发明名称
单镜头反光式照相机的反射镜装置

摘要
本发明提供单镜头反光式照相机的反射镜装置。本发明的单镜头反光式照相机的反射镜装置具有：主反射镜部，其具有能够在向观察光学系统反射被摄体光束的位置和从所述被摄体光束位置的第二位置之间动作的反射镜面；副反射镜部，其与上述主反射镜部的移动联动，并具有如下的反射镜面：该反射镜面在上述主反射镜部于上述第一位置上从上述主反射镜部离开的位置，而在上述主反射镜部位于上述第二位置时与上述主反射镜部一起位于从上述被摄体光束位置的第二位置；以及缓冲部，其在上述主反射镜部在上述第一位置向上述第二位置移动时夹在上述副反射镜部和主反射镜部之间。
1、一种单镜头反光式照相机的反射镜装置，其特征在于，所述单镜头反光式照相机的反射镜装置具有：

主反射镜部，其具有能够在向观察光学系统反射被摄体光束的第一位置和从所述被摄体光束退避的第二位置之间动作的反射镜面；

副反射镜部，其与上述主反射镜部的移动联动，并具有如下的反射镜面：该反射镜面在上述主反射镜部位于上述第一位置时位于从上述主反射镜部离开的位置，进而，在上述主反射镜部位于上述第二位置时与上述主反射镜部一起位于从上述被摄体光束退避的位置；以及

缓冲部，其在上述主反射镜部从上述第一位置向上述第二位置移动时夹在上述副反射镜部和主反射镜部之间。

2、根据权利要求1所述的单镜头反光式照相机的反射镜装置，其特征在于，

上述缓冲部由冲击吸收材料构成，并固定在上述主反射镜部上。

3、根据权利要求1所述的单镜头反光式照相机的反射镜装置，其特征在于，

上述缓冲部由冲击吸收材料构成，并固定在上述副反射镜部上。

4、根据权利要求1或2所述的单镜头反光式照相机的反射镜装置，其特征在于，

上述副反射镜部具有抵接部，所述抵接部在上述主反射镜部位于上述第二位置时与上述缓冲部抵接，该抵接部形成有棱线，该棱线与上述缓冲部抵接。

5、根据权利要求1或3所述的单镜头反光式照相机的反射镜装置，其特征在于，

上述主反射镜部具有抵接部，所述抵接部在上述主反射镜部位于上述第二位置时与上述缓冲部抵接，该抵接部形成有棱线，该棱线与上述缓冲部抵接。
单镜头反光式照相机的反射镜装置

技术领域
本发明涉及具有副反射镜的单镜头反光式照相机的反射镜装置。

背景技术
单镜头反光式照相机成像，根据从摄影镜头入射的被摄体光束进行摄影，并且根据该从摄影镜头入射的被摄体光束进行被摄体的观察。在单镜头反光式照相机中通常配备作为反射镜装置的快速复原反射镜，该反射镜装置对来自摄影镜头的被摄体光束进行时间性地切换，使其朝向胶片或影像元件侧的影像侧或者朝向观察侧。

在单镜头反光式照相机中，在对快速复原反射镜的位置进行切换时，有时快速复原反射镜由于冲击而跳动（bound），会引起跳动的快速复原反射镜映入照片中的不良情况。并且，由于快速复原反射镜跳动而无法追随高速的反射镜驱动，因此还会引起无法使连拍性能高速化的问题。

作为避免这种不良情况的方法，通常使用在快速复原反射镜的定位部位设置缓冲材料来抑制快速复原反射镜的跳动的方法。

然而，近年来出售的照相机大多具有自动调焦（AF）机构，单镜头反光式照相机所具有的AF机构的代表例是TTL相位差AF机构。能够进行该TTL相位差AF的单镜头反光式照相机通常具有以下的结构。

将主反射镜的一部分构成为半透射部，该主反射镜能够在反射来自摄影镜头的被摄体光束的反射镜下降位置和从该被摄体光束退避的反射镜上升位置之间转动。进而，将用于在观察位置处反射透射过该半透射部的被摄体光束的副反射镜设在该半透射部的背面侧，将相位差AF用的测距传感器配置在由该副反射镜反射的被摄体光束的光路上。另外，当主反射镜位于反射镜上升位置时，该副反射镜构成为沿着该主反射镜折叠并从被摄体光束退避。
作为抑制该由主反射镜和副反射镜构成的快速复原反射镜的晃动的技术，例如在日本特开平 6-175223 号公报中公开了利用被定时控制的电磁铁吸附快速复原反射镜的技术。

但是，在日本特开平 6-175223 号公报所公开的技术中，存在基于电磁铁的吸附及其控制用的机构和电路变得复杂、装置大型化，同时电力消耗量变大的问题。

发明内容

本发明就是鉴于上述问题点而完成的，其目的在于提供一种能够利用简单的结构减轻副反射镜的晃动的单镜头反光式照相机的反射镜装置。

为了达成上述目的，本发明的单镜头反光式照相机的反射镜装置的特征在于，所述单镜头反光式照相机的反射镜装置具有：主反射镜部，其具有能够在向观察光学系统反射被摄体光束的第一位置和从所述被摄体光束退避的第二位置之间动作的反射镜面；副反射镜部，其与上述主反射镜部的移动联动，并具有如下的反射镜面：该反射镜面在上述主反射镜部位于上述第一位置时位于从上述主反射镜部离开的位置，而且，在上述主反射镜部位于上述第二位置时与上述主反射镜部一起位于从上述被摄体光束退避的位置；以及缓冲部，其在上述主反射镜部从上述第一位置向上述第二位置移动时夹在上述副反射镜部和主反射镜部之间。

从以下参照附图的描述中将更加清楚地理解本发明以上及其其它的目的、特征和优点。

附图说明
图 1 是示出单镜头反光式照相机的本体的概要结构的图。
图 2 是从侧方观察位于反射镜下降位置的反射镜装置的图。
图 3 是从侧方观察位于反射镜上升位置的反射镜装置的图。
图 4 是从下方侧观察位于反射镜下降位置的反射镜装置的图。
具体实施方式

以下，参照附图对在镜头更换式单镜头反光式照相机中应用了本发明的实施方式进行说明。

图 1 是示出单镜头反光式照相机的照相机本体的结构的纵剖视图。图 2 是从侧方观察位于反射镜下降位置的反射镜装置的图。图 3 是从侧方观察位于反射镜上升位置的反射镜装置的图。图 4 是从下方侧观察位于反射镜下降位置的反射镜装置的图。

首先，参照图 1～图 3 对本实施方式的单镜头反光式照相机的概要结构进行说明。

单镜头反光式照相机的照相机本体 1 构成为具有反射镜装置 2、摄像单元 3、取景器单元 4、测距单元 5、显示单元 6 以及闪光灯单元 7。

在反射镜装置 2 的前方设有机身转接环（body mount）11，能够经由该机身转接环 11 以可更换的方式在照相机本体 1 上装卸摄影镜头 1a。

另外，在以下的说明中提到“光路”时，指的是在摄影镜头 1a 装配在机身转接环 11 上时经由该摄影镜头 1a 入射的被摄体光束的光路，并且，在存在例外的情况时会写明其意思。

并且，在以下的说明中，如图 1 所示，设单镜头反光式照相机的左右方向为 X 方向，设与 X 方向正交的上下方向为 Y 方向，设与 X、Y 方向正交的前后方向为 Z 方向。Z 方向是与摄影镜头 1a 的光轴 O 平行的方向（照相机本体 1 的厚度方向），在 Z 方向上以照相机本体 1 的被摄体侧为前侧（前面侧），以摄影者侧为后侧（背面侧）。并且，用从背面侧观察照相机本体 1 的方向表示 X 方向的左右方向。即，正对图 1 的平面，近前侧为左侧。

在该机身转接环 11 的光路上后方配设有反射镜盒 12，在该反射镜盒 12 内配设有在后面详细叙述的反射镜装置 2。反射镜装置 2 构成为具有能够进退地配置在被摄体光束的光路上的两个反射镜，即主反射镜 13 和副反射镜 14。

主反射镜 13 具有反射镜面，并且由框状的主反射镜保持框 41 支承，所述主反射镜保持框 41 在反射镜盒内配设成能够绕主反射镜转动轴 41a
转动。副反射镜保持框 61 以能够绕反射镜转动轴 61a 转动的方式支承在该主反射镜保持框 41 的背面侧。副反射镜 14 由该副反射镜保持框 61 支承。主反射镜转动轴 41a 和副反射镜转动轴 61a 大致平行，分别是以沿着与摄影镜头 1a 的光轴 O 正交的面的方式配置的轴。

主反射镜 13 的反射镜面的至少一部分构成为半透射部，并且在主反射镜保持框 41 中形成有贯通孔即开口部 42，透射过主反射镜 13 的半透射部的光束构成为透射至主反射镜保持框 41 的背面侧。副反射镜 14 配设在透射过该主反射镜 13 的半透射部的光束的光轴上。

主反射镜 13 通过由未图示的致动器或凸轮、弹簧机构产生的驱动力而定位在下述两个位置中的任一位置上：如图 2 所示的进入被摄体光束的光路上的第一位置即反射镜下降位置；和如图 3 所示的从被摄体光束的光路上退避的第二位置即反射镜上升位置。

并且，副反射镜 14 具有反射镜面，并通过未图示的凸轮、弹簧机构等与主反射镜 13 的移动联动地绕反射镜转动轴 61a 转动。当主反射镜 13 位于反射镜下降位置时，副反射镜 14 被定位在主反射镜 13 的背面侧中将透射过主反射镜 13 的半透射部的光束向预定的方向反射的反射位置。并且，当主反射镜 13 位于反射镜上升位置时，副反射镜 14 折叠在主反射镜 13 侧，被定位在从被摄体光束的光路上退避的位置。

在主反射镜 13 和副反射镜 14 位于反射镜上升位置时的被摄体光束的光路上后方配设有作为摄像部的摄像单元 3。该摄像单元 3 具有用于对被摄体光束的会聚时间进行控制的快门装置 15 和设在该快门装置 15 的光路上后方的摄像元件 16。

另一方面，在主反射镜 13 和副反射镜 14 位于反射镜下降位置时的由主反射镜 13 反射的被摄体光束的光路上配设有作为观察光学系统的取景器单元 4。该取景器单元 4 具有成像有被摄体像的调焦屏 17（focusing screen），该调焦屏 17 配设在相对于摄影镜头与摄像元件 16 的感光面在光学上等价的位置上，进一步，该取景器单元 4 还具有：五棱镜 18，其将成像在该调焦屏 17 上的被摄体像转换为正立正像；以及对来自该五棱镜 18 的光学像进行扩大并将其引导至观察者的眼中的目的光学系统 19。
并且，在主反射镜 13 和副反射镜 14 位于观察位置时，在由副反射镜 14 反射的被摄体光束的光路上配设有测距单元 5。该测距单元 5 具有聚光透镜 21、第一反射镜 22、第二反射镜 23、分离透镜（separator lens）24 以及测距传感器 25，构成为进行用于所谓的 TTL 相位差 AF 的测距的单元。

在摄像单元 3 的前后方侧即照相机本体 1 的背面侧配设有显示单元 6，所述显示单元 6 构成为包含彩色液晶显示元件等。

并且，在五棱镜 18 的上方配设有用于对被摄体照射照明光的闪光灯单元 7，该闪光灯单元 7 能够在使用时弹出（pop-up），在不使用时收纳在照相机本体 1 内。

其次，参照图 2 至图 4 对反射镜装置 2 的详细结构进行说明。

如图 4 所示，主反射镜 13 保持在主反射镜保持框 41 上，构成主反射镜部。并且，副反射镜 14 保持在副反射镜保持框 61 上，构成副反射镜部。

主反射镜保持框 41 具有突出设置在主反射镜转动轴 41a 上的一对转动轴 43，该一对转动轴 43 通过设在反射镜盒 12 的左右壁面上的一对轴承部支承为能够转动。

并且，副反射镜保持框 41 具有突出设置在副反射镜转动轴 61a 上的一对支承轴 64，该支承轴 64 螺合在设于副反射镜保持框 61 上的轴承孔 62 中。由此，副反射镜保持框 61 在主反射镜保持框 41 的背面侧支承为能够绕支承轴 64，即绕副反射镜转动轴 61a 转动。

并且，如上所述，在主反射镜保持框 41 上设有形成例如八边形形状的贯通孔即开口部 42。并且，主反射镜 13 的至少一部分构成为半透半反射（half mirror）。

并且，如图 2 和图 3 所示，在反射镜盒 12 的右侧壁面部 12R 上突出设置有主反射镜保持框用止挡件 33 和副反射镜保持框用止挡件 34，所述主反射镜保持框用止挡件 33 用于对位于反射镜下降位置的主反射镜保持框 41 的下降下端侧进行定位，所述副反射镜保持框用止挡件 34 用于对位于反射镜下降位置的副反射镜保持框 61 的下降下端侧进行定位。
在位于反射镜上升位置的主反射镜保持框架 41 和反射镜盒 12 的上侧壁面部位接的部位，设有未图示的由冲击吸收性优异的低反弹树脂或聚氨酯发泡材料等构成的弹性体形成的缓冲材料。

并且，在本实施方式中，在副反射镜保持框 61 从副反射镜转动轴 61a 离开的左右端部形成有一对抵接部 63，所述抵接部 63 是在副反射镜保持框 61 向位于反射镜上升位置的主反射镜保持框 41 嵌合的状态下与主反射镜保持框 41 抵接的部位。

进而，在该抵接部 63 的与主反射镜保持框 41 抵接的表面部位上形成多个具有三角形状的截面的突条部。换言之，在抵接部 63 的与主反射镜保持框 41 抵接的表面部位上形成有向主反射镜保持框 41 侧突出的具有棱线的至少一个凸部。另外，在抵接部 63 的表面上，也可以进行基于氟树脂等用于提高非粘接性的涂覆。

另一方面，在位于反射镜上升位置的主反射镜保持框 41 的与上述副反射镜保持框 61 的抵接部 63 抵接的各个部位上通过粘接固定有作为缓冲部（缓冲单元）的一对缓冲材料 44，该缓冲材料 44 由冲击吸收性优异的低反弹树脂或聚氨酯发泡材料等构成的弹性体形成。缓冲材料 44 例如可以应用 sorbothane（ソルポセイン）（注册商标）等。

在上述的本实施方式中，在具有主反射镜 13 和主反射镜保持架 41 的主反射镜部被定位在反射镜上升位置的情况下，在由具有副反射镜 14 和副反射镜保持架 61 的副反射镜部与上述主反射镜部夹着的区域内配设缓冲材料 44。

因此，在本实施方式中，利用缓冲材料 44 来缓和反射镜上升动作前的副反射镜保持框 61 与主反射镜保持框 41 抵接时的冲击，因此能够抑制副反射镜保持框 61 的跳动。

即，根据本实施方式，通过抑制副反射镜 14 和副反射镜保持框 61 的跳动，能够缩短摄影时的反射镜上升动作的等待时间，能够缩短从摄影者操作释放按钮到快门开始动作为止的时间，即能够缩短所谓的释放滞后时间（release time lag）。并且，由此，能够对反射镜装置进行高速驱动。

并且，在本实施方式中，在副反射镜保持框 61 的与上述缓冲材料
44 抵接的抵接部 63 的表面部分上形成有形成了棱线的凸部。即，在反射镜
上升时，由于仅凸部的棱线与缓冲材料 44 接触，因此缓冲材料 44 和抵
接部 63 的接触面积变小，抵接部 63 不会粘在由柔软的部件构成的缓冲
材料 44 上。

例如，在能够进行长时间曝光和实时取景动作的单镜头反光式的
数字照相机中，虽然考虑了长时间持续反射镜上升状态的情况，但是根据
本实施方式，即使是在长时间的反射镜上升动作时，也能够防止反射镜保
持框 61 粘在设于主反射镜保持框 41 上的缓冲材料上，能够可靠地动作。

另外，在上述的实施方式中，构成为主反射镜 13 和副反射镜 14 分别
保持在主反射镜保持框 41 和副反射镜保持框 61 上的结构，但是只要能够
通过相对于光路的进展来分配被摄体光束的结构即可，并不限于本实施
方式。例如，也可以是主反射镜保持框和主反射镜形成为一体的结构。

并且，在本实施方式中构成为缓冲材料 44 固定在主反射镜保持框
44 上，抵接部 63 形成在副反射镜保持框 61 上，但是即使是与此相反的
配置，例如成为缓冲材料 44 固定在副反射镜保持框 61 上，具有棱线部
的抵接部 63 形成于主反射镜保持框 41 上，当然也能够得到同样的效果。

另外，在本实施方式中，抵接部形成具有直线状的棱线的截面呈三
角形状的突条部、即所谓的滚花状的凹凸部，但是并不限于本实施方式。

例如，抵接部 63 的表面形状也可以是具有俯视呈曲线、闭曲线、矩
形、多边形等的一个或多个棱线的凹凸形状，棱线也可以不是三角顶点
而是半圆顶点。并且，抵接部 63 的表面形状也可以是排列了多个角锥的
所谓的锥刀齿状的形状。

另外，本发明并不限于上述的实施方式，在不违反权利要求的范围
和从说明书整体理解的发明的主旨或思想的范围内可以适当变更，伴随
这种变更的照相机也包含在本发明的技术范围内。

本发明所涉及的单镜头反光式照相机不限于在上述的实施方式中说
明了的镜头更换式的数字照相机的方式，当然也可以是利用胶片进行摄
影的单镜头反光式照相机、或者摄影镜头和本体成为一体的单镜头反光
式照相机。
图 1
图2