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METHOD AND APPARATUS FOR COMPRESSING ARBITRARY DATA

EIELD OF THE INVENTION

The present invention relates to the field of data compression and

decompression systems; particularly, the present invention relates to

context models capable of accommodating arbitrary data (e.g., data from

multiple types of sources or in multiple types of formats).

BACKGROUND OF THE INVENTION

Data compression is an extremely useful tool for storing and
transmitting large amounts of data. For certain types of data, compression
must always be "lossless” or "reversible”. In other words, after
compression and decompression, the data must be exactly the same as the
original data. Lossless coding methods include dictionary methods of
coding (e.g., Lempel-Ziv family of algorithms), run-length coding,
enumerative coding and entropy coding.

Sometimes, due to the large amount of input data and limited
bandwidth, even more compression is needed. In such a case, the
decompressed data may not be exactly the same as the original data, but
ideally it is close enough to make little or no difference. When the data
that is produced after compression and decompression is not exactly the
same as the original input data, the coding is lossy. Lossy coding methods
may incorporate lossless coding as a sub-part.

Entropy coding consists of any method of lossless coding which

attempts to compress data close to the entropy limit using known or
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estimated symbol probabilities. Entropy codes include, for example,
Huffman codes, arithmetic codes and bin.ai-y en&épy codes.
| Binary entropy coders are lossless-i.e., perfect reconstruction is

possible) coders which act only on binary (yes/no) decisions, often
expressed as the most probable symbol (MPS) and the least probable
symbol (LPS). Examples of binary eatropy coders include [BM's Q-coder, a
coder referred to herein as the FSM-coder, and a high speed parallel coder.
The FSM~coder is a binary entropy coder which uses a finite state machine
for compression. For more information on the FSM-oder, see U S. Patent
No. 5,272,478, entitled "Method and Apparatus For Entropy Coding™ and
issued December 21, 1993. Fdr more information oi: an example of a high-
speed parallel coder, see US. Patent No. 5,381,145, entitled "Method and
Apparatus for Parallel Decoding and Encoding of Data” and issued January
10,1995. |

All data compression systems can be divided, at least conceptually,
into two parts: a context model and a coder. For encoding, data is input -
into the context model which translates the input data into a sequence of
decisions and provides a context bin for each decision. Both the sequence
of decisions and their associated context bins are output to the coder. The
coder receives each context bin and generates a probability estimate for
each decision. The coder also determines whether the decision (result or
event) is or is not in its mora probable state. Based on the prt;babilify
estimate, the coder’s determination and whether or not the decision was
likely, the coder produces a compressed data stream, outputting zero or

more bits, to represent the original input data. For decoding, the context
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model provides a context bin to the coder. Based on the context bin, the
coder provides a probability estimate which to-g-et.her with the compressed
bit stream causes the coder to return a bit representing whether the
decision (i.e., the event) is in its most probable state. The context model -
receives the return bit, generates the original data based on the received
bit, and updates the context bin for the next binary decision.

The context model is typically application specific. That is, typially,
context models are designed based on the data to which they are going to
receive. Because of this, compression and decompression systems usng
context models specifically designed for a specific type of data are able to
achieve better compression than those which are not designed specifically

for the types of data being compressed. It would be uesirable to have a

- context model that can be used with any type of data.

A Prediction by Partial Match version C coder (PPMC) introduced by‘
Bell, Cieary and Witten is a variabie order markov compressor that uses a
M-ary (256-ARY) arithmetic coder. See Bell, Cleary, Witten, Text
Compression, Prontice Hall, 1990. The PPMC context model and the M-ary
arithmetic coder are computationally intensive.

Consider an example of PPMC coding the “x” in the string “abaox.”
Since "abcab” has already been coded, the Oth order probability estimates or
context bins "a”, "b", and "¢ have already been allocated and initialized.
Similarly, 1st order probability estimates or context bins include the

probability of “b" given that the previous character was "a” (P("b"1"a™,

the probability. of “c” when the previous character was "b" (P("¢™1"D7))

and the probability of "a” when the previous character was "¢
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(P("a"1"c")). The 2nd order context bins that have been allocated and
initialized include the P("c"!"ab") and P("a"!"b¢"). The 3rd order context
bin P("a"1"abc") has been allocated and initialized. A PPMC coder updates
a probability estimate for each of these context bins when encoding and
decoding. A PPMC coder also maintains a probability estimate for other
context bins, which is an escape code that indicates that a lower order
context must be used. The escape probabilities are to handle those
situations where a probability is not assigned. A "-1"th order context,
where every symbol is equally likely is used to handle the first occurrence
of each symbol.

Table 1 shows the probability estimates for various context bins
where a, 8, and § are probability estimates with values between 0 and 1. It
is assumed that 8-bit characters are used, resulting in a 256 element
alphabet. Note that in Table 1, "P("c"| “ab”)=B" means that given that ‘~e
previous two characters were "ab", the probability estimate for the next
character being "c" is f.

Table 1 - PPMC Context Bins

Probabilities for Previousl_z_ Used Context Bins
4th order . P(escape | "bcab”) = 1
3rd order P('escag | "cab™) =1
2nd order : P("c"1"ab") = B, P(escape | "ab")=1-
1st order P(-"c" I"b") = y, P(escape | "b")=1-¥
Oth order P("a") = P("d") = 3, P("¢") = y,P(escape)=1-28-y
-1th order ) P(any character) = 1/253

.- — =
[ S
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To code the "x" in the string "abcabx", first the PPMC coder checks to
see if there is a 4th order estimate for "x" following “bcab”, and since there
is not, an e;cape is coded. Note that this consumes no code space when
the probability of escape is 1. On the other hand, in the 2nd order estimate,
the probability of the escape is 1-B, not 1. Since the probability is no longer
1, code space is consumed. This process is repeated for each order, and
since no matches occur, escapes are coded until order “-1th” is reached and
then the "x” is coded. After coding, all orders have their probabilities
updated for the occurrence of "x". The updated context bins are "beab",
“cab”, "ab”, "b" and the Oth order context. Now, if the sting “bcabx®

~ occurred again, the "x” would be coded with a 4th order context bin. If the

string "2zabx" occurred, the "x” would be coded with a 2nd order context
bin (ab").

One problem with a PPMC coder is the use of escape pmbabilities.
Escape probabilities are required to accommodate estimates that do not
exist for selected alphabet data in the M-ary total. It is very difficult to -
accu.rately assign probabilities to the escape codes. |

Another problem with using PPMC is that it is intended to be rur
ona larg.e. general purpos-e computing system. Each context is located
through a tree structure. As the PPMC coder compresses the data, a tree is
built in such a way that it is assumed that memory is not limited.

However, such a system does not work effectively when memory is

- limited, such as with integrated circuits. Therefore, it is desirable to have a

system that accommodates arbitrary types of data when limited by the
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amount of memory available.

Almost all general purpose data compression methods today are
based on one of two methods of dictionary compression described by Ziv
and Lempel. These are referred to as LZ77 and LZ78. These methods store
the previous characters and code new characters by referring to sequences
by identical previous characters. Ziv/Lempel methods are used in many
software and hardware systems.

Dynamic Markov compression (DMC) was suggested as a method by
which a context model for the compression of general purpose data may be
built dynamically. The method typically provides better compression than
most dictionary methods. Instead of using a set of previous bits as a
context, DMC uses states in a directed graph.

The present invention provides context models for compression of |

arbitrary data.
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SUMMARY OF THE INVENTION
A method and apparatus for encoding and decoding information is

described. The method and apparatus include a model implemented in

hardware or software that is capable of operating on arbitrary data (e.g.,

 data of a different or variety of types.) The model generates a context and

binary decision for each symbol. The present invention also includes a
binary entropy coder that estimates probabilities and generates a
compressed bit stream in response to contexts and the binary decisions
from the model.

In one embodiment, the present invention includes a context
model that is operable with arbitrary data and uses context bins of various
orders to generate a context and a decision for each symbol in an input
symbol stream. An entropy.coder estimates probability and generates
compressed data stream in response to contexts and decisions from the

model and according to generated probability estimates.
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BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will be understood more fully from the
detailed description given below and from the accompanying drawings of
various embodiments of the invention, which, however, should not be
taken to limit the invention to the specific embodiments, but are for
explanation and understanding only.

Figure 1A is a block diagram of a binary entropy coding system.
Figure 1B is a block diagram of a binary entropy decoder system.

Figure 1C is a block diagram of one embodiment of the context

model of the present invention.

Figure 1D is a block diagram of an alternate embodiment of the

context model of the present invention.

Figure 2 illustrates an example of the context splitting of the present

invention.

Figure 3A is a flow chart of one embodiment of the encoding and

decoding process of the present invention.

Figure 3B is a flow chart of one embodiment of the process for

encoding characters according to the present invention.
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Figure 3C is a flow chart of one embodiment of the process for

decodihg characters according to the present invention.

Figure 3D is a flow chart of one embodiment of the process to
determine contexts of particular bits in a character according to the present

invention.

Figure 3E is a flow chart of one embodiment of the process to update

probability estimates according to the present invention.
Figure 4 illustrates an example DMC graph.

Figure 5 illustrates a block diagram of one embodiment of a DMC

context model.

Figure 6A illustrates an example DMC grap'h that is to have a split

state.

Figure 6B illustrates an example DMC graph after the state in Figure
6A has been split.

Figure 7 illustrates a hashing mechanism of the present invention.

Figure 8 is a block diagram of one embodiment of a parallel coder

implementation.



Figure 9 is a block diagram of an alternative embodiment of a

parallel coder implementation.

Figure 10 illustrates memory banking for one embodiment of the

present invention.
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A compression and decompression system for handling arbitrary
data is described. In the following detailed description of the present
invention numerous specific details are set forth, such as specific data
types, numbers of bits, etc., to provide a thorough understanding of the
present invention. However, it will be apparent to one skilled in the art
that the present invention may be practiced without these specific details.
In other instances, well-known structures and devices are shown in block
diagram form, rather than in detail, in order to avoid obscuring the
present invention.

Some portions of the detailed descriptions which follow are
presented in terms of algorithms and symbolic representations of
operations on data bits within a computer memory. These algorithmic
descriptions and representations are the means used by those skilled in the
data processing arts to most effectively convey the substance of their work
to others skilled in the art. An algorithm is here, and generally, conceived
to be a self-consistent sequence of steps leading to a desired result. The
steps are those requiring kphysical manipulations of physical quantities.
Usually, thougl:\ not necessarily, these quantities take the form of electrical
or magnetic signals capable of being stored, transferred, combined,
compared, and otherwise manipulated. It has proven convenient at
times, principally for reasons of common usage, to refer to these signals as
bits, values, elements, symbols, characters, terms, numbers, or the like.

It should be borne in mind, however, that all of these and similar

terms are to be associated with the appropriate physical quantities and are
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merely convenient labels applied to these quantities. Unless specifically
stated otherwise as apparent from the following discussions, it is
appreciated that throughout the present invention, discussions utilizing
terms such as "processing” or “computing” or “calculating” or
“determining” or "displaying” or the like, refer to the action and processes
of a computer system, or similar electronic computing device, that
manipulates and transfer (electronic) quantities within the computer
system's registers and memories into other data similarly represented as
physical quantities within the computer system memories or registers or
other such information storage, transmission or display devices.

The present invention also relates to apparatus for performing the
operations herein. This apparatus may be specially constructed for the
required purposes, or it may comprise a general purpose computer
selectively activated or reconfigured by a computer program stored in the
computer. The algorithms and displays presented herein are not
inherently related to any particular computer or other apparatus. Various
general purpose machines may be used with programs in accordance with
the teachings herein, or it may prove convenient to construct more
specialized apparatus to perform the required method steps. The required
structure for a variety of these machines will appear from the description
below. In addition, the present invention is not described with reference
to any particular programming language. It will be appreciated that a
variety of programming languages may be used to implement the

teachings of the invention as described herein.
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The present invention provides a compression and decompression
system having a context model and a binary entropy coder. Figure 1A

illustrates one embodiment of the compression system of the present

~ invention, while Figure 1B illustrates one embodiment of the

decompression system of the present invention. The compression system
and decompression system operate together to form a lossless compression
scheme.

Referring to Figure 1A, original data 101 is input into context model
102. Original data 101 may be arbitrary data. In other words, original data
101 may comprise a variety of types of data such as data from text,
executables, source files, images, numerical data, etc. Such data may be
derived from, a variety of sources such as, for instance, networks, disk
drives, flash memories, magneto-optical disks, optical disks, scanners or
other sensors, etc.

In response to data 101, context model 102 generates a set or
sequence of decisions. In one embodiment, each decision comprises a
binary decision. Context model 102 also provides a context for each
decision. Context model 102 outputs a context 103 and a result indicating
the outcome of the decision. For a binary entropy coder, result 104
comprises a single bit. In one embodiment, context model 102 may output
a code (probability class).

A binary entropy coder 105 receives context 103 and result 104 and
generates a compressed bit stream 106. In response to these inputs, binary

entropy coder 105 estimates the probability of the inputs and attempts to
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produce compressed data 106 as a bit stream with a length as close as
reasonably possible to the entropy of the probability estimate. In one
embodiment, binary entropy coder 105 may comprise a coder as described
in U.S. Patent No. 5, 381,145, entitled "Method and Apparatus for Parallel
Decoding and Encoding of Data", issued January 10, 1995 or entropy coder
105 may comprise a finite state machine binary coder, such as described in
U.S. Patent No. 5,272,478, entitled "Method and Apparatus for Entropy
Coding", issued December 21, 1993.

Although only one binary entropy coder is shown, the context
model of the present invention accommodates arbitrary data and may be
used with multiple binary compressors operating in parallel. In one
embodiment, the context model is coupled to multiple coders with each
coder dedicated to a specific portion of an incoming bit stream. Such an
embodiment is shown in U.S. Patent No. 5,272,478.

Although the present invention provides a lossless compression
system, the present invention may be configured as a lossy compression
system and still provide better compression than systems available in the
prior art that accommodate arbitrary data.

Referring to Figure 1B, an embodiment of a decompression system
comprising a context model 108 and binary entropy coder 107 performs the
reverse process to decompress compressed data 106. Binary entropy coder
107 receives a context 109 from context model 108 as well as compressed
data bit stream 106. Based on context 109, binary entropy coder 107
generates a probability estimate (or class of estimates). In one

embodiment, context model 108 outputs a code (probability class) to binary
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entropy coder 107.

In response to the inputs, binary entropy coder 107 generates a result
110 indicative of whether a decision was in the most probable state or not.
In one embodiment, binary entropy coder 107 retumns a bit indication
representative of the occurrence of the likely event. In response to result
110, context model 108 generates the original data 101.

Figure 1C is a block diagram of one embodiment of context mode! of
Figures 1A and 1B. Referring to Figure 1C, the original data 131 is input
into the history block 132. History block 132 buffers previous bytes or other
units of data. History block 132 is also coupled to receive or transmit the
current bit 133. Based on the original data 131 and the current bit 133,
history block 132 generates history information 134.

Address generation block 138 is coupled to receive the history
information 134 (or some portion thereof). In response to history
information 134, address generation block 138 generates multiple
addresses to access multiple banks of memory 135. In one embodiment,
address generation block 138 comprises a hashing mechanism. The output
of memory 135 comprises multiple contexts. Selection block 136 is coupled
to receive the contexts from memory 135 as well as history information
134. Based on the history information 134 and information from memory
135, selection block 136 selects the best potential context 139 out of the
contexts from memory 135. Context 139 may be output, or optionally
input into a probability estimation block 137. The probability estimation
block 137 also receives the current bit. In response to these inputs,

probability estimation block 137 generates a code (e.g., probability class) and
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a result. This, in tumn, is converted to a compressed bit stream.

Figure 1D is a block diagram of an alternate embodiment of the
context model of Figures 1A and 1B. Referring to Figure 1D, original data
150 is received as an input, and may (optionall; ) be buffered in buffer unit -
152. A portion of the original data is result 151. State 141 (e.g., register)
stores the present state 142, which it receives as the next state 153 from
selector 149. Memory 143 contains multiple banks and is coupled to
receive present state 142. In response to present state 142, memory 143'is
accessed and provides counts 146 and possible next states 145. In one
embodiment, possible next states 145 comprises two su;é. Count-to-code
block 144 is coupled to receive counts 146 and generates code 147 in
response thereto. Note that code 147 may comprise a context or probability
class (optionally). |

Selector 149 is coupled to receive resuit 151 and possible next states
145. Based on the current bit, selector 149 selects one next state 153 from
the possible next states 145, which is sem to state 141.

Updater/splitter block 148 is coupled o receive counts 146, possible
next states 145, and result 151. In response to these inputs,
Updater/splitter block 148 updates the counts and sends the new counts to
memory 143. Updater/splitter block 148 also determines if any states need
to be split, and, if so, sends the new states to memory 143. State splitting,
and other aspects relating to this context model are described in further
detail below.
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One embodiment of the context model of the present invention
uses multiple orders of binary Markov contexts. Such a context model
may be the context model described in Figure 1C.

In one embodiment, the present invention comprises a context
model that uses Oth order éontexts, 1st order contexts, 2nd order contexts,
etc. The present invention provides for higher variable order context
models, approximating Nth order for N greater than or equal to 2. Using a
series of context model orders, the context model of the present invention
is able to generate decisions and contexts in response to arbitrary data.

In the present invention, a Oth order context model uses no history
of prior symbols. Coding is performed simply according to the frequency
of the occurrence of each symbol in the alphabet. In one embodiment,
context model of the present invention uses bytes of data. In such a case,
the alphabet includes 256 symbols.

In the present invention, when using a Oth order context model
with a binary entropy coder, eight binary decisions are made for each
symbol (at a minimum). To model Oth order M-ary statistics, binary
decisions are not made independently and are performed sequentially
with each binary decision using all past decisions in the same symbol as a
context.

In one embodiment, a 1st order context model uses one previous
byte of Markov state information. In such a case, 16 bits of context
information are required for 256x255 number of context bins. The 16 bits

of information correspond to § biis of the previous byte and 8 bits (with
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one value unused) for the Oth order contexts.

In one embodiment, a 2nd order context model uses two Previous
bytes of Markov state information. In such a case, 24 bits of context
information are used for 256x256x255 context bins. Of the 24 bits, 16 bits
are for the two previous bytes and 8 bits are for dscrﬁ:ing symbol
frequency.

An N-order context model uses N previous bytes of standard .
information and requires 8 x (N+1) bits for 2*¥x255 context bins. Note
that the previous byte or bytes used for context do not have to be the
immediately precediné byte(s). Instead, it may be advantageous te set forth
contexts based on bytes or data that has regularly ocaurring but slnpped |
pattern. For instance, in the case of RGB data, all contexts related to the
red data may be modeled based on only bytes of the red data that already
are known, such that bytes of blue and green data are skipped.

In the present invention, all contexts are not available, or active, all
the time during the coding process. Initially, only lower order contexts are
active, with higher order contexts becoming active as coding continues.
Generally, high order context models suffer from the problem that a huge
number of probability estimates are needed, and only a small amount of
data may.occur in many of the context bins. This resuits in many poor
probability estimates. The present invention accelerates probability
estimation by adaptively using different order models. The present
invention uses a lower order context until a particular high order context
oceurs often enough that it is reasonable enough to expect that a good
probatility estimate can be made and that using a high order model will
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allow for better comi:ression. At that point, the context is "split”, therebv
allowing the particular high order context to be used. The splitting of
lower order context bins to allow the use of higher order context bins is
described below. Note that the splitting mechanism discussed above is
different than the splitting described in the alternative DMC embodiment
below of the context model.

In one embodiment of the present invention, for each bit in a
character in the input data stream, the context model examines all various
possible orders to determine the highest order active context bin that
applies to the bit and codes with that order. Note that the context is active
if a probability estimate exists for it. The context model of the present
invention searches from the highest order to the lowest order to find an
active context bin to code each bit. Thus, the context model attempts to
code bits with the most number of previous characters that can be made
use of and works downward coding with the highest order possible. The

psuedo code below represents the operation of the context model:
for each bit in current character do
for order = maximum downto 0 do

if context_bin(order) is active then
code with order
if order < maximum then

update (order+1)

break out of "for order” loop

Note that in one embodiment, the context model hashes to a location in
memory that is used for the context to determine if it is active. Hashing is

described in further detail below.
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The highest order available may not always be used to model the
data. For instance, the probability estimate for a lower order context may
be better (i.e. more representative) than the higher order and, thus, would
be a better candidate. The determination of when to use a higher available
order of context is a design choice.

In one embodiment, only Oth order context bins are active initially.
Therefore, all coding uses Oth order context bins. As each Oth order context
is used, the statistics corresponding to 1st order contexts are updated.
During each update, the context splitting logic of the present invention
determines if a particular 1st order context bin should be activated for
further use. It is only after a Oth order context bin is used that a 1st order
context bin may be activated. Similarly, once an activated 1st order context
bin is used, a 2nd order context bin will be updated. This continues until
all context bins that are used by the data and are supported by the
particular implementation of the present invention are active.

The number of orders supported by the particular implementation
is limited by the maximum muﬁber of orders allowable. The maximum
allowable number of orders may be dependent on the memory available to
store contexts and probability estimates in the system. The maximum
order may be three, four, five, six, or higher orders, especially if the
characters are less than eight bits.

Although the embodiment described above illustrates a context
model that begins with Oth order contexts, this is not a requirement. The
context models may begin with Nth order contexts, where N is 1 or

greater. The present invention may be used where an initial aum:2r of
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contexts of various orders are used and later adapted.

In one embodiment, given a choice between using several context
bin of different orders, the coder with the most skewed context bins that
has the same MPS (most probable symbol) as the highest order context bin
that has occurred before is selected. In such a case, context bins that ave not
used for coding, but could have been used, have their PEM states updated
if the MPS is not different from the MPS used in coding and the number
of times that context has been hit is less than a threshold, which is
described in more detaﬁl below. Note that i’titting a c't;ntext. means to use it
for coding or to use one order lower for coding.

Figure 2 illustrates an example ot the adaptive context model
processing of the present invention that creates and utilizes higher order
contexts while coding data. Referring to Figure 2, a stream of data bits is
shown representing XY pairs of data bits, and is being coded from right to
left. The "XY" pairs are two bits coded at a time (2 bit symbols), in which
order selection is based on symbols, not bits. Initially the probability of an
X (p(x)) is 50%. The probability of Y being equalto 1l whenxis0
(p(y=11x=0)) is 50%. Likewise the probability of Y being equal to 1 when X
equals 1 (p(y I x=1)) is 50% as well. Upon coding the first X, ie. the first bit,
the probability that X is a 1 is increasec (++).

When the second bit is coded, it is coded based on the iact thas the X
is 1 and the probability of Y being 1 when X is 1 is decrease¢ (). Similarly,
when a third bit is coded, the probability of ')-('being 1 decreases. However,
at this point the first “first order” context is created (i.e., p(xib)) and its

probability is lowered. Thatis, the probabuiity of X being 1 when following
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a "b" decreases.
When the fourth bit is encountered, it is coded with its probability
and the probability of Y being 1 when X equals zero is decreased. However,

a new context is created at this point. The context created is the probability

of Y being 1 when preceded by an X equal to zero and a "b". This

probability of Y being 1 is decreased. The process continues with various
probabilities being generated.

It should be noted when at the seventh bit position where the
probability of X being 1 when preceded by "b" is decreased, the probability
of X by itself (p(x)) is no longer updated nor used as a context.

Furthermore, a new context is created, the p(x b, a). That is, the context of
the probability of X being 1 when preceded by ™" and "a" is created and its
probability of being 1 is decreased. This is the first "second order” context.
When the next Y bit is coded, the probability of Y being 1 when followed by
an X equal to zero, and a "b" is the context and is decremented. Note that

the first context is no longer updated or used in this case.

c ¢ Splitti { Fast Ad .
The contéxt splitting logic of the present invention determines
when a new context bin is to be activated. In order to determine when to
activate a new context bir, the context model of the present invention
balances two conflicting goals. One, the context splitting logic desires to
use as much past history as possible. In other words, the context model
desires to use as many high order context bins as possible that allows

future data to be predicted and coded well. However, using fewer context
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bins allows practical implementations, particularly when less memory is
available, and allows good probability estimates to be made for each
context. Fewer context bins and good probability estimates means more
data per context, which is required for good compression.

In one embodiment, a particular high order context bin is activated
when a count value reacheé a threshold. Each time an Nth order context

bin is used, a count value for an associated N+1th order context is

“incremented. If the count value is increased by a constant each time a

context is used, then waiting until the threshold is reached ensures that
the context is used frequently enough that it is reasonable to expect that a
good probability estimate can be determined for it. The threshold is
chosen based on how long it takes to obtain a good probability estimate. In
one embodiment, the threshold is seven.

In an alternate embodiment, the amount to increment the value is
related to how close the probability estimate of the Nth order context is to

50%. For a R-coder based system using a state table, such as a table

' disclosgd in U.S. Patent No. 5,272,478, where probability estim'ation (PEM)

state 0 is for the 50% probébiliry class and the maximum PEM state is for
the most skewed probability class, the amount to increment is the
maximum PEM state minus the current PEM state.

In one embodiment, a context bin that has adapted to a maximum
skew code will not split to use higher order contexts. This is advantageous
since it is already being coded by the maximum amount and nothing can
be gained by going to a higher context. Coding the most significant bit of

ASCITI files, which is always zero, is an example where the Oth order model



10

15

20

25

-24-

achieves all the compression possible, and splitting the context to use
higher order models is not desirable. In one embodiment, preference is
given to splitting contexts that are being compressed poorly. In other

words, preference is given to those that have low skew.

Probability Esti A cceleration f vated C

The present invention provides for improved compression
through the use of an adaptation rate of probability estimation. In one
embodiment where R-codes are used in a PEM state table, a set of states
may be used initially to provide for fast adaptation. An example of such a
table is shown in U.S. patent application serial number 08/172,646, entitled
“Method and Apparatus for Parallel Encoding and Decoding of Data", filed
December 23, 1993. |

When a context bin reaches a threshold and is activated, several
choices exist for the probability estimate for the context bin. A default 0
PEM state may be used. Alternatively, the PEM state from the lower order
context may be used. Another alternative is to keep track of the bits that
would have been coded in the inactive N+1th order context when coding
data in the Nth order context so that a good initial probability estimate can
be made. In one embodiment, a record of the previous bits is maintained
for use in determining the correct most probable symbol (MPS) for 2 newly
activated context bin, which is then used with the PEM state from the
lower order context bin.

Other accelerations to probability estimation include the following.

If the MPS of the higher order context is different from the lower order
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context, the PEM state of one or both context can be increased. If no least
probable symbol (LPS) occurs in the higher order context prior to
activation, the PEM state of the highér order context can be increased.
These types of acceleration are easily implementable in hardware or

software by those skilled in the art.

i e M tor C

In the present invention, memory is allocated to contexts as they are
used to avoid the need to have large memories. Therefore, the context
model of the present invention is intended for use in systems with
limited memory. The decision on whether to allocate memory to a higher
order context bin is made based on the fact that memory is limited. The
present invention also uses hashing to attempt to use as many high order
contexts as possible in a fixed amount of memory. For example, hashing is
used to reduce 24-bit contexts to 28 or 216 memory locations, which may be
used if available. The present invention resolves hash collisions by using
lower order contexts so that context bins are never combined arbitrarily.
The use of hashing in the present invention avoids the use of time
consuming search operations and will be described later.

In one embodiment, the present invention does not provide
memory for every possible context, particularly all second order and
higher order contexts. In the present invention, memory is assigned to
higher order contexts using a hashing function. In one embodiment, all
second and third order context are assigned memory via hashing. For

example, a 64K bank of memory may be assigned to the 24M possible
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second order contexts.

The memory location for each hashed context contains, in addition
to the probability estimation context splitting information, the full
description of the context assigned to the hash value. When a hash
collision occurs, only the context that matches the full description of the
context is allowed to use that particular hashed memory location. A
hashed context memory location is dedicated to a single context and
hashing does not cause any context to be combined.

There are numerous possible hashing functions. In one
embodiment, the present invention may use hashing functions such as
modular arithmetic, exclusive-or trees, look-up tables (LUTS) with
random values, etc. A single hashing function may point to multiple
memory locations or multiple hashing functions can be used. In one
embodiment, [A+137B] modulo (MOD) 256 is used as a hashing function
for two 8 bit values, A and B, and uses four memory locations per hash
value. Zero and first order context bins do not use hashing. Second order
context use 64K bank of memory addressed by 8 bits from hashing the two
previous characters and 8 bits from hashing the previous character and the
zero order information. Third order contexts use a 64K bank of memory
addressed by 8 bits from hashing the previous character and the zero order
information and 8 bits from hashing the second and third most previous
characters.

Figure 7 illustrates the hashing of the present invention. Referring
to Figure 7, a hash is performed using a hashing mechanism 701 that

receives past history and bit position to produce an address 702. In one
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embodiment, separate banks are used for each bit position. In this case, the
hashing mechanism 701 generates the address 702 in response to the past
history information. The address 702 is directed to cause the context |
memory 704 to be accessed. In one émbodimcnt, each entry of context
memory 704 l;as a probability estimate and a full context. Note that the
probability estimate may be counts, as opposed to just being states. A
predetermined number of entries are assigned to each hash value
(address). In one embodiment, four context bins are assigned to each hash
value. Whern the hash value 702 is generated, the multiple contexts (eg.,
4) corresponding to hash value 702 are read out ofA the context memory

- 704. At this point, the full context is compared to determine which of the

multiple contexts is the actual context. By using such a hashing scheme,
the number of search operations otherwise required to obtain the context
are recduced.

Adaotive First Order Context
A fundamenta: difference between the present invention and

PPMC in the prior art is that the present invention chooses when to split
contexts. One of the consequences of this feature is that choices can be
made adaptively among mutually exclusive context model bins. This
allows the possibility of using differen: first order context models for data
that is not in bytes. For example, for 16 bit data, the best first crder
predictor may be the second most previous byte, not the previous byte.
One embodiment of the present invention using hashing allows the first

order context to use the previous, second most previous, third most
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previous or fourth most previous byte to provide good predictions for 8
bit, 16 bit, 24 bit and 32 bit data respectively. Note that the size of data does
not have to specified, it is adaptively determined. Another mutually
exclusive context model that'might be useful would be one that allows the

adaptive selection of using 8-bit, 16-bit, 24-bit or 32-bit differences for

" numeric data.

In one embodiment, the present invention operates on bitplanes in
order to take advantage of parallelism. This allows an input data stream
to be coded progressively by bit planes, and to perhaps use future data on
previous bitplanes as context for succeeding bitplanes. In an alternate
embodiment, fixed size chunks may be coded in parallel. In still another
alternate embodiment, variable size chunks of data may be processed in
parallel starting with Oth order context bins.

It shouid be noted that running at high speeds may require a large
amount of memory bandwidth. In one embodiment, the memory
associated with each order context model may be accessed simultaneously.

Figures 3A-3E illustrate the encoding and decoding process of the
present invention. It should be noted that the processing may be
performed by dedicated hardware or software, or a combination of both.
For instance, the process may be performed by a computer system running
software.

Referring to Figure 3A, a flow chart of the encoding and decoding

- process of the present.invention is shown. The process of the present .
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invention begins with processing lbgic initializing the "hit" and “match”
memory for contexts of orders greater that zero (processing block 301). The
“hit” refers to a usage count that indicatgs how often a particular context is
used for compression. A threshold may be included in the memory for
use in determining the count at which a context may be split The
“match™ memory refers to the memory storing the full contexts. Next, the
probability estimate memory for each context is initialized (processing .
block 302). In one embodiment, a group of contexts are initialized as
always active, such as the Oth order contexts, and the remaining contexts
are either initiﬁlized to inactive at first but are allowed to be active later.
Lastly, as part of the initialization process, processing logic initializes the
entropy coder.(processing block 303). Note that initializing the entropy
coder is an optional step designed to set the é;itropy coder in a default
initialization state, such as when the entropy coder has a set of states used
in the beginning of processing to provide fast adaption.

_A test then determines whether the process is performing encoding
or decoding (processing Block 304). If the process is performing encoding,
the process continues at processing block 305 where processing logic
encodes characters. If the process is performing decoding, the process
continues at processing block 306 where processing logic decodes
characters. After either of the encading or decoding of characters,
processing ends.

Figure 3B illustrates one embodiment of the process for encoding
characters according to the present invention. Referring to Figure 3B, the

process begins with processing logic testing whether all the characters have
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been coded (processing block 310). If all the characters have been coded,
then the process continues at processing block 311 where processing logic
flushes the entropy encoder, after which time the process ends. Flushing
of the entropy coder may be performed to reset the entropy coder. Note
that this is an optional step and is not required in all implementations.

If all the characters have not been coded, the process continues at
processing block 312 where processing logic of the present invention
obtains the next character “c”. Next, processing logic sets the value of'a
variable i to the most significant bit position of the character ¢ (processing
block 313) and the value of a variable b to bit i of character ¢ (processing
block 314). '

Then processing logic determines the context for bit i of the next
character (processing block 315). Afterwards, processing logic encodes the
value of variable b with the context (processing block 316), updates the-
probability (processing block 317), and then decrements the value of the
variable i (processing block 318).

A test then determines whether the value of the variable i is greater
than or equal to zero (processing block 319). If the value of the variable i is
greater than or equal to zero, the process loops back to processing block 314.
If the value of the variable i is not greater than or equal to zero, the process
continues at processing block 320 where the past character history is
updated by processing logic. After updating the past character history,
processing continues to processing block 310. )

Figure 3C illustrates one embodiment of the process of decoding

characters according to the present invention. Referring to Figure 3C, the
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process for decoding characters begins by processing logic testing whether
all the characters have been decoded (processing block 320). If all the

characters have been decoded, processing ends. If all the characters have

. not been decoded, the process continues at processing block 321 where

processing logic initializes the value of a variable i to the most significant

bit position of the character and then determines the context for bit i of the
next character (processing block 322). After determining the context for bit
i, processing logic decodes bit i of the next character (processing block 323),

updates its probability (processing block 324), and decrements the value of

the variable i by 1 (processing block 325).

A test then determines 1f the value of the variable i is greater than
or equal to zero (processing block 326). If the value of the variable i is
greater than or equal to zero, processing continues to processing block 322.
On the other hand, if the value of the variable i is not greater than or
ecjual to zero, the process continues at processing block 327 where
processing logic updates the past character history. After updating the past
character history, processing logic outputs the character (processing block
328) and processing continues to processing block 320.

Figure 3D illustrates the process for determining the context of bit i
of the next character. Referring to Figure 3D, the process begins by
processing logic determining the memory address of the "hit", "match"
and probability estimate for context of orders two or greater using past
history and hashing (processing block 330). Next, processing logic
determines the memory address of the "hit" and probability estimate for

contexts of order zero and one using past history (processing block 331).
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After determining the necessary memory addresses, processing logic sets a
variable j, which represents the current order, to 0 (processing block 332).

The processing logic thon determines whethes the crder j is less
than 2. If the value of the order variable is less than 2, the process
continues at processing block 339 where a variable, flagfj], is set Note that
the variable flagfj) indicates that context memory is assigned to order j for
the current history. If the order j is less than 2, the process continues at
processing block 335 where a test determines whether the match(j] is set to
an initial value indicative of a memory location that does not currently
store context information (yet might be used later). If the match[j] equals
an initial value, processing continues to processing block 336 where
processing logic sets the match(j] to the full context. Thereafter, the process
continues at processing block 339. If the match(j] is not equal to the initial
value, the process continues at processing block 337 where processing logic
determines whether the match(j] is set equal to a full context. If the
match(j] is set equal to a full context, the process continues at processing
block 339. If the matchj] is not set equal to the full context, processing
continues to processing block 338 where the flag(j] is cleared.

After clearing or setting the flag, processing logic increments the
value of the variable j by 1 (processing block 340) and tests whether the
value of the variable j is less than or equal to its maximum order
(processing block 341). If the value of the variable j is less than or equal to
its maximum order, the process continues at processing block 334. 'If the
value of the variable j is not less than or equal to the maximum order, the

process continues at processing block 342 where the value of the variable j
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is set equal to the maximum order.

After setting the value of variable j to the maximum order,
processing logic sets a témporary variable named "bestskew" that is used
for comparing skew (processing block 343). The bestskew variable is |
initially set to -1, 0, or an invalid value.' After iru‘tializmg the bestskew
variable, processing logic determines whether the flag]j] is set (processing
block 344). If the flaglj] is not set, processing continues at processing block
351. If processing logic determines that the fagfj] is set, processing logic
continues to processing block 345 where it determines whether the value
of the bestskew variable is equal to an initial value. If the value of the
bestskew variable is set to an initial value, the process continues at
proéessing block 346 where processing logic sets a variable bestMPS equal
to the MPS][j] (the MPS of order j).

Thereafter, the process continues at processihg block 349 where
processing logic sets the value of bestskew variable equal to the skew[j]' (the

probability estimate of variable j) and sets a bestorder variable equal toj

| (processing block 350). On the other hand, if the value of the bestskew

variable is not equal to an initial value, the process continues at processing
block 347 wherelprocessing logic tests whether the value of the bestMPS
variable equals the MPS[j]. If the value of the variable bestMPS is not set
to the MPS[j], then the process continues at processing block 351. If the
value of the bestMPS variable equals the MPS[j], then processing logic tests
whether the skew([j] is greater than the best skew as set forth by the value
of the bestskew variable (processing block 348). If the skewlj] is greater

than the value of the bestskew variable, the process continues at
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processing block 349. If the skew(j] is not greater than the value of the
bestskew variable, the process continues at processing block 351.
After processing logic determines that the skewf(j] is not greater than

the value of the bestskew vaﬁable or after setting the bestorder variable -

equal to the maximum order, processing logic decrements of variable j by 1

(processing block 351). Then processing logic tests whether the value of
the variable j is greater than or equal to zero (processing block 352). If the
value of the variable j is greater than or equal to zero, the process
continues at processing block 344. If the value of the variable j is not
greater than or equal to zero, the process continues at processing block 353
where the value of the "hits" variable for "bestorder” is incremented by 1
After incrementing the value of hits variable, a test determines whether
the value of the bestorder variable is less than the maximum order
(processing block 354). If the value of the bestorder variable is less than the
maximum order, processing logic increments the value of hits variable,
for bestorder+1, by 1 (processing block 355). After incrementing the value
of the hits variable or after determining that the value of the bestorder
variable is not less than the maximum order, processing ends.

Figure 3E illustrates the process for updating the probability of a
particular context. Referring to Figure 3E, the process begins by processing
logic updating the probability estimate of the best order (processing block
360). Then, processing logic initializes the value of a variable j to zero
(processing block 361). Processing logic then determines if the flag [j] xs set
(processing block 362). If the flag[j] is not set, the process continues at

processing block 368. However, if the flag[j] is set, the process continues at
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processing block 363 where processing logic determines whether the value
of the variable j is set equal to the bestorder variable. If the value of the
variable j is set equal to the value of the bestorder variable, the process
continues at processing block 368. Otherwise, the process continues at
processing block 364 where processing logic determines whether skewl[j] is
set equal to an initial value.‘ If the skew([j] is set equal to an initial value,
the process continues at processing block 366. Otherwise, the procéss
continues at processing block 365.

At processing block 365, processing logic determines whether the
MPS[j] is set equal to the value of the variable bestMPS. If the MPS]j] is not
equal to the value of the bestMPS variable, the process continues at
processing block 368. Otherwise, the process continues at processing block
366 where procéssing logic determines whether the value of hits{j] is less
than a predetermined threshold. If the hits{j] is not less than a
predetermined threshold, the process continues at processing block 368;
otherwise, the process continues at processing block 367 where processing
logic updates the probability estimate of order j. Then the process
continues at processing block 368 where the value of the variable j is
incremented by 1. Then, processing logic determines whether the value of
the variable j is less than or equal to the maximum order. If the value of
the variable j is less than or equal to the maximum order, the process

continues at processing block 362; otherwise, the process ends.

v i - t jiv

An alternative embodiment of the context model of the present
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invention (shown in Figure 1D) comprises a Dynamic Markov
Compression (DMC) context model that is dynamically built for the
compression of arbitrary data. The DMC context model provides better
compression than most (hardware) dictionary methods. Note that this
context model may be implemented as the context model shown in Figure
1D.

Instead of using a set of previous bits as a context, DMC uses a state
in a directed graph. An example of such a graph is shown in Figure 4.
"History" is stored in each state, beca‘use a given state can only be reached
with certain sequences of bits. A graph can be started with 8 states
representing bit position or with a set of states that capture some number
of related previous bits and the bit position. During the coding process,
some states are allowed to be split. However, after splitting states, some
states have additional "history” or "memory” because a more specific
sequence is required to reach them. For instance, some states only have
one bit of history while other states may have many bits of history.
Ideally, the graph grows to accurately predict the current data stream. The
growth of the graph depends on the data encoded.

At each position in the graph, a count is kept of the number of one
bits and zero bits that have occurred in the state. These are used both to
estimate the probability of a one bit the next time the state is entered and
to determine-if a state should be split into two distinct states. Each state
also contains two pointers to the states used after a one bit and after a zero
bit.

Referring to Figure 4, the arcs are labeled with the uncompressed bit
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(0 or 1) and the count of previous bits which occurred in the state. If
encoding is started in the left most state, State 0, the state in the graph
indicates the bit position modulo 4. As shown, there is no distinction for
the value of previous bits (both zero and one bits lead to the same next

5 state). Examination of the counts reveals that in State 0 a zero bit almost
always occurs so good compression can be obtained. In State 3, zero bits
and one bits are equally likely.

An example state memory associated with the state diagram in

Figure 4 is illustrated in Table 2 below:

10
Table 2
resent state | "0" count Next state on "0" "1" count Next state on "1"

0 99 1 1 1

1 60 2 40 2

2 60 3 40 3

3 50 0 50 0

4

5 Unused states - available for splitting

6

The encoding procedure is as follows:

1. Determine the next bit (one or zero) in the uncompressed
15 file.

2. In order to code a "one" binary decision use probability
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determined by the number_of_ones/(number_of_ones +
number_of_zeros). In order to code a zero, code one minus this
probability.

3. Update the count for the bit which occurred.

4. Change to the next state for the bit which occurred.

A block diagram implementing this procedure is shown in Figure 5.
Referring to Figure 5, a state register 501 maintains the current state. The
state in state register 501 is provided by multiplexor (MUX) 502 which
receives the next states from memory 504 for when the current bitis a 1 or
a 0. Using the current bit as a selection signal to MUX 502, MUX 502
provides one of the two states to state register 501.

The current 0 and 1 counts for the state specified by state register 501
are sent from memory 504 to counting logic 503 which increments either
the 0 or 1 count based on the value of the current bit. After incrementing
one of the counts, they are stored back into memory 504. |

The 0 and 1 counts from memory 504 are also sent to logic 505 (prior
to updating) which converts the counts to a code. In one embodiment,
logic 505 comprises a look-up table (LUT). The output of logic 505
comprises a code and MPS which are received by a parallel coder 506 that
provides the compressed bit stream. |

Because the decoder knows the counts before they are updated, it
can determine the encoded bit from the compressed bit stream. Then the |
decoder can update the counts and select the same next state as the

encoder.
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Adapting the Context Model

To provide the best possible compression, the graph is expanded by
selectively splitting a state into two states. This is referred to below as '
adaptation. In one embodiment, the probability estimation counts are
used to decide when to increase the size of the graph. For this reason, it is
important to have true counts rather than just pseudo-random estimates.

After a bit has been encoded (step 2 above) and before updating the
count (step 3 above), a decision is made about whether to split the state
about to be entered. In one embodiment, there are two conditions which
must exist before a state is split: the count of the branch about to be taken is
above a first threshold, and the state about to be entered has been entered |
using branches other than the current branch more times than a second
threshold. When both of these conditions are met, the state about to be
entered is split. The branch which was going to the old state is changed
and a new state is created and entered. All branches from other states
continue to point to the old state.

The thresholds used in the two splitting conditions are referred to
herein as MINentl and MINent2. The counts for the branches are divided
between the new state and the old state in proportion to the count on the
current branch and the total uses of the old state. The new state uses the
same next states (for zero and one bits) as the old state did.

This state splitting is illustrated in Figures 6A and 6B. In Figure 64,
several states are shown along with some of the branches. Branches are
labeled with the input bit and the number of times the branch has been

used. The branch from State 4 to State 5 labeled “1,6" means when a one
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bit is the input State 5 will be the next state and this has happened 6 times.
Every state has two branches, but branches that are not important for this
example have been omitted from the figure (for example the branch for a
zero bit in State 1).

Table 3 below illustrates a state memory associated with Figure 6A.
‘Note that the locations with dashes do contain values, which have been
omitted to avoid obscuring the following example. State 120 is the unused

state that is available for splitting.

Table 3

resent state | "0" count Next state on "0" "1" count Next state on "1"

1 - - 8 4
2 - - 2 4
3 - - 2 4
4 6 6 6 5
5 - - MORE STATES - -
6 - - - -

120

121

Suppose for this illustration MINentl equals 5 and MINcnt2 equals

3. If coding is currently being performed in State 1 and a one bit occurs
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then the next state would normally be State 4. First a check is made to see
if State 4 should be split. One condition is the branch about to be taken has
been used more than MINcntl times. Since MINentl is less than 8 this is
true in the example. The second condition is that State 4 has been entered
more than MINent2 times from other states. This is determined by adding
the number of times State 4 has been left (6+6) and subtracting the number
of times the active branch has been used, 8. Since MINent2 is three this
condition is also met.

Because of the split decision, State 1 with a 1 bit will now go to State
120 rather than State 4. In the example the branch has been used 8 times
and the next state 12 times so two thirds of the counts go to the new state.
The updated state machine is shown in Figure 6B. After splitting the state
the count for State 1 is updated, and the current state becomes State 120.

Table 4 illustrates the state memory associated with Figure 6B. Note
that the asterisk indicates table entries that have been changed from Table
3 due to the state split. As in Table 3, the dashes indicate that a numBer is
stored in the table entry but has been omitted to avoid obscuring fhe

example. The new state is state 120 because that is the next available state.
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Table 4
present state | "0" count Next state on "0" "1" count Next state on "1"

1 - : - 8 120*
2 - - 2 4
3 - - 2 4
4 2 6 2 5
5 - - . -
6 - - . .

120 4° 6 4* 5

121 |

Note that in the present invention, the states are stored in specific
memory banks as described in more detail below. This is different than in
the prior art where one single memory stores all of the states. Because
states are stored in specific memory banks, the amount of memory that a
particular state has available is limited. In the present invention, the
determination of whether to split a state is also based on the available
space in the memory bank of the state. This is described in more detail
below.

A summary of steps for implementing a decision of whether or not
to split and to perform a split are as follows:

1 If no space in current memory bank or count for current
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branch is too small or sum of branches leaving a next state minus the
current branch count is too small, then a split of the next state is not
permitted.

2. © If the split is allewed, copy the destinations of the next state to
a new state.

3. Change the destination of the current branch to the new state.

4. Assign counts for the new state proportional to the bra:;ch
count, i.e. new_count_o=branch_mt’next_cntO/(next_mt0+next_mt1).

5. Change the counts for the next state to the difference from
what they were and the counts assigned to the new state.

It is advantageous to split a state if doing so improves compression.
However, making that determination is difficult and can require storage
and examination of much data. As disclosed herein, a state is split if two

.Or more paths are going through the same state and both are being used

frequently. The compression cost of splitting states includes slowing down
the probability estimation and using up all available states before other
states could split. The thresholds are selected to create a balance between
slowing down probability estimation, using up all available states and
improving compression, although many values give close to the same

results.

In the present invention, each state has four data items: a count of
both zero bits and one bits from the state and a pointer to the next state for

both a zero input bit and a one input bit. improved compression occurs
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when fixed-point arithmetic is used with at least two binary decimal places
(counts are kept after splitting to an accuracy of 1/4). Use of less precise
counts leads to poor ptobability estimation when states are split. In one
embodiment, 16 bits are used for the count of both zero and one (5-bit
integer count and 2-bit fractional count). Also, each context may have two
pointers capable of indexing the total number of states allowed.

In one embodiment, the graph could initially start with 8 states, one
for each bit position in a byte (MSB to LSB). In this case, the entire state
memory can be split into 8 banks, which are used cyclically. A state is only
split if more memory exists in the same bank. Each state uses 3 bits
(corresponding to the 8 banks) less for the pointers than the prior art DMC
because of the implicit address given by the bit position.

The use of implicit addressing can be extended by further
subdividing the memory into banks according to the previous bits. For
example, one of 64 banks could be selected based on the 3 previous bits and
the bit position. As long as the initial graph contains the correct states
(e.g., state which are in a bank when they have the same previous bits and
point to the bank for corresponding inputs), the division is maintained
when splitting states. The new bank is now selected by combining the bit-
position counter, the previous bits from a shift register, and the value
stored in the current state.

Because more states may split initially in one bank than a second, a
counter (or memory) for each bank maintains a record of the next state to
be used in that bank. Banking can result in decreased compression because

one bank may not need all the memory assigned, while another bank
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cannot split as much as it would in an unconstrained system.

Figure 10 illustrates differences between the DMC context model of
the prior art and the present invention. Referring to Figure 10, the DMC
context model of the prior art uses a smgle 'infinite" memory resource
that stores only the initial graph in the beginning. Later, as states are split,
additional states that are created are stored in the memory. Each state in
the memory includes memory addresses to locations in the memory for
the next state (depending on whether the next state is a (1 or 0)).

The present invention, on the other hand, may use logically-banked
memory. In the present invention, only a partial address(es) needs to be
stored with each state. This is because the previous bits and counter bit
position that must be stored in the prior art DMC implementations are
automatically determined because of the use of separate banks. Thus,
while the prior art DMC algorithm requires the equivalent of an entire
bank address and the address within the bank to be stored in memory, the
present invention only stores the address within the bank (for the two
states and the counts).

Note that physically separate banks allow for parallel operation. In
hardware, the counter bit position is part of the bank address to ensure
that different physical banks are accessible. Note that each physical bank
may include one or more logical banks.

For a hardware unplementanon the memory requirements with

banking are ZMlog-B—+ Blog—+ 2MW  where B is the number of banks in

use, M is the total number of states in all banks, W is the width in bits of
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memory used for counters, and all logarithms are base 2. Note that this
assumes an equal number of states are available in each bank. If the
compression system is used on data with known properties, it is possible
to use a different number of states in each bank. In addition, even if it is .

known that bit-position 7 is always zero (as when ASCTI is being coded),

“multiple states are still needed in bank 7 to carry history information from

bank six to bank zero.

While in terms of number of contexts, there it is always an
advantage to using an adaptive model, there is an additional cost of
storing the structure of the model. In one embodiment, there are two
integer counts in every context and two pointers to the next context. Each
context uses 26 + 2 logz(number of contexts) bits, without banking. In one
embodiment, the memory usage is between 64kbits and 1 Mbit (e.g.

768kbits of on-chip memory).

Rescaling Counters

In one embodiment, to improve compression and prevent
probability estimation from suffering, all counts are maintained as fixed
point numbers with 2 bits to the right of the binary point.

Even with the added overhead of 2 extra bits per counter, it is
possible to use a smaller number of bits to store the counts for each state
than prior art DMC. In one embodiment, counts may be rescaled at some
maximum value, such as 64 or 32. Rescaling counts destroys the splitting
rules for the original DMC algorithm, but higher counts are not reached

until most of the splitting has been done. Thus, instead of the 32 bits used
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for "unlimited” counts, it is possible to use only 14 (=2*10g(32)+2°2). In
one embodiment, fescaling can be done by a shift of both the one and zero
counts when either reaches a maximum value.

Reducing the precision of counter can increase the bitrate and

decrease the memory cost.

Probability Estimation Tabl

Each context uses memory for choosing the next state and for
tracking the number of uses of each branch. Banking reduces the next
state memory cost.

In order to reduce the memory required for probability estimates,
one table may be used with counts in it and each context would only have
a pointer into the table. It is not necessary to keep all possible counts in
the table. For example, only counts which sum to less than 32 might be
kept. In one embodiment, the table does not contain the fractional part of
the count, especially when the counts are larger. A table for estimation
also has an advantage because it will not be necessary to divide one count
by the sum to determine the probability estimate. Thus, division can be
determined in advance and the table can contain the proper code to use.

In one embodiment, 16 or 32 different codes may be used by the
binary-entropy coder. Because not all possible counts exist in the table, the
next state is provided in the table rather than using the counter to
determine the next state. A portion of a possible table appears in Table 5.

This embodiment requires memory for storage of the table entries

or hard-wired logic. However, the amount added for such tables is much
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less than the memory saved by using only one index in each state of the
context model rather than two large counters in each state. The counts are
still necessary for determining if a node should be split and for selecting

the counts after splitting.

Table 5 - Estimation Table

Index MPS Count LPS Count Code Next on MPS  Next on LPS
0 1 1 R2(0) 1 1
1 2 1 R3(1) 3 4
2 2 2 R2(0) 4 4
3 3 1 R2(2) 6 7
4 3 2 R2(1) 7 8
5 3 3 R2(0) 8 8
6 4 1 R2(3) 10 S
2015 63 63 R2(0) 559 559

In Table 5C, the Code entries contain R-codes that are adaptive codes
which include G.olomb run length codes (i.e., R2(k) codes). For more
information on these R-codes, see U.S. Patent No. 5,381,145, entitled
"Method and Apparatus for Parallel Decoding and Encoding of Data”,
issued January 10, 1995.
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If a single table is used to provide both splitting rules and probability

estimates, it conceivably might have as few as 512 entries. In this case, a

state would only need 9 bits instead of the current 14 used for counts.

However, since each context also requires two pointers to the next possible
states the true memory reduction is close to 10% and the loss of
compression does not justify the memory savings. The only reason to use
a single table for probability estimation and splitting is if the required
computation can be reduced.

As discussed above, when a state is split, the new count is
determined by a proportional écaling newO=branch*ent0/(cnt0+cntl). The
remaining new values can be computed by subtraction. A single
probability estimation table can be designed containing split rules and
estimates. A probability estimation table is created using MPS and LPS
counts. States are split if the current branch is used more than a threshold
number of times. The new estimation state for the new context and the
split context is given by rescaling the counts by 1/2. |

'fhe estimation table has several pieces of information for each
entry: the run code to use for the context (3-6 bits), the next state on a LPS,
the next state on an MPS, a swap on LPS bit, a split OK on LPS bit, a split
OK on MPS bit, and next states for splits on LPS and MPS. The two next
states for use on splits could be reduced to one state to be used on either an
MPS or LPS. There is an advantage for using prior information about bit
position, but this benefit slowly disappears as the number of bits used is

increased. In one embodiment, individual counts of ones and zeros are
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not kept, and a table lookup for splitting states is used.

The adaptive context model of the present invention obtains
performance which cannot be obtained with a fixed-order Markov context
model. For a hardware compression system to be useful it needs to obtain
at least 2:1 compression on some large set of files. Without an adaptive
context model, 2:1 compression is often not obtained. With more contexts
eventually a fixed-order context model cannot estimate probabilities
accurately with the finite amount of data available. Thus, because the
present invention is not so limited, the present invention offers

advantages over the prior art.

Random Access and Paralle] Operation

When adaptive lossless compression is performed on a file, it is
generally necessary to decompress the entire file to decompress the last
byte in the file (there is no random access). However, in a computer |
system, the operating system calls to access disks or flash memory typically
assume some form of random access is available. An application
programmer may seek to a specific byte, but the operating system (or
device driver) will seek to the correct block and read the entire block.
Random access can be provided by compressing portions of a file
independently. If the size of the piece of the file is too small, there is
insufficient data to provide accurate probability estimates. This
insufficient adaptation causes a significant compression decrease. Larger
independently compressed blocks require more data to be compressed and

decompressed together causing greater latency for an access.
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The size of an independent piece can be chosen based on the
physical device using compression.

Independent blocks can be compressed and decompressed
independently by parallel hardware. If large buffers are provided, or the
independent blocks are small enough, this could provide a decrease in the
amount of time required to decompress long files. However, the separate
blocks must still be correctly organized and sent to the storage device.
Also, this type of parallel operation will not decrease the latency
sufficiently if block sizes are too Iafge.

Because of a desire for random access to compressed data, the
encoders may be reset periodically. Each block essentially becomes a
separate file in this case and with the smaller data size probability
estimation is not as effective and compression is not as good. The block
size used may depend on the storage device or application. Therefore, in
one embodiment, block sizes from 1KB to 64KB may be used. At below
1KB, compression is substantially decreased.

In one embodiment, 7-bit counters and 8 logical banks are used with
8KB blocks.

The binary compressors such as those described herein can
compress faster and have lower latency with parallel hardware. Several
binary compressors may be used and share statistics. Each compressor may
work on a different bit position of a small block. In such a case, the first
character in each small block is coded with out any history bits. The
different bit positions access different banks of physical memory. These

may correspond partially to the logical memory bank division discussed
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above. Sharing statistics allows good probability estimates to be obtained
with these smaller blocks. The only compression loss is the prediction of
the first character in each small block.

With parallel hardware each coder will conceptually work on a

different piece of the data. The statistics can be accurnulated over a large

“block. If each coder is 8 bytes apart, then every 8 bytes a bit must be

encoded without knowing the previous bit and the second bit can onlv use
one bit of history, etc. With very small buffers (e.g., 4 bytes), there is a loss
in compression when more contexts are used. Presumably, this is because
the context model attempts to adapt to longer strings and because of the

resetting these contexts are used infrequently. Resetting the history buffer

clearly has an impact on compression.

Paralle} [ tati Arbitra a ressi

The present invention provides for compression of arbitrarv data
using a parallel entropy coder. The following discussion describes two
methods of sequencing the input data through parailel context models.

One embodiment uses four parallel context models (805-808) on one
input stream as shown in Figure 8. Each coder has it's own buffer, butfers
801-804, which is processed in order from beginning to end. In one
embodiment, each of buffers 801-804 comprises an 8 byte buffer. The
coders are staggered so that they always access different memory banks.
When processing is complete, the four buffers can be switched. The access
pattern is shown in Table 6 below. Context model 805 always works on the

first 8 bytes out of 32; context model 806 works on the next eight bytes and
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so on. Table 6 shows the bit L 2ing coded by each context model over time.
Each entry in Table 6 contains three numbers: the byte, the bit and the

bank.

Table 6
Time |0 1 2 '3 4 5 6 7 8 9 10
M0 1000 011 022 033 040 051 062 073 100 111 1.2
M1 lidle 800 811 822 833 840 851 862 873 880 891
CM2 tidle idle 1600 1611 1622 1633 1640 1651 1662 1673 1654
M3 Jidle idle idle 2400 24,1,1 2422 2433 2440 2451 2462 2473

In order to check for the need to split states, each context model also
examines data in the memory bank following the current bit. This
happens in lock-step.A Context model 805 accesses Bank 0 to get
information on the current state, while context model 806 accesses Bank 1,
etc. Then, context model 805 accesses information in Bank 1 to get split
information about the next state. In one embodiment, the switching to
allow tﬁe context models to access other memory banks is performed by a
crossbar using address and data.

In an alternate embodiment, such as shown in Figure 9, there is one
32 byte buffer 901. Buffer 901 may comprise a shift register. Context model
906 accesses either byte 0 bit 0, or byte 8 bit 0, or byte 16 bit 0, or byte 24 bit (.
Context model 907 accesses one of the bit 1s of the same four bytes, and so

on. After each context model reads the appropriate bit, the shift register of
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buffer 901 can be shifted by four dits. The access pattern is in Table 7. In
this case, the primary memory bank is always the Bank 0 for context model
906 and Bank 1 for context model 907. Of course, the context models also
access the following bank for splitting information. Table 7 is also
different because the context models have been staggered by two positions
at startup. This is probably more realistic because there may be pipeline
delays receiving information from memory or from the paralle! entropy
coder (e.g., a high-speed parallel coder). Even longer delays could be
added. The current state is passed among the context models. (Note for
this embodiment of the context model, instead of passing current state in a

cycle (0,1,2,3,0,...), history information is passed.

15

Table 7
Time [0 1 2 3 4 5 6 7 8 9 10
MO0 |0.00 800 1600 2400 04,0 840 1640 2440 1,00 900 1720
M1 |idle idle 01,1 811 1611 2411 051 851 1651 2451 1L1cC1
M2 |idle idle  idle idle 0,22 822 1622 23422 062 862 1622
M3 |idle idle idle idle .idle idle 033 833 1633 2433 075

Whereas, many alterations and modifications of the present

invention will no doubt become apparent to a person of ordinary skill in

the art after having read the foregoing description, it is to be understood

that the various embodiments shown and described by way of illustration

are in no way to be considered limiting. Therefore, reference to the details
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of the various embodiments are not i .tended to limit the scope of the
claims which themselves recite only those features regarded as essential to

the invention.

Thus, a system and method for compression and decompression of

arbitrary data has been described.
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CLAIMS :-

1. An apparatus foi compressing an input symbol stream

comprising:

context model operable with a variety of data types to generate
contexts and binary decisions for symbols in the input symbol stream,
wherein the context model comprises at least one memory having a
plurality of banks in which each bank is associated with one or more
distinct states; and

a binary entropy coder coupled to the context model to estimate
probabilities based on contexts from the context model and to code binarv
decisions from the context model into a compressed data stream based on

generated probability estimates.

2. The apparatus defined in Claim ' wherein the context

model is adaptive.

3. The apparatus defined in Claim 2 wherein a state of the

context model splits if more memory exists in the bank storing the state.

4. The apparatus defined in Claim ' wherein pointers to each

state are implicitly addressed by the bit position.

5. The apparatus defined in Claim % wherein banks in the
memory are selected based on a predetermined number of previous bits

and the bit position.
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6.  The apparatus det.ned in Claim 5 wherein a new bank is
selec;ed by combining a bit position counter, the previous bits and the

value stored in the current state.

7. The apparatus defined in Claim 1 wherein further
comprising a table containing counts, wherein each context has a pointer

into the table.

8.  The apparatus defined in Claim 7 wherein the table

provides both splitting rules and probability estimates.

9. The apparatus defined in Claim 8 wherein states are split if

the current branch is used more than a threshold number of times.
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10. An apparatus for decompressing a compressed bit stream
comprising:

a context model operable with a variety of types of data to generate a
context corresponding to individual bits in the compressed bit stream,
wherein the context model comprises at least one memory having a
| plurality of banks in which each bank is associated with one or more
distinct states; and

a binary entropy decoder coupled to the context model to estimate
probabilities based on contexts from the context model, wherein the binary
entropy coder generates a result indicative of whether a decision was in its
most probable state, and further wherein the context model uses a result to

generate reconstructed data.
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11. The apparatus defined in Claim 10 wherein the context

model is adaptive.

12. The apparatus defined in Claim 10 wherein the state of the
context model splits if more memory exists in the same bank containing

the state.
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