发明名称
纳米二氧化硅/水性聚氨酯杂化材料的制备方法

摘要
本发明提供一种二氧化硅/水性聚氨酯杂化材料的制备方法，通过多异氰酸酯、聚多元醇以及含羧基的亲水性扩链剂和小分子扩链剂反应制备含异氰酸酯端基的聚氨酯预聚体，然后加入含氨基或羟基的硅烷偶联剂与聚氨酯预聚体反应得到硅氧烷封端的聚氨酯，加入中和剂中和成盐后，再加入前驱体和去离子水乳化，得到固含量为10～80wt%的二氧化硅/水性聚氨酯杂化材料。该杂化材料在室温下具有较好的稳定性，成膜时无VOC排放具有环保等优点。此外，涂膜的力学性能好，具有优异的耐水、耐溶剂和耐热稳定性等特点，在涂料、涂饰领域有广泛用途。
1. 一种二氧化硅/水性聚氨酯杂化材料的制备方法，通过多异氰酸酯、聚多元醇以及含羧基的亲水性扩链剂和小分子扩链剂反应制备含异氰酸酯端基的聚氨酯预聚体，然后加入含氨基或羟基的硅烷偶联剂与聚氨酯预聚体反应得到硅氧烷封端的聚氨酯，加入中和剂中和成盐后，再加入前驱体和去离子水乳化，得到固含量为 10～80wt% 的二氧化硅/水性聚氨酯杂化材料；

其中，所述多异氰酸酯是脂肪族异氰酸酯或芳香族异氰酸酯，所述聚多元醇为聚酯多元醇或者聚醚多元醇，所述多异氰酸酯中的异氰酸酯基团与多元醇的羟基的摩尔比为 3:0:1～5:0:1；

所述含羧基的亲水性扩链剂为含羧酸的小分子二元醇，所述多异氰酸酯中异氰酸酯基团与含羧基的亲水性扩链剂中的羟基的摩尔比为 1:0.5～1:0.25；

所述小分子扩链剂为小分子多元醇或者小分子多元胺，所述多异氰酸酯中异氰酸酯基团与小分子扩链剂的羟基或胺基的摩尔比为 1:0.3～1:0.01；

所述硅烷偶联剂中氨基或羟基与多异氰酸酯中的异氰酸酯基团的摩尔比为 0.11:1～0.44:1；

所述中和剂为胺类或者碱类，所述中和剂中的氨基基团或者羟基与含羧基的亲水性扩链剂中的羧基的摩尔比为 0.9:1～1.2:1；

所述前驱体用量为总固含量的 0至30wt%，去离子水的用量为总固含量的 0.25～9 倍；

其中，所述前驱体为正硅酸乙酯。

2. 根据权利要求 1 所述的方法，其特征在于，制备含异氰酸酯端基的聚氨酯预聚体时加入催化剂，所述催化剂为有机锡类或者胺类催化剂，所述催化剂的用量占杂化材料固含量的0.01～0.5wt%。

3. 根据权利要求 1 或 2 所述的方法，其特征在于，所述多异氰酸酯中的异氰酸酯基团与多元醇的羟基的摩尔比为 3:8:1～4:3:1，

4. 根据权利要求 1 或 2 所述的方法，其特征在于，所述多异氰酸酯中异氰酸酯基团与含羧基的亲水性扩链剂中的羟基的摩尔比为 1:0.4～1:0.3。

5. 根据权利要求 1 或 2 所述的方法，其特征在于，所述多异氰酸酯中异氰酸酯基团与小分子扩链剂的羟基或胺基的摩尔比为 1:0.2～1:0.17。

6. 根据权利要求 1 或 2 所述的方法，其特征在于，所述硅烷偶联剂中氨基或羟基与多异氰酸酯中的异氰酸酯基团的摩尔比为 0.33:1～0.40:1。

7. 根据权利要求 1 或 2 所述的方法，其特征在于，所述中和剂中的氨基基团或者羟基与含羧基的亲水性扩链剂中的羧基的摩尔比为 1:0.1～1:1:1。

8. 根据权利要求 1 或 2 所述的方法，其特征在于，所述前驱体的用量为产物固含量的 1～10%，去离子水的用量为总固含量的 2～4 倍。

9. 根据权利要求 1 或 2 所述的方法，其特征在于，所述中和剂为三乙胺。

10. 根据权利要求 1 或 2 所述的方法，其特征在于，所述杂化材料中固含量为 25～40wt%。
纳米二氧化硅 / 水性聚氨酯杂化材料的制备方法

技术领域

本发明涉及一种纳米二氧化硅 / 水性聚氨酯杂化材料，具体涉及一种贮存稳定性、成膜后耐水解、耐热稳定性和力学机械性能好的纳米二氧化硅 / 水性聚氨酯杂化材料。

背景技术

由于国家实行节能减排的政策，对环保要求越来越严，水性聚氨酯已广泛地应用于涂料、胶黏剂、涂饰剂等领域，但水性聚氨酯仍存在着力学性能不高、耐水解稳定性差，热稳定性差等缺点。目前纳米二氧化硅 / 水性聚氨酯杂化材料兼具有机高分子和二氧化硅的性能优势，使杂化材料具有聚合物的柔韧性、弹性和二氧化硅的热稳定性、强度、硬度以及抗紫外线等性能，成为目前的研究热点。传统的纳米改性水性聚氨酯的制备方法有共混法、原位聚合法，这些方法制备的改性水性聚氨酯中的纳米粒子极易团聚。近年来，溶胶凝胶法广泛用于制备有机 - 无机杂化材料，该法可使有机相和无机相达到分子水平的复合，但主要集中在溶剂型聚氨酯。方法一般为先将正硅酸乙酯、去离子水、乙醇一定比例混合，在酸或碱催化下，水解缩合制备 SiO₂ 凝胶，然后将 SiO₂ 凝胶加入到聚多元醇中或聚氨酯预聚体或溶液中，充分混合得到的纳米 SiO₂ / 聚氨酯杂化材料，硬度、模数、强度、玻璃化温度等均有明显提高。目前，对于水性聚氨酯的溶胶凝胶杂化改性的研究不太多，一般将正硅酸乙酯加入到水性聚氨酯预聚体中，以盐酸为催化剂经溶胶凝胶过程制备 SiO₂ / 水性聚氨酯纳米杂化材料。但这种方法未考虑到无机相和有机相之间的相容性，若二者之间相互作用不够强的话，将会发生相分离，从而降低纳米颗粒的增强效应。

发明内容

针对现有技术的不足，本发明提供一种纳米二氧化硅 / 水性聚氨酯杂化材料的制备方法，所述纳米二氧化硅 / 水性聚氨酯杂化材料具有良好的相容性、良好的储藏稳定性，并且成膜后具有优异的力学机械性能、耐水解以及热稳定性。

本发明提供一种二氧化硅 / 水性聚氨酯杂化材料的制备方法，通过多异氰酸酯、聚多元醇以及含羟基的亲水性扩链剂和小分子扩链剂反应制备含异氰酸酯端基的聚氨酯预聚体，然后加入含氢基或羟基的硅烷偶联剂与聚氨酯预聚体反应得到硅烷烷封端的聚氨酯，加入中和剂中和成盐后，再加入前驱体和去离子水乳化，得到固含量为 10 ~ 80wt% 的二氧化硅 / 水性聚氨酯杂化材料。

其中，所述多异氰酸酯是脂肪族异氰酸酯或芳香族异氰酸酯，所述聚多元醇为聚酯多元醇或者聚醚多元醇，所述多异氰酸酯中的异氰酸酯基团与多元醇的羟基的摩尔比为
3.0 : 1 ～ 5.0 : 1；

[0007] 所述含羧基的亲水性扩链剂为含羧酸的小分子二元醇，所述多元羧酸酯中多元酸酯基团与含羧基的亲水性扩链剂中的羟基的摩尔比为 1 : 0.5 ～ 1 : 0.25；

[0008] 所述小分子扩链剂为小分子多元醇或者小分子多元胺，所述多元羧酸酯中多元酸酯基团与小分子扩链剂的羟基或胺基的摩尔比为 1 : 0.3 ～ 1 : 0.01；

[0009] 所述硅烷偶联剂中氨基或羟基与多元羧酸酯中的异氰酸酯基团的摩尔比为 0.11 : 1 ～ 0.44 : 1；

[0010] 所述中和剂为酸类或碱类，所述中和剂中的氨基基团或羟基与含羧基的亲水性扩链剂中的羟基的摩尔比为 0.9 : 1 ～ 1.2 : 1；

[0011] 所述前驱体用量为固含量的 0.25 ～ 9 倍。

[0012] 上述制备方法中，所述含有异氰酸酯基团的聚氨酯预聚体的制备，通过将多元醇、多元羧酸酯、含羧基的亲水性扩链剂、小分子扩链剂一步聚合反应获得，或者通过多元醇与多元羧酸酯反应，再用水性扩链剂和小分子扩链剂扩链后制得。所述异氰酸酯基团的官能团数大于多元醇、亲水性扩链剂、小分子扩链剂所含的羟基或胺基官能团数的总和，最后得到含有异氰酸酯基团的聚氨酯预聚体。

[0013] 上述方法中，制备含异氰酸酯端基的聚氨酯预聚体时可加入催化剂，所述催化剂为有机锡类或者胺类催化剂，所述催化剂的用量占杂化材料固含量的 0.01 ～ 0.5wt%。所述催化剂如如月桂酸二丁基锡，辛酸亚锡，三亚乙基二胺，四甲基丁二胺等。

[0014] 上述方法中，所述异氰酸酯为脂肪族异氰酸酯和芳香族异氰酸酯，如异佛尔酮二异氰酸酯（IPDI）、六亚甲基二异氰酸酯（HDI）、苯基甲烷二异氰酸酯（MDI）、甲苯二异氰酸酯（TDI）等其中的一种或两种以上的混合物。所述多元醇的分子量为 1000 ～ 3000，所述多元醇可以为高分子量多元醇如聚酯二元醇、聚醚二元醇如聚酯二元醇、聚醚二元醇、聚氨酯丙烯二元醇、聚四氢呋喃等，或者低聚物多元醇如聚醚三醇、低支化度聚醚二元醇、聚碳酸酯二醇、丙烯酸酯多元醇等以上多元醇其中的一种或两种以上的混合物。优选地，所述所述异氰酸酯中的异氰酸酯基团与多元醇的羟基的摩尔比为 3.8 : 1 ～ 4.3 : 1。

[0015] 上述方法中，所述含羧基的亲水性扩链剂如二羟甲基乙酸、二羟甲基丙酸、二羟甲基丁酸、二羟甲基戊酸等其中的一种或两种以上的混合物。优选所述所述异氰酸酯中异氰酸酯基团与含羧基的亲水性扩链剂中的羟基的摩尔比为 1 : 0.4 ～ 1 : 0.3。

[0016] 上述方法中，所述小分子扩链剂为小分子多元醇或者是小分子多元胺，如乙二醇、1,4-丁二醇、乙二胺、己二胺。优选所述所述异氰酸酯中异氰酸酯基团与小分子扩链剂的羟基或胺基的摩尔比 1 : 0.2 ～ 1 : 0.17。

[0017] 上述制备方法中，所述硅烷偶联剂为含氨基或者羟基的硅烷偶联剂，如 3- 氨基丙基三乙氧基硅烷、氨基苯基三甲氧基硅烷等。优选所述硅烷偶联剂中氨基羟基与多异氰酸酯中的异氰酸酯基团的摩尔比为 0.33 : 1 ～ 0.40 : 1。

[0018] 上述制备方法中，所述中和剂为三甲胺、三乙胺、三异丙胺、三丁基胺、N- 甲基二乙醇胺、N- 苯基乙醇胺、N- 甲基乙醇胺等有机胺类，氢氧化钠、氢氧化钾等无机碱类，氨水等。其中优选的是有机胺类，更优选为叔胺，最优选三乙胺。所述中和剂中的
氨基基团或羟基与含羟基的亲水性扩链剂中羧基的摩尔比为 1.0 ： 1 ～ 1.1 ： 1。

[0019] 上述方法中，优选地，所述前驱体为正硅酸乙酯，所述前驱体的用量为产物固含量的 1 ～ 10wt%；去离子水的用量为总固含量的 2 ～ 4 倍。

[0020] 上述方法中，含端异氰酸酯基团的聚氨酯预聚体和含胺基的硅烷偶联剂的反应方程式示例如下：

\[
\begin{align*}
\text{CH}_3 & \quad \text{C} \quad \text{NCO} + \quad \text{NH}_2\text{CH}_2\text{CH}_2\text{Si-OCH}_2\text{CH}_3 \\
\text{OCN} \quad \text{C} \quad \text{NCO} & \quad \text{COOH} \quad \text{OCH}_2\text{CH}_3
\end{align*}
\]

[0021]

\[
\begin{align*}
\text{CH}_3\text{CH}_2\text{O} & \quad \text{H} \quad \text{O} \quad \text{H} \quad \text{OCH}_2\text{CH}_3 \\
\text{CH}_3\text{CH}_2\text{O-Si-(CH}_2)_3 & \quad \text{H} \quad \text{O} \quad \text{H} \quad \text{OCH}_2\text{CH}_3 \\
\text{CH}_3\text{O} & \quad \text{N-C-N} \quad \text{COOH} \quad \text{OCH}_2\text{CH}_3
\end{align*}
\]

[0023] 上述方法中，所述制备含异氰酸酯端基的聚氨酯预聚体的反应温度为 40 ～ 110℃，优选 40 ～ 95℃，更优选 60 ～ 90℃。

[0024] 本发明制备的杂化材料的成膜技术为现有技术，如可以在室温下成膜，也可以在 80℃下成膜，或者在真空下 60℃成膜。

[0025] 通过本发明提供的方法，利用硅烷偶联剂一端的官能团（氨基或羟基）与聚氨酯预聚体的异氰酸酯基团反应，得到硅氧烷封端的聚氨酯，加入中和剂成盐后，加入前驱体和去离子水，硅烷偶联剂一端的硅氧烷参与前驱体如正硅酸乙酯的水解、缩合反应，生成无机粒子，从而和无机相间生成化学键，提高无机相纳米粒子的结合力，阻止纳米二氧化硅进一步生长和团聚，使聚氨酯链段和纳米二氧化硅之间形成化学键，提高无机相和有机相之间的相容性，阻止两相间的相分离。硅烷偶联剂不仅跟聚氨酯形成化学键，而且自身也参与了生成无机粒子的反应，硅烷偶联剂以化学键分别和水性聚氨酯分子、二氧化硅键合，增加水性聚氨酯与纳米粒子之间的相容性，起到“桥键”作用。生成纳米粒子的前驱体直接加到聚氨酯水乳液中，步骤简单，操作方便。

[0026] 本发明制备的杂化材料在室温下具有较好的稳定性，固含量高，成膜时无 VOC 排放具有环保等优点。此外，利用本发明提供的方法制备的膜的力学性能好，具有优异的耐水、耐溶剂和耐热稳定性等特性，在涂料、涂饰领域有广泛用途。

附图说明

[0027] 图 1 为根据本发明的一个实施例的扫描电镜图；
[0028] 图 2 为根据本发明的一个实施例的透射电镜图；
[0029] 图 3 为根据本发明的一个对比例的扫描电镜图。

具体实施方式

[0030] 从图 1 和图 2 可以看出，经过含胺基或羟基的硅烷偶联剂改性的二氧化硅 / 聚氨
说明 书

醋酸化材料中的二氧化硅分布均匀，没有发生团聚。而图 3 为没有加硅烷偶联剂的二氧化硅/聚氨酯化材料的扫描电镜图，从图中可以看出，二氧化硅都团聚在一起。

[0031] 实施例 1

[0032] 将 20g 数均相对分子质量为 2000 的聚乙二酸丁二醇酯加入到带有搅拌器的 500mL 的三口烧瓶中，升温至 110℃，开动搅拌并抽真空脱 水 2 小时，然后冷却至 80℃，通入氨气消除真空。加入 9.7498g 4,4’-二苯基甲烷二异氰酸酯，在 80℃下反应 2 小时。预聚完成后，依次加入 1.7437g 二甲基丙酰胺、0.6308g 1,4-丁二醇，在 80℃下反应 3 小时后，降温至 40℃，加入 2.0334g 3-氨基丙基三乙氧基硅烷反应 1 小时后，用 1.3155g 三乙胺中和半小时。最后将正硅酸乙酯 3.9724g 和 92ml 去离子水混合，乳化 2 小时后，得到固含量为 30% 的纳米二氧化硅/聚氨酯化材料。杂化材料的贮存期至少六个月以上。

[0033] 将聚氨酯化杂化乳液均匀地涂在离型纸上，并使涂敷过程中不产生气泡。水平放置一周，成膜后在干燥箱中 80℃下烘 10 小时，从离型纸上剥离得到杂化薄膜。薄膜的性能见表 1。透射电镜测定水性聚氨酯薄膜中纳米二氧化硅的粒径为 20 ～ 100nm。

[0034] 对比例 1

[0035] 同实施例 1，不同之处在于，不加硅烷偶联剂，在用三乙胺中和后，加入制备好的 SiO2 溶胶和 80ml 去离子水，高速搅拌 2 小时并减压蒸馏除掉乙醇。其中 SiO2 溶胶的制备如下：先加入 30ml 的无水乙醇，3.3ml 水磁力搅拌 5min 以上，使溶液混合均匀，滴加正硅酸乙酯和乙醇的混合液（17ml 乙醇，3.9724gTEOS），磁力搅拌，室温下反应 6 小时，得到 SiO2 溶胶。薄膜的制备方法同实施例 1。数据见表 1。扫描电镜测定薄膜中二氧化硅分布不均匀，二氧化硅发生团聚。

[0036] 对比例 2

[0037] 同实施例 1，不同之处在于，先用三乙胺中和后，然后加入 0.5115g 甲基三乙氧基硅烷搅拌 10 分钟，然后再加正硅酸乙酯和去离子水。薄膜的制备方法同实施例 1。数据见表 1。

[0038] 实施例 2

[0039] 将 30g 数均相对分子质量为 3000 的聚乙二酸乙二醇酯加入到带有搅拌器的 500mL 的三口烧瓶中，升温至 110℃，开动搅拌并抽真空脱水 2 小时，然后冷却至 80℃，通入氨气消除真空。加入 8.6674g 异佛尔酮二异氰酸酯和适量催化剂二月桂酸二丁基锡，在 85℃下反应 2 小时。预聚完成后，依次加入 2.1461g 二甲基丙酰胺、0.3605g 1,4-丁二醇，在 80℃下反应 3 小时后，降温至 40℃，加入 2.0334g 3-氨基丙基三乙氧基硅烷反应 1 小时后，用 1.6190g 三乙胺中和半小时。最后将正硅酸乙酯 4.9805g 和 93ml 去离子水水混合，乳化 2 小时后，得到固含量为 35%的硅氧烷封端的纳米二氧化硅/水性聚氨酯。杂化材料的贮存期至少六个月以上。

[0040] 薄膜的制备方法同实施例 1。薄膜的性能见表 1。透射电镜测定水性聚氨酯薄膜中纳米二氧化硅的粒径为 30 ～ 150nm。

[0041] 对比例 3

[0042] 同实施例 2，不同之处在于，不加入硅烷偶联剂，加入三乙胺中和后，加入 SiO2 溶胶和 93ml 去离子水，高速搅拌 2 小时并减压蒸馏除掉乙醇。所述 SiO2 溶胶的制备如下：先加入 30ml 的无水乙醇，3.3ml 水磁力搅拌 5min 以上，使溶液混合均匀，滴加正硅酸乙酯和乙
醇的混合液 (17mL 乙醇, 4.9805g TEOS), 磁力搅拌, 室温下反应 6 小时。薄膜的制备方法同实施例 1。薄膜的数据见表 1。扫描电镜测定薄膜中二氧化硅分布不均匀，二氧化硅发生团聚。

[0043] 对比例 4

[0044] 同实施例 2, 不同之处在于，先用三乙胺中和，然后加入 0.6413g 甲基三乙氧基硅烷搅拌 10 分钟，最后加正硅酸乙酯和去离子水。薄膜的制备方法同实施例 1。薄膜的数据见表 1。

[0045] 表 1 薄膜性能

<table>
<thead>
<tr>
<th></th>
<th>拉伸强度 (MPa)</th>
<th>透湿率 (g/m²·24h)</th>
<th>吸水率 (%)</th>
<th>玻璃化温度 (℃)</th>
</tr>
</thead>
<tbody>
<tr>
<td>实施例 1</td>
<td>33</td>
<td>5732</td>
<td>6.4</td>
<td>-41</td>
</tr>
<tr>
<td>对比例 1</td>
<td>--</td>
<td>4720</td>
<td>11.2</td>
<td>-38</td>
</tr>
<tr>
<td>对比例 2</td>
<td>25</td>
<td>5210</td>
<td>9.5</td>
<td>-42</td>
</tr>
<tr>
<td>实施例 2</td>
<td>28</td>
<td>5576</td>
<td>3.5</td>
<td>-42</td>
</tr>
<tr>
<td>对比例 3</td>
<td>22</td>
<td>4657</td>
<td>8.4</td>
<td>-38.5</td>
</tr>
<tr>
<td>对比例 4</td>
<td>22</td>
<td>5140</td>
<td>6.2</td>
<td>-41</td>
</tr>
</tbody>
</table>

[0047] ①表示薄膜出现裂纹，无法测量其拉伸强度。

[0048] 从表 1 可以看出，跟现有技术中的未加偶联剂或加入不与预聚体反应的偶联剂制备得到的二氧化硅/聚氨酯杂化材料薄膜相比，利用本发明提供的方法制备的杂化材料薄膜，其拉伸强度、透湿率、耐水性都得到了提高，而玻璃化温度降低。