0	7.2	43.8
Advate®	0.47	3.90	7.1	12.8	103

Table 5. PK Parameters after a single intravenous dose in hemophilia A dogs (125 IU/kg rFVIIIFc, 114 and 120 IU/kg ReFacto®)

A. PK determined from chromogenic activity data

Treatment	C _{max} (IU/mL)	AUC (hr·IU/mL)	T _{1/2} (hr)	CL (mL/hr/kg)	Vz (mL/kg)
rFVIIIFc	2.0 ± 0.54	25.9 ± 6.47	15.4 ± 0.3	5.1 ± 1.4	113 ± 29
ReFacto® ^{®*}	2.0	18.2	7.4	6.5	68.7

B. PK determined from ELISA data

Treatment	C _{max} (ng/mL)	AUC (hr·ng/mL)	T _{1/2} (hr)	CL (mL/hr/kg)	Vz (mL/kg)
rFVIIIFc	210 ± 33	2481 ± 970	15.7 ± 1.7	6.2 ± 3.0	144 ± 83
ReFacto® ^{®*}	211	1545	6.9	8.7	85

Mean ± sd, n = 4 for rFVIIIFc, n = 2 for ReFacto®

*sd not reported for ReFacto® since there were just two dogs

Table 6. Clotting activity measured by aPTT in hemophilia A dogs after a single intravenous dose with rFVIIIFc or ReFacto®.

Dog ID	Treatment	aPTT, sec	
		PreDose	5 min post dose
M10	rFVIIIFc	86.5	53.6
M11	rFVIIIFc	99.8	56.4
M12	rFVIIIFc	119	68.7
	ReFacto®	108	60.7
M38	rFVIIIFc	115	76.6
	ReFacto®	118	68.0

Table 7. Plasma Concentration of rFVIIIFc or Xyntha in monkeys administered as a single intravenous dose of 125 IU/kg measured by ELISA.

A. rFVIIIFc concentration in plasma (μg/mL)

Time, hr	Group 1			Group 2			Mean	SD
	604376	606595	C36195	C36066	C36174	604362		
Pre	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ		
0.25	0.400	0.334	0.374	0.348	0.383	0.323	0.360	0.030
4	0.266	0.259	0.236	0.233	0.259	0.217	0.245	0.019
12	0.165	0.152	0.12	0.15	0.161	0.149	0.150	0.016
24	0.079	0.074	0.047	0.08	0.088	0.076	0.074	0.014
36	0.035	0.04	0.022	0.04	0.041	0.046	0.037	0.008
48	0.019	0.021	BLQ	0.021	0.024	0.025	0.022	0.002

B. Xyntha concentration in plasma (μg/mL)

Time, hr	Group 1			Group 2			Mean	SD
	604376	606595	C36195	C36066	C36174	604362		
Pre	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ		
0.25	0.252	0.074	0.155	0.317	0.217	0.167	0.197	0.084
4	0.197	0.159	0.152	0.229	0.19	0.082	0.168	0.051
12	0.137	0.099	0.104	0.166	0.158	0.081	0.124	0.035
24	0.09	0.068	0.051	0.082	0.08	0.084	0.076	0.014
36	0.037	0.043	0.015	0.041	0.035	BLQ	0.034	0.011
48	0.022	BLQ	BLQ	0.017	0.013	BLQ	0.017	0.005

Table 8. Plasma Concentration of rFVIIIFc or Xyntha in monkeys administered a single intravenous dose of 125 IU/kg measured by the **FVIII-specific chromogenic activity assay** (reported in IU/mL).

A. Xyntha

Time (hr)	Group 1			Group 2		
Predose	604376	606595	C36195	C36066	C36174	604362
0.25	5.62	4.55	5.01	4.5	5.15	3.77
4	3.9	4.05	3.2	3.19	3.46	2.36
12	2.51	2.82	1.69	2.17	2.5	2.01
24	1.67	1.66	1.18	0.95	1.57	1.5
36	0.7	0.85	0.48	0.44	0.85	0.82
48	BLQ	BLQ	BLQ	BLQ	0.38	0.48

B. rFVIIIFc

Time (hr)	Group 1			Group 2		
Predose	604376	606595	C36195	C36066	C36174	604362
0.25	4.31	3.82	3.54	4.13	4.12	3.68
4	3	3.36	2.53	2.7	2.74	2.81
12	2	2.15	1.42	2.28	2.75	2.22
24	1.01	1.17	0.5	1.5	1.61	1.01
36	BLQ	0.52	0.48	0.88	0.72	0.64
48	0.31	BLQ	BLQ	BLQ	BLQ	BLQ
72	BLQ	BLQ	BLQ	BLQ	0.31	BLQ

BLQ = below the limit of quantitation

Table 9. PK Parameters of rFVIIIFc after a single 125 IU/kg dose

PK Parameter	units	rFVIIIFc ELISA Data							
		Group 1			Group 2			Average	SD
		604376	606595	C36195	C36066	C36174	604362		
Tmax	hr	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.00
Cmax	µg/mL	0.4	0.334	0.374	0.348	0.383	0.323	0.368	0.030
T _{1/2}	hr	11.4	13.3	9.3	12.7	12.7	14.1	11.9	1.7
AUC	µg*hr/mL	5.86	5.65	4.37	5.56	4.37	5.58	5.16	0.68
CL	mL/hr/kg	2.15	2.23	2.88	2.27	2.07	2.26	2.32	0.29
Vz	mL/kg	35.3	42.5	38.8	37.9	37.9	46.1	38.5	3.9
MRT	hr	15.3	17	12.1	17.1	17.3	19.2	15.8	2.4

PK Parameter	units	rFVIIIFc Chromogenic Activity Data							
		Group 1			Group 2			Average	SD
		604376	606595	C36195	C36066	C36174	604362		
Tmax	hr	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.00
Cmax	IU/mL	4.31	3.82	3.54	4.13	4.12	3.68	3.93	0.30
T _{1/2}	hr	13.4	12.0	11.6	17.5	12.4	29.4	16.1	6.9
AUC	IU*hr/mL	74.7	75.5	53.5	92.9	88.9	92.7	79.7	15.2
CL	mL/hr/kg	1.67	1.65	2.34	1.35	1.41	1.35	1.63	0.38
Vz	mL/kg	32.3	28.7	39.2	33.9	25.2	57.2	36.1	11.4
MRT	hr	17.8	16.8	16.9	25	19.2	33.3	21.5	6.5

Table 10. PK Parameters of **Xyntha** after a single IV dose (125 IU/kg)

PK Parameter	units	Xyntha ELISA Data						Average	SD
		Group 1			Group 2				
Tmax	hr	0.25	4	0.25	0.25	0.25	0.25	0.88	1.53
Cmax	IU/mL	0.252	0.159	0.155	0.317	0.217	0.167	0.21	0.06
T _{1/2}	hr	13.6	19.9	9.7	11	9.2	nd	12.7	4.4
AUC	IU*hr/mL	5.15	4.39	3.17	5.53	4.79	6.32	5.24	0.74
CL	mL/hr/kg	2.21	2.6	3.59	2.06	2.38	nd	2.57	0.61
Vz	mL/kg	43.4	74.7	50.1	32.9	31.5	nd	46.5	17.5
MRT	hr	19	28.4	14	16.1	15.9	nd	18.7	5.7

PK Parameter	units	Xyntha Chromogenic Activity Data						Average	SD
		Group 1			Group 2				
Tmax	hr	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0
Cmax	IU/mL	5.62	4.55	5.01	4.5	5.15	3.77	4.77	0.64
T _{1/2}	hr	12.8	14.3	11.4	10.4	11.7	14.6	12.5	1.7
AUC	IU*hr/mL	97.1	104.2	71.3	70.7	94.0	82.8	86.7	14.0
CL	mL/hr/kg	1.29	1.20	1.75	1.77	1.33	1.51	1.48	0.24
Vz	mL/kg	23.7	24.8	28.9	26.6	22.5	31.8	26.4	3.5
MRT	hr	17.8	20.1	16.0	14.8	18.4	23.2	18.4	3.0

Table 11. Activation of Factor X

	Km (nM)	Vmax (nM/min)
rFVIIIFc	55.0 ± 5.9	65.6 ± 8.6
BDD FVIII	51.0 ± 8.7	73.5 ± 10.1

Table 12. Interaction with Factor IXa

	Kd (nM)	Vmax (nM/min)
rFVIIIFc	2.8 ± 0.4	4.5 ± 0.3
BDD FVIII	2.5 ± 0.3	4.0 ± 1.0

CLAIMS

1. A method of decreasing the incidence of a bleeding episode in a human subject, said method comprising administering to the subject multiple doses of a chimeric polypeptide comprising a Factor VIII (FVIII) portion and an Fc portion at a dosing interval, wherein each of the multiple dose is about 20 IU/kg to about 90 IU/kg, and wherein the dosing interval between two doses is every 72 hours or longer.
2. The method of claim 1, wherein the subject has hemophilia A.
3. The method of claim 1 or claim 2, wherein said chimeric polypeptide is administered for routine prophylaxis.
4. The method of claim 1 or claim 2, wherein said chimeric polypeptide is administered for on-demand treatment.
5. The method of claim 1 or claim 2, wherein said chimeric polypeptide is administered for tailored prophylaxis.
6. The method of any one of claims 1 to 5, wherein a trough level of plasma Factor VIII:C in the subject is maintained above 1 IU/dl.
7. The method of any one of claims 1 to 6, wherein each of the multiple doses is 20-30 IU/kg, 30-40 IU/kg, 40-50 IU/kg, 50-60 IU/kg, 60-70 IU/kg, 70-80 IU/kg or 80-90 IU/kg.
8. The method of any one of claims 1 to 7, wherein each of the multiple doses is 20 IU/kg, 25 IU/kg, 30 IU/kg, 35 IU/kg, 40 IU/kg, 45 IU/kg, 50 IU/kg, 55 IU/kg, 60 IU/kg, 65 IU/kg, 70 IU/kg, 75 IU/kg, 80 IU/kg, 85 IU/kg or 90 IU/kg.
9. The method of any one of claims 1 to 8, wherein the dosing interval is about once every 72 hours or longer.
10. The method of any one of claims 1 to 8, wherein the dosing interval is about once every 72 hours, about once every five days, about once every six days or about once every seven days.
11. The method of any one of claims 1 to 8, wherein the dosing interval is about once every five days or longer.

12. The method of any one of claims 1 to 9, wherein the dosing interval is about twice a week.
13. The method of any one of claims 1 to 8, wherein each of the multiple doses is about 65 IU/kg to about 90 IU/kg.
14. The method of claim 13, wherein the dosing interval is about every seven days or longer.
15. The method of any one of claims 1 to 6, wherein the method comprises administering to the subject twice weekly a first dose of about 20 IU/kg to about 65 IU/kg of the chimeric polypeptide and a second dose of about 20 IU/kg to about 65 IU/kg of the chimeric polypeptide.
16. The method of claim 15, wherein the dosing interval between the first dose and the second dose is about 48 hours, about 72 hours or about five days.
17. The method of any one of claims 1 to 16, wherein said administering resolves greater than 5-20%, greater than 5-15%, greater than 5-10%, greater than 10-20% or greater than 10-15% of bleeding episodes.
18. The method of claim 17, wherein said administering resolves greater than 80%, greater than 85%, greater than 90% or greater than 95% of bleeding episodes.
19. The method of any one of claims 1 to 18, wherein said chimeric polypeptide upon administration has a mean clearance (CL) (activity) in the subject of about 2.33 ± 1.08 mL/hour/kg or less.
20. The method of any one of claims 1 to 18, wherein said chimeric polypeptide upon administration has a mean residence time (MRT) (activity) in the subject that is about 1.5 fold longer than the mean MRT of a polypeptide consisting of said Factor VIII portion.
21. The method of any one of claims 1 to 18, wherein said chimeric polypeptide upon administration has a mean residence time (MRT) (activity) in the subject of about 14 to 41.3 hours.
22. The method of any one of claims 1 to 21, wherein said chimeric polypeptide upon administration has a $T_{1/2}$ (activity) in the subject that is about 1.5 fold longer than the mean $T_{1/2}$ (activity) of a polypeptide consisting of said Factor VIII portion.

23. The method of any one of claims 1 to 21, wherein said chimeric polypeptide upon administration has a $T_{1/2}$ (activity) of about 11 to 26.4 hours.
24. The method of any one of claims 1 to 23, wherein said chimeric polypeptide upon administration has a mean incremental recovery (K value) in the subject that is about 90% of the mean incremental recovery of a polypeptide consisting of said Factor VIII portion.
25. The method of any one of claims 1 to 23, wherein said chimeric polypeptide upon administration has a mean incremental recovery (K value) in the subject of about 1.38 to 2.88 IU/dL per IU/kg.
26. The method of any one of claims 1 to 25, wherein said chimeric polypeptide upon administration has a mean incremental recovery (K value) in the subject greater than 1.38 IU/dL per IU/kg.
27. The method of any one of claims 1 to 26, wherein said chimeric polypeptide upon administration has a mean V_{ss} (activity) in the subject of about 37.7 to 79.4 mL/kg.
28. The method of any one of claims 1 to 27, wherein said chimeric polypeptide upon administration has a mean AUC/dose (activity) in the subject of about 19.2*h/dL per IU/kg to 81.7IU*h/dL per IU/kg.
29. The method of any one of claims 1 to 28, wherein the Factor VIII portion is pegylated Factor VIII.
30. The method of any one of claims 1 to 29, wherein the chimeric polypeptide is a FVIIIIFc monomer dimer hybrid.
31. The method of any one of claims 1 to 30, wherein the Factor VIII portion comprises full-length Factor VIII, mature Factor VIII or Factor VIII with a full or partial deletion of the B domain.
32. The method of claim 31, wherein the FVIII portion comprises an amino acid sequence at least 90% or 95% identical to amino acids 1 to 1438 of SEQ ID NO: 2 or amino acids 1 to 2332 of SEQ ID NO: 6.
33. The method of claim 32, wherein the FVIII portion comprises amino acids 1 to 1438 of SEQ ID NO: 2 or amino acids 1 to 2332 of SEQ ID NO: 6.

34. The method of any one of claims 1 to 33, wherein the Fc portion is at least 90% or 95% identical to amino acids 1439 to 1665 of SEQ ID NO: 2 or amino acids 2333 to 2559 of SEQ ID NO: 6.

35. The method of claim 34, wherein the Fc portion comprises amino acids 1439 to 1665 of SEQ ID NO: 2 or amino acids 2333 to 2559 of SEQ ID NO: 6.

36. The method of any one of claims 1 to 35, wherein the chimeric polypeptide is administered as part of a pharmaceutical composition comprising at least one excipient.

Date: 31 March 2016

Figure 1

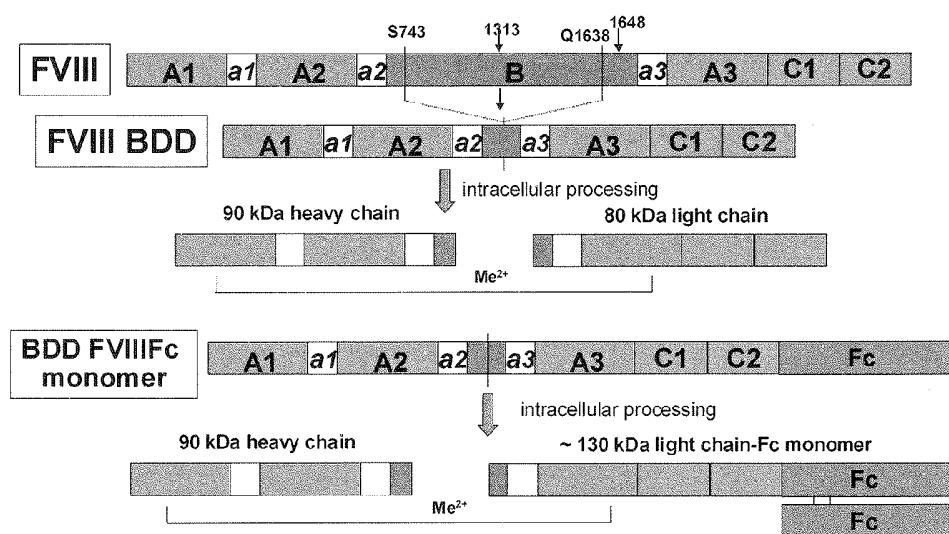


Figure 2

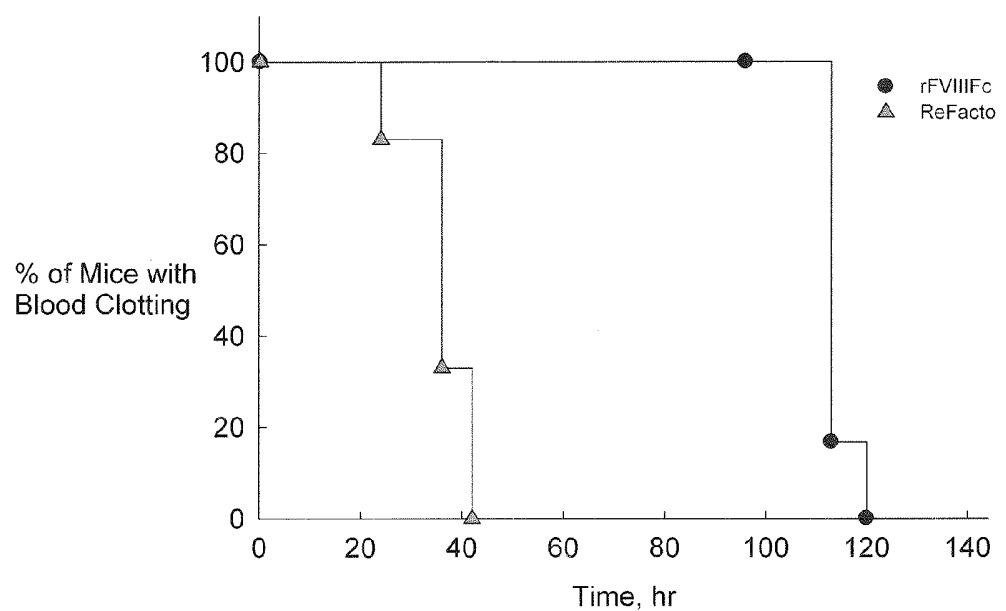
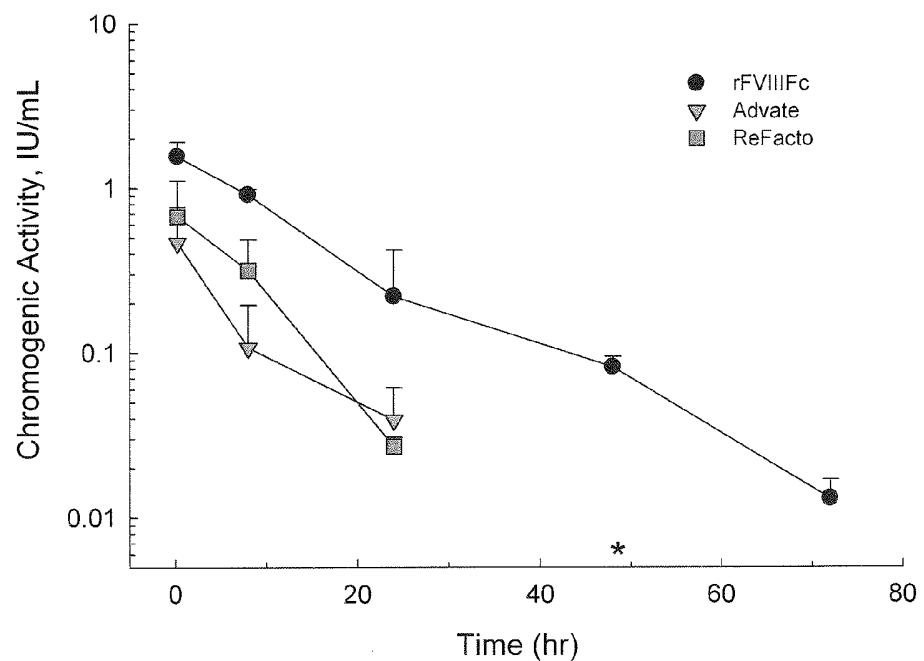
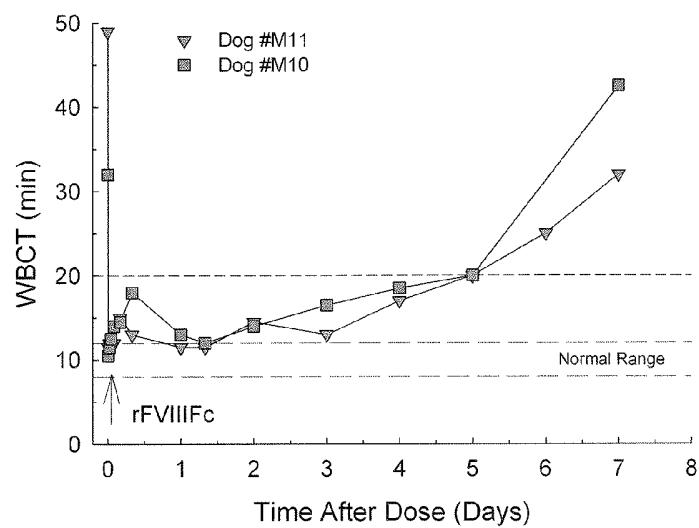




Figure 3

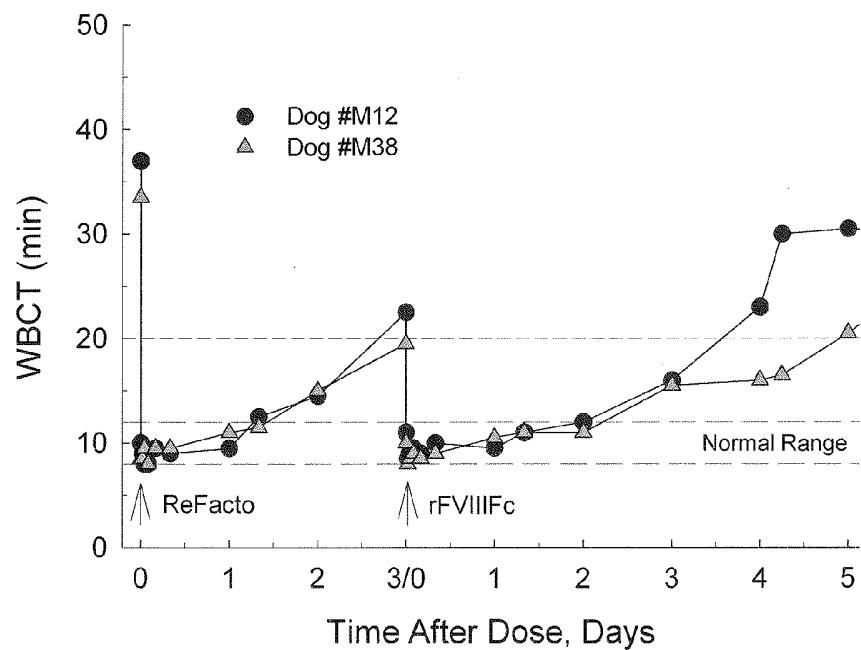

4/19

Figure 4A

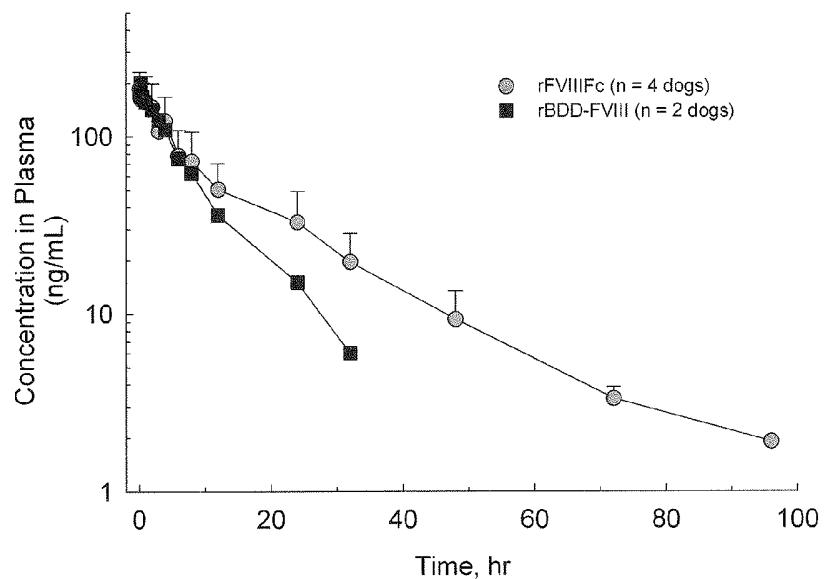

5/19

Figure 4B

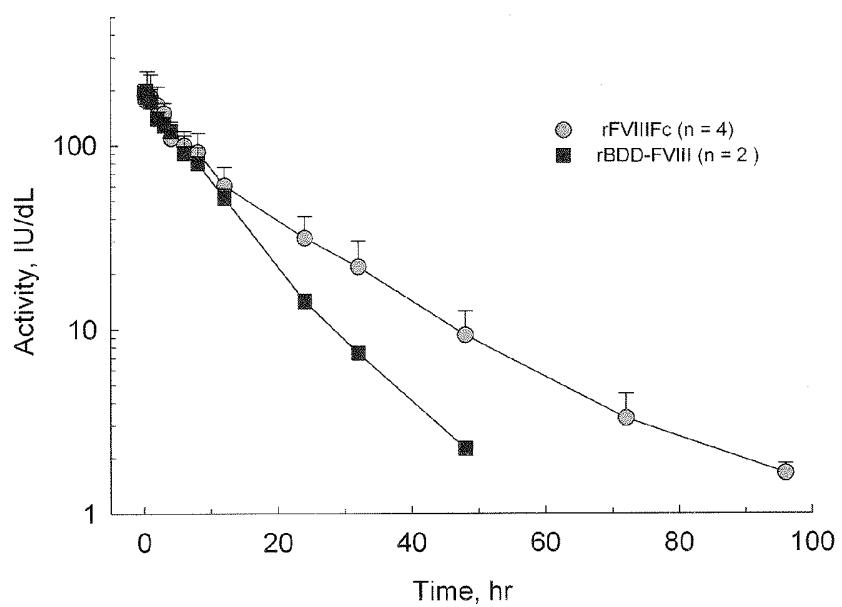

6/19

Figure 5

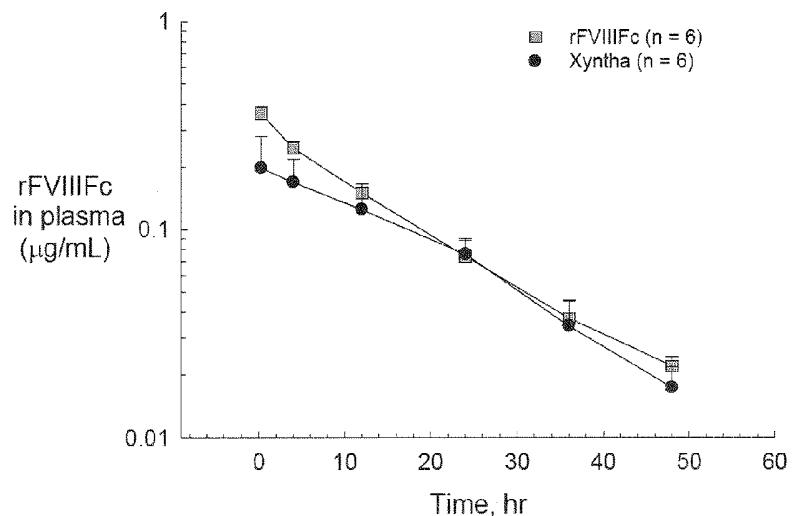
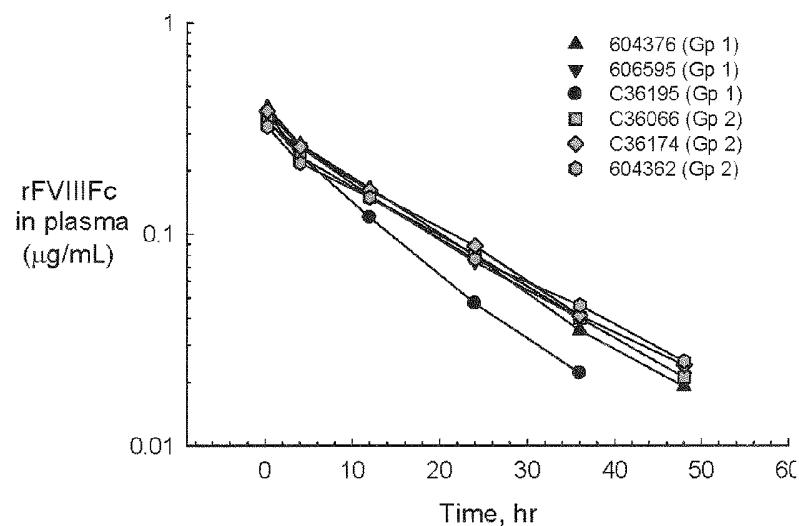

7/19

Figure 6

8/19


Figure 7

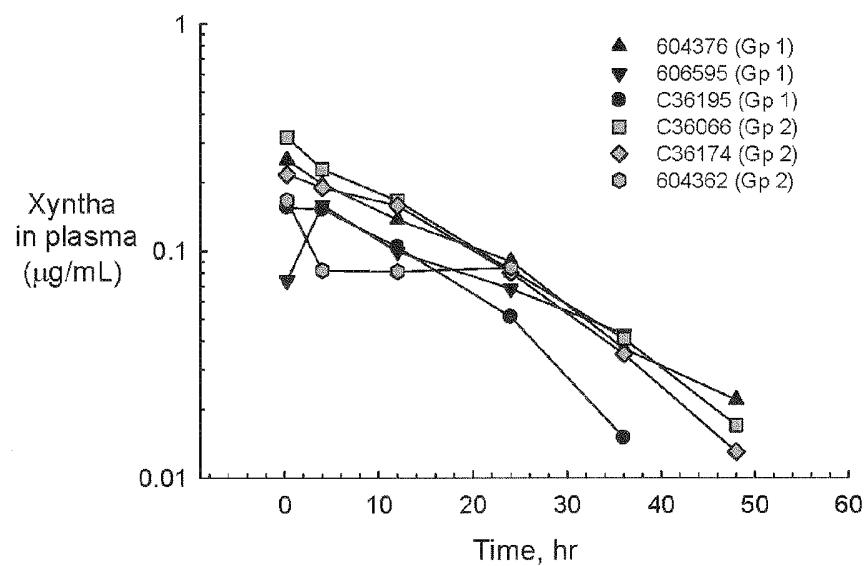
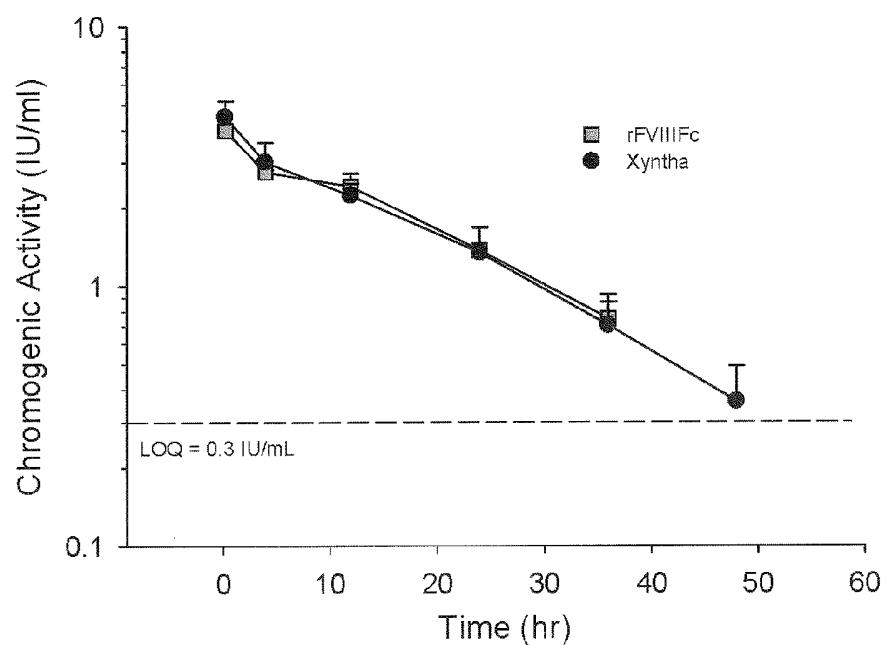

9/19

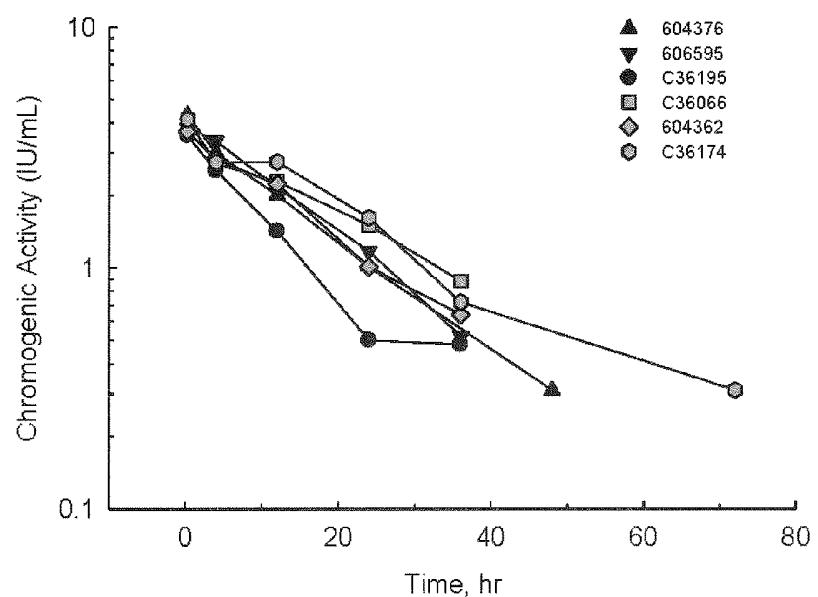
Figure 8

A.



B.

10/19


Figure 9

11/19

Figure 10

A.

B.

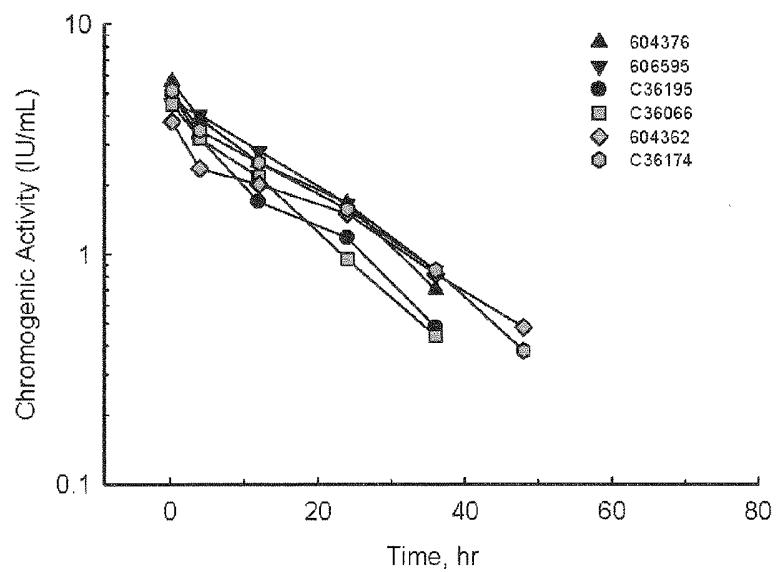


Figure 11

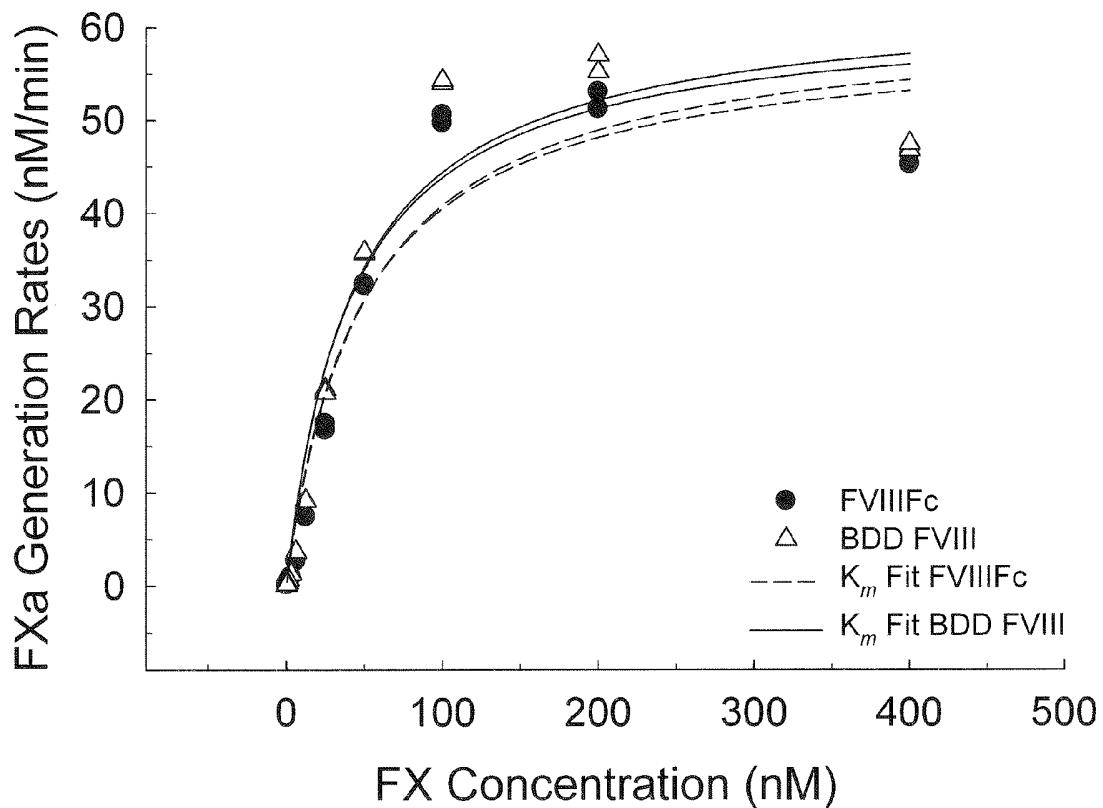
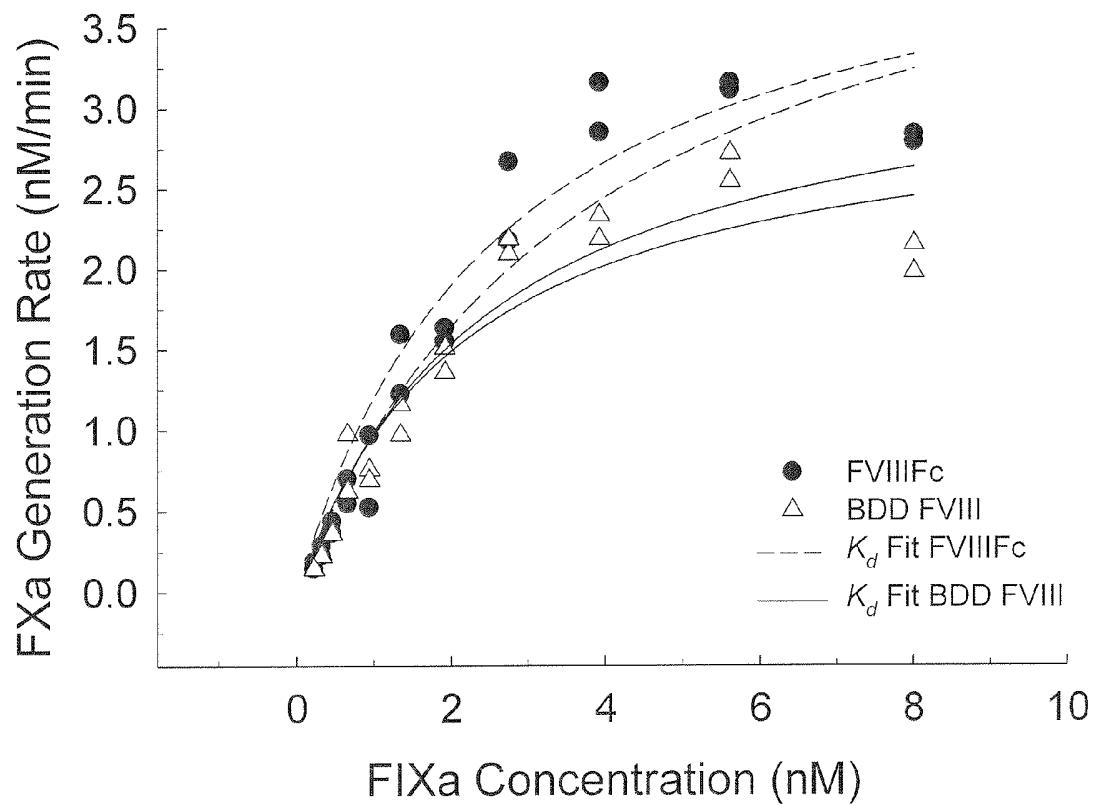
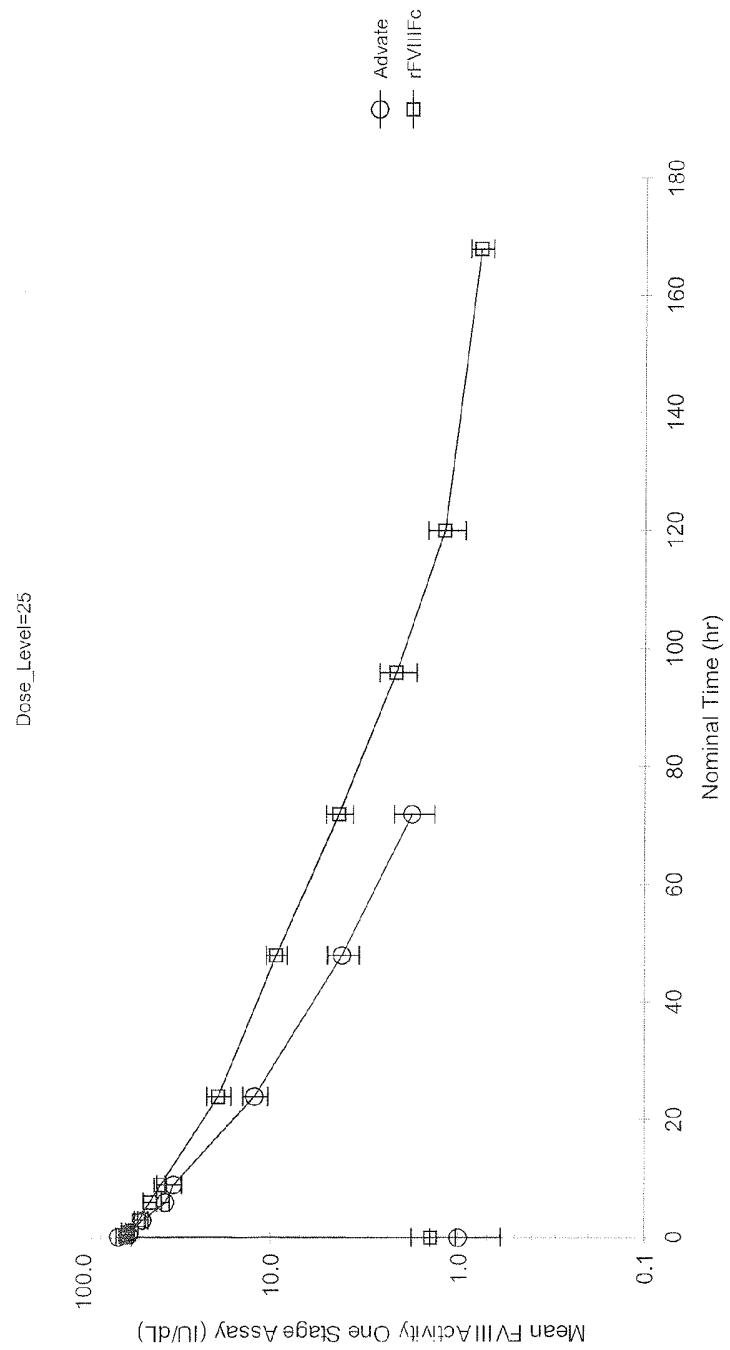




Figure 12

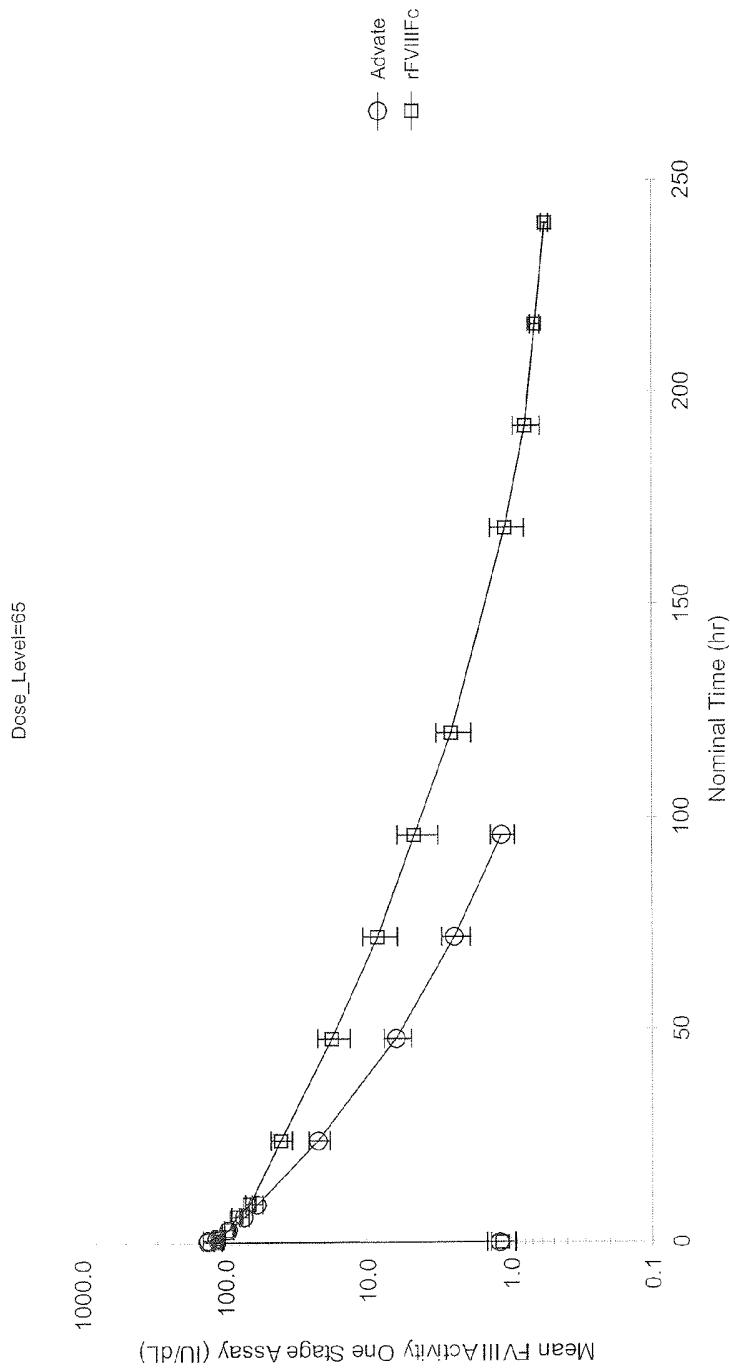

14/19

Figure 13A

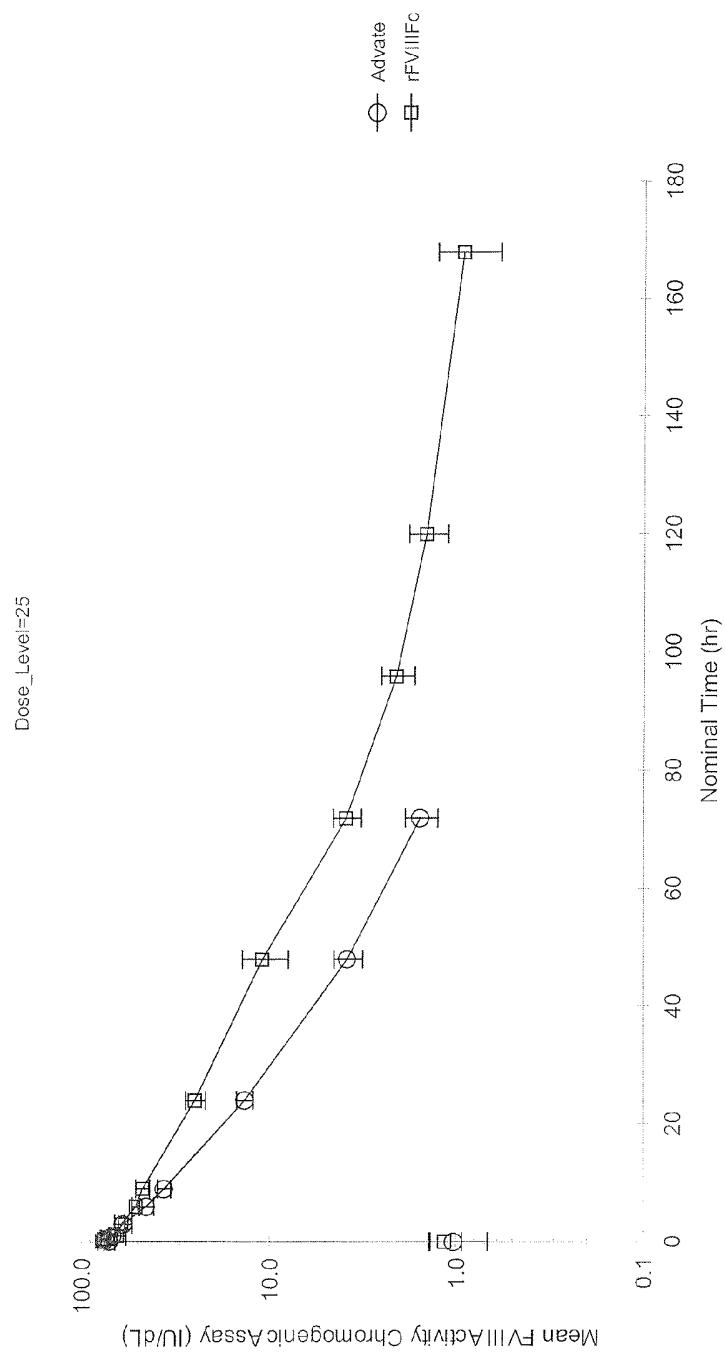

15/19

Figure 13B

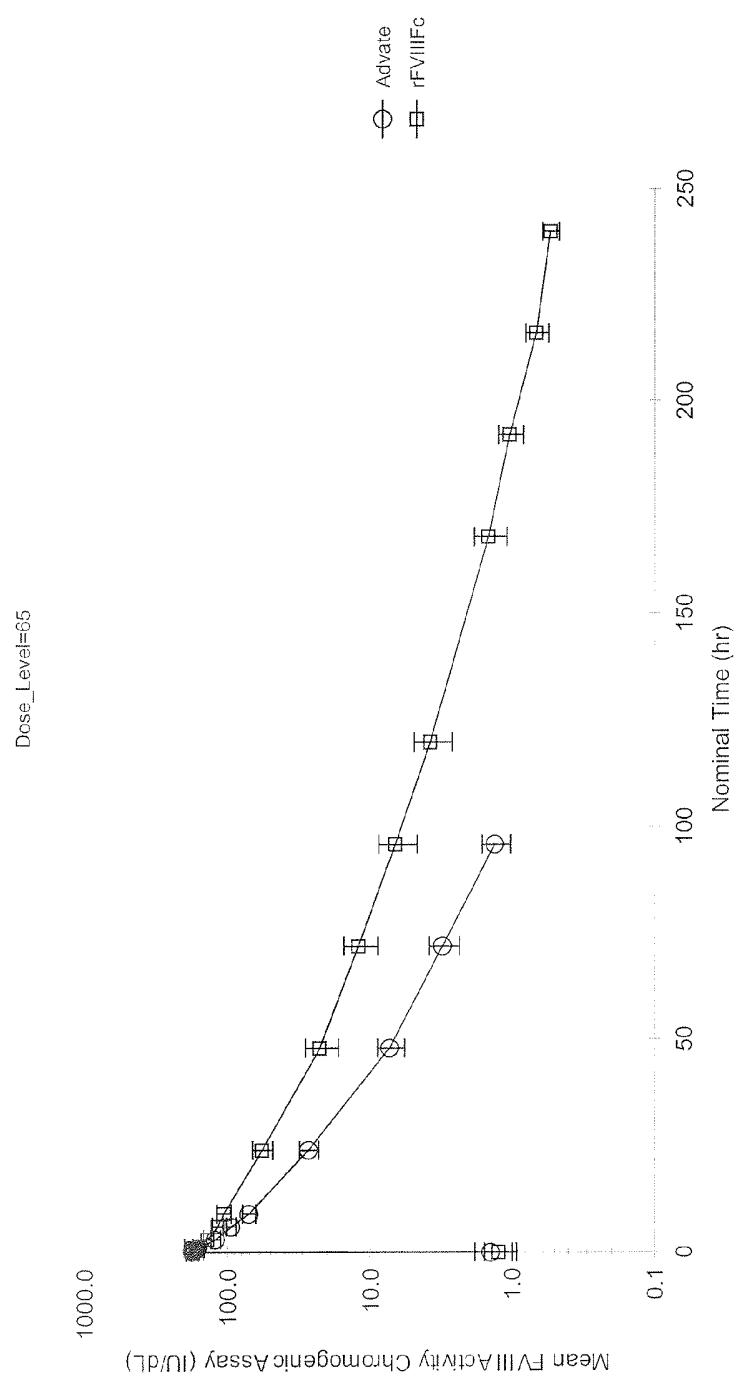

16/19

Figure 13C

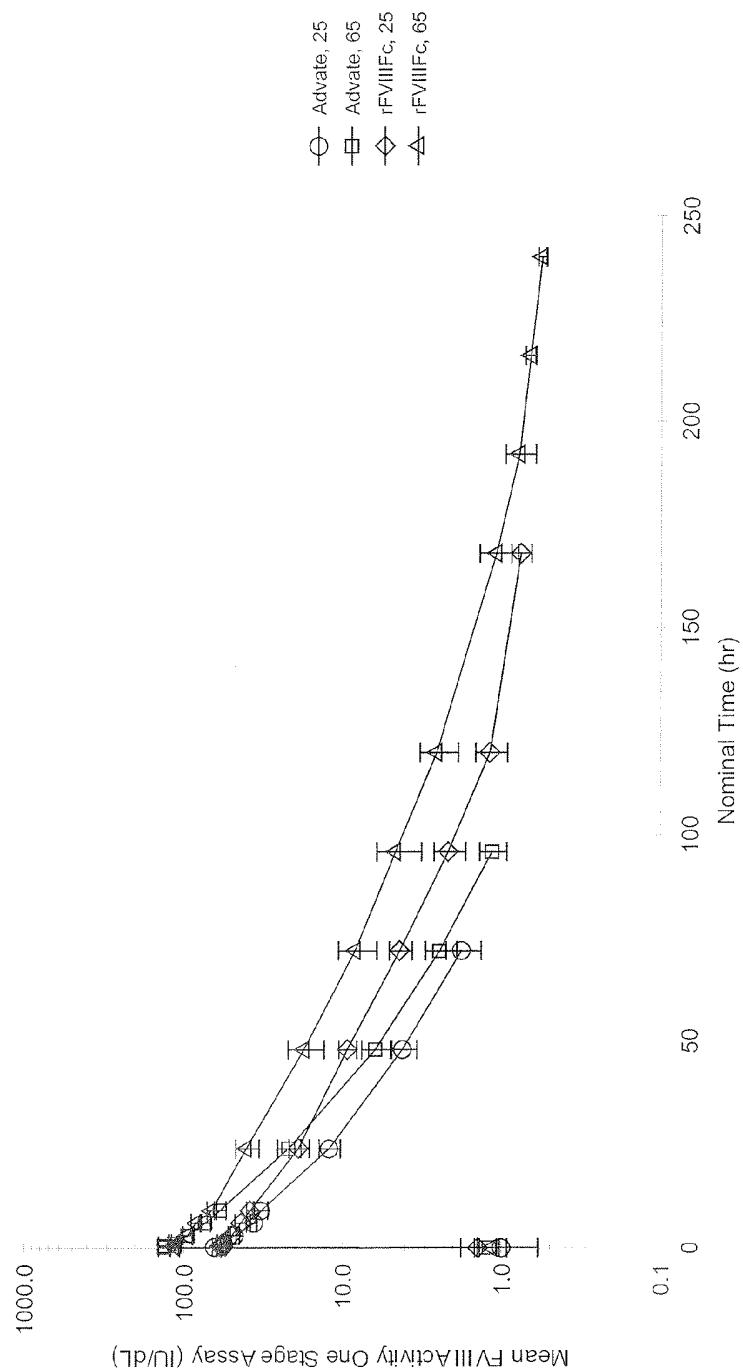

17/19

Figure 13D

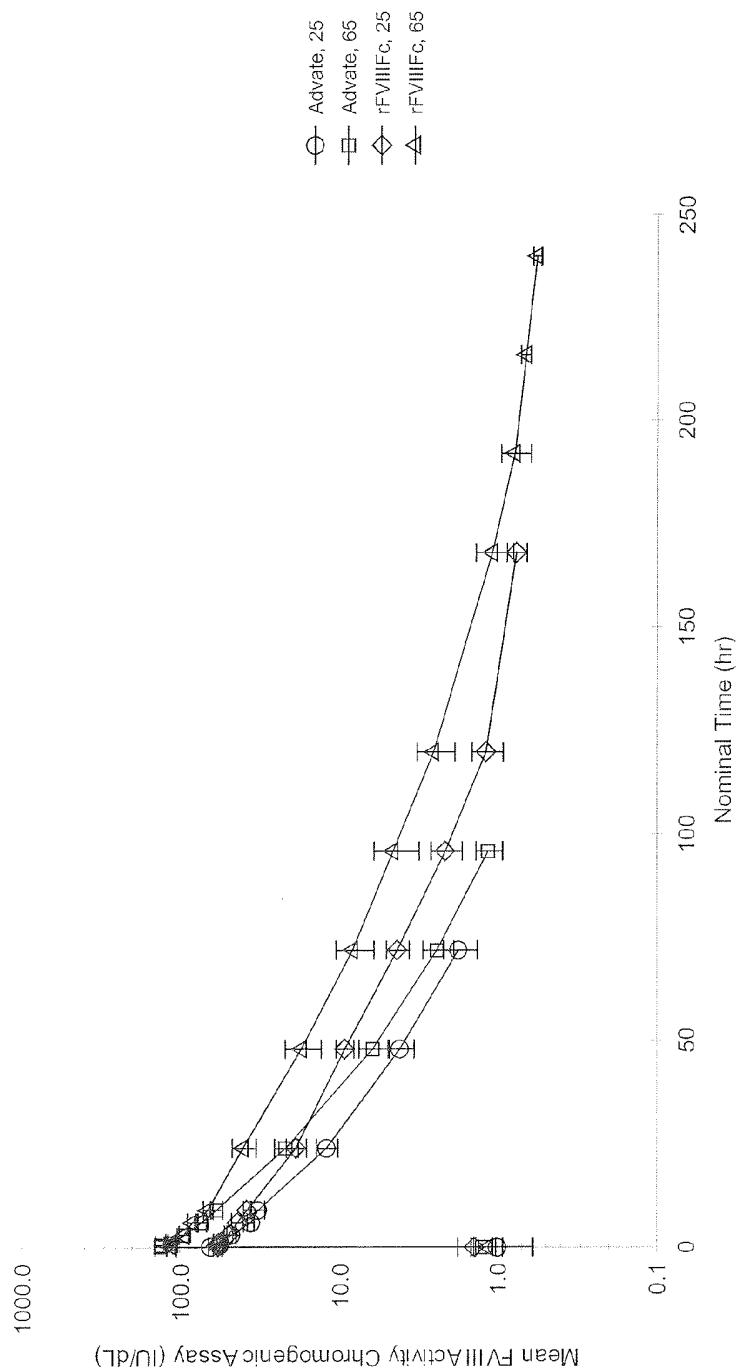

18/19

Figure 14A

19/19

Figure 14B

WO2011069164SequenceListi ng
SEQUENCE LISTING

<110> BI OGEN I DEC I NC.
DUMONT, Jennifer A.
LOW Susan
BITONI, Alain J.
PIERCE, Glenn
LUK, Alvin
JIANG, Haiyan
MCKINNEY, Byron
OTTMER, Matt
OMMER, Jurg
NUGENT, Karen
LI, Lian
PETERS, Robert

<120> FACTOR VIII - Fc CHIMERIC AND HYBRID POLYPEPTIDES, AND METHODS OF USE THEREOF

<130> 2159.274PC07

<140> PCT/US2010/059136
<141> 2010-12-06

<150> 61/419,676
<151> 2010-12-03

<150> 61/410,929
<151> 2010-11-07

<150> 61/373,113
<151> 2010-08-12

<150> 61/363,065
<151> 2010-07-09

<150> 61/301,592
<151> 2010-02-04

<150> 61/285,054
<151> 2009-12-09

<150> 61/267,070
<151> 2009-12-06

<160> 12

<170> Patent In version 3.5

<210> 1
<211> 5052
<212> DNA
<213> Artificial Sequence

<220>
<223> B-Domain Deleted FVIII Fc Chain

<220>
<221> misc_feature
<222> (1) . . (57)
<223> FVIII signal

<220>
<221> misc_feature
<222> (4372) . . (5052)
<223> Fc region

W2011069164SequenceList 1

<400> 1	
at gcaa at ag agct ct ccac ct gct t ct tt ct gt gcct tt tgcgat t ct g ct tt agt gcc	60
accaga agat act acct ggg tgca gt ggaa ct gt cat ggg act at at gca aagt gat ct c	120
ggt gagct gc ct gt ggacgc aagat tt cct cct agagt gc caaaat ct tt tccat t caac	180
acct cagt cg t gt acaaaaaa gact ct gt tt gt agaatt ca cgat cacct tt caacat c	240
gct aagccaa ggccaccct g gat gggt ct g ct aggt cct a ccat ccaggc tgagg t t at	300
gat acagt gg t catt acact t aagaacat g gct t cccat c ct gt cagt ct t cat gct gt t	360
ggt gt at cct act ggaa agc tt ct gaggg a gct gaat at g at gat cagac cagt caaagg	420
gagaaagaag at gat aaagt ct t ccct ggt ggaaggccat a cat at gt ct g gcaggt cct g	480
aaagagaat g gt ccaat ggc ct ct gacca ct gt gcct t a cct act cat a t ct t t ct cat	540
gt ggacct gg t aaaagact t gaat t caggc ct cat t ggag ccct act agt at gt agagaa	600
gggagt ct gg ccaaggaaaaa gacacagacc tt gcacaaat tt at act act t t t gct gt a	660
t t t gat gaag ggaaaagt t g gcact cagaa acaaagaact cct t gat gca ggat agggat	720
gct gcat ct g ct cggccct g gcct aaaat g cacacagt ca at ggt t at gt aaacaggt ct	780
ct gccaggt c t gatt gcat g ccacaggaaa t cagt ct at t ggcat gt gat t ggaat gggc	840
accact cct g aagt gcact c aat at t cct c gaaggt caca catt t ct t gt gaggaaccat	900
cggcaggcgt cct t gaaaat ct cgccaaat a act t t cct t a ct gct caaac act ct t gat g	960
gacct t ggac agt t t ct act gtt t gt cat at ct ct t ccc accaacat ga t ggcat ggaa	1020
gct t at gt ca aagt agacag ct gt ccagag gaaccccaac t acgaat gaa aaat at gaa	1080
gaagcggaaag act at gat ga t gat ct t act gat t ct gaaa t ggat gt ggt caggt t t gat	1140
gat gacaact ct cct t cct t t at ccaaatt cgct cagt t g ccaagaagca t cct aaaact	1200
t gggt acat t acat t gct gc t gaagaggag gact gggact at gct ccct t agt cct cgcc	1260
cccgat gaca gaagt t at aa aagt caat at tt gaacaat g gcct cagcg gat t ggt agg	1320
aagt acaaaa aagt ccgat t t at ggcat ac acagat gaaa cct t aagac t cgt gaagct	1380
at t cagcat g aat caggaat ct t gggacct tt act tt at g gggaaat t gg agacacact g	1440
tt gat t at t t aagaat ca agcaagcaga ccat at aaca t ct accct ca cggaaat cact	1500
gat gt ccgt c ct t t gt at t c aaggagat t a ccaaaggat g t aaaacat tt gaaggat tt	1560
ccaaat t ct gc caggagaaaat at t caaat at aaat ggacag t gact gt aga agat gggcca	1620
act aaat cag at cct cgg t g cct gacccgc t at t act ct a gt t t cgt t aa t at ggagaga	1680
gat ct agt t caggact cat t gggccct ct c ct cat ct gct acaaagaat c t gt agat caa	1740
agagggaaacc agat aat gt c agacaagagg aat gt cat cc t gt t t ct gt at t t gat gag	1800
aaccgaaagct ggt acct cac agagaat at a caacgct t c t ccccaat cc agct ggagt g	1860
cagct t gagg at ccagat t ccaagcct cc aacat cat gc acagcat caa t ggct at gt t	1920
t t t gat agt t t gca gat t t gt c agt t t gt t t g cat gaggt gg cat act ggt a cat t ct aagc	1980

W2011069164SequenceLi st i ng
 at t ggagcac agact gact t cct t ct gt c t t ct t ct ct g gat at acct t caa acaca aaa 2040
 at ggt ct at g aagacacact caccct at t c ccatt ct cag gagaaact gt ct t cat gt cg 2100
 at gaaaaacc caggt ct at g gat t ct gggg t gccacaact cagact t t cg gaacagaggc 2160
 at gaccgcct t act gaaggt t t ct agt t gt gacaagaaca ct ggt gat t a t t acgaggac 2220
 agt t at gaag at at t cagc at act t gct g agt aaaaaca at gccatt ga accaagaagc 2280
 t t ct ct caaa acccaccagt ct t gaaacgc cat caacggg aaat aact cg t act act ct t 2340
 cagt cagat c aagagaaaat t gact at gat gat accat at cagt t gaaat gaagaaggaa 2400
 gat t t gaca t t t at gat ga ggat gaaaat cagagcccc gcagct t ca aaagaaaaca 2460
 cgacact at t t t at t gct gc agt ggagagg ct ct gggat t at gggat gag t agct cccca 2520
 cat gt t ct aa gaaacagggc t cagagt ggc agt gt ccct c agt t caagaa agt t gt t t c 2580
 caggaat t t a ct gat ggct c ct t act cag ccct t at acc gt ggagaact aaat gaacat 2640
 t t gggact cc t ggggccat a t at aagagca gaagt t gaag at aat at cat ggt aact t t c 2700
 agaaaat cagg cct ct cgt cc ct at t cct t c t at t ct agcc tt at t t ct t a t gaggaagat 2760
 cagaggcaag gagcagaacc t agaaaaaaac t t t gt caagc ct aat gaaac caaaact t ac 2820
 t t t ggaaag t gcaacat ca t at ggcaccc act aaagat g agt t t gact g caaagcct gg 2880
 gct t at t t ct ct gat gt t ga cct ggaaaaaa gat gt gcact caggcct gat t ggaccct t 2940
 ct ggt ct gcc acact aacac act gaaccct gct cat ggg a gacaagt gac agt acaggaa 3000
 t t t gct ct gt t t t caccat ct t t gat gag accaaaagct ggt act t cac t gaaaat at g 3060
 gaaagaaaact gcagggct cc ct gcaat at c cagat ggaag at cccact t t t aaagagaat 3120
 t at cgct t cc at gcaat caa t ggct acat a at ggat acac t acct ggct t agt aat ggct 3180
 cagat caaa ggat t cgat g gt at ct gct c agcat gggca gcaat gaaaa cat ccat t ct 3240
 at t catt t ca gt ggacat gt gt t cact gt a cgaaaaaaag aggagt at aa aat ggcact g 3300
 t acaat ct ct at ccaggt gt t t t gagaca gt gggaaat gt t accat ccaa agct ggaat t 3360
 t ggcgggt gg aat gcct t at t ggcgagcat ct acat gct g ggt gggcac act t t t ct g 3420
 gt gt acagca at aagt gt ca gact cccct g ggaat ggct t ct ggacacat t agagat t t t 3480
 cagat t acag ct t caggaca at at ggacag t gggcccaa agct ggccag act t cat t at 3540
 t ccggat caa t caat gcct g gagcaccaag gagccct t t ct t ggat caa ggt ggt ct g 3600
 t t ggcacca a t gat t at t ca cggcat caag acccaggg t gccgt cagaa gt t ct ccagc 3660
 ct ct acat ct ct cagtt at cat cat gt at agt ct t gat g ggaagaagt g gcagact t at 3720
 cgagggaaat t ccact ggaac ct t aat ggt c t t ct t ggca at gt ggat t c at ct gggat a 3780
 aaacacaat a t t t t aaccc t ccaatt at t gct cgt aca t ccgt t t gca cccact cat 3840
 t at agcatt c gcagcact ct t cgcgt ggag t t gat gggct gt gat t aaa t agt t gcagc 3900
 at gccat t gg gaaat ggagag t aagcaat a t cagat gcac agat t act gc t t cat cct ac 3960
 t t t accaat a t gt t t gcccac ct ggt ct cct t caaaagct c gact t cacct ccaagggagg 4020

W2011069164SequenceList i ng
 agt aat gcct ggagacca ggt gaat aat ccaaaagagt ggct gcaagt ggact t ccag 4080
 aagacaat ga aagt cacagg agt aact act cagggagt aa aat ct ct gct t accagcat g 4140
 t at gt gaagg agt t cct cat ct ccagcagt caagat ggcc at cagt ggac t ct ct t t t t 4200
 cagaat ggca aagt aaaggt t t t caggg aat caagact cct t cacacc t gt ggt gaac 4260
 t ct ct agacc caccgt t act gact cgct ac ct t cgaatt t c acccccagag t t ggt gcac 4320
 cagat t gccc t gaggat gga ggt t ct gggc t gcgaggcac aggacct ct a cgacaaaact 4380
 cacacat gcc caccgt gccc agct ccagaa ct cct gggcg gaccgt cagt ct t cct ct t c 4440
 cccccaac ccaaggacac cct cat gat c t cccggaccc ct gaggt cac at gcgt ggt g 4500
 gt ggacgt ga gccacgaaga ccct gaggt c aagt t caact ggt acgt gga cggcgt ggag 4560
 gt gcat aat g ccaagacaaa gccgcgggag gagcagt aca acagcacgt a ccgt gt ggt c 4620
 agcgt cct ca ccgt cct gca ccaggact gg ct gaat ggca aggagt acaa gt gcaaggt c 4680
 t ccaacaaag ccct cccagc cccat cgag aaaaccat ct ccaaagccaa agggcagccc 4740
 cgagaaccac aggt gt acac cct gccccca t cccggat g agct gaccaa gaaccaggt c 4800
 agcct gacct gcct ggt caa aggct t ct at cccagcgaca t cgccgt gga gt gggagagc 4860
 aat gggcagc cggagaacaa ct acaagacc acgcct cccg t gt t ggact c cgacggct cc 4920
 t t ct t cct ct acagcaagct caccgt ggac aagagcaggt ggcagcaggg gaacgt ct t c 4980
 t cat gct ccg t gat gcat ga ggct ct gcac aaccact aca cgcagaagag cct ct ccct g 5040
 t ct ccgggt a aa 5052

<210> 2
 <211> 1684
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> B domain deleted FVIII-Fc chain

<220>
 <221> M SC_FEATURE
 <222> (1) .. (19)
 <223> Signal

<220>
 <221> M SC_FEATURE
 <222> (20) .. (753)
 <223> Heavy chain (HC)

<220>
 <221> M SC_FEATURE
 <222> (760) .. (773)
 <223> B domain

<220>
 <221> M SC_FEATURE
 <222> (1457) .. (1684)
 <223> Fc region

<400> 2

W02011069164SequenceList

Met G n Ile Gu Leu Ser Thr Cys Phe Phe Leu Cys Leu Leu Arg Phe
 1 5 10 15

Cys Phe Ser Al a Thr Arg Arg Tyr Tyr Leu G y Al a Val G u Leu Ser
 20 25 30

Trp Asp Tyr Met G n Ser Asp Leu G y G u Leu Pro Val Asp Al a Arg
 35 40 45

Phe Pro Pro Arg Val Pro Lys Ser Phe Pro Phe Asn Thr Ser Val Val
 50 55 60

Tyr Lys Lys Thr Leu Phe Val G u Phe Thr Asp His Leu Phe Asn Ile
 65 70 75 80

Al a Lys Pro Arg Pro Pro Trp Met G y Leu Leu G y Pro Thr Ile G n
 85 90 95

Al a G u Val Tyr Asp Thr Val Val Ile Thr Leu Lys Asn Met Al a Ser
 100 105 110

His Pro Val Ser Leu His Al a Val G y Val Ser Tyr Trp Lys Al a Ser
 115 120 125

G u G y Al a G u Tyr Asp Asp G n Thr Ser G n Arg G u Lys G u Asp
 130 135 140

Asp Lys Val Phe Pro G y G y Ser His Thr Tyr Val Trp G n Val Leu
 145 150 155 160

Lys G u Asn G y Pro Met Al a Ser Asp Pro Leu Cys Leu Thr Tyr Ser
 165 170 175

Tyr Leu Ser His Val Asp Leu Val Lys Asp Leu Asn Ser G y Leu Ile
 180 185 190

G y Al a Leu Leu Val Cys Arg G u G y Ser Leu Al a Lys G u Lys Thr
 195 200 205

G n Thr Leu His Lys Phe Ile Leu Leu Phe Al a Val Phe Asp G u G y
 210 215 220

Lys Ser Trp His Ser G u Thr Lys Asn Ser Leu Met G n Asp Arg Asp
 225 230 235 240

Al a Al a Ser Al a Arg Al a Trp Pro Lys Met His Thr Val Asn G y Tyr
 245 250 255

Val Asn Arg Ser Leu Pro G y Leu Ile G y Cys His Arg Lys Ser Val
 260 265 270

WO2011069164SequenceListing

Tyr Trp His Val Ile Gly Met Gly Thr Thr Pro Glu Val His Ser Ile
 275 280 285

Phe Leu Glu Gly His Thr Phe Leu Val Arg Asn His Arg Glu Ala Ser
 290 295 300

Leu Gln Ile Ser Pro Ile Thr Phe Leu Thr Ala Glu Thr Leu Leu Met
 305 310 315 320

Asp Leu Gly Glu Phe Leu Leu Phe Cys His Ile Ser Ser His Glu His
 325 330 335

Asp Gly Met Glu Ala Tyr Val Lys Val Asp Ser Cys Pro Glu Glu Pro
 340 345 350

Gln Leu Arg Met Lys Asn Asn Glu Glu Ala Glu Asp Tyr Asp Asp Asp
 355 360 365

Leu Thr Asp Ser Glu Met Asp Val Val Arg Phe Asp Asp Asp Asn Ser
 370 375 380

Pro Ser Phe Ile Gln Ile Arg Ser Val Ala Lys Lys His Pro Lys Thr
 385 390 395 400

Trp Val His Tyr Ile Ala Ala Glu Glu Asp Trp Asp Tyr Ala Pro
 405 410 415

Leu Val Leu Ala Pro Asp Asp Arg Ser Tyr Lys Ser Gln Tyr Leu Asn
 420 425 430

Asn Gly Pro Gln Arg Ile Gly Arg Lys Tyr Lys Lys Val Arg Phe Met
 435 440 445

Ala Tyr Thr Asp Glu Thr Phe Lys Thr Arg Glu Ala Ile Gln His Glu
 450 455 460

Ser Gly Ile Leu Gly Pro Leu Leu Tyr Gly Glu Val Gly Asp Thr Leu
 465 470 475 480

Leu Ile Ile Phe Lys Asn Gln Ala Ser Arg Pro Tyr Asn Ile Tyr Pro
 485 490 495

His Gly Ile Thr Asp Val Arg Pro Leu Tyr Ser Arg Arg Leu Pro Lys
 500 505 510

Gly Val Lys His Leu Lys Asp Phe Pro Ile Leu Pro Gly Glu Ile Phe
 515 520 525

Lys Tyr Lys Trp Thr Val Thr Val Glu Asp Gly Pro Thr Lys Ser Asp
 530 535 540

W2011069164SequenceList

Pro Arg Cys Leu Thr Arg Tyr Tyr Ser Ser Phe Val Asn Met Glu Arg
 545 550 555 560

Asp Leu Ala Ser Gly Leu Ile Gly Pro Leu Leu Ile Cys Tyr Lys Glu
 565 570 575

Ser Val Asp Gln Arg Gly Asn Gln Ile Met Ser Asp Lys Arg Asn Val
 580 585 590

Ile Leu Phe Ser Val Phe Asp Glu Asn Arg Ser Trp Tyr Leu Thr Glu
 595 600 605

Asn Ile Gln Arg Phe Leu Pro Asn Pro Ala Gly Val Gln Leu Glu Asp
 610 615 620

Pro Glu Phe Gln Ala Ser Asn Ile Met His Ser Ile Asn Gly Tyr Val
 625 630 635 640

Phe Asp Ser Leu Gln Leu Ser Val Cys Leu His Glu Val Ala Tyr Trp
 645 650 655

Tyr Ile Leu Ser Ile Gly Ala Gln Thr Asp Phe Leu Ser Val Phe Phe
 660 665 670

Ser Gly Tyr Thr Phe Lys His Lys Met Val Tyr Glu Asp Thr Leu Thr
 675 680 685

Leu Phe Pro Phe Ser Gly Glu Thr Val Phe Met Ser Met Glu Asn Pro
 690 695 700

Gly Leu Trp Ile Leu Gly Cys His Asn Ser Asp Phe Arg Asn Arg Gly
 705 710 715 720

Met Thr Ala Leu Leu Lys Val Ser Ser Cys Asp Lys Asn Thr Gly Asp
 725 730 735

Tyr Tyr Glu Asp Ser Tyr Glu Asp Ile Ser Ala Tyr Leu Leu Ser Lys
 740 745 750

Asn Asn Ala Ile Glu Pro Arg Ser Phe Ser Gln Asn Pro Pro Val Leu
 755 760 765

Lys Arg His Gln Arg Glu Ile Thr Arg Thr Thr Leu Gln Ser Asp Gln
 770 775 780

Glu Glu Ile Asp Tyr Asp Asp Thr Ile Ser Val Glu Met Lys Lys Glu
 785 790 795 800

Asp Phe Asp Ile Tyr Asp Glu Asp Glu Asn Gln Ser Pro Arg Ser Phe
 805 810 815

W02011069164SequenceList

G n Lys Lys Thr Arg His Tyr Phe Ile Ala Ala Val Glu Arg Leu Trp
 820 825 830

Asp Tyr Gly Met Ser Ser Pro His Val Leu Arg Asn Arg Ala Glu
 835 840 845

Ser Gly Ser Val Pro Glu Phe Lys Lys Val Val Phe Glu Glu Phe Thr
 850 855 860

Asp Gly Ser Phe Thr Glu Pro Leu Tyr Arg Gly Glu Leu Asn Glu His
 865 870 875 880

Leu Gly Leu Leu Gly Pro Tyr Ile Arg Ala Glu Val Glu Asp Asn Ile
 885 890 895

Met Val Thr Phe Arg Asn Glu Ala Ser Arg Pro Tyr Ser Phe Tyr Ser
 900 905 910

Ser Leu Ile Ser Tyr Glu Glu Asp Glu Arg Glu Gly Ala Glu Pro Arg
 915 920 925

Lys Asn Phe Val Lys Pro Asn Glu Thr Lys Thr Tyr Phe Trp Lys Val
 930 935 940

Gl n His His Met Ala Pro Thr Lys Asp Glu Phe Asp Cys Lys Ala Trp
 945 950 955 960

Ala Tyr Phe Ser Asp Val Asp Leu Glu Lys Asp Val His Ser Gly Leu
 965 970 975

Ile Gly Pro Leu Leu Val Cys His Thr Asn Thr Leu Asn Pro Ala His
 980 985 990

Gly Arg Glu Val Thr Val Glu Phe Ala Leu Phe Phe Thr Ile Phe
 995 1000 1005

Asp Glu Thr Lys Ser Trp Tyr Phe Thr Glu Asn Met Glu Arg Asn
 1010 1015 1020

Cys Arg Ala Pro Cys Asn Ile Glu Met Glu Asp Pro Thr Phe Lys
 1025 1030 1035

Gl u Asn Tyr Arg Phe His Ala Ile Asn Gly Tyr Ile Met Asp Thr
 1040 1045 1050

Leu Pro Gly Leu Val Met Ala Glu Asp Glu Arg Ile Arg Trp Tyr
 1055 1060 1065

Leu Leu Ser Met Gly Ser Asn Glu Asn Ile His Ser Ile His Phe
 1070 1075 1080

W02011069164SequenceList

Ser Gly His Val Phe Thr Val Arg Lys Lys Glu Glu Tyr Lys Met
 1085 1090 1095

Ala Leu Tyr Asn Leu Tyr Pro Gly Val Phe Glu Thr Val Glu Met
 1100 1105 1110

Leu Pro Ser Lys Ala Gly Ile Trp Arg Val Glu Cys Leu Ile Gly
 1115 1120 1125

Glu His Leu His Ala Gly Met Ser Thr Leu Phe Leu Val Tyr Ser
 1130 1135 1140

Asn Lys Cys Gln Thr Pro Leu Gly Met Ala Ser Gly His Ile Arg
 1145 1150 1155

Asp Phe Gln Ile Thr Ala Ser Gly Gln Tyr Gly Gln Trp Ala Pro
 1160 1165 1170

Lys Leu Ala Arg Leu His Tyr Ser Gly Ser Ile Asn Ala Trp Ser
 1175 1180 1185

Thr Lys Glu Pro Phe Ser Trp Ile Lys Val Asp Leu Leu Ala Pro
 1190 1195 1200

Met Ile Ile His Gly Ile Lys Thr Gln Gly Ala Arg Gln Lys Phe
 1205 1210 1215

Ser Ser Leu Tyr Ile Ser Gln Phe Ile Ile Met Tyr Ser Leu Asp
 1220 1225 1230

Gly Lys Lys Trp Gln Thr Tyr Arg Gly Asn Ser Thr Gly Thr Leu
 1235 1240 1245

Met Val Phe Phe Gly Asn Val Asp Ser Ser Gly Ile Lys His Asn
 1250 1255 1260

Ile Phe Asn Pro Pro Ile Ile Ala Arg Tyr Ile Arg Leu His Pro
 1265 1270 1275

Thr His Tyr Ser Ile Arg Ser Thr Leu Arg Met Glu Leu Met Gly
 1280 1285 1290

Cys Asp Leu Asn Ser Cys Ser Met Pro Leu Gly Met Glu Ser Lys
 1295 1300 1305

Ala Ile Ser Asp Ala Gln Ile Thr Ala Ser Ser Tyr Phe Thr Asn
 1310 1315 1320

Met Phe Ala Thr Trp Ser Pro Ser Lys Ala Arg Leu His Leu Gln
 1325 1330 1335

W02011069164SequenceList

Gly Arg Ser Asn Ala Trp Arg Pro Glu Val Asn Asn Pro Lys Glu
 1340 1345 1350

Trp Leu Glu Val Asp Phe Glu Lys Thr Met Lys Val Thr Gly Val
 1355 1360 1365

Thr Thr Glu Gly Val Lys Ser Leu Leu Thr Ser Met Tyr Val Lys
 1370 1375 1380

Glu Phe Leu Ile Ser Ser Glu Asp Gly His Glu Trp Thr Leu
 1385 1390 1395

Phe Phe Glu Asn Gly Lys Val Lys Val Phe Glu Gly Asn Glu Asp
 1400 1405 1410

Ser Phe Thr Pro Val Val Asn Ser Leu Asp Pro Pro Leu Leu Thr
 1415 1420 1425

Arg Tyr Leu Arg Ile His Pro Glu Ser Trp Val His Glu Ile Ala
 1430 1435 1440

Leu Arg Met Glu Val Leu Glu Cys Glu Ala Glu Asp Leu Tyr Asp
 1445 1450 1455

Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Glu
 1460 1465 1470

Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu
 1475 1480 1485

Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val
 1490 1495 1500

Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Glu
 1505 1510 1515

Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Glu Tyr
 1520 1525 1530

Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Glu
 1535 1540 1545

Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys
 1550 1555 1560

Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Glu
 1565 1570 1575

Glu Pro Arg Glu Pro Glu Val Tyr Thr Leu Pro Pro Ser Arg Asp
 1580 1585 1590

W02011069164SequenceLi st i ng
Gl u Leu Thr Lys Asn G n Val Ser Leu Thr Cys Leu Val Lys G y
1595 1600 1605

Phe Tyr Pro Ser Asp Ile Al a Val Gl u Trp Gl u Ser Asn G y G n
1610 1615 1620

Pro Gl u Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp
1625 1630 1635

G y Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg
1640 1645 1650

Tr p G n G n G y Asn Val Phe Ser Cys Ser Val Met His Gl u Al a
1655 1660 1665

Leu His Asn His Tyr Thr G n Lys Ser Leu Ser Leu Ser Pro G y
1670 1675 1680

Lys

<210> 3
<211> 741
<212> DNA
<213> Artificial Sequence

<220>
<223> Fc region

<220>
<221> misc_signal
<222> (1)..(60)
<223> Mbuse Ig kappa signal

<400> 3	
at ggagacag acacact cct gct at gggt a ct gct gct ct gggt t ccagg t t ccact ggt	60
gacaaaact c acacat gccc accgt gccc gcacct gaac t cct gggagg accgt cagt c	120
t t cct ct t cc ccccaaacc caaggacacc ct cat gat ct cccggacccc t gaggt caca	180
t gcgt ggt gg t ggacgt gag ccacgaagac cct gaggt ca agt t caact g gt acgt ggac	240
ggcgt ggagg t gcat aat gc caagacaaag ccgccccagg agcagt acaa cagcacgt ac	300
cgt gt ggt ca gcgt cct cac cgt cct gcac caggact ggc t gaat ggcaa ggagt acaag	360
t gcaagg ct ccaacaaagc cct cccagcc cccat cgaga aaaccat ct c caaagccaaa	420
ggcagcccc gagaaccaca ggt gt acacc ct gccccat cccgcgt ga gct gaccaag	480
aaccagg ct a gcct gacct g cct ggt caaa ggct t ct at c ccagcgacat cgccgt ggag	540
t gggagagca at gggcagcc ggagaacaac t acaagacca cgcc t cccgt gt t ggact cc	600
gacggct cct t ct t cct ct a cagcaagct c accgt ggaca agagcagg t g gacccgg	660
aacgt ct t ct cat gct ccgt gat gcat gag gct ct gcaca accact acac gcagaagagc	720
ct ct ccct gt ct ccgggt aa a	741

<210> 4
<211> 247
<212> PRT
<213> Artificial Sequence

<220>
<223> Fc chain

<220>
<221> M SC_FEATURE
<222> (1)..(20)
<223> heterogeneous signal from Mouse Ig kappa chain

<400> 4

Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Leu Trp Val Pro
1 5 10 15

Gly Ser Thr Gly Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro
20 25 30

Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys
35 40 45

Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val
50 55 60

Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp
65 70 75 80

Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Glu Tyr
85 90 95

Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Glu Asp
100 105 110

Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu
115 120 125

Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Glu Pro Arg
130 135 140

Glu Pro Glu Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys
145 150 155 160

Asn Glu Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp
165 170 175

Ile Ala Val Glu Trp Glu Ser Asn Gly Glu Pro Glu Asn Asn Tyr Lys
180 185 190

Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser
195 200 205

W2011069164SequenceList i ng

Lys Leu Thr Val Asp Lys Ser 215 Arg Trp Glu Glu Gly Asn Val Phe Ser
210 220

Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Glu Lys Ser
225 230 235 240

Leu Ser Leu Ser Pro Gly Lys
245

<210> 5
<211> 7734
<212> DNA
<213> Artificial Sequence

<220>
<223> Full Length FVIII Fc

<220>
<221> miscsignal
<222> (1)..(57)
<223> FVIII signal

<220>
<221> miscfeature
<222> (7054)..(7734)
<223> Fc region

<400> 5		
at gcaa at ag agct ct ccac ct gct t ct tt ct gt gcct tt tgcgat t ct g ct tt agt gcc	60	
accaga aagat act acct ggg tgcagt ggaa ct gt cat ggg act at at gca aagt gat ct c	120	
ggt gagct gc ct gt ggacgc aagat tt cct cct agagt gc caaaat ct tt tccatt caac	180	
acct cagt cg t gt acaaaaaa gact ct gt tt gt agaatt ca cggat cacct tt caacat c	240	
gct aagccaa ggccacct g gat ggg ct g ct aggt cct a ccat ccaggc t gaggt tt at	300	
gat acagt gg t catt acact t aagaacat g gct t cccat c ct gt cagt ct t cat gct gt t	360	
ggt gt at cct act ggaa agc tt ct gaggg a gct gaat at g at gat cagac cagt caaagg	420	
gagaaagaag at gat aaagt ct tccct ggt ggaaggccat a cat at gt ct g gcaggt cct g	480	
aaagagaat g gt ccaat ggc ct ct gaccca ct gt gcct t a cct act cat a t ct tt ct cat	540	
gt ggacct gg taaaagact t gaat t caggc ct cat t ggag ccct act agt at gt agagaa	600	
gggagt ct gg ccaaggaaaa gacacagacc tt gcacaaat tt at act act tt t gct gt a	660	
t tt gat gaag ggaaaagt t g gcact cagaa acaaagaact cct t gat gca ggat agggat	720	
gct gcat ct g ct cggccct g gcct aaaat g cacacagt ca at ggt t at gt aaacaggt ct	780	
ct gccaggt c t gat t ggt g ccacaggaaa t cagt ct at t ggcat gt gat t ggaat gggc	840	
accact cct g aagt gcact c aat at t cct c gaaggt caca cat t t ct t gt gaggaaccat	900	
cgccaggcgt cct t ggaaat ct cgccaaat a act t t cct t a ct gct caaac act ct t gat g	960	
gacct t ggac agt t t ct act gt t t gt cat at ct ct t ccc accaacat ga t ggcat ggaa	1020	

W2011069164SequenceLi st i ng	
gct t at gt ca aagt agacag ct gt ccagag gaaccccaac t acgaat gaa aaat aat gaa	1080
gaagcggaa gact at gat ga t gat ct t act gat t ct gaaa t ggat gt ggt caggt tt gat	1140
gat gacaact ct cct t cct t t at ccaaatt t cgct cagt t g ccaagaagca t cct aaaact	1200
t gggat acat t acat t gct gc t gaagaggag gact gggact at gct ccct t agt cct cgcc	1260
cccgat gaca gaagt t at aa aagt caat at tt gaacaat g gcct cagcg gatt ggt agg	1320
aagt acaaaa aagt ccgat t t at ggcat ac acagat gaaa cct t aagac t cgt gaagct	1380
at t cagcat g aat caggaat ct t gggacct tt act tt at g gggaaat t gg agacacact g	1440
tt gat t at at tt aagaat ca agcaagcaga ccat at aaca t ct accct ca cggaaat cact	1500
gat gt ccgt c ct t t gt at t c aaggagat t a ccaaaggat g t aaaacat t t gaaggat t t	1560
ccaaat t ct gc caggagaaat at t caaat at aaat ggacag t gact gt aga agat gggcca	1620
act aaat cag at cct cgg t g cct gacccgc t at t act ct a gt t t cgt t aa t at ggagaga	1680
gat ct agct t caggact cat t gcccct ct c ct cat ct gct acaaagaat c t gt agat caa	1740
agaggaaacc agat aat gt c agacaagagg aat gt cat cc t gt t t ct gt at t t gat gag	1800
aaccgaagct ggt acct cac agagaat at a caacgct t t c t ccccaat cc agct ggagt g	1860
cagct t gagg at ccagat t ccaaggct cc aacat cat gc acagcat caa t ggct at gt t	1920
tt t gat agt t t gcagt t gt c agt t t gt t g cat gaggt gg cat act ggt a cat t ct aagc	1980
at t ggagcac agact gact t cct t t ct gtc tt ct t ct ct g gat at acct t caaacacaaa	2040
at ggt ct at g aagacacact caccct at t c ccat t ct cag gagaaact gt ct t cat gt cg	2100
at ggaaaacc caggt ct at g gat t ct gggg t gccacaact cagact t t cg gaacagaggc	2160
at gaccgcct t act gaaggt tt ct agt t gt gacaagaaca ct ggt gat t a tt acgaggac	2220
agt t at gaag at at t t cagc at act t gct g agt aaaaaca at gccat t ga accaagaagc	2280
tt ct cccaga at t caagaca ccct agcact aggcaaaagc aat t t aat gc caccacaat t	2340
ccagaaaat g acat agagaa gact gaccct t ggt t t gcac acagaacacc t at gcct aaa	2400
at acaaaaat g t ct cct ct ag t gat t t gt t g at gct ct t gc gacagagt cc t act ccacat	2460
gggct at cct t at ct gat ct ccaagaagcc aaat at gaga ct t t t ct ga t gat ccat ca	2520
cct ggagcaa t agacagt aa t aacagcct g t ct gaaat ga cacact t cag gccacagct c	2580
cat cacagt g gggacat ggt at t accct gagt caggcc t ccaatt aag at t aat gag	2640
aaact gggga caact gcagc aacagagt t g aagaaact t g at t t caaagt tt ct agt aca	2700
t caaat aat c t gat t t caac aat t ccat ca gacaatt t gg cagcaggt ac t gat aat aca	2760
agt t cct t ag gaccccaag t at gccagt t cat t at gat a gt caat t aga t accact ct a	2820
tt t ggcaaaa agt cat ct cc cct t act gag t ct ggt ggac ct ct gagct t gagt gaagaa	2880
aat aat gat t caaagt t gt t agaat caggt tt aat gaat a gccaagaaag t t cat gggga	2940
aaaaat gt at cgt caacaga gagt ggt agg tt at t t aaag ggaaaagagc t cat ggacct	3000
gct t t gt t ga ct aaagat aa t gcct t at t c aaagt t agca t ct ct t t gt t aaagacaaac	3060

W2011069164SequenceLi st i ng

aaaact t cca	at aat t cagc	aact aat aga	aagact caca	tt gat gccc	at catt at ta	3120
at t gagaat a	gt ccat cagt	ct ggcaaaat	at at t agaaa	gt gacact ga	gt t t aaaaaa	3180
gt gacacct t	t gatt cat ga	cagaat gct t	at ggacaaa	at gct acagc	t t t gaggt a	3240
aat cat at gt	caa at aaaac	t act t cat ca	aaaaacat gg	aaat ggt cca	acagaaaaaa	3300
gagggccccca	tt ccaccaga	t gcacaaaat	ccagat at gt	cgt t ct t aa	gat gct at t c	3360
tt gccagaat	cagcaaggt g	gat acaaagg	act cat ggaa	agaact ct ct	gaact ct ggg	3420
caaggccccca	gt ccaaagca	at t agt at cc	tt aggaccag	aaaaat ct gt	ggaaggt cag	3480
aat t t ct t gt	ct gagaaaaaa	caaagt ggt a	gt aggaaaagg	gt gaat t t ac	aaaggacgt a	3540
ggact caaag	agat ggt t t	t ccaagcagc	agaaacct at	tt ct t act aa	ct t ggat aat	3600
tt acat gaaa	at aat acaca	caat caagaa	aaaaaaat t c	aggaagaaat	agaaaagaag	3660
gaaacat t aa	t ccaagagaa	t gt agt t t g	cct cagat ac	at acagt gac	t ggcact aag	3720
aat t t cat ga	agaacct t t	ct t act gagc	act aggcaaa	at gt agaagg	tt cat at gac	3780
ggggcat at g	ct ccagt act	t caagat t t	aggt cat t aa	at gat t caac	aaat agaaca	3840
aagaaaacaca	cagct cat t t	ct caaaaaaaaa	ggggaggaag	aaaact t gga	aggct t ggg	3900
aat caaacca	agcaa at t gt	agagaaat at	gcat gcacca	caaggat at c	t cct aat aca	3960
agccagcaga	at t t t gt cac	gcaacgt agt	aagagagct t	t gaaacaat t	cagact ccca	4020
ct agaagaaa	cagaact t ga	aaaaaggat a	at t gt ggat g	acacct caac	ccagt ggt cc	4080
aaaaacat ga	aacat t t gac	cccgagcacc	ct cacacaga	t agact acaa	t gagaaggag	4140
aaaggggcca	tt act cagt c	t ccct t at ca	gat t gcct t a	cgaggagt ca	t agcat ccct	4200
caagcaa at a	gat ct ccat t	accat t gca	aaggt at cat	cat t t ccat c	t at t agacct	4260
at at at ct ga	ccaggg t cct	at t ccaagac	aact ct t ct c	at ct t ccagc	agcat ct t at	4320
agaaaagaaag	at t ct ggggt	ccaaagaaagc	agt cat t t ct	t acaaggagc	aaaaaaaaat	4380
aacct t t ct t	t agccat t ct	accct t ggag	at gact ggt g	at caaagaga	ggt t ggct cc	4440
ct ggggacaa	gt gccacaaa	tt cagt caca	t acaagaaag	tt gagaacac	t gt t ct cccg	4500
aaaccagact	t gccc aaaaac	at ct ggcaaa	gt t gaat t gc	tt ccaaaaagt	t cacat t t at	4560
cagaaggacc	t at t ccct ac	ggaaact agc	aat gggt ct c	ct ggccat ct	ggat ct cgt g	4620
gaagggagcc	tt ct t caggg	aacagaggg	gcgat t aagt	ggaat gaagc	aaacagacct	4680
ggaaaagt t c	cct t t ct gag	agt agcaaca	gaaagct ct g	caaagact cc	ct ccaagct a	4740
tt ggat cct c	t t gct t ggg	t aaccact at	ggt act caga	t accaaaaga	agagt ggaaa	4800
t cccaa gaga	agt caccaga	aaaaacagct	t t t aagaaaa	aggat accat	t t t gt ccct g	4860
aacgct t gt g	aaagcaat ca	t gcaat agca	gcaat aaat g	agggacaaa	t aagccgaa	4920
at agaagt ca	cct gggcaaa	gcaaggt agg	act gaaaggc	t gt gct ct ca	aaacccacca	4980
gt ct t gaaac	gccat caacg	ggaaat aact	cgt act act c	t t cagt caga	t caagaggaa	5040
at t gact at g	at gat accat	at cagt t gaa	at gaagaagg	aagat t t ga	cattt at gat	5100

gaggat gaaa at cagagccc ccgcagctt caaaaagaaaa cacgacactat tttatt gct	5160
gcagt ggaga ggctctggat tttatggat g agt agt ccc cacat gttct aagaaacagg	5220
gct cagagt g gcagt gtccc tcagttcaag aaagt ttttcccaggat tttact gat ggc	5280
tcccttactc agcccttataa ccgtggagaa ct aaat gaac atttggact cctggggcca	5340
tatataaagag cagaagt tga agat aat atc at ggt aactt t cagaaatca ggcctctcgt	5400
ccctat tcccttcctatctatcgttctat gatggaaat cagaggca aggagcagaa	5460
cctagaaaaa actttgtcaa gcctaatgaa accaaaaactt actttggaa agt gcaacat	5520
catatggcacccactaaaga tggat tttgac t gcaaaggctt gggcttatttctctgtt	5580
gacctggaaa aagatgt gca ct caggcctg atttggacccc ttctgttctg ccacactaac	5640
acactgaacc ct gctcatgg gagacaagt g acagtacagg aatttgcctt gttttt cacc	5700
atctttgatg agacccaaag ct ggtacttc act gaaaat a tggaaagaaaa ct gcaggcgt	5760
ccctgcaat a tccagat gga agatccact tttaaagaga attatcgcttccatgcaatc	5820
aatggctaca t aatggat ac actacctggc tt agt aatgg ct caggatca aaggat t cga	5880
t ggtatctgc t cagcatggg cagcaatgaa aacatccatttctatcatttcagtgacat	5940
gtgttactgtacgaaaaaa agaggagtat aaaaatggcac t gtaaatctt atccaggt	6000
gtttt gaga cagtggaaat gttaccatcc aagactggaa tttggcgggt ggaatgcctt	6060
attggcgagc atctacatgc tggatgagc acacttttcttgggtgtacagcaat aagtgt	6120
cagactcccc tggaaatggc ttctggacac attagagat tttcagat t ac agcttcagga	6180
caatatggac agtggccccc aagactggcc agacttcatttattccggatc aatcaatgcc	6240
tggagcacca aggagccctt ttcttggatc aaggtggatc t gttggcacc aatgat tatt	6300
cacggcatca agacccagggt gcccgtcag aagt tctcca gcctctacat ctctcagttt	6360
atcatcatgt atagtcttga tggaaagaag tggcagactt atcgaggaaa ttccactgga	6420
accttaatgg tcttcttgg caatgtggat tcatctggat taaaacacaa tattttt aac	6480
cctccaaat a ttgctcgat a catccgttgc accccaactc attatagcat t cgcagact	6540
cttcgcattgg agttgatgg ctgtgat tta aatagt t gca gcatgccatttggaaatggag	6600
agt aaagcaa t atcagatgc acagattact gcttcatcctt actttaccaa t atgtttgcc	6660
acctggtctc ct t caaaagc t cgcattcac ctccaaaggaa ggagt aatgc ctggagacct	6720
caggtgaat a atccaaaaga gtggctgcaa gtggacttcc agaagacaat gaaagt caca	6780
ggagt aact a ct cagggagt aaaaatctctg ct t accagca t gttatgt gaa ggagt t cctc	6840
atctccagca gtcaagatgg ccatcagttgg actctctttt ttcagaatgg caaagt aaag	6900
gtttt cagg gaaatcaaga ct cctt caca cctgtggta actctctaga cccaccgtta	6960
ctgactcgct acctt cgaat t caccggcag agttgggtgc accagat tgc cctgaggatg	7020
gaggttctgg gctgctgaggc acaggacccctc t acgacaaaaa ct cacacatg cccaccgtgc	7080
ccagctccag aactcctggg cggaccgtca gtcttctct tccccccaaa acccaaggac	7140

accct cat ga	t ct cccggac	ccct gaggt c	acat gcgt gg	t ggt ggacgt	gagccacgaa	7200
gaccct gagg	t caagt t caa	ct ggt acgt g	gacggcgt gg	aggt gcat aa	t gccaagaca	7260
aagccgcgg	aggagcagt a	caacagcacg	t accgt gt gg	t cagcgt cct	caccgt cct g	7320
caccaggact	ggct gaat gg	caaggagt ac	aagt gcaagg	t ct ccaacaa	agccct ccc	7380
gccccat cg	agaaaaccat	ct ccaaagcc	aaagggcagc	cccgagaacc	acaggt gt ac	7440
accct gcccc	cat cccggga	t gagct gacc	aagaaccagg	t cagcct gac	ct gcct ggt c	7500
aaaggct t ct	at cccagcga	cat cgccgt g	gagt gggaga	gcaat gggca	gccggagaac	7560
aact acaaga	ccacgcct cc	cgt gt t ggac	t ccgacggct	cct t ct t cct	ct acagcaag	7620
ct caccgt gg	acaagagcag	gt ggcagcag	ggaaacgt ct	t ct cat gct c	cgt gat gcat	7680
gaggt ct gc	acaaccact a	cacgcagaag	agcct ct ccc	t gt ct ccggg	t aaa	7734

<210> 6
<211> 2578
<212> PRT
<213> Artificial Sequence

<220>
<223> Full Length FVIII Fc chain

<220>
<221> M SC_FEATURE
<222> (1) .. (19)
<223> FVIII signal

<220>
<221> M SC_FEATURE
<222> (20) .. (759)
<223> HC

<220>
<221> M SC_FEATURE
<222> (760) .. (1667)
<223> B domain

<220>
<221> M SC_FEATURE
<222> (2352) .. (2578)
<223> Fc region

<400> 6

Met Gln Ile Glu Leu Ser Thr Cys Phe Phe Leu Cys Leu Leu Arg Phe
1 5 10 15

Cys Phe Ser Ala Thr Arg Arg Tyr Tyr Leu Gly Ala Val Glu Leu Ser
20 25 30

Trp Asp Tyr Met Gln Ser Asp Leu Gly Glu Leu Pro Val Asp Ala Arg
35 40 45

Phe Pro Pro Arg Val Pro Lys Ser Phe Pro Phe Asn Thr Ser Val Val
50 55 60

W2011069164SequenceList

Tyr Lys Lys Thr Leu Phe Val Glu Phe Thr Asp His Leu Phe Asn Ile
 65 70 75 80

Ala Lys Pro Arg Pro Pro Trp Met Gly Leu Leu Gly Pro Thr Ile Gln
 85 90 95

Ala Glu Val Tyr Asp Thr Val Val Ile Thr Leu Lys Asn Met Ala Ser
 100 105 110

His Pro Val Ser Leu His Ala Val Gly Val Ser Tyr Trp Lys Ala Ser
 115 120 125

Glu Gly Ala Glu Tyr Asp Asp Gln Thr Ser Gln Arg Glu Lys Glu Asp
 130 135 140

Asp Lys Val Phe Pro Gly Glu Ser His Thr Tyr Val Trp Gln Val Leu
 145 150 155 160

Lys Glu Asn Gly Pro Met Ala Ser Asp Pro Leu Cys Leu Thr Tyr Ser
 165 170 175

Tyr Leu Ser His Val Asp Leu Val Lys Asp Leu Asn Ser Gly Leu Ile
 180 185 190

Gly Ala Leu Leu Val Cys Arg Gln Gly Ser Leu Ala Lys Glu Lys Thr
 195 200 205

Gln Thr Leu His Lys Phe Ile Leu Leu Phe Ala Val Phe Asp Glu Gly
 210 215 220

Lys Ser Trp His Ser Glu Thr Lys Asn Ser Leu Met Gln Asp Arg Asp
 225 230 235 240

Ala Ala Ser Ala Arg Ala Trp Pro Lys Met His Thr Val Asn Gly Tyr
 245 250 255

Val Asn Arg Ser Leu Pro Gly Leu Ile Gly Cys His Arg Lys Ser Val
 260 265 270

Tyr Trp His Val Ile Gly Met Gly Thr Thr Pro Glu Val His Ser Ile
 275 280 285

Phe Leu Glu Gly His Thr Phe Leu Val Arg Asn His Arg Gln Ala Ser
 290 295 300

Leu Glu Ile Ser Pro Ile Thr Phe Leu Thr Ala Gln Thr Leu Leu Met
 305 310 315 320

Asp Leu Gly Gln Phe Leu Leu Phe Cys His Ile Ser Ser His Gln His
 325 330 335

W02011069164SequenceList ing

Asp G y M e t G u A l a T y r V a l L y s V a l A s p S e r C y s P r o G u G u P r o
 340 345 350

G n L e u A r g M e t L y s A s n A s n G u G u A l a G u A s p T y r A s p A s p A s p
 355 360 365

L e u T h r A s p S e r G u M e t A s p V a l V a l A r g P h e A s p A s p A s p A s n S e r
 370 375 380

P r o S e r P h e I l e G n I l e A r g S e r V a l A l a L y s L y s H i s P r o L y s T h r
 385 390 395 400

T r p V a l H i s T y r I l e A l a A l a G u G u A s p T r p A s p T y r A l a P r o
 405 410 415

L e u V a l L e u A l a P r o A s p A s p A r g S e r T y r L y s S e r G n T y r L e u A s n
 420 425 430

A s n G y P r o G n A r g I l e G y A r g L y S t r Y t r L y s L y s V a l A r g P h e M e t
 435 440 445

A l a T y r T h r A s p G u T h r P h e L y s T h r A r g G u A l a I l e G n H i s G u
 450 455 460

S e r G y I l e L e u G y P r o L e u L e u T y r G y G u V a l G y A s p T h r L e u
 465 470 475 480

L e u I l e I l e P h e L y s A s n G n A l a S e r A r g P r o T y r A s n I l e T y r P r o
 485 490 495

H i s G y I l e T h r A s p V a l A r g P r o L e u T y r S e r A r g A r g L e u P r o L y s
 500 505 510

G y V a l L y s H i s L e u L y s A s p P h e P r o I l e L e u P r o G y G u I l e P h e
 515 520 525

L y s T y r L y s T r p T h r V a l T h r V a l G u A s p G y P r o T h r L y s S e r A s p
 530 535 540

P r o A r g C y s L e u T h r A r g T y r T y r S e r S e r P h e V a l A s n M e t G u A r g
 545 550 555 560

A s p L e u A l a S e r G y L e u I l e G y P r o L e u L e u I l e C y s T y r L y s G u
 565 570 575

S e r V a l A s p G n A r g G y A s n G n I l e M e t S e r A s p L y s A r g A s n V a l
 580 585 590

I l e L e u P h e S e r V a l P h e A s p G u A s n A r g S e r T r p T y r L e u T h r G u
 595 600 605

W02011069164SequenceList ing

Asn Ile Gln Arg Phe Leu Pro Asn Pro Ala Gly Val Gln Leu Glu Asp
 610 615 620

Pro Glu Phe Gln Ala Ser Asn Ile Met His Ser Ile Asn Gly Tyr Val
 625 630 635 640

Phe Asp Ser Leu Gln Leu Ser Val Cys Leu His Glu Val Ala Tyr Trp
 645 650 655

Tyr Ile Leu Ser Ile Gly Ala Gln Thr Asp Phe Leu Ser Val Phe Phe
 660 665 670

Ser Gly Tyr Thr Phe Lys His Lys Met Val Tyr Glu Asp Thr Leu Thr
 675 680 685

Leu Phe Pro Phe Ser Gln Glu Thr Val Phe Met Ser Met Glu Asn Pro
 690 695 700

Gly Leu Trp Ile Leu Gly Cys His Asn Ser Asp Phe Arg Asn Arg Gly
 705 710 715 720

Met Thr Ala Leu Leu Lys Val Ser Ser Cys Asp Lys Asn Thr Gly Asp
 725 730 735

Tyr Tyr Glu Asp Ser Tyr Glu Asp Ile Ser Ala Tyr Leu Leu Ser Lys
 740 745 750

Asn Asn Ala Ile Glu Pro Arg Ser Phe Ser Gln Asn Ser Arg His Pro
 755 760 765

Ser Thr Arg Gln Lys Gln Phe Asn Ala Thr Thr Ile Pro Glu Asn Asp
 770 775 780

Ile Glu Lys Thr Asp Pro Trp Phe Ala His Arg Thr Pro Met Pro Lys
 785 790 795 800

Ile Gln Asn Val Ser Ser Asp Leu Leu Met Leu Leu Arg Gln Ser
 805 810 815

Pro Thr Pro His Gly Leu Ser Leu Ser Asp Leu Gln Glu Ala Lys Tyr
 820 825 830

Glu Thr Phe Ser Asp Asp Pro Ser Pro Gly Ala Ile Asp Ser Asn Asn
 835 840 845

Ser Leu Ser Glu Met Thr His Phe Arg Pro Gln Leu His His Ser Gly
 850 855 860

Asp Met Val Phe Thr Pro Glu Ser Gly Leu Gln Leu Arg Leu Asn Glu
 865 870 875 880

W2011069164SequenceList

Lys Leu Gly Thr Thr Ala Ala Thr Glu Leu Lys Lys Leu Asp Phe Lys
885 890 895

Val Ser Ser Thr Ser Asn Asn Leu Ile Ser Thr Ile Pro Ser Asp Asn
900 905 910

Leu Ala Ala Gly Thr Asp Asn Thr Ser Ser Leu Gly Pro Pro Ser Met
915 920 925

Pro Val His Tyr Asp Ser Gln Leu Asp Thr Thr Leu Phe Gly Lys Lys
930 935 940

Ser Ser Pro Leu Thr Glu Ser Gly Gly Pro Leu Ser Leu Ser Glu Glu
945 950 955 960

Asn Asn Asp Ser Lys Leu Leu Glu Ser Gly Leu Met Asn Ser Gln Glu
965 970 975

Ser Ser Trp Gly Lys Asn Val Ser Ser Thr Glu Ser Gly Arg Leu Phe
980 985 990

Lys Gly Lys Arg Ala His Gly Pro Ala Leu Leu Thr Lys Asp Asn Ala
995 1000 1005

Leu Phe Lys Val Ser Ile Ser Leu Leu Lys Thr Asn Lys Thr Ser
1010 1015 1020

Asn Asn Ser Ala Thr Asn Arg Lys Thr His Ile Asp Gly Pro Ser
1025 1030 1035

Leu Leu Ile Glu Asn Ser Pro Ser Val Trp Gln Asn Ile Leu Glu
1040 1045 1050

Ser Asp Thr Glu Phe Lys Lys Val Thr Pro Leu Ile His Asp Arg
1055 1060 1065

Met Leu Met Asp Lys Asn Ala Thr Ala Leu Arg Leu Asn His Met
1070 1075 1080

Ser Asn Lys Thr Thr Ser Ser Lys Asn Met Glu Met Val Gln Gln
1085 1090 1095

Lys Lys Glu Gly Pro Ile Pro Pro Asp Ala Gln Asn Pro Asp Met
1100 1105 1110

Ser Phe Phe Lys Met Leu Phe Leu Pro Glu Ser Ala Arg Trp Ile
1115 1120 1125

Gln Arg Thr His Gly Lys Asn Ser Leu Asn Ser Gly Gln Gly Pro
1130 1135 1140

W02011069164SequenceList

Ser Pro Lys Gln Leu Val Ser Leu Gly Pro Glu Lys Ser Val Glu
 1145 1150 1155

Gly Gln Asn Phe Leu Ser Glu Lys Asn Lys Val Val Val Gly Lys
 1160 1165 1170

Gly Glu Phe Thr Lys Asp Val Gly Leu Lys Glu Met Val Phe Pro
 1175 1180 1185

Ser Ser Arg Asn Leu Phe Leu Thr Asn Leu Asp Asn Leu His Glu
 1190 1195 1200

Asn Asn Thr His Asn Gln Glu Lys Lys Ile Gln Glu Glu Ile Glu
 1205 1210 1215

Lys Lys Glu Thr Leu Ile Gln Glu Asn Val Val Leu Pro Gln Ile
 1220 1225 1230

His Thr Val Thr Gly Thr Lys Asn Phe Met Lys Asn Leu Phe Leu
 1235 1240 1245

Leu Ser Thr Arg Gln Asn Val Glu Gly Ser Tyr Asp Gly Ala Tyr
 1250 1255 1260

Ala Pro Val Leu Gln Asp Phe Arg Ser Leu Asn Asp Ser Thr Asn
 1265 1270 1275

Arg Thr Lys Lys His Thr Ala His Phe Ser Lys Lys Gly Glu Glu
 1280 1285 1290

Glu Asn Leu Glu Gly Leu Glu Asn Gln Thr Lys Gln Ile Val Glu
 1295 1300 1305

Lys Tyr Ala Cys Thr Thr Arg Ile Ser Pro Asn Thr Ser Gln Gln
 1310 1315 1320

Asn Phe Val Thr Gln Arg Ser Lys Arg Ala Leu Lys Gln Phe Arg
 1325 1330 1335

Leu Pro Leu Glu Glu Thr Glu Leu Glu Lys Arg Ile Ile Val Asp
 1340 1345 1350

Asp Thr Ser Thr Gln Trp Ser Lys Asn Met Lys His Leu Thr Pro
 1355 1360 1365

Ser Thr Leu Thr Gln Ile Asp Tyr Asn Glu Lys Glu Lys Gly Ala
 1370 1375 1380

Ile Thr Gln Ser Pro Leu Ser Asp Cys Leu Thr Arg Ser His Ser
 1385 1390 1395

W02011069164SequenceList

Ile Pro Gln Ala Asn Arg Ser Pro Leu Pro Ile Ala Lys Val Ser
 1400 1405 1410

Ser Phe Pro Ser Ile Arg Pro Ile Tyr Leu Thr Arg Val Leu Phe
 1415 1420 1425

Gln Asp Asn Ser Ser His Leu Pro Ala Ala Ser Tyr Arg Lys Lys
 1430 1435 1440

Asp Ser Gly Val Gln Glu Ser Ser His Phe Leu Gln Gly Ala Lys
 1445 1450 1455

Lys Asn Asn Leu Ser Leu Ala Ile Leu Thr Leu Glu Met Thr Gly
 1460 1465 1470

Asp Gln Arg Glu Val Gly Ser Leu Gly Thr Ser Ala Thr Asn Ser
 1475 1480 1485

Val Thr Tyr Lys Lys Val Glu Asn Thr Val Leu Pro Lys Pro Asp
 1490 1495 1500

Leu Pro Lys Thr Ser Gly Lys Val Glu Leu Leu Pro Lys Val His
 1505 1510 1515

Ile Tyr Gln Lys Asp Leu Phe Pro Thr Glu Thr Ser Asn Gly Ser
 1520 1525 1530

Pro Gly His Leu Asp Leu Val Glu Gly Ser Leu Leu Gln Gly Thr
 1535 1540 1545

Glu Gly Ala Ile Lys Trp Asn Glu Ala Asn Arg Pro Gly Lys Val
 1550 1555 1560

Pro Phe Leu Arg Val Ala Thr Glu Ser Ser Ala Lys Thr Pro Ser
 1565 1570 1575

Lys Leu Leu Asp Pro Leu Ala Trp Asp Asn His Tyr Gly Thr Gln
 1580 1585 1590

Ile Pro Lys Glu Glu Trp Lys Ser Gln Glu Lys Ser Pro Glu Lys
 1595 1600 1605

Thr Ala Phe Lys Lys Lys Asp Thr Ile Leu Ser Leu Asn Ala Cys
 1610 1615 1620

Glu Ser Asn His Ala Ile Ala Ala Ile Asn Glu Gly Gln Asn Lys
 1625 1630 1635

Pro Glu Ile Glu Val Thr Trp Ala Lys Gln Gly Arg Thr Glu Arg
 1640 1645 1650

W02011069164SequenceLi st i ng

Leu	Cys	Ser	G n	Asn	Pro	Pro	Val	Leu	Lys	Arg	His	G n	Arg	Gl u
1655					1660						1665			
Ile	Thr	Arg	Thr	Thr	Leu	G n	Ser	Asp	G n	Gl u	Gl u	Ile	Asp	Tyr
1670		1675								1680				
Asp	Asp	Thr	Ile	Ser	Val	Gl u	Met	Lys	Lys	Gl u	Asp	Phe	Asp	Ile
1685					1690						1695			
Tyr	Asp	Gl u	Asp	Gl u	Asn	G n	Ser	Pro	Arg	Ser	Phe	G n	Lys	Lys
1700					1705						1710			
Thr	Arg	His	Tyr	Phe	Ile	Al a	Al a	Val	Gl u	Arg	Leu	Tr p	Asp	Tyr
1715					1720						1725			
G y	Met	Ser	Ser	Ser	Pro	His	Val	Leu	Arg	Asn	Arg	Al a	G n	Ser
1730						1735					1740			
G y	Ser	Val	Pro	G n	Phe	Lys	Lys	Val	Val	Phe	G n	Gl u	Phe	Thr
1745					1750						1755			
Asp	G y	Ser	Phe	Thr	G n	Pro	Leu	Tyr	Arg	G y	Gl u	Leu	Asn	Gl u
1760					1765						1770			
His	Leu	G y	Leu	Leu	G y	Pro	Tyr	Ile	Arg	Al a	Gl u	Val	Gl u	Asp
1775					1780						1785			
Asn	Ile	Met	Val	Thr	Phe	Arg	Asn	G n	Al a	Ser	Arg	Pro	Tyr	Ser
1790					1795						1800			
Phe	Tyr	Ser	Ser	Leu	Ile	Ser	Tyr	Gl u	Gl u	Asp	G n	Arg	G n	G y
1805					1810						1815			
Al a	Gl u	Pro	Arg	Lys	Asn	Phe	Val	Lys	Pro	Asn	Gl u	Thr	Lys	Thr
1820					1825						1830			
Tyr	Phe	Tr p	Lys	Val	G n	His	His	Met	Al a	Pro	Thr	Lys	Asp	Gl u
1835					1840						1845			
Phe	Asp	Cys	Lys	Al a	Tr p	Al a	Tyr	Phe	Ser	Asp	Val	Asp	Leu	Gl u
1850					1855						1860			
Lys	Asp	Val	His	Ser	G y	Leu	Ile	G y	Pro	Leu	Leu	Val	Cys	His
1865					1870						1875			
Thr	Asn	Thr	Leu	Asn	Pro	Al a	His	G y	Arg	G n	Val	Thr	Val	G n
1880					1885						1890			
Gl u	Phe	Al a	Leu	Phe	Phe	Thr	Ile	Phe	Asp	Gl u	Thr	Lys	Ser	Tr p
1895					1900						1905			

W02011069164SequenceList 1

Tyr Phe Thr Gu Asn Met Glu Arg Asn Cys Arg Ala Pro Cys Asn
 1910 1915 1920

 Ile Gln Met Gu Asp Pro Thr Phe Lys Gu Asn Tyr Arg Phe His
 1925 1930 1935

 Ala Ile Asn Gln Tyr Ile Met Asp Thr Leu Pro Gly Leu Val Met
 1940 1945 1950

 Ala Gln Asp Gln Arg Ile Arg Trp Tyr Leu Leu Ser Met Gly Ser
 1955 1960 1965

 Asn Glu Asn Ile His Ser Ile His Phe Ser Gly His Val Phe Thr
 1970 1975 1980

 Val Arg Lys Lys Glu Gu Tyr Lys Met Ala Leu Tyr Asn Leu Tyr
 1985 1990 1995

 Pro Gly Val Phe Glu Thr Val Glu Met Leu Pro Ser Lys Ala Gly
 2000 2005 2010

 Ile Trp Arg Val Glu Cys Leu Ile Gln Glu His Leu His Ala Gly
 2015 2020 2025

 Met Ser Thr Leu Phe Leu Val Tyr Ser Asn Lys Cys Gln Thr Pro
 2030 2035 2040

 Leu Gln Met Ala Ser Gln His Ile Arg Asp Phe Gln Ile Thr Ala
 2045 2050 2055

 Ser Gly Gln Tyr Gly Gln Trp Ala Pro Lys Leu Ala Arg Leu His
 2060 2065 2070

 Tyr Ser Gly Ser Ile Asn Ala Trp Ser Thr Lys Glu Pro Phe Ser
 2075 2080 2085

 Trp Ile Lys Val Asp Leu Leu Ala Pro Met Ile Ile His Gly Ile
 2090 2095 2100

 Lys Thr Gln Gly Ala Arg Gln Lys Phe Ser Ser Leu Tyr Ile Ser
 2105 2110 2115

 Gln Phe Ile Ile Met Tyr Ser Leu Asp Gly Lys Lys Trp Gln Thr
 2120 2125 2130

 Tyr Arg Gly Asn Ser Thr Gly Thr Leu Met Val Phe Phe Gly Asn
 2135 2140 2145

 Val Asp Ser Ser Gly Ile Lys His Asn Ile Phe Asn Pro Pro Ile
 2150 2155 2160

W02011069164SequenceList

Ile Ala Arg Tyr Ile Arg Leu His Pro Thr His Tyr Ser Ile Arg
2165 2170 2175

Ser Thr Leu Arg Met Glu Leu Met Gly Cys Asp Leu Asn Ser Cys
2180 2185 2190

Ser Met Pro Leu Gly Met Glu Ser Lys Ala Ile Ser Asp Ala Glu
2195 2200 2205

Ile Thr Ala Ser Ser Tyr Phe Thr Asn Met Phe Ala Thr Trp Ser
2210 2215 2220

Pro Ser Lys Ala Arg Leu His Leu Glu Gly Arg Ser Asn Ala Trp
2225 2230 2235

Arg Pro Glu Val Asn Asn Pro Lys Glu Trp Leu Glu Val Asp Phe
2240 2245 2250

Gln Lys Thr Met Lys Val Thr Gly Val Thr Thr Gln Gly Val Lys
2255 2260 2265

Ser Leu Leu Thr Ser Met Tyr Val Lys Glu Phe Leu Ile Ser Ser
2270 2275 2280

Ser Gln Asp Gly His Gln Trp Thr Leu Phe Phe Gln Asn Gly Lys
2285 2290 2295

Val Lys Val Phe Glu Gly Asn Gln Asp Ser Phe Thr Pro Val Val
2300 2305 2310

Asn Ser Leu Asp Pro Pro Leu Leu Thr Arg Tyr Leu Arg Ile His
2315 2320 2325

Pro Glu Ser Trp Val His Glu Ile Ala Leu Arg Met Glu Val Leu
2330 2335 2340

Gly Cys Glu Ala Glu Asp Leu Tyr Asp Lys Thr His Thr Cys Pro
2345 2350 2355

Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu
2360 2365 2370

Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro
2375 2380 2385

Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu
2390 2395 2400

Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala
2405 2410 2415

W02011069164SequenceList 1

Lys Thr Lys Pro Arg Gu Glu Gln Tyr Asn Ser Thr Tyr Arg Val
2420 2425 2430

Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys
2435 2440 2445

Gl u Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile
2450 2455 2460

Gl u Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Gl u Pro Gln
2465 2470 2475

Val Tyr Thr Leu Pro Pro Ser Arg Asp Gl u Leu Thr Lys Asn Gln
2480 2485 2490

Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile
2495 2500 2505

Al a Val Gl u Trp Gl u Ser Asn Gl y Gln Pro Gl u Asn Tyr Lys
2510 2515 2520

Thr Thr Pro Pro Val Leu Asp Ser Asp Gl y Ser Phe Phe Leu Tyr
2525 2530 2535

Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gl n Gl n Gl y Asn Val
2540 2545 2550

Phe Ser Cys Ser Val Met His Gl u Ala Leu His Asn His Tyr Thr
2555 2560 2565

Gl n Lys Ser Leu Ser Leu Ser Pro Gl y Lys
2570 2575

<210> 7
<211> 2958
<212> DNA
<213> Artificial Sequence

<220>
<223> Heavy Chain (HC)-Fc

<220>
<221> misc_feature
<222> (1)..(57)
<223> Signal

<220>
<221> misc_feature
<222> (2278)..(2958)
<223> Fc region

<400> 7
at gcaat ag agct ct ccac ct gct t ct tt ct gt gcct tt tgcgatt ct g ct tt agt gcc 60
accagaagat act acct ggg t gcagt ggaa ct gt cat ggg act at at gca aagt gat ct c 120

W2011069164SequenceLi st i ng

ggt gagct gc	ct gt ggacgc	aagat tt cct	cct agagt gc	caaaaat ct tt	t ccatt caac	180
acct cagt cg	t gt acaaaaa	gact ct gt tt	gt agaatt ca	cgat cacct	ttt caacat c	240
gct aagccaa	ggccaccct g	gat gggt ct g	ct aggt cct a	ccat ccaggc	t gaggt tt at	300
gat acagt gg	t catt acact	t aagaacat g	gct t cccat c	ct gt cagt ct	t cat gct gt t	360
ggt gt at cct	act ggaaagc	tt ct gaggga	gct gaat at g	at gat cagac	cagt caaagg	420
gagaaagaag	at gat aaagt	ct t ccct ggt	ggaagccat a	cat at gt ct g	gcaggt cct g	480
aaagagaat g	gt ccaat ggc	ct ct gacca	ct gt gcct ta	cct act cat a	t ct tt ct cat	540
gt ggacct gg	t aaaagact t	gaatt caggc	ct cat t ggag	ccct act agt	at gt agagaa	600
gggagt ct gg	ccaaggaaaa	gacacagacc	tt gcacaaat	tt at act act	ttt gct gt a	660
t tt gat gaag	ggaaaagt t g	gcact cagaa	acaaagaact	cct t gat gca	ggat agggat	720
gct gcat ct g	ct cgggcct g	gcct aaaat g	cacacagt ca	at ggt t at gt	aaacaggt ct	780
ct gccaggt c	t gatt ggt g	ccacaggaaa	t cagt ct at t	ggcat gt gat	t ggaat ggc	840
accact cct g	aagt gcact c	aat at t cct c	gaaggt caca	cat t t ct t gt	gaggaaccat	900
cgccaggcgt	cct t ggaaat	ct cgccaaat a	act t t cct a	ct gct caaac	act ct t gat g	960
gacct t ggac	agttt ct act	gt t t gt cat	at ct ct t ccc	accaacat ga	t ggcat ggaa	1020
gct t at gt ca	aagt agacag	ct gt ccagag	gaaccccaac	t acgaat gaa	aaat aat gaa	1080
gaagcggaaag	act at gat ga	t gat ct t act	gat t ct gaaa	t ggat gt ggt	caggt tt gat	1140
gat gacaact	ct cct t cct t	t at ccaaatt	cgct cagt t g	ccaagaagca	t cct aaaact	1200
t gggat acat t	acatt gct gc	t gaagaggag	gact gggact	at gct ccct t	agt cct cgcc	1260
cccgat gaca	gaagt t at aa	aagt caat at	tt gaacaat g	gcct cagcg	gat t ggt agg	1320
aagt acaaaa	aagt ccgat t	t at ggcat ac	acagat gaaa	cct t aagac	t cgt gaagct	1380
at t cagcat g	aat caggaat	ct t gggacct	tt act tt at g	gggaagt t gg	agacacact g	1440
tt gat t at at	tt aagaat ca	agcaagcaga	ccat at aaca	t ct accct ca	cggaat cact	1500
gat gt ccgt c	ct t t gt at t c	aaggagat t a	ccaaaaggt g	t aaaacat tt	gaaggat tt t	1560
ccaaat t ct gc	caggagaaat	at t caaat at	aaat ggacag	t gact gt aga	agat gggcca	1620
act aaat cag	at cct cgg t g	cct gacccgc	t att act ct a	gt t t cgt t aa	t at ggagaga	1680
gat ct agct t	caggact cat	t ggcct ct c	ct cat ct gct	acaaagaat c	t gt agat caa	1740
agagggaaacc	agat aat gt c	agacaagagg	aat gt cat cc	t gt t t ct gt	at t gat gag	1800
aaccgaagct	ggt acct cac	agagaat at a	caacgct t c	t ccccaat cc	agct ggagt g	1860
cagct t gagg	at ccagagt t	ccaaagcct cc	aacat cat gc	acagcat caa	t ggct at gt t	1920
t tt gat agt t	t gcagt t gt c	agt t t gt tt g	cat gaggt gg	cat act ggt a	cat t ct aagc	1980
at t ggagcac	agact gact t	cct t t ct gt c	t t ct t ct ct g	gat at acct t	caaacacaaa	2040
at ggt ct at g	aagacacact	caccct at t c	ccat t ct cag	gagaaact gt	ct t cat gt cg	2100
at ggaaaacc	caggt ct at g	gat t ct gggg	t gccacaact	cagact tt cg	gaacagaggc	2160

W2011069164SequenceLi st i ng
at gaccgcct t act gaaggt tt ct agt t gt gacaagaaca ct ggt gat t a tt acgaggac 2220
agt t at gaag at at t cagc at act t gct g agt aaaaaca at gccat t ga accaagagac 2280
aaaact caca cat gcccacc gt gcccagct ccagaact cc t gggcggacc gt cagt ct t c 2340
ct ct t ccccc caaaaacccaa ggacaccct c at gat ct ccc ggaccct ga ggt cacat gc 2400
gt ggt ggt gg acgt gagcca cgaagaccct gaggt caagt t caact ggt a cgt ggacggc 2460
gt ggaggt gc at aat gccaa gacaaagccg cgggaggagc agt acaacag cacgt accgt 2520
gt ggt cagcg t cct caccgt cct gcaccag gact ggct ga at ggcaagga gt acaagt gc 2580
aaggt ct cca acaaagccct cccagcccc at cgagaaaa ccat ct ccaa agccaaagg 2640
cagccccgag aaccacaggt gt acaccct g ccccat ccc gggat gagct gaccaagaac 2700
caggt cagcc t gacct gcct ggt caaaggc t t ct at ccca gcgacat cgc cgt ggagt gg 2760
gagagcaat g ggcagccgga gaacaact ac aagaccacgc ct cccgt gt t ggact ccgac 2820
ggct cct t ct t cct ct acag caagct cacc gt ggacaaga gcaggt ggca gcagggaaac 2880
gt ct t ct cat gct ccgt gat gcat gaggt ct gcacaacc act acacgca gaagagcct c 2940
t ccct gt ct c cgggt aaa 2958

<210> 8
<211> 986
<212> PRT
<213> Artificial Sequence

<220>
<223> HC- Fc

<220>
<221> M SC_FEATURE
<222> (1)..(19)
<223> Signal

<220>
<221> M SC_FEATURE
<222> (760)..(986)
<223> Fc region

<400> 8

Met Gln Ile Glu Leu Ser Thr Cys Phe Phe Leu Cys Leu Leu Arg Phe
1 5 10 15

Cys Phe Ser Ala Thr Arg Arg Tyr Tyr Leu Gly Ala Val Glu Leu Ser
20 25 30

Trp Asp Tyr Met Gln Ser Asp Leu Gly Glu Leu Pro Val Asp Ala Arg
35 40 45

Phe Pro Pro Arg Val Pro Lys Ser Phe Pro Phe Asn Thr Ser Val Val
50 55 60

Tyr Lys Lys Thr Leu Phe Val Glu Phe Thr Asp His Leu Phe Asn Ile
65 70 75 80

W2011069164SequenceList

Ala Lys Pro Arg Pro Pro Trp Met Gly Leu Leu Gly Pro Thr Ile Gln
85 90 95

Ala G u Val Tyr Asp Thr Val Val Ile Thr Leu Lys Asn Met Ala Ser
100 105 110

His Pro Val Ser Leu His Ala Val Gly Val Ser Tyr Trp Lys Ala Ser
115 120 125

Glu G y Ala G u Tyr Asp Asp Gln Thr Ser Gln Arg Glu Lys Glu Asp
130 135 140

Asp Lys Val Phe Pro G y G y Ser His Thr Tyr Val Trp Gln Val Leu
145 150 155 160

Lys G u Asn G y Pro Met Ala Ser Asp Pro Leu Cys Leu Thr Tyr Ser
165 170 175

Tyr Leu Ser His Val Asp Leu Val Lys Asp Leu Asn Ser G y Leu Ile
180 185 190

G y Ala Leu Leu Val Cys Arg G u G y Ser Leu Ala Lys Glu Lys Thr
195 200 205

G n Thr Leu His Lys Phe Ile Leu Leu Phe Ala Val Phe Asp Glu G y
210 215 220

Lys Ser Trp His Ser G u Thr Lys Asn Ser Leu Met G n Asp Arg Asp
225 230 235 240

Ala Ala Ser Ala Arg Ala Trp Pro Lys Met His Thr Val Asn G y Tyr
245 250 255

Val Asn Arg Ser Leu Pro G y Leu Ile G y Cys His Arg Lys Ser Val
260 265 270

Tyr Trp His Val Ile G y Met G y Thr Thr Pro G u Val His Ser Ile
275 280 285

Phe Leu G u G y His Thr Phe Leu Val Arg Asn His Arg G n Ala Ser
290 295 300

Leu G u Ile Ser Pro Ile Thr Phe Leu Thr Ala G n Thr Leu Leu Met
305 310 315 320

Asp Leu G y G n Phe Leu Leu Phe Cys His Ile Ser Ser His G n His
325 330 335

Asp G y Met G u Ala Tyr Val Lys Val Asp Ser Cys Pro G u G u Pro
340 345 350

W2011069164SequenceList 1

G n Leu Arg Met Lys Asn Asn Gl u Gl u Ala Gl u Asp Tyr Asp Asp Asp
355 360 365

Leu Thr Asp Ser Gl u Met Asp Val Val Arg Phe Asp Asp Asp Asn Ser
370 375 380

Pro Ser Phe Ile G n Ile Arg Ser Val Ala Lys Lys His Pro Lys Thr
385 390 395 400

Trp Val His Tyr Ile Ala Ala Gl u Gl u Asp Trp Asp Tyr Ala Pro
405 410 415

Leu Val Leu Ala Pro Asp Asp Arg Ser Tyr Lys Ser G n Tyr Leu Asn
420 425 430

Asn G y Pro G n Arg Ile G y Arg Lys Tyr Lys Lys Val Arg Phe Met
435 440 445

Al a Tyr Thr Asp Gl u Thr Phe Lys Thr Arg Gl u Al a Ile G n His Gl u
450 455 460

Ser G y Ile Leu G y Pro Leu Leu Tyr G y Gl u Val G y Asp Thr Leu
465 470 475 480

Leu Ile Ile Phe Lys Asn G n Ala Ser Arg Pro Tyr Asn Ile Tyr Pro
485 490 495

His G y Ile Thr Asp Val Arg Pro Leu Tyr Ser Arg Arg Leu Pro Lys
500 505 510

G y Val Lys His Leu Lys Asp Phe Pro Ile Leu Pro G y Gl u Ile Phe
515 520 525

Lys Tyr Lys Trp Thr Val Thr Val Gl u Asp G y Pro Thr Lys Ser Asp
530 535 540

Pro Arg Cys Leu Thr Arg Tyr Tyr Ser Ser Phe Val Asn Met Gl u Arg
545 550 555 560

Asp Leu Ala Ser G y Leu Ile G y Pro Leu Leu Ile Cys Tyr Lys Gl u
565 570 575

Ser Val Asp G n Arg G y Asn G n Ile Met Ser Asp Lys Arg Asn Val
580 585 590

Ile Leu Phe Ser Val Phe Asp Gl u Asn Arg Ser Trp Tyr Leu Thr Gl u
595 600 605

Asn Ile G n Arg Phe Leu Pro Asn Pro Ala G y Val G n Leu Gl u Asp
610 615 620

W2011069164SequenceList

Pro Glu Phe Gln Ala Ser Asn Ile Met His Ser Ile Asn Gly Tyr Val
625 630 635 640

Phe Asp Ser Leu Gln Leu Ser Val Cys Leu His Glu Val Ala Tyr Trp
645 650 655

Tyr Ile Leu Ser Ile Gly Ala Gln Thr Asp Phe Leu Ser Val Phe Phe
660 665 670 675

Ser Gly Tyr Thr Phe Lys His Lys Met Val Tyr Glu Asp Thr Leu Thr
675 680 685

Leu Phe Pro Phe Ser Gly Glu Thr Val Phe Met Ser Met Glu Asn Pro
690 695 700

Gly Leu Trp Ile Leu Gly Cys His Asn Ser Asp Phe Arg Asn Arg Gly
705 710 715 720

Met Thr Ala Leu Leu Lys Val Ser Ser Cys Asp Lys Asn Thr Gly Asp
725 730 735

Tyr Tyr Glu Asp Ser Tyr Glu Asp Ile Ser Ala Tyr Leu Leu Ser Lys
740 745 750

Asn Asn Ala Ile Glu Pro Arg Asp Lys Thr His Thr Cys Pro Pro Cys
755 760 765

Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro
770 775 780

Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys
785 790 795 800

Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp
805 810 815

Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu
820 825 830

Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu
835 840 845

His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn
850 855 860 865

Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly
870 875 880

Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu
885 890 895

W02011069164SequenceList

Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr
900 905 910

Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn
915 920 925

Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe
930 935 940

Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn
945 950 955 960

Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr
965 970 975

Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys
980 985

<210> 9

<211> 2973

<212> DNA

<213> Artificial Sequence

<220>

<223> Heavy Chain (HC)-Fc (5 amino acid linker between HC and Fc)

<220>

<221> misc_signal

<222> (1)..(57)

<223> Signal

<220>

<221> misc_feature

<222> (2278)..(2292)

<223> 5 amino acid linker

<220>

<221> misc_feature

<222> (2293)..(2973)

<223> Fc region

<400> 9

at gcaa at ag agct ct ccac ct gct t ct tt ct gt gcct tt tgcgat t ct g ct tt agt gcc 60

accaga agat act acct ggg t gcagt ggaa ct gt cat ggg act at at gca aagt gat ct c 120

gg t gagct gc ct gt ggacgc aagat tt cct cct agagt gc caaaat ct tt tccatt caac 180

acct cagt cg t gt acaaaa gact ct gt tt gt agaat t ca cggat cacct ttt caacat c 240

gct aagccaa ggccaccct g gat ggg ct g ct aggt cct a ccat ccaggc t gaggt tt at 300

gat acagt gg t cat t acact t aagaacat g gct t cccat c ct gt cagt ct t cat gct gt t 360

gg t gt at cct act ggaa agc tt ct gaggg a gct gaat at g at gat cagac cagt caaagg 420

gagaaagaag at gat aaagt ct t ccct ggt ggaaggccat a cat at gt ct g gcaggt cct g 480

aaagagaat g gt ccaat ggc ct ct gaccca ct gt gcct a cct act cat a t ct tt ct cat 540

W2011069164SequenceList 1

gtggacctgg	taaaagactt	gaattcaggc	ctcatggag	ccctactagt	atgtagagaa	600
gggagtctgg	ccaaggaaaa	gacacagacc	ttgcacaaat	ttatactact	tttgcgtat	660
tttgatgaag	ggaaaagtgt	gcactcagaa	acaaagaact	ccttgcata	ggatagggat	720
gctgcattgt	ctcgggcctg	gcctaaaatg	cacacagtca	atggttatgt	aaacaggtct	780
ctgccaggtc	tgattggatg	ccacaggaaa	tcaagtctat	ggcatgtgat	tggaatggc	840
accactcctg	aagtgcactc	aatattcctc	gaaggtcaca	catttcttgt	gaggaaccat	900
cgcgcaggcgt	ccttgaaaat	ctcgccaaat	actttcctta	ctgctcaaac	actcttgcgt	960
gaccttggac	agtttctact	gttttgcata	atctcttccc	accaacatga	tggcatggaa	1020
gcttatgtca	aagtagacag	ctgtccagag	gaaccccaac	tacgaatgaa	aataatgaa	1080
gaagcggaaag	actatgatga	tgatcttact	gatctctgaaa	tggatgtggt	caggtttgtat	1140
gatgacaact	ctccttcctt	tatccaaat	cgctcagttg	ccaagaagca	tccctaaaact	1200
tgggtacatt	acattgctgc	tgaagaggag	gactggact	atgctccctt	agtccctcgcc	1260
cccgatgaca	gaagtataa	aagtcaatat	ttgaacaatg	gcctcagcg	gattggtagg	1320
aagtacaaaa	aagtccgat	tatggcatac	acagatgaaa	cctttaagac	tcgtaagct	1380
attcagcatg	aatcaggaat	cttggacact	ttactttatg	gggaagtgg	agacacactg	1440
ttgatatat	ttaaagaatca	agcaagcaga	ccatataaca	tctaccctca	cggaatcact	1500
gatgtccgtc	ctttgtat	tcaggagat	tacaaaaggtg	taaaacat	ttgaaggat	1560
ccaaatctgc	caggagaaat	attcaaatat	aaatggacag	tgactgtaga	agatggcca	1620
actaaatcag	atcctcggtg	cctgaccgc	tattactct	gtttcgtaa	tatggagaga	1680
gatctagctt	caggactcat	tggccctctc	ctcatctgct	acaaagaatc	tgtagatcaa	1740
agaggaaacc	agataatgtc	agacaagagg	aatgtcatcc	tgtttctgt	atttgatgag	1800
aaccgaagct	ggtacctcac	agagaatat	caacgcttcc	tccccatcc	agctggagt	1860
cagcttggg	atccagagt	tccaaaggcc	aacatcatgc	acagcatcaa	tggctatgtt	1920
tttgcattgtc	agtttgcatt	catgaggtgg	catactggt	acatctt	aagc	1980
attggagcac	agactgactt	ccttctgtc	ttcttctctg	gatatacctt	caaacacaaa	2040
atggctatg	aagacacact	caccctat	ccattctcag	gagaaactgt	cttcatgtcg	2100
atggaaaacc	caggtctatg	gatctctgggg	tgcacaaact	cagactttcg	gaacagaggc	2160
atgaccgcct	tactgaaggt	ttctagtgt	gacaagaaca	ctggtgat	ttacgaggac	2220
agtatgaag	atatttcagc	atacttgcgt	agtaaaaaca	atgccattga	accaagaagc	2280
ttctccaga	atgacaaaac	tcacacatgc	ccaccgtgcc	cagctccaga	actcctggc	2340
ggaccgtcag	tcttcctt	ccccccaaaa	cccaaggaca	ccctcatgat	ctccggacc	2400
cctgaggtca	catgcgttgt	ggtggacgtg	agccacgaag	accctgaggt	caagttcaac	2460
tggtagtgg	acggcgtgga	ggtgcataat	gccaagacaa	agccgcggga	ggagcagtac	2520
aacagcacgt	accgtgttgt	cagcgtcctc	accgtcctgc	accaggactg	gctgaatggc	2580

W2011069164SequenceList i ng

aaggagt aca agt gcaaggt ct ccaacaaa gcccctccca gccccat cga gaaaaccat c	2640
tccaaagcca aagggcagcc ccgagaacca caggt gt aca ccct gcccc at cccggat	2700
gagct gacca agaaccaggt cagcct gacc t gcct ggt ca aaggct t ct a t cccagcgac	2760
at cgccgt gg agt gggagag caat gggcag ccggagaaca act acaagac cacgcct ccc	2820
gt gt t ggact ccgacggct c ct t ct t cct c t acagcaagc t caccgt gga caagagcagg	2880
t ggcagcagg ggaacgt ct t ct cat gct cc gt gat gcat g aggct ct gca caaccact ac	2940
acgcagaaga gcct ct ccct gt ct ccgggt aaa	2973

<210> 10
<211> 991
<212> PRT
<213> Artificial Sequence

<220>
<223> HC+5- Fc

<220>
<221> M SC_FEATURE
<222> (1)..(19)
<223> Signal

<220>
<221> M SC_FEATURE
<222> (760)..(764)
<223> B domain

<220>
<221> M SC_FEATURE
<222> (765)..(991)
<223> Fc region

<400> 10

Met Gln Ile Glu Leu Ser Thr Cys Phe Phe Leu Cys Leu Leu Arg Phe
1 5 10 15

Cys Phe Ser Ala Thr Arg Arg Tyr Tyr Leu Gly Ala Val Glu Leu Ser
20 25 30

Trp Asp Tyr Met Gln Ser Asp Leu Gly Glu Leu Pro Val Asp Ala Arg
35 40 45

Phe Pro Pro Arg Val Pro Lys Ser Phe Pro Phe Asn Thr Ser Val Val
50 55 60

Tyr Lys Lys Thr Leu Phe Val Glu Phe Thr Asp His Leu Phe Asn Ile
65 70 75 80

Ala Lys Pro Arg Pro Pro Trp Met Gly Leu Leu Gly Pro Thr Ile Gln
85 90 95

Ala Glu Val Tyr Asp Thr Val Val Ile Thr Leu Lys Asn Met Ala Ser
100 105 110

W2011069164SequenceList 1

His Pro Val Ser Leu His Ala Val Gly Val Ser Tyr Trp Lys Ala Ser
115 120 125

Glu Gly Ala Glu Tyr Asp Asp Gln Thr Ser Gln Arg Glu Lys Glu Asp
130 135 140

Asp Lys Val Phe Pro Gly Gly Ser His Thr Tyr Val Trp Gln Val Leu
145 150 155 160

Lys Glu Asn Gly Pro Met Ala Ser Asp Pro Leu Cys Leu Thr Tyr Ser
165 170 175

Tyr Leu Ser His Val Asp Leu Val Lys Asp Leu Asn Ser Gly Leu Ile
180 185 190

Gly Ala Leu Leu Val Cys Arg Glu Gly Ser Leu Ala Lys Glu Lys Thr
195 200 205

Gln Thr Leu His Lys Phe Ile Leu Leu Phe Ala Val Phe Asp Glu Gly
210 215 220

Lys Ser Trp His Ser Glu Thr Lys Asn Ser Leu Met Gln Asp Arg Asp
225 230 235 240

Ala Ala Ser Ala Arg Ala Trp Pro Lys Met His Thr Val Asn Gly Tyr
245 250 255

Val Asn Arg Ser Leu Pro Gly Leu Ile Gly Cys His Arg Lys Ser Val
260 265 270

Tyr Trp His Val Ile Gly Met Gly Thr Thr Pro Glu Val His Ser Ile
275 280 285

Phe Leu Glu Gly His Thr Phe Leu Val Arg Asn His Arg Gln Ala Ser
290 295 300

Leu Glu Ile Ser Pro Ile Thr Phe Leu Thr Ala Gln Thr Leu Leu Met
305 310 315 320

Asp Leu Gly Gln Phe Leu Leu Phe Cys His Ile Ser Ser His Gln His
325 330 335

Asp Gly Met Glu Ala Tyr Val Lys Val Asp Ser Cys Pro Glu Glu Pro
340 345 350

Gln Leu Arg Met Lys Asn Asn Glu Glu Ala Glu Asp Tyr Asp Asp Asp
355 360 365

Leu Thr Asp Ser Glu Met Asp Val Val Arg Phe Asp Asp Asp Asn Ser
370 375 380

W2011069164SequenceList

Pro Ser Phe Ile Gln Ile Arg Ser Val Ala Lys Lys His Pro Lys Thr
385 390 395 400

Trp Val His Tyr Ile Ala Ala Gu Glu Gu Asp Trp Asp Tyr Ala Pro
405 410 415

Leu Val Leu Ala Pro Asp Asp Arg Ser Tyr Lys Ser Gln Tyr Leu Asn
420 425 430

Asn Gly Pro Gln Arg Ile Gly Arg Lys Tyr Lys Lys Val Arg Phe Met
435 440 445

Ala Tyr Thr Asp Glu Thr Phe Lys Thr Arg Glu Ala Ile Gln His Glu
450 455 460

Ser Gly Ile Leu Gly Pro Leu Leu Tyr Gly Glu Val Gly Asp Thr Leu
465 470 475 480

Leu Ile Ile Phe Lys Asn Gln Ala Ser Arg Pro Tyr Asn Ile Tyr Pro
485 490 495

His Gly Ile Thr Asp Val Arg Pro Leu Tyr Ser Arg Arg Leu Pro Lys
500 505 510

Gly Val Lys His Leu Lys Asp Phe Pro Ile Leu Pro Gly Glu Ile Phe
515 520 525

Lys Tyr Lys Trp Thr Val Thr Val Glu Asp Gly Pro Thr Lys Ser Asp
530 535 540

Pro Arg Cys Leu Thr Arg Tyr Tyr Ser Ser Phe Val Asn Met Glu Arg
545 550 555 560

Asp Leu Ala Ser Gly Leu Ile Gly Pro Leu Leu Ile Cys Tyr Lys Glu
565 570 575

Ser Val Asp Gln Arg Gly Asn Gln Ile Met Ser Asp Lys Arg Asn Val
580 585 590

Ile Leu Phe Ser Val Phe Asp Glu Asn Arg Ser Trp Tyr Leu Thr Glu
595 600 605

Asn Ile Gln Arg Phe Leu Pro Asn Pro Ala Gly Val Gln Leu Glu Asp
610 615 620

Pro Glu Phe Gln Ala Ser Asn Ile Met His Ser Ile Asn Gly Tyr Val
625 630 635 640

Phe Asp Ser Leu Gln Leu Ser Val Cys Leu His Glu Val Ala Tyr Trp
645 650 655

W2011069164SequenceList

Tyr Ile Leu Ser Ile Gly Ala Glu Thr 660 Asp Phe Leu Ser Val 670 Phe Phe
 Ser Gly Tyr Thr Phe Lys His Lys 675 Met Val Tyr Glu Asp 685 Thr Leu Thr
 Leu Phe Pro Phe Ser Gly Glu 690 Thr Val Phe Met Ser 700 Met Glu Asn Pro
 Gly Leu Trp Ile Leu Gly 705 Cys His Asn Ser Asp 715 Phe Arg Asn Arg Gly 720
 Met Thr Ala Leu Leu Lys Val Ser Ser 725 Cys Asp Lys Asn Thr Gly Asp
 Tyr Tyr Glu Asp Ser Tyr Glu Asp Ile 740 Ser Ala Tyr Leu Leu Ser Lys
 Asn Asn Ala Ile Glu Pro Arg Ser 755 Phe Ser Glu Asn Asp Lys Thr His
 Thr Cys Pro Pro Cys Pro 770 Ala Pro Glu Leu Leu Gly Gly Pro Ser Val
 Phe Leu Phe Pro Pro Lys 785 Pro Lys Asp Thr Leu Met Ile Ser Arg Thr 800
 Pro Glu Val Thr Cys 805 Val Val Asp Val Ser His Glu Asp Pro Glu
 Val Lys Phe Asn Trp Tyr Val Asp Gly 820 Val Glu Val His Asn Ala Lys 830
 Thr Lys Pro Arg Glu Glu Glu 835 Tyr Asn Ser Thr Tyr Arg Val Val Ser
 Val Leu Thr Val Leu His Glu 850 Asp Trp Leu Asn Gly Lys Glu Tyr Lys
 Cys Lys Val Ser Asn Lys 865 Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile 880
 Ser Lys Ala Lys Gly Glu 885 Pro Arg Glu Pro Glu Val Tyr Thr Leu Pro
 Pro Ser Arg Asp Glu Leu Thr Lys 900 Asn Glu Val Ser Leu Thr Cys Leu 910
 Val Lys Gly Phe Tyr Pro Ser Asp Ile 915 Ala Val Glu Trp Glu Ser Asn 925

W02011069164SequenceList i ng

G y G n P r o G l u A s n A s n T y r L y s T h r T h r P r o P r o V a l L e u A s p S e r
930 935 940

A s p G y S e r P h e P h e L e u T y r S e r L y s L e u T h r V a l A s p L y s S e r A r g
945 950 955 960

T r p G n G n G y A s n V a l P h e S e r C y s S e r V a l M e t H i s G l u A l a L e u
965 970 975

H i s A s n H i s T y r T h r G n L y s S e r L e u S e r L e u S e r P r o G y L y s
980 985 990

<210> 11
<211> 2793
<212> DNA
<213> Artificial Sequence

<220>
<223> Light Chain (LC)-Fc

<220>
<221> misc_signal
<222> (1)..(60)
<223> Signal

<220>
<221> misc_signal
<222> (2113)..(2793)
<223> Fc region

<400> 11	
at ggagacag acacact cct gct at gggt a ct gct gct ct gggt t ccagg tt ccact ggt	60
gaaat aact c gt act act ct t cagt cagat caagaggaaa tt gact at ga t gat accat a	120
t cagt t gaaa t gaagaagga agat t t gac at t t at gat g aggat gaaaa t cagagcccc	180
cgcagct t c aaaagaaaaac acgacact at t t at t gct g cagt ggagag gct ct gggat	240
t at gggat ga gt agct cccc acat gt t ct a agaaacaggg ct cagagt gg cagt gt ccct	300
cagt t caaga aagt t gt t t ccaggaat t t act gat ggct cct t t act ca gccct t at ac	360
cgt ggagaac t aat gaaca t t gggact c ct gggccat at at aagagc agaagt t gaa	420
gat aat at ca t ggt aact t t cagaaat cag gcct ct cgt c cct at t cct t ct at t ct agc	480
ct t at t t ct t at gaggaaga t cagaggcaa ggagcagaac ct agaaaaaa ct t t gt caag	540
cct aat gaaa cccaaact t a ct t t ggaaa gt gcaacat c at at ggcacc cact aaagat	600
gagt t t gact gcaaaggct g ggct t at t c t ct gat gt t g acct ggaaaa agat gt gcac	660
t caggcct ga t t ggaccct t ct ggt ct gc cacact aaca cact gaaccc t gct cat ggg	720
agacaagt ga cagt acagga at t gct ct g t t t cacca t ct t t gat ga gaccaaaaagc	780
t ggt act t ca ct gaaaat at ggaaagaaaac t gcaggct c cct gcaat at ccagat ggaa	840
gat cccact t t aaagagaa t t at cgct t c cat gcaat ca at ggct acat aat ggat aca	900

W2011069164SequenceLi st i ng

ct acct ggct	t agt aat ggc	t caggat caa	aggat t cgat	ggt at ct gct	cagcat gggc	960
agcaat gaaa	acat ccattc	t att cat ttc	agt ggacat g	t gt t cact gt	acgaaaaaaa	1020
gaggagt at a	aaat ggca	gt acaat ct c	t at ccaggt g	t t t t gagac	agt ggaaat g	1080
tt accat cca	aagct ggaat	tt ggcgggt g	gaat gcct a	tt ggcgagca	t ct acat gct	1140
ggat gagca	cact ttt ct	ggt gt acagc	aat aagt gt c	agact cccct	ggaaat ggct	1200
t ct ggacaca	tt agagat t	t cagat t aca	gct t caggac	aat at ggaca	gt gggccca	1260
aagct ggcca	gact t catt a	tt ccggat ca	at caat gcct	ggagcaccaa	ggagccct tt	1320
t ctt ggat ca	aggt ggat ct	gt t ggcacca	at gat t att c	acggcat caa	gaccagggt	1380
gcccgt caga	agt t ct ccag	cct ct acat c	t ct cagtt a	t cat cat gt a	t agt ct t gat	1440
gggaagaagt	ggcagact t a	t cgaggaaat	t ccact ggaa	cct t aat ggt	ct t ct t t ggc	1500
aat gt ggat t	cat ct gggat	aaaacacaat	at t t t aacc	ct ccaat t at	t gct cgat ac	1560
at ccgt t t gc	acccaact ca	tt at agcat t	cgcagcact c	tt cgcatt gga	gt t gat ggc	1620
t gt gat t t aa	at agt t gcag	cat gccat t g	ggaat ggaga	gt aaagcaat	at cagat gca	1680
cagat t act g	ct t cat cct a	ct t accaaat	at gt t t gcca	cct ggt ct cc	tt caaaagct	1740
cgact t cacc	t ccaaggag	gagt aat gcc	t ggagacct c	aggt gaat aa	t cccaaaagag	1800
t ggct gcaag	t ggact t cca	gaagacaat g	aaagt cacag	gagt aact ac	t cagggagt a	1860
aaat ct ct gc	tt accagcat	gt at gt gaag	gagt t cct ca	t ct ccagcag	t caagat ggc	1920
cat cagt gga	ct ct ct ttt	t cagaat ggc	aaagt aaagg	t t t t caggg	aaat caagac	1980
t cct t cacac	ct gt ggt gaa	ct ct ct agac	ccaccgt t ac	t gact cgct a	cct t cgaat t	2040
caccccccaga	gt t gggt gca	ccagat t gcc	ct gagat gg	aggt t ct ggg	ct gcgaggca	2100
caggacct ct	acgacaaaac	t cacacat gc	ccaccgt gcc	cagct ccaga	act cct gggc	2160
ggaccgt cag	t ct t cct ct t	ccccccaaaa	cccaaggaca	ccct cat gat	ct cccggacc	2220
cct gaggt ca	cat gcgt ggt	ggt ggacgt g	agccacgaag	accct gaggt	caagt t caac	2280
t ggt acgt gg	acggcgt gga	ggt gcat aat	gccaagacaa	agccgcggga	ggagcagt ac	2340
aacagcacgt	accgt gt ggt	cagcgt cct c	accgt cct gc	accaggact g	gct gaat ggc	2400
aaggagt aca	agt gcaaggt	ct ccaacaaa	gcct cccag	cccccat cga	gaaaaccat c	2460
t ccaaagcca	aagggcagcc	ccgagaacca	caggt gt aca	ccct gcccc	at cccggat	2520
gagct gacca	agaaccaggt	cagcct gacc	t gcct ggt ca	aaggct t ct a	t cccagcgac	2580
at cgccgt gg	agt gggagag	caat gggcag	ccggagaaca	act acaagac	cacgcct ccc	2640
gt gt t ggact	ccgacggct c	ct t ct t cct c	t acagcaagc	t caccgt gga	caagagcagg	2700
t ggcagcagg	ggaacgt ct t	ct cat gct cc	gt gat gcat g	aggct ct gca	caaccact ac	2760
acgcagaaga	gcct ct ccct	gt ct ccgggt	aaa			2793

<210> 12
<211> 931
<212> PRT

<213> Artificial Sequence

<220>
<223> LC-Fc6His<220>
<221> M SC_FEATURE
<222> (1)..(20)
<223> Signal<220>
<221> M SC_FEATURE
<222> (705)..(931)
<223> Fc region

<400> 12

Met G u Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Leu Trp Val Pro
1 5 10 15G y Ser Thr G y G u Ile Thr Arg Thr Thr Leu G n Ser Asp G n G u
20 25 30G u Ile Asp Tyr Asp Asp Thr Ile Ser Val G u Met Lys Lys G u Asp
35 40 45Phe Asp Ile Tyr Asp G u Asp G u Asn G n Ser Pro Arg Ser Phe G n
50 55 60Lys Lys Thr Arg His Tyr Phe Ile Ala Ala Val G u Arg Leu Trp Asp
65 70 75 80Tyr G y Met Ser Ser Ser Pro His Val Leu Arg Asn Arg Ala G n Ser
85 90 95G y Ser Val Pro G n Phe Lys Lys Val Val Phe G n G u Phe Thr Asp
100 105 110G y Ser Phe Thr G n Pro Leu Tyr Arg G y G u Leu Asn G u His Leu
115 120 125G y Leu Leu G y Pro Tyr Ile Arg Ala G u Val G u Asp Asn Ile Met
130 135 140Val Thr Phe Arg Asn G n Ala Ser Arg Pro Tyr Ser Phe Tyr Ser Ser
145 150 155 160Leu Ile Ser Tyr G u G u Asp G n Arg G n G y Ala G u Pro Arg Lys
165 170 175Asn Phe Val Lys Pro Asn G u Thr Lys Thr Tyr Phe Trp Lys Val G n
180 185 190His His Met Ala Pro Thr Lys Asp G u Phe Asp Cys Lys Ala Trp Ala
195 200 205

W2011069164SequenceList

Tyr Phe Ser Asp Val Asp Leu Glu Lys Asp Val His Ser Gly Leu Ile
210 215
Gly Pro Leu Leu Val Cys His Thr Asn Thr Leu Asn Pro Ala His Gly
225 230 235 240
Arg Gln Val Thr Val Gln Glu Phe Ala Leu Phe Phe Thr Ile Phe Asp
245 250 255
Glu Thr Lys Ser Trp Tyr Phe Thr Glu Asn Met Glu Arg Asn Cys Arg
260 265 270
Ala Pro Cys Asn Ile Gln Met Glu Asp Pro Thr Phe Lys Glu Asn Tyr
275 280 285
Arg Phe His Ala Ile Asn Gly Tyr Ile Met Asp Thr Leu Pro Gly Leu
290 295 300
Val Met Ala Gln Asp Gln Arg Ile Arg Trp Tyr Leu Leu Ser Met Gly
305 310 315 320
Ser Asn Glu Asn Ile His Ser Ile His Phe Ser Gly His Val Phe Thr
325 330 335
Val Arg Lys Lys Glu Glu Tyr Lys Met Ala Leu Tyr Asn Leu Tyr Pro
340 345 350
Gly Val Phe Glu Thr Val Glu Met Leu Pro Ser Lys Ala Gly Ile Trp
355 360 365
Arg Val Glu Cys Leu Ile Gly Glu His Leu His Ala Gly Met Ser Thr
370 375 380
Leu Phe Leu Val Tyr Ser Asn Lys Cys Gln Thr Pro Leu Gly Met Ala
385 390 395 400
Ser Gly His Ile Arg Asp Phe Gln Ile Thr Ala Ser Gly Gln Tyr Gly
405 410 415
Gln Trp Ala Pro Lys Leu Ala Arg Leu His Tyr Ser Gly Ser Ile Asn
420 425 430 435
Ala Trp Ser Thr Lys Glu Pro Phe Ser Trp Ile Lys Val Asp Leu Leu
440 445
Ala Pro Met Ile Ile His Gly Ile Lys Thr Gln Gly Ala Arg Gln Lys
450 455 460 465
Phe Ser Ser Leu Tyr Ile Ser Gln Phe Ile Ile Met Tyr Ser Leu Asp
470 475 480

W2011069164SequenceList

Gly Lys Lys Trp Gln Thr Tyr Arg Gly Asn Ser Thr Gly Thr Leu Met
 485 490 495

Val Phe Phe Gly Asn Val Asp Ser Ser Gly Ile Lys His Asn Ile Phe
 500 505 510

Asn Pro Pro Ile Ile Ala Arg Tyr Ile Arg Leu His Pro Thr His Tyr
 515 520 525

Ser Ile Arg Ser Thr Leu Arg Met Glu Leu Met Gly Cys Asp Leu Asn
 530 535 540

Ser Cys Ser Met Pro Leu Gly Met Glu Ser Lys Ala Ile Ser Asp Ala
 545 550 555 560

Gln Ile Thr Ala Ser Tyr Phe Thr Asn Met Phe Ala Thr Trp Ser
 565 570 575

Pro Ser Lys Ala Arg Leu His Leu Gln Gly Arg Ser Asn Ala Trp Arg
 580 585 590

Pro Gln Val Asn Asn Pro Lys Glu Trp Leu Gln Val Asp Phe Gln Lys
 595 600 605

Thr Met Lys Val Thr Gly Val Thr Thr Gln Gly Val Lys Ser Leu Leu
 610 615 620

Thr Ser Met Tyr Val Lys Glu Phe Leu Ile Ser Ser Ser Gln Asp Gly
 625 630 635 640

His Gln Trp Thr Leu Phe Phe Gln Asn Gly Lys Val Lys Val Phe Gln
 645 650 655

Gly Asn Gln Asp Ser Phe Thr Pro Val Val Asn Ser Leu Asp Pro Pro
 660 665 670

Leu Leu Thr Arg Tyr Leu Arg Ile His Pro Gln Ser Trp Val His Gln
 675 680 685

Ile Ala Leu Arg Met Glu Val Leu Gly Cys Glu Ala Gln Asp Leu Tyr
 690 695 700

Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly
 705 710 715 720

Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met
 725 730 735

Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His
 740 745 750

W2011069164SequenceList i ng

Gl u Asp Pro Gl u Val Lys Phe Asn Trp Tyr Val Asp Gl y Val Gl u Val
755 760 765

His Asn Al a Lys Thr Lys Pro Arg Gl u Gl u Gl n Tyr Asn Ser Thr Tyr
770 775 780

Arg Val Val Ser Val Leu Thr Val Leu His Gl n Asp Trp Leu Asn Gl y
785 790 795 800

Lys Gl u Tyr Lys Cys Lys Val Ser Asn Lys Al a Leu Pro Al a Pro Ile
805 810 815

Gl u Lys Thr Ile Ser Lys Al a Lys Gl y Gl n Pro Arg Gl u Pro Gl n Val
820 825 830

Tyr Thr Leu Pro Pro Ser Arg Asp Gl u Leu Thr Lys Asn Gl n Val Ser
835 840 845

Leu Thr Cys Leu Val Lys Gl y Phe Tyr Pro Ser Asp Ile Al a Val Gl u
850 855 860

Trp Gl u Ser Asn Gl y Gl n Pro Gl u Asn Asn Tyr Lys Thr Thr Pro Pro
865 870 875 880

Val Leu Asp Ser Asp Gl y Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val
885 890 895

Asp Lys Ser Arg Trp Gl n Gl n Gl y Asn Val Phe Ser Cys Ser Val Met
900 905 910

His Gl u Al a Leu His Asn His Tyr Thr Gl n Lys Ser Leu Ser Leu Ser
915 920 925

Pro Gl y Lys
930